Geochemistry of Some Rocks, Mine Spoils, Stream Sediments, Soils, Plants, and Waters in the Western Energy Region of the Conterminous United States

GEOLOGICAL SURVEY PROFESSIONAL PAPER 1237

Geochemistry of Some Rocks, Mine Spoils, Stream Sediments, Soils, Plants, and Waters in the Western Energy Region of the Conterminous United States

By RICHARD J. EBENS and HANSFORD T. SHACKLETTE

With sections on FIELD STUDIES

B^{*} BARBARA M. ANDERSON, JOSEPHINE G. BOERNGEN, JON J. CONNOR, WALTER E. DEAN, JAMES A. ERDMAN, GERALD L. FEDER, LARRY P. GOUGH, JAMES R. HERRING, TODD K. HINKLEY, JOHN R. KEITH, RONALD W. KLUSMAN, JAMES M. MCNEAL, CHARLES D. RINGROSE, RONALD C. SEVERSON, and RONALD R. TIDBALL

STATISTICAL STUDIES IN FIELD GEOCHEMISTRY

GEOLOGICAL SURVEY PROFESSIONAL PAPER 1237

Geochemical summaries for natural materials from areas having important deposits of fossil fuels

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1982

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

Library of Congress Cataloging in Publication Data Ebens, Richard J. Geochemisty of some rocks, mine spoils, stream sediments, soils, plants, and waters in the western energy region of the conterminous United States (Statistical studies in field geochemistry) (Geological Survey Professional Paper 1237) Bibliography: p. 33 Supt. of Docs. No.: I 19.16:1237 I. Geochemistry----West (U.S.)---Tables. I. Shacklette, Hansford T. II. Title. III. Series. IV. Series. QE515.E23 551.9'0978 81-607846 AACR2

> For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402

CONTENTS

-

Abstract 1
Introduction 1
Acknowledgments
Methods of Study
Objectives
Collection procedures
Descriptions of field studies 4
Methods of analysis
Geochemical summaries
Organization and use of data
Concluding remarks
Pre-development stage
Development and operating stage
Restoration and revegetation stage
References cited

ILLUSTRATIONS

	Page
FIGURE 1. Map showing major coal resources of the Western United States	3
2–16. Maps showing locations of study areas:	
2. Sampling localities of shale and sandstone of the Fort Union Formation in the northern Great Plains Coal Pro-	
vince	5
3. Rock core and ground-water sampling localities in the northern Great Plains Coal Province	7
4. Sampling localitites of oil-shale-core, stream-sediment and soil samples in the Piceance Creek Basin, Colorado	8
5. Stream-sediment sampling localities, northern Great Plains Province, and sampling localities along the Powder	
River	10
6. Drainage basins in which stream sediments were sampled, and third-order watersheds in which alluvial soils	
were sampled, in the Piceance Creek and Uinta Basins, Utah and Colorado	12
7. Sampling localities for sweetclover and associated mine spoil material in the northern Great Plains	13
8. Sampling localities within the San Juan Basin coal region	14
9. Powder River Basin showing soil and lichen sampling localities	15
10. Localities in glaciated and unglaciated areas of the coal regions of the northern Great Plains Province where	
samples of A and C soil horizons were collected	16
11. Composite soil sample localities in the Bighorn and Wind River Basins	17
12. Localities where the A and C horizons of soil, western wheatgrass, silver sagebrush, and above-ground plant	
biomass were sampled in the northern Great Plains Province	18
13. Sampling localities for soil and big sagebrush in the Powder River Basin	19
14. Localities of grain sampled in the Northern Great Plains coal Province	20
15. Sampling localities for big sagebrush in eight Western Physiographic Provinces	22
16. Location of soils sampled in San Juan County, N. Mex	23

TABLES	
--------	--

		Page
	Analytical methods used	25
2.	Elements commonly looked for in samples of this study, but rarely or never detected by the methods listed in table 1, and their approximate lower limits of determination in parts per million	27
	Percentage of ash obtained by burning dry material of plants	30
4.	Aluminum in rocks, stream sediments, mine spoil and associated materials, soils, and plants	39
	Antimony in rocks, stream sediments, mine spoil and associated materials, soils, and plants	42
	Arsenic in rocks, stream sediments, mine spoil and associated materials, soils, and plants	43
	Barium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	46
8.	Beryllium in rocks, stream sediments, mine spoil and associated materials, and soils	49
	Boron in rocks, stream sediments, mine spoil and associated materials, soils, and plants	50
10.	Bromine in rocks, stream sediments, mine spoil, and soils	53
	Cadmium in rocks, plants associated with mine spoil, and other plants	54
12.	Calcium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	56
13.	Carbon (carbonate) in rocks, stream sediments, mine spoil and associated materials, and soils	59
14.	Carbon (organic) in rocks, streams sediments, mine spoil and associated materials, and soils	60
15.	Carbon (total) in rocks, stream sediments, mine spoil and associated materials, and soils	61
16.	Cerium in rocks, stream sediments, mine spoil and associated materials, and soils	63
17.	Chlorine in soils	65
18.	Chromium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	65
19.	Cobalt in rocks, stream sediments, mine spoil and associated materials, soils, and plants	68
	Copper in rocks, stream sediments, mine spoil and associated materials, soils, and plants	71
21.	Dysprosium in rocks and soils	74
	Erbium in rocks, mine spoil and associated materials, and soils	74
23.	Europium in rocks, plants associated with mine spoil, and other plants	75
24.	Fluorine in rocks, stream sediments, mine spoil and associated materials, soils, and plants	75
25.	Gadolinium in rocks, mine spoil and associated materials, soils, and plants	78
26.	Gallium in rocks, stream sediments, mine spoil and associated materials, and soils	79
27.	Germanium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	81
28.	Indium in soils	82
29.	Iodine in rocks, stream sediments, mine spoil and associated materials, and soils	83
30.	Iron in rocks, stream sediments, mine spoil and associated materials, soils, and plants	84
31.	Lanthanum in rocks, stream sediments, mine spoil and associated materials, soils, and plants	87
32.	Lead in rocks, stream sediments, mine spoil and associated materials, soils, and plants	88
	Lithium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	91
	Magnesium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	94
	Manganese in rocks, stream sediments, mine spoil and associated materials, soils, and plants	97
	Mercury in rocks, stream sediments, mine spoil and associated materials, soils, and plants	100
	Molybdenum in rocks, stream sediments, mine spoil and associated materials, soils, and plants	102
	Neodymium in rocks, mine spoil and associated materials, and soils	105
	Nickel in rocks, stream sediments, mine spoil and associated materials, soils, and plants	106
	Niobium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	109
	Phosphorus in stream sediments, mine spoil and associated materials, soils, and plants	111
	Potassium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	113
	Praseodymium in topsoil associated with mine spoil and other soils	116
	Rubidium in rocks, stream sediments, mine spoil and associated materials, and soils	117
	Scandium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	119
	Selenium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	121
	Silicon in rocks, stream sediments, mine spoil and associated materials, soils, and plants	124
	Silver in rocks, soils, and plants	126
	Sodium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	127
	Strontium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	130
	Sulfur (total) in rocks, stream sediments, mine spoil and associated materials, soils, and plants	133
	Terbium in soils	136
	Thorium in rocks, stream sediments, mine spoil and associated materials, and soils	136
	Thulium in rocks and soils	138
	Tin in rocks, stream sediments, mine spoil and associated materials, and soils	138
	Titanium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	140
	Uranium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	143
	Vanadium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	145
	Ytterbium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	148
60.	Yttrium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	151

CONTENTS

	Page
TABLE 61. Zinc in rocks, stream sediments, mine spoil and associated materials, soils, and plants	153
62. Zirconium in rocks, stream sediments, mine spoil and associated materials, soils, and plants	156
63. Parameters measured in extraction studies of soils from San Juan Basin, N. Mex	160
64. Parameters measured in extraction studies of soil from the Sheppard-Shiprock-Doak soil Association, San Jua	n
Basin which is likely to be used as topsoil in mined-land reclamation.	161
65. Parameters measured in extraction studies of soils and mine spoil from San Juan mine, New Mexico	163
66. Elements measured in DTPA extracts of soils from the unglaciated area of the northern Great Plains	165
67. pH determinations for rocks, stream sediments, mine spoil, and soils	165
68. Geochemical summary of ground water from North Dakota and Montana	166
69. Geochemical summary of ground water from Poplar River basin, Saskatchewan and Montana	167
70. Geochemical summary of ground water from the Powder River coal region, Montana and Wyoming	168
71. Shale-outcrop mineralogy, Fort Union Formation, northern Great Plains	169
72. Sandstone-outcrop mineralogy, Fort Union Formation, northern Great Plains	170
73. Mineralogy of fine-grained rocks cored from the Fort Union Formation, northern Great Plains	170
74. Mineralogy of three rock types from drill cores at the Hanging Woman Creek site, Big Horn County, Montana	170
75. Mineralogy of stream sediments from the northern Great Plains	172
76. Mineralogy of soils used in extraction studies, northern Great Plains	172
77. Mineralogy of soils from Hanging Woman Creek, Montana	173

V

STATISTICAL STUDIES IN FIELD GEOCHEMISTRY

GEOCHEMISTRY OF SOME ROCKS, MINE SPOILS, STREAM SEDIMENTS, SOILS, PLANTS, AND WATERS IN THE WESTERN ENERGY REGION OF THE CONTERMINOUS UNITED STATES

By RICHARD J. EBENS AND HANSFORD T. SHACKLETTE

ABSTRACT

Geochemical summary statistics for 59 elements in rocks, soils, stream sediments, mine tailings, and native and cultivated plants are given for 25 study areas having important deposits of coal or oil shale. Each study area is briefly described as to location, study objectives, and kind of material sampled, and references are given to published reports of the study. The concentrations of elements in the sampling media are given for suites of samples as summary data that include detection ratios, means, deviations, laboratory error, and observed ranges of concentration. Studies of certain elements in soils that exist in forms available to plants were conducted using several extraction procedures, and element concentrations as well as other parameters of the extracts were determined. The concentrations of as many as 40 elements were determined in samples of surface waters, in addition to the gross alpha and beta counts, and measurements of alkalinity, dissolved solids, hardness, pH, sodiumadsorption ratios, and specific conductance of these samples. The mineralogy is summarized for outcrop samples of shale and sandstone; of core samples of fine-grained rocks, sandstone, siltstone plus shale, and dark shale; of stream sediments; and of soils used in extraction studies. This report emphasizes changes in the geochemical environment that have accompanied coal mining in arid regions and suggests, through estimates of background element abundances, the geochemical effects to be expected in areas not yet mined. The elements in plants that grow on mine spoil and reclaimed soil of mined areas indicate that care should be taken to insure proper utilization of these areas.

INTRODUCTION

The necessity of increasing domestic energy production in the United States led to greater exploitation of fossil fuels in the 1970's, particularly in some of the Western States. In such exploitation, a wide range of environmental effects was inevitable, and studies of the known or anticipated landscape changes that would attend mining operations were begun by many State and Federal agencies. One effect believed certain to follow these operations was an alteration of the geochemical environment in or near the disturbed areas. Data on the geochemical regimes that existed before disturbances occurred at the mining sites—that is, background geochemistry—are important for identifying and evaluating the changes that occur during mining and landscape restoration.

During the last two decades the U.S. Geological Survev has investigated landscape geochemistry in order to estimate natural background concentrations of elements in rocks, soils, and plants. Some studies were "large-scale" or national, such as one in which the concentrations of a large number of chemical elements were determined in surficial materials over the United States that were but little altered from their natural condition (Shacklette and others, 1970). Other geochemical investigations concerned particular areas of the country. One concerted study was made of the State of Missouri, in which the background geochemistry of rocks, soils, plants, and waters was determined (Miesch, 1976; Tidball, 1976; Erdman and others, 1976a and 1976b; Feder, 1979; Connor and Ebens, 1980 and Ebens and Conner, 1980). Tourtelot (1973) studied soil geochemistry of the Front Range Urban Corridor, Colo. Other studies were centered on small areas exhibiting geochemically related environmental problems, or were of cultivated soils and plants considered to be normal if not natural (Shacklette and others, 1970; Connor and others, 1971; Ebens and others, 1973; and Erdman and others, 1976b). Data from these studies, insofar as they represented natural or normal geochemical environments, were summarized in a geochemical compilation of landscape units of the conterminous United States (Connor and Shacklette, 1975). Geochemical summaries were published for fruits and vegetables and their associated soils from 11 areas of commercial production in the United States (Shacklette, 1980).

By building on these baseline studies and the experience in sampling and data analysis gained in their accomplishment, studies that concentrated on the geochemistry of the western energy regions were begun in 1973. These studies focused on areas where surface or underground mines for coal and oil shale were scheduled or were likely, as well as on the geochemical effects on the environment of existing coal mines and coal-fired plants that generated electricity. The investigations in areas where mining had not yet begun were essentially regional background studies that included the geochemistry of rocks and soils likely to be disturbed during mining and of native plants, stream sediments, and surface waters. Studies conducted around existing mines and power plants were more restricted in area; they investigated the effects on the geochemistry of soils, native plants, and surface waters by land-surface disturbances, stack emissions, fly ash, and mine spoil. Reclaimed land that consisted largely of spoil material was examined to identify changes in the element content of native plants and cultivated crops, and to measure the availability of chemical elements in the soil that might lead to levels of accumulation by plants that would affect the health of both plants and the animals that eat the plants. Details of these studies were described in a series of limited-distribution annual progress reports (U.S. Geological Survey, 1974a, 1975, 1976, 1977, 1978) and in many journal and conference publications.

Although these studies were in widely scattered areas and concerned many different kinds of materials, they were unified by some common characteristics: All studies followed well-defined sampling plans designed to clearly identify the sample populations and to reduce sampling bias. The samples were submitted in a randomized order that was unknown to the analysts and were analyzed in that order so that the effects of laboratory bias or analytical drift on interpretation of the data could be circumvented. The interpretation of results of all studies was based on rigorous statistical analysis of the chemical data.

The present report gives, in summary form, the results of these studies of the Western Coal Region, which were conducted over a period of 7 years; it parallels in scope, format, and data presentation the earlier publication of geochemical summaries by Connor and Shacklette (1975).

ACKNOWLEDGEMENTS

The accomplishment of the studies described in this report depended on the assistance and cooperation of many other persons and organizations. Permission to

conduct studies on private property by land owners, mining and power plant companies, and tribal councils was essential and was greatly appreciated. The assistance of many State and Federal agencies in providing guidance and advice on field studies was also of great value. Within our own organization, the services of computer programmers, specialists in data handling, and assistants in the field, laboratory, and office were invaluable. Special acknowledgment and appreciation are extended to the chemists, spectrographers, and other laboratory personnel who catalogued and prepared the samples and measured element concentrations in the many kinds of materials collected in these studies. They are James W. Baker, P. R. Barnet, A. J. Bartel, B. L. Bolton, Leon A. Bradley, E. L. Brandt, P. H. Briggs, William Cary, J. G. Crock, Isabelle Davidson, J. J. Dickson, Andrew Drenick, C. M. Ellis, Jeffrey England, I.C. Frost, Johnnie M. Gardner, Carol Gent, Michele Goff, Patricia G. Guest, J.C. Hamilton, Thelma F. Harms, Raymond G. Havens, J. P. Hemining, Kathryn E. Horan, Claude Huffman, Jr., J.O. Johnson, R.J. Knite, Lorraine Lee, R.M. Lemert, Fred E. Lichte, M. J. Malcolm, J. C. McDade, C. McFee, R. E. McGregor, Violet M. Merritt, H. T. Millard, Jr., Wayne Mountjoy, Harriet G. Nieman, M. Panter, Clara S.E. Papp, Farris D. Perez, S.E. Prelipp, G. O. Riddle, Van E. Shaw, George D. Shipley, V. Smith, M. W. Solt, Arthur L. Sutton, Jr., James A. Thomas, Michele L. Tuttle, Richard E. Van Loenen, R. J. Vinnola, James S. Wahlberg, W. J. Walz, R. J. White, and Thomas L. Yager.

METHODS OF STUDY

OBJECTIVES

The studies described in this report were planned to investigate the geochemical character of the rocks. soils, stream sediments, native plants, and surface waters at representative locations overlying major coal and oil shale resources of the northern Great Plains and Rocky Mountain Provinces. (figs. 1 and 4). By selecting areas for study in which coal mines were operating, or locations where future mining of coal or oil shale was probable, the current geochemical impact of these operations could be measured, and the probable effects of mining at new locations could be estimated. An objective that also influenced the selection of studies to be undertaken was estimation of geochemical baselines applicable to large areas in these provinces, as well as in contiguous provinces lying to the west (fig. 15), where changes in the geochemical environment attributable to energy resources develop-

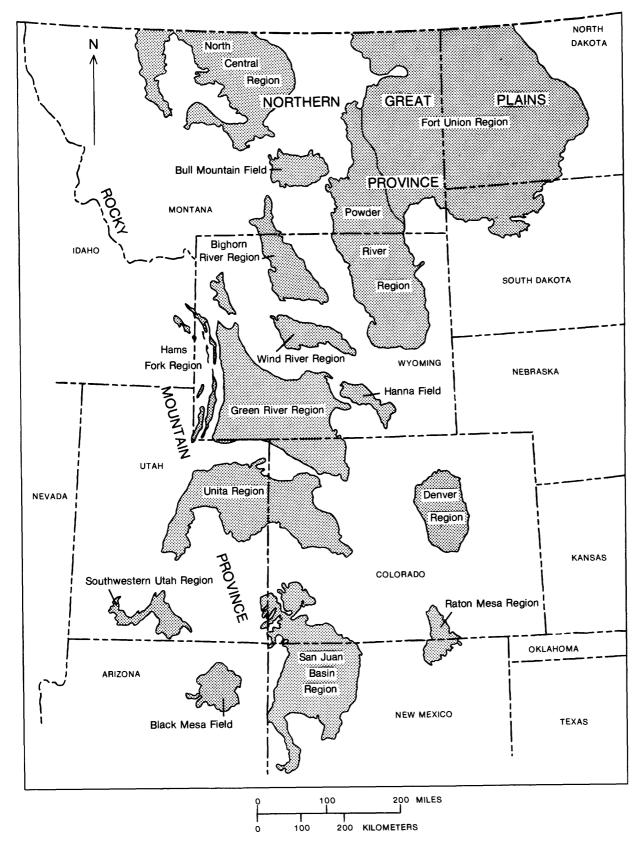


FIGURE 1.-Major coal resources of the northern Great Plains Province and the Rocky Mountain Province, Western United States. Map modified from Trumbull (1960) and U.S. Geological Survey (1970).

ment may be expected. A further objective was the unification of methodology in sampling, chemical analysis, and statistical interpretation of data for the diverse types of sampling media so that coordinated evaluations of the geochemical attributes of these provinces could be made.

COLLECTION PROCEDURES

Sampling in most studies was based on a design intended to quantify the effects of "regional" variation and the factors underlying such variation by collecting samples following hierarchical designs. By this method sample sites were "nested" at various geographic scales in order to assess the proportion of geochemical variation exhibited at each scale. Krumbein and Slack (1956) discussed in detail such designs and the requisite mathematics. In some studies, especially those in which the geochemical effects of interest originated at a point source such as a mine or power plant, samples were collected at randomly selected sites, or at sites of geometrically increasing distances from the point source. In studies of rock cores, some samples were made of the core at uniform distances within the sections of interest, others at geometrically decreasing levels in the formation. The particular sampling design used for each field study is given under the description of that study in the following section.

Sample collection procedures in the field generally were consistent for each kind of material that was sampled. Outcrop samples of rock weighing a few kilograms were collected from natural as well as artificial exposures; they were trimmed in the field or laboratory to remove visible weathering rinds and surface effects. Each stream-sediment sample was a composite of five to six grab samples at a site and consisted of fine particles taken from the beds of flowing streams or from dry streambeds, taking care to avoid material from the streambanks. Soil samples of about 1 kg each were collected from various soil horizons, depending on objectives of the study, using soil augers or spades. Rock particles larger than 2 mm were removed by hand sorting in the field or while soil was being pulverized in a ceramic mortar. Plant sampling was of two main types: by species of plant, or plant biomass. In the first type, a sample consisted of various parts of a single species collected from one or more individual plants. In biomass sampling, the above-ground parts of all plants of various species that grew in a quadrat were clipped near ground level and composited as one sample. If the plants were excessively contaminated with dust, the samples were washed in distilled water. The part of the

plant that was collected depended on the objectives of the study; generally, the terminal part of woody plants, which included several years of stem growth, and the above-ground parts of forbs and grasses were collected. Cereal grains were sampled from farm storage bins by using a grain probe, which provided a composite sample of grain that had been harvested from many hectares. All water samples were collected from wells, following procedures described by Skougstad and Feder (1976).

DESCRIPTIONS OF FIELD STUDIES

The locations of the individual field studies on which the data in this report are based are shown in figures 2-16. They are briefly described below by the principal investigators who provided the data given in tables 3-77.

STUDY NO.1

Shale and sandstone of the Fort Union Formation in the Northern Great Plains By Richard J. Ebens and James M. McNeal

A suite of shale and sandstone samples was collected from outcrops of the Fort Union Formation throughout the northern Great Plains Coal Province during the summer of 1975 for chemical and mineralogical studies. Samples were collected according to a staggered, nested, analysis-of-variance design (Leone and others, 1968). Sampling localities are shown in figure 2; each consists of a randomly selected outcrop of the Fort Union Formation within a 5-km cell. At 12 of the 48 localities shown, two samples of each rock type (shale and sandstone) were collected from a stratigraphic section in order to estimate stratigraphic variability. Geographic variability was estimated by nesting 5-km cells within 25-km cells, 25-km cells within 50-km cells, 50-km cells within 100-km cells, and 100-km cells within 200-km cells. Laboratory error was estimated by splitting 20 of the 60 samples into two parts, resulting in a total analytical load of 80 samples. The two sample groups, shale and sandstone, were each submitted to the laboratories in randomized sequence. Each sample was crushed in a jaw crusher and then ground in a vertical Braun pulverizer with ceramic plates set to pass 100 mesh. Preliminary chemical results of this work were published in Ebens and McNeal (1976, 1977), and preliminary mineralogical studies of the shale were published in McNeal and Ebens (1978). The shale mineralogy is given in table 71, and the sandstone mineralogy in table 72.

METHODS OF STUDY

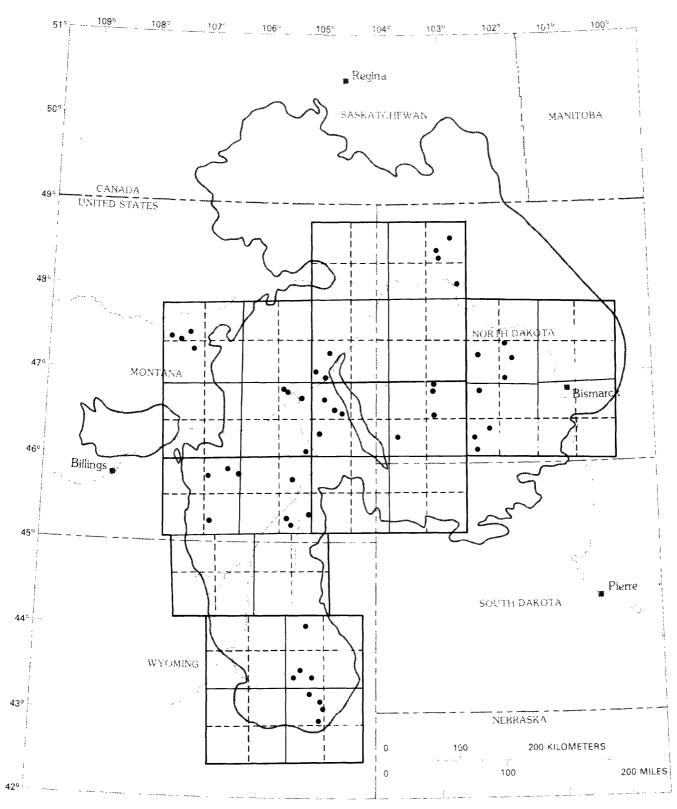


FIGURE 2.—Sampling localities of shale and sandstone of the Fort Union Formation in the northern Great Plains Coal Province used in Study No. 1. Large squares are 200 km on a side (heavy solid line); intermediate squares, 100 km (light solid line); and smaller squares, 50 km (dashed lines). Dots indicate sampling localities. Map modified from Whitaker and Pearson (1972) and U.S. Geological Survey (1974b).

GEOCHEMISTRY IN THE WESTERN ENERGY REGION OF THE CONTERMINOUS UNITED STATES

STUDY NO. 2

Chemical and mineralogical analyses of core samples from Hanging Woman Creek, Montana By Todd K. Hinkley and Richard J. Ebens

Cored overburden rock of the Fort Union Formation at the Hanging Woman Creek potential coal mine site, Big Horn County, Mont., was collected in 1976-77 and was analyzed for bulk chemistry and mineralogy (fig 3). Cores (size "NX") from the five holes, drilled through all overburden and the thick Anderson coal (one deeper hole was drilled through the lower Dietz coal), ranged in length from 130 to 260 ft (40 to 80 m). Holes were spaced so that the minimum and maximum distances between holes were about 1 km and 4 km, respectively. Four samples of each of three rock types were taken from four of the holes, and some "special" samples were taken from all five holes. The following rock types were sampled: (1) sandstone, (2) siltstone and shale, and (3) very dark colored or black shale. This classification was chosen because the three groups were expected to be chemically and mineralogically distinct. Results of this study were reported by Hinkley and others, (1978). The pH determinations for these core samples are given in table 67, and the mineralogy is given in table 74.

