
$"".

jfeIN
;

mfr'•'€&!W
!H

fem



COVER PHOTOGRAPHS

1
5

9

11

2

7

12

3

6

10

13

4

8

14

1. Asbestos ore
2. Lead ore. Balmat Mine, N. Y.
3. Chromite-chromium ore. Wash.
4. Zinc ore, Friedensville, Pa.
5. Banded iron formation,Palmer, 

Mich.
6. Ribbon asbestos ore, Quebec, Canada
7. Manganese ore, banded 

rhodochrosite

8. Aluminum ore, bauxite, Georgia
9. Native copper ore, Keweenawan 

Peninsula, Mich.
10. Porphyry molybdenum ore, Colo.
11. Zinc ore, Edwards, N. Y.
12. Manganese nodules, ocean floor
13. Botryoidal fluorite ore. 

Poncha Springs, Colo.
14. Tungsten ore, North Carolina



5

World Nonbauxite 
Aluminum Resources 
Excluding Alunite
By JOHN W. HOSTERMAN, SAM H. PATTERSON, and ELIZABETH E. GOOD 

GEOLOGY AND RESOURCES OF ALUMINUM

U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1076-C

A compilation of published information on the 
geology and worldwide distribution of 
nonbauxite resources that are potential sources of 
aluminum and on methods for extracting 
alumina from them

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1990



DEPARTMENT OF THE INTERIOR 

MANUEL LUJAN, Jr., Secretary

U.S. GEOLOGICAL SURVEY 

Dallas L. Peck, Director

Any use of trade, product, or firm names in this publication is for
descriptive purposes only and does not imply endorsement by the

U.S. Government

Library of Congress Cataloging in Publication Data

Hosterman, John W. (John Wallace), 1923-
World nonbauxite aluminum resources excluding alunite / by John W. Hosterman, Sam H. Patterson, and Elizabeth E. Good.

p. cm.  (U.S. Geological Survey professional paper ; 1076-C) 
Includes bibliographical references. 
Supt.ofDocs.no.: I 19.16:1076-C 
1. Aluminum ores. 2. Aluminum ores United States. I. Patterson, Sam H. (Sam Hunting). II. Good, Elizabeth E. III.

Title. IV. Series. 
TN490.A5H67 1990
553.4'926-dc20 89-600402

CIP

For sale by the Books and Open-File Reports Section, U.S. Geological Survey, 
Federal Center, Box 25425, Denver, CO 80225



CONTENTS

Abstract........................................................................... Cl
Introduction...................................................................... 1
History of Research on Nonbauxite Aluminum Resources in the

United States........................................................... 2
Investigations by the U. S. Geological Survey .................. 2
Investigations by the U. S. Bureau of Mines .................... 3
Investigations by State Geological Surveys ...................... 4

Nonbauxite Aluminum Resources......................................... 4
High-Alumina Clay...................................................... 4

United States........................................................ 5
Arkansas........................................................ 5
South Carolina-Georgia-Alabama Kaolin Belt....... 5

Argentina............................................................. 7
Australia.............................................................. 7
Austria................................................................ 7
Brazil.................................................................. 7
Bulgaria............................................................... 8
Czechoslovakia...................................................... 8
Egypt.................................................................. 8
Federal Republic of Germany .................................. 8
France................................................................. 8
German Democratic Republic................................... 8
Guyana and Suriname............................................. 8
India................................................................... 9
Jamaica................................................................ 9
Japan................................................................... 9
Pakistan............................................................... 9
People's Republic of China ..................................... 10
Saudi Arabia........................................................ 10
South Africa........................................................ 10
Spain.................................................................. 10
Tanzania and Other Countries in Africa ................... 10
United Kingdom................................................... 11
U.S.S.R.............................................................. 11

Aluminous Igneous Rocks Anorthosite ......................... 12
United States....................................................... 13
Canada............................................................... 13
Finland............................................................... 14
Greenland............................................................ 14
Norway............................................................... 14
South Korea ........................................................ 14
Sweden............................................................... 14
U.S.S.R.............................................................. 15
Other Countries ................................................... 15

Aluminous Igneous Rocks Nepheline Syenite and
Phonolite.......................................................... 15

United States....................................................... 16
Canada............................................................... 16
Egypt................................................................. 17
Mexico................................................................ 17
Norway............................................................... 17
South Africa........................................................ 18
United Kingdom................................................... 18
U.S.S.R.............................................................. 18
Other Countries ................................................... 21

Nonbauxite Aluminum Resources Continued
Aluminous Igneous Rocks Leucite-Bearing Rocks .......... C21
Dawsonite-Bearing Rocks ........................................... 21

United States....................................................... 22
Geology......................................................... 22
Resources...................................................... 25

Other Countries ................................................... 25
Aluminous Phosphate Rocks......................................... 26

United States....................................................... 26
Senegal............................................................... 26
Other Countries ................................................... 27

Saprolite................................................................... 27
United States....................................................... 28

Southeastern United States.............................. 28
Arkansas....................................................... 29
Oklahoma...................................................... 29
Northwestern United States............................. 29
Hawaii.......................................................... 29

Other Countries ................................................... 30
Aluminous Metamorphic Rocks ..................................... 30

United States....................................................... 31
Canada............................................................... 31
Finland, Sweden, and Norway................................ 32
India.................................................................. 32
South Africa........................................................ 32
U.S.S.R.............................................................. 33
Zimbabwe........................................................... 33
Other Countries ................................................... 33

Aluminous Shale......................................................... 34
United States....................................................... 34
Canada............................................................... 35
Spain.................................................................. 35
Sweden............................................................... 35
Other Countries ................................................... 36

Coal Waste and Coal Ash............................................. 36
United States....................................................... 36
Canada............................................................... 37
United Kingdom................................................... 37
Other Countries ................................................... 37

Miscellaneous Sources of Alumina.................................. 37
Copper Leach Solutions ......................................... 37
Gibbsitic Soils ...................................................... 38
Zunyite............................................................... 38

Alumina Extraction Research............................................. 38
Research Before World War II..................................... 38
U.S. Research During World War II............................. 39
Investigations by U.S. Government Agencies after

World War II.................................................... 40
U.S. Bureau of Mines............................................ 40

Miniplant Studies............................................ 40
Other Studies................................................. 41

U.S. Department of Energy................................... 42
U.S. Environmental Protection Agency.................... 42
U.S. Atomic Energy Commission............................ 42

in



IV CONTENTS

Alumina Extraction Research—Continued
Investigations by U.S. Government Agencies after

World War II—Continued 
U.S. National Bureau of Standards.......................... C43
Tennessee Valley Authority ................................... 43

Investigations by Companies ........................................ 43
Aluminum Company of America.............................. 43
Anaconda Aluminum Company-Atlantic Richfield

Company.................................................... 44
Kaiser Aluminum and Chemical Corporation ............. 44
Reynolds Metals Company ..................................... 44
Olin Mathieson Chemical Corporation....................... 44
Aluminium Pechiney ............................................. 44
Alcan International, Ltd........................................ 45
Toth Aluminum Corporation................................... 45
North American Coal Corporation........................... 45
Allied Chemical Corporation................................... 45
Arthur D. Little, Inc............................................. 45
Kennecott Copper Corporation................................ 45
Alumet............................................................... 46
Other Companies.................................................. 46

Investigations by U.S. Colleges and Universities............. 46
Investigations of U.S. Dawsonite .................................. 47

Alumina Extraction Research— Continued
Investigations in Other Countries .....................

Argentina...............................................
Australia................................................
Canada ..................................................
Czechoslovakia........................................
Egypt....................................................
Federal Republic of Germany ....................
German Democratic Republic.....................
Hungary ................................................
Italy... ...................................................
Japan.....................................................
Mexico...................................................
Norway..................................................
Philippines..............................................
Poland ...................................................
Romania.................................................
South Africa ...........................................
South Korea ...........................................
Spain.....................................................
Sweden..................................................
Taiwan...................................................
United Kingdom......................................
U.S.S.R. ................................................
Yugoslavia..............................................

References Cited .................................................

Page

............ C48

............ 48

............ 48

............ 48

............ 49

............ 49

............ 49

............ 49

............ 49

............ 50

............ 50

............ 50

............ 50

............ 51

............ 51

............ 51

............ 51

............ 51

............ 51

............ 51

............ 51

............ 51

............ 52

............ 53

............ 53

ILLUSTRATIONS

FIGURES 1-5. Maps showing locations of:
1. Six major kaolin districts in the South Carolina-Georgia-Alabama kaolin belt............................................... C6
2. Major anorthosite deposits in the United States ...................................................................................... 13
3. Maj or nepheline syenite and phonolite deposits in the conterminous United States........................................ 18
4. Nepheline syenite deposits in Ontario and Quebec Provinces, Canada ........................................................ 20
5. Major nepheline syenite deposits in the U.S.S.R., Finland, and Norway ..................................................... 20

6. Map showing the distribution of nahcolite and dawsonite in the Parachute Creek Member of the Green River Formation,
Piceance Creek basin, northwestern Colorado................................................................................................ 24

7. Diagrammatic cross section through the Green River Formation in the Piceance Creek basin, northwestern Colorado..... 25

TABLES

TABLE 1. Nonbauxite aluminum resources used by Japan during World War II—————————————————————————
2. Clays that are derived from Pleistocene volcanic ash and that may be a source of alumina in Japan————————-
3. Major aluminum-bearing materials in the United Kingdom ————————————————————————————————-
4. Chemical composition of some U.S. anorthosites ——————————————————————————————————————
5. Major anorthosite bodies in the United States ———————————————————————————————————————-
6. Nonbauxite sources of alumina in Canada ——————————————————————————————————————————-
7. Mineral composition of nepheline syenite ———————————————————————————————————————————
8. Chemical composition of nepheline syenite from Canada, Norway, and Scotland———————————————————
9. Major nepheline syenite and phonolite deposits in the United States —————————————————————————

10. Mineral composition of samples from four sections of the Parachute Creek Member of the Green River Formation, 
	Piceance Creek basin, northwestern Colorado —————————————————————————————

C9 
9

11
12
12
14
16
16
19

___________ 23



CONTENTS

11. Chemical analyses of seven samples from the aluminum phosphate zone in the Bone Valley Formation, Florida———————— C27
12. Chemical composition ranges of saprolite from Spokane County, Washington———————————————————————————— 29
13. Characteristics of the kyanite-group minerals—————————————————————————————————————————————— 30
14. Typical composition of anthracite culm in Pennsylvania————————————————————————————————————————— 37
15. Ranges in composition of coal-washing rejects in Kentucky and Pennsylvania ———————————————————————————— 44

METRIC CONVERSION FACTORS
This report uses the metric units listed below. To convert to inch-pound units, use the conversion 

factors given below.

Multiply By To obtain

centimeter (cm) 
meter (m) 

kilometer (km)

hectare (ha) 
square kilometer (km2)

liter (L) 
cubic meter (m3)

gram(g) 
metric ton

degree Celsius (°C) 
kilojoule per kilogram (kj/kg)

0.3937 
3.281 

.6214

2.471 
.3861

1.057 
1.308

.03527 
1.102

1.8 and add 32 
.4299

inch 
foot 
mile

acre 
square mile

quart 
cubic yard

ounce 
short ton (2,000 pounds)

degree Fahrenheit 
British thermal unit per pound





GEOLOGY AND RESOURCES OF ALUMINUM

WORLD NONBAUXITE ALUMINUM RESOURCES EXCLUDING
ALUNITE

By JOHN W. HOSTERMAN, SAM H. PATTERSON, and ELIZABETH E. GOOD

ABSTRACT

The nonbauxite resources having the best potential for extraction of 
aluminum are alunite, high-alumina clay, and aluminous igneous rocks; 
those having less potential are dawsonite-bearing rocks, aluminous 
phosphate rocks, saprolite, aluminous metamorphic rocks, aluminous 
shale, coal waste, and coal ash. With the exception of alunite, which 
was discussed in the separately published Chapter A of this Profes­ 
sional Paper, all these resources are discussed in this report.

The high-alumina clays are composed of minerals of the kaolin 
group—kaolinite, halloysite, dickite, and nacrite. Kaolinite is by far the 
most abundant, and it is the major component in a variety of high- 
alumina clays. High-alumina clays have a maximum alumina content of 
about 39 weight percent. However, no large deposits are pure, and 
most high-alumina clay deposits are 25-35 weight percent alumina.

Igneous rocks exceptionally rich in alumina include anorthosite, 
nepheline syenite, phonolite, and leucite-bearing volcanic rocks. U.S. 
anorthosite contains 24-33 weight percent alumina, U.S. nepheline 
syenite contains 17-23 weight percent alumina, and Italian leucite- 
bearing rocks contain 20-22 weight percent alumina.

The mineral dawsonite, which contains 35.4 weight percent alumina, 
occurs in oil shale but makes up no more than 12-25 weight percent of 
the rock. Therefore, any aluminum production from dawsonite must 
depend upon other products from the shale such as oil and soda ash 
derived from nahcolite.

The aluminous phosphate rock associated with phosphate deposits is 
the result of calcium phosphate being leached by meteoric waters. The 
alumina content of such phosphate rock in the United States ranges 
from about 6 to 15 weight percent, and the aluminum phosphate 
minerals make up 20-30 weight percent of the rock. Any aluminum 
production from this rock will depend on the recovery of other products 
such as phosphate and uranium. The Thies region, Senegal, is the only 
place in the world where significant tonnages of aluminum phosphate 
are mined.

Saprolite is a decomposed rock formed in place by subaerial chemical 
weathering of any kind of rock; it retains the original structure and 
texture of the parent rock. Some saprolite is similar in chemical and 
mineral composition to high-alumina clay, and some saprolite contains 
gibbsite replacing kaolinite. Generally, saprolite that is a potential 
resource of alumina contains 20-38 weight percent alumina.

Aluminous metamorphic rocks contain the minerals kyanite, silliman- 
ite, andalusite, topaz, or dumortierite. These minerals contain 55-64

Manuscript approved for publication, November 3, 1989.

weight percent alumina. Aluminous metamorphic rocks may contain as 
much as 40 weight percent kyanite-group minerals, but generally they 
contain less than 15 weight percent.

Aluminous shales are sedimentary rocks formed by the consolidation 
of clay- and silt-sized material. Almost all shales contain some quartz 
and the clay minerals illite, kaolinite, and (or) smectite. The alumina 
content of shale that is a potential resource of alumina ranges from 20 
to 40 weight percent.

Aluminous coal waste includes the claystone and shale removed from 
the coal during beneficiation by washing and shale or slate above the 
coal that is removed during the mining. Fly ash, the fine material, and 
other forms of ash collected from a coal-burning powerplant's combus­ 
tion system are also aluminous and are potential sources of alumina. 
Some of these materials have an alumina content of about 30 weight 
percent, and because of the enormous amount of coal mined and burned 
annually, they represent a large potential resource of alumina.

Miscellaneous sources of alumina include copper leach solutions that 
have been used to extract copper from many of the porphyry copper 
mining operations. The U.S. Bureau of Mines estimated, before the 
closing of many U.S. copper mines, that 500,000 metric tons of alumina 
per year could have been produced in the United States from copper 
leach solutions. Other materials that have been considered sources of 
alumina are the gibbsitic soils of the U.S. Atlantic and Gulf of Mexico 
Coastal Plains and zunyite in Nevada. There are no estimates on the 
amount of alumina that these materials would yield.

None of the potential resources of aluminum are being exploited 
today in the United States. Currently, U.S. needs for alumina are met 
by bauxite from Arkansas and from imports.

INTRODUCTION

This report provides information on potential non- 
bauxite aluminum resources excluding alunite. It is the 
third, and last, of a series of reports on the resources of 
aluminum. These reports are separately published by the 
U.S. Geological Survey as Professional Papers 1076-A, 
B, and C. World bauxite resources were summarized in 
Chapter B (Patterson and others, 1986), and alunite 
resources were summarized in Chapter A (Hall, 1978). 
These three reports were prepared in response to the 
increasing demands for information on world aluminum 
resources that have resulted from the increased depend-

Cl
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ence of the United States on foreign sources for bauxite. 
Domestic reserves of bauxite are not sufficient to supply 
U.S. aluminum needs; therefore, the United States must 
rely on imports of bauxite, alumina (A1203), and alumi­ 
num until the production of aluminum from nonbauxite 
sources becomes economical. This report, which empha­ 
sizes the United States, summarizes published informa­ 
tion on the worldwide distribution and geology of mate­ 
rials containing sufficient alumina to be considered 
alternate sources of alumina were bauxite to become 
unavailable.

The nonbauxite resources (excluding alunite) having 
the best potential for extraction of alumina are high- 
alumina clay and aluminous igneous rocks; those having 
less potential are dawsonite-bearing rocks, aluminous 
phosphate rocks, saprolite, aluminous metamorphic 
rocks, aluminous shale, coal waste, and coal ash. High- 
alumina clay is any clay containing an appreciable 
amount of aluminum that can be extracted as alumina. 
The common clay minerals that are high in alumina are 
members of the kaolin group, and the terms "kaolin" and 
"high-alumina clay" are used interchangeably. Igneous 
rocks exceptionally rich in aluminum include anorthosite, 
nepheline syenite, phonolite, and leucite-bearing vol­ 
canic rocks. Dawsonite, a hydrous sodium and aluminum 
carbonate mineral that contains 35.4 weight1 percent 
alumina or 18.7 percent aluminum, is in the oil shale of 
the Green River Formation in Colorado. Aluminous 
phosphate rocks are the result of leaching and alteration 
by meteoric waters of phosphate deposits. Saprolite is a 
decomposed product of subaerial chemical weathering of 
any kind of rock in place; its principal aluminous minerals 
are of the kaolin group. Aluminous metamorphic rocks 
contain the kyanite-group minerals (kyanite, sillimanite, 
andalusite, topaz, and dumortierite), which contain 
55-64 percent alumina. Aluminous shale and alum shale 
are fine-grained sedimentary rocks that contain enough 
alumina (20-40 percent) to be considered a potential 
resource. The recovery of alumina from coal waste and 
coal ash has received attention in many countries because 
the alumina content can be about 30 percent and because 
so much of this material is available. Alunite is men­ 
tioned only briefly in this report because it was discussed 
in detail by Hall (1978).

This report begins with a brief history of investiga­ 
tions of U.S. nonbauxite aluminum resources. The main 
part of the report is a discussion of each resource and the 
worldwide distribution of its potentially economic depos­ 
its. The last part of this report is a partial compilation of 
the enormous amount of research done to find the best 
method for extracting alumina from nonbauxite material. 
After a brief history, this compilation is organized by

*A11 percentages are by weight unless otherwise specified.

investigator, such as U.S. government agencies, U.S. 
and international companies, and U.S. colleges and uni­ 
versities. The compilation ends with a summary of 
extraction research in other countries. Our expertise is 
in geology, not metallurgy, but we gathered the scat­ 
tered extraction data to provide future researchers with 
a background on the work available as a basis for further 
experiments.

HISTORY OF RESEARCH ON NONBAUXITE
ALUMINUM RESOURCES IN THE UNITED

STATES

INVESTIGATIONS BY THE U.S. GEOLOGICAL SURVEY

High-alumina clay.—The U.S. Geological Survey 
(USGS) investigated many high-alumina clay deposits 
during World War II, including those in the following 
areas:

Cowlitz County, Washington (Nichols, 1945); 
King County, Washington (Nichols, 1946); 
Spokane County, Washington (Scheid, 1946, 1947;

Hosterman and others, 1960); 
Molalla, Clackamas County, Oregon (Nichols, 1944); 
Hobart Butte, Lane County, Oregon (Alien and

others, 1951);
Latah County, Idaho (Scheid and Sohn, 1946; Hos­ 

terman and others, 1960);
Clearfield County, Pennsylvania (Foose, 1944); and 
Allegany and Garrett Counties, Maryland (Waage,

1950).
During and after World War II, the USGS also inves­ 

tigated high-alumina clay deposits associated with baux­ 
ite in the Southern and Southeastern States in the 
following areas:

Pulaski and Saline Counties, Arkansas (Tracey,
1944; Gordon and others, 1958); 

Tippah-Benton district, Mississippi (Tourtelot,
1964);

parts of eastern Mississippi exclusive of the Tippah- 
Benton district (Conant, 1965);

Margerum district, Alabama (Bergquist and Over- 
street, 1965);

northeastern Alabama (Denson and Waage, 1966);
Anniston, Fort Payne, and Ashville areas, Alabama 

(Cloud, 1966);
Rock Run and Goshen Valley areas, Alabama 

(Cloud, 1967);
Eufaula district, Alabama (Warren and Clark, 1965);
northwestern Georgia (White and Denson, 1966);
Warm Springs district, Georgia (White, 1965);
Springvale district, Georgia (Clark, 1965);
Andersonville district, Georgia (Zapp, 1943, 1949,

1965);
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areas adjacent to and between the Springvale and 
Andersonville districts, Georgia (Zapp and Clark, 
1965);

Irwinton district, Georgia (Warren, 1943; Thomp­ 
son, 1944a, b; Lang and others, 1965); 

central and eastern Tennessee (Dunlap and others,
1965); and

western Virginia (Warren and others, 1965). 
After World War II, the USGS investigations of 

high-alumina clay continued in the following areas: 
eastern Washington (Hosterman, 1969a); 
Front Range, Colorado (Waage, 1953, 1961); 
Jackson Purchase region, Kentucky (Olive and

Finch, 1969); 
eastern Kentucky (Huddle and Patterson, 1961;

Patterson and Hosterman, 1962); 
Andersonville district, Georgia (Gofer and others,

1976; Gofer and Manker, 1983); 
Macon-Gordon area, Georgia (Buie and others,

1979); and 
Mount Holly Springs, Pennsylvania (Hosterman,

1969b, 1984).
The USGS published a map of alumina resources in the 

Columbia River Basin, Northwestern United States 
(Sohn, 1952), and a map and bibliography of high-alumina 
clay deposits in the United States exclusive of Alaska 
and Hawaii (Mark, 1963). Murray and Patterson (1976) 
summarized kaolin, ball-clay, and fire-clay resources in 
the United States and later expanded their study area 
when they (Patterson and Murray, 1984) summarized 
kaolin, refractory-clay, ball-clay, and halloysite resourc­ 
es in North America, Hawaii, and the Caribbean region. 

Aluminous phosphate rocks. —The work by the USGS 
on aluminous phosphate deposits consisted of chemical 
and mineralogical investigations (Altschuler and others, 
1956) and geologic studies (Cathcart and Houser, 1950; 
Cathcart and others, 1953; McKelvey and others, 1953; 
Cathcart, 1963; Espenshade and Spencer, 1963).

Aluminous igneous rocks.— The USGS also studied 
the resources of the igneous rocks that have been con­ 
sidered potential sources of alumina. The earliest work 
included study of nepheline-bearing rocks in the Little 
Belt Mountains, Montana (Weed and Pirsson, 1900); 
potash-bearing rocks in the Leucite Hills, Wyoming 
(Schultz and Cross, 1912); phonolite in the Black Hills, 
South Dakota (Darton and Paige, 1925); and anorthosite 
near Chester, Pennsylvania (Bascom and Stose, 1938). 
The more recent work includes reports on the anortho­ 
site deposits in northern Idaho (Hietanen, 1963); the 
Stillwater Complex, Montana (Jones and others, 1960); 
the Laramie Range, Wyoming (Hagner, 1951; Newhouse 
and Hagner, 1957); and Roseland, Virginia (Herz, 1968; 
Herz and Force, 1984).

Nepheline syenite occurrences were studied in the 
following areas:

Selawik Hills, Alaska (Patton and Miller, 1968;
Miller, 1972);

Granite Mountain, Alaska (Miller, 1972); 
St. Lawrence Island, Alaska (Csejtey and Patton,

1974); 
Shasket Creek, Washington (Parker and Calkins,

1964); 
Lincoln County, Oregon (Snavely and Wagner,

1961); 
Tin Mountain, Inyo County, California (McAllister,

1952); 
Bearpaw Mountains, Montana (Pecora, 1942; Hearn

and others, 1964); 
McClure Mountain, Colorado (Parker and Hilde-

brand, 1963);
Cornudas Mountains, New Mexico (Holser, 1959); 
Terlingua district, Big Bend area, Texas (Yates and

Thompson, 1959); 
Arkansas bauxite district (Gordon and others, 1958);

and
Magnet Cove, Arkansas (Erickson and Blade, 1963). 

Dawsonite-bearing rocks.— USGS studies of dawson- 
ite from the Piceance Creek basin, Colorado, as a souree 
of aluminum include those by Donnell (1961), Hite and 
Dyni (1967), Dyni and Hite (1968), Hosterman and Dyni 
(1972), Dyni (1974, 1980), and Donnell and Smith (1980). 
USGS research resulted in two U.S. patents for extract­ 
ing alumina from dawsonite in oil shale (Hite, 1969; Dyni, 
1972); they were assigned to the Secretary of the Inte­ 
rior.

INVESTIGATIONS BY THE U.S. BUREAU OF MINES

The U.S. Bureau of Mines (USBM) and the USGS 
conducted many joint and separate investigations of 
nonbauxite aluminum resources during World War II. 
Most of this work was on high-alumina clay, but anor­ 
thosite and alunite were also investigated. Much of the 
USBM's work on high-alumina clay resources was pub­ 
lished in more than 450 War Minerals Reports between 
1942 and 1945. In 1953, the USBM, with the cooperation 
of the USGS, prepared a materials survey on bauxite for 
the National Security Resources Board (U.S. Bureau of 
Mines, 1953). The report has a chapter on bauxite 
substitutes and includes numerous additional references 
on nonbauxite resources and the methods of alumina 
recovery used before and during World War II. The joint 
work by the USGS and USBM on the alunite deposits 
was summarized by Hall (1978).

An extensive drilling program by the USBM in the 
Arkansas bauxite region revealed that large high- 
alumina clay deposits are associated with the bauxite. 
These data were published in 18 reports by Malamphy
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and others (1948). The USBM also conducted several 
drilling projects in the South Carolina-Georgia-Alabama 
kaolin belt during the 1940's (Alien, 1949; Beck, 1949a-c; 
KM. Smith, 1949). The USBM contracted for the Geor­ 
gia Institute of Technology to determine the alumina 
content of 120 kaolin samples from company drill holes in 
Georgia; 79 samples were from the Wrens district, 40 
were from the Macon-Sandersville district, and 1 sample 
was from the Andersonville district (Husted, 1983).

The USBM did extensive work, both resource 
research and extraction research, on the anorthosite 
deposits of the Laramie Range, Wyoming (St. Clair and 
others, 1959), and of the San Gabriel Mountains, Califor­ 
nia (Lundquist, 1963). Much of what is presently known 
of the potential aluminum resource of dawsonite in the 
Piceance Creek basin, Colorado, was compiled by the 
USBM (J.W. Smith and Milton, 1966; J.W. Smith and 
Young, 1969, 1975; J.W. Smith and others, 1972; Beard 
and others, 1974; Beard and Smith, 1976; J.W. Smith, 
1980). Other nonbauxite sources of aluminum investi­ 
gated by the USBM include saprolite (Beg, 1982, 1984), 
coal-mine waste (Sorensen and Schaller, 1983), and cop­ 
per leach solutions (George and others, 1968).

INVESTIGATIONS BY STATE GEOLOGICAL SURVEYS

Several State geological surveys have investigated the 
nonbauxite aluminum resources in their respective 
States. The Geological Survey of Alabama studied kaolin 
associated with bauxite in the Eufaula district (Clarke, 
1972), kaolin in the Tuscaloosa Group (Clarke, 1964), and 
gibbsite in saprolite (Beg, 1984) and mapped the alumi­ 
nous waste dumps that result from strip mining coal in 
Tuscaloosa County (Beg and others, 1978). The North 
Dakota Geological Survey investigated the alumina 
potential of three formations in the western part of the 
State (Hansen, 1959).

Other State geological surveys that have investigated 
high-alumina clays include those in the States listed 
below:

State Reference
Arkansas. 
California. 
Florida... 
Georgia ..

Illinois

Kansas........
Kentucky......
Maryland......
Minnesota .....
Missouri.......
Nebraska......
New York.....
North Carolina.

Williams and Plummer, 1951.
Cleveland, 1957a, b.
Calver, 1949.
Smith, 1929; Munyan, 1938; Hetrick, 1982; Hetrick

and Friddell, 1982, 1983a, b. 
Grim and Alien, 1938; Lamar, 1948; White, 1959;

Odom and Parham, 1968. 
Plummer and Romary, 1947. 
Crider, 1913. 
Waage, 1950. 
Parham, 1970. 
McQueen, 1943. 
Gould and Fisher, 1901. 
Brownell and others, 1951. 
Parker, 1946.

State—Continued Reference—Continued

Ohio ............ Stout and others, 1923.
Pennsylvania .... Leighton, 1941; Bolger and Weitz, 1952; Pennsyl­ 

vania Geological Survey, 1964; O'Neill and oth­ 
ers, 1965; Hoover and others, 1971.

South Dakota .... Gries, 1942; Rothrock, 1944.
Virginia......... Calver, Hamlin, and Wood, 1961; Calver, Smith,

and LeVan, 1964; Johnson and others, 1965; 
Johnson and Tyrrell, 1967; Sweet, 1973.

Washington...... Glover, 1941; Livingston, 1971.
West Virginia.... Tallon and Hunter, 1959.

The Minnesota Geological Survey (Grout and 
Schwartz, 1939) and the Wyoming Geological Survey 
(Hagner, 1951) published reports on the anorthosite 
deposits within their respective States. The Illinois 
Geological Survey made a comprehensive review of the 
literature on fly ash (Roy and others, 1981) and proposed 
a classification system that should aid in research efforts 
and environmental control.

Research on processes for the extraction of alumina 
from clays has also been done by some State geological 
surveys. The Illinois Geological Survey investigated the 
lime and lime-soda sinter processes for the extraction of 
alumina from several types of clay minerals (Grim and 
others, 1945). Two different processes for the extraction 
of alumina from clays in Kansas were investigated by the 
Kansas Geological Survey (Kinney, 1943; Waugh and 
others, 1964).

The State of Georgia offered an award of $250,000 to 
the first company to build an alumina-extraction plant to 
process 300,000 metric tons per day from the large kaolin 
deposits within the State (Metals Sourcebook, 1974).

NONBAUXITE ALUMINUM RESOURCES

HIGH-ALUMINA CLAY

High-alumina clay is any clay containing an apprecia­ 
ble amount of aluminum that can be extracted as alu­ 
mina. The common clay minerals that are high in alumina 
are members of the kaolin group, and the terms "kaolin" 
and "high-alumina clay" are used interchangeably. Kao- 
linite, Al2Si205(OH)4 , has a theoretical composition of 
A1203 , 39.5 percent; Si02 , 46.5 percent; and H20, 14.0 
percent; it is by far the most common mineral of the 
kaolin group. The other minerals in the kaolin group, not 
discussed in any detail here, are halloysite, dickite, and 
nacrite.

Kaolinite is the major constituent in a variety of 
high-alumina clays, such as ball clay, fire clay, and 
underclay. Ball clay is a secondary clay that contains 
organic matter, is highly plastic, has a high dry strength 
and long vitrification range, and is light colored when 
fired. Fire clay is resistant to heat at temperatures as
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high as 1,520 °C and is usually slightly darker than ball 
clay when fired. Underclay normally underlies a coal or 
peat bed. Underclay is generally nonbedded and slicken- 
sided, fractures irregularly, and contains imprints of 
plant roots. Underclay is also called "seat earth" in 
England and is very similar to the material called "Ton- 
stein" in German.

High-alumina clays in one form or another occur in 
most countries. In the following discussions, no attempt 
will be made to list or even summarize all of the world's 
high-alumina clay resources. Most of the discussions will 
be limited to those resources that have been investigated 
as potential sources of alumina or that are large enough 
to supply an alumina-extraction plant for many years. A 
realistic potential resource should contain at least 100 
million metric tons of high-alumina clay.

UNITED STATES

The United States has many deposits of high-alumina 
clays. The extensive kaolin deposits in Arkansas and the 
kaolin belt of South Carolina, Georgia, and Alabama have 
by far the greatest potential for nonbauxite aluminum 
resources in the United States, and only they are dis­ 
cussed in this report. The Aluminum Company of Amer­ 
ica and Reynolds Metals Company own property in 
Arkansas, and four major aluminum companies control 
property in the South Carolina-Georgia-Alabama kaolin 
belt (Mining Journal, 1977). In both regions, the kaolin 
occurs in large areas that can be mined by inexpensive 
open-pit methods.

Many other high-alumina clay deposits throughout the 
United States are much smaller and lower grade and 
would probably be more costly to mine. During and after 
World War II, these deposits were investigated by the 
USGS and USBM as summarized above. Results were 
given in reports by Sohn (1952), the USBM (1953), 
Patterson (1967), Murray and Patterson (1976), Patter- 
son and Murray (1984), and Hosterman (1984) and in 
other reports listed in the bibliography by Mark (1963).

ARKANSAS

The principal high-alumina clay deposits in Arkansas 
are associated with the bauxite deposits that fringe the 
buried nepheline syenite hills in Pulaski and Saline 
Counties (Gordon and others, 1958, p. 255). The bauxite 
bodies grade both laterally and vertically through baux- 
itic clay into the enclosing large masses of kaolin clay. 
These clays and the bauxite are a facies of the Berger 
Formation, the lower formation of the Wilcox Group of 
early Eocene age. The bauxite-kaolin zone attains a 
maximum thickness of 24 m, but in most places, it does 
not exceed 18 m. The typical kaolin zone in these deposits 
contains more than 35 percent A1203 , less than 45 per­

cent Si02 , and less than 5 percent Fe208 . The clay is 
chiefly kaolinite, and the principal impurities are sider- 
ite, limonite, ilmenite, and carbonaceous material; biotite 
is common locally. According to a conservative estimate, 
the Arkansas bauxite region contains at least 100 million 
metric tons of kaolin that is covered by less than 15 m of 
overburden (Tracey, 1944); presumably, additional 
larger resources exist under greater thicknesses of over­ 
burden.