STUDY NO. 3

Geochemistry of fine-grained rocks in cores of the Fort Union Formation By Todd K. Hinkley and Richard J. Ebens

Samples were taken in 1976 from each of five widely separated sites (≥50 km): two in southeastern Montana, two in southwestern North Dakota, and one in southeastern Saskatchewan (fig. 3). Four rock samples were taken at each site from each of two drill holes that were separated by 1-2 km. The samples taken from each core were separated by a vertical distance of 0-100 m, and each sample consisted of 30 cm of a homogeneous stratum of shale or mudstone. Only three samples were collected from each of the two drill holes at Estevan. Saskatchewan, because of the paucity of fine-grained horizons in these cores. In all, 38 samples were collected. Twelve samples were split and submitted in duplicate to estimate analytical precision, as distinct from geographical variability, bringing the number of samples to 50. All samples were analyzed in a randomized sequence. Results of this study were reported by Hinkley and Ebens (1977). The mineralogy of these rock samples is given in table 73.

STUDY NO. 4

Geochemistry of sandstones from the Fort Union Formation, Northern Great Plains

By James R. Herring, Todd K. Hinkley, and Richard J. Ebens

Localities, sites, and sample design used for this study, which was conducted in 1976, are the same as those of Study No. 3, except that no samples were taken from Saskatchewan (fig. 3). Therefore, four samples were taken from each hole of a pair at four sites. Ten of the samples, split into duplicates, provided a measure of analytical precision. The total of 42 samples was analyzed in a random sequence. Each sample consisted of a section, 30 cm in length, of a relatively homogeneous sandstone. The pH determinations for these core samples are given in table 67.

STUDY NO. 5

Geochemistry of an oil shale core, Piceance Creek Basin, Colorado By Walter E. Dean

U.S. Geological Survey oil shale core CR-2 was drilled in the northern part of the Piceance Creek Basin, in the southeast corner of T. 1 N., R. 97 W. (fig. 4). Chemical analyses of the core were obtained in three stages over a period of about 3 years (1976-79). The lower 300 m of the core is in the Garden Gulch Member, which is the oldest lithologic unit of the Eocene Green River Formation in the Piceance Creek Basin of western Colorado. The Garden Gulch Member contains more clay and less carbonate, and generally has lower oil yields than does the overlying Parachute Creek Member that forms the main body of the Green River Formation. Samples of the Garden Gulch Member in CR-2 core were collected at approximately 0.3-m intervals, crushed, and homogenized for oil-yield determinations and chemical analyses. Each analysis, therefore, represents an average for the 0.3-m sample interval. Concentrations of Al, Fe, Mg, Ca, K, Ti, B, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sc, Sr, V, Yb, and Zr were measured by semiquantitative optical emission spectroscopy in 264 samples. More complete quantitative analyses were also obtained for Si, Al, Fe, Mg, Ca, Na, K, Ti, S, Li, Rb, Hg, U, and Th in 32 of the samples, representing approximately every tenth 0.3-m sample from the Garden Gulch Member.

The interval between about 230 and 320 m in the CR-2 core contains the so-called Mallogany zone of the Parachute Creek Member of the Green River Formation, which is the part of this formation that is richest

METHODS OF STUDY

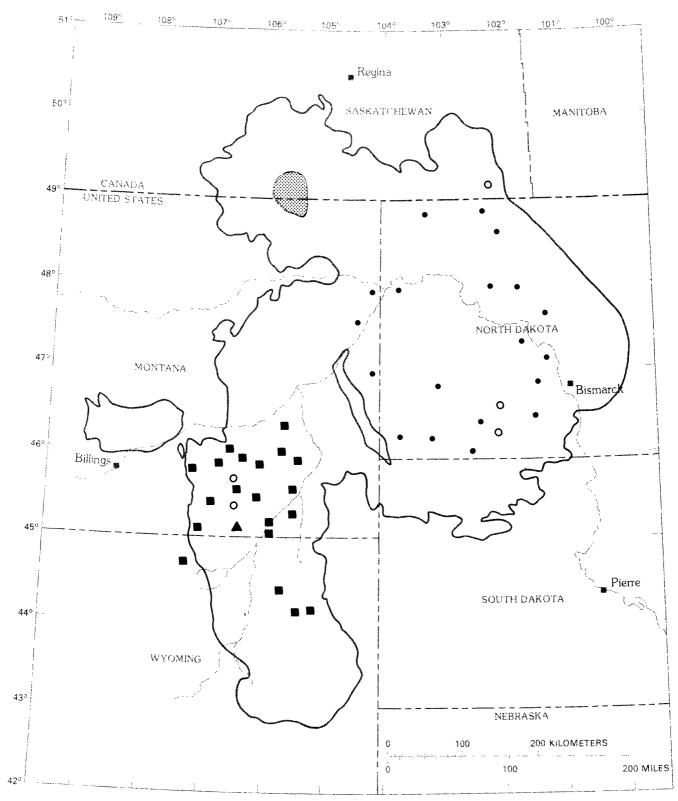


FIGURE 3-Rock core and ground-water sampling localities in the northern Great Plains Coal Province. Fine-grained rock and sandstone localities are indicated by open circles (Studies No. 3 and 4). The location of Hanging Woman Creek, where overburden rocks (Study No. 2) and soils (Study No. 14) were sampled, is indicated by a triangle. Ground-water sampling locations in Fort Union coal region (Study No. 25) are indicated by squares, and in the Powder River coal region (Study No. 28), by solid circles. The patterned area is the Poplar River Basin (Study No. 27). Parameters measured for water samples are given in tables 68-70.

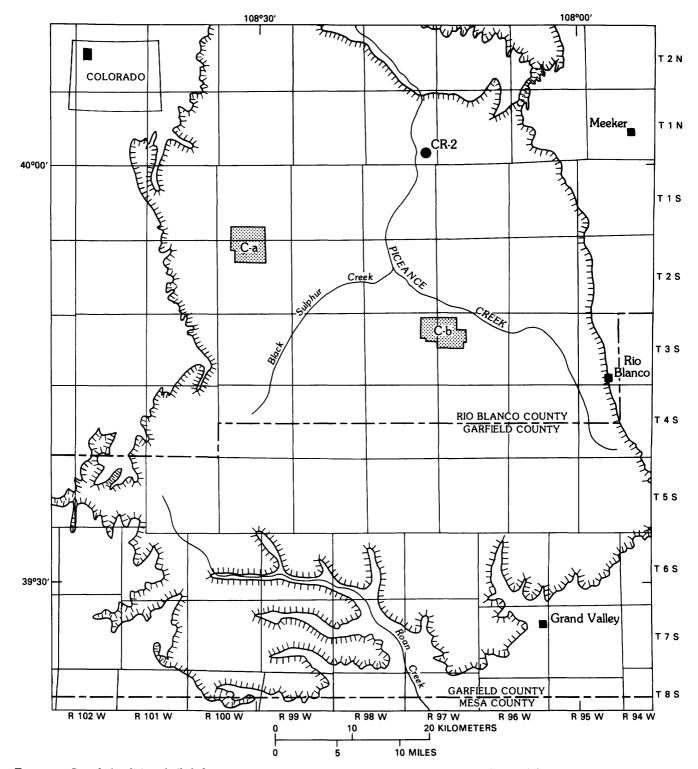


FIGURE 4-Sample localities of oil-shale-core (CR-2, Study No. 5), stream-sediment (Roan and Black Sulphur Creeks, Study No. 9), and soil (C-a and C-b, Study No. 15) samples in the Piceance Creek Basin, Colorado. Hachured line enclosed Piceance Creek Basin.

in oil. A total of 74 samples was collected within this 90-m interval according to a nested analysis-of-variance design. The 90-m interval was subdivided into three 30-m intervals, each 30-m interval was subdivided into ten 3-m intervals, and each 3-m interval was subdivided into ten 0.3-m intervals. From each 30-m interval, two 0.3-m samples (the first and sixth) were collected from each of the ten 3-m intervals. Each of the 0.3-m samples was crushed and homogenized for analysis in the same manner as were the 0.3-m samples from the Garden Gulch Member. Every fifth sample was replicated in analysis in order to determine the analytical variance.

The 300-m interval between the bottom of the Mahogany zone and the top of the Garden Gulch Member in the CR-2 core contains most of the Parachute Creek Member of the Green River Formation. This interval also contains the saline facies of the Parachute Creek Member, as indicated by the presence of the evaporite minerals nahcolite and dawsonite. The middle 300 m was also sampled according to a nested analysis-ofvariance design in order to examine geochemical variability at the 30-, 3-, and 0.3-m levels. The same basic design used for the Mahogany zone was used for the middle 300 m except that two 0.3-m samples were collected from only two (first and sixth) of the ten 3-m intervals. This design resulted in the collection of 53 samples for analysis (including analytical replicates).

STUDY NO. 6

Stream-sediment chemistry in the northern Great Plains By James M. McNeal

The objectives of this study, made in 1975, were (1) to determine if stream order and size of drainage basin are important parameters in defining different populations of sediments, and (2) to determine the magnitude of the regional geochemical variability of the sediments. To this end, data were analyzed in two analysisof-variance designs. Three target populations were defined-sediments in first-, second-, and third-order streams-as shown on 1:1,000,000-scale topographic maps. A first-order stream is an upstream, unbranched stream segment, a second-order stream extends downstream from the junction of two first-order streams. and a third-order stream extends downstream from the junction of two second-order streams (Strahler, 1969, p. 483). Streams larger than third order were not studied because they were too few in number. In addition to stream order, the size of the drainage basin above each sampling locality was measured in order to investigate its relationship to the element content of the sediment.

Ten randomly selected 50-Km² areas were chosen from a total of 15 in the northern Great Plains that contained at least two streams of each of the three stream orders of interest (fig. 5). Two streams of each of three orders were then randomly selected. Further, one stream of each order was randomly selected and a second sample was taken approximately 100 m upstream from the first. In order to reduce the sampling error, all samples were composited from five to six grab samples, depending on the size of the stream. All localities were sampled as near the junction of the target stream and a stream of the next highest order as was possible, while at the same time remaining above the region of influence of the larger stream during flood conditions. Results of this study were reported by McNeal (1976). The pH determinations for these sediments are given in table 67, and the mineralogy is given in table 75.

STUDY NO. 7

Chemistry of Powder River sediments By James M. McNeal, John R. Keith, Barbara M. Anderson, and Josephine G. Boerngen

As part of a general effort to chemically characterize the landscape of the Powder River Basin, Wyoming and Montana, samples of Powder River stream sediments were collected in 1973 according to a nested analysis-of-variance sampling design (fig. 5). The length of the river across the basin was subdivided into six segments. In each segment, two localities were selected randomly, each locality being about the size of a section (1.6 km on a side). The objective was to reach the river somewhere within each locality and randomly collect two samples of the "active" sediment from a transect across the river bottom. In practice, the transect reached only to the edge of running water on the side from which the river was approached. The levels in this design reflect geochemical variation (1) between supertownships. (2) between transects within supertownships, (3) between samples within transects, and (4) between analyses of sample splits. In general, the two samples from each transect were located about 25-100 m apart. Each sample was collected by shovel, placed in a cloth bag, and dried in the laboratory if necessary before processing. Each sample was disaggregated and passed through a 2-mm sieve. The < 2-mm fraction was further sieved into four size fractions: $>200 \ \mu m$, 100-200 μm , 63-100 μm , and <63 μm . Fifteen of the resulting 96 samples were randomly selected and split into two parts, and the entire suite of 111 samples was submitted for analysis in a randomized sequence. The results of this study were reported in Keith and others (1976).

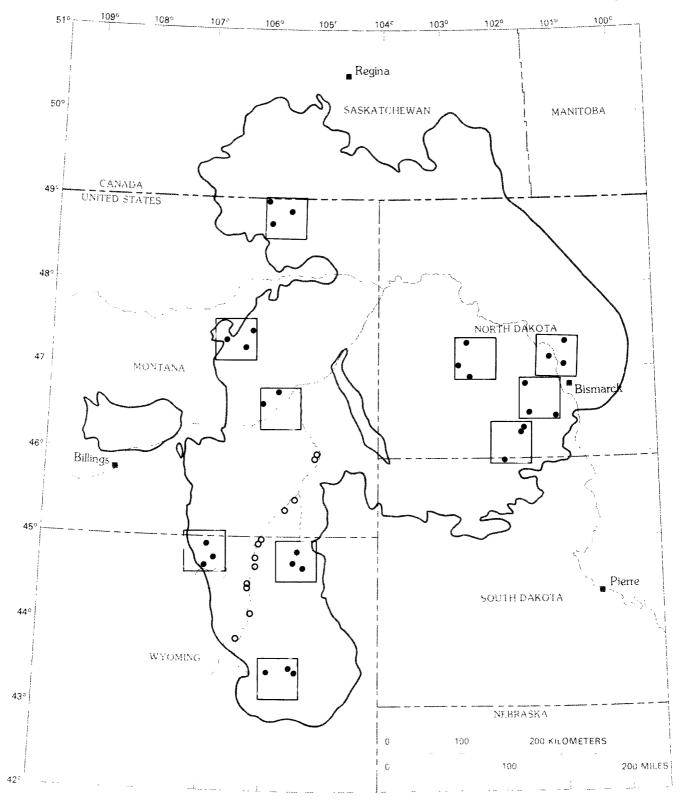


FIGURE 5-Stream-sediment sampling localities in selected areas of the northern Great Plains Coal Province (solid circles in 50-km² areas), and along the Powder River (open circles, Study No. 7).

Stream-sediment chemistry of the Uinta and Piceance Creek Basins, Utah and Colorado By James M. McNeal and Gerald L. Feder

In this study two drainages in the Uinta Basin (Cottonwood Wash and Asphalt Wash) and two in the Piceance Creek Basin (Ryan Gulch and Duck Creek) were selected for sampling in 1975 (fig. 6). Each of the four stream drainages may undergo change in stream flow and sediment yield related to oil-shale mining and processing. In order to characterize each stream, eight samples were collected: three samples from random sites within three intervals of equal length along the main channel of the named stream, and five additional samples above alluvial fans at the mouths of five randomly selected tributaries entering the main stream. The resulting data were examined by a nested analysis-of-variance design containing four levels. The top level reflects differences between the two major basins (Uinta and Piceance Creek Basins); the second level reflects differences among the paired drainages within each basin; the third level reflects differences among the eight samples taken within each of the four drainages; and the lowest level reflects differences among splits of the randomly selected samples. All samples were collected from dry stream channels in areas where fine sediments had accumulated. At each locality approximately 2 kg of sediment were composited from material taken at 7 - 10 sites within 20 m of each other and at depths of no more than 3 cm. The samples were air dried at 40°, then sieved through a $150-\mu m$ stainless steel screen. Results of this study were reported by McNeal, and others (1976).

STUDY NO. 9

Geochemical variability of sediments from two streams in the Piceance Creek Basin, Colorado

By James M. McNeal, Charles D. Ringrose, and Ronald W. Klusman

This study, made in 1975, was largely aimed at quantifying the major scales of geochemical variability in sediments along two selected streams in the Piceance Creek Basin. Sediment sampling followed a six-level, nested, analysis-of-variance design. The six levels define components of geochemical variability (1) between streams, (2) between 10-km intervals, (3) between 1-km intervals, (4) between 200-m intervals, and (5) between 20-m intervals, and (6) define analytical error. The two streams chosen at the top level were Roan Creek, which flows from east to west in the

southern part of the basin, and Black Sulphur Creek, which flows from north to south in the central part of the basin (fig. 4). The Roan Creek drainage crosses exposures of the lower Uinta Formation, all of the Green River Formation, and the upper Wasatch Formation. Black Sulphur Creek lies mostly in the upper Green River and the lower Uinta Formations. Two major sampling localities separated by 10 km were selected on each stream. The design was geographically balanced: in each locality two stream segments 200 m in length were randomly selected about 1 km apart. In each 200-m length, two segments about 20 m long were randomly selected, and in each 20-m segment, two sampling sites were randomly chosen. Ten samples of the 32 collected were randomly selected for duplicate analysis, and all 42 samples were placed in a random order prior to chemical analysis. Results of this study were reported by McNeal, and others (1976).

STUDY NO. 10

Sweetclover and associated spoil materials from selected coal mines in the northern Great Plains By Richard J. Ebens and James A. Erdman

Samples of sweetclover and associated soil or spoil, or both, were collected during late summer of 1974 from 10 randomly selected sites at each of eight surface mines scattered throughout the northern Great Plains (fig. 7). In addition, three samples of alfalfa were taken from each of five mines. A sample of spoil material or a spoil-soil mixture was collected to a depth of about 20 cm. The sweetclover and alfalfa samples consisted of the above-ground portion of plants growing within 1 m of the spoil sample. Spoil materials at all mines consist of claystone and siltstone with lesser amounts of sandstone, shale, and coal of the Fort Union Formation. Glacial deposits consisting of gravel, sand, silt, and clay are important spoil materials at all mines except the Big Sky, Dave Johnston, and Hidden Valley mines. No shaping or topsoiling of the area where we sampled had been done at the Beulah North, Hidden Valley, Kincaid, and Utility mines. The Big Sky, Dave Johnston, Savage, and Velva mines were contoured and topsoiled where we sampled. Detailed descriptions of these mines are given by Erdman and Ebens (1975), Evans, Uhleman, and Eby (1978), and U.S. Environmental Protection Agency (1976). Results of this study were reported by Erdman and Ebens (1975), Erdman, Ebens, and Case (1978), and Erdman (1978). The pH determinations for these samples of mine spoil are given in table 67.



FIGURE 6—Drainage basins in which stream sediments were sampled (shaded areas, Study No. 8), and third-order watersheds in which alluvial soils were sampled (dashed lines, Study No. 12) in the Piceance Creek and Uinta Basins, Utah and Colorado (solid lines). Map modified from Oetking and others, 1967.

STUDY NO. 11

Soils, mine spoils, and native plants at the San Juan Mine, New Mexico By Larry P. Gough and Ronald C. Severson

Samples of mine spoil, replaced topsoil, alkali sacaton (Sporobolus airoides), and fourwing saltbush (Atriplex canescens) were collected in August 1977 at the San Juan mine, located in the San Juan Basin 30 km northwest of Farmington, N. Mex. (fig. 8). Samples were collected at six randomly selected sites from an area of about 5 ha, on the basis of an unbalanced, nested, analysis-of-variance design. The area had been recontoured, topsoiled to a depth of about 20 cm, and seeded in 1974. Alkali sacaton samples consisted of the stems and leaves, usually of one grass clump, whereas the fourwing saltbush samples consisted of the young, terminal, 20- to 30-cm portion of stems (with leaves), usually from one shrub. Because alkali sacaton samples were judged to be excessively contaminated with

dust, they were washed prior to chemical analysis. The purpose of this study was to quantify the variation in the element concentration of soils, mine spoils, and plant species used for revegetation at geographic scales of 100 m. 25 m. and 5 m. as well as variation due to analytical methods. This study represents a preliminary examination of both the total and extractable chemical composition of replaced topsoil and mine spoil, as well as the chemical composition of selected plants re-established on these substrates. These data may be compared with our observed concentration means and ranges for elements in similar materials collected from undisturbed sites in the San Juan Basin. (See Study No. 19.) The element content of Atriplex that grew under natural conditions and on mine-reclaimed land was given by Gough and Severson (1980), and the chemical character of soil useful for mine-land reclamation in the San Juan Basin was described by Severson (1981). Parameters measured in extraction studies of

these soils and mine spoils are given in table 65, and pH determinations are given in table 67.

STUDY NO. 12

Alluvial soils of the Piceance Creek and Uinta Basins By Ronald R. Tidball and Ronald C. Severson

Alluvial soils of several randomly selected watersheds within the Piceance Creek Basin, Colo., and the adjacent Uinta Basin, Utah (fig. 6), were sampled in 1975 and analyzed for total chemical composition to estimate (1) the magnitude and distribution of the variance, (2) any significant differences between watersheds, and (3) any significant differences within watersheds. A two-way factorial design (watersheds versus stream order) of the randomized-blocks type that included replication in each block was used. Channel samples of soil 0-40 cm in depth were collected from

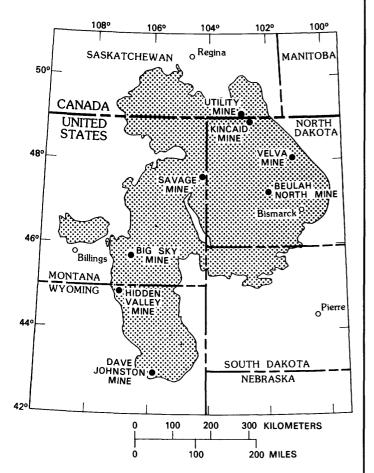


FIGURE 7.—Sampling localities for sweetclover and associated mine spoil material in the coal region, northern Great Plains (Study No. 10). Crested wheatgrass that grew on mine spoil was sampled at the Dave Johnston mine (Study No. 26).

three stream orders within each of five watersheds. The analytical error was estimated from duplicate analyses of 15 samples that were randomly dispersed in the sample set. Chemical analysis was done on the < 2-mm fraction of soil. The study was described by Tidball and Severson (1977).

STUDY NO. 13

Soils of the Powder River Basin, Wyoming and Montana By Ronald R. Tidball and Richard J. Ebens

A reconnaissance-type survey of soil composition in the Powder River Basin in Wyoming and Montana was made in 1973 to estimate the magnitude and distribution of variance in these soils (fig. 9). Sample sites were selected in accordance with four barbell clusters located within each of four nearly equal quadrants. Channel samples were collected from the surface horizon (0-2 cm in depth), the B horizon (or a depth of 30-40 cm), and the C horizon (or soil parent material at 110- to 120-cm in depth) at each of 64 sites. Components of variance were estimated over distance intervals of 0-0.01 km, 0.01-1 km, 0.1-1 km, 1-10 km, and greater than 10 km. Total chemical analysis was done on the < 2 mm fraction. Analytical error was estimated from 47 duplicate analyses that were randomly distributed throughout the sample set. An account of this study was given by Tidball and Ebens (1976). The pH determinations of these soil samples are given in table 67.

STUDY NO. 14

Chemical and mineralogical evaluation of soils, Hanging Woman Creek, Montana By Ronald R. Tidball

The study area is one of the U.S. Bureau of Land Management's Energy Mineral Rehabilitation Inventory and Analysis (EMRIA) sites where significant deposits of federally owned coal occur. The site is located in Big Horn County, Mont. (fig. 3). Soil samples were collected in 1975 from representative soil groups according to a hierarchical analysis-of-variance design. Channel samples of the A, or A plus B, horizon and of the C horizon from about 60- to 80-cm in depth were collected from four random sites within each of four soil groups. Total chemical composition was determined on the < 2-mm fraction of soil; each sample is a composite of corresponding horizons from two nearby profiles. The analytical error was estimated from eight randomly selected samples of the A horizon and eight samples of the C horizon. This study was described by Tidball (1978). The pH determinations of these soil samples are given in table 67, and the mineralogy is given in table 77.

STUDY NO. 15

Soils of the Piceance Creek Basin, western Colorado By Walter E. Dean, Charles D. Ringrose, and Ronald W. Klusman

The basic sampling for the study of soils in this basin, conducted in 1975 (fig. 4), was a partially unbal-

anced, nested, analysis-of-variance design. The highest geographic sampling level contained nine supertownships, each of which consisted of four adjacent townships. Within each of the 36 townships, two sections were chosen at random. Within one of these two sections, two samples of soil (A horizon, or the upper 10 cm where horizons were not developed) were collected at a distance of 100 m from each other. Only one sample was collected from the other section in each township, which made a total of three samples per township. The three samples within a township were

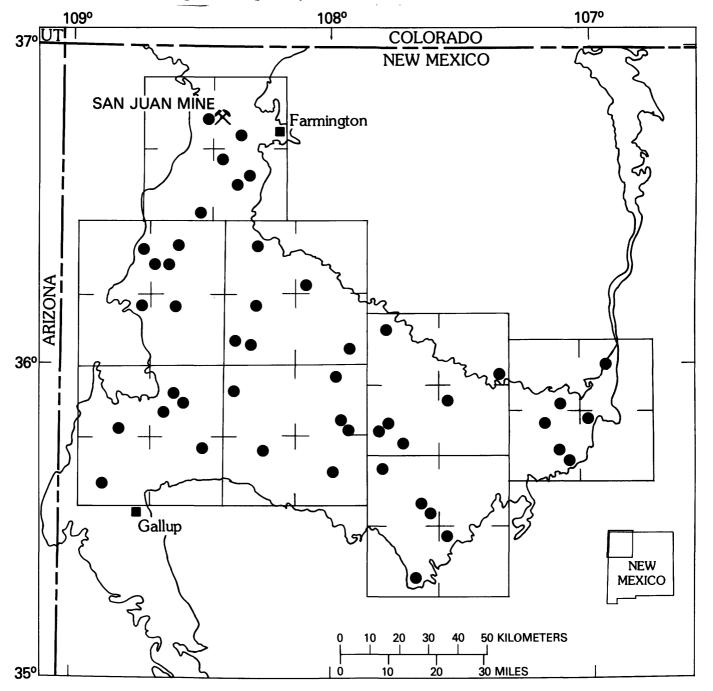


FIGURE 8.—Sampling localities (circles) within the San Juan Basin coal region, with the unbalanced, nested, analysis-of-variance sampling grid superimposed (solid line, 50 km²; dashed line, 25 km²). Soils were sampled at all locations. Study No. 11 and 19.