Numerous kaolin deposits also occur in a broad belt of 
Wilcox Group rocks extending southwest of the Arkan­ 
sas bauxite region in parts of Grant, Hot Springs, Dallas, 
Ouachita, and Miller Counties (Williams and Plummer, 
1951). The clay in this belt is in lenses ranging in 
thickness from 15 cm to 9 m and in areal extent from a 
few square meters to 16 ha or more. The clay lenses are 
enclosed by beds of chiefly unconsolidated sandstone, 
which contain appreciable quantities of lignite. Part of 
the clay is pure, and part is contaminated with silt, sand, 
and lignite. One sample examined by R.E. Grim con­ 
sisted chiefly of kaolinite but also contained montmoril- 
lonite and quartz (Williams and Plummer, 1951, p. 6).

The Arkansas bauxite region and the belt of Wilcox 
Group rocks extending southwest of the bauxite region 
are estimated to contain 545 million metric tons of kaolin 
having an average alumina content of about 31 percent 
(U.S. Bureau of Mines, 1967, p. 38). This estimate is 
based on references cited in the foregoing two para­ 
graphs and on the results of an extensive drilling pro­ 
gram described in 18 U.S. Bureau of Mines Reports of 
Investigations (Malamphy and others, 1948).

SOUTH CAROLINA-GEORGIA-ALABAMA KAOLIN BELT

The South Carolina-Georgia-Alabama kaolin belt 
extends for nearly 400 km from Aiken, S.C., to Eufaula, 
Ala. There are six major districts within this belt; from 
northeast to southwest, they are Augusta-Aiken, 
Wrens, Sandersville, Macon-Gordon, Andersonville, and 
Eufaula (fig. 1). All the kaolin deposits are in sedimen­ 
tary rocks, and, except for a small outlier at Warm 
Springs, Ga., all are in the Coastal Plain. This belt is the 
world's leading producer of sedimentary kaolin, and 
more than 100 million metric tons of kaolin have been 
mined. Our description of this belt is derived mostly from 
that by Patterson and Murray (1984).

The resources of kaolin in the South Carolina- 
Georgia-Alabama kaolin belt are estimated to be 7 
billion-10 billion metric tons (Patterson and Murray, 
1984, p. 7). This estimate may prove to be very conserv­ 
ative because meaningful estimates are available for only 
three of the six major districts in the kaolin belt.

The kaolin deposits in the South Carolina-Georgia- 
Alabama belt are of Late Cretaceous and early Tertiary
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EXPLANATION

I.'.':.-!:.':) Lower Tertiary outcrops 

^^^ Upper Cretaceous outcrops

\AUGUSTA, GA.- 
\AIKEN, S.C. f:_

100 KILOMETERS

FIGURE 1.—Six major kaolin districts in the South Carolina- 
Georgia-Alabama kaolin belt. Modified from Patterson and Murray 
(1984, fig. 3).

ages. Deposits of Late Cretaceous age occur in the 
Augusta-Aiken district, in the western part of the Sand- 
ersville district, and in the Macon-Gordon district. The 
kaolin deposits of this age are scattered throughout a 
wedge-shaped Upper Cretaceous sand unit that thickens 
downdip toward the ocean; more than 335 m of this unit 
was penetrated by a drill hole near Tarversville, Ga. 
(Buie and others, 1979, p. 8). Updip, the Upper Creta­ 
ceous sand unit is truncated by erosion.

Kaolin deposits of early Tertiary age, which are larger 
than the Upper Cretaceous deposits, occur in all six 
major districts (fig. 1). The Tertiary strata containing 
the kaolin are similar in lithology to the underlying 
Upper Cretaceous beds. The Cretaceous-Tertiary con­ 
tact is unconformable, and at several localities, the 
Tertiary beds extend over pre-Cretaceous crystalline 
rocks.

Warm Springs district, Georgia.—The Warm Springs 
district contains small kaolin deposits dated as Paleocene 
by pollen studies (N.O. Frederiksen, oral commun., 
1979). The deposits probably are mined out, and little is 
known about them other than that they were associated 
with small gibbsitic bauxite deposits in a downfaulted 
block of Tertiary sediments surrounded by crystalline

rocks of the Piedmont region (White, 1965). The geo­ 
graphic location of the Warm Springs district strongly 
suggests that kaolin deposits were widespread north of 
Andersonville before extensive erosion of Tertiary and 
Upper Cretaceous beds.

Augusta, Ga.-Aiken, S.C., district.—Deposits in the 
Aiken district, South Carolina, were investigated by the 
U.S. Geological Survey (Lang and others, 1940), and 200 
coreholes were drilled by the U.S. Bureau of Mines 
(K.M. Smith, 1949). Buie and Schrader (1982) completed 
more recent work in this district and found that most of 
the kaolin produced there is from the lower Tertiary 
Huber Formation, which is equivalent to the Claiborne 
Formation. Kaolin in the Augusta district, Georgia, was 
described by R.W. Smith (1929, p. 389-407). Resource 
estimates are not available.

Wrens district, Georgia.—The kaolin in the Wrens 
district is believed to be Eocene in age (Husted, 1983, p. 
10). Husted (1983) estimated the kaolin under less than 
55 m of overburden in the Wrens district to be 5.4 billion 
metric tons of material averaging 35.5 percent alumina. 
The study also revealed that the kaolin occurs as a single 
continuous body having an average thickness of 7.6 m 
and underlying 490 km2 .

Sandersville district, Georgia.—The western part of 
the Sandersville district and the eastern part of the 
Macon-Gordon district were included in the Irwinton 
district of Lang and others (1965). This area also was 
studied by Warren (1943) and Thompson (1944a, b) and 
was drilled by the U.S. Bureau of Mines (Beck, 1949b). 
More recently, deposits in the Sandersville district were 
investigated by the Georgia Geologic Survey (Hetrick, 
1982; Hetrick and Friddell, 1982, 1983a, b).

The commercial-grade kaolin in this district occurs in 
the Eocene Huber Formation and in the undifferentiated 
Cretaceous sediments (Hetrick and Friddell, 1983a). 
Resource estimates are not available.

Macon-Gordon district, Georgia.—Early studies of 
the Macon-Gordon district are mentioned under the 
Sandersville district above. More recent work has been 
done by Buie (1978), Buie and others (1979), and Husted 
(1983).

The lower Tertiary strata of the Macon-Gordon district 
are in the Huber Formation (Buie, 1978), which is typical 
of a tidal-flat environment of deposition. Channel-fill 
deposits are abundant, and most of the formation is 
intricately crossbedded. Ilmenite and other dark heavy 
minerals are abundant and are concentrated along bed­ 
ding planes. Lignitic clays, which contain pollen, occur at 
many places, usually as single beds or as restricted 
lenses. Rounded boulders of pisolitic kaolin and gibbsitic 
kaolin, ranging in diameter from a few centimeters to 
more than 2 m, are present in the upper part of the
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formation at many places. Many of these boulders are 
enclosed in sand, and they clearly indicate a high-energy 
environment of deposition.

Buie and others (1979, p. 31) estimated the total kaolin 
resources in the Macon-Gordon district to be greater 
than 100 million metric tons. Subeconomic resources 
were estimated to be an additional 700 million-900 mil­ 
lion metric tons and undiscovered kaolin resources to be 
700 million-1 billion metric tons. Accordingly, the total 
kaolin resources in the Macon-Gordon district are esti­ 
mated to be 1.5 billion-2 billion metric tons.

Andersonville district, Georgia.—During World War 
II, the U.S. Geological Survey investigated kaolin and 
bauxite in the Andersonville district (Zapp, 1943, 1949, 
1965), in the Springvale district (Clark, 1965), and in 
areas adjacent to and between the Springvale and the 
Andersonville districts (Zapp and Clark, 1965). The 
Springvale district, Georgia, is southwest of the Ander­ 
sonville district. The U.S. Bureau of Mines drilled 1,192 
coreholes in the Andersonville district (Beck, 1949a) and 
388 coreholes in the Springvale district (Beck, 1949c). 
The kaolin deposits occur in the Paleocene Nanafalia 
Formation (N.O. Frederiksen, oral commun., 1979). The 
geology of the district was described by Gofer and 
Manker (1983).

A computerized study of approximately 2,500 drill­ 
hole records for the Andersonville district (Gofer and 
others, 1976, table 1) indicated reserves to be 290 million 
metric tons of kaolin containing 30-35 percent alumina. 
The study also indicated the presence of an equal amount 
of subeconomic sandy kaolin. Therefore, the total 
resource of kaolin was estimated to be 580 million metric 
tons.

Eufaula district, Georgia and Alabama.— During 
World War II, the U.S. Geological Survey (Warren and 
Clark, 1965) and the U.S. Bureau of Mines (Alien, 1949) 
investigated kaolin in the Eufaula district. The Geologi­ 
cal Survey of Alabama (Clarke, 1972) and the refracto­ 
ries industry (Jones, 1972; Burst, 1974) also investigated 
the Eufaula district. The kaolin deposits occur in the 
Paleocene Nanafalia Formation (N.O. Frederiksen, oral 
commun., 1979). Resource estimates are not available.

ARGENTINA

Although information on the size of kaolin resources in 
Argentina is unavailable, kaolin deposits are known to 
occur at many places (N.I. Rosy, written commun., 
1980). The deposits in central Neuquen Province appar­ 
ently are the largest, and they were once considered to 
be the potential source of raw material for a proposed 
plant to extract alumina from kaolin (Engineering and 
Mining Journal, 1954). This kaolin is of sedimentary 
origin and was transported from a region of weathered

basalt. Kaolin deposits in Chubut Province are also 
significant. The largest of these deposits consists of 
residual kaolin from pyroclastic volcanic rocks; other 
deposits were formed by hydrothermal alteration.

AUSTRALIA

Australia has many kaolin deposits. Gaskin (1969) 
listed the following occurrences: 36 in weathered granite 
and related rocks, 32 in kaolinized metamorphic rocks, 30 
in kaolinized dike rocks, and 15 in kaolinized sedimentary 
rocks. Gaskin and others (1979) discussed the following 
six kaolin districts that presumably contain the most 
important kaolin deposits in Australia: (1) Gabbin, West­ 
ern Australia, (2) Imbitch, South Australia, (3) Craw- 
ford, South Australia, (4) Gulong, New South Wales, (5) 
Pittong, Victoria, and (6) Egerton, Victoria. More recent 
work by Murray (1984) outlined very extensive kaolin 
deposits underlying the bauxite in the large Weipa 
district of Queensland. However, interest in recovering 
alumina from clay is unlikely to develop because Aus­ 
tralia's bauxite reserves are measured in billions of 
metric tons.

AUSTRIA
The kaolin deposits of Austria occur on a deeply eroded 

and peneplained basement complex of granite and meta­ 
morphic rocks (Holzer and Wieden, 1969). The principal 
deposits occur at Kriechbaum and Weinzierl near the city 
of Schwertberg in Upper Austria and at Mallersbach and 
Niederfladnitz near the city of Retz in Lower Austria. 
These residual deposits formed by weathering, and they 
contain 35-45 percent kaolinite (Grim, 1979, p. 198). 
According to Vachtl (1969, p. 14), the kaolin resources 
of Austria are greater than 100 million metric tons. 
However, the small areas occupied by kaolinized rock 
(Holzer and Wieden, 1969, p. 27) make Vachtl's esti­ 
mates suspect.

BRAZIL

Several large sedimentary kaolin deposits have been 
discovered in the Amazon Basin of Brazil (Souza Santos, 
1976; Azevedo Branco, 1984). One district is along the 
Capim River about 240 km by road south of Belem, the 
capital of the State of Para. It contains an estimated 560 
million metric tons (Souza Santos, 1976). A second dis­ 
trict is in Amapa Territory in the valley of the Jari River, 
which flows into the Amazon River from the north. The 
kaolin in this district is presently being mined for use in 
the manufacture of paper and ceramics. Resources of 
kaolin in the Jari district are estimated at 100 million 
metric tons (Souza Santos, 1976). The third district is at 
Ananindeua, near Belem, in Para State. Approximately
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2 million metric tons of kaolin are mined there annually 
(Azevedo Branco, 1984). A reference clay sample (IPT- 
28) from a deposit in this district contains 95 percent 
kaolinite and 5 percent quartz (Hosterman and others, 
1987, p. 4). The large kaolin resources of the Amazon 
Basin have little foreseeable value as an alumina 
resource because of the large resources of bauxite that 
also are present.

BULGARIA

Numerous deposits of sandy kaolin in karst depres­ 
sions occupy a total area of 3,000 km2 in northeastern 
Bulgaria between the towns of Russe and Varna 
(Manolov and others, 1969). Of the kaolin deposits, 30-60 
percent are white, pale pink, and cream and contain less 
than 1.2 percent Fe203 . According to Vachtl (1969, p. 
15), the kaolin resources of Bulgaria are greater than 100 
million metric tons. The average kaolinite content is 
18-25 percent (Grim, 1979, p. 198).

CZECHOSLOVAKIA

Kaolinized granites and arkoses are widespread in 
western Bohemia and southern Moravia, Czechoslova­ 
kia. Kuzvart (1969a, p. 71) estimated that the country 
has 163 million metric tons of known kaolin reserves, 370 
million metric tons of probable reserves, and more than 
1 billion metric tons of "prognostic" reserves. These 
reserve estimates are for material containing 10-25 
percent alumina (Grim, 1979, p. 199).

EGYPT

During 1966-68, the Egyptian Geological Survey, in 
cooperation with Soviet experts, examined most of the 
known clay deposits in Egypt for nonbauxite sources of 
aluminum (Amer and others, 1970). The largest kaolin 
resources known at the time of these investigations were 
those in the Upper Cretaceous Budra deposits in the 
west-central Sinai. The probable reserves in these 
deposits are as follows: 23.4 million metric tons contain­ 
ing 32-35 percent alumina and 79.0 million metric tons 
containing 27-32 percent alumina. The kaolin resources 
in the other deposits investigated were much smaller 
than the probable reserves in the Budra deposits.

Other kaolin deposits in Egypt that have been inves­ 
tigated as possible sources of alumina occur at Wadi 
Kalabsha, about 105 km southwest of Aswan (Shaaban, 
1971; El Badry and others, 1981). These deposits occur as 
a member of the Nubia Formation. Resources were 
estimated by El Ramly and others (1971, p. 19) to be 9.4 
million metric tons of pisolitic kaolin, 6.6 million metric 
tons of concretionary kaolin, and 0.5 million metric tons 
of plastic kaolin.

FEDERAL REPUBLIC OF GERMANY

Kaolin deposits occur at several places in the Federal 
Republic of Germany (Lippert and others, 1969). The 
deposits most favorable for the extraction of alumina are 
those in Bavaria that were investigated by the Verein- 
igte Aluminium-Werke A.-G. (Belsky and others, 1981). 
These deposits are of Tertiary age; they formed by the 
transportation of clay from weathered granite into the 
Naab Valley. The deposits are estimated to contain more 
than 200 million metric tons of kaolin and are present 
chiefly in an area 20x20 km. The calcined kaolin contains 
26-32 percent A1203, 55-65 percent Si02 , 2.5-5 percent 
Fe203 , 1.0-1.5 percent Ti02 , 0.2-1.5 percent CaO, 
0.4-2.5 percent MgO, and 1.8-2.5 percent K20.

FRANCE
About 80 percent of the kaolin production in France 

comes from several areas in Brittany where kaolinized 
granitic rocks contain 25-45 percent kaolinite (Grim, 
1979, p. 199). Numerous small kaolin deposits also occur 
around the Massif Central (Damiani and Trautmann, 
1969). Total kaolin reserves in France are greater than 
100 million metric tons (Vachtl, 1969, p. 14).

GERMAN DEMOCRATIC REPUBLIC

The largest kaolin resources in the German Demo­ 
cratic Republic are along the north side of Mittelgeberge 
(Storr and others, 1969), which is in the southwestern 
part of the country. Kaolin extends in a belt 10-50 km 
wide. Many deposits are present as residual kaolin on 
weathered granite and arkose (Grim, 1979, p. 199). 
According to Storr and others (1969), the kaolinite 
content of the residual rocks in the Mittelgeberge belt 
ranges from 15 to 35 percent. The total kaolin resources 
in the country exceed 100 million metric tons (Vachtl, 
1969, p. 14).

GUYANA AND SURINAME

Large kaolin deposits are closely associated with high- 
grade bauxite in the Coastal Plain of Guyana and in the 
central and eastern parts of Suriname. The sedimentary 
kaolin is of Late Cretaceous to early Eocene age, and the 
interval of bauxite formation was from early Eocene to 
early Oligocene. Authorities agree that the kaolin beds 
are the immediate parent material of the bauxite, and 
Kersen (1956, p. 326) has presented mineralogical evi­ 
dence supporting this theory. A description of these 
deposits by Moses and Michell (1963) shows that the 
kaolin is thicker than the bauxite and underlies it. The 
total bauxite reserves in Guyana and Suriname are 
estimated at 1.275 billion metric tons (Patterson and 
others, 1986, table 12), and the kaolin resources associ-
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ated with the bauxite probably are at least as large as the 
bauxite resources. Furthermore, thick kaolin deposits 
have been found in the swampy areas of the Coastal Plain 
of central and western Suriname where bauxite is not 
known to be present (R. Cambridge, oral commun., 
1977). The kaolin resources of Guyana and Suriname 
probably are much greater than a billion metric tons.

INDIA
A great many occurrences of high-alumina clay in India 

have been described by Arogyaswamy (1968). Most of 
the known occurrences are small, but some are appar­ 
ently large enough to be considered potential economic 
sources of aluminum. One such deposit in the Quilon 
district, Kerala, may contain a few hundred million 
metric tons of kaolin (Arogyaswamy, 1968, p. 79). 
According to Ghosh (1986), the kaolin occurs in two beds 
separated by sandstone, and the lower bed is purer than 
the upper bed. Kaolinite makes up about 25 percent of 
the lower bed and is derived from the underlying Pre- 
cambrian crystalline rocks (Arogyaswamy, 1968, p. 79; 
Ghosh, 1986).

Fire clay is associated with coal beds at several places 
in India and may constitute large resources of alumina 
(Aravamuthan and Sundaram, 1965).

JAMAICA
The interest in Jamaica about nonbauxite aluminum 

resources has been primarily concerned with the effect 
these materials would have on Jamaican bauxite produc­ 
tion. Kaolinite and halloysite occur in minor amounts in 
the bauxite that is mined, but both of them are abundant 
in the low-grade, high-silica bauxite that is not mined 
yet. Davis (1975), of the Ministry of Mining and Natural 
Resources of Jamaica, published a report on the alterna­ 
tives to bauxite and concluded that demand for bauxite 
was likely to remain strong. A later report by Ostojic 
(1980), of the International Bauxite Association, lists the 
nonbauxite materials on a worldwide basis that would 
have to compete with the low-grade, high-silica bauxite 
from Jamaica.

JAPAN

During World War II, Japan used alunite, aluminous 
shale, clay, and aluminous phosphate rock for aluminum 
resources (table 1). The most important kaolinitic clays in 
Japan are sedimentary varieties called Kibushi and 
Gairome or Gaerome clays. Kibushi means woody mate­ 
rial, and the name is applied to clay containing organic 
matter such as pieces of lignite. Gairome or Gaerome 
means frog eye in Japanese, and the name is given to 
clays containing visible quartz and other impurities

TABLE I.—Nonbauxite aluminum resources used by Japan during 
World War II

[Modified from Sato and others (1956, p. 197). If ores did not contain more 
than 30 percent alumina, the alumina content was raised to 30 percent by 
beneficiation]

Resource Locality A1203 content 
(weight percent)

Aluminous shale ............ Manchuria ............ 35-70
Alunite .................... Japan and Korea ...... 15-30
Aluminous clay ............. Japan ................ 20-35
Aluminous phosphate rock ,.. North Daito Island, 23-30

Japan.

(Hideo Minato, written commun., 1982). Kibushi clay is 
abundant north of Nagoya in central Japan. Both Kibushi 
and Gairome clays are present in the Hirono and Iwaki 
areas north of Tokyo. Sedimentary clays occur in the 
Joban coal field in northeastern Japan, in southern 
Japan, and elsewhere (Fujii and others, 1976). Both flint 
and plastic clays are mined at the Iwate mine in north­ 
eastern Honshu, which is one of the most active refrac­ 
tory clay mines in Japan (Fujii and others, 1976, p. 19). 

The reserves of kaolin in Japan were listed by Fujii 
and others (1969) as follows: Gairome clay approximately 
31 million metric tons and fire clay and kaolin approxi­ 
mately 88 million metric tons. Sato and others (1956) 
listed another 59 million metric tons of clay derived from 
volcanic ash that may be a source of alumina (table 2). 
The value of kaolin in Japan as a potential alumina 
resource is reduced because individual deposits and 
districts are small and widely scattered.

TABLE 2.— Clays that are derived from Pleistocene volcanic ash and
that may be a source of alumina in Japan

[Modified from Sato and others (1956, p. 197)]

Unit name Locality
Reserves

(metric tons
x 1,000)

Hayakita clay 
Fukuban soil.

Kanuma soil . 
Joshin clay... 
Chikushi clay 
Yame clay ...

Iburi district, Hokkaido Prefecture.. .5,000-6,000 
Kurosawajiri, Waga-gun, Iwate 28,000

Prefecture. 
Imaichi, Tochigi Prefecture....,...,. 20,000
Azuma-gun, Gumma Prefecture...... 300
Chikushi-gun, Fukuoka Prefecture ... 10 
Yame-gun, Fukuoka Prefecture...... 5,000

PAKISTAN

High-alumina clays have been investigated at several 
places in Pakistan. According to Ashraf and others (1976, 
p. 41), resources of bauxite, clay, and aluminous laterite 
in Pakistan amount to 500 million metric tons. Kaolin is 
undoubtedly a major component of these resources. 
Large deposits of clay are associated with bauxite in the 
Kala Chitta Range and in the central part of the Salt 
Range, Punjab Province (Ashraf and others, 1972). The 
Kala Chitta deposits occur within a sedimentary forma-
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tion of Jurassic age, and the Salt Range deposits are 
underlain by Permian rocks and overlain by strata of 
Paleocene age. Other deposits associated with bauxite 
occur in the North-West Frontier Province and in Azad 
Kashmir.

Fire-clay resources in Pakistan were estimated by 
Gauhar (1976, p. 13) to be more than 100 million metric 
tons. Gauhar listed fire clay in the Sargodha, Mianwali, 
and Campbellpur Districts of Punjab Province, in parts 
of the Tatta and Dadu Districts of Sind Province, and in 
Dera Ismail Khan District of the North-West Frontier 
Province. Faruqi (1966) described high-alumina fire clay 
from Skesar Hills, and Raza and Iqbal (1977) listed 
several other fire-clay districts.

PEOPLE'S REPUBLIC OF CHINA

The eastern part of the People's Republic of China 
(PRC) has many high-alumina clay deposits (Zheng Zhi, 
written commun., 1982). However, the PRC has large 
resources of diaspore bauxite, and probably recovery of 
alumina from high-alumina clay has not been considered. 
The largest deposits of high-alumina clay in the PRC are 
of sedimentary origin. One type occurs in basins near 
weathered crystalline rocks from which it has been 
derived. A second type is clay associated with coal beds; 
this type is similar to underclay in the United States. 
Some of this Chinese underclay is more than 90 percent 
kaolinite. A third type is high-alumina clay or mudstone, 
which, in places, is several tens of meters thick, and 
which occurs in Paleozoic, Mesozoic, and Cenozoic strata 
(Ikonnikov, 1984). Many of the high-alumina clays of 
Paleozoic age are associated with bauxite.

A large kaolin deposit was recently discovered in 
Fujian Province according to Dong Bi, Geologist with the 
Fujian Bureau of Geology and Mineral Resources (oral 
commun., July 21, 1989). The size of this deposit has not 
been determined.

SAUDI ARABIA

According to Black (1982, p. 72), approximately 1 
billion metric tons of high-alumina clay are present in the 
Zabirah bauxite district, Saudi Arabia. The bauxite and 
clay are under no more than 80 m of overburden in an 
area larger than 250 km2 (Black and others, 1984, p. 619). 
The clay is mainly kaolinite, but it contains some gibbs- 
ite, a trace of boehmite, and several minor impurities. 
The clay is in two layers, each having an average 
thickness of 2 m; the average partial composition of the 
clay is 45 percent A1203 and 24 percent Si02 (Black and 
others, 1984).

SOUTH AFRICA

The largest deposits of kaolin in South Africa are in 
weathered shales of Devonian to Carboniferous age

(Coetzee, 1969). These deposits were formed by weath­ 
ering that took place when the Grahamstown peneplain 
was formed. According to Coetzee (1969, p. 62), the 
reserves of kaolin in deposits related to the Grahams- 
town peneplain are very large. Murray and Smith (1973) 
reported that more than 60 million metric tons of kaolin- 
ized tillite at Grahamstown, Cape of Good Hope Prov­ 
ince, contains as much as 80 percent kaolin.

Flint clay, containing as much as 44 percent alumina 
after calcination, occurs in a zone from Hammanskraal to 
Bronkhorstspruit in the Transvaal region (Brabers, 
1974). A sulfuric acid leaching process can recover 85-90 
percent of the alumina in this clay in the form of 
aluminum sulfate (McCulloch, 1967, p. 38-39). However, 
flint-clay resources are not sufficiently large to be a 
significant resource of alumina.

SPAIN
Many kaolin deposits are known in Spain; Galan Huer- 

tos and Espinosa de los Monteros (1974, p. 93-111) listed 
more than 700 kaolin claims. Of the largest of these claim 
areas, 3 are 5,001-8,125 ha, 8 are 1,001-5,000 ha, 7 are 
751-1,000 ha, 12 are 501-750 ha, 13 are 401-500 ha, 22 
are 301-400 ha, and 38 are 201-300 ha.

According to Martin Vivaldi (1969), the most impor­ 
tant kaolin deposits in Spain belong to two main types. 
One type occurs in Cretaceous sandstone in eastern 
Spain in Zaragoza, Teruel, Cuenca, Valencia, Castellon, 
and Albacete Provinces. The kaolin formed by weather­ 
ing of crystalline rock and was transported to the basin in 
which the sandstone accumulated. The kaolinitic Creta­ 
ceous sandstone underlies large areas, is 10-20 m thick, 
and probably consists of more than 1 billion metric tons of 
sandstone containing 5-25 percent kaolinite (Martin Viv­ 
aldi, 1969, p. 225; Galan Huertos and Martin Vivaldi, 
1973, p. 742).

The other type occurs in Galicia in northwestern Spain 
and consists of kaolin formed by hydrothermal alteration 
of deformed granites. A few of these deposits were 
formed by transporting the kaolin after alteration to 
nearby basins of deposition. The kaolin reserves in 
Galicia are estimated to be 300 million metric tons 
(Martin Vivaldi, 1969, p. 225), and the total kaolin 
resources in Spain are on the order of 400 million metric 
tons (Galan Huertos and Martin Vivaldi, 1973, p. 737).

TANZANIA AND OTHER COUNTRIES IN AFRICA

The largest kaolin resources in Tanzania consist of 
white kaolin-rich sandstone of Neogene age in the Pugu 
Hills, near Dar es Salaam (Harris, 1969). This sandstone 
is about 183 m thick, and the kaolin resources are 
estimated to be 2 billion metric tons.

High-alumina clay deposits occur in many other coun­ 
tries in Africa (Kuzvart, 1969b), but insofar as is pres-
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TABLE 3.—Major aluminum-bearing materials in the United Kingdom 
[Modified from Christie and Derry (1976). n.a., not available]

Material

Schist .............
Shale ..............
Marl. ..............
Seat earth .........
Clay...............

Location

. . Wales ................................

A1203 
content 

(weight percent)
<50

3(M5
<45
<40
<30

25-30
15-25
15-25
20-24

<22
15-20

Reserves

Small ............

Small ............

Comments

. . . Mining costs high.

, . . Alumina content variable.
, . . Alumina content low.
, . . Alumina content low.
. . . Mining difficult.
. . . Alumina content low.

ently known, few deposits are large enough to be of 
interest as a source of aluminum. The absence of large 
kaolin deposits on a large continent having enormous 
tropical areas is difficult to understand. The apparent 
absence of such deposits may be due partly to the fact 
that large areas have not been investigated thoroughly. 
Africa has large bauxite resources, and, therefore, there 
is little reason to explore for high-alumina clays. Tanza­ 
nia is the only African country known to have large 
kaolin resources, and South Africa and Egypt are appar­ 
ently the only African countries where kaolinitic clays 
have been investigated as potential sources of alumina.

UNITED KINGDOM

High-grade kaolin in the United Kingdom is found in 
Cornwall and Devon in the southwestern part of the 
country (Bristow, 1969). The kaolin occurs in granite that 
has been hydrothermally altered and probably later 
weathered. The altered granite is composed of 20-30 
percent kaolinite. Reserves are very large, but meaning­ 
ful tonnage estimates are not available (table 3). In 
addition, deposits of ball clay in southern Devon contain 
90 percent kaolinite. However, these deposits are too 
small to have any value as an alumina resource. Ball clay 
occurs in three early Tertiary basins in southwestern 
England (Highley, 1975)—at Bovey, southern Devon, at 
Petrockstow, northern Devon, and in the area around 
Wareham, southeastern Dorset.

Enormous deposits of fire clay associated with Car­ 
boniferous coal beds are present in central and northern 
England and in Scotland. Much of this fire clay is 80-90 
percent kaolinite, and it can be considered a potential 
source of alumina. High-alumina fire clays occur in the 
Clackmannan syncline in Scotland (Read and Dean, 
1978). Fire clays containing more than 30 percent alu­ 
mina occur in the Coalbrookdale, North Wales, South 
Derbyshire, Northumberland, Durham, West Cumbria, 
East Pennines, Central, and Ayshire coal fields.

In County Antrim and in parts of adjoining Lon­ 
donderry County of northern Ireland, a deeply weath­ 
ered zone of basalt occurs below bauxite deposits (Eyles 
and others, 1952). This weathered zone contains kaolinite 
and probably halloysite, but it is not known to contain 
sufficient tonnage to be considered a source of alumina.

Common clay is widely distributed in the United 
Kingdom (Ridgway, 1982), and the deposits have a wide 
range of compositions, although few exceed 20 percent 
alumina. The most extensive common-clay deposits are 
in the Carboniferous coal measures and in Jurassic 
sedimentary rock (Highley, 1982).

U.S.S.R.
Kaolin deposits in the U.S.S.R. number in the hun­ 

dreds (Petrov, 1969), but many are small and of little 
importance. The most important districts are in five 
regions—Ukraine, Ural Mountains, Kazakhstan, Uzbeki­ 
stan, and south-central Siberia.

Kaolin occurs in weathered crusts of granite in the 
Ukrainian Precambrian shield and has been mined in 
several districts. The Ukraine is the leading producer of 
kaolin in the U.S.S.R. The Glukhovetskoye and Prosya- 
sovitski districts are particularly productive. The alu­ 
mina content of the weathered granite is between 20 and 
25 percent (Grim, 1979, p. 201).

The kaolin in the Ural Mountains also occurs in weath­ 
ered granite (Grim, 1979, p. 202). The Dombarkskoie 
district is the most important producer.

The kaolin deposits in Kazakhstan also occur in weath­ 
ered granite (V.P. Petrov and F.V. Chukrov, written 
commun., 1982). Those in the Alekseevskoye district, 
northern Kazakhstan, formed from granite and quartz 
diorites.

The kaolin in the Angren district, Uzbekistan, is in 
porphyry and tuff (V.P. Petrov and F.V. Chukrov, 
written commun., 1982). The Angren district is about 120 
km southeast of Tashkent and is 12 km long and 4-8 km 
wide. The kaolin zone is 10-15 m thick.
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The kaolin deposits in south-central Siberia are in the 
area of the headwaters of the Ob and Yenisey Rivers. 
Kaolinitic rocks in this region are reported to be 15-20 
percent alumina (Petrov, 1969; Grim, 1979, p. 201).

ALUMINOUS IGNEOUS ROCKS-ANORTHOSITE

Anorthosite is an igneous rock consisting of 90 percent 
or more plagioclase feldspar, (Na,Ca)Al(Al,Si)Si208 , 
which is typically andesine or labradorite but may be as 
calcic as bytownite or as sodic as oligoclase. Andesine 
contains 24-28 percent A1203 and 56-61 percent Si02 ; 
labradorite contains 28-31 percent A1203 and 51-56 per­ 
cent Si02 . The minerals other than plagioclase that are 
commonly present in minor amounts are clinopyroxene, 
orthopyroxene, potassium feldspar (commonly inter- 
grown with plagioclase), and quartz. Accessory minerals 
in anorthosite include iron and titanium oxides, apatite, 
zircon, and sphene. Metamorphosed anorthosite intru­ 
sions contain minor amounts of biotite, hornblende, 
garnet, and chlorite (National Research Council, 1979, p. 
143). Anorthosite occurs in large Precambrian bodies 
(massifs) and as segregated layers in large intrusions. 
Table 4 gives the chemical composition of anorthosites 
from three areas in the United States.

TABLE 4. —Chemical composition (in weight percent) of some U.S, 
anorthosites

[LOI, loss on ignition; dash (—), data not available]
._ _

SiOo.................... 51.91-55.60
.AlpL/g»

Fe203 
FeO.. 
MnO.. 
MgO.. 
CaO..

.............. 25.87-28.92

.............. .26-1.42

.............. .14-2.80

.............. .00-.05

.............. .04-2.20

.............. 9.18-10.78
Na20................... 4.26-5.20
K20

C02 . 
LOI. 
P205 .
S.... 
BaO.

.62-1.01

.08-1.29

.01-.05

.39-.94

.02-.82

.04-.11 

.00-. 04 

.03-.06

47.06-53.47
26.82-32.61

.03-.26

.37-2.60

.01-.04

.13-2.58
11.63-16.03
1.97-4.65
.06-.40
.05-.09
.03-.07
.46-1.00
.00-.01

.01-.05

52.9
27.8 

1.9

.4
9.5
5.8

.3

.3

.7

1. Range in composition of samples from the Laramie Mountains, Wyo. (Hagner, 1951, table 1, 
samples 1-5).

2. Range in composition of samples from Boehls Butte, Idaho (Hietanen, 1963, table 11, 
samples 949, 1016, 1015, 611).

3. Sample from the San Gabriel Mountains, Calif. (Lundquist, 1963, table 1).

TABLE 5.— Major anorthosite bodies in the United States 
[Modified from National Research Council (1979, table 5.9). Dash (—), data not available. Do., ditto]

Locality
number Anorthosite body County in
figure 2

Area 
State ox (km2)

tonnage 
(metric

x 109)

A1208
content 
(weight
percent)

References

1 San Gabriel Mountains.. Los Angeles............. California...,

9
10
11
12

13
14

15
16

Piedmont.............. New Castle ...........
Boehls Butte........... Shoshone, Clearwater..
Keweenawan series..... Cook, Lake ...........
Duluth Complex........ Lake .................

Stillwater Complex... 
Bitterroot Range..... 
Adirondacks: 

Main body (Marcy 
massif).

Stillwater, Sweet Grass 
Ravalli................

Delaware. 
Idaho ....
Minnesota 
Minnesota

Montana. 
Montana.

Essex, Franklin ......... New York,

Thirteenth Lake ..... Hamilton, Warren
Carthage............ Jefferson.........
Rand Hill............ Clinton ..........

Wichita Mountains ..... Kiowa, Comanche, 
	Jackson.

Honey Brook .......... Chester..........
Roseland .............. Nelson, Amherst..

New York... 
New York... 
New York... 
Oklahoma ...

Pennsylvania 
Virginia.....

Mineral Lake .......... Ashland.........
Laramie Range ........ Albany, Laramie.

Wisconsin .., 
Wyoming...,

135

150
520

3,300

235
2

15
40

40 
<60

120
518

27

2.6 
.9

18 3.7 
2.5 -

342

10
.45 

2.6 
.9

.18

27

29
30

30

26

Oakeshott in Lundquist, 1963;
Carter and Silver, 1972;
Ryder and others, 1975. 

Thompson, 1975. 
Hietanen, 1963. 
Phinney, 1968; Green, 1972. 
Taylor, 1964; Davidson, 1972;

Phinney, 1968, 1969, 1972a,b. 
Bowes and others, 1973, 
Berg, 1968.

Buddington, 1968, 1972;
Isachsen and Moxham, 1968;
Letteney, 1968. 

26 Do. 
26 Do. 
25 Do. 
28 Scofield, 1975.

27 Crawford and others, 1971.
24 Herz, 1968; Herz and Force, 

1984.
- Olmsted, 1968. 

25-30 St. Glair and others, 1959;
Hagner, 1951; Newhouse and 
Hagner, 1957; De Vore, 1975.
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UNITED STATES

Anorthosite bodies are widely scattered through the 
United States (table 5, fig. 2). The deposits that have 
been investigated most thoroughly as potential sources 
of alumina are the large bodies in the Laramie Range, 
Wyo., and in the San Gabriel Mountains, Calif. The 
anorthosite bodies in the Laramie Range underlie more 
than 518 km2 according to maps by Hagner (1951, fig. 1) 
and Newhouse and Hagner (1957). The total resources of 
anorthosite in these bodies that are less than 30 m below 
the average ground level are estimated to be 30.2 billion 
metric tons (St. Clair and others, 1959, p. 69). The total 
anorthosite present is many times this figure because the 
rock extends to depths of more than 228 m. Most of this 
rock contains 25-30 percent alumina, and it is also rich in 
calcium and sodium (table 4).

Anorthosite in the central part of the western San 
Gabriel Mountains, Calif., crops out or is near the surface 
in an area of 135 km2 (Oakeshott in Lundquist, 1963, 
p. 9); exposures are at altitudes ranging from 520 to 1,980 
m. Reserves are very large. The average alumina con­ 
tent of eight samples analyzed is 27.16 percent.

CANADA
Anorthosite is Canada's most abundant potential 

source of alumina, and the Canadian Centre for Mineral 
and Energy Technology (CANMET) has done consider­ 
able research on the extraction of alumina from anortho­ 
site (Quon, 1976; Ripley, 1976; Hamer and others, 1978; 
Winer and Quon, 1979). Many of the anorthosite bodies in 
Canada have alumina contents of 24-28 percent (Hamer 
and others, 1978, p. 97), and parts of some bodies con-

120° 775° 110° 105° 100° 90° 85°

35°

30°

25'

T ~~ -__ ...K f^

  Anorthosite deposit

1. San Gabriel Mountains, Calif.
2. Piedmont, Del.
3. Boehls Butts, Idaho
4. Keweenawsn series, Minn.

EXPLANATION

5. Duluth Complex, Minn.
6. Stillwater Complex, Mont.
7. Bitterroot Range, Mont.
8. Marcy massif, N.Y.
9. Thirteenth Lsks, N.Y.

10. Carthage, N.Y.

11. Rand Hill, N.Y.
12. Wichita Mountains, Okla.
13. Honey Brook, Pa.
14. Roseland, Va.
15. Mineral Lake, Wis.
16. Laramie Range, Wyo.

FIGURE 2. —Major anorthosite deposits in the United States. Modified from National Research Council (1979, fig. 5.14). Deposit sizes are provided
in table 5.
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tain as much as 30 percent alumina (table 6). Although 
only general geologic reconnaissance investigations have 
been completed in several large areas, the anorthosite 
bodies are known to underlie thousands of square kilo­ 
meters. A report compiled by Anderson (1968) contains a 
table of the world anorthosite resources that gives 
estimates of the area covered by each anorthosite mass 
known at the time the work was done. At the time 
Anderson compiled his report, 55 anorthosite bodies 
were known in Canada. Most of these bodies are in 
Quebec and Labrador. Sixteen of these bodies underlie 
areas ranging from about 1,000 km2 to 20,000 km2. The 
total area underlain by the 16 bodies is about 80,000 km2. 
The known anorthosite resources of Canada are far 
greater than those of any other country. The aluminum 
in anorthosite bodies of Canada could supply the world's 
requirements for aluminum for many centuries if an 
alumina extraction process were to become feasible.

FINLAND

Shaikh (1977, p. 194) listed six bodies of anorthosite in 
Finland. The largest body is at Vaskojoki, which is west 
of Lake Inari in the northern part of Finland. The 
Vaskojoki anorthosite contains as much as 30 percent 
alumina. Other bodies of anorthosite occur at Repokaise, 
Nitsijarvi, Mustavaara, Otanmaki, and Avenisto.

GREENLAND

According to many authors (Windley, 1969; Walton, 
1973; Upton, 1974; Bondam, 1976), anorthosite gabbros 
in the Fiskenaesset area of southwestern Greenland are 
potential nonbauxite sources of aluminum because they 
contain approximately 30 percent alumina and are very 
low in iron oxides. The anorthosite bodies are at the coast 
and, therefore, are readily accessible to ocean transport.

NORWAY
Shaikh (1977, p. 194) stated that "[tjhere are a number 

of anorthosite intrusions in Norway," but he provided 
information on only two. He reported the alumina con­ 
tents of the anorthosites at Indre Sogn and Egersund as 
28-30 percent and 24-26 percent, respectively, and he 
estimated that the two areas contained several billion 
metric tons of anorthosite. Anderson (1968, table 1) 
listed four anorthosite districts in Norway—the Eger­ 
sund district, which he reported as having an area of 900 
km2 , the Vossestrand district, which has an area of 100 
km2 , and the Jotun and Lofoten districts, for which no 
sizes were available.

SOUTH KOREA

The South Korean Research Institute of Geoscience 
and Mineral Resources discovered a large anorthosite

TABLE 6.—Nonbauxite sources of alumina in Canada 
[From Winer (1977, table 1)]

Material Aluminiferous 
component

A1203
content 
(weight
percent)

Location

Anorthosite .... Plagioclase 

NephelineNepheline 
syenite. 

Clay........... Kaolinite.

Shale,

Coal shale and 
coal-washing 
rejects.

Fly ash.......

Feldspar and 
mixed clays.

Kaolinite and 
feldspar.

Mullite and 
glass.

24-30 Quebec and southern
Ontario. 

21-28 Ontario and Quebec.

20-22 Nova Scotia.
20-24 Quebec.
10-16 Northern Ontario.
20-24 Southern

	Saskatchewan. 
20-25 British Columbia.

20 Newfoundland.
24 Nova Scotia.
20 New Brunswick.

<29 Nova Scotia.
^22 Saskatchewan.
<36 Alberta and British

	Columbia. 
<30 British Columbia.

stock near Hadong in the southern part of South Korea. 
The discovery was erroneously reported in some trade 
journals as the finding of a billion metric tons of bauxite; 
Professor Byung Koo Hyun (written commun., July 20, 
1976) informed us that it is definitely anorthosite. The 
institute investigated this anorthosite as a possible 
source of alumina.

Anderson (1968, table 1) listed only the Chingyo 
anorthosite deposit in southern South Korea. According 
to the geologic map by Kim and Kang (1965), the Chingyo 
deposit underlies about 32 km2 west of Hadong and east 
of Chinjoo. This is probably the same deposit mentioned 
by Professor Byung Koo Hyun. The anorthosite is com­ 
posed mainly of anhedral andesine and labradorite and 
contains some hornblende (Kim and Kang, 1965, p. 7 of 
the English version).

SWEDEN
Anorthosite occurs at several places in Sweden 

(Shaikh, 1977, p. 194). The largest body is in the Ruote- 
vare district, northwest of Kvikkjokk, where the intru­ 
sion underlies 70-100 km2 . Iron deposits associated with 
the anorthosite contain 47 percent Fe203 , 11 percent 
Ti02 , and 0.26 percent V205 . The second largest anor­ 
thosite body in Sweden underlies an area of 33 km2 at 
Nordingra (Shaikh, 1977, p. 194). Three anorthosite 
masses occur northeast of Stockholm, and at least five 
small anorthosite bodies are known elsewhere in 
Sweden.
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U.S.S.R.

Much of the early work on anorthosite in the U.S.S.R. 
was cited by Anderson (1968) and was used in his 
compilation. A more recent volume on the subject is that 
edited by Bogatikov (1974). In this volume, Bogatikov 
and A.P. Birkis (p. 5-20) recognized seven widely dis­ 
tributed anorthosite regions in the U.S.S.R.—(1) Kola 
Peninsula, (2) Baltic region, (3) Ukraine, (4) Volga- 
Urals, (5) Anabar, (6) Aldan, and (7) Okhotsk.

Kola Peninsula region.— Gabbros and anorthosite 
rocks are widely distributed on the Kola Peninsula. 
These rocks occur on the Glavnyi (main) ridge and in 
intrusive rocks of the Keivy region and SaPnyi, Kan­ 
dalaksha, and Kolvitsa tundras (Bogatikov and Birkis in 
Bogatikov, 1974, p. 6; B.A. Yudin in Bogatikov, 1974, p. 
21-29; E.V. Sharkov in Bogatikov, 1974, p. 30-41). The 
Glavnyi ridge massifs underlie an area of 1,000 km2 along 
the contact between metamorphosed Precambrian rocks 
and pyroxene schist.

Baltic region.—Numerous gabbro-norite-anorthosite 
massifs are associated with a large granitic pluton in 
western Latvia (Birkis and Bogatikov in Bogatikov, 
1974, p. 42^17). The total area underlain by anorthosite is 
more than 2,700 km2 (Bogatikov and Birkis in Bogatikov, 
1974, p. 7).

Ukraine region.—More than 10 gabbro-norite- 
anorthosite massifs in the Ukraine underlie a total area 
of about 4,000 km2 (Bogatikov and Birkis in Bogatikov, 
1974, p. 7). These rocks were investigated by several 
Soviet geologists (V.N. Moshkin and I.N. Dagelaiskaya 
in Bogatikov, 1974, p. 48-56), who have shown that all 
anorthosite massifs are within two large plutons of 
granite and related igneous rocks that are younger than 
the anorthosite. These plutons were emplaced in the 
Archean-Early Proterozoic basement.

Volga-Urals region.—Three large anorthosite bodies, 
underlying a total area of 1,000 km2 , have been found in 
the Volga-Urals region (S.V. Bogdanova in Bogatikov, 
1974, p. 57-69).

Anabar region.—The Anabar anorthosite occurs as 
batholithic massifs in the central Siberia Precambrian 
shield area north of the Arctic Circle. B.G. Lutts (in 
Bogatikov, 1974, p. 70-84) reported the following anor­ 
thosite massifs: (1) one in the central part of the region 
underlying 765 km2; (2) one in the northern part of the 
region underlying 180 km2; (3) one in the eastern part of 
the region underlying 100 km2; and (4) two in the 
southern part of the region, one underlying 14 km2, and 
the other, 8 km2 .

Aldan region. —More than one anorthosite body is 
present in the Aldan region, but the Kalar massif has 
received the most attention (Bogatikov and Birkis in 
Bogatikov, 1974, p. 5-20; G.N. Bazhenova in Bogatikov,

1974, p. 85-99). The Kalar massif extends along the 
eastern margin of Early Proterozoic rocks in a northeast­ 
erly direction for as much as 150 km. It ranges in width 
from 5 to 20 km. The total area underlain by anorthosite 
is about 1,500 km2 (Bazhenova in Bogatikov, 1974, p. 86). 

Okhotsk region.—The region in eastern Siberia 
extending west from the Okhotsk Sea, called the 
Okhotsk region by Bogatikov and Birkis (in Bogatikov, 
1974, p. 5-20), contains several anorthosite bodies of 
Precambrian age. Included are the very large 
Dzhugdzhur and the smaller Lavlin and Sekhtag 
anorthosite massifs. The host rocks are schists and 
gneisses that were metamorphosed to the granulite 
facies and somewhat younger igneous rocks including 
charnockites, syenites, and rapakivi granites (A.M. Len- 
nikov in Bogatikov, 1974, p. 100-112).

OTHER COUNTRIES

In addition to the countries mentioned above, 
anorthosite occurs in 15 localities in India, 4 localities 
each in Tanzania and Madagascar, 3 localities in the 
People's Republic of China, 2 localities in Australia, and 
1 locality each in the United Kingdom, Angola, Egypt, 
Mozambique, Antarctica, and Brazil (Anderson, 1968, 
table 1). Anorthosite also occurs in the Bushveld Com­ 
plex and elsewhere in South Africa. The Bushveld Com­ 
plex has been studied as a potential source of aluminum 
(Brabers, 1974).

ALUMINOUS IGNEOUS ROCKS-NEPHELINE SYENITE AND 
PHONOLITE

Coarsely crystalline nepheline syenite and its fine­ 
grained equivalent, phonolite, are igneous rocks com­ 
posed chiefly of feldspar and nepheline. Nepheline, 
(Na,K)AlSi04 , is a feldspathoid mineral consisting of 21.8 
percent Na20, 35.9 percent A1203 , and 42.3 percent Si02. 
Nepheline syenite bodies are more variable in composi­ 
tion than anorthosite, but generally feldspar and 
nepheline make up 80-90 percent of the rock. The 
remainder is primarily alkalic pyroxene and as much as 5 
percent accessory minerals (table 7). Nepheline contents 
range from a trace to 40 percent. In some syenites, other 
feldspathoids such as analcime or sodalite substitute for 
nepheline.

Aluminous rock types related to nepheline syenite are 
urtite, which contains more than 70 percent nepheline 
and 0-29 percent mafic minerals, and ijolite, which 
contains 40-70 percent nepheline and 30-60 percent 
mafic minerals. Nepheline syenite and phonolite are 
deficient in silicon, calcium, magnesium, and iron, and 
they are enriched in aluminum (table 8). Because of the 
silica deficiency, alumina can be recovered from
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TABLE 7.—Mineral composition of nepheline syenite 
[Modified from National Research Council (1979, table 5.13)]

Concen­ 
tration

Mineral Formula range
(weight 
percent)

Principal minerals:
Nepheline.......
Alkalic feldspar..
Alkalic pyroxene.
Analcime........
Sodalite.........

Accessory minerals:
Melilite .........

Na3K[Al4Si4016] ..................
(K,Na)[AlSi308] ..................
(Na,Ca)(Fe +3,Fe +2,Mg,Al)[Si206]..

Na8[Al6Si6024]Cl2

Sphene 
Apatite .... 
Zircon .... 
Pyrochlore 
Rutile .... 
Magnetite., 
Perovskite 
Eudialyte ., 
Columbite- 

tantalite .

(Ca,Na,K)2
[(Mg,Fe +2,Fe +3,Al,Si)207] 

CaTi[Si04](0,OH,F).........
Ca5(P04)3(OH,F,Cl).........
ZrSi04 .....................
(Na,Ca)2(Nb,Ti)206(OH,F)...

Fe304 ...........................
(Ca,Na,Fe +2,Ce)(Ti,Nb)03 ........
Na4(Ca,Fe +2)2ZrSi6017(OH,Cl)2 ....

0-40 
0-50 
5-10 
0-10 
0-5

0-5

0-5 
0-2 
0-2 
0-? 
0-? 
0-1

(Fe,Mn)(Ta,Nb)206 ................ ?

feldspathoid-bearing rocks more readily than from other 
igneous rocks that are either low in alumina or high in 
silica, or both.

The U.S.S.R. was the first country to utilize nepheline 
syenite commercially for the production of aluminum. 
After World War II, the U.S.S.R. produced alumina and 
alkalies and cement from waste nepheline concentrates 
from the Kola apatite mines (Alien and Charsley, 1968, p. 
98). Deposits of nepheline syenite in Egypt and in other 
countries have been investigated as a potential source of 
aluminum. Nepheline syenite is used in the manufacture 
of glass and ceramics in Canada and Norway and for 
roofing granules and crushed rock in the United States 
and in other countries (Alien and Charsley, 1968, p. 1). 
Phonolite was investigated as a source of alumina in 
Germany in 1939 (U.S. Bureau of Mines, 1939, p. 2), and 
phonolite is mined in the Federal Republic of Germany 
and Czechoslovakia for use in the manufacture of glass 
and ceramics (Alien and Charsley, 1968, p. 2).

UNITED STATES

Nepheline syenite bodies are widely distributed in the 
United States (fig. 3, table 9), and phonolite is present in 
several areas. Barker (1974, table 1) listed the occur­ 
rences of North American alkalic rocks, which include 
nepheline syenite and phonolite. Clearly, the United 
States would have ample resources if alumina could be 
recovered profitably from nepheline syenite. However, 
there have been no serious attempts in the United States 
to recover alumina from this rock. The alumina contents 
of U.S. nepheline syenite and anorthosite are 17-23

percent and 25-33 percent, respectively, and the silica 
contents of both rock types are approximately equal 
(tables 4, 9). U.S. anorthosite resources are very large. 
Therefore, aluminum recovery from nepheline syenite is 
unlikely in the United States.

CANADA

Hewitt (1957, p. 186) noted the following historical 
facts regarding interest in Canadian nepheline syenite as 
a possible source of alumina, "The earliest commercial 
interest in Ontario nepheline syenite began in 1912 when 
N.B. Davis sampled a nepheline deposit on Exolon Hill 
as a potential source of alumina." During World War II, 
the Aluminium Company of Canada (Alcan) and Ven­ 
tures Limited became interested in nepheline syenite as 
a potential source of alumina, and considerable diamond 
drilling was undertaken in the Bancroft area (fig. 4).

For many years after 1936, Canada was the sole 
producer of nepheline syenite for the glass and ceramics 
industries. All but a small proportion of the production 
came from the Blue Mountain district (Alien and Chars- 
ley, 1968, p. 64) in Ontario about 151 km northeast of 
Toronto (fig. 4). Blue Mountain consists of a group of 
glaciated ridges that stand 61-107 m above the surround-

TABLE 8. — Chemical composition (in weight percent) of nepheline 
syenite from Canada, Norway, and Scotland 
[LOI, loss on ignition; dash (—), data not available]

Si02 .......
Al O
Fe203 ......
FeO .......
MnO .......
MgO .......
CaO .......
NaaO ......
K>0. .......
Ti02 .......
H20~ ......
H20 + ......
C02 . .......
LOI. .......
p o
Cl .........
BaO .......
SrO........
Zr02 .......

Total.

Canada

1

59.18
23.06
2.15

.17

.76
10.48
3.94

.06

.4

.02

.05
. . 100.27

Norway

2
52.37
23.22

1.14
1.86
.09
.25

3.11
6.87
8.30

.61

.04

.26
1.88

.09

.34

.59

101.02 1

3
52.73
23.71

1.89
1.04
.06
.24

2.54
7.78
8.08

.51

.05

.26

.77

.05

.32

.39

00.42

Scotland
4

55.1
22.7
2.2

.4
1.9
2.2

12.8

_
_
_

—

97.3

5
51 ?,
25>9

3 1

3
33
52
88

_
_

—

948

1. Nepheline syenite from Blue Mountain, Ontario, Canada. From Derry and Phipps (1957, 
table 1) and Alien and Charsley (1968, p. 68).

2. Biotite nepheline syenite from Stjernoy, Norway. From Heier (1966, table 1) and Alien and 
Charsley (1968, p. 90).

3. Pyroxene-sphene nepheline syenite from Stjernoy, Norway. From same sources as data in 
column 2.

4. Gray nepheline syenite from the Loch Borolan complex, Loynes Valley, Scotland. Average 
of 13 samples. From Alien and Charsley (1968, p. 46).

5. Gray nepheline syenite from the Loch Borolan complex, Anltivullin, Scotland. Average of 
nine samples. From Alien and Charsley (1968, p. 46).



WORLD NONBAUXITE ALUMINUM RESOURCES EXCLUDING ALUNITE C17

ing peneplain. The main mass of nepheline syenite 
exposed in Blue Mountain crops out in an area about 4.0 
km long and 2.0 km wide (Hewitt, 1961).

Many Rosiwal modal analyses (Keith, 1939, p. 1806) 
show that the Blue Mountain nepheline syenite has the 
following representative mineralogical composition: 54 
volume percent albite, 20 percent microcline, 22 percent 
nepheline, 2 percent muscovite, and 2 percent mafic 
minerals. The chemical composition of typical Blue 
Mountain nepheline syenite is given in table 8.

Nepheline syenite bodies also occur at numerous other 
places in Ontario, including Monteagle and elsewhere in 
the Haliburton-Bancroft area (Adams and Barlow, 1910; 
Moyd, 1949), Sioux Lookout (Alien and Charsley, 1968, 
p. 75), and the following eight districts discussed by 
Hewitt (1957): (1) Sturgeon Lake, (2) Port Coldwell, (3) 
Herman Lake, (4) Nemegosenda Lake, (5) Nemegos, (6) 
Otto, (7) French River, and (8) Callander Bay (fig. 4).

Nepheline syenite occurs in the following localities in 
Quebec: (1) Lake Albanel district (Neilson, 1953); (2) 
Gouin Reservoir basin (Laurin, 1965); (3) Labelle- 
L'Annonciation area (Osborne, 1935); (4) Oka and Mount 
Royal area or Monteregian Hills, Montreal (Finley, 
1930); and (5) St. Hilaire area (O'Neill, 1914).

In addition to the deposits in Ontario and Quebec, 
nepheline syenite occurs at scattered localities in British 
Columbia (Alien and Charsley, 1968, p. 75).

EGYPT

Thorough investigations of nepheline syenite in Egypt 
were conducted from 1966 to 1969 by the Egyptian 
Geological Survey with the cooperation of Soviet geolo­ 
gists and aluminum experts (El Ramly, Dereniuk, and 
others, 1970). The main nepheline syenite deposit inves­ 
tigated was in the Jabal Abu Khuruq (spelled Gabal Abu 
Khruq in some reports) massif about 140 km northeast of 
the Aswan Dam. This massif is an oval complex consist­ 
ing of an incomplete ring of alkalic syenite intrusive 
bodies surrounding a group of conical or stocklike intru­ 
sive bodies of nepheline syenite. The part of the massif 
on which most of the field work was done contains 26 
million metric tons of nepheline syenite in which the 
average content of the main components is 55.69 percent 
Si02 , 21.08 percent A1203 , 4.92 percent Fe203 , 9.63 
percent Na^O, and 5.08 percent K20 (El Ramly, Dere­ 
niuk, and others, 1970, p. 178-179). Another part of the 
massif that was less thoroughly investigated was esti­ 
mated to contain an additional 40 million-50 million 
metric tons of rock of similar composition.

A large sample of the nepheline syenite was studied in 
U.S.S.R by the All Union Institute of Aluminum and 
Magnesium (VAMI) in Leningrad. The VAMI metallur­

gical tests and similar tests by the Egyptian Geological 
Survey showed that alumina can be recovered from the 
Jabal Abu Khuruq nepheline syenite when it is mixed 
with Egyptian limestone. The VAMI process yields 
valuable byproducts. An annual production of 100,000 
metric tons of alumina would yield the following byprod­ 
ucts: 1.5 million-1.6 million metric tons of portland 
cement, 75,000 metric tons of soda, and 30,000-35,000 
metric tons of potash (El Ramly, Dereniuk, and others, 
1970, p. 180).

The investigation also showed the presence of at least 
nine other igneous ring complexes between the Nile 
River and the Red Sea (El Ramly, Budanov, and others, 
1970). At least four of these complexes contain nepheline 
syenite.

MEXICO

Nepheline syenite occurs near the town of San Jose 
about 64 km southeast of Linares in northeastern Mexico 
(Alien and Charsley, 1968, p. 130). It extends for 24 km 
south of the town of San Jose and forms part of the San 
Carlos Mountains. The Arroya Grande nepheline sye­ 
nite, which is the most commercially interesting of the 
three types present in this area, contains, by volume, 60 
percent orthoclase, 25 percent nepheline, 5 percent pla- 
gioclase, 1 percent augite, 8 percent magnetite, and 0.7 
percent sphene. This nepheline syenite is probably the 
material that Industria Penoles SA planned to process 
for alumina when it acquired the U.S.S.R.'s VAMI 
process (Industrial Minerals, 1979a).

NORWAY

Norway is surpassed only by Canada and the U.S.S.R. 
in the production of nepheline syenite, which has all been 
obtained from one mine on the island of StjernSy (fig. 5), 
402 km north of the Arctic Circle (Alien and Charsley, 
1968, p. 88). This deposit is thought to be a stocklike 
body having a lenticular outcrop 1,829 m long and about 
244 m wide. Mining is by underground methods, and so 
the mine can be worked the entire year. Production 
began in 1961. Two grades of beneficiated nepheline 
syenite are produced, one for making glass and one for 
making ceramics.

Two types of nepheline syenite are recognized at 
Stjernoy (Heier, 1966; Alien and Charsley, 1968). 
Pyroxene-sphene nepheline syenite is more abundant 
and occupies the center of the outcrop. Biotite nepheline 
syenite is present primarily at the ends of the body. The 
chemical compositions are listed in table 8.

Alien and Charsley (1968, p. 88) noted the presence of 
several other nepheline syenite bodies in Norway.
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	EXPLANATION

Nepheline syenite or phonolite deposit 8. Litchfield, Maine
9. Bearpaw Mountains, Mont.

10. Highwood Mountains, Mont.
11. Little Belt Mountains, Mont.
12. Crazy Mountains, Mont.
13. Red Hill, N.H.
14. Beemerville, N.J.
15. Cornudas Mountains, N. Mex.

1. Bauxite, Ark.
2. Magnet Cove, Ark.
3. Potash Sulfur Springs, Ark.
4. Tin Mountain, Calif.
5. Iron Hill, Colo.
6. McClure Mountain, Colo.
7. South Park, Colo.

16. Coastal Range, Oreg.
17. Black Hills, S. Oak.
18. Cornudas Mountains and 

	Diablo Plateau, Tex.
19. Christmas Mountains, Tex.
20. Terlingua-Big Bend, Tex.
21. Solitario, Tex.
22. Shasket Creek, Wash.

FIGURE 3.—Major nepheline syenite and phonolite deposits in the conterminous United States. Modified from National Research Council (1979, 
fig. 5.16). Number 17 is the only phonolite deposit plotted. Deposit sizes are provided in table 9.

SOUTH AFRICA

Nepheline-bearing rocks occur at several places in 
South Africa (Alien and Charsley, 1968; Mathias, 1974). 
Both nepheline syenite and phonolite are associated with 
several masses of alkalic rocks that are close to or within 
the Bushveld Complex in Transvaal. Nepheline-bearing 
rocks in the Spitskop area, eastern Transvaal, contain as 
much as 20.5 percent alumina (Brabers, 1974, table 8). In 
addition, nepheline syenite and associated carbonatite 
make up one of the major intrusive rock types in south­ 
western Africa.

UNITED KINGDOM

The United Kingdom has only one nepheline syenite 
deposit of economic importance; it is the Loch Borolan

alkalic complex near Ledmor in Sutherland County, 
Scotland (Alien and Charsley, 1968, p. 45-47). Red 
syenite is the most common rock type in the igneous 
complex, and it contains less than 20 percent alumina. 
The less abundant gray nepheline syenite contains nearly 
23 percent alumina (table 8).

U.S.S.R.
In the Kola Peninsula of the U.S.S.R., two large 

bodies of nepheline syenite (fig. 5) are separated by Lake 
Umbozero (Alien and Charsley, 1968). The Lovozero 
massif underlies 650 km2 and has not been mined. The 
Khibiny massif underlies 1,327 km2 and is the source of 
apatite and nepheline. The alumina contents of the 
nepheline syenite from the Lovozero and Khibiny mas-
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TABLE 9.—Major nepheline syenite and phonolite deposits in the United States 
[Modified from Barker (1974) and National Research Council (1979, table 5.12). Dash (—), data not available!

Locality

in
figure 3

1

2

3
4
5
6
7
8
9

10

11

12
13

14
15

16

17
18

19

20

21

22

Nepheline syenite
or 

phonolite deposit

Selawik Hills .........

Granite Mountain.
St. Lawrence Island . . .
Bauxite .............

Magnet Cove .........

Potash Sulfur Springs . .
Tin Mountain .........
Iron Hill. ............
McClure Mountain.
South Park ..........
Litchfield ............
Bearpaw Mountains. . . .

Highwood Mountains. . .

Little Belt Mountains
(Otter Creek).

Crazy Mountains ......
Red Hill. ............

Beemerville ..........
Cornudas Mountains

(Wind Mountain).
Coastal Range

(Blodgett Peak).
Black Hills...........
Cornudas Mountains

and Diablo Plateau.

Christmas Mountains. . .

Terlingua-Big Bend
(Sawmill Mountain).

Solitario .............

Shasket Creek ........

County

—

—
—

Pulaski, Saline. ....

Hot Spring. .......

Garland ..........
Inyo .............
Gunnison .........
Fremont. .........
Park. ............
Kennebec .........
Hill, Blaine .......

Cascade, Chouteau,
Judith Basin.

Meagher. .........

Park. ............
Carroll ...........

Sussex ...........
Otero ............

Lincoln. ..........

Lawrence ........
Hudspeth. ........

Brewster .........

Brewster .........

Brewster,
Presidio.

Ferry ............

State

Alaska ..........

Alaska ..........
Alaska ..........
Arkansas ........

Arkansas .........

Arkansas ........
California. .......
Colorado ........
Colorado ........
Colorado ........
Maine. ..........
Montana. ........

Montana. ........

Montana. ........

Montana. ........
New Hampshire . .

New Jersey ......
New Mexico.

Oregon. .........

South Dakota.
Texas...........

Texas. ..........

Texas ...........

Texas ...........

Washington ......

(km2)

. 200

9.5
44*

. 750

12

2
—

30
50

—
6

. 780

. 400

—

25
7.4*

2
8*

. 250

25
20

10

. 500

.2

2

A120S

(weight 
percent)

22

—
21-23
18-21

20

—
22
—
—
17
—
18

18

—

17
—

20-22
—

19

20
18

18-19

18-19

18

—

Rock type

Nepheline syenite .....

Nepheline syenite .....
Nepheline syenite .....
Nepheline syenite .....

Sphene and garnet
nepheline syenite.

Nepheline syenite .....
Nepheline syenite .....
Nepheline syenite .....
Nepheline syenite .....
Analcime syenite ......
Nepheline syenite .....
Nepheline syenite .....

Nepheline syenite .....

Analcime nepheline sye­
nite.

Nepheline syenite .....
Nepheline sodalite

syenite.
Nepheline syenite .....
Porphyritic analcime

nepheline syenite.
Nepheline analcime

syenite.
Phonolite ............
Nepheline analcime

syenite.

Nepheline syenite .....

Analcime syenite .....

Analcime syenite ......

Nepheline(?) syenite . . .
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sifs average 17.39 and 21.26 percent, respectively 
(Gerasimovsky and others, 1974, table 2). The nepheline 
concentrate obtained by removal of apatite consists of 
90-93 percent nepheline. According to Euros and Wag­ 
ner (1978), the major components of the concentrate are 
29.5 percent A1203 , 43.5 percent Si02 , 3.5 percent Fe203 , 
12.5 percent Na^, and about 7.8 percent K20. Alumina 
is recovered from the concentrate along with cement, 
soda (Na20), and potash (K20), whose recovery make the 
process economical.

The apatite-nepheline bodies being mined are in the 
southwestern part of the Khibiny massif in a curved zone 
13 km long and as much as 200 m thick (Kalinkin, 1969). 
The reserves of the apatite-nepheline ore in the Khibiny 
massif are estimated to be 2.7 billion metric tons, from 
which 500 million metric tons of nepheline concentrate is 
recoverable (Euros and Wagner, 1978, p. 45).