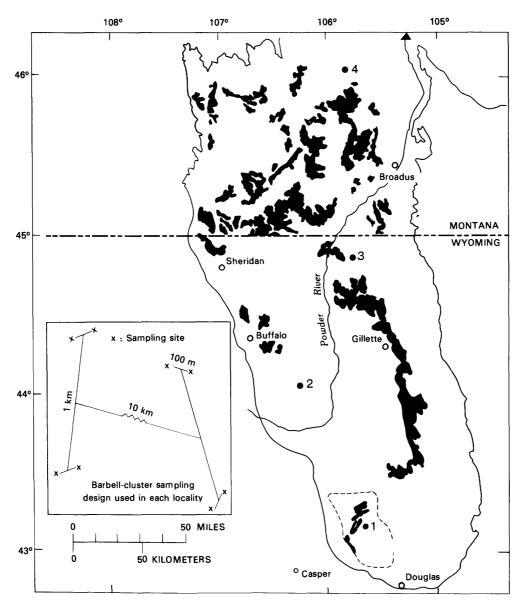


FIGURE 9.—Powder River Basin showing soil and lichen sampling localities (solid circles, numbered 1 to 4), each containing a 10-km barbell-cluster design. Channel samples of the surface horizon, the B horizon, and the C horizon of soils were collected at each of 64 sites (Study No. 13). Composite samples of a lichen were collected, where possible, at each of eight sites within a cluster (Study No. 22). Patterned areas indicated known strippable coal reserves (modified from U.S. Geological Survey, 1974c). Dashed line indicates outline of the Southern Powder River basin uranium district.

collected either from ridgetops or valley bottoms, the sampling localities alternating according to a checkerboard design. The decision as to which of the two sections in each township would have two sampling locations and which would have only one was made by a flip of a coin. From the final suite of 108 samples, 32 were chosen at random to be replicated in analysis. All 140 samples (108 samples plus 32 duplicates) were ground in a ceramic mill to pass a 100-mesh (less than 149 μ m) sieve and were analyzed in a randomized sequence for 39 elements. The analytical design consisted of six levels: one physiographic (level 1, ridgetop and valley bottom); four geographic (level 2, supertownship; level 3, township; level 4, section; and

GEOCHEMISTRY IN THE WESTERN ENERGY REGION OF THE CONTERMINOUS UNITED STATES

level 5, the sample), and one analytical level (level 6, 32 duplicate analyses). Results of this study were published in Dean and others (1977, 1979).

STUDY NO. 16

Total soil chemistry, northern Great Plains By Ronald C. Severson and Ronald R. Tidball

This study, conducted in the fall of 1974, represents a broad-scale inventory of total chemical composition of the A and C horizons of soils of the coal regions in the northern Great Plains Province (fig. 10). Samples were collected randomly according to an unbalanced, nested, analysis-of-variance design which was used to quantify variation in total content of elements between glaciated and unglaciated terrains at four increasingly smaller scales (100 km, 50 km, 10 km, and 1 km), as well as variation due to sample preparation and analysis. Reliable maps were prepared, based on 100-km units, for calcium, potassium, and rubidium in A and C horizons of soils; for sodium, silicon, thorium, uranium, and zinc in A horizons; and for arsenic, calcium, germanium, and magnesium in C horizons. Results of this study were reported in Tidball and Severson (1975, 1976) and in Severson and Tidball (1977, 1979). In the present report, summary statistics for elements exhibiting significant differences between terrains are given for both glaciated and unglaciated terrains. Summary statistics for elements without significant differences in concentration between terrains are reported for the region as a whole.

STUDY NO. 17

Soil geochemistry of the Wind River and Big Horn Basins, Wyoming and Montana By Ronald C. Severson

A reconnaissance study of the element composition of soil (0- to 40-cm composite sample) was conducted in these basins in the fall of 1976 (fig. 11). Chemical variation between geologic units within a basin, within geologic units across different distances (25 km, 10 km, 5 km, and 1 km), and for sample preparation and analysis were estimated by collecting samples according to an unbalanced, nested, analysis-of-variance design. Summary statistics for element composition of the soils are reported for each basin as a whole. Results of this study were reported in Severson (1977, 1979).

STUDY NO. 18

Soils and native plants, northern Great Plains By Larry P. Gough, Ronald C. Severson, and James M. McNeal

Samples of A and C horizons of soils, western wheatgrass (Agropyron smithii), silver sagebrush

(Artemisia cana), and above-ground plant biomass were collected at 21 geochemically diverse sites in the northern Great Plains in the fall of 1976 (fig. 12). The purpose of the study was to examine functional relationships between element concentrations in native plants and supporting uncultivated soils over the unglaciated part of the northern Great Plains. A number

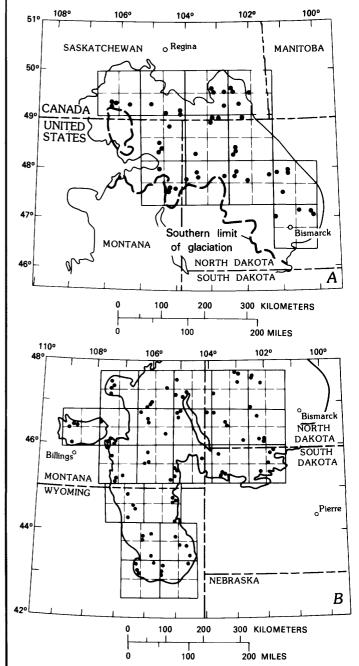


FIGURE 10.—Sampling localities (dots) in the coal regions of the northern Great Plains Province where samples of A and C soil horizons were collected. A, glaciated areas; B, unglaciated areas; large squares (solid lines) are 100 km on a side, smaller squares (dashed lines) are 50 km on a side. Study No. 16.

16

METHODS OF STUDY

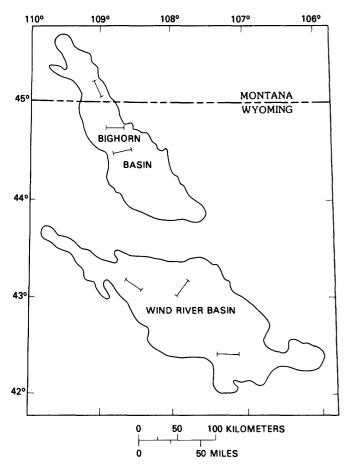


FIGURE 11.—Composite soil sampling localities (indicated by barbells) in the Bighorn and Wind River Basins. Study No. 17.

of different extracting agents for soils were used; however, only data for DTPA (0.005 M, pH 7.3) extractable elements are reported here. The soil samples consisted of the <1-cm material which was disaggregated to pass a 10-mesh sieve. Wheatgrass (aboveground parts) and sagebrush (terminal 20-30 cm of stems with leaves) samples consisted of a composite of material over about a 50-m² area. The biomass samples were composites of all above- ground plant material in a 3-m² area. Because the grass and biomass samples were judged to be excessively contaminated, they were washed prior to chemical analysis. These data provide an indication of the range in total and extractable element concentrations in soils that are favorable to native plant growth. Results of this study were presented in Gough and others (1977, 1978); Gough and others (1979); McNeal and others (1977); McNeal and others (1978); Severson and others (1977); Severson and others (1978); Severson and others (1979); Gough and others (1980); and Crock and Severson, (1980). Parameters measured in DTPA extracts of these soils are given in table 66, and the soil mineralogy is given in table 76.

STUDY NO. 19

Soils and native plants, San Juan Basin, New Mexico By Ronald C. Severson and Larry P. Gough

Samples of the A and C horizons of soils, galleta grass (Hilaria jamesii), snakeweed (Gutierrezia sarothrae), and fourwing saltbush (Atriplex canescens) were collected in the summer of 1977 according to an unbalanced, nested, analysis-of-variance design from an area of the San Juan Basin, N. Mex. (fig. 8). The purpose of the study was to quantify the variation in the element concentration of these materials at geographic scales of 50 km, 25 km, 5 km, and 1 km, as well as variation due to analytical methods. This broad-scale study represents an inventory of both the total and extractable chemical composition of taxonomically defined soils likely to be impacted by the expanding development of energy-related activities in the basin. Further, the plants that were sampled are native species that are either likely to be used in reclamation efforts, or are important animal forage, or both. The A and C horizons of soils at 47 of a possible 48 sites were sampled. Owing to the sporadic distribution of the desired plant species, however, only 25, 18, and 10 sites were sampled for galleta, snakeweed, and saltbush, respectively. The galleta samples consisted of the entire plant (leaves, stems, rhizomes, and roots), whereas the snakeweed samples were of the aboveground parts (stems and leaves) and the saltbush samples were of the terminal 20 to 30 cm of stems (with leaves). Galleta samples were composited over an area of about 10 m in diameter, but the snakeweed and saltbush samples usually were from an individual plant. Because galleta and snakeweed samples were judged to be excessively contaminated with dust, they were washed prior to chemical analysis. Total element composition of the soils was reported in Severson (1978a). The biogeochemical variability of plants and the geochemistry and variability of soils from natural and reclaimed areas of the San Juan Basin were given by Severson and Gough (1981) and Gough and Severson (1981). Parameters measured in extraction studies of these soils are given in table 63, and pH determinations are given in table 67.

STUDY NO. 20

Trace-metal variation in soils and sagebrush in the Powder River Basin, Wyoming and Montana

By Jon J. Connor, John R. Keith, and Barbara M. Anderson

Samples of about 200 g of vegetation-free surface soil (0-25 cm in depth), 200 g of subsurface soil (15-20 cm in depth), and about 50 g of terminal stems and leaves of big sagebrush (Artemisia tridentata) were collected from the Powder River Basin of eastern Wyo-

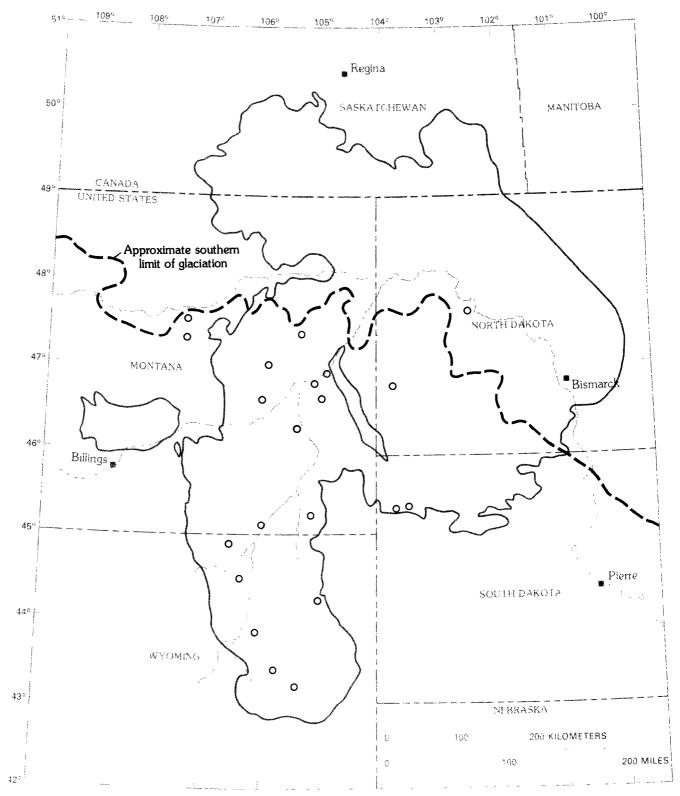


FIGURE 12.—Localities (open circles) where the A and C horizons of soil, western wheatgrass, silver sagebrush, and above-ground plant biomass were sampled in the northern Great Plains Province (Study No. 18). Extractable element concentrations in soil samples are given in table 66. ming and southeastern Montana in May 1973 (fig. 13). The area of the basin was subdivided into 12 rectangular units between lat $43^{\circ}-46^{\circ}$ N. and long $105^{\circ}-107^{\circ}$ W. Within each rectangle, three sections (in two townships) were randomly selected for sampling. In one of the three sections, duplicate samples were collected. Eighteen soil samples of each depth category were analyzed, but due to the absence of big sagebrush in some localities, only 41 samples of this plant were collected and analyzed. Concurrently with this work, a trace-element plume downwind of the Dave Johnston powerplant on the southern edge of the basin was ex-

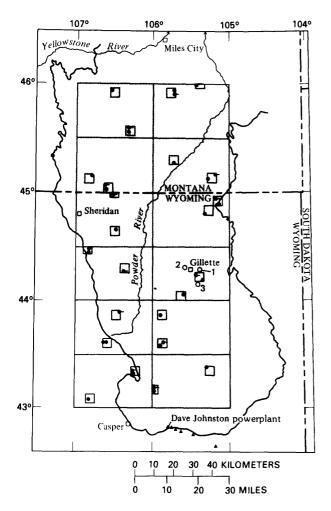


FIGURE 13.—Sampling localities for soil and big sagebrush in the Powder River Basin used in Study No. 20. Sampling localities (sections) used in the basinwide study shown by solid circles; duplicate sampling localities by solid circles with ticks; sampling localities used in the profile study by numbered open circles; sampling localities used in the powerplant study by solid triangles; "supertownships" by rectangles; and townships by squares. Study No. 20. amined using trace-element concentrations in sagebrush. Results of these studies were given by Connor and others (1976).

STUDY NO. 21 Miscellaneous small grains from the northern Great Plains By James A. Erdman and Larry P. Gough

The effects of surface mining on agriculture in the Northern Great Plains have led to regulations requiring that reclaimed mined land be returned to its former use, which in this region is principally small grain production. In the fall of 1974, small grains, mostly hard red wheat, were sampled throughout the northern Great Plains coal province, including the southernmost part of Saskatchewan, Canada. A total of 130 grain samples was collected from storage bins located on 71 randomly selected farms (fig. 14). This total consisted of 54 samples of hard red spring wheat and 17 samples of hard red winter wheat (both Triticum aestivum), 21 samples of oats (Avena sativa), 20 samples of durum wheat (Triticum durum), and 18 samples of barley (Hordeum vulgare). Sampling was usually accomplished by using a 6-ft (1.8-m) grain probe, which provided a composite sample of the grain that had been harvested from many hectares. Such a composite sample, therefore, tended to smooth out any smallscale variability in chemical characteristics of the grain that might have occurred throughout the area represented by the sample. The purpose of the study was to develop baselines in the composition of these grains (especially wheat). These baseline values. or ranges of concentrations of environmentally important elements, can then be used in assessing the effects of the geochemically altered surface-mined lands on similar field crops after the land has been returned to agricultural production. An assessment of this type was made by Erdman and Gough (1979).

STUDY NO. 22

Soil lichens from the Powder River Basin By James A. Erdman and Larry P. Gough

Samples of the terricolous lichen, Parmelia chlorochroa Tuck., were collected in the fall of 1973 in the Powder River Basin of Wyoming and Montana as part of a reconnaissance study of the landscape geochemistry (fig. 9). Twenty-two samples of this plant were collected according to a nested analysis-of-variance design. The long axis of the basin was subdivided into about 100-km intervals to establish four sampling areas nearly equal in size. With each area a barbell cluster of sampling locations was selected, using a randomization procedure. Each cluster consisted of a

and a minor axis 100 m long. The sampling sites were then located at the ends of the 100-m axes, and sammajor axis 10 km long, an intermediate axis 1 km long, ples of the lichen were collected and composited over

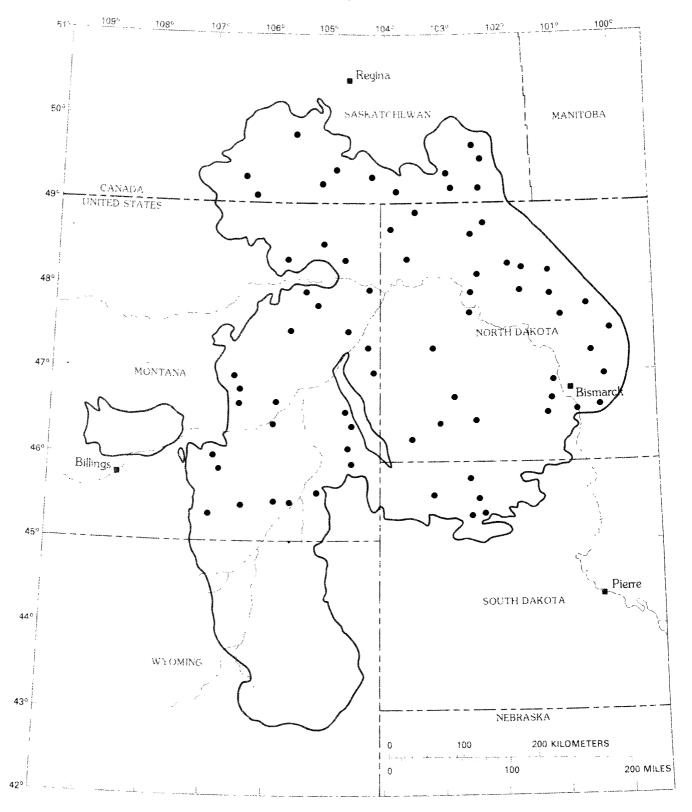


FIGURE 14.-Localities of grain sampled from farms in the northern Great Plains Province (solid circles) used in Study No. 21. The Wyoming portion of the province was excluded from the sampling design because of sparse wheat production.

an area about 10 m in diameter. Eight samples were to have been collected in each of the four localities (barbell clusters), but the absence of the lichen at many of the sites caused the design to be unbalanced in this respect. In order to estimate the analytical precision, 7 of the 22 samples were divided into equal parts prior to analysis. The sampling design permitted estimation of variation at a number of geographic scales as well as variation due to analytical procedures. Results of this study were described by Erdman and Gough (1977).

STUDY NO. 23

Big sagebrush from eight western Physiographic Provinces By Larry P. Gough and James A. Erdman

Samples of big sagebrush (Artemisia tridentata Nutt.) were collected in the fall of 1975 from eight western Physiographic Provinces according to an unbalanced, nested, analysis-of-variance design (fig. 15). Thirty samples were collected from each of three very large provinces (Columbia Plateaus, Basin and Range, and Colorado Plateaus), whereas 20 samples were collected from each of the other five provinces (Great Plains, Northern Rocky Mountains, Middle Rocky Mountains, Southern Rocky Mountains, and Wyoming Basin). The purpose of the study was to quantify the variation in the element concentration of young sagebrush branches (terminal 20-30 cm of stems, including leaves and inflorescences) at geographic scales of >200 km (between provinces), 200 km, 100 km, 50 km, 25 km, and 0.1 km, as well as variation due to analytical methods and procedures. This broad-scale study provides a preliminary estimate of elementconcentration ranges that are characteristic of big sagebrush throughout its distribution. Subspecies were not considered in this study-all variants were sampled as one species. The samples were not washed prior to chemical analysis. Seasonal differences in the element content of Wyoming big sagebrush were given by Gough and Erdman, 1980, and concentrations of uranium in ash of big sagebrush from three provinces were published by Erdman and Harrach (1981).

STUDY NO. 24

Total and extractable chemistry of the Sheppard-Shiprock-Doak Soil Association in the San Juan Basin that is likely to be used as topsoil in minedland reclamation. By Ronald C. Severson

This study conducted in the fall of 1977, was designed to measure variation in total and extractable element composition of the Sheppard-Shiprock-Doak Soil Association in the San Juan Basin of New Mexico (fig. 16) The sampling localities were confined within the boundaries of the mapped occurrence of the Cretaceous Kirtland Shale and Fruitland Formations (Dane and Bachman, 1965), and also within the boundaries of the mapped occurence of the Sheppard-Shiprock-Doak Soil Association (Maker and others, 1973). Soils of this association are considered as providing prime material for stockpiling and using as topsoil in mined-land reclamation. The A and C horizons of soil were collected randomly according to an unbalanced, nested, analysis-of-variance design. The results were used to estimate variation at four distance scales (10 km, 5 km, 1 km, and 0.1 km) and the variation due to sample preparation and analysis. In addition, the taxonomic classification of each sample was identified. The total element composition of soils of this study was published in Severson (1978b). Summary statistics for extractable element composition of these soils are given in table 64, and pH determinations are given in table 67.

STUDY NO. 25

Ground-water chemistry, Fort Union coal region By Gerald L. Feder

A reconnaissance-type survey of ground-water quality in geologic formations above the Pierre Shale in the Fort Union coal region of North Dakota and Montana was made in 1974 (fig. 3). The objectives of the study were to estimate the magnitude and distribution of variance in the quality of these ground waters. In order to estimate the regional component of variation, 19 townships were randomly chosen within the study area and a water-quality sample was collected from a well within each township. To estimate the local variation, 4 of the 19 sites were selected at random, and a second well was sampled within 10 km of the first sample site in the township. Sampling and analytical errors were estimated from three duplicate samples collected at random from the 23 sites described above. All samples were collected and analyzed according to methods described by Skougstad and Feder (1976). Results of this study are described in Feder (1975), and Feder and Saindon (1976). The geochemical summary for samples of this study is given in table 68.

STUDY NO. 26

Crested wheatgrass at the Dave Johnston mine By James A. Erdman and Richard J. Ebens

Crested wheatgrass, Agropyron cristatum (L.) Gaertn., was sampled at the Dave Johnston mine, near the southern edge of the Powder River Basin in Wyoming (fig. 7), as part of a larger study whose purpose was to assess the effects of reclaimed spoils on the element concentrations in vegetation at surface coal

GEOCHEMISTRY IN THE WESTERN ENERGY REGION OF THE CONTERMINOUS UNITED STATES

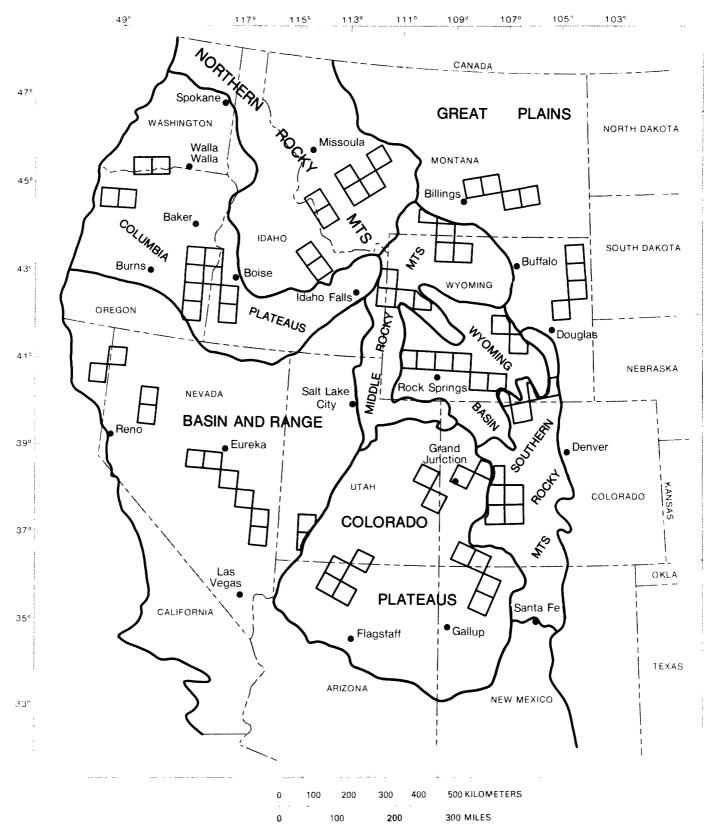


FIGURE 15.—Sampling localities used in Study No. 23, indicated by squares 50 km on a side, for big sagebrush in eight Western Physiographic Provinces. Map modified from Fenneman (1931.)

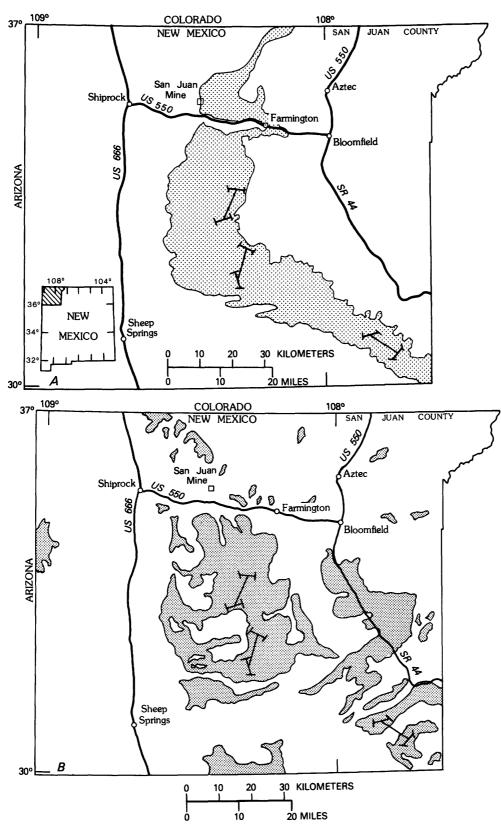


FIGURE 16.—Location of soils sampled (barbells) in San Juan County, N. Mex. used in Study No. 24. *A*, the outline of the Cretaceous Kirtland Shale and Fruitland Formations (shaded) was modified from Dane and Bachman (1965); and *B*, the distribution of the Sheppard-Shiprock-Doak Soil Association (stippled) was modified from Maker and others (1973).