In Siberia, huge massifs of nepheline-bearing rocks are 
near Kemerovo and in the Krasnoyarsk region (fig. 5). 
Near Kemerovo are the Goryachegorsk and Kiya- 
Shaltyr massifs. The Kiya-Shaltyr deposit has been 
mined, and the Goryachegorsk deposit has been pre­ 
pared for mining (Mikhaylov and others, 1977). In the 
Krasnoyarsk region, the Kiya complex of nepheline and 
alkalic syenites is near the Yenisey River (Mikhaylov and 
others, 1977), and nepheline syenite containing 21 per­ 
cent alumina has been discovered in the Srednyaya and 
Pravaya Noyba interstream areas of the northern Yeni­ 
sey Range (Nozhkin and Cherepnin, 1967). These neph­ 
eline syenite occurrences seem to correspond to the 
Central Tartar massif of Alien and Charsley (1968, p. 
105). The Sangilen Range in southeastern Tuva contains 
nepheline rocks (Alien and Charsley, 1968, p. 106). The 
Synnyr complex north of Lake Baykal consists of 10
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FIGURE 4.—Nepheline syenite deposits in Ontario and Quebec Provinces, Canada. Modified from Alien and Charsley (1968, fig. 6).

• Nepheline syenite deposit

Scale (approximate)

FIGURE 5. —Major nepheline syenite deposits in the U.S.S.R., Finland, and Norway. Modified from Alien and Charsley (1968) and Mikhaylov and
others (1977).
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alkalic massifs, one of which contains the Synnyr deposit 
of nepheline and pseudoleucite syenites (Mikhaylov and 
others, 1977). Mikhaylov and others (1977) described 
other nepheline syenite massifs in Siberia.

In Kazakhstan, three areas are known to contain 
deposits of nepheline syenite—the Bayan-Aul, TyuP- 
kubas, and Karsakpay massifs (fig. 5) The Bayan-Aul 
nepheline syenites consist of pipes and dikes containing 
26-44 percent nepheline; one sample contained 20 per­ 
cent alumina (Alien and Charsley, 1968). The TyuPkubas 
nepheline syenite contains 20-22 percent nepheline. One 
sample of nepheline syenite from the Karsakpay massif 
contained 24 percent alumina (Alien and Charsley, 1968, 
p. 107).

Several deposits of nepheline syenite occur in the 
southern Ural Mountains. One sample from the Vish- 
nevyie Mountains near Orsk contained almost 22 percent 
alumina in rock that usually contains 25 percent nephe­ 
line and 65 percent alkalic feldspar and sodic plagioclase 
(Alien and Charsley, 1968, p. 107). Other nepheline 
syenite deposits are Kasli and Kyshtym near Chelya­ 
binsk. Attempts have been made to beneficiate the 
nepheline syenite from these areas, but the results were 
not promising (Alien and Charsley, 1968).

OTHER COUNTRIES

Nepheline syenite and phonolite occur in many coun­ 
tries in addition to those mentioned above. Alien and 
Charsley (1968) described these rocks in 39 more coun­ 
tries, and probably their list is incomplete. The Sarhad 
Development Authority of Pakistan has proven 6 billion 
metric tons of nepheline syenite near Mardan (U.S. 
Embassy, Islamabad, Pakistan, written commun., 1983). 
In Greenland, nepheline syenite occurs in two large 
masses, each underlying more than 100 km2 (Alien and 
Charsley, 1968, p. 127-128; Upton, 1974). The only 
nepheline-bearing rocks in Finland are in the livaara 
intrusion (fig. 5) southeast of Kuusamo, near the Soviet 
border (Shaikh, 1977, p. 194). Their iron content makes 
the livaara rocks unlikely to be mined (Alien and Chars- 
ley, 1968, p. 86). In Zimbabwe, nepheline syenite is 
present in three igneous complexes in the Sabi River 
valley southeast of Harare (Alien and Charsley, 1968, 
p. 56).

Phonolite occurs in four areas in the Federal Republic 
of Germany, but only the extensive deposits in the Eifel 
region are mined (U.S. Bureau of Mines, 1939; Alien and 
Charsley, 1968, p. 87). In Czechoslovakia, phonolite 
deposits occur in the Ceske Stfedohori Mountains, about 
72 km northwest of Prague, between the towns of Most 
and Bilina (Alien and Charsley, 1968, p. 83).

ALUMINOUS IGNEOUS ROCKS-LEUCITE-BEARING ROCKS

Leucite (KAlSi206) is a feldspathoid mineral having a 
composition of 21.5 percent K20, 23.5 percent A1203 , and 
55.0 percent Si02. It is common in fine-grained or 
porphyritic volcanic rocks; in some regions, it is in 
hypabyssal rocks.

Large leucite deposits are in the volcanic rocks in the 
Latium region and at Mount Vesuvius, Italy (Landi, 
1975). Abbruzzese and Rinelli (1981, p. 23-24) estimated 
that the total alumina in these rocks is several billion 
metric tons. In 1918, it was estimated that the leucite- 
bearing rocks in Italy contain enough alumina and potash 
to supply the world for several centuries (Blanc, 1931, p. 
50). According to Blanc (1931), leucite-bearing rocks 
having particularly favorable physical and chemical com­ 
positions for the extraction of alumina are in the region of 
the Roccamonfina Volcano near Sessa Aurunca. Massacci 
(1978, p. 558) estimated that this region holds 100 million 
to 1 billion metric tons of leucite-bearing rock containing 
20-22 percent A1203 and 10-11 percent K20. Another 
region extends from Mount Cimini and the surrounding 
mountains to the crater of Vico. A part of this district 
near Civita Castellana contains several hundred million 
metric tons of leucite-bearing rocks (Massacci, 1978, p. 
559).

Leucite occurs in several other countries. The largest 
known body of leucite-bearing rock in the United States 
is in the Leucite Hills, Sweetwater County, Wyo. 
Resource estimates indicate the presence of nearly 2 
billion metric tons containing 200 million metric tons of 
A1203 and 200 million metric tons of K20 (Schultz and 
Cross, 1912, p. 35). Leucite-bearing rocks also occur in 
Sussex County, N.J.; near Magnet Cove, Ark.; in the 
Absaroka Range, Wyo.; and in the Bearpaw and High- 
wood Mountains, Mont. (Pirsson, 1905; Ford, 1932, p. 
551; Burgess, 1941). Leucite is present in Western 
Australia (Wade and Prider, 1940); near Gnjilane, Kos­ 
ovo, Yugoslavia (Logomerac and Crnko, 1981); and in 
southwestern Uganda and neighboring Zaire (Sahama, 
1952).

Pseudoleucite-bearing rocks in the northern Baykal 
region, U.S.S.R., have been investigated as a possible 
source of alumina (Kostyun, 1975). Pseudoleucite is a 
pseudomorph after leucite composed of a mixture of 
nepheline, orthoclase, and analcime. Pseudoleucite also 
occurs with nepheline syenite in Arkansas, Montana, and 
Brazil.

DAWSONITE-BEARING ROCKS

Dawsonite, NaAl(OH)2C03 , a colorless or white, acid- 
soluble mineral, occurs in small needlelike crystalline 
aggregates or as fine-grained to microscopic crystals in
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several types of rocks. Dawsonite contains, by weight, 
35.4 percent A1203 or 18.7 percent aluminum metal. 
When heated, dawsonite loses hydroxyl water and car­ 
bon dioxide to form a water-soluble sodium aluminate 
(Schmidt-Collerus and Hollingshead, 1968). Until the 
discovery of dawsonite in the Eocene oil shale of Colo­ 
rado, the mineral was known to occur in small amounts at 
only a few localities in the world (Smith and Milton, 
1966). Alumina for production of aluminum metal and 
sodium aluminate for use in water-pollution control are 
potential products of the dawsonite from oil shale (Hite 
and Dyni, 1967). This section summarizes the pertinent 
information on dawsonite as an aluminum resource.

UNITED STATES

The principal dawsonite resources in the United States 
occur in the oil shale of the Parachute Creek Member of 
the Eocene Green River Formation in northwestern 
Colorado. In some beds, large quantities of dawsonite 
are mixed with nahcolite (NaHC03), several other min­ 
erals, and kerogen (organic matter that yields oil when 
distilled) in the oil shale. In addition to kerogen, the oil 
shale in the Parachute Creek Member is made up chiefly 
of quartz, calcite, dolomite, and feldspar (table 10); 
analcime and clay minerals are minor constituents. The 
clay minerals present are illite and a trace amount of 
mixed-layer clays; the mixed-layer clays consist of illite 
and montmorillonite. The lack of kaolinite and the pres­ 
ence of illite suggest that the sedimentary material was 
deposited in a lake that had a reducing environment of 
slightly alkaline, brackish to saline waters. As discussed 
below, the oil shale contains potentially extractable 
alumina in some form other than dawsonite (Smith, 
1980).

A great deal of research and money has been invested 
in finding ways to extract oil from the Green River 
Formation oil shale. Most of the effort has been concen­ 
trated in the Piceance Creek basin in northwestern 
Colorado. At least 45 different minerals have been 
identified from the Green River Formation (Milton and 
Eugster, 1959), and those unique to the Green River 
Formation are shortite, eitelite, bradleyite, reed- 
mergnerite, garrelsite, and loughlinite. Parts of the 
Parachute Creek Member contain as much as 15-25 
percent dawsonite. Large dawsonite concentrations have 
not been found in the Green River Formation in other 
basins in Colorado, Utah, and Wyoming.

For many years, the chemical analyses of the oil shale 
have been known to contain more alumina than could be 
accounted for by the aluminous minerals found in the oil 
shale (Desborough and Pitman, 1974, p. 85). This excess 
alumina was thought to be present in the form of gibbsite 
(DeVoto and others, 1970). Milton and others (1975)

identified nordstrandite, a polymorph of gibbsite, in the 
oil shale. Smith (1980, p. 2) noted that "Nordstrandite in 
oil shale occurs everywhere with dawsonite." However, 
both minerals may not always be present together 
because Asai and others (1983, p. 4) described the Saline 
zone as containing 12 percent dawsonite (4 percent 
extractable alumina), essentially no nahcolite, and no 
detectable amounts of nordstrandite. In addition, three 
samples from the Parachute Creek Member contain 
dawsonite and no nordstrandite (table 10). Zen and 
Hammarstrom (1975) concluded that X-ray diffraction 
methods are not reliable for determining the amount of 
nordstrandite present in oil shale, and Desborough and 
others (1974, p. 6) noted that amorphous alumina is 
present. Therefore, the problems concerning the form in 
which the excess alumina occurs make it clear that much 
remains to be learned about aluminum in the Green 
River Formation oil shale. The reasons for the shortcom­ 
ings in our knowledge of aluminum in shale include the 
following: (1) much of the dawsonite is very fine grained 
and cannot be isolated for study from the other fine­ 
grained minerals and organic matter; (2) variable 
amounts of aluminum in the shale are caused by the 
feldspars, by other nonclay alumina minerals, and by the 
clay mineral illite; and (3) most of the data on mineralogy 
and geochemistry of oil shale have been acquired by 
analyzing ashed samples (samples ashed in oxygen 
plasma at about 100 °C), and little is known about what 
happens during ashing to aluminous minerals associated 
with organic matter.

GEOLOGY

The Green River Formation is composed of dark shale 
and magnesian marl, both of which yield oil on distillation 
(Donnell, 1961, p. 847). Sandstone, siltstone, and lime­ 
stone beds are also present in parts of the formation. 
Bedding is remarkably regular and tends to persist 
throughout large areas. In the Piceance Creek basin, the 
formation can be divided into five members, the first four 
of which are, from oldest to youngest, the Douglas 
Creek, Garden Gulch, Parachute Creek, and Evacuation 
Creek (Bradley, 1931, p. 9); the fifth member, the Anvil 
Points, is present along the east side of the basin and is 
laterally equivalent to the Douglas Creek, the Garden 
Gulch, and part of the Parachute Creek (Donnell, 1961, 
p. 848). The Parachute Creek Member is much richer 
in oil shale, dawsonite, and nahcolite than the other 
members.

The Parachute Creek Member ranges in thickness 
from about 260 m on the margins of the Piceance Creek 
basin to about 550 m in the central part of the basin (Hite 
and Dyni, 1967, p. 26-28). The lower part of the Para­ 
chute Creek Member is called the Saline zone. It is at
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TABLE 10.— Mineral composition of samples from four sections of the Parachute Creek Member of the Green River Formation, Piceance Creek
basin, northwestern Colorado

[Modified from Hosterman and Dyni (1972, table 1). Mineral designations: Dol, dolomite; Cal, calcite; Daw, dawsonite; Qtz, quartz; Kfs, potassium feldspar; Naf, 
sodium feldspar, Anl, analcime; 111, illite; Mix, mixed-layer clay. Depths were measured in feet. Do., ditto; tr, trace; dash (—), not detected]

Rock type

Oil shale, dolomitic
Do.
Do.
Do.

Oil shale, dolomitic
Do.
Do.
Do.

Oil shale
Do.
Do.

Oil shale, dolomitic
Do.
Do.
Do.
Do.

Oil shale, dolomitic
Do.
Do.
Do.
Do.
Do.

Oil shale

Color1

(5Y6/2)
(2.5Y6/2)
(2.5Y6/1)
(2.5Y4/2)

(2.5Y6/1)
(2.5Y6/2)
(2.5Y5/2)
(2.5Y4/2)

(5Y4/1)
(5Y5/1)
(5Y5/1)

(2.5Y6/1)
(2.5Y5/2)

(5Y4/1)
(5Y5/1)
(5Y4/1)

(5Y6/2)
(5Y6/2)

(2.5Y6/2)
(5Y4/2)

(10YR5/1)
(5Y6/2)

(10YR4/2)

Carbonates2 
(percent)

Dol

55
40
40
35

30
50
40
30

15
10
20
40
40
25
25
25

30
50
40
30
40
50
40

Cal Daw

— —
10 -
15 -
— —

5 -
— —
10 -
10 -

- 15
- 25
- 20
5 -
5 -

tr -
5 -

— —

10 -
tr -
10 -
5 -

— —
— —
— —

Qtz
Sec.

20
25
20
30

Sec

30
20
20
25
Sec.

35
40
40
20
25
35
35
40
Sec.

20
20
20
25
15
25
35

Kfs
36, T.

5
5
5
5

. 6, T.

15
tr
5

tr
14, T.

10
10
10
5
5
5
5

10
34, T.

5
5
5
5

15
5(4)

Noncarbonates3 
(percent)

Naf Anl
7 S., R.

10
10
10
20

97 W.

5
5
5
5

111

5
5
5
5

Mix

tr
tr
tr
tr

Sample position

15.5 ft (4.72 m) above Mahogany zone.
2.5 ft (0.76 m) above Mahogany zone.
3 ft (0.9 m) below Mahogany zone.
12.5 ft (3.81 m) below Mahogany zone.

4 S., R. 94 W.

10
10
10
15

tr
15
10
10

10
5
5

10

tr
tr
tr
tr

46.5 ft (14.2 m) above Mahogany zone.
39 ft (11.9 m) above Mahogany zone.
22.4 ft (6.83 m) above Mahogany zone.
Mahogany zone.

1 N., R. 97 W.

10
10
5

15
5

20
10
5

2 S., R.

10
10
10
20
15
5(4)

5
tr
tr
10
10
5

10
10

100 W.
15
10
10
10
5
5
5

10
5
5
5

10
10
10
10

10
5
5
5

10
10
10

tr
tr
tr
tr
tr
tr
tr
tr

tr
tr
tr
tr
tr
tr
5

Not available.
Not available.
Not available.
16.9 ft (5.15 m) above Mahogany zone.
4.3 ft (1.3 m) above Mahogany zone.
1 ft (0.3 m) above Mahogany zone.
Mahogany zone.
20 ft (6.1 m) below Mahogany zone.

333.2 ft (101.6 m) above Mahogany zone.
200.4 ft (61.08 m) above Mahogany zone.
15.5 ft (4.72 m) above Mahogany zone.
Mahogany zone.
15.7 ft (4.79 m) below Mahogany zone.
334.7 ft (102.1 m) below Mahogany zone.
405.3 ft (123.6 m) below Mahogany zone.

1 Rock-color designations from Munsell Color Company (1929-60).
2 The percentage of total carbonate minerals is based on weight loss after dilute HC1 treatment. The kerogen content of the rock was not determined.
3 The percentages of noncarbonate minerals are based on the peak-height ratios of the major peaks on the X-ray diffraction traces.
4 Potassium feldspar and sodium feldspar total 5 percent.

least 215 m thick in the depositional center of the basin 
and contains the richest known dawsonite beds in the 
Green River Formation. The Saline zone penetrated by 
the USBM mine shaft in Horse Draw (fig. 6) was 
described by Cole and others (1982, fig. 6), who showed 
the dawsonitic oil shale to be about 130 m thick. Three 
thin persistent beds containing nahcolite are present 
near the base of the Saline zone (fig. 7). In the deposi­ 
tional center of the basin, two lenticular units of halite 
(NaCl), each more than 30 m thick, are present in the 
upper part of the Saline zone. These units include thin 
layers of nahcolite that occur in cyclic fashion. Accessory 
minerals associated with the halite include wegscheider- 
ite, Na2C03-3NaHC03, shortite, Na2C03-2CaC03, north- 
upite, Na2C03-MgC03-NaCl, searlesite, NaBSi206 -H20, 
and possibly trona, Na2C03-NaHC03 -2H20 (Kite and 
Dyni, 1967, p. 31). The top of the Saline zone is marked 
by a dissolution surface on the upper halite unit.

Overlying the Saline zone is the Leached zone, which is 
several hundred meters thick. The Leached zone consists 
of broken and brecciated oil shale that has abundant 
solution cavities. Most of the soluble saline minerals have 
been removed by ground water. The zone is water 
bearing, and water-soluble minerals are probably still 
being removed. The drill cores from CR-1 and CR-2 (fig. 
6) penetrated several dawsonitic units (Donnell and 
Smith, 1980, fig. 3), which are mostly in the lower half of 
the Leached zone. The concentration of dawsonite in the 
Leached zone is generally not as great as that in the 
underlying Saline zone.

Above the Leached zone is the Mahogany zone, which 
includes the resistant Mahogany ledge in outcrops; the 
Mahogany zone is bounded by the A groove (above) and 
the B groove (fig. 7). The grooves are the reentrants in 
cliffs formed by the erosion of thin tuffaceous beds. The 
Mahogany zone is about 61 m thick locally (Brobst and
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FIGURE 6. —Distribution of nahcolite and dawsonite in the Parachute Creek Member of the Green River Formation, Piceance Creek basin, 
northwestern Colorado. Modified from Weichman (1974b, fig. 3) and Dean and others (1981, fig. 1).

Tucker, 1973, p. 5), and it is one of the richest oil shale 
units in the Parachute Creek Member (Stanfield and 
others, 1957). Hosterman and Dyni (1972, table 1; this 
report, table 10) found that three surface samples from 
the Mahogany ledge lacked dawsonite, and Brobst and 
Tucker (1973, tables 4 and 5) also found no dawsonite in 
most surface samples. Desborough and others (1974) 
found dawsonite in core samples of the Mahogany zone, 
and Beard and others (1974, p. 103) noted that small 
amounts of dawsonite are present in the Mahogany zone. 

The Parachute Creek Member above the Mahogany 
zone is called the Upper Oil Shale zone (Cole and others, 
1982, fig. 3) and consists chiefly of tuffaceous marl and oil 
shale (Donnell, 1961, p. 856-857). These beds have 
numerous cavities resulting from the solution of crystals 
of gypsum, anhydrite, and saline minerals. Brobst and 
Tucker (1973, fig. 6) found only a minor amount of 
dawsonite in this zone.

All three saline minerals, nahcolite, dawsonite, and 
halite, are present in the Saline and Leached zones in the 
center of the Piceance Creek basin (fig. 6). Around this 
central area are an inner belt, in which only nahcolite and 
dawsonite are present, and an outer belt of Leached 
zone, in which only dawsonite is present, Dawsonite in 
the Saline zone crops out in the northern part of the basin 
(Brobst and Tucker, 1973, p. 42), but nahcolite has been 
found only in the subsurface (Dyni, 1974; Desborough 
and Pitman, 1974). According to Cole and others (1982), 
nahcolite is most abundant in oil-rich zones, and dawson­ 
ite tends to be more abundant in the zones that are lean 
in oil shale. The bulk sample of dawsonitic oil shale 
investigated by Asai and others (1983) and White and 
others (1985) was taken from the 640-m level of the 
USBM mine shaft; it was about 12 percent dawsonite, 
which is equivalent to about 4 percent recoverable alu­ 
mina. According to Cole and others (1982, fig. 6), the
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FIGURE 7.— Diagrammatic cross section through the Green River 
Formation in the Piceance Creek basin, northwestern Colorado. 
Modified from Dyni and Hite (1968, fig. 2).

beds at this level are in lean oil shale of the Saline zone 
and contain only a small amount of nahcolite and a little 
more than an average amount of dawsonite.

RESOURCES

Estimates of the dawsonite resources in the Piceance 
Creek basin have been made. Dyni and Hite (1968, p. 23) 
and the U.S. Department of the Interior (1968, p. 27) 
listed the total dawsonite in the basin as 24.5 billion 
metric tons containing 8.5 billion metric tons of alumina. 
Beard and others (1974, p. 103-108) and Patterson and 
Dyni (1973, p. 40) estimated the total dawsonite in the 
Saline zone of the Parachute Creek Member to be 17 
billion metric tons, which could yield 6 billion metric tons 
of alumina. This estimate excluded the small amounts of 
dawsonite in the Mahogany and Leached zones.

The estimate by Beard and others (1974, p. 103-108, 
table 1, figs. 1-11) was based on analyses of samples of 
the Saline zone taken from 22 drill holes. Thickness of the 
Saline zone sampled ranged from about 91 m to more 
than 360 m. The average dawsonite content from 14 holes 
ranged from 1.9 to 5.9 percent. Oil shale having a 
dawsonite content of 5 percent or more underlies approx­ 
imately 161 km2 in the depositional center of the basin. 
According to Desborough and others (1974, p. 6), some of 
the units in the center of the basin contain more than 12 
percent dawsonite.

Recovery of oil from shale would be less expensive if 
other products could also be produced. Dawsonite and 
nahcolite are possible coproducts. Cameron and Jones, 
an engineering company, proposed that alumina (from 
dawsonite) and soda ash (NagCOg, from nahcolite) could 
be recovered as coproducts with oil from shale (Nielsen,

1969; National Materials Advisory Board, 1970, p. 
45-46). The Superior Oil Company patented a process for 
the recovery of oil, alumina, and soda ash (Weichman, 
1974a). Beard and Smith (1976) outlined a process for the 
in-place recovery of dawsonite and other mineral prod­ 
ucts from the Saline zone in the Piceance Creek basin.

Nahcolite has received much attention because it can 
remove sulfur dioxide from flue gas of coal-fired 
electricity-generating plants (Dyni, 1980, p. 1855). For 
this use, the mineral is thermally decomposed to form 
anhydrous sodium carbonate, which reacts with sulfur 
dioxide in the flue gas to form sodium sulfate. To 
evaluate nahcolite as a desulfurizing agent, Multi Miner­ 
als Corporation tested 500 metric tons from a bed in the 
Saline zone of the Parachute Creek Member of the Green 
River Formation (Dyni, 1980, p. 1857). This material, 
containing 70 percent nahcolite, removed 75-80 percent 
of the sulfur from the flue gas in a coal-fired powerplant.

Because of the many mining problems in the recovery 
of dawsonite from the Green River Formation of the 
Piceance Creek basin, it is presently considered to be a 
hypothetical resource of aluminum. The Upper Oil Shale 
zone, the kerogen-rich Mahogany zone that does not 
contain much dawsonite, and the Leached zone would 
have to be mined before the underlying dawsonite-rich 
Saline zone could be mined. The base of the Saline zone 
is at a depth of about 900 m in the center of the basin 
(Beard and Smith, 1976). The Leached zone contains 
saline water that is the result of the dissolution of 
nahcolite, dawsonite, and halite. The saline water in this 
aquifer could be a serious problem if it were encountered 
during mining because it cannot be discarded into the 
surface drainage (Smith, 1980, p. 2). Miners of the Saline 
zone would have to prevent saline water inflows from the 
overlying Leached zone.

OTHER COUNTRIES

When dawsonite was identified in the Green River 
Formation, U.S.A. (Smith and Milton, 1966), it was 
known to occur in Montreal, Canada; Tuscany, Italy; the 
Drin Valley, Albania; Alger, Algeria; and the Olduvai 
Gorge, Tanzania. Since then, dawsonite has been found 
in California, where it is a daughter product of fluid 
inclusions in gold-quartz veins in the Alleghany district 
(Coveney and Kelley, 1971). It has also been found in 
several other countries, including (1) Canada, where 
dawsonite is in feldspathic sills at two localities in Quebec 
(Stevenson and Stevenson, 1978; Jambor and others, 
1976); (2) Hungary, where dawsonite is in andesite 
breccia (Baksa and others, 1975); (3) Japan, where daw­ 
sonite is in fossiliferous marine mudstone associated with 
tuff (Aikawa and others, 1972); (4) Mauritania, where 
dawsonite is in analcimite in Adrar (Blanc and others,
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1971); (5) Australia, where dawsonite is in Permian 
marine strata (Goldbery and Loughnan, 1970) and the 
Singleton coal measures (Loughnan and Goldbery, 1972) 
in the Sydney basin and the coal measures in the 
Muswellbrook district, New South Wales (Loughnan and 
See, 1967); and (6) the U.S.S.R. (Batalin and others, 
1975), where dawsonite is in the Donets, Pripet, 
Kuznetsk, and Solotyinsk regions. Dawsonite is present 
in Carboniferous rocks in the Pripet basin in Byelorussia, 
where it occurs in kaolinitic clays interbedded with 
siderite and anhydrite (Dmitriyev and others, 1975). 
Amounts present range from 21 to 74 percent of the rock. 
Dawsonite in the Kuznetsk basin is in coal-bearing rocks 
(Volkova and Rekshinskaya, 1975). It occurs in shales, 
silty shales, and carbonate rocks in amounts ranging 
from a few percent to as much as 40 percent of the rock 
(Volkova and Rekshinskaya, 1975). Dawsonite has also 
been found in the Carpathians (Gabinet and Lozynyak, 
1975) and in the Transcarpathian region (Lazarenko and 
Mel'nikov, 1969). The only place in the U.S.S.R. where 
dawsonite occurs with sodium-bearing minerals is in the 
bottom sediments of the present-day lakes in the Trans- 
Volga region (Mikhaylov and others, 1977, p. 1222).

ALUMINOUS PHOSPHATE ROCKS

Many aluminous phosphate rocks result from the 
leaching and alteration of aluminous calcium phosphate. 
Slightly leached zones contain carbonate-fluorapatite, 
Ca10(P04C03)6F2^ (Altschuler and others, 1956, p. 499). 
More thoroughly leached zones contain crandallite 
(CaAl3(P04)2(OH)5 -H20), which replaced apatite or kao- 
linite (Al2Si205(OH)4), and millisite ((Na,K)CaAl6(P04)4 
(OH)9 -3H20), which may have replaced montmorillonite. 
The most completely altered zones are dominated by 
wavellite, A13(P04)2(OH,F)3 -5H20.

UNITED STATES

Aluminous phosphate rock occurs at several localities 
in the Southeastern United States. The principal depos­ 
its are in the land-pebble phosphate district, which is 
centered in Polk and Hillsborough Counties east of 
Tampa Bay, Florida (Cathcart and Houser, 1950). The 
deposits extend northward through the hard-rock dis­ 
trict, Florida (Espenshade and Spencer, 1963), into 
southern Georgia (Sever and others, 1967). They consti­ 
tute the leached upper part of the Bone Valley Forma­ 
tion of Pliocene age. The leached, or aluminum phos­ 
phate, zone has a maximum thickness of about 18 m and 
overlies the calcium phosphate pebbles mined for fertil­ 
izer (Cathcart and others, 1953, p. 77). The leached zone 
is overlain by a blanket of sandy soil 1-6 m thick. The 
amount of overburden stripped annually during mining of

the phosphate pebbles was estimated in 1957 to be 15 
million metric tons (Calver, 1957, p. 52).

The leached zone, discarded by the mining operation, 
contains uranium in addition to phosphate and alumina, 
and the recovery of all three commodities may be an 
attractive possibility. Although much of this rock con­ 
tains only 6-15 percent alumina (table 11), both the 
alumina and phosphate content can be increased by 
removing the quartz, which is coarser grained than the 
phosphatic material (Cathcart, 1963, p. 46). Aluminum 
phosphate coating the quartz grains would be lost unless 
the leached zone material were digested in Na2C03 
before the quartz was removed (National Materials 
Advisory Board, 1970, p. 52). The aluminum phosphate 
minerals usually make up 20-30 percent of the rock in the 
leached zone; of the remainder, 60 percent or more is 
sand-sized quartz grains (Altschuler and others, 1956).

In the early 1950's, these resources were estimated to 
contain 800 million metric tons of aluminum phosphate 
(McKelvey and others, 1953). Probably at least half of 
these aluminum resources have been lost as a result of 
mining the calcium phosphate pebbles since the estimate 
was made.

SENEGAL

The Thies region, Senegal, includes the Pallo deposit, 
14 km north of Thies, the Lam-Lam deposit, 12 km 
north-northeast of Thies, and a small occurrence near 
Popenguine, south-southwest of Thies (Bruckner, 1957, 
p. 248-250). Aluminum phosphate is now mined at Pallo 
by the Societe Senegalaise des Phosphates de Thies 
(SSPT), a company jointly owned by Pechiney and the 
Senegal Government (Mining Annual Review, 1988). The 
deposits contain aluminum phosphate, calcium aluminum 
phosphate, and tricalcium phosphate. Information on the 
relative abundance of the three types is not available. 
Deposits are of middle Eocene to Oligocene age and 
contain the phosphate minerals carbonate-fluorapatite, 
crandallite, millisite, and wavellite (Capdecomme, 1953; 
Flicoteaux and others, 1977). The phosphate in the Thies 
region, like that in Florida, contains uranium (Cap­ 
decomme and Pulou, 1954; Latrilhe, 1959, p. 81). 
Reserves of aluminum phosphate rock in the Pallo 
deposit are estimated to be 100 million metric tons 
(Mining Annual Review, 1988). The Thies region is the 
only place in the world where significant tonnages of 
aluminum phosphate are mined. The Mining Annual 
Review (1988) reported that the 1985 production of 
aluminum phosphate, used for fertilizer, was 355,300 
metric tons.

Aluminous phosphate rocks in the Taiba district, north 
of the Thies region, are reported to consist chiefly of



WORLD NONBAUXITE ALUMINUM RESOURCES EXCLUDING ALUNITE C27

TABLE II. —Chemical analyses (in weight percent) of seven samples from the aluminum phosphate zone in the Bone Valley Formation, Florida
[From Altschuler and others (1956, p. 501). Analyst: F. Cuttitta, U.S. Geological Survey]

Si02 ................
A1203 ...............
Fe203a ..............
MnO ................
MgO ................
CaO ................

NaaO
^0
Ti02 ................
P205 . ...............
LOIb
C02 .................

F.. ..................
Cl...................

Cr203 ...............
V205 ................
ud ..................

Total............

Ho-20
........ 51.48
........ 8.26
........ 2.76
........ .70
........ .01
........ 8.98

........ .23

........ .00

........ .37

........ 19.72

........ 6.76

........ .80

........ 1.15

........ .03

........ .01

........ .01

........ .00

........ .01

........ 101.28

Ho-20A
62.60

5.98
2.86

.53

.01
8.25

.13

.00

.40
13.60
6.09

.24

.52

.02

.01

.01

.00

.03
101.28

Ho-21
40.92
12.48
2.61
2.14

.01
8.00

.12

.00

.63
20.79
11.72

.26

.63

.04

.01

.01

.00

.02
100.39

Ho-22
57.24
14.17
2.17

.16

.01
3.10

.15

.00

.63
12.79
9.96

.05

.59

.01

.01

.01

.00

.01
101.06

Ho-23
69.46
8.16
1.32

.16

.01

.90

.06

.00

.31
11.61
7.91

.02

.51

.03

.01

.01

.00

.01
100.49

Ho-24
68.08
9.40
1.33
.14
.01
.20

.04

.00

.42
11.32
9.18

.02

.70

.02

.01

.01

.00

.01
100.89

Ho-25

51.32
14.91
2.19

.13

.01
1.20

.03

.00

.65
16.35
13.24

.05

.53

.01

.01

.01

.00

.01
100.65

a Fe203 represents total iron, some of which may be present as ferrous iron.
b The figures for loss on ignition (LOI) include adsorbed water (H20~) and exclude C02.
c S03 represents total sulfur; no sulfides were found.
d Uranium is reported as a metal, as its valence state was not determined.

crandallite and to contain 25-32 percent A1203 (Slansky 
and others, 1964).

OTHER COUNTRIES

Aluminous phosphate rocks occur in several countries 
other than the United States and Senegal, which have 
the largest known resources. Deposits of phosphatic 
bauxite on Trauira Island in the delta of the Maracas- 
sume River, Maranhao, Brazil, are reported to contain 10 
million metric tons of rock (Brazil Divisao de Fomento da 
ProduQao Mineral, 1943, p. 26-27) having 31 percent 
A1203 and 30 percent P205 (Paiva and others, 1937, p. 
147). Another deposit, at Pircaua near the coast in 
northeastern Maranhao, is reported to contain 10 million 
metric tons that are 40 percent A1203 (Harrington and 
others, 1966, p. 35). An aluminous phosphate layer is 
present locally between the bauxite and the underlying 
limestone in Jamaica (Eyles, 1958, p. 1367). Deposits of 
aluminous phosphate rock having some economic poten­ 
tial occur in the Los Islands, Guinea, and near Abeokuta, 
Nigeria (Russ, 1924; Arnaud, 1945, p. 85-86). The depos­ 
its in Nigeria contain 25-29.7 percent A1203 and 26.3-33 
percent P205 (Russ, 1924). Aluminous phosphate rocks 
are present in the Saldanha Bay area, South Africa 
(Visser and Schoch, 1973). Aluminous phosphate rock on 
North Daito Island, Japan, which contains 23-30 percent 
A1203 , was investigated as a source of aluminum during 
World War II (Sato and others, 1956, p. 197). Resources 
of aluminous phosphate rock in this area and elsewhere in

Japan are too small to be considered a viable source of 
aluminum in peacetime. Aluminous phosphate rock 
occurs in association with bauxite in Jurassic rocks in the 
northern Urals, U.S.S.R. (Bushinsky and Bogolyubova, 
1960), and crandallite occurs in supergene phosphate 
deposits in the Karatau basin (Zanin and others, 1977).