GEOCHEMISTRY IN THE WESTERN ENERGY REGION OF THE CONTERMINOUS UNITED STATES

mines in the northern Great Plains. This species of wheatgrass dominates the revegetated spoil banks at this mine, as it does at many of the surface mines that were sampled. Sampling was conducted July 24, 1974, when growth of wheatgrass was at the mature-seed stage of development. A three-level analysis-ofvariance design was used that (1) assessed the differences in element concentrations between this grass growing on spoil materials and on soils native to the site (topsoil borrow), (2) estimated the degree of uniformity in the element contents of wheatgrass within the two substrate types, and (3) estimated the laboratory precision (reproducibility). Ten samples were collected at randomly selected locations within two tracts of reclaimed spoil piles. Ten other samples, which served as controls, were collected from two topsoil borrow areas adjoining the active mine. Each of the 20 field samples was homogenized and divided into equal portions. The number of samples for this study was, therefore, doubled from the 20 field samples to 40 laboratory samples. A report of this study was published by Erdman and Ebens (1979).

STUDY NO. 27

Ground water chemistry, Poplar River Basin, Montana and Saskatchewan By Gerald L. Feder

A reconnaissance-type survey was made in 1978 of ground-water quality in geologic formations above the Bearpaw Shale (named Bearpaw Formation in Canada) in the Poplar River Basin north of Scoby, Mont., including the Saskatchewan part of the basin (fig. 3). This survey was made in conjunction with a study by the Ground Water Quantity and Quality Committee of the International Poplar River Water Quality Board of the International Joint Commission. The Poplar River Basin lies in the north-western part of the Fort Union coal region. Because of the limited number of wells available for sampling, only nine sites were chosen for collecting representative samples from each of five aquifers in the area. The samples were collected and analyzed according to methods outlined in Skougstad and Feder (1976). Results of this study were described by Ground Water Quantity and Quality Committee of the International Poplar River Water Quality Board (1979). The geochemical summary for samples of this study is given in table 69.

STUDY NO. 28

Ground-water chemistry, Powder River coal region, Montana and Wyoming By Gerald L. Feder

A reconnaissance-type survey of ground-water quality in geologic formations above the Pierre Shale in the Powder River Basin in Wyoming and Montana (fig. 3) was made in 1975 to estimate the magnitude and distribution of variance in the quality of these ground waters. In order to estimate the regional component of variation, 20 townships were randomly chosen in the study area and a water-quality sample was collected from a well within each township. To estimate the local variation, 3 of the 20 sites were selected at random and a second well was sampled within 5 km of the first. Sampling and analytical errors were estimated from three duplicate samples collected at random from the 23 sites. All samples were collected and analyzed according to methods described by Skougstad and Feder (1976). Results of this study were described by Feder and others (1977). The geochemical summary for samples of this study is given in table 70.

METHODS OF ANALYSIS

All analytical work was performed in laboratories of the U.S. Geological Survey. The analytical technique used for each entry in the summary tables 4-77 is defined and identified by number in table 1. Fifty-six elements are listed in the summary tables. Of these, some were detected in only a relatively few samples of only a few studies. Approximate limits of determination for a variety of elements commonly looked for in spectrographic work, but seldom or never detected in earth materials and plants, are listed in table 2.

For various reasons, 21 of the 92 naturally occurring elements were never analyzed for in any of the studies. They are the six noble gases (helium, neon, argon, krypton, xenon, and radon), nitrogen, oxygen, technetium, ruthenium, rhodium, cesium, promethium, osmium, iridium, polonium, astatine, francium, radium, actinium, and protactinium.

The total element variation observed in a specific study always includes variation due to laboratory ("analytical") procedures, as well as variation due to natural effects. The inclusion of hidden and randomly sequenced sample splits in many of the laboratory sub-

24

METHODS OF ANALYSIS

 TABLE 1.—Analytical methods used

 [Number in the first column identifies the method used for determining chemical or physical properties reported in tables 2-77]

No.	Name of method	Materials analyzed, and properties commonly reported	Principal references	Remarks
1	Six-step emission spectrographic.	Stream sediments, soils, and plants: Al, B, Ba, Cr, Cu, Mg, Mn, Na, Nb, Ni, Pb, V, Y, Yb, and Zr. Stream sedi- ments and soils: Be, Co, Ga, La, and Sc. Soils and plants: Ba, Mn, and Mo. Stream sediments only: Ca, K, and Ti. Soils only: Ce. Plants only: Al, Ge, Fe, and Ti.	Myers and others, 1961; Neiman, 1976.	Concentrations reported as midpoints of six geometric classes per order of magnitude. Method largely re- placed by method No. 2.
2	Plate-reader emission spectrographic.	Rocks, stream sediments, spoil, soils, plants, and waters: Ba, Cr, Cu, Mn, Mo, Ni, Pb, Sr, V, and Zr. Rocks, stream sediments, spoil, soils, and plants: B, La, Nb, Sc, Y, and Yb. Rocks, stream sediments, spoil, soils, and waters: Be, Co, and Ga. Rocks, stream sediments, spoil, and soils: Ce. Rocks, spoil, and soils: Er and Nd. Rocks and spoil: Gd. Rocks and soils: Pr and Th. Plants and waters: Ag and Ti. Rocks and waters: Ag. Rocks only: Cd, Dy, In, and Tl. Spoil only: F and P. Soils only: Tb. Plants only: Fe. Waters only: Bi, Ge, and Sn.	Dorrzapf, 1973; Barnett, 1976.	Concentrations reported as actual values, rather than as classes of values.
3	Atomic absorption, flame.	Rocks, stream sediments, spoil, soils, plants, and waters: Li and Zn. Rocks, stream sediments, soil, plants, and waters: Mg and Na. Rocks, stream sediments, spoil, and soils: Rb. Plants and waters: As, Ca, Cd, K, and Mn. Plants only: Co, Cu, Fe, Ni, Pb, Sb, and Si. Waters only: Cr, Mo, Se, and Ti.	Ward and others, 1969; Harms, 1976; Huffman and Dinnin, 1976.	
4	Atomic absorption, flameless.	Rocks, stream sediments, spoil, soils, plants, and waters: Hg.	Vaughn and McCarthy, 1964; McHugh and Turner, 1975; Harms, 1976; Vaughn 1967.	
5	X-ray fluorescence, fusion.	Rocks, stream sediments, spoil, and soils: Al, Ca, K, S, Sb, Si, and Ti. Stream sediments, spoil, and soils: As, Se, and Sn. Rocks and soils: Br. Stream sediments and spoil: In. Spoil and soils: Mg and Na. Spoil only: I. Soils only: Cl, Mn, and P.	Wahlberg, 1976.	
6 '	Colorimetric	Plants only: Mo and P. Waters only: B, Br, Cl, I, Fe, P, Si, and V.	Ward and others, 1963.	
7	Turbidimetric	Plants only: S	Harms and Papp, 1975.	
8	Neutron activation	Rocks, stream sediments, spoil, and soils: Th and U.	Millard, 1975.	Used delayed-neutron technique.
9	Selective ion	Rocks, stream sediments, spoil, soils, plants, and waters: F and pH. Soils only: Chloride.	Huffman and Dinnin, 1976; Skougstad and Feder, 1976.	
10	Gasometric	Rocks, stream sediments, spoil, and soils: Carbonate C.	Huffman and Dinnin, 1976.	

No.	Name of method	Materials analyzed, and properties commonly reported	Principal references	Remarks
11	Calculated	Rocks, stream sediments, spoil, and soils: Organic C. Soils only: Sodium absorption ratios, exchangeable sodium percentages. Waters only: Hardness and alkalinity.	Huffman and Dinnin, 1976.	Organic C = total C minus carbonate C.
12	Combustion	Rocks, stream sediments, spoil, and soils: Total C.	Huffman and Dinnin, 1976.	
13	Fluorimetric	Plants and waters: U	Harms and Papp, 1975; Thatcher and others, 1977.	
14	Gravimetric	Plants: Ash. Waters: Dissolved solids.	Ward and others, 1963; Skougstad and Feder, 1976.	Aliquots of dry plants weighed, burned to ash, and the ashed weighed and calculated as percentage of dry weight.
15	Conductivity cell	Waters only: Specific conductance	Skougstad and Feder, 1976.	
16	Induction-coupled plasma.	Soils only: Hot water extraction of B	Ball and others, 1978	Cited method modified by addition of a variable-speed oscillating refractor plate for background corrections.
17	Titrimetric	Waters only: Bicarbonate and carbonate	Skougstad and Feder, 1976.	
18	X-ray fluorescence, sulfide precipitation.	Rocks and stream sediments: Ge and Sn. Rocks only: As and Se.	Wahlberg, 1976	Unpublished modifica- tion of cited method.
19	Instrumental	Waters only: Temperature	Skougstad and Feder, 1976	
20	Precipation and radon emanation.	Waters only: ²²⁶ Ra	Thatcher, and others 1977	
21	Residue, gross emission count.	Waters only: Gross alpha and gross beta emanations.	Janzer, 1976; Thatcher and others, 1977	
22	Beta-gamma scaler	Soils only: Equivalent U.	No published reference.	Beta and gamma radia- tion is counted 4 minutes, com- pared with counts of a 0.1 percent U standard. Radio- activity of sample given as equivalent ppm U.
23	X-ray diffraction	Rocks, stream sediments, and soils: Mineral composition.	McNeal and Ebens, 1978.	Data entered on mag- netic tape, then computer analyzed giving semiquanti- tative results.
24	2-3 diaminonaphthalene	Plants only: Se	Harms, 1976.	

TABLE 1.—Analytical methods used—Continued

GEOCHEMICAL SUMMARIES

TABLE 2.-Elements commonly looked for in samples of this study, but rarely or never detected by the methods listed in table 1, and their approximate lower limits of determination in parts per million

[Values apply to the methods actually used for particular samples, as given in tables 46–67. Leaders (-) in a figure column indicate that the element is commonly not detected in the sample material listed in the column heading]

	Material Analyzed			
Element	Rocks, stream sediments, mine spoil, and soils	Plant ash		
Beryllium		0.5		
Bismuth	10	20		
Cereum		300		
Dysprosium	¹ 50	1100		
Erbium	50	100		
Gallium		5		
Gold	20	50		
Hafnium	100	200		
Holmium	120	1 ₅₀		
Indium	10	20		
Lutetium	1 ₃₀	170		
Neodymium		² 70		
Palladium	1	2		
Platinum	30	70		
Praseodymium	2100	² 200		
Rhenium	30	70		
Samarium	¹ 100	¹ 200		
Tantalum	200	500		
Tellurium	2,000	5,000		
Terbium	1 ₃₀₀	1700		
Thallium	50	500		
Thorium		500		
Thulium	1 ₂₀	1 ₅₀		
Tin		15		
Tungsten	100	300		

 1 Looked for in spectrographic analysis if yttrium concentration is greater than 50 ppm.

²Looked for in spectrographic analysis if lanthanum or cerium is found.

mittals provided an estimation of total laboratory variance by:

$$S_a^2 = \frac{\sum_{i=1}^{n} (X_{1i} - X_{2i})^2}{2n}$$
(1)

where S_a^2 represents the error variance, X_{1i} and X_{2i} represent the concentrations (or their logarithms) of an element in the two splits of the *i*th sample and *n* is the number of samples split. Where an error was not formally defined, it resides in the estimate of total variability and remains unknowable.

GEOCHEMICAL SUMMARIES

ORGANIZATION AND USE OF DATA

The geochemical summaries for elements tabulated herein (tables 4-62) are alphabetically arranged by the English spelling of each element. Summaries for each element are presented, as appropriate, for each of five broad environmental categories: rocks, stream sediments, mine spoil and associated materials, soils, and plants. Listed within each category are the summary results for one or more individual studies. Data on rocks are grouped by outcrop samples or core samples, followed by locality and gross lithologic character. Stream sediments are arranged by locality, followed by size fraction where appropriate. Mine spoil and associated materials are subdivided into mine spoil itself, topsoil used in spoil reclamation, and plants associated with mine spoil. Soils are grouped by locality, then subdivided by soil horizon. Plants are grouped as cultivated or native species. All entries in the summary tables are given a general location, commonly the State or States.

Following the alphabetical tabulation of elements are special studies in which parameters other than element concentration in the samples were also measured. Tables 63-66 give results of soil-extraction studies. and data are grouped by the extraction method used (except in table 66, which gives elements extracted by only one method). Table 67 gives pH determinations for some of the same samples of rocks, stream sediments, mine spoil, and soil that are listed in the general tables of elements. Tables 68-70 give geochemical summaries of ground waters from three regions of the northern Great Plains Province. Tables 71-73 present shale and sandstone mineralogy of outcrop samples, and of fine-grained rocks of core samples, from the northern Great Plains Province, and table 74 gives mineralogy of three rock types from Montana. Using samples from the northern Great Plains Province, table 75 gives the mineralogy of stream sediments, table 76 gives the mineralogy of soils used in extraction studies, and table 77 gives the mineralogy of soils from Hanging Woman Creek.

Each entry in each table is identified by a study number, with which the user may find a brief description of the work in the section entitled "Descriptions of Field Studies," and a number identifying the analytical method used (from table 1). Also given are the following: a ratio, which indicates the number of samples in which the element was determined in relation to the total number analyzed; the mean, which estimates the most probable concentration to be expected in the analyzed material; the deviation, a factor which indicates the degree of variability observed; the error, a factor which indicates the reproducibility of the analytical method; and finally, the range of concentrations observed in the study.

Geometric and arithmetic means, standard deviations, standard errors, and observed ranges are given in units of percent or parts per million (ppm). Geometric deviations and geometric errors are factors.

The mean for each entry in the summary tables is commonly given to two significant figures. It is conventional in geochemical summaries to give an arithmetic average for the mean, and a few entries here do so; an example is aluminum in soils from Montana (table 4, Study No. 14). However, the tendency for elements in natural materials, particularly trace elements, to exhibit positively skewed frequency distributions suggests that the geometric mean is the more proper measure of central tendency. The geometric mean is the antilog of the arithmetic mean of the logarithmic values and, for lognormal distributions, the geometric mean is the mode.

A common problem in trace-element summaries is the necessity to summarize data that contain nonnumeric concentration values such as "trace" or "less than" some specified limit. Such data are said to be censored, and, under such circumstances, the mean has been computed using special procedures described by Cohen (1959) and applied to geochemical problems by Miesch (1967). These procedures involve an adjustment of the summary statistics computed for the noncensored part of the data. For some entries, censoring is so severe that such adjustment is unreliable or even impossible. Under these circumstances, the median of the distribution is given as the mean, or the mean is simply listed as "less than" some limiting lower value.

The use of special procedures to quantify estimates of the central tendency when part of the data is censored sometimes leads to estimates of the mean at levels below the limit of detection. For example, arsenic in fourwing saltbush from the San Juan Basin, N. Mex. (table 6, Study No. 19) is estimated to have a mean of 0.011 ppm, although the lowest measured concentration in 10 samples was 0.05 ppm. This feature of the data analysis obviously permits a greater utilization of data that may be initially viewed as rather limited because of analytical constraints.

For those rare entries for which the arithmetic average is give for the mean, it is also thought to reflect an unbiased estimate of element abundance. Where the geometric mean is given, the abundance may be estimated from the following relation:

$$\mathbf{t} = \tau \mathbf{M},\tag{2}$$

where t estimates the abundance, M is the geometric mean, and τ is an adjustment factor. (See Miesch, 1967.)

Finally, most of the element concentrations in plant tissue were summarized on an ash-weight basis. The user who wishes to convert the mean element concentration in ash to a dry-weight basis may apply the following formula:

$$M_D = (M_A \times M_P) / 100,$$
 (3)

where M_D approximates the mean in dry weight, M_A is the mean in ash weight, and M_P is the mean of the percent ash measured in the same plant species and study area (table 3). For example, big sagebrush from the Wyoming Basin Province exhibits a mean aluminum concentration in ash of 2.0 percent (table 4, Study No. 23) and a mean ash content (from table 3) of 4.9 percent. Based on equation 3, the approximate expected concentration of aluminum in dry weight is 0.1 percent.

Equally as important as the mean in background geochemical studies, however, is the magnitude of the scatter to be expected about the mean. A useful measure of the scatter in lognormal distributions is the geometric deviation, a factor which may be used to estimate the range of variation expected for any element in any unit. The geometric deviation is the antilog of the standard deviation of the logarithmic values. About 68 percent of the samples in a randomly selected suite should fall within the limits M/D and $M \cdot D$, where M stands for the geometric mean and D stands for the geometric deviation. For example, barium in stream sediments from the northern Great Plains (table 7, Study No. 6) has a geometric mean of 540 ppm and a geometric deviation of 1.34. Thus, the most likely concentration of barium in a suite of randomly selected stream-sediment samples from the northern Great Plains is 540 ppm; in addition, about 68 percent of the collected samples, if analyzed by the plate-reader emission spectrographic technique used by the U.S. Geological Survey laboratories, should range from about 403 (M/D) to about 724 ($M \cdot D$) ppm barium. About 95 percent will fall between 301 (M/D^2) and 970 $(M \cdot D^2)$ ppm barium, and more than 99 percent between 224 (M/D^3) and 1.300 ($M \cdot D^3$).

As already stated, the deviation listed for each study includes variation arising from laboratory procedures as well as variation arising from nature. When the samphing design so permits, an estimate of that part of the total observed variation due solely to laboratory effects is given as the error, and an estimate of the variation attributed solely to natural effects may be computed from

$$D_n = \operatorname{antilog} \left[(\log D)^2 - (\log E)^2 \right], \tag{4}$$

where D_n estimates the geometric deviation corrected for laboratory effects, and D and E are the geometric deviation and the standard error, respectively, taken from the summary tables. For entries consisting of the arithemtic mean, the standard deviation, and the standard error, variation due to natural effects is estimated as

$$D_n = [(D)^2 - (E)^2]^{\frac{1}{2}}, \tag{5}$$

where D_n estimates the standard deviation corrected for laboratory effects and D and E are the standard deviation and the standard error, respectively.

For example, D_n for aluminum in outcrop samples of sandstone from the Fort Union Formation, northern Great Plains Province (table 4, Study No. 1), is estimated from equation 4 to be 1.48; and the expected approximate 68-, 95-, and 99.7-percent ranges corrected for analytical variation are 2.8-6.1, 1.9-9.0, and 1.3-13 percent aluminum, respectively. D_n for aluminum in C-horizon soils from Hanging Woman Creek, Mont. (table 4, Study No. 14), is estimated from equation 5 as 0.64; and the expected approximate 68-, 95-, and 99.7-percent ranges corrected for analytical variation are 4.3-5.5, 3.6-6.2, and 3.0-6.8 percent aluminum, respectively.

For some entries, the listed error is larger than the listed deviation and D_n cannot be calculated. This occurs because the deviation and the error are themselves only estimates and are each subject to errors inherent in estimation. When variation due to laboratory procedures forms a large part of the total observed variation, the estimate of the error may exceed the estimate of the total variability. In these circumstances, the only conclusion to be drawn is that the material under study is relatively uniform in composition, and further attempts to examine its natural variability must be based on laboratory procedures more precise than those used here.

All entries lacking an estimate of the error must be used judiciously. Little can be said about the natural variation of these materials without some assumptions as to the magnitude of the laboratory effects that might be present.

CONCLUDING REMARKS

In relation to geochemical characteristics of the landscape, the studies in this report have potential application to three stages of energy resource development in major areas containing coal and oil shale in the Western States. Examples of the relevance of geochemical studies to each stage of development are discussed below.

PRE-DEVELOPMENT STAGE

The geochemical input to this stage of planning is largely that of background (baseline) data on the chemical characteristics of the natural materials that will most likely be affected by the development and operation of mines and electric generating plants. Included in these materials are the rocks, soils, and

TABLE 3.-Percentage of ash obtained by burning dry material of plants

[Explanation of column headings: Study No. refers to study described in text. Plant parts designated as A, above-ground parts; B, stems, leaves, rhizomes, and roots; C, entire thallus; and D, grains. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available. Ash determined by method No. 14, table 1]

Common and scientific name; collection localities	Study No.	Plant part	Mean (percent)	Devia- tion	Error	Observed range (percent)
Alfalfa (Medicago sativa L.); Northern						
Great Plains	10		7 7	1 / 2		7 2 - 11 2
Beulah North mine, North Dakota	10	A	7.7	1.43		7.2 - 11.3
Dave Johnston mine, Wyoming	10	A	10.0	1.12		9.5 - 11.7
Savage mine, Montana	10	A	9.5	1.10		8.9 - 10.6 7.1 - 10.3
Velva mine, North DakotaBig Sky mine, Montana	10 10	A A	8.1 8.1	1.23		7.5 - 9.0
Big Sky mine, Montana	10	А	0.1	1.10		7.5 7.0
Alkali sacaton (Sporobolus airoides						
(Torr.) Torr.); San Juan mine, New						
Mexico	11	А	5.1	1.14		4.1 - 5.1
Barley (Hordeum vulgare L.); northern						
Great Plains	21	D	2.2	1.13	1.05	1.8 - 2.9
Big sagebrush (Artemisia tridentata						
Nutt.); regional study			/ 7		1 02	20 5 2
Colorado Plateaus Province	23	Α	4.7	1.11	1.03	3.8 - 5.3
Columbia Plateaus Province	23	A	5.7	1.18	1.03	4.2 - 7.9
Basin and Range Basin Province	23	Α	4.8	1.13	1.03	4.1 - 5.8
Northern Great Plains	23	А	4.6	1.19	1.03	4.0 - 5.8
Northern Rocky Mountains Province	23	А	4.5	1.16	1.03	3.8 - 5.5
Middle Rocky Mountains Province	23	А	4.2	1.22	1.03	3.1 - 6.0
Southern Rocky Mountains Province	23	А	4.4	1.18	1.02	3.7 - 5.5
Wyoming Basin Province	23	Α	4.9	1.53	1.03	3.9 - 5.7
Biomass above ground, mixed species;						
Northern Great Plains	18	А	6.7	1.20	1.13	4.8 - 9.1
Crested wheatgrass (<u>Agropyron_cristatum</u> (L.) Gaertn.); Dave Johnston mine, Wyoming						
On mine spoil	26	Α	6.0	1.14	1.01	4.7 - 7.4
Near mine spoil	26	А	6.3	1.15	1.01	5.3 - 8.0
Fourwing saltbush (<u>Atriplex canescens</u> (Torr.) Torr.)	10		12	1.22	1.04	8.4 - 16
San Juan Basin, N. Mex	19 19	A A	12	1.08	1.04	12 - 15
San Juan mine, New Mexico	19	А	15	1.00		12 15
Galleta (<u>Hilaria jamesii</u> (Torr.) Benth.); San Juan Basin, N. Mex	19	В	6.8	1.24	1.04	4.0 - 10
Lichen (Parmelia chlorochroa Tuck.);						
Powder River Basin, Wyo	22	С	14	1.41	1.04	7.5 - 25
Oats (Avena sativa L.); northern Great						
Plains	21	D	3.0	1.0	1.05	1.3 - 1.8
Silver sagebrush (Artemisia cana Pursh);			5 0			
northern Great Plains	18	А	5.2	1.14		3.7 - 7.0
Snakeweed (<u>Gutierrezia sarothrae</u> (Pursh) Britt. and Rusby); San Juan	19	٨	5.9	1.22	1.04	4.3 - 9.1
Basin, N. Mex	19	A	J.)	1.22	1.04	4.5 7.1
Western wheatgrass (<u>Agropyron smithii</u> Rydb.); northern Great Plains	18	А	6.6	1.24		4.6 - 8.8
Wheat, durum (Triticum durum Desf.);						
northern Great Plains	21	D	1.7	1.16	1.12	1.4 - 2.3
Wheat, hard red spring (Triticum						
aestivum L.); northern Great Plains	21	D	1.7	1.21	1.10	1.2 - 2.8
		2	 ,			
Wheat, hard red winter (Triticum						
aestivum L.); northern Great Plains	21	D	1.5	1.11	1.05	1.3 - 1.8
		-				

.

Common and scientific name; collection localities	Study No.	Plant part	Mean (percent)	Devia- tion	Error	Observed range (percent)
White sweetclover (Melitotus alba Desr.)						
Desr.); northern Great Plains						
Big Sky mine, Montana	10	A	6.7	1.11	1.03	5.9 - 8.2
Utility mine, Saskatchewan	10	А	5.0	1.07	1.03	4.4 - 5.6
Yellow sweetclover (Melilotus offici-						
nalis (L.) Lam.); northern Great						
Plains						
Beulah North mine, North Dakota	10	А	6.1	1.09	1.03	5.2 - 7.0
Dave Johnston mine, Wyoming	10	А	7.2	1.09	1.03	6.2 - 8.0
Hidden Valley mine, Wyoming	10	А	7.4	1.13	1.03	6.2 - 9.3
Kincaid mine, North Dakota	10	A	7.5	1.11	1.03	6.6 - 9.0
Savage mine, Montana	10	A	5.4	1.13	1.03	4.5 - 6.5
bavage mine, noncana	10	A	7.1	1.20	1.03	5.4 - 10

TABLE 3.-Percentage of ash obtained by burning dry material of plants-Continued

plants of the overburden material that will be removed in surface mining, the rocks from underground mining that will be brought to the surface, and the water of streams that drain the areas. These background data can be used before development is begun in judging the necessity for more detailed and intensive geochemical studies in order to predict the environmental impact of the proposed operation. If most of the variance in element concentration in soils, for example, is at the largest (regional) scale, the geochemistry of a selected development site most likely will be rather uniform. In Study No. 17, only zinc concentrations in soils of the Bighorn Basin were found to exhibit regional differences between geologic units, whereas eight elements exhibited such differences in the Wind River Basin. However, in study No. 20, little geochemical variation in the geochemistry of surface soil, subsurface soil, and big sagebrush from the Powder River Basin was found at scales greater than about 35 km (regional scale). This suggests that simple summary statistics for these materials could provide basinwide geochemical baselines. When rocks from particular geologic formations are brought to the surface by mining, their chemical features may subsequently have a pronounced effect on soil chemistry. For example, in Study No. 12 the oil shale was found to be richer in arsenic, mercury, selenium, fluorine, and molybdenum than were the soils from the same area in the Piceance Creek Basin of Colorado.

An important application of established baselines is in monitoring the effects of operating mines and power plants. If baseline element values are established, before industrial operations are begun, for a species of plant that has wide geographical distribution, as was done for sagebrush in Study No. 23, a useful biological agent is available for measuring chemical changes in vegetation that occur during the operational phase. Analysis of a lichen that grows on the soil surface showed that its element content was remarkably uniform throughout the Powder River Basin (Study No. 22), thereby suggesting its basinwide applicability for monitoring geochemical changes of airborne origin.

DEVELOPMENT AND OPERATING STAGE

In the development of mines and power plants, construction of the necessary facilities, including access and internal roads, buildings, processing plants, shipping and storage requirements, and transmission lines, causes alterations in the geochemical balances that had become established through time. In semiarid or arid regions, such as prevail in most of the Western energy regions, the development of a balanced geochemical system requires a very long period of time. Because the amount of water from precipitation generally is small, rocks and minerals in the soil weather slowly, and organic deposition from the sparse vegetation occurs at a slow rate. These factors contribute to the development of a fragile ecosystem that is susceptible to rapid degradation by the disturbances of industrial development.

The deposition of windblown soil dust from the site of a power plant in Wyoming before the plant became fully operational was found in Study No. 20 to cause trends outward from the plant in the element content of big sagebrush; these trends were imposed on trends caused by natural geologic controls on soil chemistry. This effect should be recognized and taken into account in differentiating natural geochemical trends in sagebrush and those caused by environmental disturbances. In developing surface mines, the topsoil is usually removed and stockpiled for later use in reclamation. A study of the geochemistry of a soil association likely to be used in spoil reclamation (Study No. 24) established baselines for total concentration of 38 elements in the A- and C-horizons of soil. This study found that chemical differences between taxonomically similar soils are very small at the family level; therefore, the baselines can be used as a regional characterization of soils' suitability as topsoil for minedland reclamation.

The operation of energy-related installations produces a continuing addition of chemical elements to the surrounding area, often including those elements generally considered undesirable, or toxic if concentrated, such as mercury, arsenic, selenium, molybdenum, and sulfur. These elements are distributed in gaseous and particulate stack emissions, in fly ash recovered from the stacks and later disposed of, as spillage from transportation of fuels, and as leachates from mined coal and mine spoil. A study was made of sweetclover plants growing both spontaneously and planted on mine spoil and reclaimed spoil at eight mines in the Northern Great Plains (Study No. 10). The spoil and spoil-soil mixtures were also analyzed. Concentrations of 13 elements in sweetclover and 18 elements in spoil material from the eight mines were compared; the results indicated strong geochemical differences among mines for both plant and soil samples, which indicated the chemical distinctiveness of spoil material from each mine. Not only are the concentrations of toxic elements in spoil material of concern, but also the abundance of elements that are essential for plant growth and animal nutrition is important. Crested wheatgrass (a valuable forage plant) growing on topsoil over spoil at a mine in Wyoming (Study No. 26) contained higher concentrations of 8 of 26 elements than in control samples. Of these elements, concentrations of cobalt, manganese, and zinc-elements essential in animal nutrition-were at deficiency levels in control samples, but at marginal to adequate levels in samples from spoil material. On the other hand, the phosphorus content of the grass on spoil material was only two-thirds as much as in the control grass. In a study of power-plant stack emissions (Study No. 20) in Wyoming, big sagebrush was examined along the path of a trace-element plume. The concentrations of strontium, vanadium, and uranium in sagebrush showed statistically significant reductions eastward from the power plant.

RESTORATION AND REVEGETATION STAGE

The topography of areas severely altered by surface mining, which is affected by the spoil material from both surface and underground mining, must be restored to an acceptable degree after the site has been mined. This restoration consists of leveling and contouring the spoil material, applying the topsoil that was removed and stockpiled, and, generally, revegetating with either native plant species or agricultural crop plants. The new substrate for the plants comprises various mixtures of topsoil and subsurface rock, and the chemical nature of the rooting zone of plants is usually different from that of the original soil cover. The fresh unweathered rocks that are brought to the surface may release elements to the soil in greater concentrations than existed in the original soil and, therefore, may affect the growth of plants and the health of animals.

A measurement of the availability of certain elements, including both those that are nutritive and those that are toxic, is essential to an evaluation of the potential effects of the newly restored substrate. Geochemical studies of the rocks of the spoil material, or core samples collected before mining, can indicate the total concentrations of elements of special concern, including phosphorus, potassium, sulfur, arsenic, cadmium, mercury, molybdenum, and selenium (Studies No. 1, 2, 3, 4, 5, 10, and 11). These elements of rocks are held in minerals that are distinctive in their ratios of elements, rates of weathering, and solubility. If the mineral composition of the spoil-material rocks is known, estimates can be made of the kinds and concentrations of elements that will be released in the process of weathering. The availability of these elements to plants depends largely on their solubility in the chemical environment in which they occur and on the species of plant. The validity of using laboratory measurements of availability, such as are routinely performed on agricultural soils to determine their fertility, is not well known as applied to native plant species of potential use in revegetation. In Studies No. 11 and 19, the extractable and total soil-element concentrations favorable for native plant growth in the Northern Great Plains were studied. The plants, as well as laboratory extracts of their supporting soils obtained by three extraction procedures, were analyzed for calcium, cadmium, cobalt, copper, iron, potassium, magnesium, manganese, sodium, nickel, lead, and zinc. The ranges of the concentrations that were found, and the methods of extraction that were developed, can be used to judge the feasibility of revegetating reclaimed mine spoil with species of plants native to this region.

The suitability of the reclaimed areas for producing forage for domestic animals and cereal grains for human food depends on the effects of the chemical composition of the soil on the health and productivity of the plants and on the effects of the element composition of the plants and animals on the health of animals

and man. A study of the elements in sweetclover and alfalfa plants that grew on spoil or reclaimed spoil material at eight surface mines in the Northern Great Plains (Study No. 10) revealed that the copper-tomolybdenum ratios in these plants ranged from 0.44:1 to 5:1. Ratios of 5:1 or less in forage are reported to cause molybdenosis, a serious debilitating disease, in cattle and sheep. Therefore, the possibility that the element composition of forage grown on reclaimed spoil (as determined in Studies No. 10 and 26) may be injurious to domestic as well as native animals should receive careful consideration in planning the revegetation of mined areas.

The use of reclaimed mine spoil for the production of cereal grains was examined in Study No. 21. At least one of three samples of hard red winter wheat from topsoiled spoil at a mine in Montana was found to have abnormally high levels of calcium, copper, iron, molybdenum, sulfur, and zinc, and abnormally low levels of barium, cadmium, magnesium, and phosphorus. Nickel concentrations in the samples ranged from unusually high to unusually low.

In conclusion, the geochemical data in this report can be effectively applied to the evaluation of present and future development of energy resources in the Western energy regions. These data can contribute to an understanding and appreciation of the true costs of exploiting fossil fuels to meet the energy requirements of the nation.

REFERENCES CITED

- Ball, J. W., Thompson, J. M., and Jenne, E. A., 1978, Determination of dissolved boron in fresh, estuarine, and geothermal waters by D.C. argon-plasma emission spectrometry: Analytica Chimica Acta, v. 98, p. 67-75.
- Barnett, P. R, 1976, Analysis of water residue by emission spectroscopy, in Miesch, A. T., Geochemical survey of Missouri-Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. A22-A23.
- Cohen, A. C., Jr., 1959, Simplified estimators for the normal distribution when samples are singly censored or truncated: Technometrics, v. 1, no. 3, p. 217-237.
- Connor, J. J., and Ebens, R. J., 1980, Geochemistry of bedrock units in Missouri and parts of adjacent States: U.S. Geological Survey Professional Paper 954-F, 55 p.
- Connor, J. J., Keith, J. R., and Anderson, B. M., 1976, Trace-metal variation in soils and sagebrush in the Powder River Basin, Wyoming and Montana: U.S. Geological Survey, Journal of Research, v. 4, no. 1, p. 49-59.
- Connor J. J., and Shacklette, H. T., 1975, Background geochemistry of some rocks, soils, plants, and vegetables in the conterminous United States, with sections on Field studies R. J. Ebens, J. A. Erdman, A. T. Miesch, R. R. Tidball, and H. A. Tourlelot: U.S. Geological Survey Professional Paper 574-F, 168 p.

- Connor, J. J., Shacklette, H. T., and Erdman, J. A., 1971, Extraordinary trace-element accumulations in roadside cedars near Centerville, Missouri, in Geological Survey research 1971: U.S. Geological Survey Professional Paper 750-B, p. B151-B156.
- Crock, J. G., and Severson, R. C., 1980, Four reference soil and rock samples for measuring element availability in the western energy region: U.S. Geological Survey Circular 841, 16 p.
- Dane, C. H., and Bachman, G. O., 1965, Geologic map of New Mexico: U.S. Geological Survey, scale 1:500,000.
- Dean, W. E., Ringrose, C. D., and Klusman, R. W., 1977, Factor analysis of soil chemistry, Piceance Creek Basin, Colorado, *in* U.S. Geological Survey, Geochemical survey of the western energy regions, 4th annual progress report, July 1977: U.S. Geological Survey Open-File Report 77-872, p. 77-90.
- ____1979, Geochemical variation in soils in the Piceance Creek Basin, western Colorado: U.S. Geological Survey Bulletin 1479, 47 p.
- Dorrzapf, A. F., Jr., 1973, Spectrochemical computer analysis-Argon-oxygen dc-arc method for silicate rocks: U.S. Geological Survey, Journal of Research, v. 1, no. 5, p. 559-562.
- Ebens, R. J., and Connor, J. J., 1980, Geochemical survey of Missouri-Geochemistry of loess and carbonate residuum: U.S. Geological Survey Professional Paper 954-G, 32 p.
- Ebens, R. J., Erdman, J. A., Feder, G. L., Case, A. A., and Selby, L. A., 1973, Geochemical anomalies of a claypit area, Callaway County, Missouri, and related metabolic imbalance in beef cattle: U.S. Geological Survey Professional Paper 807, 24 p.
- Ebens, R. J., and McNeal, J. M., 1976, Geochemistry of the Fort Union Formation, *in* U.S. Geological Survey, Geochemical survey of the western energy regions (formerly Geochemical survey of the western coal regions), 3d annual progress report, July 1976: U.S. Geological Survey Open-File Report 76-729, p. 94-100.
 - _____1977, Geochemistry of Fort Union shale and sandstone in outcrop in the northern Great Plains coal province, *in* U.S. Geological Survey, Geochemical survey of the western energy regions, 4th annual progress report, July 1977: U.S. Geological Survey Open-File Report 77-872, p. 185-197.
- Erdman, J. A., 1978, Potential toxicologic problems associated with strip mining: Fourth Biennial Veterinary Toxicology Workshop, Utah State University, Logan, Utah, June 18-23, 1978, p. 8.13-8.23.
- Erdman, J. A., and Ebens, R. J., 1975, A variance analysis of the element composition of sweetclover and associated spoil materials from selected coal mines in the Northern Great Plains, *in* U.S. Geological Survey, Geochemical survey of the western coal regions, 2d annual progress report, July 1975: U.S. Geological Survey Open-File Report 75-436, p. 29-35.
 - _____1979, Element content of crested wheatgrass grown on reclaimed coal spoils and on soils nearby: Journal of Range Management, v. 32, no 2, p. 159-161.
- Erdman, J. A., Ebens, R. J., and Case, A. A., 1978, Molybdenosis—A potential problem in ruminants grazing on coal mine spoils: Journal of Range Management, v. 31, no 1, p. 34-36.
- Erdman, J. A., and Gough, L. P., 1977, Variation in the element content of *Parmelia chlorochroa* from the Powder River Basin of Wyoming and Montana: The Bryologist, v. 80, no. 2, p. 292-303.
 - 1979, Mineral composition of wheat from coal-mine spoils and farms in the Northern Great Plains, USA, *in* Wali, M. K., ed., Ecology and coal resource development, v. 2: New York, Pergamon Press, p. 878-886.
- Erdman, J. A., and Harrach, G. H., 1981, Uranium in big sagebrush

from western U.S. and evidence of possible mineralization in the Oweyhee Mountains of Idaho: Journal of Geochemical Exploration, v. 14, (in press).

- Erdman, J. A., Shacklette, H. T., and Keith, J. R., 1976a, Elemental composition of selected native plants and associated soils from major vegetation-type areas in Missouri: U.S. Geological Survey Professional Paper 954-C, 87 p.
- _____1976b, Elemental composition of corn grains, soybean seeds, pasture grasses, and associated soils from selected areas in Missouri: U.S. Geological Survey Professional Paper 954-D, 23 p.
- Evans, A. K., Uhleman, E. W., and Eby, P. A., 1978, Atlas of western surface-mined lands-coal, uranium, and phosphate: U.S. Fish and Wildlife Service FWS/OBS-78/20, 302 p.
- Feder, G. L., 1975, Ground waters of the Fort Union coal region, in U.S. Geological Survey, Geochemical survey of the western coal regions, 2d annual progress report, July 1975: U.S. Geological Survey Open-File Report 75-436, p. 58-68.
- Feder, G.L., 1979, Geochemical survey of waters of Missouri: U.S. Geological Survey Professional Paper 954-E, 78 p.
- Feder, G. L., Lee, R. W., Busby, J. F., and Saindon, L. G., 1977, Geochemistry of ground waters in the Powder River coal region, in U.S. Geological Survey, Geochemical survey of the western energy regions, 4th annual progress report, July 1977: U.S. Geological Survey Open-File Report 77-872, p. 173-179.
- Feder, G. L., and Saindon, L. G., 1976, Geochemistry of ground waters in the Fort Union coal region, in U.S. Geological Survey, Geochemical survey of the western coal regions, 3d annual progress report, July 1976: U.S. Geological Survey Open-File Report 76-729, p. 86-93.
- Fenneman, N. M., 1931, Physiography of Western United States: New York and London, McGraw-Hill Book Company, Inc., 534 p.
- Gough, L.P., and Erdman, J. A., 1980, Seasonal differences in the element content of Wyoming big sagebrush: Journal of Range Management, v. 33, no. 5, p. 377-378.
- Gough, L. P., McNeal, J. M., and Severson, R. C., 1977, Availability of DTPA-extractable elements to native plants in the Northern Great Plains, (abs.) in Agronomy Abstracts: Madison, Wisc., American Society of Agronomy, p. 128.
- 1978, Availability of elements in soils to native plants, Northern Great Plains—Assessment of new data, in U.S. Geological Survey, Geochemical survey of the western energy regions, 5th annual progress report, July 1978: U.S. Geological Survey Open-File Report 78-1105, p. 126-143.
- Gough, L. P., McNeal, J. M., and Severson, R. C., 1980, Predicting native plant copper, iron, manganses, and zinc levels using DTPA and EDTA soil extractants, northern Great Plains: Soil Science Society of America Journal, v. 44, no. 5, p. 1030-1036.
- Gough, L. P., and Severson, R. C., 1980, Comparison of element content of Atriplex canescens growing under natural conditions and on mine-reclaimed land at the San Juan coal mine, northwestern New Mexico (abs.): Abstracts of Papers, American Association for the Advancement of Science, 146th National Meeting, January 3-8, 1980, San Francisco, California, p. 119-120.
- 1981, Biogeochemical variability of plants at native and altered sites, San Juan Basin, New Mexico: U.S. Geological Survey Professional Paper 1134-D (*in press*).
- Gough, L. P., Severson, R. C., and McNeal, J. M., 1979, Extractable and total soil element concentrations favorable for native plant growth in the Northern Great Plains, *in* Wali, M. K., ed., Ecology and coal resource development, v. 2: New York, Pergamon Press, p. 859-869.

- Ground Water Quantity and Quality Committee of the International Poplar River Water Quality Board, 1979, Ground water quantity and quality, Appendix B of International Poplar River water quality study: [Ottawa] Minister of Supply and Services Canada, 80 p.
- Harms, T. F., 1976, Analysis of plants and plant ashes by methods other than emission spectroscopy, in Miesch, A. T., Geochemical survey of Missouri-Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. A17-A18.
- Harms, T. F., and Papp, C. S. E., 1975, Analysis of plants or plant ash by methods other than emission spectroscopy, *in* U.S. Geological Survey, Geochemical survey of the western coal regions, 2d annual progress report, July 1975: U.S. Geological Survey Open-File Report 75-436, p. 74-78.
- Hinkley, T. K., and Ebens, R. J., 1977, Geochemistry of fine-grained rocks in cores of the Fort Union Formation, *in* U.S. Geological Survey, Geochemical survey of the western energy regions, 4th annual progress report, July 1977: U.S. Geological Survey Open-File Report 77-872, p. 169-172.
- Hinkley, T. K., Ebens, R. J., and Boerngen, J. G., 1978, Overburden chemistry and mineralogy at Hanging Woman Creek, Big Horn County, Montana and recommendations for sampling at similar sites: U.S. Geological Survey Open-File Report 78-393, 38 p.
- Huffman, Claude, Jr., and Dinnin, J. I., 1976, Analysis of rocks and soils by atomic absorption spectrometry and other methods, in Miesch, A. T., Geochemical survey of Missouri-Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. A12-A14.
- Janzer, V. J., 1976, Analysis of water for radioactivity, in Miesch, A. T., Geochemical survey of Missouri-Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. A23-A25.
- Keith, J. R., Anderson, B. M., McNeal, J. M., and Boerngen, J. G., 1976, Chemistry of Powder River sediments, *in* U.S. Geological Survey, Geochemical survey of the western coal regions, 3d annual progress report, July 1976: U.S. Geological Survey Open-File Report 76-729, p. 30-36.
- Krumbein, W. C., and Slack, H. A., 1956, Statistical analysis of lowlevel radioactivity of Pennsylvania black fissile shale in Illinois: Geological Society of America Bulletin, v. 67, no. 6, p. 739-761.
- Leone, F. C., Nelson, L. S., Johnson, N. L., and Eisenstat, Stanley, 1968, Sampling distributions of variance components. 2, Empirical studies of unbalanced nested designs: Technometrics, v. 10, no. 4, p. 719-737.
- Maker, H. J., Keetch, C. W., and Anderson, J. U., 1973, Soil associations and land classification for irrigation, San Juan County: New Mexico State University Agricultural Experiment Station Report 257, 44 p.
- McHugh, J. B., and Turner, R. L., 1975, Flameless atomic absorption method for determination of trace amounts of mercury in vegetation, in Ward, F. N., ed., New and refined methods of trace analysis useful in geochemical exploration: U.S. Geological Survey Bulletin 1408, p. 21-27.
- McNeal, J. M., 1976, Stream sediment chemistry in the Northern Great Plains, in U.S. Geological Survey, Geochemical survey of the western energy regions (formerly Geochemical survey of the western coal regions), 3d annual progress report, July 1976: U.S. Geological Survey Open-File Report 76-729, p. 14-21.

- McNeal, J. M., and Ebens, R. J., 1978, Mineralogy of shale in the Fort Union Formation in outcrop in the Northern Great Plains coal province, *in* U.S. Geological Survey, Geochemical survey of the western energy regions, 5th annual progress report, July 1978: U.S. Geological Survey Open-File Report 78-1105, p. 144-149.
- McNeal, J. M., Feder, G. L., Ringrose, C. D., and Klusman, R. W., 1976, Stream sediment chemistry in the oil-shale region, *in* U.S. Geological Survey, Geochemical survey of the western energy regions (formerly Geochemical survey of the western coal regions), 3d annual progress report, July 1976: U.S. Geological Survey Open-File Report 76-729, p. 121-130.
- McNeal, J. M., Gough, L. P., and Severson, R. C., 1977, The mode of occurrence of DTPA- and EDTA-extractable elements in soils of the Northern Great Plains, *in* Agronomy Abstracts: Madison, Wisc., American Society of Agronomy, p. 128.
- McNeal, J. M., Severson, R. C., and Gough, L. P., 1978, R-mode factor analysis of extractable elements in A-and C-horizon soils from the Northern Great Plains, *in* U.S. Geological Survey, Geochemical survey of the western energy regions, 5th annual progress report, July 1978: U.S. Geological Survey Open-File Report 78-1105, p. 169-187.
- Miesch, A. T., 1967, Methods of computation for estimating geochemical abundances: U.S. Geological Survey Professional Paper 574-B, 15 p.
- Miesch, A. T., 1976, Geochemical survey of Missouri-Methods of sampling, laboratory analysis, and statistical reduction of data with sections on laboratory methods by 11 others: U.S. Geological Survey Professional Paper 954-A, 39 p.
- Millard, H. T., Jr., 1975, Determination of uranium and thorium in rocks and soils by the delayed neutron technique, *in* U.S. Geological Survey, Geochemical survey of the western coal regions, 2d annual progress report, July 1975: U.S. Geological Survey Open-File Report 75-436, p. 79-81.
- Myers, A. T., Havens, R. G., and Dunton, P. J., 1961, A spectrochemical method for the semiquantitative analysis of rocks, minerals, and ores: U.S. Geological Survey Bulletin 1084-I, 1207-1229.
- Neiman, H. G., 1976, Analysis of rocks, soils, and plant ashes by emission spectroscopy, in Miesch, A. T., Geochemical survey of Missouri-Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. A14-A15.
- Oetking, P., Feray, D. E., and Renfro, H. B., 1967, Geologic highway map of the southern Rocky Mountain region: Tulsa, Okla., American Association of Petroleum Geologists, 1 inch equals approximately 30 miles, 1 sheet.
- Severson, R. C., 1977, Regional soil chemistry in the Bighorn and Wind River Basins, Wyoming and Montana, in U.S. Geological Survey, Geochemical survey of the western energy regions, 4th annual progress report, July 1977: U.S. Geological Survey Open-File Report 77-872, p. 156-168.
- 1978a, Spatial variation in total element content in soils in northwest New Mexico and differences in soil composition at the Great Group taxonomic level, *in* U.S. Geological Survey, Geochemical survey of the western energy regions, 5th annual progress report, July 1978: U.S. Geological Survey Open-File Report 78-1105, p. 2-34.
 - 1978b, Variation in element content of the Doak, Shiprock, and Sheppard Soil Association in New Mexico, *in* U.S. Geological Survey, Geochemical survey of the western energy regions, 5th annual progress report, July 1978: U.S. Geological Survey Open-File Report 78-1105, p. 35-46.

_1979, Regional soil chemistry in the Bighorn and Wind River

Basins, Wyoming and Montana: U.S. Geological Survey Professional Paper 1134-B, 9 p.

- ____1981, Evaluating chemical character of soil material for suitability in rehabilitating mined land in the San Juan Basin, New Mexico: Soil Science Society of America Journal, v. 45 (*in* press).
- Severson, R. C., and Gough, L. P., 1981, Geochemistry and variability of natural and mine-reclaimed soils in the San Juan Basin, New Mexico: U.S. Geological Survey Professional Paper 1134-C (in press).
- Severson, R. C., Gough, L. P., and McNeal, J. M., 1977, Availability of elements in soils to native plants, Northern Great Plains, *in* U.S. Geological Survey, Geochemical survey of the western energy regions, 4th annual progress report, July 1977: U.S. Geological Survey Open-File Report 77-872, p. 98-143.
- Severson, R. C., McNeal, J. M., and Dickson, J. J., 1979, Effects of soil preparation on DTPA-extractable elements in soils of the Northern Great Plains: Soil Science, v. 128, no. 2, p. 70-79.
- Severson, R. C., McNeal, J. M., and Gough, L. P., 1978, Total and extractable element composition of some Northern Great Plains soils, in U.S. Geological Survey, Geochemical survey of the western energy regions, 5th annual progress report, July 1978: U.S. Geological Open-File Report 78-1105, p. 87-116.
- Severson, R. C., and Tidball, R. R., 1977, Spatial variation in total soil chemistry within the Northern Great Plains coal region, in Agronomy Abstracts: Madison, Wisc., American Society of Agronomy, p. 137.
- _____1979, Spatial variation in total element concentration in soil within the Northern Great Plains coal region: U.S. Geological Survey Professional Paper 1134-A, 18 p.
- Shacklette, H. T., 1980, Elements in fruits and vegetables from areas of commercial production in the conterminous United States: U.S. Geological Survey Professional Paper 1178, 149 p.
- Shacklette, H. T., Hamilton, J. C., Boerngen, J. G., and Bowles, J. M., 1971, Elemental composition of surficial materials in the conterminous United States: U.S. Geological Survey Professional Paper 574-D, 71 p.
- Shacklette, H. T. Sauer, H. I., and Miesch, A. T., 1970, Geochemical environments and cardiovascular mortality rates in Georgia: U.S. Geological Survey Professional Paper 574-C, 39 p.
- Skougstad, M. W., and Feder, G. L., 1976, Analysis of water by chemical methods, in Miesch, A. T., Geochemical survey of Missouri-Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. A18-A22.
- Strahler, A. N., 1969, Physical geography, 3d ed.: New York, John Wiley and Sons, Inc., 733 p.
- Thatcher, L. L., Janzer, V. J., and Edwards, K. W., 1977, Methods for determination of radioactive substances in water and fluvial sediments, *in* U.S. Geological Survey Techniques of Water-Resources Investigation, Book 5, Chapter A-5, 95 p.
- Tidball, R. R., 1976, Chemical variation of soils in Missouri associated with selected levels of the soil classification system: U.S. Geological Survey Professional Paper 954-B, 16 p.
- ____1978, Chemical and mineralogical evaluation of soils, Hanging Woman Creek EMRIA site, Big Horn County, Montana: U.S. Geological Survey Open-File Report 78-346, 84 p.
- Tidball, R. R., and Ebens, R. J., 1976, Regional geochemical baselines in soils of the Powder River Basin, Wyoming-Montana, *in* Laudon, R. B., ed., Geology and energy resources of the Powder River: Wyoming Geological Association 28th Annual Field Conference Guidebook, p. 299-310.
- Tidball, R. R., and Severson, R. C., 1975, Geochemical recon-

naissance of soils in the Northern Great Plains coal province, in U.S. Geological Survey, Geochemical survey of the western coal regions, 2d annual progress report, July 1975: U.S. Geological Survey Open-File Report 75-436, p. 36-49.