SAPROLITE

"Saprolite," a term introduced by Becker (1895, p. 
289), means rotten rock. Saprolite is an earthy, decom­ 
posed product of the subaerial chemical weathering of 
any kind of rock in place (Overstreet, 1961, p. 447). 
Textural, structural, planar, and linear features of the 
original rock are preserved in saprolite. The term "sapro- 
lite" has about the same meaning as the British term 
"lithomarge." However, Tardy and Nahon (1985, p. 
869-871) suggested that the name "saprolite" be applied 
to weathered rock containing some of the unweathered 
minerals of the parent rock, whereas lithomarge refers to 
weathered rock in which all the original parent rock 
minerals have been replaced or destroyed.

The principal aluminous minerals in saprolite include 
kaolinite (39.5 percent A1203 , 46.5 percent Si02 , and 14.0 
percent H20), halloysite (34.7 percent A1203 , 40.8 per­ 
cent Si02 , and 24.5 percent H20), and gibbsite (65.4 
percent A1203 , 34.6 percent H20). Generally, saprolite 
that is a potential resource of alumina contains 20-38 
percent A1203 .
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UNITED STATES

Saprolite in the United States occurs in the Piedmont 
region of the Southeastern States, is associated with the 
bauxite deposits of Arkansas, is present in Oklahoma, 
and is developed on basalt in the Northwestern States 
(Oregon, Washington, and Idaho) and Hawaii. Although 
these areas of saprolite contain large amounts of alumina 
resources and although considerable research has been 
devoted to the extraction of alumina from saprolite, 
producing aluminum from saprolite is currently too 
costly.

SOUTHEASTERN UNITED STATES

In the Piedmont region of the Southeastern States, 
saprolite was investigated by major aluminum companies 
in 1957 (Chemical Week, 1957). Piedmont Properties, 
affiliated with Alcoa, obtained an option on 10,000 ha in 
the Spartanburg-Rutherfordton region, North Carolina 
and South Carolina. Palmetto Lands Company acquired 
land for Kaiser Aluminum in the same region. Gibbsite 
Corporation of America, a subsidiary of Colonial Oil and 
Gas Corporation, patented a process for separating 
gibbsite, A1203 -H20, from saprolite for use in aluminum 
production and obtained options on thousands of hectares 
of land in northwestern North Carolina and southwest­ 
ern Virginia (Engineering and Mining Journal, 1970). 
Environmentalists in North Carolina opposed this effort, 
and two newspapers in Winston-Salem won a 1971 
Pulitzer Prize in recognition of their successful efforts to 
prevent strip mining of saprolite in North Carolina 
(Winston-Salem Journal, 1971). After a period of inactiv­ 
ity, the Gibbsite Corporation of America leased 4,047 ha 
of gibbsite-bearing land near Galax, Va., and announced 
plans to construct a plant (American Metal Market, 
1981). The plant was not built, and it is unlikely that one 
will ever be built because of a Final Judgment of Perma­ 
nent Injunction by Consent that was filed in February 
1982 (United States Court, Western District of New 
York, 1982, Civ.-82-0018B(Q).

The saprolite examined by the companies in the 
Spartanburg-Rutherfordton region, North Carolina and 
South Carolina, formed on sillimanite and biotite schists 
and igneous rocks (Overstreet and Griffitts, 1955). Coun- 
cill and Llewellyn (1959) summarized the results of 
chemical analyses of 90 samples of saprolite, mostly from 
a large area in South Carolina south and east of the area 
investigated by the aluminum companies. These samples 
are from saprolite developed on various types of mica 
schist, rocks of the slate belt, granite, pegmatite, silli­ 
manite schist, and hornblende-bearing rocks. The analy­ 
ses indicate 2-16 percent free A1203 in gibbsite, 2-11 
percent Fe203 , and 8-26 percent total A1203.

As part of a reconnaissance investigation, the authors 
collected 12 samples of saprolite in the vicinity of Shelby, 
N.C., and northwest of Gaffhey, S.C. Both areas are in 
the belt investigated by aluminum companies. These 
samples were analyzed by X-ray fluorescence and were 
found to contain 25-36 percent A1203 . Some of these 
samples contained more gibbsite than required to 
account for the small amount of free alumina reported by 
Councill and Llewellyn (1959). In addition to gibbsite, 
the saprolite contains halloysite, altered mica, quartz, 
and iron-bearing minerals. Most of the gibbsite is very 
fine grained and intimately mixed with clay minerals so 
that it is extremely difficult to make a gibbsite concen­ 
trate. The saprolite in the region where these samples 
were collected also contains minor quantities of mona- 
zite, zircon, ilmenite, sillimanite, rutile, and garnet 
(Overstreet and others, 1963). No information is avail­ 
able on the total size of these deposits, but they are 
known to extend irregularly over many tens of square 
kilometers, and if the average thickness is only a few 
meters, they contain many hundreds of millions of metric, 
tons of aluminous rock.

Saprolite occurs on many types of sedimentary, meta- 
morphic, and igneous rocks in the Piedmont from south- 
central Pennsylvania in the north to north-central Ala­ 
bama in the south. Alexander and others (1942) 
recognized gibbsite in soils developed on saprolite 
derived from the following types of bedrock: (1) amphib- 
olite in Hall County, Ga., and Rutherford County, N.C.; 
(2) norite in Mecklenburg and Rowan Counties, N.C.; (3) 
epidote-bearing greenstone schist in Chatham County, 
N.C.; (4) diabase in Fauquier County, Va.; and (5) 
biotite-muscovite schist in Hall County, Ga., and Pickens 
County, S.C. The gibbsite contents in whole-soil samples 
collected from above the five rock types were low, but in 
the clay-sized fraction, the gibbsite content was as high 
as 33 percent.

Other investigations of gibbsite in saprolite and soil in 
the Southeastern United States include those of (1) 
Bryant and Dixon (1964), who studied the soil from the 
Alabama Piedmont area; (2) Clarke (1963), who worked 
on several types of residual materials from the Alabama 
Piedmont; (3) Cady (1951), who described saprolite 
formed from diorite in Rowan County, N.C.; (4) Calvert 
and others (1980), who studied saprolite in a quarry at 
Raleigh, N.C.; (5) Gate and McCracken (1972), who 
found gibbsite in both soil and saprolite of a mica- 
hornblende gneiss and a mica gneiss in Caldwell and 
Rutherford Counties, N.C.; and (6) McCracken and 
others (1971) and Losche and others (1970), who dis­ 
cussed gibbsite in surficial materials in the southern 
Piedmont and Appalachian basin.

Saprolite in Coosa County, Ala., and at Ennice in 
Alleghany County, N.C., was investigated as a possible
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substitute for refractory-grade bauxite (White, 1984). 
Additional investigations of gibbsite in saprolite in east- 
central Alabama were conducted by Beg (1982, 1984). 
Saprolite formed from feldspathic hornblende gneiss in 
three areas in Chambers County, Ala., contains 915,225 
metric tons of gibbsite (Beg, 1984, table 4). The gibbs­ 
ite content in the saprolite ranges from 10.0 to 19.25 
percent.

Extensive titaniferous aluminous saprolite in the 
weathered parts of the Roseland Anorthosite in Nelson 
and Amherst Counties, Va., is a potential important 
source for both alumina and titania (Ti02). Rutile (Ti02) 
and ilmenite (Fe2+Ti03) have been recovered from this 
saprolite. The inferred reserves of saprolite exceed 20 
million metric tons and contain an average of 7 percent 
Ti02 (Fish, 1962, p. 38). No information on the alumina 
content of saprolite in this area has been published, but 
part of the saprolite contains considerable kaolin and, 
therefore, is rich in alumina.

ARKANSAS

The saprolite associated with the bauxite in Arkansas 
has not been adequately investigated, and little is known 
of its extent or quality. However, information presented 
by Gordon and others (1958, p. 255) indicates that 
reserves of kaolin in saprolite are probably large enough 
to supply a large alumina plant. Two samples of kaolin- 
bearing saprolite derived from the nepheline syenite 
underlie the bauxitic clay and contain 37.2-39.6 percent 
A1203 and 42.9-44.0 percent Si02; 13.5-14.4 percent of 
the samples was lost on ignition (Gordon and others, 
1958, table 10, samples 15 and 16).

OKLAHOMA

Large deposits of clay and underlying saprolite occur 
on the anorthosite and other igneous rocks in Kiowa 
County, Okla. Knox (1948, p. 4) described this saprolite 
as having formed by the decomposition of anorthosite 
and gabbro in place. An analysis of a composite sample 
of saprolite from this area (Knox, 1948, p. 17) shows 
21.89 percent A1203 , whereas the clay above the sapro­ 
lite contains 26.34 percent A1203. The low alumina con­ 
tent of these rocks limits their potential as a source of 
aluminum.

NORTHWESTERN UNITED STATES

Deposits of aluminous saprolite and associated ferru­ 
ginous bauxite are on weathered basalt in Oregon and 
Washington. The saprolite underlies the bauxite and 
varies considerably in thickness. According to Alien 
(1952, fig. 2), one drill hole in Oregon showed 34 m of 
basalt saprolite overlain by approximately 14 m of baux­

ite. Valentine and Huntting (1960, p. 16) reported that 
bauxite in Washington is as much as 6 m thick and is 
underlain by 6 m or more of basalt saprolite. According 
to chemical analyses, much of this saprolite contains 
25-30 percent A1203, 25-35 percent Fe203 , and 5-7 
percent Ti02. This saprolite consists chiefly of halloysite 
and iron oxide minerals and contains minor amounts of 
gibbsite, ilmenite, and titaniferous magnetite.

In eastern Washington and northern Idaho, two types 
of aluminous saprolite (called high-alumina clay by some 
researchers) occur—(1) saprolite derived from the 
Columbia River Basalt Group of Miocene age and (2) 
saprolite derived from granodiorite and related intrusive 
rocks of the Idaho batholith of Late Jurassic or Creta­ 
ceous age. The basalt saprolite is composed of white 
halloysite, which is commonly colored blue or gray hy 
ilmenite and which, in places, is stained brown *»y 
limonite or green by nontronite. The granodiorite sapro­ 
lite consists predominantly of kaolinite and quartz (Ho> .- 
terman and others, 1960). Table 12 summarizes the range 
in chemical composition for 41 granodiorite saprolite 
samples and 59 basalt saprolite samples. The thickness of 
the granodiorite saprolite is reported to be at least 30 m 
(Wilson and Goodspeed, 1934, p. 8). According to Scheid 
(1946), there are 11.3 million metric tons of saprolite a 
Spokane County, Wash. Scheid and Sohn (1946) reporte • 
9.8 million metric tons of transported clay and saprolito 
in Latah County, Idaho; 40 percent of this estimated 
resource is saprolite. Several of the saprolite deposits in 
Latah County have been mined for use as a paper filler.

TABLE 12.— Chemical composition ranges of saprolite from Spokane
County, Washington 

[Modified from Hosterman (1969a, tables 1, 3, 19). LOI, loss on ignition]

Granodiorite saprolite 
(41 samples)

Basalt saprolite 
(59 samples)

Si02 .. 
A1203 . 
Fe203 
Ti02 .. 
LOI..

48-73 
15-29 

0.4-12.7 
0.1-2.0 
1.5-11.1

26-70 
14-38 

0.4-24 
0.8-9.7 
7.2-14.6

HAWAII

Large deposits of aluminous saprolite are associated 
with low-grade bauxite on the islands of Kauai and Maui, 
Hawaii. The saprolite occurs below the bauxite as well as 
in many areas where bauxite is absent. This saprolite 
consists chiefly of fine-grained mixtures of halloysite, 
gibbsite, and iron- and titanium-bearing minerals. The 
deposits on Kauai have weathered from olivine basalt 
and feldspathoid-rich rocks; those in eastern Maui are 
from olivine basalt, and those in western Maui are from 
andesite and soda trachytes. The potential resource of 
aluminous saprolite on Kauai is estimated to be 500
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million metric tons (Patterson, 1971, p. 1, 42). This 
saprolite contains approximately 20 percent Si02 , 27 
percent A1203 , 27 percent Fe203 , and 5 percent Ti02 . At 
least 200 million metric tons of gibbsitic and halloysitic 
saprolite in western Maui contain approximately 20 
percent Si02 , 33 percent A1203 , 22 percent Fe203 , and 4 
peieent Ti02 (Patterson, 1971, p. 66). More than 200 
mil-ion metric tons of gibbsitic and halloysitic saprolite in 
eas:ern Maui contain about 15 percent Si02 , 31 percent 
A12 D3 , 27 percent Fe203 , and 6 percent Ti02 (Patterson, 
1971, p. 66).

OTHER COUNTRIES

Very extensive deposits of aluminous saprolite under­ 
lie most major bauxite areas of the world except those 
thai: are associated with limestone. Extensive saprolite 
deposits occur in tropical areas where bauxite is absent 
(Tardy, 1969), and many deposits underlie the wide­ 
spread ferruginous laterites (Sivarajasingham and oth­ 
ers, 1962, p. 24-39). The world's aluminous saprolite 
deposits are probably many times larger than the total 
bauxite deposits. There is no information in the litera­ 
ture to indicate that aluminous saprolite deposits outside 
the United States have been considered as possible 
sources of aluminum.

ALUMINOUS METAMORPHIC ROCKS

aluminous metamorphic rocks contain kyanite and 
related minerals, known as the kyanite- or sillimanite- 
grcap minerals; these high-alumina minerals are used in 
the manufacture of refractory materials and a few other 
products. The three most common members of the group 
are kyanite, sillimanite, and andalusite, all of which have 
the chemical composition Al203-Si02 (63.2 percent A1203 
anc 36.8 percent Si02). Topaz is also a member, and 
dmaortierite is related to this group (table 13) in compo- 
siti 3n and thermal behavior. All five minerals convert to 
mullite (3Al203 -Si02) and free silica, usually cristobalite, 
at about 1,200-1,600 °C (Foster, 1960). Natural mullite is

very rare, but large amounts of synthetic mullite are 
used for refractory purposes and ceramic products.

Kyanite-group minerals occur chiefly in metamorphic 
rocks such as schists and gneisses, but they also occur in 
quartz veins and pegmatites. They are locally abundant 
in placer deposits. Kyanite is the principal mineral of the 
group that is mined.

As described by Espenshade (1973), the kyanite-group 
minerals are very common in many parts of the world in 
aluminous metamorphic rocks that have recrystallized at 
elevated temperatures. Each mineral in this group forms 
at certain distinctive temperature and pressure condi­ 
tions (Bell, 1963). Kyanite forms in schists and gneisses 
at fairly high temperatures and pressures under condi­ 
tions of strong metamorphism. Andalusite forms at lower 
pressures and is common in contact metamorphic zones 
of large intrusions of granite or gabbro. Sillimanite forms 
during both regional and contact metamorphism and 
indicates higher temperatures than does andalusite. 
Topaz and dumortierite, which are much less common 
than the other three minerals, are most abundant in 
quartz-rich rocks such as granite and gneiss and in 
hydrothermally altered volcanic rocks. Metamorphic 
rocks may contain as much as 40 percent kyanite-group 
minerals, but generally the content of these minerals is 
less than 15 percent (Espenshade, 1973, p. 309). Ordi­ 
narily, only one of the kyanite-group minerals is present, 
but two of them do occur together in some deposits, and 
kyanite, andalusite, and sillimanite have been found 
together in a few deposits.

The United States is the world's leading producer of 
kyanite, and kyanite is the only mineral of its group 
being mined on a commercial scale in the country. Brazil 
has the potential to become a major kyanite producer; its 
kyanite reserves are at least 3 million metric tons 
(Potter, 1985, p. 427). India has been a major kyanite 
producer but has restricted exports to conserve limited 
reserves of high-grade residual lumps of kyanite (Potter, 
1985, p. 426, 428). Significant kyanite deposits are also 
present in Australia, Austria, Bulgaria, Canada, Fin-

TABLE 13. — Characteristics of the kyanite-group minerals 
[From Ford (1921, p. 612-617, 637)]

Mineral
Theoretical content1

ALOo Si09
Specific gravity Hardness

*A 03 and SiO2 contents are in weight percent. 2Contains B2O3 and H20. 3Contains F and H20.

Crystal system

Kymite. ...................

Topiz3 .....................

......... 63.2

......... 63.2

......... 63.2

......... 64.5

......... 55.4

......... 72.8

36.8
36.8
36.8
28.5
32.6
27.2

3.56-3.67
3.16-3.20
3.23-3.24
3.26-3.36
3.4-3.6

3.23

5-7.25
7.5
6-7
7
8
6-7

Triclinic.

Orthorhombic.
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land, Kenya, Liberia, Namibia, Norway, South Africa, 
Spain, Sweden, the U.S.S.R., and Zimbabwe.

South Africa is the world's leading producer of 
andalusite, and its reserves of andalusite and sillimanite 
are about 105 million metric tons (Potter, 1985, p. 427). 
Sillimanite deposits are also present in Australia, India, 
and the U.S.S.R. Andalusite deposits are also present in 
France, Spain, and Swaziland.

Nearly all of the kyanite-group minerals that have 
been mined were prepared for use as refractory materi­ 
als, and the iron and steel industry was the principal 
consumer (Radcliffe, 1976). Minor uses of kyanite include 
blown alumina silicate, high-temperature insulation, 
brake linings, foundry mold facings, pyrometer tubes, 
electric porcelain insulators, spark plug insulators, mor­ 
tars, grinding media, and welding rod coating (Potter, 
1980). The extraction of alumina from kyanite-group 
minerals has been investigated by Sweden and the 
U.S.S.R. This research is discussed in the "Alumina 
Extraction Research" section.

UNITED STATES

The kyanite-group minerals occur in almost every 
large area of metamorphic rocks in the United States 
(Espenshade and Potter, 1960; Espenshade, 1961, 1962, 
1973). Members of this group have been found in at least 
30 States, as documented in a bibliography by Gramet- 
baur (1959). Many of the known occurrences of these 
minerals are in deposits that are too small or too impure 
to be classified as resources (Espenshade, 1973). Only 
those deposits containing at least 10 percent kyanite- 
group minerals are of potential value. Total identified 
and hypothetical resources of kyanite-group minerals in 
the United States were estimated by Espenshade (1973, 
table 62) to be a little more than 2 billion metric tons. 
According to Industrial Minerals (1985, p. 50), the iden­ 
tified resources of kyanite in the United States are 30 
million metric tons, which represent 28 percent of the 
world's total.

Most kyanite-group minerals in the United States 
occur in micaceous schist and gneiss, but 95 percent of 
the U.S. production of these minerals has come from 
quartzose deposits, such as quartzite and quartz-rich 
igneous rock, which contain no more than 5 percent of the 
total U.S. resource (Espenshade, 1973, p. 309). Most of 
the domestic production of kyanite has come from large 
quartzose deposits in the Southeastern States. Similar, 
though much smaller, deposits have been mined in the 
Western States. Quartzose deposits in the Western 
States include kyanite in Imperial County, Calif. 
(Wright, 1957), andalusite at White Mountain, Mono 
County, Calif. (Kerr, 1932), and dumortierite and 
andalusite near Oreana, Nev. (Kerr and Jenney, 1935).

The most recently active mines in the Southeast are the 
Wills Mountain and East Ridge mines in Buckingham 
County, Va., which have been operated since 1922 and 
which are the only active U.S. mines today; the Henry 
Knob mine in York County, S.C., which was operated 
from 1948 through 1969; and the Graves Mountain mine 
in Lincoln County, Ga., which was operated from 1963 to 
September 1986 (Potter, 1980, 1988).

Minor kyanite and sillimanite deposits in schists and 
gneisses are widely distributed in the Appalachian region 
from Maine to Alabama. The principal deposits are near 
New Hartford, Conn. (Espenshade, 1973), near Spruce 
Pine, N.C. (Brobst, 1962), in central Maine (Espenshade 
and Boudette, 1967), and in Hart County, Ga. (Teague, 
1950). Kyanite-group minerals are also widely distrib­ 
uted in schists and gneisses in Montana (Groff, 1963), 
Washington (Thorsen, 1966), Oregon (Espenshade, 
1973), the Black Hills, S.D. (Redden and Norton, 1975), 
the Sierra Nevada Mountains, Calif. (Wright, 1957), and 
the east-central Front Range, Colo. (Marsh and Sheri­ 
dan, 1976). The largest known deposits in the Western 
States that are sufficiently large and rich to be consid­ 
ered a major resource are the kyanite-sillimanite depos­ 
its at Woodrat Mountain, Idaho (Hietanen, 1956; Van 
Noy and others, 1970). These deposits contain an esti­ 
mated 5.1 billion metric tons of micaceous gneiss that is 
15 percent kyanite and sillimanite (Van Noy and others, 
1970, table 7).

Minor quantities of kyanite-group minerals occur in 
clastic sedimentary rocks in the Coastal Plains bordering 
the Atlantic Ocean and the Gulf of Mexico. Kyanite and 
sillimanite occur in small amounts in beach sands of 
Florida, Georgia, and New Jersey (Browning and others, 
1956; Espenshade, 1973, p. 310). Potter reported (1985, 
p. 425, 426) that kyanite and sillimanite were recovered 
from Pleistocene beach sands in Florida from 1968 to 
1973, and he estimated (1985, p. 432) that an additional 
10 million metric tons of kyanite and sillimanite could be 
recovered from the Florida beach sands as a coproduct 
with zircon and titanium-bearing minerals.

Small amounts of kyanite-group minerals and other 
heavy minerals are present in Florida in the phosphate 
rock. Stow (1968) estimated that about 200,000 metric 
tons of heavy minerals containing about 16 percent 
kyanite and sillimanite are discarded yearly from the 
Florida phosphate mining operations.

CANADA

The Canadian Department of Mines and Technical 
Surveys described kyanite deposits in Ontario and 
British Columbia (Haw, 1954), and its successor, the 
Canadian Centre for Mineral and Energy Technology 
(CANMET), investigated kyanite deposits as a possible
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alumina resource (Collings and Brown, 1976). The kya- 
nite at Mattawa, Ontario, occurs as disseminated crys­ 
tals in a gneiss, and of two samples analyzed, the higher 
grade was only 14.6 percent kyanite (Haw, 1954, p. 29). 
The kyanite in the Sudbury district, Ontario, occurs as 
coarse blades making up 15-30 percent of a kyanite- 
garnet-biotite-quartz-feldspar gneiss (Haw, 1954). Ac­ 
cording to Industrial Minerals (1985, p. 50), the identified 
resources of kyanite in Canada are 45 million metric tons, 
which represent 42 percent of the world's total.

FINLAND, SWEDEN, AND NORWAY

Metamorphic rocks containing sillimanite, kyanite, 
and andalusite are found at various places in Finland 
(Shaikh, 1977, p. 195; Sotka and Soderholm, 1980). 
According to Industrial Minerals (1985, p. 50), the iden­ 
tified resources of kyanite in Finland are 300,000 metric 
tons. Deposits of kyanite-group minerals were listed by 
Shaikh (1977, p. 195). In 1977, kyanite in a sericite schist 
in t -e Hallavaara area was investigated. Some zones 
contain 16-21 percent kyanite. A deposit at Mantovaara, 
niinsd for use in a cement plant, contains as much as 30 
percent andalusite. Other deposits at Tohmajarvi and 
Hat:rJa contain 10-15 percent andalusite. Deposits con- 
tainrr.g 30 percent sillimanite are at Kursukylla and 
Pahako^roou.

Mar.v sikim.anits, ar.dalusjte. and kyanite deposits 
occur ir, Sweden; the largest is ? kyarsite deposit at 
HaTsjoberget, Varmland (Shaikh, 1977, p. 195), This 
deposit, which consists of kyamte-bearing micaceous 
quartzite, has a known reserve of 22 million metric tons 
and a potential resource of an additional 25 million metric 
tons. T/ie reck averages about 33 percent kyanite. Sim­ 
ilar deposits containing 5-30 percent kyanite also occur in 
Norway (Shaikh, ;?77; p.

INDIA

Kyanite -group minerals are distributed widely in 
India,, and India was formerly among the world's leading 
producers and exporters of kyanite-group minerals (Var- 
ley, 1965). According to a market survey (Indian Bureau
of Mines, 1975;. ir, 1975 India had reserves of 20.2 million 
metric tons of kyanits in quartzose rocks and V3 2 million 
metric tons of sillimanite in teach sa^ds. The Indian 
government now severely restricts ohy export of refrac­ 
tory minerals, and production is now small 'Potter. 1982, 
1985". The principal kyanite districts of Jr.dia are in 
Bihar. a.;y; ! most sillimanite deposits are ;:•:. ~">st Bengal 
and Assa.ni.

Varley \'19S5. p. 69-70) described tbe most important 
kyanite deposits of Sihar. These deposits are in the 
Singhbhv.ri district, wh; cn is about 130 km long. Mica 
schist, is the princi~ca.ii cour'tr"1

kyanite is associated with quartz-kyanite rock or granu- 
lite. The most productive deposits in this district were at 
Lapsa Buru, where the best grade material was found in 
massive boulders. The kyanite is in medium to large 
crystals, many of which are radiating. India's identified 
resources of kyanite are more than 3.8 million metric 
tons (Industrial Minerals, 1985, p. 50).

The principal sillimanite deposits in West Bengal are in 
the Purulia district (Varley, 1965, p. 79; Potter, 1982) 
and consist of heavy-mineral sand deposits having an 
average thickness of about 1.2 m. The sillimanite content 
of the sand is 0.80-1.00 percent, and the sand contains 
similar percentages of ilmenite and monazite and lesser 
amounts of zircon, rutile, and other heavy minerals.

The principal sillimanite deposits in Assam are on the 
Khasi Hills plateau, and these deposits have been the 
source of most of India's production (Varley, 1965, p. 68). 
The typical deposit consists of boulders, weighing as 
much as 100 metric tons each and containing massive 
sillimanite and a little corundum. Some boulders are 
almost wholly corundum, and several have been found 
that are wholly sillimanite. A typical boulder of commer­ 
cial interest from this area averages 61 percent A1203 (58 
percent minimum), averages 1.0 percent Fe203 (1.8 
percent maximum), and has a maximum loss on ignition 
of 2.0 percent.

Sillimanite-bearing beach sand occurs in many places 
and is most abundant in the States of Kerala and Madras 
in southernmost India (Varley, 1965, p. 73-74). It varies 
considerably in composition from place to place but 
generally consists of 75-95 percent heavy minerals. This 
beach sand is estimated to contain 12 million-14 million 
metric tons of sillimanite (Varley, 1965, p. 66).

SOUTH AFRICA

Kyanite-group minerals are widely distributed in 
South Africa, and this country is the world's leading 
producer of andalusite (Potter, 1985, p. 425). South 
Africa's reserves of andalusite and sillimanite are about 
105 million metric tons (Potter, 1985, p. 427). In 
1S65, kyanite had not been found in economic quantities 
.Varley, 1965, p. 96), but in 1985, Industrial Minerals 
(1985, p. 50) estimated the identified kyanite resources to 
oe 12 million metric tons, which had not been mined 
commercially.

Most of the andalusite production comes from 
andalusite-bearing shales and alluvial deposits in the 
Transvaal region (Industrial Minerals, 1985, p. 41). The 
alluvial deposits contain andalusite eroded from shales of 
the Pretoria Group in the contact metamorphic zone 
surrounding the Bushveid Complex (Varley, 1965, p. 97). 
A^olahosite, liberated from the parent rock by weather-
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ing, was transported by flood waters to a more level 
terrain where it was upgraded by strong winds that 
removed the fine-grained, light-weight material. The 
alluvial deposits contain 10-50 percent andalusite with 
53-58 percent alumina, and the shale contains 7-15 
percent andalusite with 52-60 percent alumina (Indus­ 
trial Minerals, 1985, table 2). In 1965, reserves of mate­ 
rial containing at least 50 percent andalusite were con­ 
servatively estimated to be 800,000 metric tons in the 
Marico district, Transvaal (Varley, 1965, p. 97). Accord­ 
ing to a review by Brabers (1974, p. 12-13) of the 
potential aluminum resources of South Africa, some of 
the very large resources of andalusite in the contact 
metamorphic zone surrounding the Bushveld Complex 
are associated with staurolite, which contains about 16 
percent iron oxide that would make alumina extraction 
difficult. Industrial Minerals (1985, table 2) estimated 
that the Transvaal region contains 50.5 million metric 
tons of andalusite reserves and 106.5 million metric tons 
of resources.

Irregular lenticular bodies of corundum-sillimanite 
rocks have been mined in the Namaqualand region in the 
northwestern part of the Cape of Good Hope Province 
(Varley, 1965). The sillimanite reserves of this area were 
estimated by Jager (1963) to be only 126,000 metric tons, 
an amount that would last only a few years at the 1963 
rate of mining. Jager further estimated that the region 
contained 3 million metric tons of low-grade sillimanite 
rock containing 568,000-955,000 metric tons of silliman­ 
ite. Sillimanite production in South Africa has been 
steadily decreasing because the high-grade deposits have 
been depleted (Industrial Minerals, 1985, p. 45).

U.S.S.R.

The largest reserves of kyanite in the U.S.S.R. (and in 
the world) are in the elongated Keiv district in the 
central part of the Kola Peninsula (Kirpal' and Tenyakov, 
1974, p. 320-322). A rich kyanite schist in this district 
ranges from 80 to 150 m in thickness and extends for 140 
km. Three grades of kyanite schist are recognized:
(1) rich ores containing more than 40 percent kyanite,
(2) medium-grade ores containing 30-40 percent kyanite, 
and (3) lean ores containing less than 20 percent kyanite. 

Several deposits of kyanite and sillimanite in Siberia 
have been investigated as possible sources of alumina 
(Galaburda, 1958; Mikhaylov and others, 1977). Silliman­ 
ite deposits near Kyakhta, near the Mongolian border 
south of Lake Baykal, are among the most important 
deposits in the U.S.S.R. (Varley, 1965). Concentrates 
from these deposits are reported to contain 53.44 percent 
A1203 and 39.62 percent Si02 (Varley, 1965, p. 92). 
Kyanite-group minerals also occur in the eastern Sayan 
Mountains west of Lake Baykal, in at least two areas

north of Lake Baykal, and in several areas along the 
southern and western margins of the Aldan Shield in 
eastern Siberia. The identified resources of kyanite in 
the U.S.S.R. are 3.5 million metric tons (Industrial 
Minerals, 1985, p. 50).

Andalusite was formerly recovered as a byproduct of 
corundum mining in the Semiz-Bugu district, central 
Kazakhstan (Varley, 1965, p, 93). The deposits are in 
quartzites. which contain 30-80 percent andalusite and 
12-51 percent pyrophyllite. The highest grade material 
averaged 52 percent A1203, less than 2 percent Fe203, 
and less than 6 percent combined alkalies. These high- 
grade reserves were nearly depleted by 1949. Reserves 
of lower grade material containing 18 or more percent 
andalusite were estimated to be 72 million metric tons 
(Varley, 1965, p. 93).

ZIMBABWE

Large deposits of kyanite are in northeastern Zimba­ 
bwe (Morrison, 1976; Manos 1978). The top 30 m of the 
biotite-kyanite schist at the Ky mine contains an esti­ 
mated 2 million metric tons of kyanite, which averages 61 
percent alumina. The top 6 m of the biotite-garnet- 
kyanite schist at Madecheche contains an estimated 2.7 
million metric tons of kyanite, which contains 58-62 
percent alumina. The garnet could be a coproduct. Kya­ 
nite is also found at Masterpiece and Inyanga North, 
Zimbabwe, but the alumna content and resources are 
not known. Although these areas are remote and rela­ 
tively unexplored, they could sustain a large refractory 
industry and possibly an aluminum industry.

OTHER COUNTRIES

Kyanite-group minerals occur in a great many more 
countries and are far more widely distributed than 
indicated in the foregoing discussion. For additional 
information on these minerals, the reader is referred to 
reports by Klinefelter and Cooper (1961), Varley (1965), 
and Espenshade (1973). The references in these reports 
and the bibliography by Grametbaur (1959) list many 
more reports on the kyanite-group minerals.

Kyanite-group minerals occur in several African coun­ 
tries other than South Africa and Zimbabwe. Andalusite 
in Swaziland (Davies and others, 1964) occurs as thin 
veinlets or small pods in the pyrophyllite zone of a 
diaspore deposit. The andalusite reserves in these rocks 
are estimated to be 240,000 metric tons (Davies and 
others, 1964, p. 9). Liberia has approximately 10 million 
metric tons of measured, indicated, and inferred 
reserves of metamorphic rock containing an estimated 
2.5 million metric tons of kyanite (Stanin and Cooper, 
1968, p. 2; Industrial Minerals, 1985, p. 50).
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Kyanite occurs at many places in Kenya (Temperley, 
1953; Varley, 1965, p. 45) and was mined during the 
1940's and early 1950's. The best grade kyanite deposits 
are those in the Murka-Loosoito belt, a 14-km-long belt 
west of the Coastal Plain. The kyanite occurs in a 
kyanite-quartz schist. The kyanite shipped between June 
1946 and February 1947 contained an average of 61.5 
percent alumina (Varley, 1965, p. 46). The identified 
resources of kyanite in Kenya are 1.2 million metric tons 
(Industrial Minerals, 1985, p. 50).