36

- 1976, Chemistry of Northern Great Plains soils, in U.S. Geological Survey, Geochemical survey of the western energy regions, (formerly Geochemical survey of the western coal regions) 3d annual progress report, July 1976: U.S. Geological Survey Open-File Report 76-729, p. 57-81.
- ____1977, Chemical variation in alluvial soils of the oil shale region, in U.S. Geological Survey, Geochemical survey of the western energy regions, 4th annual progress report, July 1977: U.S. Geological Survey Open-File Report 77-872, p. 55-64.
- Tourtelot, H. A., 1973, Regional geochemical investigations, Front Range Urban Corridor, Colorado: Geological Society of America Abstracts with Programs, v. 5, no. 6, p. 520-521.
- Trumbull, J. V. A., 1960, Coal fields of the United States, sheet 1: U.S. Geological Survey, scale 1:500,000.
- U.S. Environmental Protection Agency, 1976, Surface coal mining in the Northern Great Plains of the Western United States: U.S. Environmental Protection Agency Publication OEA 76-1, 146 p.
- U.S. Geological Survey, 1970, Organic fuel deposits, *in* National atlas of the United States of America: Washington, D.C., p. 186-187.
- _____1974a, Geochemical survey of the western coal regions, 1st annual progress report, July 1974: U.S. Geological Survey Open-File Report 74- 250, 38 p.
- 1974b, Stripping coal deposits of the Northern Great Plains, Montana, Wyoming, North Dakota, and South Dakota: U.S. Geological Survey Miscellaneous Field Studies Map MF-590.
- _____1974c, Stripping coal deposits of the Northern Great Plains, Montana, Wyoming, North Dakota, and South Dakota: U.S. Geological Survey Open-File Report 74-97, 5 p.
- _____1975, Geochemical survey of the western coal regions, 2d annual progress report, July 1975: U.S. Geological Survey Open-

File Report 75-436, 132 p.

- ____1976, Geochemical survey of the western energy regions (formerly Geochemical survey of the western coal regions), 3d annual progress report, July 1976: U.S. Geological Survey Open-File Report 76-729, 138 p. + Appendix I-V.
- _____1977, Geochemical survey of the western energy regions, 4th annual progress report, July 1977: U.S. Geological Survey Open-File Report 77-872, 207 p. + Appendix I-IV.
- ____ 1978, Geochemical survey of the western energy regions, 5th annual progress report, July 1978: U.S. Geological Survey Open-File Report 78-1105, 194 p.
- Vaughn, W. W., 1967, A simple mercury vapor detector for geochemical prospecting: U.S. Geological Survey Circular 540, 8 p.
- Vaughn, W. W., and McCarthy, J. H., Jr., 1964 [1965], An instrumental technique for the determination of submicrogram concentrations of mercury in soils, rocks, and gas, *in* Geological Survey research 1964: U.S. Geological Survey Professional Paper 501-D, p. D123-D127.
- Wahlberg, J. S., 1976, Analysis of rocks and soils by x-ray fluorescence, in Miesch, A. T., Geochemical survey of Missouri-Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. A11-A12.
- Ward, F. N., Lakin, H. W., Canney, F. C., and others, 1963, Analytical methods used in geochemical exploration by the U.S. Geological Survey: U.S. Geological Survey Bulletin 1152, 100 p.
- Ward, F. N., Nakagawa, H. M., Harms, T. F., and Van Sickle, G. H., 1969, Atomic-absorption methods of analysis useful in geochemical exploration: U.S. Geological Survey Bulletin 1289, 45 p.
- Whitaker, S. H., and Pearson, D. E., 1972, Geological map of Saskatchewan: Saskatchewan Department of Mineral Resources and Saskatchewan Research Council.

TABLES 4-77

Tables giving concentrations of elements in rocks, stream sediments, mine spoil and associated materials, soils, and plants; parameters measured in extraction studies of soils; pH determinations for rocks, stream sediments, mine spoil, and soils; geochemical summaries of ground waters; and minerology of selected rocks and soils.

TABLES 4-77

TABLE 4.-Aluminum in rocks, stream sediments, mine spoil and associated materials, soils, and plants.

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterick are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation.

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation	1 (5)	00.00		1 (0	1 00	1077
Sandstone Shale	1 (5) 1 (5)	80:80 80:80	4.1 7.0	1.49 1.31	1.08 1.05	1.8 - 7.7 1.4 - 13
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (5)	24:24	4.6	1.36	1.14	2.0 - 8.2
Siltstone and shale	2 (5)	24:24	7.0	1.19	1.04	5.1 - 8.8
Dark shale	2 (5)	23:23	7.8	1.13	1.06	6.1 - 9.7
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (5)	50:50	15	1.20	1.04	7.4 - 22
Sandstone	4 (5)	42:42	5.9	1.20	1.05	4.0 - 8.5
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (5)	74:74	3.6	1.34	1.08	1.6 - 6.6
Middle 300 m	5 (5)	51:51	3.8	1.39	1.05	.74 - 6.8
Garden Gulch Member (lower 100 m)	5 (5)	32:32	5.5	1.41		1.7 - 7.7
	STRI	EAM SEDIMENT	?S			
Northern Great Plains regional study	6 (5)	60:60	5.0	1.19	1.12	3.4 - 7.9
Powder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (5)	19:19	3.1	1.34	1.13	2.2 - 6.4
100-200 µm	7 (5)	24:24	2.6	1.34	1.14	1.8 - 5.8
63-100 μm <63 μm	7 (5) 7 (5)	24:24	2.9	1.21 1.18	1.02 1.07	2.2 - 5.8 2.8 - 6.4
χου μш	7 (3)	24:24	3.7	1.10	1.07	2.0 - 0.4
Uinta Creek and Piceance Creek Basins,						
Colo. and Utah	- 8 (5)	32:32	4.3	1.30	1.30	2.5 - 5.9
Piceance Creek Basin, Colo.						~ 7
Roan Creek	9(1)	16:16	6.0	1.32	1.22	3 - 7
Black Sulphur Creek	9 (1)	16:16	7.6	1.20	1.22	7 - 10
	MINE SPOIL AN	D ASSOCIATE	D MATERIALS			
Mine spoil						
Northern Great Plains		10.10				
Beulah North mine, North Dakota		10:10	7.6	1.08		7.0 - 8.7
Dave Johnston mine, Wyoming	10 (5)	10:10	6.5	1.15		5.3 - 8.4

TABLE 4.-Aluminum in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
MINE	SPOIL AND ASSO	CIATED MATE	RIALSContin	ued		
line spoilContinued						
Northern Great PlainsContinued						
Hidden Valley mine, Wyoming	10 (5)	10:10	7.4	1.24		4.7 - 9.9
Kincaid mine, North Dakota	10 (5)	10:10	6.7	1.21		4.7 - 8.7
Savage mine, Montana	10 (5)	10:10	6.0	1.13		4.7 - 7.1
Velva mine, North Dakota	10 (5)	10:10	6.2	1.09		5.5 - 7.4
Big Sky mine, Montana	10 (5)	10:10	5.9	1.12		4.6 - 6.7 4.7 - 8.9
Utility mine, Saskatchewan	10 (5)	10:10	5.7	1.19		4.7 - 8.9
San Juan mine, New Mexico	11 (5)	12:12	6.1	1.11	1.03	5.1 - 6.9
Copsoil used in spoil reclamation	11 (5)	10.10	<u> </u>	1 5 3	1 27	
San Juan mine, New Mexico	11 (5)	12:12	2.9	1.53	1.37	1.0 - 4.7
lants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover Beulah North mine, North Dakota	10 (2)	10:10	.054	1.61	1.20	0.21 - 1.1
Dave Johnston mine, Wyoming	10 (2)	10:10	.034	1.51	1.20	.02111 .05318
Hidden Valley mine, Wyoming	10 (2)	9:10	.10	1.51	1.20	.27 - >.76
Kincaid mine, North Dakota	10 (2)	10:10	.42	2.06	1.20	.04140
Savage mine, Montana	10 (2)	10:10	.047	1.74	1.20	.02114
Velva mine, North Dakota	10 (2)	10:10	.079	2.09	1.20	.03540
White sweetclover						
Big Sky mine, Montana	10 (2)	10:10	.11	1.36	1.20	.06017
Utility mine, Saskatchewan	10 (2)	10:10	.069	1.53	1.20	.03914
Alfalfa			_			
Beulah North mine, North Dakota	10 (2)	3:3	.077	2.85		.02823
Dave Johnston mine, Wyoming	10 (2)	3:3	•23	1.90		.1448
Savage mine, Montana	10 (2)	3:3	.044			.005318
Velva mine, North Dakota	10 (2)	3:3	.062	4.13		.02131
Big Sky mine, Montana	10 (2)	3:3	•0 9 5	1.43		.06312
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (2)	20:20	.11	1.89	1.39	.04137
Growing near mine spoil	26 (2)	20:20	.069	1.74	1.39	.03027
San Juan mine, New Mexico						
Fourwing saltbush	11 (2)	6:6	.12	1.36		.08817
Alkalí sacaton	11 (2)	6:6	.050	1.93		.02510
		SOILS				
Piceance and Uinta Basins, Colo.						
and Utah; alluvial, 0- to 40-cm depth	12 (5)	30:30	*4.6	*0.61	*0.11	2.1 - 6.8
owder River Basin, Wyo. and Mont.					·	
A horizon	13 (5)	64:64	5.0	1.26	1.07	3.3 - 8.2
B horizon	13 (5)	64:64	5.6	1.24	1.05	3.5 - 8.7
C horizon	13 (5)	64:64	5.5	1.28	1.09	3.7 - 9.4
anging Woman Creek, Mont.			±5 4	± / -		
A horizon	14 (5)	16:16	*5.4	*.65	*.12	4.5 - 6.6
C horizon	14 (5)	16:16	*4.9	*.73	*.36	3.1 - 5.9

TABLE 4.—Aluminum in rocks, stream sediments, mi	e spoil and associated materials.	soils, and plants—Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	SOI	LSContinue	d			
iceance Creek Basin, Colo.,						
0- to 5-cm depth	15 (5)	108:108	5.5	1.17		3.4 - 7.8
orthern Great Plains; North Dakota,						
South Dakota, Wyoming, and Montana						
Unglaciated area						
A horizon	16 (5)	88:88	5.8	1.18	1.09	3.7 - 12
C horizon	16 (5)	88:88	5.9	1.22	1.06	3.4 - 10
Glaciated area						
A horizon	16 (5)	48:48	5.3	1.17	1.09	3.4 - 7.1
C horizon	16 (5)	48:48	5.3	1.22	1.06	2.9 - 7.7
Combined data, unglaciated and						
glaciated areas						
A horizon	16 (5)	136:136	5.6	1.19	1.09	3.4 - 12
C horizon	16 (5)	136:136	5.7	1.23	1.06	2.9 - 10
ig Horn Basin, Wyo.,	17 (5)	26.26	4 0	1 22	1 00	21.62
0- to 40-cm depth	17 (5)	36:36	4.0	1.32	1.09	2.1 - 6.3
ind River Basin, Wyo., O- to 40-cm						
depth	17 (5)	36:36	5.0	1.19	1.08	3.3 - 6.9
depth	17 (5)	50.50	5.0	1.17	1.00	5.5 0.7
an Juan Basin, N. Mex.						
A horizon	11 (5)	47:47	4.7	1.27	1.04	2.4 - 7.7
C horizon	11 (5)	47:47	5.0	1.30	1.04	2.3 - 8.0
heppard-Shiprock-Doak Soil Association,						
N. Mex.						
A horizon	24 (5)	30:30	4.4	1.12	1.08	3.4 - 5.7
B horizon	24 (5)	30:30	4.4	1.21	1.12	2.9 - 6.1
		PLANTS				
ultivated plants, northern Great Plains						
(dry-weight basis)						
Barley	21 (1)	18:18	0.0044	1.50	1.27	0.0026 - 0.013
Oats	21 (1)	21:21	.0057	1.28	1.22	.00400092
Wheat, durum	21(1)	19:20	.0025	1.48	1.48	<.00170041
Wheat, hard red spring	21(1)	54:54	.0020	1.73	1.35	.00080110
Wheat, hard red winter	21 (1)	17:17	.0012	1.46	1.23	.00060020
lative species (dry-weight basis)						
Galleta, San Juan Basin	19 (2)	25:25	.097	1.75	1.23	.02526
Saltbush, fourwing, San Juan Basin	19 (2)	10:10	.053	1.49	1.16	.03098
Snakeweed, San Juan Basin	19 (2)	18:18	.083	1.76	1.24	.02319
lative species (ash-weight basis)						
Lichen (<u>Parmelia</u>), Powder River Basin,	22 (1)	20.20	2 0	1 25	1 15	2 - 5
Wyo	22 (1)	29:29	3.8	1.35	1.15	2 - 5
Sagebrush, big; regional study Colorado Plateaus Province	23 (1)	30:30	1.1	1.94	1.13	.5 - 3
COTOLAGO LIALGAUS LLOVINCE	23 (1) 23 (1)	30:30	2.8	1.94	1.13	1.5 - 7
Columbia Plateaus Provinco		30:30	1.7	1.58	1.13	1.3 - 7 1 - 3
Columbia Plateaus Province	23 (1)		1/			
Basin and Range Province	23(1)		1 2	2 10	1 2 4	5 - 5
Basin and Range Province Northern Great Plains	23 (1)	20:20	1.2	2.19	1.24	•5 - 5 5 - 5
Basin and Range Province Northern Great Plains Northern Rocky Mountains Province	23 (1) 23 (1)	20:20 20:20	1.4	1.85	1.24	.5 - 5
Basin and Range Province Northern Great Plains	23 (1)	20:20				

ALUMINUM

TABLE 5.-Antimony in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parantheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS			· · · · · · · · · · · · · · · · · · ·	
Core samples						
Northern Great Plains, Fort Union Formation Sandstone	4 (5)	34:42	0.41	2.2	2.04	<0.20 - 3.2
Piceance Creek Basin, Colo.	4 (3)	31112				
Green River Formation Mahogany zone (upper 100 m)	5 (5)	37:42	.97	2.34		<.16 - 3.9
Middle 300 m	5 (5)	47:48	.96	1.65	1.26	<.2 - 2.9
Garden Gulch Member (lower 100 m)	5 (5)	16:16	.20	1.49		.60 - 2.8
	STRE	CAM SEDIMENTS				
owder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (5)	12:14	0.54	3.12	2.18	·<0.1 - 1.2
100-200 μm	7 (5)	19:20	•45	2.86	1.97	<.1 - 1.5
63-100 µm	7 (5)	15:16	.45	3.06	2.89	< .1 - 1.4
<63 µm	7 (5)	16:16	.99	2.50	1.34	.34 - 3.0
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
fine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (5)	10:10	0.89	2.40		0.15 - 2.0
Dave Johnston mine, Wyoming	10 (5)	10:10	.88	2.95		.19 - 3.8
Hidden Valley mine, Wyoming	10 (5)	10:10 10:10	1.2 1.5	2.94 2.04		.18 - 5.3 .39 - 3.5
Kincaid mine, North Dakota Savage mine, Montana	10 (5) 10 (5)	9:10	.86	2.62		<.1 - 2.2
Velva mine, North Dakota	10 (5)	9:10	.94	2.62		<.1 - 2.5
Big Sky mine, Montana	10 (5)	9:10	.88	2.70		<.1 - 2.6
Utility mine, Saskatchewan	10 (5)	9:10	.94	3.01		<.1 - 4.6
		SOILS				
langing Woman Creek, Mont.						
A horizon	14 (5)	2:16	<1.0			<1.0 - 1.3
B horizon Ciceance Creek Basin, Colo., O- to 5-cm	14 (5)	1:16	<1.0			<1.0 - 1.4
depth	15 (5)	103:108	.90	2.70	2.52	<.14 - 4.6
orthern Great Plains: North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizonB horizon	16 (5) 16 (5)	96:136 107:136	.86 .91	2.42 2.25	3.88 3.15	<.10 - 24 <.10 - 4.9
B NOT 1201	10 (3)	107.130	• 7 1	2.23	ر ۲۰ ر	N+10 - 4+9
Big Horn Basin, Wyo., O- to 40-cm depth	17 (5)	15:36	.16	3.14	3.03	<.10 - 2.3
Vind River Basin, Wyo., O- to 40-cm depth	17 (5)	15:36		~-		<.10 - 2.8

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOIL	SContinue	1			
San Juan Basin, N. Mex.						
A horizon	11 (5)	29:47	0.30	2.84		<0.20 - 1.6
C horizon	11 (5)	33:47	.40	2.57		<.20 - 1.8
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (5)	13:30	.18	2.55		<.2090
B horizon	24 (5)	9:30	.13	2.39		<.2070
		PLANTS				
Native species (ash weight basis)						
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (3)	11:30	0.012	3.62		<.0225
Columbia Plateaus Province	23 (3)	2:30	<.02			<.0204
Basin and Range Province	23 (3)	25:30	.035	2.36		<.0220
Northern Great Plains	23 (3)	10:20	.022	3.38		<.0220
Northern Rocky Mountains Province	23 (3)	20:20	.080	1.94	1.29	.0425
Middle Rocky Mountains Province	23 (3)	18:20	.040	2.48	1.29	<.0215
Southern Rocky Mountains Province	23 (3)	14:20	.021	2.39		<.0210
Wyoming Basin Province	23 (3)	13:20	.025	2.29		<.0210

TABLE 5.-Antimony in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLE 6.-Arsenic in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	·····	ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (18)	80:80	4.4	1.95	1.12	0.80 - 25
Shale	1 (18)	80:80	5.1	2.21	1.25	1.3 - 39
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (18)	23:24	3.8	3.19	2.65	<.1 - 49
Siltstone and shale	2 (18)	24:24	6.1	1.99	1.36	2.7 - 62
Dark shale	2 (18)	23:23	7.6	1.89	1.87	1.7 - 27
Northern Great Plains, Fort Union						
Formation						
Fine-grained rocks	3 (18)	49:50	3.6	2.74	1.30	<.38 - 16
Sandstone	4 (18)	42:42	5.4	1.80	1.26	1.7 - 40
Piceance Creek Basin, Colo.						
Green River Formation						
Mahogany zone (upper 100 m)	5 (18)	42:42	13	1.60		4.3 - 29
Middle 300 m	5 (18)	48:48	11	1.87	1.32	1.7 - 29
Garden Gulch Member (lower 100 m)	5 (18)	16:16	12	1.78		4.5 - 40

ANTIMONY, ARSENIC

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed rang (ppm)
	STRE	CAM SEDIMENTS	3			
orthern Great Plains regional study	6 (5)	60:60	5.5	1.53	1.34	1.7 - 22
owder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (5)	16:19	4.9			<.1 - 24
100-200 μm	7 (5)	24:24	5.7	1.45	1.17	2.9 - 14
63-100 μm <63 μm	7 (5) 7 (5)	24:24 24:24	4.9 7.7	1.34 1.23	1.08 1.08	3.5 - 13 5.4 - 13
(05 μm	. (3)	24.24		1.25		501 15
inta and Piceance Creek Basins, Colo. and Utah	8 (5)	32:32	6.5	2.00	1.15	1.0 - 20
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
ine spoil						
Northern Great Plains Beulah North mine North Dakota	10 (5)	10.10	2.5	4.22		0.12 - 8.3
Beulah North mine, North Dakota Dave Johnston mine, Wyoming	10 (5) 10 (5)	10:10 9:10	2.5	4.22		<.1 - 7.3
Hidden Valley mine, Wyoming	10(5) 10(5)	10:10	2.0 6.5	1.56		3.5 - 12
Kincaid mine, North Dakota	10(5)	9:10	3.5	3.92		<.1 - 8.3
Savage mine, Montana	10 (5)	10:10	4.9	2.58		.40 - 10
Velva mine, North Dakota	10 (5)	10:10	5.7	1.68		1.4 - 8.6
Big Sky mine, Montana	10 (5)	10:10	3.9	2.56		.57 - 9.0
Utility mine, Saskatchewan	10 (5)	10:10	4.7	1.85		1.2 - 8.5
San Juan mine, New Mexico	11 (5)	12:12	4.3	1.22	1.10	3.0 - 6.1
Copsoil used in spoil reclamation San Juan mine, New Mexico	11 (5)	12:12	2.9	1.53	1.37	1.0 - 4.7
Plants (dry-weight basis)						
Northern Great Plains Alfalfa						
Beulah North mine, North Dakota	10 (3)	3:3	.11	2.24	~	.0525
Dave Johnston mine, Wyoming	10 (3)	3:3	.17	1.18		.1520
Savage mine, Montana	10 (3)	3:3	.21	1.34		.1525
Velva mine, North Dakota	10 (3)	3:3	.09	2.53		.0525
Big Sky mine, Montana	10 (3)	3:3	.17	1.18	~	.1520
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (3)	10:20	.047	1.61	~	<.0509
Growing near mine spoil	26 (3)	1:20	<.05			< . 0505
San Juan mine, New Mexico						
Fourwing saltbush	11 (3)	6:6	.24	1.23		.2030
Alkali sacaton	11 (3)	6:6	•12	1.28		.1015
		SOILS				
Piceance Creek and Uinta Basins, Colo.			····.			
and Utah; alluvial, 0- to 40-cm depth	12 (5)	30:30	9.3	1.63	1.11	4.2 - 23
langing Woman Creek, Mont.			. .			0.0
A horizon	14 (5)	16:16	7.6	1.34	1.10	3.9 - 12
C horizon	14 (5)	16:16	7.3	1.47	1.15	3.5 - 13
Piceance Creek Basin, Colo., O- to						

TABLE 6.-Arsenic in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

ARSENIC

TABLE 6.—Arsenic in rocks, stream sediments	s, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed rang (ppm)
	SOII	SContinued				
Northern Great Plains: North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and						
glaciated areas	16 (5)	105 106	7 1	1 (0	1 10	< 10 DC
A horizon	16 (5)	135:136	7.1 6.8	1.69 1.90	1.19 1.18	<.10 - 26 <.10 - 76
C horizon	16 (5)	135:136	6.8	1.90	1.18	<.10 - 76
Big Horn Basin, Wyo., O- to 40-cm depth	17 (5)	36:36	4.7	1.94	1.82	.38 - 8.2
Wind River Basin, Wyo., O- to 40-cm						
depth	17 (5)	36:36	3.6	1.90	1.39	.35 - 11
	17 (5)	30:30	5.0	1.90	1.37	• 2 2 - 1 1
San Juan Basin, N. Mex.						
A horizon	11 (5)	47:47	5.4	1.52	1.20	2.5 - 19
C horizon	11 (5)	47:47	5.4	1.46	1.14	2.1 - 15
0 1011201	11 (5)	47.47	5.4	1140	1.1.4	201 19
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (5)	30:30	3.3	1.22	1.22	2.1 - 4.8
C horizon	24 (5)	30:30	3.7	1.39	1.22	1.7 - 7.6
0 1011201	24 (3)	10.10	5.7	1.57	1.20	1.7 7.0
		PLANTS				
Native species (dry-weight basis)						
Galleta, San Juan Basin	19 (3)	25:25	0.16	1.43	1.10	0.10 - 0.30
Saltbush, fourwing, San Juan Basin	19 (3)	6:10	.011	1.19	1.05	<.0510
Snakeweed, San Juan Basin	19 (3)	18:18	.13	1.53	1.13	.0520
Lichen (Parmelia), Powder River						
Basin, Wyo. and Mont	22 (3)	29:29	.92	1.32	1.27	.5 - 1.8
Sagebrush, big; regional study			0.05	1 00	1.0/	0.5 0.0
Colorado Plateaus Province	23 (3)	30:30	.085	1.92	1.24	.0520
Columbia Plateaus Province	23 (3)	30:30	.19	1.74	1.24	.0560
Basin and Range Province	23 (3)	28:30	.12	1.87	1.24	<.0530
Northern Great Plains	23 (3)	20:20	.16	1.68	1.25	.1035
Northern Rocky Mountains Province	23 (3)	20:20	.97	4.72	1.25	.20 - 20
Middle Rocky Mountains Province	23 (3)	20:20	.14	2.04	1.25	.0545
Southern Rocky Mountains Province	23 (3)	19:20	.077	1.69	1.25	<.0515
Wyoming Basin Province	23 (3)	20:20	.16	1.78	1.25	.0530

TABLE 7.-Barium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed Range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone Shale		80:80 80:80	700 940	1.71 1.42	1.44 1.11	210 - 1,900 210 - 2,100
Core samples						
Hanging Woman Creek, Mont.	0 (0)	04.04	(10	1 20	1.16	260 820
Sandstone		24:24	410	1.39	1.16	260 - 830
Siltstone and shale		24:24	500	1.29	1.15	340 - 880
Dark shale	2 (2)	23:23	450	1.28	1.18	240 - 660
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (2)	50:50	420	1.30	1.11	220 - 650
Sandstone	• •	42:42	630	1.30	1.06	380 - 1,200
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	390	1.34	1.22	150 - 6 9 0
Middle 300 m		53:53	280	1.63	1.30	36 - 810
Garden Gulch Member (lower 100 m)	• •	263:263	400	1.49		200 - 1,50
	STR	EAM SEDIMENT	S			
Northern Great Plains regional study	6 (2)	60:60	540	1.34	1.19	260 - 1,000
Powder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (1)	24:24	870	1.39	1.21	500 - 1,500
100-200 um	7 (1)	24:24	870	1.47	1.31	500 - 1,500
63-100 um		24:24	930	1.36	1.02	500 - 2,000
<63 µm		24:24	1,030	1.44	1.35	500 - 1,500
Jinta and Piceance Creek Basins, Colo. and Utah						
Asphalt Wash, Utah	8 (2)	8:8	810	1.16		680 - 1,000
Cottonwood Creek, Utah		8:8	1,100	1.28		680 - 1,500
Duck Creek, Colo	8 (2)	8:8	9 40	1.14		750 - 1,200
Ryan Gulch, Colo	8 (2)	8:8	720	1.20		600 - 1,100
Piceance Creek Basin, Colo.			0.1-			
Roan and Black Sulphur Creeks	9 (1)	32:32	940	1.35		700 - 2,000
	MINE SPOIL A	ND ASSOCIATEI	MATERIALS			
line spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (2)	10:10	1,200	1.73		570 - 2,600
Dave Johnston mine, Wyoming	10 (2)	10:10	890	1.36		450 - 1,200
	10 (2)	10.10	610	1 6 2		310 - 1200
Hidden Valley mine, Wyoming	10 (2)	10:10 10:10	640 920	1.63 1.52		310 - 1,200 590 - 1,800

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	CIATED MATER	IALSContin	ued		
ine spoilContinued						
Northern Great PlainsContinued Savage mine, Montana	10 (2)	10:10	880	1.45		520 - 1,400
Velva mine, North Dakota	10 (2)	10:10	99 0	1.42		560 - 1,600
Big Sky mine, Montana	10 (2)	10:10	830	1.42		470 - 1,300
Utility mine, Saskatchewan	10 (2)	10:10	92 0	1.56		4 9 0 - 1,500
San Juan mine, New Mexico	11 (2)	12:12	59 0	1.46	1.61	310 - 1,100
opsoil used in spoil reclamation San Juan mine, New Mexico	11 (2)	12:12	450	1.37	1.36	330 - 1,100
lants (dry-weight basis)						
Northern Great Plains Yellow sweetclover						
Beulah North mine, North Dakota	10 (2)	10:10	26	2.30	1.11	5 - 85
Dave Johnston mine, Wyoming	10 (2)	10:10	39	1.26	1.11	32 - 59
Hidden Valley mine, Wyoming	10 (2)	10:10	49	1.44	1.11	35 - 99
Kincaid mine, North Dakota Savage mine, Montana	10 (2) 10 (2)	10:10 10:10	65 32	1.74 1.19	1.11	32 - 155 24 - 41
Velva mine, North Dakota	10 (2)	10:10	40	2.79	1.11	3 - 156
White sweetclover						
Big Sky mine, Montana	10 (2)	10:10	63	1.36	1.11	41 - 103
Utility mine, Saskatchewan	10 (2)	10:10	52	1.47	1.11	21 - 94
Alfalfa	10 (0)		10	, 75		(17
Beulah North mine, North Dakota	10 (2) 10 (2)	3:3 3:3	10 17	1.75 1.15		6 - 17 14 - 19
Dave Johnston mine, Wyoming Savage mine, Montana	10(2) 10(2)	3:3	17	1.61		14 - 13 11 - 27
Velva mine, North Dakota	10 (2)	3:3	12	2.33		7 - 31
Big Sky mine, Montana	10 (2)	3:3	15	1.09		14 - 16
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil Growing near mine spoil	26 (1) 26 (1)	20:20 20:20	10 12	1.44	1.15 1.15	6 - 22 6 - 22
San Juan mine, New Mexico	(1)					
Fourwing saltbush	11 (2)	6:6	26	1.56		17 - 42
Alkali sacaton	11 (2)	5:5	19	1.24		11 - 17
		SOILS			•	
iceance Creek and Uinta Basins, Colo. and Utah; alluvial, O- to 40-cm depth	12 (2)	30:30	1,200	1.37	1.28	710 - 1,900
	()		,			
owder River Basin, Wyo. and Mont. A horizon	13 (1	64:64	670	1.28	1.15	300 - 1,000
B horizon	13 (1)	64:64	660	1.28	1.20	300 - 1,500
C horizon	13 (1)	64:64	630	1.40	1.20	300 - 1,500
owder River Basin, Wyo. and Mont.			a			
Soil, 0- to 2.5-cm depth Soil, 15- to 20-cm depth	20 (1) 20 (1)	48:48 48:48	740 720	1.36 1.36	1.28 1.20	500 - 3,000 300 - 1,500
langing Woman Creek, Mont.						
A horizon	14 (2)	16:16	450	1.13	1.12	340 - 560
C horizon	14 (2)	16:16	480	1.16	1.10	360 - 660
iceance Creek Basin, Colo., O- to 5-cm depth		108:108	1,400	1.50		600 - 13,00

BARIUM

TABLE 7.-Barium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOI	LSContinue	1			
Northern Great Plains: North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon	16 (2)	136:136	1,100	1.33	1.33	420 - 2,320
C horizon	16 (2)	136:136	1,000	1.47	1.62	140 - 3,400
ig Horn Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	1,300	1.16	1.46	920 - 1,800
/ind River Basin, Wyo., O- to 40-cm						
depth	17 (2)	36:36	1,600	1.19	1.20	1,100 - 2,200
an Juan Basin, N. Mex.						
A horizon	11 (2)	47:47	570	1.41	1.13	230 - 1,800
C horizon	11 (2)	47:47	570	1.52	1.16	210 - 3,000
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (2)	30:30	620	1.24	1.28	330 - 970
C horizon	24 (2)	30:30	690	1.34	1.17	330 - 1,200
		PLANTS				
Cultivated plants, northern Great		<u>, , , , , , , , , , , , , , , , , , , </u>				
Plains (dry-weight basis)						
Barley	21 (1)	15:18	2.3	1.31	1.30	<1.5 - 3.4
Oats	21 (1)	10:21	3.1	1.24	1.24	<2.0 - 4.2
Wheat, durum	21(1)	19:20	2.7	1.40	1.29	<1.4 - 4.4
Wheat, hard red spring	21 (1)	54:54	2.6	1.38	1.14	1.4 - 5.9
Wheat, hard red winter	21 (1)	17:17	3.3	1.23	1.09	2.1 - 4.3
Vative species (dry-weight basis)						
Galleta, San Juan Basin	19 (2)	25:25	20	1.57	1.22	8.6 - 48
Saltbush, fourwing, San Juan Basin	19 (2)	10:10	18	1.44	1.17	10 - 30
Snakeweed, San Juan Basin	19 (2)	18:18	44	1.93	1.33	8.8 - 98
Native species (ash-weight basis) Lichen (Parmelia), Powder River						
Basin, Wyo. and Mont	22 (1)	29:29	370	1.56	1.21	150 - 500
Sacobruch bigs Dourdon Diver Dest-						
Sagebrush, big; Powder River Basin, Wyo. and Mont	20 (1)	41:41	500	1.71	1.26	150 - 1,500
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (1)	30:30	320	1.68	1.20	150 - 700
Columbia Plateaus Province	23 (1)	30:30	380	1.74	1.20	150 - 700
Basin and Range Province	23 (1)	30:30	340	1.74	1.20	150 - 1,500
Northern Great Plains	23 (1)	20:20	440	2.10	1.24	150 - 1,000
Northern Rocky Mountains Province	23 (1)	20:20	370	2.04	1.24	200 - 1,500
Middle Rocky Mountains Province	23 (1)	20:20	460	2.15	1.24	150 - 1,500
	22 (1)	20:20	560	2.43	1.24	200 - 2,000
Southern Rocky Mountains Province Wyoming Basin Province	23 (1)	20:20	100	a 145	1.24	200 - 1,000

TABLES 4-77

TABLE 8.-Beryllium in rocks, stream sediments, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone Shale	1 (2) 1 (2)	80:80 80:80	1.4 3.3	1.74 1.84	1.18 1.16	0.50 - 4.2 .48 - 6.7
Core samples						
Hanging Woman Creek, Mont. Sandstone	2 (2)	24:24	1.4	1.40	1.12	.80 - 2.6
Siltstone and shale	2 (2)	24:24	2.6	1.40	1.10	1.7 - 3.6
Dark shale	2 (2)	23:23	3.2	1.20	1.14	2.1 - 5.1
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (2)	50:50	2.0	1.38	1.27	1.1 - 3.6
Sandstone	4 (2)	19:42	.96	1.50	1.82	<1.0 - 2.5
	STRI	CAM SEDIMENTS	3			
Northern Great Plains regional	((0)	(a (a	• •	1 54		0.52 / (
study	6 (2)	60:60	2.0	1.56	1.43	0.53 - 4.6
Powder River Basin, Wyo. and Mont. Size fraction, <63 μm	7 (1)	17:24	1	1.49	1.39	<1 - 2
Uinta and Piceance Creek Basins, Colo. and Utah	8 (2)	32:32	3.3	1.53	1.26	1 - 5
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
Mine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (2)	10:10	2.4	1.30		1.4 - 3.6
Dave Johnston mine, Wyoming	10 (2)	10:10	2.2	1.55		1.1 - 4.0
Hidden Valley mine, Wyoming Kincaid mine, North Dakota	10 (2) 10 (2)	10:10 10:10	2.6 2.4	1.45 1.35		1.3 - 3.9 1.3 - 3.4
Savage mine, Montana	10(2) 10(2)	10:10	2.4	1.35		1.3 - 3.4 1.2 - 3.5
Velva mine, North Dakota	10 (2)	10:10	1.8	1.22		1.2 - 2.3
Big Sky mine, Montana	10 (2)	10:10	2.5	1.27		1.8 - 3.5
Utility mine, Saskatchewan	10 (2)	10:10	1.8	1.34		1.1 - 2.6
San Juan mine, New Mexico	11 (2)	12:12	2.7	1.11	1.10	2.2 - 3.2
Topsoil used in spoil reclamation San Juan mine, New Mexico	11 (2)	12:12	2.4	1.10	1.08	2.1 - 2.7
		SOILS				
Piceance Creek and Uinta Basins, Colo. and Utah; alluvial, O- to 40-cm depth	12 (2)	30:30	2.0	1.48	1.21	0.84 - 4.5

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOI	LSContinued				
Powder River Basin, Wyo. and Mont.						
A horizon	、	30:64	0.85	1.35	1.30	<1 - 1.5
B horizon	(-)	43:64	1.1	1.37	1.37	<1 - 2
C horizon	13 (1)	38:64	1.0	1.40	1.32	<1 - 2
Powder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm depth	20 (1)	32:48	.87	1.55	1.16	<1 - 1.5
Soil, 15- to 20-cm depth	20 (1)	37:48	.99	1.47	1.16	<1 - 1.5
Hanging Woman Creek, Mont.						
A horizon	14 (2)	16:16	1.9	1.41	1.20	.93 - 2.9
C horizon	14 (2)	16:16	1.8	1.33	1.30	1.2 - 3.2
Piceance Creek Basin, Colo., 0- to 5-cm						
depth	15 (2)	108:108	2.4	1.45		.88 - 4.4
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Unglaciated area						
A horizon Glaciated area	16 (2)	88:88	1.7	1.38	1.27	.70 - 3.5
A horizon	16 (2)	47:48	1.5	1.46	1.27	<.22 - 2.5
Combined data, unglaciated and glaciated areas	10 (2)			11.0		
A horizon	16 (2)	135:136	1.6	1.42	1.27	<.22 - 3.5
C horizon	16 (2)	136:136	1.6	1.44	1.23	.41 - 3.0
Big Horn Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	2.0	1.40	1.23	.85 - 3.3
Wind River Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	2.4	1.29	1.23	1.3 - 3.6
San Juan Basin, N. Mex.						
A horizon	11 (2)	47:47	1.5	1.20	1.17	1.0 - 2.3
B horizon	11 (2)	47:47	1.5	1.24	1.18	1.1 - 2.8
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (2)	30:30	1.3	1.13	1.14	1.1 - 1.7
C horizon		30:30	1.3	1.16	1.13	1.0 - 1.8

TABLE 8.-Beryllium in rocks, stream sediments, mine spoil and associated materials, and soils-Continued

TABLE 9.-Boron in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (--) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union Formation	1 (2)	80:80	51	1.69	1.15	15 - 140
Sandstone Shale	1 (2) 1 (2)	77:80	98	1.39	1.19	52 - >150
BERYLLIUM, BORON						

TABLE 9.-Boron in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed rang (ppm)
	ROCK	(SContinued	1			
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	26	1.59	1.12	11 - 49
Siltstone and shale	2 (2)	24:24	58	1.14	1.06	44 - 70
Dark shale	2 (2)	23:23	64	1.11	1.09	50 - 77
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (2)	50:50	59	1.32	1.26	30 - 110
Sandstone	4 (2)	42:42	42	1.50	1.07	15 - 78
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	71:74	99	1.92	1.68	<13 - 400
Middle 300 m	5 (2)	32:53	24	3.24	1.31	<10 - 230
Garden Gulch Member (lower 100 m)	5 (2)	262:264	150	1.33		<70 - 300
······································	STRE	EAM SEDIMENTS	3			
orthern Great Plains regional						
study	6 (2)	60:60	56	1.29	1.24	25 - 82
owder River Basin, Wyo. and Mont.						
Size fractions	7 (1)	10.0/	.,		1 20	(1.5 5.0
>200 μm 100-200 μm	7 (1) 7 (1)	13:24 13:24	14 14	1.55 1.38	1.32	<15 - 50 <15 - 50
63-100 µm	7 (1)	24:24	32	1.50	1.65	20 - 50
<63 µm	7 (1)	24:24	55	1.40	1.18	30 - 70
'iceance Creek Basin, Colo. Roan and Black Sulphur Creeks	9(1)	32:32	44	1.39	1.25	30 - 70
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
line spoil						
Northern Great Plains	10 (0)	10.10	10	1 7/		10 00
Beulah North mine, North Dakota	10 (2)	10:10	4 9 50	1.74		13 - 92 36 - 72
Dave Johnston mine, Wyoming	10 (2) 10 (2)	10:10 10:10	50 57	1.26 1.43		26 - 91
Kincaid mine, North Dakota	10 (2)	10:10	44	1.44		20 - 91 22 - 70
Savage mine, Montana	10(2) 10(2)	10:10	64	1.34		36 - 91
Velva mine, North Dakota	10 (2)	10:10	46	1.44		21 - 74
Big Sky mine, Montana	10 (2)	10:10	70	1.56		35 - 130
Utility mine, Saskatchewan	10 (2)	10:10	55	1.44		34 - 83
San Juan mine, New Mexico	11 (2)	12:12	13	1.52	1.41	7.3 - 25
opsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (2)	8:12	6.9	1.84	1.59	<5.0 - 23
lants (dry-weight basis)						
Northern Great Plains Alfalfa						
Beulah North mine, North Dakota	10 (2)	3:3	61	1.27		50 - 79
	10 (2)	3:3	92	1.49		67 - 144
Dave Johnston mine, Wyoming	10 (2)	313				
Dave Johnston mine, Wyoming Savage mine, Montana	10 (2)	3:3	59	1.28		46 - 74

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	CIATED MATER	IALSContin	ued		
Plants (dry-weight basis)Continued Northern Great PlainsContinued Crested wheatgrass, Dave Johnston						
mine, Wyoming Growing on mine spoil	26 (2)	20:20	17	1.61	1.29	11 - 48
Growing near mine spoil	26 (2)	20:20	15	1.34	1.29	11 - 28
San Juan mine, New Mexico						
Fourwing saltbush	11 (2)	4:6	57	1.40		40 - >65
Alkali sacaton	11 (2)	6:6	9.1	1.30		7.8 - 12
		SOILS				
iceance Creek and Uinta Basins, Colo.						
and Utah; alluvial, 0- to 40-cm depth	12 (2)	25:30	74	1.47	1.10	24 - >100
owder River Basin, Wyo. and Mont.						
A horizon	13 (1)	57:64	30	1.50	1.21	<20 - 70
B horizon	13 (1)	57:64	30	·1.56	1.28	<20 - 70
C horizon	13 (1)	54:64	29	1.58	1.24	<20 - 70
owder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm depth	20 (1)	44:48	29	1.54	1.23	<20 - 70
Soil, 15- to 20-cm depth	20 (1)	44:48	26	1.51	1.23	<20 - 70
anging Woman Creek, Mont.						
A horizon	14 (2)	16:16	43	1.17	1.11	33 - 55
C horizon	14 (2)	16:16	41	1.28	1.21	25 - 54
iceance Creek Basin, Colo., O- to 5-cm						
depth	15 (2)	108:108	61	1.35		25 - 102
orthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						(2.2.40
A horizon C horizon	162) 16(2)	135:136 136:136	41 43	1.59 1.61	1.27 1.14	<2.2 - 99 11 - 120
5 1011201	10 (2)	150.150	45	1.01	1.1.4	11 120
ig Horn Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	50	1.33	1.14	31 - 83
ind River Basin, Wyo., O- to 40-cm						
depth	17 (2)	36:36	28	1.38	1.15	14 - 60
an Juan Basin, N. Mex.						
A horizon	11 (2)	39:47	16	2.20	1.81	<5.0 - 41
C horizon	11 (2)	36:47	15	2.59	2.29	<5.0 - 43
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (2)	30:30	16	1.42	1.45	6.4 - 27
C horizon	24 (2)	26:30	11	1.83	1.40	<5.0 - 25
*****		PLANTS			. <u>.</u>	<u> </u>
Cultivated plants, northern Great						
Plains (dry-weight basis)	21 (1)	10.10	1.6	1 99	1 22	0 - 2 2
Barley Oats	21 (1) 21 (1)	18:18 21:21	1.6 2.2	1.22 1.28	1.22	.9 - 2.3 1.6 - 3.8
Wheat, durum	21 (1) 21 (1)	20:20	1.0	1.29	1.29	.7 - 1.8
Wheat, hard red spring	21 (1)	54:54	1.9	1.60	1.60	.8 - 4.3
Wheat, hard red winter	21 (1)	17:17	1.8	1.73	1.73	.8 - 3.5

TABLE 9.-Boron in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
· · · · · · · · · · · · · · · · · · ·	PLAN	ISContinue	d		<u></u>	
Native species (dry-weight basis)						
Galleta, San Juan Basin	19 (2)	25:25	5.1	1.61	1.29	1.4 - 24
Saltbush, fourwing, San Juan Basin	19 (2)	9:10	27	1.46	1.23	17 - >70
Snakeweed, San Juan Basin	19 (2)	13:18	24	1.48	1.24	12 - >36
Native species (ash-weight basis)						
Sagebrush, big; Powder River Basin,						
Wyo. and Mont	20 (1)	41:41	270	1.33	1.18	200 - 500
Sagebrush, big; regional study	•					
Colorado Plateaus Province	23 (1)	30:30	510	1.67	1.19	300 - 1,000
Columbia Plateaus Province	23 (1)	30:30	480	1.67	1.19	200 - 1,000
Basin and Range Province	23 (1)	28:30	550	1.64	1.19	300 - 1,500
Northern Great Plains	23 (1)	20:20	530	1.59	1.20	300 - 1,000
Northern Rocky Mountains Province	23 (1)	20:20	480	1.61	1.20	300 - 700
Middle Rocky Mountains Province	23 (1)	20:20	450	1.59	1.20	300 - 700
Southern Rocky Mountains Province	23 (1)	20:20	320	1.56	1.20	200 - 700
Wyoming Basin Province	23 (1)	20:20	380	1.49	1.20	300 - 500

TABLE 9.-Boron in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLE 10.—Bromine in rocks, stream sediments, mine spoil, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed rang (ppm)
		ROCKS				
ore samples						
Northern Great Plains, Fort Union Formation						
Sandstone	4 (5)	37:42	0.72	1.80	1.85	<0.3 - 2.0
	STRE	AM SEDIMENTS				
owder River Basin, Wyo. and Mont						
Size fractions						
>200 µm	7 (5)	6:6	0.62	1.58		0.4 - 1.3
100-200 μm	7 (5)	9:9	.42	1.69		.29
63-100 μm	7 (5)	10:10	.48	1.25		.36
<63 µm	7 (5)	6:6	•83	1.56		.5 - 1.5
	М	INE SPOIL				
an Juan mine, New Mexico	11 (5)	6:12	0.51	1.28		<0.50 - 0.74
		SOILS				
iceance Creek and Uinta Basins, Colo.						
and Utah; alluvial, 0- to 40-cm depth	12 (5)	21:30	0.62	1.49	1.19	<0.53 - 1.4

BORON, BROMINE

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	S011	.SContinued				
Hanging Woman Creek, Mont.						
A horizon	14 (5)	8:16	0.51	1.43	1.10	<0.5584
C horizon	14 (5)	7:16	.47	1.57	1.18	<.53 - 1.2
Northern Great Plains: North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas A horizon	16 (5) 16 (5)	134:136 136:136	.63 1.2	1.77 1.58	1.47 1.35	<.050- 2.3 .20 - 3.5
San Juan Basin, N. Mex.						
A horizon	11 (5)	2:47				<.50 - 1.3
C horizon	11 (5)	16:47	.31	3.33		<.50 - 4.4
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
C horizon	24 (5)	12:30	.38	2.99		<.50 - 3.6

TABLE 10.-Bromine in rocks, stream sediments, mine spoil, and soils-Continued

TABLE 11.-Cadmium in rocks, plants associated with mine spoil, and other plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Core sample						
Northern Great Plains, Fort Union						
Formation						<i></i>
Sandstone	4 (2)	1:42				<10 - 18
	PLANTS ASSOC	CIATED WITH N	INE SPOIL			
Plants (dry weight basis)						
Northern Great Plains						
Yellow sweetclover						
Beulah North mine, North Dakota	10 (3)	9:10	0.15	2.19	1.22	<0.0448
Dave Johnston mine, Wyoming	10 (3)	10:10	.37	1.99	1.22	.1587
Hidden Valley mine, Wyoming	10 (3)	10:10	.19	2.41	1.22	.0684
Kincaid mine, North Dakota	10 (3)	5:10	•04	2.32	1.22	<.0410
Savage mine, Montana	10 (3)	9:10	.08	1.84	1.22	<.0423
Velva mine, North Dakota	10 (3)	5:10	.04	3.38	1.22	<.0422
White sweetclover						
Big Sky mine, Montana	10 (3)	9:10	.10	1.78	1.22	<.0426
Utility mine, Saskatchewan	10 (3)	6:10	.05	2.91	1.22	<.0433
Alfalfa						
Beulah North mine, North Dakota	10 (3)	3:3	.16	2.79		.0751
Dave Johnston mine, Wyoming	10 (3)	3:3	.32	2.02		.1453
Savage mine, Montana	10 (3)	3:3	.23	2.56		.1369
Velva mine, North Dakota	10 (3)	3:3	.07	1.20		.0608
Big Sky mine, Montana	10 (3)	3:3	.06	1.71		.0308

BROMINE, CADMIUM

5	5

TABLE 11.—Cadmium in rocks, plants associated with mine spoil, and other plants—Continued

<pre>Plants (dry-weight basis)Continued Northern Great PlainsContinued Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltbush Alkali sacaton Alkali sacaton Cultivated plants, Northern Great Plains (dry weight basis) Barley</pre>	26 (3) 26 (3) 26 (3) 11 (3) 11 (3) 0 21 (3)	WITH MINE SI 20:20 20:20 6:6 6:6 THER PLANTS	0.082 .054 .17 .048	d 1.48 1.92 2.42 2.00		0.03415 .01615 .05226
Northern Great PlainsContinued Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltbush Alkali sacaton Cultivated plants, Northern Great Plains (dry weight basis) Barley	26 (3) 11 (3) 11 (3) 0	20:20 6:6 6:6	•054 •17	1.92 2.42		.01615 .05226
Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltbush Alkali sacaton Cultivated plants, Northern Great Plains (dry weight basis) Barley	26 (3) 11 (3) 11 (3) 0	20:20 6:6 6:6	•054 •17	1.92 2.42		.01615 .05226
<pre>mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltbush Alkali sacaton Cultivated plants, Northern Great Plains (dry weight basis) Barley</pre>	26 (3) 11 (3) 11 (3) 0	20:20 6:6 6:6	•054 •17	1.92 2.42		.01615
Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltbush Alkali sacaton Cultivated plants, Northern Great Plains (dry weight basis) Barley	26 (3) 11 (3) 11 (3) 0	20:20 6:6 6:6	•054 •17	1.92 2.42		.01615 .05226
Growing near mine spoil San Juan mine, New Mexico Fourwing saltbush Alkali sacaton Cultivated plants, Northern Great Plains (dry weight basis) Barley	26 (3) 11 (3) 11 (3) 0	20:20 6:6 6:6	•054 •17	1.92 2.42		.01615 .05226
San Juan mine, New Mexico Fourwing saltbush Alkali sacaton Cultivated plants, Northern Great Plains (dry weight basis) Barley	11 (3) 11 (3) 0	6:6 6:6	.17	2.42		.05226
Fourwing saltbush Alkali sacaton Cultivated plants, Northern Great Plains (dry weight basis) Barley Oats	0	6:6				
Alkali sacaton Cultivated plants, Northern Great Plains (dry weight basis) Barley	0	6:6				
Cultivated plants, Northern Great Plains (dry weight basis) Barley Oats	0'	<u>.</u>	.048	2.00		000 15
Plains (dry weight basis) Barley Oats		THER PLANTS				.02215
Plains (dry weight basis) Barley Oats	21 (3)					
Plains (dry weight basis) Barley Oats	21 (3)					<u></u>
Barley Oats	21 (3)					
0ats		17:18	.025	2.13	1.33	<.009084
	21(3)	20:21	.018	1.40	1.40	<.012030
Wheat, durum	21 (3)	19:20	.14	1.82	1.63	<.00822
Wheat, hard red spring	21 (3)	54:54	.035	1.49	1.21	.012078
Wheat, hard red winter	21 (3)	17:17	.035	1.47	1.20	.015052
Mative species (dry weight basis)						
Galleta, San Juan Basin	19 (3)	24:25	•064	1.78	1.29	<.02526
Saltbush, fourwing, San Juan Basin	19 (3)	10:10	.11	1.91	1.27	.04832
Snakeweed, San Juan Basin	19 (3)	18:18	.23	1.65	1.21	.1073
Native species (ash weight basis)						
Lichen (Parmelia), Powder River						
Basin, Wyo. and Mont	22 (3)	29:29	4.0	1.66	1.07	1.5 - 8.0
Sacobruch big: Dourdon Divon Pasin						
Sagebrush, big; Powder River Basin, Wyo. and Mont	20 (3)	41:41	5.5	1.92	1.17	1.3 - 30
and hone.	20 (3)	41.41	5.5	1.72	1.17	1.5 50
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (3)	27:30	1.2	2.41	1.21	<.4 - 3.6
Columbia Plateaus Province	23 (3)	30:30	1.7	2.00	1.21	.6 - 6.0
Basin and Range Province	23 (3)	29:30	1.5	2.16	1.21	<.4 - 3.8
Northern Great Plains	23 (3)	20:20	3.3	2.11	1.11	1.0 - 8.8
Northern Rocky Mountains Province	23 (3)	20:20	6.1	3.62	1.11	1.3 - 80
Middle Rocky Mountains Province	23 (3)	20:20	3.4	2.76	1.11	1.0 - 17
Southern Rocky Mountains Province	23 (3)	20:20	3.4	2.68	1.11	.6 - 17
Wyoming Basin Province	23 (3)	20:20	2.1	2.19	1.11	1.0 - 10
Availability studies, samples from						
Montana, North Dakota, South Dakota,						
and Wyoming (dry weight basis)	19 (2)	17.01	.03	1.94	_	$(0) = 0^{9}$
Wheatgrass, westernSagebrush, silver	18 (3) 18 (3)	17:21 19:19	.03	1.94		<.0208 .0967
Plant biomass, above-ground parts	18(3) 18(3)	19:19	.07	2.36	 1.76	<.0243

TABLE 12.-Calcium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method histed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation.