Kyanite deposits occur at several places in Namibia. 
The highest grade material is in the Windhoek district. 
Other deposits such as those near Rehoboth in the Uisib 
Valley (Varley, 1965, p. 101-103) apparently have little 
or no commercial value. One particularly high grade 
body, about 91 m in diameter and 24 m high, of kyanite 
and corundum in the Windhoek district contained 81.25 
percent alumina. The identified resources of kyanite in 
Namibia are 120,000 metric tons (Industrial Minerals, 
1985, p. 50).

Kyanite occurs in the Provinces of Salzburg, Styria, 
and Tyrol, Austria (Varley, 1965, p. 85). No kyanite has 
been produced, but the identified resources are 4 million 
metric tons (Industrial Minerals, 1985, p. 50).

French production of andalusite is second only to that 
of South Africa (Industrial Minerals, 1985, p. 45), 
although French reserves are much smaller than those of 
South Africa. The French andalusite is produced from 
Ordovician schist at one mine at Glomel, Brittany (Indus­ 
trial Minerals, 1985). The French reserves were 
reported to be 3 million metric tons by Potter (1985, p. 
427) and 4 million-5 million metric tons by Industrial 
Minerals (1985, p. 45).

The andalusite reserves in Spain are not known, but 
thrt country produced 5,500 metric tons of andalusite in 
1983 (Potter, 1985, p. 426, 429). Kyanite production in 
Spain has been about 5,000 metric tons annually for some 
years (Industrial Minerals, 1985, p. 46). Kyanite frag­ 
ments are dredged from alluvial deposits containing as 
much as 20 percent kyanite in La Coruna Province 
(Industrial Minerals, 1985).

Australia has produced sillimanite from New South 
Wales, sillimanite and andalusite from South Australia, 
an', a small amount of kyanite from Western Australia 
(V?,rley, 1965, p. 79-84). No current resource data are 
available for sillimanite and andalusite; the identified 
resources of kyanite in Australia are 3 million metric tons 
(Industrial Minerals, 1985, p. 50). Australia is evaluating 
a large industrial topaz deposit in New South Wales, 
wh ch contains at least 400,000 metric tons of recoverable 
topaz (Potter, 1988, p. 575). According to Industrial 
Mirsrals (1985, p. 61), this topaz deposit is 30 km 
northeast of Emmaville and contains more than 1.2

million metric tons of topaz in 6 million metric tons of 
quartz-rich rock known as silexite.

Kyanite and topaz occur in Brazil principally in the 
States of Minas Gerais and Sao Paulo (Varley, 1965, p. 
123). The identified resources of kyanite in Brazil are 3 
million metric tons (Potter, 1985, p. 427). Industrial 
Minerals (1985, p. 47) reported that a deposit of boulder 
kyanite close to the surface in the State of Goias con­ 
tained measured reserves of 2 million metric tons.

ALUMINOUS SHALE

Shale is a fine-grained sedimentary rock formed by the 
consolidation of clay, silt, or mud; shale has a finely 
stratified structure that results in fissility that is approx­ 
imately parallel to the bedding. Almost all shales contain 
some quartz and other impurities, and many contain 
organic matter. The most common clay mineral in most 
shales is illite, which is also called hydromica or sericite. 
Elite has the same structure as muscovite, which has a 
theoretical composition of 38.5 percent A1203 , 45.2 per­ 
cent Si02, 11.8 percent K20, and 4.5 percent H20. Shale 
may also contain kaolinite (39.5 percent A1203 , 46.5 
percent Si02 , and 14.0 percent H20), smectite (approxi­ 
mately 28.3 percent A1203 , 66.7 percent Si02 , and 5 
percent H20), mixed-layer clay (illite-smectite), or chlo- 
rite (approximately 17.6 percent A1203 , 31.4 percent 
Si02 , 37.6 percent MgO, and 13.4 percent H20). The 
Cambrian and Ordovician alum shale of Scandinavia 
chemically consists mainly of hydrated potassium alumi­ 
num sulfate (Industrial Minerals, 1977) and is, therefore, 
quite different in composition from the typical shale.

The aluminous shale and slate (metamorphosed shale) 
extracted during coal mining and processing are dis­ 
cussed in the following separate section even though they 
are identical to the aluminous shale discussed in this 
section. Although extraction of alumina from aluminous 
shale is not economic at the present time, extraction of 
alumina from coal waste (shale and slate) may become 
economic because the cost of mining has already been 
paid by coal producers.

UNITED STATES

Aluminous shales are widely distributed in the United 
States, but none are exceptionally rich in alumina. A 
thorough search of published and unpublished reports by 
the staff of the U.S. Bureau of Mines revealed only two 
districts having shale rich enough in alumina to be 
considered potential alumina resources (U.S. Bureau of 
Mines, 1967). One district in Missouri was estimated by 
Wheeler (1896) to contain 750 million metric tons of 
Ordovician shale having an average alumina content of 28 
percent. The other district near Wenatchee, Wash.,
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contains shale in the Swauk Formation of Cretaceous and 
Paleocene age; Glover (1941) reported its reserves to be 
between 20 million and 100 million metric tons having an 
average alumina content of 30-35 percent.

Unlimited quantities of shale are present in the Middle 
and Upper Cambrian Conasauga Shale, the Lower and 
Middle Silurian Red Mountain Shale, and the Upper 
Mississippian Floyd Shale in northwestern Georgia and 
northeastern Alabama. Most of these shales contain only 
about 20 percent alumina (Smith, 1931).

Shales of Pennsylvanian age are abundant in the areas 
where coal is produced in the Eastern United States. 
Some shales of Pennsylvanian age contain only 20-23 
percent alumina (Clarke, 1924, p. 552; Patterson and 
Hosterman, 1962, table 8). Although too low grade to be 
an economic source of alumina, the shales of Pennsylva­ 
nian age in the United States amount to many billions of 
metric tons.

The United States also contains very large bodies of 
younger shale. Much of the 125 million metric tons of 
aluminous shale and clay in Kansas is of Cretaceous age 
and contains 20-40 percent alumina (Jewett and others, 
1942, p. 129-131).

Extraction of alumina from the Upper Cretaceous 
Pierre Shale in South Dakota has been considered (Gries, 
1942, p. 63-66; Rothrock, 1944, p. 65-66), and chemical 
engineering students at the South Dakota School of 
Mines and Technology have studied this problem (Miller, 
1959, p. 26). The Pierre Shale, however, is not a potential 
source of aluminum because it contains only 12-18 per­ 
cent alumina (Tourtelot, 1962, table 7).

Shales of Tertiary age occur in the southern and 
western parts of the United States. Glover (1941) listed 
several scattered deposits of Tertiary shale and clay in 
Washington in addition to those in the Wenatchee dis­ 
trict.

CANADA

The Canada Department of Mines and Technical Sur­ 
veys investigated the recovery of alumina from shales in 
Newfoundland, Nova Scotia, and New Brunswick (see 
table 6) (Thomas and Ingraham, 1959; Winer and Quon, 
1979, table 2). Dean (1975) found that these shales are of 
Cambrian, Ordovician, and Pennsylvanian age and that 
most of the shales average 20-24 percent alumina. Upper 
Cretaceous shale that correlates with the Pierre Shale in 
the United States is present in the Canadian Great Plains 
region. This shale has received very little attention as a 
potential source of alumina because its alumina content is 
less than that of the Whitemud Formation in southern 
Saskatchewan; the Whitemud has a large shale resource 
that contains 20-24 percent alumina (Bell and Brady, 
1976; Bell, 1978, 1979).

SPAIN

The Puentes de Garcia Rodriguez Tertiary clay and 
the Carboniferous slate in northwestern Spain were 
investigated by the Empresa Nacional del Aluminio and 
the Escuela Tecnica Superior de Ingenieros de Minas 
(Sancho, Iglesias, and others, 1981; Sancho, Verdeja, 
and others, 1981). The alumina content of the clay is 20 
percent, and that of the slate is 22 percent. The mineral 
composition of these materials is shown (in weight per­ 
cent) in the following table from Sancho, Verdeja, and 
others (1981, p. 84, 91):

Component Puentes de Garcia 
Rodriguez clay

Carboniferous 
slate

Kaolinite .......
Illite...........
Chlorite........
Mixed-layer clay 
Quartz .........
Organic matter.. 
Other..........

Total.

24
31

0
0

28
2

J5

100

11
46

9
6

20
0
8

100

SWEDEN

Sweden has very large resources of Cambrian and 
Ordovician alum shale, a marine black shale, in Vas' er- 
gotland, Ostergotland, Narke, Oland, and Scrnia 
(Shaikh, 1977, p. 192). The sulfur-rich alum shale con­ 
tains oil, vanadium, potassium, uranium, and aluminum 
(Duncan and Swanson, 1965, p. 25; Shaikh, 1977, p. 132). 
During the period 1942 to 1962, about 10 million bar-els 
of oil were produced from the alum shale from Nt "ke 
(Duncan and Swanson, 1965, p. 25). Byproducts of the 
alum shale included substantial amounts of combus' ble 
gas, heat for electric power generation, sulfur, ammc lia, 
lime, and brick clay (Gejrot, 1958).

AB Svensk Alunskifferutveckling was formed by I- oli- 
den AB and Luossavaara-Kirunavaera AB (LKAE in 
1977 to mine alum shale in Sweden (Industrial Minerals, 
1977). Plans were made to mine 6 million metric tor 5 of 
shale annually at Ranstad in Vastergotland; that E ale 
would have contained about 355,000 metric tons of alu­ 
minum (Shaikh, 1977, p. 192). Information on whe.her 
alum shale was ever used as a source of alumina ig not 
available; however, almost all of Sweden's almr—um 
production is from imported bauxite.

The alum shale of Sweden varies in composite In 
places, it is rich in organic matter, and the 2' ina 
content is generally less than 20 percent (Shaikh, ~ , p. 
192). The Swedish National Board of Industry • ?; ID) 
has stated that the quantity of alum shales in Sv7 •= i is 
600 billion metric tons, and additional resov" ' are 
likely to be present in the mountain ridges -~ ° arn 
Sweden and in the Gulf of Bothnia (Mining I ng, 
1977).
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OTHER COUNTRIES

The distribution of aluminous shale and slate through­ 
out the world is poorly known. The alum shales that 
occur in Sweden are also in Denmark and Norway 
(Shaikh, 1977, p. 192). However, there is no information 
available to indicate that these shales were ever investi­ 
gated as a source of alumina. The deposits in Denmark 
are on the island of Bornholm, and those in Norway are 
in the Oslo-Ringerike area and in the Mjosa-Ringsaker 
district. Aluminous slate occurs in Wales and Scotland 
and in Cornwall and the Lake District, England 
(Crocket, 1975). The Japanese recovered alumina dur­ 
ing World War II from shales mined in Manchuria (table 
1); these shales contained boehmite (A1203-H20) and 
diaspore (A1203 -H20) and were, therefore, a type of 
bauxite.

COAL WASTE AND COAL ASH

Coal wastes are the several types of aluminous mate­ 
rials discarded during coal mining and treatment. Over­ 
burden or spoil is the material above the coal removed 
during strip mining. Washing rejects obtained during the 
purification or beneficiation process of washing the coal 
with water are the partings or bands of waste in the coal 
bed. Roof rock or draw slate is the soft shale or slate 
above the coal bed; it is extracted with the coal in some 
underground mines to provide headroom. Carbonaceous 
shale and impure fissile anthracite are called culm in the 
coal industry. Culm is discarded in piles known as banks, 
and if the banks burn by spontaneous combustion, then 
the resulting material is known as red dog.

Draw slate and washing rejects are the coal wastes 
most likely to be used as sources of alumina, and they are 
readily available in refuse stockpiles wherever coal is 
mined. Coal waste is an impure mixture consisting 
principally of fine coal, silicate minerals, including clay 
minerals, and iron minerals such as pyrite and siderite. 
Most of the alumina in coal waste is in the clay minerals 
kaolinite and illite. The alumina content of draw slate is 
reported to range from 15 to 35 percent (Shafer and 
Solomon, 1967); however, draw slates having alumina 
contents at the high end of the range probably are not 
very abundant. The alumina content of washing rejects is 
probably highly variable.

Coal-washing rejects obtained annually contain more 
alumina than the world produces annually. In 1973, the 
annual world production of coal was 2,200 million metric 
tons; washing rejects associated with this production 
were estimated to amount to 600 million-1,200 million 
metric tons that contained 120 million-240 million metric 
tons of alumina (Cohen and Mercier, 1976, p. 6). The 
world production of aluminum in 1976 was about 14

million metric tons per year (Cohen and Mercier, 1976, p. 
3), which was obtained from about 26 million metric tons 
of alumina.

The noncombustible residues of coal are classed under 
the general term "ash." Fly ash is the fine-grained 
material carried out of the combustion chamber by draft 
and deposited in the quiet places of the furnace and flue 
system or discharged with the waste gases. The coarser 
material is usually called ash or bottom ash because most 
of it passes through the grates. Clinker is the fused or 
partly fused form of ash. Slag is formed in some furnaces 
when the bottom ash is dropped into water.

Recovery of aluminum from ash from coal-fired pow- 
erplants has been studied, but such material is less 
attractive than coal waste because high temperature 
affects the alumina solubility. Shafer and Solomon (1967) 
have shown that the extractability of alumina from draw 
slate by use of sulfuric acid (H2S04) increases in material 
heated to 500 °C but drops off markedly in material 
heated higher than 500 °C. This is the approximate 
temperature at which kaolinite and most illites lose their 
crystal structure and begin to form a high-temperature 
phase. Because fly ash and bottom ash or slag form at 
temperatures considerably above 500 °C, the alumina is 
difficult to extract.

UNITED STATES

According to Sorensen and Schaller (1983, p. 2), about 
80 million metric tons of shale are discarded annually 
from coal mines and coal treatment plants in the United 
States, and over the years, about 3 billion metric tons of 
this material have accumulated. The total ash produced 
annually is about 70 million metric tons, and about 500 
million metric tons have accumulated. About 20 percent 
of this ash is bottom ash or slag, and fly ash accounts for 
10-90 percent of the ash produced in the United States 
from coal that yields 3-30 percent ash.

A study of coal waste by Sorensen and Schaller (1983, 
p. 12-13) led to the conclusion that of all coal waste in the 
United States, culm in the Anthracite district in eastern 
Pennsylvania is the most attractive potential source of 
alumina. These authors gave the following reasons for 
this conclusion: (1) anthracite waste materials have accu-, 
mulated in about 800 banks for a total of about 688 million 
m3; (2) these waste materials are unsuitable for construc­ 
tion materials, such as lightweight aggregate; (3) contin­ 
ued storage of the waste material containing coal and 
sulfides and other leachable compounds poses environ­ 
mental pollution and combustion hazards, and the district 
has become more populated than most other coal dis­ 
tricts; (4) the waste material in the Anthracite district 
generally has a higher alumina content than the wastes of 
other coal districts; and (5) most of the waste in the
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TABLE 14.— Typical composition of anthra­ 
cite culm in Pennsylvania

[Data from Apa and others (1982). Heating value 
of ash is 6,745-10,700 kJ/kg]

Constituent Percent by weight

Composition of culm

C .....
H.....
0 .....
N.....
S......
Ash...

................. 21-32

................. 1.4-2.0

................. 3.4-7.0

................. 0.5-1.5

................. 0.4-1.2

................. 57-70
Composition of culm ash

Si02 ...
A1203 ..
Fe^ .
Ti02 . . .
CaO . . .
MgO...
KaO...
Na.,0..
S08 ...
V205 ..
P n

................. 50-57

................. 30-37

................. 3-10

................. 1-2

................. 1-2

................. 0-1

................. 1-3

................. 1-3

................. 0-1

................. 0.2-0.4

................. 0.2-0.4

Anthracite district contains sufficient coal for the calci­ 
nation step in the alumina extraction process.

Apa and others (1982) studied extraction of alumina 
from anthracite culm in the Pennsylvania Anthracite 
district; they estimated that 696 million m3 of culm is 
present in 863 separate banks and contains 30-40 percent 
anthracite. The culm ash contains 50-57 percent Si02 , 
30-37 percent A1203, and 3-10 percent Fe203 (table 14).

Robl and Bland (1977, p. 98) found that shale and clay 
associated with coal in the Appalachian basin of eastern 
Kentucky contain 20.8--37.5 percent alumina. One partic­ 
ularly valuable low-sulfur coal (Hazard No. 4) has a clay 
parting that yields 1 metric ton of waste for every 2 
metric tons of coal produced. Because of the demand for 
low-sulfur coal, large tonnages of Hazard No. 4 coal are 
mined, and large tonnages of waste are made available. 
An ashed sample of this waste contained 35.20 percent 
alumina (Robl and Bland, 1977, table 4).

CANADA

Table 6 shows Winer's (1977) estimates of the alumina 
content of Canadian coal wastes. Winer and Tibbetts 
(1976), of Canada's Centre for Mineral and Energy 
Technology (CANMET), evaluated the coal wastes in 
Canada as potential sources of alumina. They found that 
(1) the coal-mine waste and washing rejects from Alberta 
and British Columbia represent the best potential 
sources of alumina of all Canadian coal waste; (2) the Hat 
Creek district located 193 km northeast of Vancouver, 
British Columbia, is the best potential source of coal- 
associated alumina in Canada both qualitatively and

quantitatively; and (3) in 1976, the amount of coal ash 
generated at any one place in Canada was not sufficient 
to be considered a potential source of alumina. However, 
large tonnages of ash may become available in the future 
when very large coal-fired powerplants are constructed 
in British Columbia and Alberta. Therefore, coal ash may 
become a potential nonbauxite source of alumina.

The British Columbia Hydro Power, Ltd., obtained a 
license to explore part of the Hat Creek coal district. 
This district has coal whose ash contains as much as 32 
percent alumina (Winer, 1977, p. 104; Winer and Tib­ 
betts, 1978). Estimated resources of lignite in the Hat 
Creek district in 1978 were 460 million metric tons of 
proved reserves, 572 million metric tons of indicated 
reserves, and 1,113 million metric tons of inferred 
reserves.

UNITED KINGDOM

Wills and Phillips (1977) reported that colliery spoil 
(coal-mine waste) is a potential source of alumina in the 
United Kingdom. Material available in 1966 included 
about 1.2 billion metric tons of unburned coal-mine waste 
containing 19.4 percent alumina, about 630 million metric 
tons of burning waste (no alumina analysis), and about 
320 million metric tons of burned waste containing 21.2 
percent alumina.

OTHER COUNTRIES

Roasting of shale associated with coal in France yields 
a product having a typical composition of 24.4 percent 
A1203 , 7.8 percent Fe203, 0.65 percent NasO, 4.4 percent 
K20, 1.9 percent MgO, 0.25 percent P205, 0.9 percent 
Ti02 , and 57.9 percent Si02 (Cohen and Mercier, 1976, p. 
8). Fly ash tested in a pilot plant at the Tatabanya coal 
mines in Hungary has the following composition: 29-31 
percent A1203, 41-45 percent Si02 , 9-12 percent Fe203, 
6 percent CaO, 2 percent MgO, 2 percent S, and 1-2 
percent loss on ignition (Gulyas and Vamos, 1976). 
Coal-mine waste from the Ekibastuz coal field in the 
U.S.S.R. contains 22-30 percent A1203 (Sukhanova and 
Ponomarev, 1969).

MISCELLANEOUS SOURCES OF ALUMINA

COPPER LEACH SOLUTIONS

The USBM and the Kennecott Copper Corporation 
investigated the recovery of alumina from circulating 
solutions used to extract copper from waste dumps at 
many of the porphyry copper mining operations. These 
solutions contained 3.0-11.9 g/L alumina and could have 
yielded approximately 500,000 metric tons of alumina 
each year in the United States (Petrick and others, 1973)
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before many of the copper mines were closed. These 
figures are only estimated because of variations in leach­ 
ing rates and concentration of alumina in the solutions. 

George and others (1968) suggested that as much as 
2,000 metric tons of alumina per day could have been 
recovered from copper leach solutions in the 1960's when 
14 copper mines were active in the United States. 
Because many copper mines closed during the last three 
decades, copper leach solutions are not likely to provide 
significant amounts of alumina. Furthermore, the 
National Materials Advisory Board (1970, p. 60) con­ 
cluded that, although extracting alumina from copper 
leach solutions may prove economic, this raw material is 
not a potentially large source of alumina.

GIBBSITIC SOILS

Gibbsitic soils are present in scattered deposits on the 
U.S. Atlantic Coastal Plain and occur in a broad belt on 
the U.S. Gulf of Mexico Coastal Plain; the belt extends 
550 km from southern Mississippi to west-central Geor­ 
gia (Clarke, 1971; White, 1984). Gibbsite (A1203 -3H20) is 
most abundant in the clay- and silt-sized fractions of the 
B and C soil horizons. The clay and silt fractions made up 
15-52 percent of the 10 samples examined by Clarke 
(1971, table 1), and the gibbsite content of the clay and 
silt fractions ranged from 15 to 45 percent. Other miner­ 
als in the clay and silt fractions were kaolinite, quartz, 
hematite, vermiculite, and illite. Alumina contents of the 
clay and silt fractions ranged from 28 to 43 percent. Over 
much of the two coastal plains, the gibbsite content in 
soils and saprolite is low to negligible; therefore, gibbs- 
itic soils are not likely to become an important resource 
of alumina.

ZUNYITE
Zunyite, Al13Si502o(OH,F)18Cl, has an Al:Si ratio of 

13:5. The regional distribution of zunyite in the United 
States is similar to that of high-fluorine silicic volcanic 
rocks, and zunyite is commonly associated with alunite 
(Hall, 1978; Coats and others, 1979). It was originally 
described from the Zuni mine near Silverton, Colo. 
(Hillebrand, 1885).

One major occurrence of zunyite in the United States 
is in the south half of sec. 3, T. 40 N., R. 47 E., Elko 
County, Nev. It occurs in an outcrop approximately 365 
m long and 3-18 m wide (Coats and others, 1979). The 
depth is not known, and no reserve estimates are avail­ 
able. The chemical analyses of two samples averaged 
26.6 percent Si02 , 58.2 percent A1203 , 9.6 percent H20, 
2.5 percent Cl, and 5.3 percent F.

Coats and others (1979) reported that zunyite has been 
found in the United States at Butte, Mont.; in the Red 
Mountain district, Ouray County, Colo.; in the Bonanza

district, Saguache County, Colo.; in the Tintic district, 
Utah; and in porphyry copper deposits, Puerto Rico. 
They also mentioned reports of zunyite from Ishidoriya 
district, Japan; Cerro de Pasco, Peru; Azrou-Melloul, 
Morocco; Beni-Embarek, Algeria; near Postmasburg, 
South Africa; and the U.S.S.R., where zunyite occurs in 
the Kabansk deposit of massive pyrite in the Ural 
Mountains and is associated with alunite in many locali­ 
ties. Worldwide, zunyite is a rare mineral, but local 
concentrations may one day be a source of aluminum and 
fluorine.

ALUMINA EXTRACTION RESEARCH

RESEARCH BEFORE WORLD WAR II

Probably the first preparation of aluminum from non- 
bauxite material was in Denmark in 1825 by H.C. 
Oersted, who produced aluminum by heating potassium 
amalgam with aluminum chloride and distilling the mer­ 
cury from the resulting aluminum amalgam (Edwards 
and others, 1930, p. 2). Oersted called the aluminum 
"metal of clay," but the source and type of raw material 
are unknown, and so we are not certain that he used clay. 
Oersted's process was never used commercially. After 
the Bayer process for obtaining alumina from low-silica 
bauxite was developed in the late 1800's, all aluminum 
was made by the reduction of alumina by the Hall- 
Heroult electrolytic method.

The following brief history on the production of alu­ 
mina from nonbauxite material is from information pub­ 
lished by Edwards and others (1930, p. 155-235). R.A. 
Tilghman received U.S. patent 5,383 in 1847 for a 
process to recover alumina from aluminum phosphate. In 
1858, Le Chatelier applied for British patent 413 for a 
process using hydrofluosilic acid, made by passing steam 
over a heated mixture of fluorspar and silica, to recover 
soluble aluminum fluosilicate from clay. A process for the 
recovery of alkali aluminate from blast furnace slag was 
proposed in 1862. In 1871, J. Townsend applied for 
British patent 995 for a process to recover alumina from 
natural aluminum phosphates.

Between 1890 and 1910, only a few processes for the 
extraction of alumina from nonbauxite materials were 
proposed, but between 1910 and 1930, many processes 
were patented, including the following: (1) hydrochloric 
acid processes for recovering alumina from leucite 
(Italy), clay (United States), and calcined clay (England); 
(2) nitric acid processes for recovering alumina from 
leucite in Italy, England, and the United States and from 
labradorite in Norway; (3) a hydrofluoric acid process for 
treating clay or kaolin in the United States and feldspar 
in the United States and England; (4) a sulfuric acid
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process for recovering alumina from alunite in the United 
States; (5) the treatment of pulverized clay with sodium 
hydroxide under pressure in the United States (Bayer 
process); (6) the treatment of aluminum silicates such as 
leucite with concentrated sodium hydroxide and lime 
after part of the silica was removed with alkali hydroxide 
in France; (7) the digestion of feldspar with alkali car­ 
bonate under pressure to dissolve silica and leave alu­ 
mina and iron oxide in the United States; (8) the diges­ 
tion of clay with strong sodium hydroxide under 
pressure, then the separation of alumina and silica by 
fractional precipitation in the United States; (9) the 
treatment of alunite with barium hydroxide solution 
under pressure in the United States; (10) the digestion of 
aluminous iron ores by sodium hydroxide in the United 
States; (11) the roasting of cryolite and caustic lime and 
leaching in water in the United States; (12) the digestion 
of cryolite with calcium carbonate and alkali carbonate in 
Germany; (13) the digestion of natural aluminum phos­ 
phates with sodium or potassium hydroxide in Germany; 
(14) the treatment of aluminum chloride with alkali 
chloride in Japan; (15) the treatment of calcium aluminum 
phosphate with caustic soda solution and sodium silicate 
to combine with alumina in England; and (16) the leach­ 
ing of a mixture of aluminum and calcium phosphate to 
form calcium aluminate and volatile phosphorus pentox- 
ide in the United States. The foregoing is by no means a 
complete list of all the proposed processes for extracting 
alumina from nonbauxite material, and in addition, there 
are many patented modifications to both the alkali and 
acid digestion processes.

U.S. RESEARCH DURING WORLD WAR II

During World War II (1941-45), the United States had 
its bauxite imports from Suriname and Guyana seriously 
reduced by submarine warfare. As a consequence, the 
U.S. Government formed the Defense Plant Corporation 
and authorized the construction of four experimental 
plants at Laramie, Wyo., Harleyville, S.C., Salt Lake 
City, Utah, and Salem, Oreg. A fifth plant, at Oak 
Ridge, Tenn., was operated by the Tennessee Valley 
Authority (TVA) under the authorization of the War 
Production Board and under the direction of the Metal­ 
lurgy Committee of the National Academy of Sciences. 
Also during World War II, the U.S. Bureau of Mines 
(USBM) developed a lime-soda sinter process for 
extracting alumina from low-grade materials. The mate­ 
rials studied included Wyoming anorthosite (Brown and 
others, 1947), South Carolina kaolin (Cservenyak, 1947), 
and nodular diaspore clay from Clearfield County, Pa. 
(Conley and others, 1947).

The plant 5 km south of Laramie, Wyo., was designed 
to recover alumina from anorthosite by an alkali-sinter

process (St. Clair and others, 1959; Kirby and Barclay, 
1981, p. 5-6). This plant was not finished when the 
program was terminated in 1945. It sat idle until the 
U.S. Bureau of Mines reconditioned it and operated it 
from 1952 to 1954. The plant was designed for the USBM 
by the Dorr Company in cooperation with Monolith 
Portland Midwest Company. The process tested (St. 
Clair and others, 1959, p. 13-14) consisted of the follow­ 
ing steps: (1) preparing a slurry of anorthosite, lime­ 
stone, and soda by grinding to minus-200 mesh;
(2) drying and sintering the slurry at about 1290 °C;
(3) grinding the dried material with a soda solution and 
removing the resulting sodium aluminate solution;
(4) desilicating the sodium aluminate solution by pump­ 
ing it under pressure through preheaters at 100 °C, 
adding lime, and autoclaving at 160 °C; (5) carbonating 
the desilicated solution to precipitate alumina hydrate; 
and (6) purifying the alumina hydrate in a hydrosepara- 
tor and calcining it at 1232 °C to recover alumina.

The plant at Harleyville, S.C., tested the extraction of 
alumina from South Carolina kaolin by the lime-sinter 
method (Archibald and Jackson, 1944; Archibald and 
Nicholson, 1949). The plant was built and operated for 
the Defense Plant Corporation by Ancor Corporation, 
which had been formed by Paraminas, Inc., and Ameri­ 
can Nepheline Corporation. Kaolin was sintered with 
limestone in a rotary kiln at 1315 °C. The resulting 
material was ground and leached for 20 minutes at 70 °C 
with a solution having a 2:1 mole ratio of Na20 to A1203 
and a concentration equivalent to 85 g A1203 per liter of 
solution. Desilication was increased by adding a colloidal 
agent to serve as collectors or crystal growth centers. 
This lime-sinter method required more than 2 metric 
tons of limestone to process 1 metric ton of kaolin.

The plant at Salt Lake City, Utah, was designed to 
produce 100 metric tons of alumina a day from alunite 
from the Marysville district, Utah (Fleischer, 1944; Hall, 
1978, p. A10). The plant used the Kalunite process 
developed by Kalunite, Inc. The process involved the 
treatment of alunite with sulfuric acid and the production 
of potassium alum. By heat treatment under pressure, 
the potassium alum was converted to a water-insoluble 
compound, a basic alum precipitate, and sulfuric acid and 
potassium sulfate were regenerated. The basic alum 
precipitate was calcined to produce a mixture of potas­ 
sium sulfate and alumina, which was separated by auto­ 
clave treatment. The Kalunite process was also tested on 
clays.

The plant at Salem, Oreg., tested the ammonium 
sulfate process on kaolin from the Western United States 
(Seyfried, 1949). In the process, which was designed by 
the Chemical Construction Corporation, the roasted clay 
was leached with molten ammonium bisulfate and water 
to form a slurry. During controlled cooling, nearly all of
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the alumina crystallized in the form of ammonium alum. 
Alumina was then recovered by a method similar to the 
one used by the Kalunite process described above.

The testing done by the Tennessee Valley Authority at 
Oak Ridge, Tenn. (Copson and others, 1944a, b; Hignett, 
1947), was on the extraction of alumina from clay by the 
lime-sinter modification of the Pedersen (1927) process. 
It involved the following steps: (1) heating a mixture of 
clay and limestone to form a sinter containing calcium 
aluminate and dicalcium silicate; (2) leaching of the sinter 
with a sodium carbonate solution to form a sodium 
aluminate solution and a residue of calcium carbonate and 
calcium silicate; (3) treating the sodium aluminate solu­ 
tion with carbon dioxide to precipitate aluminum trihy- 
drate and regenerate sodium carbonate, which was recy­ 
cled; and (4) calcining the aluminum trihydrate to 
produce alumina. The TVA investigated the geology and 
resources of the western Tennessee high-alumina clay 
deposits (Gildersleeve and Whitlatch, 1944) as a possible 
raw material for the extraction process described above.

INVESTIGATIONS BY U.S. GOVERNMENT AGENCIES AFTER 
WORLD WAR II

In 1970, the National Materials Advisory Board, which 
was part of the National Research Council, published a 
report reviewing the most promising processes for 
obtaining alumina from nonbauxite sources in the United 
States. The most promising method appeared to be an 
acid process for the treatment of kaolin. The report 
recommended that the U.S. Bureau of Mines, with help 
from the aluminum industry, build and operate pilot 
plants to test the hydrochloric acid and nitric acid 
processes for extracting alumina from kaolin.

U.S. BUREAU OF MINES 

MINIPLANT STUDIES

After World War II, the U.S. Bureau of Mines contin­ 
ued to investigate many processes for extracting alumina 
from nonbauxite material, including the alkali-sinter 
process to obtain alumina from anorthosite near 
Laramie, Wyo. (see the section above, "U.S. Research 
During World War II"), and the lime-soda sinter process 
to obtain alumina from anorthosite in the San Gabriel 
Mountains, Calif. (Lundquist, 1963). Following the rec­ 
ommendation of the National Materials Advisory Board 
(1970), the USBM attempted to begin miniplant studies 
in July 1971 to reexamine the technology for recovering 
alumina from domestic nonbauxite sources, but lack of 
funds and insufficient industry interest caused negotia­ 
tions to fail (Kirby and Barclay, 1981, p. 3). The USBM 
began the miniplant program in July 1973 a few months

before the Organization of Petroleum Exporting Coun­ 
tries (OPEC) imposed an oil embargo on the United 
States. Fears that bauxite-producing countries would 
impose a similar embargo encouraged companies to 
respond to another invitation in January 1974 to partic­ 
ipate in the miniplant program. Participants in the 
program between 1974 and its conclusion in 1982 were 
listed by Barclay (1984, p. 166) as (1) Alcan Interna­ 
tional, Ltd.; (2) Aluminum Company of America; (3) 
Anaconda Aluminum Company; (4) Amax Aluminum 
Company, Inc.; (5) Billiton International Metals; (6) 
Combustion Engineering, Inc.; (7) Consolidated Alumi­ 
num Corporation; (8) Kaiser Aluminum and Chemical 
Corporation; (9) Martin Marietta Aluminum, Inc.; (10) 
Reynolds Metals Company; and (11) Vereinigte 
Aluminium-Werke A.-G. Six miniplants were to be con­ 
structed at Boulder City, Nev., but only two were 
actually built and operated (Barclay, 1984). The term 
"miniplant" was chosen to indicate a testing scale beyond 
the usual laboratory facilities but not as large as a pilot 
plant.

The objectives of the miniplant tests were to select the 
most favorable processes and raw materials, on the basis 
of relative costs and technical factors, and to make a 
preliminary design for a pilot plant to use the best 
process to treat 10-50 metric tons of ore per day (Beng- 
ston and others, 1978a, b, 1979, 1981; Nunn and others, 
1979). The following six processes were chosen for study 
because they were believed to be the most promising: 
(1) nitric acid leaching of clay; (2) hydrochloric acid 
leaching of clay followed by evaporative crystallization of 
aluminum chloride hexahydrate; (3) hydrochloric acid 
leaching of clay followed by hydrochloric acid gas sparg­ 
ing crystallization of aluminum chloride hexahydrate; 
(4) sulfurous acid leaching of clay; (5) sintering anortho­ 
site with limestone and leaching the dried material with 
a caustic solution; and (6) reducing alunite by roasting 
followed by caustic leaching.

Process 1, Nitric acid leaching of clay.—The nitric 
acid leaching of calcined clay was tested in the first 
miniplant (Olsen and others, 1983b; Barclay, 1984, p. 
167-168). This process was selected because of the 
recommendation of the National Materials Advisory 
Board (1970) and because of the widespread interest in it. 
Between 1965 and 1975, 14 U.S. patents were issued for 
the recovery of alumina from clay by the nitric acid 
process. Five of these patents were assigned to Arthur 
D. Little, Inc. (George and Stone, 1965; Beutner and 
Huska, 1971; Flood, 1971; Hyde and Margolin, 1971; 
Huska and others, 1972), four to Allied Chemical Corpo­ 
ration (Amano and Taylor, 1968; Gerry and others, 1968; 
Kelly and Yodis, 1968; Yodis and Schnoor, 1968), and five 
to Reynolds Metals Company (Brown and Hrishikesan, 
1966; Kelly and Bruen, 1971; Wise, 1971; Royce and
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Drown, 1974; Bruen and Kelly, 1975). The investigations 
of the nitric acid process by the USBM were described by 
Bengston and others (1978a, b), Sorensen (1982), and 
Olsen and others (1983b). With additional work, the 
USBM found that the consumption of nitric acid was 
excessive (White, Henry, and Traut, 1982; Turner and 
Rogers, 1983). Bengston and others (1978a, b) also found 
that the capital, operating, and energy costs for the nitric 
acid process were significantly higher than those for the 
two processes using hydrochloric acid. Technical 
research on the nitric acid leaching of clay has been 
outlined by the following: Eisele and others (1982), 
Sorensen (1982), White, Henry, and Traut (1982), Olsen 
and others (1983b), and Turner and Rogers (1983).

Process 2, Hydrochloric acid leaching of clay followed 
by evaporative crystallization of aluminum chloride 
hexahydrate.—The recovery of alumina from calcined 
clay by hydrochloric acid leaching followed by evapora­ 
tive crystallization of aluminum chloride hexahydrate 
was initially selected for the second miniplant because 
considerable research had already been done on it by 
industry and by the USBM. A pilot plant designed 
to extract alumina from clay by the hydrochloric acid 
process was operated by Chemische Fabrik Griesheim- 
Elektron in Germany from 1924 to 1928 (Belsky and 
others, 1981, p. 102). However, this process was not 
tested in a miniplant because hydrochloric acid leach­ 
ing followed by gas sparging crystallization was more 
efficient.

Process 3, Hydrochloric acid leaching of clay followed 
by hydrochloric acid gas sparging crystallization of 
aluminum chloride hexahydrate. —The second miniplant 
was built to test the hydrochloric acid leaching of calcined 
clay followed by hydrochloric acid gas sparging crystal­ 
lization of aluminum chloride hexahydrate. This process 
has the greatest potential of the six studied to be 
commercially useful. Barclay (1984, p 171-172) cited 25 
reports on the process, including USBM reports by the 
following authors: Good and others (1966), Singleton and 
others (1968), Eisele and others (1976, 1983), Eisele 
(1980), Sorensen and others (1981, 1983), Doerr (1982), 
Maysilles and others (1982), Olsen and others (1982, 
1983a, c), Turner and others (1982), Miller and others
(1983), Sawyer and others (1983), Hunter and others
(1984), and Sorensen and Sawyer (1984). Additional 
research on the recovery of alumina from clay by the 
hydrochloric acid leach process was reported in the 
following references: Brown and others (1979), Gokcen 
(1980, 1983), Covino and others (1981), Shanks and 
others (1981), Schaller and others (1982), White, Henry, 
and Krogh (1982), Ko and others (1983), Rao and Solei- 
man (1983), Bauer and others (1984), and Bremner and 
others (1984).

Process 4, Sulfurous acid leaching of clay.—The 
USBM considered making miniplant tests of a sulfurous 
acid process applied to calcined clay but decided not to do 
so (Barrett and others, 1973; Barclay, 1984, p. 175-177). 
The process had been used on a semicommercial scale in 
Germany in 1938 (Anderson, 1940, p. 275) and during 
World War II, and patents were obtained in the 1930's 
and 1940's, as listed by Peters and others (1962, p. 21) 
and Raddatz and others (1981, p. 15). The decision not to 
build a miniplant to test the sulfurous acid process was 
based on a USBM laboratory study (Raddatz and others, 
1981) and on cost evaluations (Kramer, 1983; Kramer and 
Peters, 1983) indicating that this process has high energy 
consumption, excessive capital and operating costs, and 
long leaching time. The process has only a 67 percent 
recovery of aluminum from clay, and the final product 
has contents of K20, Cr303, P205, and Si02 higher than 
those specified for cell-grade alumina (alumina to be 
supplied to a cell for electrolytic production of aluminum 
metal).

Process 5, Sintering anorthosite with limestone and 
leaching the dried material with a caustic solution.— 
USBM research on the extraction of alumina from anor­ 
thosite by the lime-sinter caustic leaching process was 
described by Hayashi (1982) and Edlund (1982). Mini- 
plant support studies, not complete tests, were made of 
the process (Ampian, 1967; Hayashi, 1982; Barclay, 1984, 
p. 179-185). The objective of these studies was to resolve 
the problems that plagued the pilot plant operated by the 
USBM at Laramie, Wyo., shortly after World War II 
(St. Clair and others, 1959). Research on this problem 
(Edlund, 1982) was encouraging, but a miniplant was not 
built and operated because the Kaiser contract studies 
(Bengston and others, 1978a) showed this process to be 
as much as twice as costly as the two processes using 
hydrochloric acid to leach clay.

Process 6, Reducing alunite by roasting followed by 
caustic leaching.—The USBM had planned miniplant 
tests of the roasting of alunite followed by caustic 
leaching. When Alumet announced plans for a pilot plant 
to test this technology (see the Alumet section below), 
the USBM avoided duplicating Alumet's work (Kirby 
and Barclay, 1981, p. 7). However, the USBM did 
research on the reduction roast step in which fine alunite 
ore was pelletized and roasted (Riley and others, 1983).

OTHER STUDIES

In addition to the six processes considered for 
miniplant tests, other processes have been studied by the 
USBM. Descriptions of USBM research on dawsonite 
are included in a separate section titled, "Investigations 
of U.S. Dawsonite." Work on the recovery of alumina 
from coal ash was done by Eisele and Bauer (1979),
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Gabler and Stoll (1983), and Sorensen and Schaller 
(1983). Apa and others (1982) studied extraction of 
alumina from anthracite culm in Pennsylvania. The culm 
ash content is given in table 14. After the ash was burned 
in a fluid-bed calciner and leached with sulfuric acid, 
about 80 percent of the alumina in the bed ash and 90 
percent of the alumina in the cyclone fines were leached. 
The leaching efficiency was greatly reduced in culm that 
had been heated sufficiently to form mullite.

Dilute sulfuric acid has been used to leach copper from 
mine dumps and low-grade copper ores. This acid also 
removes aluminum and other metallic ions from the 
material (National Materials Advisory Board, 1970, p. 
57-60). The USBM investigated the possibility of recov­ 
ering the alumina from the acid-sulfate solution (George 
and others, 1968; Petrick and others, 1973). Additional 
research by the USBM on extracting alumina from 
copper leach solutions is described by Iverson and Leitch 
(1968) and May and Seidel (1976). However, no U.S. 
commercial extraction of alumina from copper leach 
solutions is known.

Sawyer and Turner (1985) developed a method of 
pressure leaching raw kaolin. Pressure leaching of kaolin 
has a potential for bypassing the calcining step that had 
been required in earlier investigations.

The USBM did some research on the recovery of 
alumina from aluminum chloride obtained by carbochlo- 
rination of high-alumina clay—that is, chlorination of clay 
in the presence of carbon or carbon monoxide (Good and 
others, 1966; Singleton and others, 1968; Kirby and 
others, 1970). Research on this process was summarized 
by Landsberg (1975, 1977, 1983) and Landsberg and 
Wilson (1984). Mah (1982) compiled the thermodynamic 
data for chlorination reactions, and Gokcen (1983) eval­ 
uated rates of chlorination of aluminous materials.

Alumina extraction from unsintered anorthosite by 
leaching with hydrochloric acid and fluoride was 
described by Bremner and others (1982) and Eisele and 
Bauer (1983). Leaching was followed by hydrochloric 
acid gas sparging. This process would save energy by 
avoiding sintering of anorthosite. However, the energy 
saved would be needed to recover chloride and fluoride 
ions for recycling. Recycling the chloride and fluoride 
would consume more energy than recycling chloride 
after process 3 described above.

U.S. DEPARTMENT OF ENERGY

In 1977, the U.S. Department of Energy (DOE) suc­ 
ceeded the U.S. Energy Research and Development 
Administration (ERDA), which had been formed in 1973. 
Both agencies have conducted and sponsored investiga­ 
tions related to the recovery of alumina from nonbauxite 
materials. Included are studies of dawsonite in oil shale

by the Energy Technology Center, Laramie, Wyo., 
which are described in the section titled "Investigations 
of U.S. Dawsonite." Also included are studies of fly ash 
and other coal wastes by the Oak Ridge National Labo­ 
ratory, Oak Ridge, Tenn. (DeCarlo and others, 1978; 
Egan and others, 1980; Kelmers and others, 1981; Seeley 
and others, 1981). DOE and ERDA sponsored bibliogra­ 
phies on dawsonite-bearing oil shale (U.S. Energy 
Research and Development Administration, 1977; Farris 
and Leland, 1978; Farris and Mains, 1978; George and 
Jackson, 1984) and on the recovery of alumina from coal 
wastes (Burnet and others, 1983, 1984).

ERDA shared with the Aluminum Company of Amer­ 
ica a $5 million contract to investigate the technical 
feasibility of the carbothermic reduction of alumina-silica 
ores (Energy Research Digest, 1977; Russell, 1981, p. 
207). The direct-reduction process was designed to pro­ 
duce an aluminum-silicon alloy, ferrosilicon, and carbon 
monoxide. This process has serious problems, and, 
before it can be used commercially, appropriate refining 
technology must be developed.

ERDA and DOE financed research at the Ames Lab­ 
oratory, Energy and Minerals Resources Research Insti­ 
tute, Iowa State University, on the extraction of alumina 
from coal ash that resulted in several reports (Cavin, 
1974; Chou, 1976; Chou and others, 1976; Murtha and 
Burnet, 1976, 1978, 1979; Burnet, 1977; Burnet and 
others, 1977, 1983, 1984; Wijatno, 1977) described in the 
section titled "Investigations by U.S. Colleges and 
Universities."

U.S. ENVIRONMENTAL PROTECTION AGENCY

The U.S. Environmental Protection Agency (EPA) 
supported research on the recovery of alumina from fly 
ash by the sodium hydroxide-sodium carbonate leaching 
method. The research supported by this program 
included work by Ray and Parker (1977), who studied fly 
ash from coal-fired powerplants, and Lawrence and 
Coalgate (1973), who evaluated the recovery of alumina 
from fly ash.

U.S. ATOMIC ENERGY COMMISSION

In the 1950's, the search for uranium resources led to 
considerable interest in aluminum phosphate, which 
commonly contains a trace amount of uranium. The 
objective of much of this work was to find methods of 
recovering uranium, alumina, and phosphate as coprod- 
ucts (Mining World, 1953). The U.S. Atomic Energy 
Commission (AEC) investigated the uranium and alumi­ 
num content of the leached zone overlying the phosphate 
deposits in Florida (Mining World, 1953). Phosphate, 
uranium oxide, and alumina were successfully recovered 
in a pilot plant set up by the AEC in cooperation with the
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International Minerals and Chemical Corporation (Min­ 
ing World, 1953; Bugger and others, 1955). Work by the 
AEC resulted in four U.S. patents for extracting alumina 
from aluminous phosphate rock (Piros, 1956; McCul- 
lough, 1959; McCullough and Adams, 1959; Oberg and Le 
Baron, 1959). The discovery of roll uranium deposits 
(Shawe, 1956) diminished the interest in recovering 
uranium and alumina from U.S. phosphate deposits.

U.S. NATIONAL BUREAU OF STANDARDS

The U.S. National Bureau of Standards (NBS) con­ 
ducted research, including bench tests and the operation 
of a small pilot plant, on extracting alumina from Georgia 
kaolin by a lime-sinter process (Flint and others, 1946). 
The sinter was prepared by annealing a fired mixture of 
kaolin and limestone. Alumina was extracted with a 
solution containing about 200 g of Na2C03 and 150 g of 
NaCl per liter. The extracted solution contained 70-80 g 
of A1203 and 1-2 g of Si02 per liter. After the extract was 
boiled with a charge of synthetic sodalite, the silica 
content was reduced to 0.1 percent or less of the alumina 
content. Alumina was precipitated by passing carbon 
dioxide into the desilicated solution. The NBS also 
conducted pilot-plant investigations on the recovery of 
alumina from clay by the hydrochloric acid leach process 
(Hoffman and others, 1946).

TENNESSEE VALLEY AUTHORITY

The Tennessee Valley Authority (TVA) operated an 
experimental plant to extract alumina from clay and 
evaluated western Tennessee resources of high-alumina 
clay as described above in the section titled "U.S. 
Research During World War II." The TVA also investi­ 
gated the extraction of alumina from aluminous phos­ 
phate rock (Hignett and others, 1957).

INVESTIGATIONS BY COMPANIES

ALUMINUM COMPANY OF AMERICA

The Aluminum Company of America (Alcoa) has had a 
long history of research on the nonbauxite sources of 
alumina, which has been discussed by Edwards and 
others (1930). In 1942, Alcoa was the first company to 
use its combination process on Arkansas bauxite; it 
involved the extraction of alumina from high-silica baux­ 
ite and kaolin after the alumina had been extracted from 
the gibbsite fraction of the ore. The combination process 
consisted of sintering and leaching the high-silica red 
mud discarded from the Bayer process (Edwards, 1949). 
The red mud was sintered with limestone and soda ash. 
The sinter was leached with a caustic soda solution,

which dissolved most of the alumina but only a very small 
proportion of the silica. The leach solution was included 
with the next cycle of bauxite in the Bayer process. The 
combination process made possible the economic extrac­ 
tion of 85-90 percent of the alumina from the high-silica 
bauxites in Arkansas.

Much research has been done on obtaining aluminum 
chloride directly from nonbauxite materials for reduction 
to aluminum (Landsberg, 1983). Alcoa and the Atlantic 
Richfield Company (Arco) agreed in 1983 to develop a 
method for making aluminum chloride from kaolin (Alu­ 
minum Company of America, 1984). The two companies 
jointly operated a pilot plant at Arco's research and 
development facility in Tucson, Ariz.

Alcoa's other activities related to obtaining alumina 
from nonbauxite sources included purchase of a 3,238-ha 
tract in the Laramie Range, Wyo., containing anortho- 
site (Rocky Mountain News, 1972) and research on the 
recovery of alumina from Wyoming anorthosite by a 
hydrothermal alkaline process (Hittner, 1981). Accord­ 
ing to Hamer and others (1978, p. 99), during the 1970's, 
Alcoa workers (Hudson and Swansiger, 1976; Hudson 
and others, 1977) researched the hydrochemical method 
proposed by Ponomarev and Sazhin (1959) for the extrac­ 
tion of alumina from high-silica ores.

Alcoa patented a carbothermic method of producing 
aluminum-silicon alloys (Cochran and others, 1977; 
Cochran, 1980). As mentioned above in the U.S. Depart­ 
ment of Energy section, Alcoa and ERDA jointly 
funded a $5 million research program in 1977 to make 
an aluminum-silicon alloy by carbothermic reduction 
(Energy Research Digest, 1977; Russell, 1981, p. 207).

Alcoa operated a pilot plant to investigate the extrac­ 
tion of alumina from coal waste (Beizer, 1974). In other 
work, both the lime-soda sinter process and a hydrochlo­ 
ric acid process were tested on coal-washing rejects and 
coal ash (Goodboy, 1976; Hudson, 1977). Hudson (1977, 
p. 82) concluded that alumina might be recovered eco­ 
nomically from coal-washing rejects if (1) the rejects 
contained energy of approximately 9,304 kJ/kg, (2) the 
ash was approximately 30 percent alumina, and (3) the 
rejects could be obtained at no cost. Furthermore, the 
rejects would have to be adjacent to supplies of limestone 
and, perhaps, a source of high-alumina clay. The ranges 
in composition of coal-washing rejects investigated by 
Hudson (1977) are listed in table 15.

Workers in Alcoa laboratories also researched a hydro- 
thermal alkaline process to extract alumina from anthra­ 
cite coal waste near Shamokin, Pa. (Hsieh, 1981). This 
work was performed under a contract from the Appala­ 
chian Regional Commission.

Alcoa was one of the cooperating companies in the 
USBM miniplant program.
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TABLE 15.—Ranges in composition (in weight percent) of coal- 
washing rejects in Kentucky and Pennsylvania 

[Modified from Hudson (1977, table 2)]

Ash ...............
S. .................

AI n
Si02 ...............
Fe203 .............

Western Eastern 
Kentucky Kentucky

Coal-washing rejects

.. 8,490-20,700 2,675-21,400
38-68 36-82

3.0-13.8 0.3-5.0

Ash composition

. . 10.5-20.8 15.0-23.4
. . 34.7-60.9 48.2-66.7

9.0-^34.0 3.7-14.0
4.4-13.8 4.3-8.1

Western 
Pennsylvania

2,908-18,143
44—74

0.6^.3

19.3-27.8
51.7-64.1
3.4-17.0
2.9-9.4

ANACONDA ALUMINUM COMPANY-ATLANTIC 
RICHFIELD COMPANY

The Anaconda Aluminum Company patented a hydro­ 
chloric acid leaching process to recover alumina from 
kaolin (Holderreed and Sullivan, 1960; Laist, 1960a, b); it 
is similar to the process considered most promising by 
the National Materials Advisory Board (1970). Anaconda 
operated a pilot plant at Butte, Mont., that processed 5 
metric tons a day in 1963. The first kaolin that Anaconda 
investigated intensively was from Latah County, Idaho 
(American Metal Market, 1963). This kaolin contained 
26-27 percent alumina (Mining Engineering, 1963). Ana­ 
conda shifted its search to Georgia in order to obtain 
kaolin that had a higher alumina content. Anaconda and 
the Thiel Kaolin Company evaluated kaolin from Glass- 
cock, McDuffie, and Warren Counties, Ga. (Georgia 
Mineral Newsletter, 1963), and shipped kaolin from 
Georgia to Butte for pilot-plant testing (Engineering and 
Mining Journal, 1963). Anaconda announced that a plant 
capable of producing significant quantities of alumina 
from kaolin was to be built in Georgia (Mining Journal, 
1965). However, no such plant was ever constructed.

Anaconda was an original cooperator in the USBM 
miniplant program beginning in 1974. The Atlantic Rich­ 
field Company later bought Anaconda.

KAISER ALUMINUM AND CHEMICAL CORPORATION

Kaiser Aluminum and Chemical Corporation and its 
affiliate, Kaiser Engineers Corporation, constructed and 
operated the two USBM miniplants (Bengston and oth­ 
ers, 1981; Barclay, 1984, p. 167) discussed above in the 
section titled "Miniplant Studies." Kaiser also investi­ 
gated the extraction of alumina from kaolin by a hydro­ 
chloric acid process (Sawyer and Turner, 1985, p. 9-10) 
and investigated the extraction of alumina from alumi­ 
nous phosphate resources (Porter, 1957, 1959). The 
Electric Power Research Institute (EPRI) awarded Kai­ 
ser a contract to study the recovery of alumina and other

materials from coal fly ash by a hydrochloric acid process 
developed for the EPRI by DOE's Oak Ridge National 
Laboratory (Chemical Engineering, 1984; Baumgardner 
and Hough, 1985, p. 152). Kaiser estimated that 
28,000-87,000 metric tons of alumina could be obtained 
from each million metric tons of coal ash processed 
(Kaiser Engineers Corporation, 1986, v. 1, p. 4-1). 
Kaiser obtained a patent to form sodium dawsonite from 
the effluent of the Bayer alumina extraction process 
(Roberson and others, 1977).

REYNOLDS METALS COMPANY

The Reynolds Metals Company investigated the 
extraction of alumina from clay by a nitric acid process, 
as indicated by U.S. patents (Brown and Hrishikesan, 
1966; Kelly and Bruen, 1971; Wise, 1971; Royce and 
Drown, 1974; Bruen and Kelly, 1975), and also did 
considerable research on the extraction of alumina from 
nonbauxite materials by an alkaline process (Kamlet, 
1960; Brown, 1966) and a carbothermic process (Kibby, 
1977). Reynolds also participated in the USBM miniplant 
program.

OLIN MATHIESON CHEMICAL CORPORATION

The Olin Mathieson Chemical Corporation developed a 
process for purifying aluminum sulfate that could be 
applied to the extraction of alumina from common clays 
or coal wastes (Light Metal Age, 1961; Higbie and 
others, 1963). The process involved the following steps: 
(1) leaching clay with sulfuric acid; (2) letting iron and 
aluminum sulfate crystallize and filtering out the large 
crystals; and (3) thermally decomposing aluminum sul­ 
fate crystals to form alumina and sulfur trioxide for 
making sulfuric acid.

Olin's affiliate Kalunite, Inc., developed the Kalunite 
process for treating alunite to produce alumina and 
potassium sulfate (Fleischer, 1944, p. 267). The process 
was used in Salt Lake City, Utah, during World War II 
as described above in the section titled "U.S. Research 
During World War II."

ALUMINIUM PECHINEY

Aluminium Pechiney investigated several techniques 
for the extraction of alumina from nonbauxite materials. 
The most advanced research was on the H+ process 
(Bliss, 1976; Cohen and Mercier, 1976; Cohen and 
Adjemian, 1978a, b), which utilizes a two-stage acid 
attack. Sulfuric acid dissolves aluminum from the raw 
material. Impure aluminum sulfate is precipitated and 
then is converted to aluminum chloride hexahydrate by 
treatment with hydrochloric acid. The aluminum chloride
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hexahydrate is decomposed to alumina, and the hydro­ 
chloric acid is recycled.

Pechiney tested the H+ process in the laboratory 
beginning in 1964 and in a small pilot plant beginning in 
1968. In 1976, Pechiney cooperated with Alcan in the 
construction of a plant near Marseilles, France, having 
the capacity to produce 15-20 metric tons of alumina per 
day (Cohen and Mercier, 1976, p. 16). Shale associated 
with coal in France and kaolin from Georgia were tested 
in the plant. The process is suitable for use on several 
different aluminous materials, including clay, shale, and 
coal-mine waste, but not on those that contain apprecia­ 
ble quantities of alkalies, such as anorthosite. Although 
the H+ process is effective in extracting alumina from 
some nonbauxite materials, it is not competitive with the 
Bayer process for extracting alumina from bauxite.

Pechiney and Alcan announced a feasibility study for a 
demonstration plant 10-20 times larger than the one at 
Marseilles (Barclay, 1984, p. 177). In 1982, the French 
Government nationalized Pechiney Ugine Kuhlmann, the 
parent company of Aluminium Pechiney, and plans for 
the demonstration plant were terminated.

As a partner with the Senegal Government, Pechiney 
has mined aluminous phosphate rock and has investi­ 
gated the extraction of alumina from it (Mining Annual 
Review, 1988). Two French patents (Beja and Vincent, 
1958; Jardin, 1959) may be products of Pechiney research 
on the extraction of alumina from aluminous phosphate 
rock.

Other research by Pechiney includes investigations of 
a process of continuous treatment of clay or shale by 
sulfuric acid (Maurel and Duhart, 1975) and a hydrochlo­ 
ric acid process (Maurel and Duhart, 1971)

ALCAN INTERNATIONAL, LTD.

Alcan International, Ltd. (Alcan), prepared several 
reports on the potential nonbauxite resources of alumina 
in Canada (Gummer, 1952; Bliss, 1976; Greig and Adams, 
1977). As noted above, Alcan participated with Alumin­ 
ium Pechiney in the construction of a pilot plant for 
extracting 15-20 metric tons of alumina per day from 
nonbauxite materials by the H+ process (Cohen and 
Mercier, 1976). Alcan also investigated the hydrochloric 
acid process for extracting alumina from nonbauxite 
materials (Dewing and others, 1978). Alcan participated 
in the USBM miniplant program.

TOTH ALUMINUM CORPORATION

In 1967, Charles Toth applied for the first U.S. patent 
(3,615,359) for the Toth process (Toth, 1969; Engineering 
and Mining Journal, 1973). Toth received other patents, 
including one in 1975 (Toth, 1975). The process consists 
of chlorination of calcined kaolin with recycled chlorine to

form aluminum trichloride, which is reduced by manga­ 
nese powder at about 230 °C to aluminum powder. Iron is 
removed as a sandlike mixture in the form of ferric 
chloride and ferro-aluminum compounds, and the 
byproduct manganese dichloride is decomposed by an 
oxidation-reduction method into manganese metal pow­ 
der and chlorine, which are recycled (Engineering and 
Mining Journal, 1973). U.S. patents obtained by the Toth 
Aluminum Corporation include those by Lippman and 
others (1976), Nemecz and others (1976a, b), and Lipp­ 
man and Sebenik (1978). By 1984, the Toth Aluminum 
Corporation had constructed a carbochlorination plant at 
Vacherie, La., to recover aluminum from kaolin (Baum- 
gardner and Hough, 1984, p. 142,1985, p. 152; McCawley 
and Stephenson, 1984, p. 84).

NORTH AMERICAN COAL CORPORATION

The first effort in the United States to recover an 
aluminous product from shaly coal-mine waste was made 
by the North American Coal Corporation in cooperation 
with the Strategic Materials Corporation (Mining Jour­ 
nal, 1959). They built a pilot plant at Powhatan Point, 
Ohio, to extract aluminum and aluminum sulfate from 
shaly roof rock removed in the mining of the Pittsburgh 
coal bed. This plant used a sulfuric acid process and had 
an annual capacity for treating about 40,000 metric tons 
of shale, but it produced only a small quantity of alumi­ 
num sulfate in 1962 (Wilmot and others, 1960, p. 239; 
Higbie and others, 1963, p. 291). Extraction was not 
profitable, and the plant was dismantled (American 
Metal Market, 1964; Mining Journal, 1964).

ALLIED CHEMICAL CORPORATION

The Allied Chemical Corporation did considerable 
research on the extraction of alumina from clay and other 
nonbauxite materials, as is indicated by several U.S. 
patents for methods devised by Amano and Taylor 
(1968), Gerry and others (1968), Kelly and Yodis (1968), 
and Yodis and Schnoor (1968).

ARTHUR D. LITTLE, INC.

Arthur D. Little, Inc., patented several methods for 
extracting alumina from nonbauxite materials by using 
the nitric acid process. The patented methods were 
devised by George and Stone (1965), Beutner and Huska 
(1971), Flood (1971), Hyde and Margolin (1971), Huska 
and others (1972), Huska and Meissner (1974), and 
Margolin and Hyde (1974).

KENNECOTT COPPER CORPORATION

The Kennecott Copper Corporation obtained two U.S. 
patents relating to the recovery of alumina from copper
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leach solution (Spedden and Schellinger, 1969a, b). One 
patent was for removing multivalent impurities from the 
solution, and the other patent was for producing high- 
purity alumina.

ALUMET

Alumet is a partnership of National Steel Corporation, 
Southwire Company, and Earth Sciences, Inc. Since 
1971, Alumet has evaluated the recovery of alumina from 
alunite. Pure alunite, KA13(S04)2(OH)6 , is 37 percent 
A1203 , 38.6 percent S04 , 11.4 percent K20, and 13.0 
percent H20. A preliminary evaluation indicated that 
more than 100 million metric tons of rock in the Wah Wah 
Mountains, Utah, contained more than 35^40 percent 
alunite (Walker and Stevens, 1974). A pilot plant was 
constructed in 1973 near Golden, Colo., to test the 
recovery of alumina from alunite by roasting and leach­ 
ing the alunite ore to remove potassium sulfate and then 
using a modified Bayer method to recover cell-grade 
alumina. Further information can be obtained from 
reports by the National Research Council (1979) and 
Barclay (1984, p. 183-186).

OTHER COMPANIES

Companies that did not participate in the USBM 
miniplant program described above but that have done 
research pertinent to the recovery of alumina from 
nonbauxite materials can be identified from the U.S. 
patents issued, as follows: (1) Phillips Petroleum Com­ 
pany (Arnold, 1945); (2) Kerr-McGee Corporation (Rado, 
1981); (3) the Public Service Company of Albuquerque, 
N. Mex. (Reynolds and Williams, 1981); (4) Waldo 
Foundry of Bridgeport, Conn. (Gooch, 1896); (5) Mono­ 
lith Portland Midwest Company (Spence, 1961); and (6) 
several German companies (Specketer and others, 1924; 
Marburg, 1930; Jonas and others, 1931; Messner, 1976). 
Houdry Process Corporation was granted a patent (Mil- 
liken, 1957) for a process to recover alumina from alumi­ 
num phosphates. Other companies are mentioned below 
in the sections on alumina extraction research done in 
different countries.

INVESTIGATIONS BY U.S. COLLEGES AND UNIVERSITIES

The Mining Experiment Station and State Electromet- 
allurgical Research Laboratories of Washington State 
College (now University) investigated the recovery of 
alumina from high-alumina clay in the 1930's (Parkman, 
1935) and early 1940's. Woody (1943) prepared a bibliog­ 
raphy on the extraction of alumina from clay. March 
(1943a, b) worked on the beneficiation of residual clays to 
upgrade the alumina content and a method of producing 
alumina from kaolin by sulfate leaching. Redlich and

others (1946) investigated the recovery of alumina from 
clays in the Pacific Northwest by a sulfurous acid leach­ 
ing process.

The extraction of alumina from high-alumina clays in 
Pennsylvania was investigated by the Pennsylvania 
State University (Sun and others, 1967). The extraction 
from clays was either by sulfuric acid or gaseous sulfur 
trioxide. Iron was removed by selective leaching of clay 
by hydrochloric acid or by electrolysis of the aluminum 
sulfate leach liquor. Fetterman (1961) and Fetterman 
and Sun (1962) investigated the extraction of alumina 
from diaspore clays by an ammonium sulfate process. 
The Pennsylvania State University's Coal Research Sec­ 
tion released the results of literature surveys by Spicer 
(1971) on the uses of Pennsylvania anthracite waste and 
by Sun and others (1971) on chemical elements in anthra­ 
cite waste. These surveys include information on alumina 
extraction from coal waste.

The Mining and Mineral Resource Research Institute 
of the University of Utah used grants from the USBM to 
investigate three methods of extracting alumina from 
coal waste (Sohn, 1983). The methods were the lime-soda 
sinter process, the carbothermic reduction of alumina to 
aluminum nitride, and the separation of alumina by the 
volatilization of silica. The waste material investigated 
came from the York Canyon coal mine, New Mexico. 
This material, which included both overburden and 
waste from the coal preparation plant, consisted of coal, 
quartz, muscovite, kaolinite, feldspar, pyrite, and other 
minor constituents. The preparation plant waste con­ 
tained 22.8 percent alumina, and the overburden con­ 
tained 17.9 percent alumina.

The Engineering Experiment Station of Georgia Insti­ 
tute of Technology investigated raw materials containing 
aluminum and methods of extracting alumina from kao­ 
lin (Ward and others, 1972; Husted, 1977; Ward and 
Husted, 1977). Husted (1974) reviewed the potential 
nonbauxite resources of alumina in the United States.

In the 1970's, workers at the Ames Laboratory at Iowa 
State University studied three processes for recovering 
alumina from fly ash from which as much as 85 percent of 
the iron oxide had been removed by magnetic separation; 
the processes were lime sinter, hydrochemical, and high- 
temperature chlorination (Burnet and others, 1977, p. 
83). Cavin (1974) extracted alumina from the nonmag­ 
netic fraction of powerplant fly ash by first sintering it 
with limestone, then leaching it with sulfuric acid. Other 
research was described by Chou (1976), Chou and others
(1976), Murtha and Burnet (1976, 1978, 1979), Burnet
(1977), and Wijatno (1977). Burnet and others (1983, 
1984) prepared a bibliography on the recovery of metals 
from coal ash. Goodwin (1978) used magnetic separation 
and the method described by Chou and others (1976) for 
sintering fly ash with limestone, then leaching with a
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Na2C03 solution. Goodwin (1978) estimated that this 
method would recover 98 percent of the iron, 98 percent 
of the alumina, and 85 percent of the calcium silicate from 
the fly ash.

Research on alumina extraction from coal waste has 
been done at the Coal Research Bureau of West Virginia 
University (Condry, 1976; Akers and others, 1978; Coal- 
gate, undated) and the Institute for Mining and Minerals 
Research, University of Kentucky (Robl and Bland, 
1977).

INVESTIGATIONS OF U.S. DAWSONITE

Information on dawsonite in oil shale of the Green 
River Formation can be found in publications of the 
Colorado School of Mines (CSM), the American Institute 
of Mining, Metallurgical, and Petroleum Engineers 
(AIME), and the Rocky Mountain Association of Geolo­ 
gists (RMAG). CSM, in cooperation with the Colorado 
School Research Foundation, Inc., and the Laramie 
Energy Technology Center, sponsored 18 symposia on 
oil shale. Although the primary subject was the distri­ 
bution of oil in the oil shale, each symposium volume has 
several papers describing dawsonite and nahcolite in the 
shale (Colorado School of Mines, 1964, 1965, 1966, 1967, 
1968; Gary, 1970, 1974, 1975, 1976, 1977, 1978, 1979, 
1980, 1981, 1982, 1983, 1984, 1985). More information on 
dawsonite can be found in various bibliographies (Mul- 
lens, 1973; Chronic and Matsushita, 1974; U.S. Energy 
Research and Development Administration, 1977; Farris 
and Leland, 1978; Farris and Mains, 1978; George and 
Jackson, 1984).

The USBM issued a contract to the Harrison-Western 
Corporation for drilling a mine shaft having a 2.4-m 
diameter at a site known as Horse Draw in the Piceance 
Creek basin, 37 km southwest of Meeker, Colo. (Cox, 
1979). The Multi Minerals Corporation, under an agree­ 
ment with the USBM, developed the mine (Cole and 
others, 1982). The purpose of the shaft and mine was to 
develop new mining techniques, to collect mine safety 
and environmental data, and to provide large samples of 
oil shale for research and process testing. A 100-metric- 
ton sample from the 640-m level contained about 12 
percent dawsonite, which is equivalent to about 4 per­ 
cent recoverable alumina.

The DOE Laramie (Wyo.) Energy Technology Center, 
formerly the USBM Laramie Energy Research Center 
until 1975 and the ERDA Laramie Energy Research 
Center until 1977, has done a great deal of work on 
dawsonite resources and the recovery of alumina from 
dawsonite. The first published report on the large 
resources of dawsonite in the Green River Formation 
was by Smith and Milton (1966). Stanfield and others 
(1957) presented information on the stratigraphic units

that contain dawsonite. Smith and Young (1969, 1975), 
Young and Smith (1970), and Robb and Smith (1974) 
analyzed dawsonite and nahcolite and determined their 
content in the oil shale. Young and others (1975) inves­ 
tigated the carbonate minerals, including dawsonite, in 
the oil shale because the thermal activity of carbonates is 
important when oil shale is retorted. Trudell and others 
(1970) reported on the distribution of dawsonite in the 
Piceance Creek basin, and the U.S. Bureau of Mines 
(1972a, b) made economic studies on the recovery of oil, 
nahcolite, and dawsonite from shale. Smith and others 
(1972) devised a method of estimating nahcolite and 
dawsonite in oil shale from the oil-yield data. Huggins 
and others (1973) evaluated methods of determining 
amounts of dawsonite and nahcolite in oil shale. Beard 
and others (1974) estimated the tonnage of nahcolite and 
dawsonite in the Piceance Creek basin to be 29 billion and 
19 million metric tons, respectively. Robb and others 
(1978) investigated the mineral and hydrocarbon distri­ 
butions across part of the Green River Formation in the 
Piceance Creek basin. Johnson and others (1977) deter­ 
mined potential oil yields and dawsonite, nordstrandite, 
and nahcolite contents of oil shale. Beard and Smith 
(1976) outlined a plan for the in-place recovery of daw­ 
sonite and other mineral products from the Saline zone in 
the Piceance Creek basin. Asai and others (1983) and 
White and others (1985) investigated the extraction of 
alumina from dawsonite. Jackson and others (1972) found 
ways of synthesizing dawsonite. Ferrante and others 
(1976) investigated the thermodynamic properties of 
synthetic dawsonite.

The mineralogy and properties of dawsonite have been 
investigated by Frueh and Golightly (1967), Estep and 
Karr (1968), Miiller-Vonmoos and Bach (1969), Harris 
and others (1971), Tomilov and others (1971), Jackson 
and others (1972), and Huggins and Green (1973). Syn­ 
thetic dawsonite has been made by the decomposition of 
sodium aluminate solutions by bubbling carbon dioxide 
into the sodium aluminate solution containing carbonate 
ions (Cada and others, 1972). Dawsonite has also been 
made synthetically in Japan (Kwon and others, 1971), 
France (Besson and others, 1973), Germany (Bader, 
1938; Bader and Esch, 1944), and the United States 
(Jackson and others, 1972). Kim and Ishikawa (1974) 
investigated the changes in properties of synthetic daw­ 
sonite caused by thermal treatments. A U.S. patent has 
been issued for a process to form sodium dawsonite as 
a byproduct of the cleanup of effluent from a Bayer 
alumina extraction plant (Roberson and others, 1977); 
the dawsonite would be recycled to produce additional 
alumina.

The Superior Oil Company tested a process to produce 
nahcolite, oil, alumina (from dawsonite), and soda ash 
from oil shale (Weichman, 1974a, b, 1976). Nahcolite,
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more friable than the host shale, was to be removed as 
the fine material after crushing. Oil was to be recovered 
by retorting the oil shale, and the alumina and soda ash 
were to be recovered by leaching of the retorted shale 
followed by selective precipitation. The Oil Shale Corpo­ 
ration (TOSCO) also devised a process for recovering 
alumina from dawsonite (Haas and Atwood, 1975). The 
following list of U.S. patents gives an indication of the 
many studies that were made on the recovery of alumina 
from dawsonite in oil shale: (1) TOSCO patented methods 
for recovering alumina and sodium aluminate from oil 
shale (Hall and Haas, 1970; Haas, 1975); (2) Shell Oil 
Company patented methods for recovering oil and daw­ 
sonite from oil shale (Prats, 1970; Templeton, 1971; 
Papadopoulos and Ueber, 1972; Closmann and Suman, 
1974), and Shell International patented a process for 
recovering alumina (Middelhoek and others, 1977); (3) 
Sinclair Research, Inc., patented a process for recover­ 
ing aluminum from retorted shale (Van Nordstrand, 
1968); (4) Marathon Oil Company patented a method of 
extracting dawsonite and nahcolite from crushed oil shale 
(Tackett, 1970); and (5) MacMillan and Jackson (1972) 
patented an alkaline method of extracting alumina from 
oil shale.

INVESTIGATIONS IN OTHER COUNTRIES

ARGENTINA

In 1954, Argentina was reported to have plans to build 
a plant at Comodoro Rivadavia, Chubut Province, that 
would have cost approximately $25 million (Engineering 
and Mining Journal, 1954). This plant was to recover 
alumina from clay from Neuquen Province, but it was 
never built.

Later, plans were made for the extraction of alumina 
from lateritic clays in Misiones Province (U.S. Bureau of 
Mines, 1965). An Argentine firm obtained a license to use 
the Australian Commonwealth Scientific and Industrial 
Research Organization (CSIRO) process for the extrac­ 
tion of alumina from clays that was developed in 1962 
(Scott, 1962). No plant was built (Kimbell, 1967, p. 148).

The Mining Annual Review (1971) reported that the 
Alto Parana Mining Company did pilot-plant tests on 
extracting alumina from laterite in Misiones Province. 
Apparently that work never led to a commercial plant.

AUSTRALIA

The Australian Commonwealth Scientific and Indus­ 
trial Research Organization (CSIRO) developed a two- 
stage process for the recovery of alumina from clay or 
low-grade bauxite ores that are high in silica or iron 
(Scott, 1962). The process involved digestion of the ore

by acid at 180 °C, modification of the liquor at 130 °C by 
dissolution of more alumina to make the liquor slightly 
basic, reduction of iron oxide by sulfur dioxide, hydrol­ 
ysis at about 200 °C to precipitate basic aluminum sulfate 
crystals, calcination of the residual sulfur, and absorption 
of the sulfurous gases to form acid for reuse. Research on 
the extraction of alumina from clay ceased in the late 
1960's because Australia's large bauxite deposits were 
developed; the total bauxite resources of Australia are 
presently estimated to be 6 billion-^ billion metric tons 
(Patterson and others, 1986, p. B128).

CANADA

During World War II, Canada, like other bauxite- 
deficient, aluminum-producing countries, was concerned 
about possible substitutes for bauxite. As reported by 
Gummer (1952, p. 605), "At one time during the last war, 
Aluminium Limited [which became Alcan] and its affili­ 
ates fielded a large group of geologists, mineralogists, 
engineers, and chemists, who applied their combined 
efforts to new untried sources of the metal." Canadian 
governmental agencies, provincial bureaus of mines and 
geological surveys, and corporations such as Aluminium 
Company of Canada, Limited (Alcan), and the American 
Nepheline Corporation participated in the wartime 
effort. The rocks investigated included laterite, residual 
clay, sedimentary clay and shale, nepheline rocks, anor- 
thosite, andalusite schist, muscovite schist, pyrophyllite 
schist, and alunite. According to Gummer (1952, p. 610), 
the results of this work could be summarized as follows:

The relation of alumina to other constituents of the ore will be 
important; alumina can be recovered from some compounds more 
easily than from others. A rock with medium alumina and high 
alkalies (such as the nepheline rocks) might be preferable to one with 
high alumina and low alkalies. On the basis of our present knowledge 
of aluminum-bearing rocks other than bauxites, the most likely 
Canadian sources of aluminum in a case of emergency or radically 
modified economics appear to be anorthosite and nepheline syenite. 
Both these rocks have been successfully processed on the pilot-plant 
scale. There are enormous bodies of both rocks in Canada, and 
anorthosite is one of the most abundant types adjacent to the great 
Arvida power and production centre.

Clays are treatable by more than one method, and alumina can be 
recovered from them, but the results of our surveys show that they 
cannot have the same potential importance for the aluminum industry 
of Canada as they appear to have for that of other countries; as a 
consequence, their utilization has been given less emphasis in process 
development studies.

In the 1970's, the Canadian Centre for Mineral and 
Energy Technology (CANMET) did considerable 
research on the recovery of alumina from nonbauxite 
materials. The following processes applied to anorthosite 
were researched: (1) alkali sinter (Winer and Quon, 
1979); (2) hydrochemical (Hamer and others, 1978); (3) 
acid leaching of melted and quenched anorthosite 
(Hamer and others, 1978); (4) acid extraction (Hamer and
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others, 1978); and (5) lime sinter (Quon, 1976; Ripley, 
1976). In tests of the sulfuric and hydrochloric acid 
processes, 90 percent of the alumina was recovered from 
Saskatchewan clays (Earner and others, 1978). A hydro­ 
chloric acid process applied to coal-mine wastes recov­ 
ered 90 percent of the alumina (Earner and others, 1978). 
CANMET has investigated the recovery of alumina from 
coal waste in the Eat Creek coal district, British Colum­ 
bia; the methods studied were hydrochloric acid leaching 
of ash (Earner, 1977), hydrochloric acid and hydrofluoric 
acid leaching of ash (Ripley, 1979a), and a modified 
lime-sinter process applied to coal waste (Ripley, 1979b).

CZECHOSLOVAKIA

During World War II, an experimental plant at 
Stramberk used a lime-sinter method to recover 
hydrated alumina from coal ash (Tomka, 1974, p. 196). 
The plant had a production capacity of about 5,000 metric 
tons of hydrated alumina per year and used ash from the 
Ostrava powerplant. The ash contained about 20 percent 
A1203 and 28 percent Si02. The plant was expensive and 
was closed when low-grade Bungarian bauxite became 
available (Tomka, 1974).

Because Czechoslovakia has no bauxite, research on 
nonbauxite sources of alumina has continued. Eubacek 
and Svejda (1965) described how to produce portland 
cement and recover alumina from clay and coal ash after 
sintering the source material with limestone and then 
leaching with Na2C03 solution.

EGYPT
The Alexandria University, Egypt, supported the 

study of the extraction of alumina from kaolin by the 
hydrochloric acid method (Bakr and El-Abd, 1969). The 
Metallurgy Department, National Research Centre 
(Cairo), researched the extraction of alumina from kaolin 
by the lime-soda sintering process (Eussein and others, 
1974). The kaolin tested was from Sabba, in northern 
Egypt, and Aswan, in southern Egypt. The Sabba kaolin 
contained 36.9 percent alumina and 44.0 percent silica, 
and the Aswan kaolin contained 27.4 percent alumina and 
57.2 percent silica (Bussein and others, 1974, p. 85).

From 1966 to 1969, the Egyptian Geological Survey 
and the U.S.S.R. investigated the nepheline syenite of 
the Jabal Abu Khuruq area, Egypt. Metallurgical tests 
showed that alumina can be recovered from the nephe­ 
line syenite when it is mixed with Egyptian limestone; 
the process is technologically feasible and results in 
valuable byproducts—portland cement, soda, and potash 
(El Ramly, Dereniuk, and others, 1970).

Rehim (1974), of Alexandria University, also studied 
the alkali-sinter process for recovering alumina from the 
Jabal Abu Khuruq nepheline syenite. Bussein and others

(1974) researched lime sintering of the same rock. The 
sample tested by Eussein and others (1974, p. 97) 
contained the following major components: 21.6 percent 
A1203 , 55.2 percent Si02 , 5.1 percent Fe203 ,10.1 percent 
Na20, and 5.0 percent K20.

FEDERAL REPUBLIC OF GERMANY

A sulfurous acid process for extracting alumina from 
clay was attempted on a semicommercial scale in Ger­ 
many in 1938 (Anderson, 1940, p. 275; Kramer, 1983, p. 
2). The resulting alumina was too impure to be cell grade, 
and the Bayer process was used to reduce the impurities.

Phonolite was investigated as a source of alumina in 
Germany in 1939 (U.S. Bureau of Mines, 1939, p. 2). The 
method considered involved mixing ground phonolite 
with alkali and limestone, sintering the mixture at 1,200 
°C, and leaching with soda. The products of this method 
are potassium-sodium aluminate, from which alumina 
would be obtained, potassium and sodium carbonate, and 
calcium silicate used to make cement.

Several U.S. patents for alumina extraction methods 
were awarded to German companies during the period 
1934 to 1941 (Staufer and Konopicky, 1934; Wiedbrauck 
and Buche, 1934, 1935; Fulda and others, 1935; Fulda, 
Wiedbrauck, and Buche, 1938, 1941; Buche and Gins- 
berg, 1941; Fulda, Wrigge, and Logemann, 1941). In 
1955, the Vereinigte Aluminium-Werke A.-G. (VAW) 
obtained a British patent for a process to recover alumi­ 
num from coal fly ash (VAW, 1955). A German patent 
(Euber and Rohlfs, 1957) suggests that Chemische 
Werke Albert did some work on the recovery of alumina 
from aluminum phosphates. A U.S. patent for the 
extraction of alumina from nonbauxite materials was 
awarded to VAW (Belsky, 1974); leaching aluminum 
silicates with an aqueous solution of hydrochloric and 
fluosilicic acids eliminated the need for calcination of the 
ore. VAW surveyed potential nonbauxite aluminum 
resources (Bielfeldt and others, 1978; Belsky and others, 
1981) and found large available quantities of coal wastes 
and kaolin. VAW investigated a hydrochloric acid proc­ 
ess for extracting alumina from lignite-bearing kaolin 
(Belsky and others, 1981).

GERMAN DEMOCRATIC REPUBLIC

According to Belsky and others (1981, p. 102), VEB 
Elektro-Chemisches Kombinat operated experimental 
plants in the German Democratic Republic for several 
years after World War II; the plants tested a hydrochlo­ 
ric acid process for extracting alumina from clay.

HUNGARY

The Eungarian Ministry of Eeavy Industry, the Insti­ 
tute of Energetics, and the Tatabanya coal mines coop-
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erated with Professor Grzymek of Poland in research on 
a self-disintegration process for recovering alumina from 
aluminum silicates (Gulyas and Vamos, 1976; Kapolyi 
and others, 1981). The Tatabanya coal mines operated a 
large pilot plant to test a modification of Professor 
Grzymek's process for the extraction of alumina from fly 
ash from powerplants (Gulyas and Vamos, 1976). The 
pilot-plant process involved sintering of the ash with 
limestone and the extraction of alumina with a Na2C03 
solution. The modified process requires less energy than 
the original but still produces 10 metric tons of portland 
cement for each metric ton of alumina. This modified 
process is patented in the United States (Kapolyi and 
others, 1980).

ITALY

When the supplies of potash from German and Alsatian 
mines were cut off during World War I, attempts were 
made to recover potash and aluminum chloride from 
leucite in Italy on a "semi-commercial scale" (Edwards 
and others, 1930, p. 57). The process first used was a 
hydrochloric acid method developed by Blanc (1931, p. 
53). The leucite was ground in a plant at Sessa Aurunca, 
which is a few kilometers northwest of Naples. In 1931, 
a plant designed to extract potash and alumina from 
leucite by a nitric acid process was built at Civitavecchia 
by Aluminium Limited (Blanc, 1931, p. 56).

The Societa Italiana Potassa (SIP) modified the Jour- 
dan lime-sinter process to recover alumina from leucite 
at the Bagnoli plant in 1942^3 (Abbruzzese and Rinelli, 
1981, p. 24). The Jourdan process was patented in Italy 
in 1926 (Jourdan, 1926).

Interest in the extraction of alumina from Italian 
leucite developed again in the 1970's and 1980's, when 
considerable research was done (Cocco and others, 1978, 
1981; Massacci, 1978; Abbruzzese and Rinelli, 1981; 
Massacci and others, 1981). Tests were made on the 
extraction of alumina from leucite by the alkali-sinter 
process (Landi, 1975), by the direct carbothermic proc­ 
ess (Landi, 1981; Landi and others, 1984), and by a 
carbochlorination process (Bombara and Tanzi, 1984). 
According to World Mining (1980), Alumetal planned to 
build a plant to process leucite in Sardinia.

The extraction of alumina from coal fly ash at the Porto 
Vesme powerplant was investigated by the Institute of 
Mineral Processing in Rome (Abbruzzese, 1983). The ash 
contained only 13.8 percent alumina, but large quantities 
were available.

According to Hall (1978, p. A23), preliminary re­ 
search has been undertaken to determine the feasibility 
of using alunite as a source of aluminum. However, 
commercial development seems unlikely in the near 
future.

JAPAN
During World War II, alumina was extracted from 

alunite, clay, shale, and aluminous phosphate rock in 
Japan (Sakamoto, 1951; Sato and others, 1956, p. 197). 
Only material that contained or could be upgraded by 
beneficiation to 30 percent or more alumina was used 
(table 1).

A process for extracting alumina from coal fly ash was 
patented shortly after the war (Hiku, 1947); the ash was 
sintered with limestone and a small amount of NaCl and 
was leached with sulfuric acid. Sulfuric acid processes 
were also studied by Funaki (1950) and Arimori (1952). 
More recent studies in Japan include (1) research at an 
experimental plant operated by the Mitsui Group to test 
the direct smelting of bauxite or aluminous clay with 
coke and chemicals (Mining Journal, 1981) and (2) 
research on a chloric acid process for extracting alumina 
from Japan's 1 billion metric tons of colloidal earth 
(high-alumina clay) and using the byproduct silica to 
make glass (Mining Journal, 1971).

MEXICO

Industria Penoles S.A. planned to use nepheline sye­ 
nite as a source of alumina in Mexico. This company 
acquired the U.S.S.R.'s VAMI process for extracting 
alumina from nepheline syenite (Industrial Minerals, 
1979a).

A process to extract alumina, aluminum sulfate, sulfu­ 
ric acid, and potassium ammonium sulfate from alunite 
was developed on a laboratory scale at the University of 
Guanajuato (Hall, 1978, p. A20-A21). The plan to erect a 
full-scale plant at Salamanca, Guanajuato, to process 
alunite has been suspended.

NORWAY

A plant was built at Hdyanger, Norway, in 1928 to 
recover alumina from anorthosite consisting predomi­ 
nantly of labradorite (U.S. Bureau of Mines, 1953, p. 
VII-8). In the Pedersen process used, the labradorite 
was mixed with limestone and coke in an electric furnace 
to produce a calcium aluminate-calcium silicate sinter. 
The sinter was then leached with sodium carbonate to 
put the alumina in solution as sodium aluminate. After 
removal of the insoluble residue, the alumina was pre­ 
cipitated by carbon dioxide. Iron was a byproduct.

During the 1970's, a research company called Anortal 
was set up by Norway's aluminum producers to investi­ 
gate nonbauxite sources of aluminum (Industrial Miner­ 
als, 1979b). The work was primarily on anorthosite 
(apparently from the Vossestrand district), although 
Norway is one of the world's few producers of nepheline 
syenite.
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Kurtz (1978, p. 211) reported that two Norwegian 
aluminum companies, A/S Aardal og Sunndal Verk and 
Elkem Spigerverket, had constructed a pilot plant to test 
a new process for extracting alumina from anorthosite.

PHILIPPINES
The Philippines Bureau of Mines (1978) investigated 

the recovery of alumina from clay deposits on Batag 
Island, northern Samar. It was found that the pulp 
viscosity, calcining temperature, and leaching tempera­ 
tures are the most critical factors controlling leaching of 
alumina from these clays. The test results showed the 
recovery of 72 percent of the alumina in clay as sodium 
aluminate compounds.

POLAND
Two processes for the recovery of alumina from non- 

bauxite raw material have been developed in Poland. 
One process, developed by Professor Grzymek (1976, 
1978), is applied to fly ash or coal waste. It is based on an 
automatic disintegration of a sinter containing calcium 
aluminates and dicalcium silicate. The dust is mixed with 
water and sodium carbonate and undergoes a compli­ 
cated series of chemical treatments including carboniza­ 
tion and water scrubbing to produce alumina and port- 
land cement in the approximate ratio of 1:12. The other 
process, known as Professor Bretsznajder*s process 
(Nowak, 1974), is an acid leach process. Sulfuric acid is 
added to aluminous material (clay or fly ash) and heated 
with high-pressure steam. Complete disintegration takes 
place in about 30 minutes.

Two experimental alumina plants were constructed in 
Poland (Kurtz, 1972, p. 222; 1976, p. 214). A plant 
between Glogow and Lubiri was designed to process clay 
with acid. The other plant, near Kielce, tested produc­ 
tion of alumina and portland cement by Professor 
Grzymek's process.

ROMANIA

Investigations were made in Romania of a process for 
the recovery of alumina and iron oxide from carbona­ 
ceous shale, kaolin, and powerplant coal fly ash (Sarbu 
and others, 1981). The process included sintering the 
aluminous material with NaCl, quenching the sinter with 
water, and leaching the remaining sinter with hydrochlo­ 
ric acid.

SOUTH AFRICA

Several nonbauxite materials have been considered as 
potential sources of alumina in South Africa (McCulloch, 
1967; Brabers, 1974). They include diaspore-bearing 
shale, several types of igneous rocks, muscovite clay,

flint clay, and sericite. Pressure leaching of fly ash with 
an alkali solution has also been investigated (Adrian and 
McCulloch, 1966).

SOUTH KOREA

The South Korean Research Institute of Geoscience 
and Mineral Resources investigated the extraction of 
alumina from alunite (Cho and Son, 1978) and from a 
large anorthosite stock near Hadong (Professor Byung 
Koo Hyun, written commun., July 20, 1976). The South 
Korean National Industrial Research Institute studied 
the preparation of polyaluminum chlorides from anortho­ 
site, kaolin, and alunite (Kim and Kim, 1969).

SPAIN

The aluminum company owned by the Spanish Gov­ 
ernment, Empresa Nacional del Aluminio, Madrid, and 
the Escuela Tecnica Superior de Ingenieros de Minas, 
Oviedo, investigated the extraction of alumina from the 
Puentes de Garcia Rodriguez Tertiary clay in La Coruna 
and from Carboniferous coal-bearing slate in Asturias 
(Brime and others, 1978; Sancho, Iglesias, and others, 
1981; Sancho, Verdeja, and others, 1981). Investigations 
of kaolin also were made by the Spanish universities 
(Galan Huertos and Martin-Vivaldi, 1973; Galan Huertos 
and Espinosa de los Monteros, 1974).

SWEDEN

A plant at Sundsvall, Sweden, erected to recover 
alumina from andalusite by the Pedersen process, pro­ 
duced about 8,000 metric tons per year of alumina from 
1942 to 1947 (Bracewell, 1962, p. 54, 156; Barr, 1977, p. 
C64). In 1977, two of Sweden's largest mining groups, 
Boliden AB and Luossavaara-Kirunavaera AB (LKAB), 
formed a subsidiary for the purpose of developing the 
country's alum shale deposits (Industrial Minerals, 1977; 
Mining Engineering, 1977).

TAIWAN
The National Tsing Hua University, Taiwan, investi­ 

gated the extraction of alumina from kaolin that had been 
calcined and then treated with hydrochloric acid (Lin and 
Chen, 1978).

UNITED KINGDOM

The resources and alumina extraction of nonbauxite 
material were investigated by the British Geological 
Survey, formerly known as the Institute of Geological 
Sciences (Varley, 1965; Alien and Charsley, 1968; 
Crocket, 1975; Highley, 1975, 1982; Read and Dean, 
1978; Ridgway, 1982), by the Camborne School of Mines
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(Wills and Phillips, 1977; Phillips and Wills, 1979), and by 
the Warren Spring Laboratory (Christie and Derry, 
1976). Some materials that have been considered as 
possible sources of alumina in the United Kingdom are 
listed in table 3. Other materials considered include coal 
waste, coal fly ash, mica-rich residue from china clay 
washings, and fly ash from refuse incineration.

U.S.S.R.

The first significant peacetime use of nonbauxite mate­ 
rial for producing alumina was the use of nepheline 
syenite in the U.S.S.R. The material used was the 
tailings that remained after apatite, used in fertilizer, 
was extracted from nepheline syenite (Shabad, 1976a). 
Apatite mining began in 1931, and the syenite used was 
from the Khibiny pluton on the Kola Peninsula. The 
possibility of using nepheline syenite tailings as a source 
of alumina was demonstrated experimentally in 1932. In 
1939, a concentrator was built, but it was not until after 
World War II that nepheline syenite was used as a 
source of alumina.

In 1949, the first nepheline syenite tailings were 
shipped from Khibiny to the Volkhov alumina plant 112 
km east of Leningrad, and the technology was finally 
mastered in 1954 (Shabad, 1976a). The Volkhov alumina 
plant, which originally processed bauxite from the Bok- 
sitogorsk district, was converted to use nepheline syen­ 
ite. Nepheline syenite was also used in the Pikalevo 
alumina plant commissioned in 1959 about 240 km south­ 
east of Leningrad. According to Shabad (1976a), in 1976, 
the annual alumina production at Volkhov was 50,000 
metric tons and that at Pikalevo was 300,000 metric tons. 
Stankovich (1978, table 2) estimated the annual capaci­ 
ties of these plants in 1976-80 as 130,000 metric tons of 
alumina for the Volkhov plant and 500,000 metric tons for 
the Pikalevo plant.

The Kandalaksha plant in the Murmansk region of the 
Kola Peninsula also processed nepheline syenite. Stank­ 
ovich (1978, table 2) estimated its capacity to be 70,000 
metric tons of alumina per year.

Two other plants for extracting alumina from nephe­ 
line syenite or similar material were designed (Shabad, 
1976a, p. 228-229). A plant at Achinsk, which is about 
150 km west of Krasnoyarsk, Siberia, has an annual 
capacity of 800,000 metric tons of alumina (Stankovich, 
1978, table 2). It was to process nepheline syenite from 
Goryachegorsk, but a richer deposit at Belogorsk on the 

v Kiya-Shaltyr River 206 km southwest of Achinsk became 
the source of ore (Shabad, 1976a, p. 228). Apparently the 
plant at Achinsk was partly converted to bauxite and 
never reached its full capacity using nepheline syenite 
(Shabad, 1976b).

The second plant was in Armenia and was to be 
supplied with nepheline syenite from Tezhsar near 
Razdan. Construction of the plant in Armenia progressed 
slowly, and the plant may have been converted to 
processing imported bauxite before it was completed 
(Shabad, 1976b).

According to Stankovich (1978), the alumina output 
from at least three of the Soviet plants processing 
nepheline syenite was 700,000 metric tons in 1976.

The process for extracting the alumina from nepheline 
syenite at the Volkhov plant, which is apparently the 
process used in the other Soviet plants processing neph­ 
eline syenite and similar raw materials, was described 
by Alien and Charsley (1968, p. 103-104). The nepheline 
tailings are finely ground with limestone in water to 
form a sludge. This sludge is dried and calcined at about 
1,300 °C to produce a sinter consisting mainly of dical- 
cium silicate and aluminates of sodium and potassium. 
The sinter is ground to 40-50 mesh and treated with 
caustic soda solutions to leach out the alkali aluminates 
and to leave a residue that is called nepheline slurry. The 
solution containing the aluminates is treated with carbon 
dioxide to precipitate aluminum hydroxide, which is 
converted to alumina by calcining. Sodium and potassium 
are recovered from the solutions. The quality of the 
alumina from nepheline syenite is reported to be similar 
to that of the alumina extracted from bauxite; the 
principal impurities are 0.12 percent Si02, 0.31 percent 
Fe203 , and 0.37 percent Na20.

The nepheline slurry at the Volkhov plant contains 
solids consisting mainly of calcium silicate, some alumi­ 
num, iron, and sodium oxides, and traces of titanium and 
phosphorus oxides (Alien and Charsley, 1968, p. 104). To 
manufacture portland cement clinker, the slurry is mixed 
in the proportion of 45 parts (dry) with 49 parts ground 
limestone, 4 parts bauxite, and 2 parts pyrite clinker. 
After calcining, the cement clinker contained the follow­ 
ing major components: 21.83 percent Si02, 64.95 percent 
CaO, 4.97 percent A1203 , 4.33 percent Fe203 , and 1.62 
percent MgO. Alien and Charsley (1968, p. 103) reported 
that, in 1955, 150,000 metric tons of nepheline concen­ 
trates were used to produce 40,000 metric tons of alu­ 
mina, 30,000 metric tons of soda and potash, and 300,000 
metric tons of portland cement.

In addition to nepheline syenite, alunite is also used as 
a source of alumina in the U.S.S.R. The deposits mined 
are in the Zaglik district near Kirovabad in Transcauca­ 
sia. The initial process for extracting alumina from 
alunite was designed by Georgiy V. Labutin (Shabad, 
1976a, p. 230) to yield 1 metric ton of alumina, 1.15 
metric tons of sulfuric acid, and 0.2-0.235 metric ton of 
potassium sulfate from 6.6-6.7 metric tons of ore con­ 
taining 50 percent alunite. In this process, the alunite ore 
is crushed, ground, and roasted to drive off water of
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crystallization (National Research Council, 1979, p. 128). 
Sulfates of potash and alumina are dissolved and selec­ 
tively precipitated to recover alumina, potash, and sul- 
furic acid. The All Union Scientific-Research and Design­ 
ing Institute for Aluminium, Manganese, and Electrode 
Industry (VAMI), Leningrad, modified the process and 
claimed to have attained 95-97 percent alumina recovery 
(Smorgunenko and Vlasov, 1981). According to Shabad 
(1976a, p. 230), construction of the alunite processing 
plant at Kirovabad began in 1955; the plant reached 40 
percent of capacity in 1969 and full capacity in 1973. In 
1973, the plant is reported to have produced 550,000 
metric tons of sulfuric acid, about 200,000 metric tons of 
alumina, and 40,000 metric tons of potassium sulfate. 
Stankovich (1978) described other alumina plants proc­ 
essing alunite and estimated total Soviet alumina produc­ 
tion from alunite as 650,000 metric tons in 1976.

The U.S.S.R. has also investigated the alumina recov­ 
ery from nonbauxite materials other than nepheline 
syenite and alunite. A pilot plant was operated from 
1968 to 1972 at the Alimalyk metallurgical complex in 
Uzbekistan to test a lime-sinter process proposed in the 
1950's for extracting alumina from kaolin from the 
Angren district (Shabad, 1976a, p. 231). Cement was a 
byproduct.

In 1933, a process for the extraction of alumina from 
ash of the Moscow basin coal was patented (Gusev and 
others, 1933). The extraction of alumina from coal- 
washing rejects by a nitric acid process was investigated 
by Korshunov and Shmuk (1957). The alumina content of 
the rejects was 30-35 percent. Mine waste from the 
Ekibastuz coal field contained 22-30 percent alumina, 
which was extracted by Sukhanova and Ponomarev 
(1969) by a sulfuric acid-ammonium sulfate process. In a 
pilot plant at Alma-Ata, 90 percent of the A1203 and 90 
percent of the Na20 were recovered from coal fly ash 
sintered with CaO and Na2C03 (Nurmagambetov and 
others, 1977).

The recovery of alumina from sillimanite in the Ky- 
akhta district, near the Mongolian border south of Lake 
Baykal, was investigated during the 1950's by the Rare 
Metals Research Institute at Irkutsk (Varley, 1965, p. 
92). The Kyakhta deposits are among the largest non- 
bauxite alumina resources in the U.S.S.R. (Varley, 
1965). Sillimanite from the Kyakhta deposit was sug­ 
gested in the late 1950's as a possible raw material for the 
Irkutsk alumina plant at Shelekhov, but the work prob­ 
ably did not go beyond the pilot-plant stage (Shabad, 
1976a, p. 231).

Research on processes for recovering alumina from 
kyanite has been done by Shul'gin and others (1975). The 
Kola Branch of the Academy of Sciences of the U.S.S.R. 
recommended that kyanite concentrates from the Shuur-

urta deposits on the Kola Peninsula be used for direct 
electrothermal reduction to aluminum-silicon alloys (Sha­ 
bad, 1976a, p. 231).

YUGOSLAVIA

Paulin and others (1981), working at the Edvard 
Kardelj University, Ljubljana, Yugoslavia, conducted 
research on the chlorination of low-grade aluminous 
materials. Logomerac and Crnko (1981), working at the 
University of Zagreb, Sisak, investigated the recovery of 
rare-earth elements and alumina from leucite near 
Gnjilane, Kosovo, Yugoslavia.
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