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone Shale	1 (5) 1 (5)	76:80 80:80	2.4 1.4	4.37 4.19	2.18 1.5	<0.73 - 24 .090 - 15
Core samples						
Hanging Woman Creek, Mont. Sandstone	2 (5)	24:24	3.9	2.89	1.32	.46 - 14
Siltstone and shale	2 (5)	24:24	1.7	2.75		.44 - 5.3
Dark shale	2 (5)	23:23	1.7	1.47	1.45	.70 - 4.4
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (5)	50:50	1.2	3.24	0	.093 - 9.4
Sandstone	4 (5)	41:42	1.6	1.20		<.1 - 4.9
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (5)	74:74	11	1.36	1.05	6.3 - 32
Middle 300 m	5 (5)	51:51	4.1	1.55	1.08	.8 - 7.5
Garden Gulch Member (lower 100 m)	5 (5)	32:32	5.6	1.73		1.4 - 15
	STRI	EAM SEDIMEN	rs			
Northern Great Plains regional study	6 (5)	60:60	2.5	1.69	<1.05	0.55 - 6.1
Powder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (5)	19:19	1.7	1.75	1.52	1.1 - 4.1
100-200 μm	7 (5)	24:24	1.3	1.35	1.04	.86 - 3.6
63-100 μm	7 (5)	24:24	1.8	1.18	1.03	1.5 - 3.6
<63 µm	7 (5)	24:24	2.7	1.12	1.01	2.4 - 3.7
Uinta and Piceance Creek Basins, Colo. and Utah						
Asphalt Wash, Utah	8 (5)	8:8	4.7	1.40		3.4 - 9.2
Cottonwood Creek, Utah	8 (5)	8:8	3.1	1.06		2.9 - 3.4
Duck Creek, Colorado	8 (5)	8:8	8.5	1.27		5.0 - 10.1
Ryan Gulch, Colorado	8 (5)	8:8	3.0	1.11		2.6 - 3.5
Piceance Creek Basin, Colo. Roan and Black Sulphur Creeks	9 (1)	32:32	5.4	1.44	1.19	2 - 10
				· · · · · · · · · · · · · · · · · · ·		_
	MINE SPOIL AN	D ASSOCIATE	D MATERIALS			
Mine spoil						
Northern Great Plains	10 (5)	10.10		1 5 1		079 - 99
Beulah North mine, North Dakota	10 (5) 10 (5)	10:10	1.6	1.51		0.73 - 2.8
Dave Johnston mine, Wyoming	10 (5)	10:10 10:10	.45 .25	1.52 1.68		.2584 .1247
Hidden Valley mine, Wyoming						

E	7
J	1

TABLE 12.-Calcium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
MINE	SPOIL AND AS	SOCIATED MAT	ERIALSContin	ued		
ine spoilContinued						
Northern Great PlainsContinued						
Kincaid mine, North Dakota	10 (5)	10:10	3.2	1.35		2.0 - 5.5
Savage mine, Montana	10 (5)	10:10	6.4	1.26		5.1 - 9.7
Velva mine, North Dakota	10 (5)	10:10	3.1	1.12		2.6 - 3.7
Big Sky mine, Montana	10 (5)	10:10	2.8	1.32		1.8 - 4.4
Utility mine, Saskatchewan	10 (5)	10:10	3.3	2.06		.57 - 8.0
San Juan mine, New Mexico	11 (5)	12:12	1.4	1.16	1.03	1.1 - 1.8
opsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (5)	12:12	1.3	1.26	1.03	.96 - 1.9
lants (dry-weight basis)						
Northern Great Plains Yellow sweetclover						
Beulah North mine, North Dakota	10 (3)	10:10	0.9	1.31	1.05	0.6 - 1.6
Dave Johnston mine, Wyoming	10 (3)	10:10	1.2	1.21	1.05	.9 - 1.6
Hidden Valley mine, Wyoming	10 (3)	10:10	.8	1.14	1.05	.69
Kincaid mine, North Dakota	10 (3)	10:10	1.3	1.12	1.05	1.1 - 1.5
Savage mine, Montana	10 (3)	10:10	.9	1.25	1.05	.7 - 1.4
Velva mine, North Dakota	10 (3)	10:10	1.4	1.30	1.05	1.0 - 2.3
White sweetclover						
Big Sky mine, Montana	10 (3)	10:10	.9	1.24	1.05	.7 - 1.4
Utility mine, Saskatchewan	10 (3)	10:10	•8	1.22	1.05	.5 - 1.0
Alfalfa						
Beulah North mine, North Dakota	10 (3)	3:3	1.3	1.42		1.0 - 1.9
Dave Johnston mine, Wyoming	10 (3)	3:3	1.8	1.22		1.4 - 2.1
Savage mine, Montana	10 (3)	3:3	2.0	1.20		1.7 - 2.4
Velva mine, North Dakota	10 (3)	3:3	1.3	1.22		1.1 - 1.6
Big Sky mine, Montana	10 (3)	3:3	1.1	1.23		.9 - 1.3
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (3)	20:20	.23	1.22	1.05	.1635
Growing near mine spoil	26 (3)	20:20	.26	1.11	1.05	.2230
San Juan mine, New Mexico						
Fourwing saltbush	11 (3)	6:6	1.0	1.29		.91 - 1.4
Alkali sacaton	11 (3)	6:6	.41	1.13		.3646
		SOILS				
ficeance Creek and Uinta Basins, Colo.						
and Utah; alluvial, 0- to 40-cm depth	12 (5)	30:30	*5.5	*2.97	*0.19	0.72 - 13
owder River Basin, Wyo. and Mont.		<i></i>		c = c		
A horizon	13 (5)	64:64	.56	2.78	1.97	.072 - 4.0
B horizon	13 (5)	64:64	.87	3.17	1.83	.13 - 7.1
C horizon	13 (5)	64:64	1.6	3.48	1.77	.09 - 11

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	SOI	LSContinue	d			
Hanging Woman Creek, Mont.						
A horizon	14 (5)	16:16	*2.6	*1.74	*0.065	0.38 - 5.5
C horizon	14 (5)	16:16	*3.8	*1.44	*.13	1.4 - 6.2
Piceance Creek Basin, Colo., 0- to 5-cm depth	15 (5)	108:108	1.9	2.51	0	. 46 - 9. 8
Northern Great Plains: North Dakota, South Dakota, Wyoming, and Montana Unglaciated area						
C horizon	16 (5)	88:88	2.5	2.09	1.05	.34 - 10
Glaciated area						<i></i>
C horizon	16 (5)	48:48	4.4	1.63	1.05	.60 - 8.2
Combined data, unglaciated and glaciated areas						
A horizon	16 (5)	135:136	.97	2.30	1.06	<.014 - 7.0
C horizon	16 (5)	136:136	3.0	2.04	1.05	.34 - 10
Big Horn Basin, Wyo., O- to 40-cm depth	17 (5)	36:36	3.0	1.78	1.03	. 86 - 9.7
Wind River Basin, Wyo., O- to 40-cm						
depth	17 (5)	36:36	2.2	1.93	1.04	.68 - 8.8
San Juan Basin, N. Mex.						
A horizon	11 (5)	47:47	.55	2.12	1.05	.15 - 4.5
C horizon	11 (5)	47:47	1.1	2.13	1.03	.0 9 7 - 4.5
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (5)	30:30	.64	1.26	1.30	.45 - 1.1
C horizon	24 (5)	30:30	1.0	1.77	1.16	.40 - 3.4
		PLANTS				
Cultivated plants, northern Great Plains (dry-weight basis)						
Barley	21 (3)	18:18	0.035	1.15	1.04	0.026 - 0.040
0at s	21 (3)	21:21	.053	1.14	1.06	.036066
Wheat, durum	21 (3)	20:20	.031	1.20	1.20	.024048
Wheat, hard red spring	21 (3)	54:54	.030	1.25	1.11	.020053
Wheat, hard red winter	21 (3)	17:17	.02 9	1.15	1.07	.021036
Native species (dry-weight basis)						
Galleta, San Juan Basin	19 (3)	25:25	.35	1.34	1.03	.2365
Saltbush, fourwing, San Juan Basin	19 (3)	10:10	1.4	1.30	1.03	1.0 - 2.7
Snakeweed, San Juan Basin	19 (3)	18:18	1.0	1.40	1.03	.56 - 1.7

TABLE 12.-Calcium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Snakeweed, San Juan Basin----- 19 (3) 18:18 1.0 1.40 1.03 .56 - 1.7 Native species (ash-weight basis) Sagebrush, big; regional study 1.05 5.6 - 15 Colorado Plateaus Province------30:30 1.36 23 (3) 11 1.32 5.6 - 13 7.8 - 15 Columbia Plateaus Province------23 (3) 30:30 9.1 1.05 Basin and Range Province------Northern Great Plains-----23 (3) 30:30 11 1.05 23 (3) 20:20 11 1.27 1.05 7.0 - 14 1.36 6.8 - 16 8.0 - 15 23 (3) 11 11 Northern Rocky Mountains Province----20:20 1.05 Middle Rocky Mountains Province-----23 (3) 20:20 1.05 8.8 - 16 7.4 - 14 Southern Rocky Mountains Province----20:20 1.24 1.32 1.05 23 (3) 11 Wyoming Basin Province-----23 (3) 20:20 1.05 10

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	PLAN	TSContinu	ed			
vailability studies; samples from Montana, North Dakota, South Dakota, and Wyoming (dry-weight basis)						
Wheatgrass, western	18 (3)	21:21	0.23	1.30		0.11 - 0.38
Sagebrush, silver	18 (3)	19:19	.57	1.33		. 57 - 1.33
Plant biomass, above-ground parts	18 (3)	21:21	.40	1.50	1.11	.2391

TABLE 12.-Calcium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLE 13.—Carbon (carbonate) in rocks, stream sediments, mine spoil and associated materials, and soils [Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

.

ROCKS Core samples Hanging Woman Creek, Mont. Sandstone	Mean (percent)	Devia- tion	Error	Observed Range (percent)
Hanging Woman Creek, Mont. 2 (10) 24:24 Siltstone and shale 2 (10) 17:24 Dark shale 2 (10) 17:23 Piceance Creek Basin, Colo. 2 (10) 17:23 Creen River Formation 3 (10) 11:71 Middle 300 m				
Sandstone 2 (10) 24:24 Siltstone and shale 2 (10) 17:24 Dark shale 2 (10) 17:23 Piceance Creek Basin, Colo. Creen River Formation 2 (10) 17:23 Middle 300 m 5 (10) 71:71 5 (10) 5 (10) Middle 300 m 5 (10) 5 (10) 5 (10) 5 (10) STREAM SEDIMENTS STREAM SEDIMENTS Jinta and Piceance Creek Basins, Colo. and Utah 8 (10) 8:8 Asphalt Wash, Utah 8 (10) 8:8 8 Duck Creek, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA Mine spoil San Juan mine, New Mexico 11 (10) 12:12				
Siltstone and shale 2 (10) 17:24 Dark shale 2 (10) 17:23 Piceance Creek Basin, Colo. Green River Formation 300 m				
Dark shale 2 (10) 17:23 Piceance Creek Basin, Colo. Green River Formation Mahogany zone (upper 100 m) 5 (10) 71:71 Middle 300 m 5 (10) 51:51 STREAM SEDIMENTS Jinta and Piceance Creek Basins, Colo. and Utah 8 (10) 8:8 Asphalt Wash, Utah 8 (10) 8:8 Duck Creek, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA Mine spoil San Juan mine, New Mexico 11 (10) 12:12	1.3	3.13	1.12	0.13 - 6.1
Piceance Creek Basin, Colo. Green River Formation Mahogany zone (upper 100 m) 5 (10) Middle 300 m 5 (10) STREAM SEDIMENTS Units and Piceance Creek Basins, Colo. and Utah Asphalt Wash, Utah	.11		1.12	<.01 - 1.6
Green River Formation Mahogany zone (upper 100 m) 5 (10) 71:71 Middle 300 m 5 (10) 51:51 STREAM SEDIMENTS Jinta and Piceance Creek Basins, Colo. and Utah 8 (10) 8:8 Asphalt Wash, Utah 8 (10) 8:8 Duck Creek, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA Mine spoil San Juan mine, New Mexico 11 (10) 12:12	.07			<.0177
Mahogany zone (upper 100 m) 5 (10) 71:71 Middle 300 m 5 (10) 51:51 STREAM SEDIMENTS Uinta and Piceance Creek Basins, Colo. and Utah 8 (10) 8:8 Asphalt Wash, Utah 8 (10) 8:8 Duck Creek, Colo 8 (10) 8:8 Ryan Gulch, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA Mine spoil San Juan mine, New Mexico 11 (10) 12:12				
Middle 300 m 5 (10) 51:51 STREAM SEDIMENTS Jinta and Piceance Creek Basins, Colo. and Utah 8 (10) 8:8 Asphalt Wash, Utah 8 (10) 8:8 Cottonwood Creek, Colo 8 (10) 8:8 Duck Creek, Colo 8 (10) 8:8 Ryan Gulch, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA Mine spoil San Juan mine, New Mexico 11 (10) 12:12				
STREAM SEDIMENTS STREAM SEDIMENTS Jinta and Piceance Creek Basins, Colo. and Utah Asphalt Wash, Utah 8 (10) 8:8 Cottonwood Creek, Colo 8 (10) 8:8 Duck Creek, Colo 8 (10) 8:8 Ryan Gulch, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA MINE SPOIL AND ASSOCIATED MA Mine spoil San Juan mine, New Mexico 11 (10) 12:12	4.7	1.65	1.47	<1.9 - 14
Jinta and Piceance Creek Basins, Colo. and Utah Asphalt Wash, Utah 8 (10) 8:8 Cottonwood Creek, Colo 8 (10) 8:8 Duck Creek, Colo 8 (10) 8:8 Ryan Gulch, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA fine spoil San Juan mine, New Mexico 11 (10) 12:12	3.5	1.57	1.21	.78 - 7.9
Colo. and Utah Asphalt Wash, Utah 8 (10) 8:8 Cottonwood Creek, Colo 8 (10) 8:8 Duck Creek, Colo 8 (10) 8:8 Ryan Gulch, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA Mine spoil San Juan mine, New Mexico 11 (10) 12:12				
Asphalt Wash, Utah 8 (10) 8:8 Cottonwood Creek, Colo 8 (10) 8:8 Duck Creek, Colo 8 (10) 8:8 Ryan Gulch, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA Mine spoil San Juan mine, New Mexico 11 (10) 12:12				
Cottonwood Creek, Colo 8 (10) 8:8 Duck Creek, Colo 8 (10) 8:8 Ryan Gulch, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA Mine spoil San Juan mine, New Mexico 11 (10) 12:12	0.96	1.65		0.55 - 2.7
Duck Creek, Colo. 8 (10) 8:8 Ryan Gulch, Colo. 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA fine spoil San Juan mine, New Mexico 11 (10) 12:12	.23	1.66		.0953
Ryan Gulch, Colo 8 (10) 8:8 MINE SPOIL AND ASSOCIATED MA 4ine spoil San Juan mine, New Mexico 11 (10) 12:12	2.0	1.45		1.06 - 2.9
fine spoil San Juan mine, New Mexico 11 (10) 12:12	•41	1.48		.1860
San Juan mine, New Mexico 11 (10) 12:12	ATERIALS			
Copsoil used in spoil reclamation	0.23	1.63	1.43	0.07 - 0.42
San Juan mine, New Mexico 11 (10) 12:12	.28	1.39	1.20	.1947

CALCIUM, CARBON (CARBONATE)

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		SOILS				
Powder River Basin, Wyoming and Montana						
A horizon	13 (10)	44:64			1.90	<0.01 - 1.2
B horizon	13 (10)	53:64			1.05	<.01 - 2.2
C horizon	13 (10)	62:64			2.03	<.01 - 3.2
langing Woman Creek, Mont.						
A horizon	14 (10)	15:16	0.43	4.12	1.34	<.13 - 1.8
C horizon	14 (10)	16:16	.89	1.83	1.20	.26 - 2.6
an Juan Basin, N. Mex.						
A horizon	11 (10)	30:47				<.010 - 1.6
C horizon	11 (10)	43:47	.18	3.7	1.37	<.010 - 1.1
heppard-Shiprock-Doak Soil Association,						
N. Mex.						
A horizon	24 (10)	3:30				<.01014
C horizon	24 (10)	26:30	.10	3.91	1.50	<.01082

TABLE 13-Carbon (carbonate) in rocks, stream sediments, mine spoil and associated materials, and soils-Continued

TABLE 14.-Carbon (organic) in rocks, stream sediments, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				· · · · · · · · · · · · · · · · · · ·
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (11)	24:24	0.41	2.72	2.54	0.03 - 2.4
Siltstone and shale	2 (11)	24:24	.85	1.30	1.17	.55 - 1.4
Dark shale	2 (11)	24:24	4.6	2.94	2.35	.18 - 25
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (11)	71:74	4.8	2.42	1.46	<.024 - 16
Middle 300 m	5 (11)	51:51	8.5	1.61	1.112	13 - 23
	STRI	EAM SEDIMENT	°S			
Uinta and Piceance Creek						
Basins, Colo. and Utah						
Asphalt Wash, Utah	8 (11)	8:8	0.87	1.44		0.48 - 1.5
Cottonwood Creek, Utah	8 (11)	8:8	.27	1.82		.0831
Duck Creek, Colorado	8 (11)	8:8	1.41	1.56		.64 - 2.9
						.95 - 2.3
Ryan Gulch, Colorado	8 (11)	8:8	1.31	1.44		.9 5

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	MINE SPOIL AN	D ASSOCIATE	D MATERIALS			
Mine spoil						
San Juan mine, New Mexico	11 (11)	12:12	2.3	2.59	1.05	0.89 - 13.6
Topsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (11)	12:12	.44	2.91	1.17	.19 - 4.1
		SOILS				**************************************
Powder River Basin, Wyo. and Mont.						
A horizon	13 (11)	64:64	1.1	2.01	1.23	0.1 - 3.7
B horizon	13 (11)	64:64	•56	1.76	1.23	.1 - 1.6
C horizon	13 (11)	64:64	.33	2.10	1.60	.1 - 2.1
Hanging Woman Creek, Mont.						
A horizon	14 (11)	16:16	1.2	1.34	1.09	.73 - 1.9
C horizon	14 (11)	16:16	.59	2.41	1.35	.05 - 2.5
San Juan Basin, N. Mex.						
A horizon	11 (11)	47:47	.37	1.86	1.35	.060 - 1.6
C horizon	11 (11)	47:47	•27	2.24	1.46	.010 - 1.1
Sheppard-Shiprock-Doak Soil Association,						
N. Mex.		20.20	25	1 20		10 (1
A horizon	24 (11)	30:30	.35	1.39 2.65	1.17 2.02	.1964 <.01040
C horizon	24 (11)	29:30	.10	2.65	2.02	<.010 - .40

TABLE 14.—Carbon (organic) in rocks, stream sediments, mine spoil and associated materials, and soils—Continued

TABLE 15.-Carbon (total) in rocks, stream sediments, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (--) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				
Dutcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (12)	80:80	1.1			0.020 - 8.6
Shale	1 (12)	80:80	.93	3.31	1.78	.08 - 5.2
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (12)	24:24	2.1	2.19		.38 - 6.4
Siltstone and shale	2 (12)	24:24	1.4	1.60		.68 - 2.5
Dark shale	2 (12)	23:23	5.6	1.95		2.5 - 25

CARBON (ORGANIC), CARBON (TOTAL)

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	ROCK	SContinue	ed			
Core SamplesContinued						
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (12)	50:50	2.1	1.90	1.14	0.57 - 11
Sandstone	4 (12)	42:42	1.0	2.30	1.08	.15 - 3.1
	STRE	AM SEDIMENT	rs			
orthern Great Plains regional study						
First-order streams	6 (12)	20:20	2.3	1.87	<1.06	0.84 - 9.8
Second-order streams	6 (12)	20:20	2.6	1.47	<1.04	1.4 - 5.5
Third-order streams	6 (12)	20:20	1.8	1.39	<1.03	.93 - 3.5
Powder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (12)	23:23	•77	2.20	1.31	.26 - 19
$100-200 \mu m$	7 (12)	24:24	.54	1.85	1.31	.24 - 2.8
63-100 μm <63 μm	7 (12) 7 (12)	24:24 24:24	.72 1.22	1.33 1.27	1.23 <1.02	•50 - 1•6 •57 - 1•8
	MINE SPOIL AND	O ASSOCIATE	D MATERIALS		w	
Mine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (12)	10:10	1.7	2.45		0.29 - 8.7
Dave Johnston mine, Wyoming	10 (12)	10:10	1.3	3.64		.38 - 19
Hidden Valley mine, Wyoming	10 (12)	10:10	2.4	2.96 2.09		.27 - 11 1.8 - 18
Kincaid mine, North Dakota Savage mine, Montana	10 (12) 10 (12)	10:10 10:10	4.3 2.9	1.37		1.3 - 3.8
Velva mine, North Dakota	10 (12)	10:10	2.1	1.70		1.2 - 8.1
Big Sky mine, Montana	10 (12)	10:10	4.2	1.98		1.6 - 16
Utility mine, Saskatchewan	10 (12)	10:10	3.5	1.80		1.5 - 9.6
San Juan mine, New Mexico	11 (12)	12:12	2.6	2.45	1.03	1.1 - 13.8
Fopsoil used in spoil reclamation	\/			-		
San Juan mine, New Mexico	11 (12)	12:12	.78	2.29	1.02	.40 - 4.5
******		SOILS				
······································						
Piceance Creek and Uinta Basins, Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (12)	30:30	2.8	1.69	1.06	0.95 - 7.4
Powder River Basin, Wyo. and Mont.						
A horizon	13 (12)	64:64	1.3	1.84	1.26	.1 - 3.7
B horizon	13 (12)	64:64	.88	1.78	1.12	.18 - 3.0
C horizon	13 (12)	64:64	.87	2.19	1.27	.19 - 3.6
langing Woman Creek, Mont.	16 (12)	16.14	1.0	1 27	1 01	11-29
A horizonC horizon	14(12)	16:16 16:16	1.9	1.37 1.49	1.01 1.06	1.1 - 2.8 .71 - 2.6
C NOLIZON	14 (12)	10:10	1.6	1.49	1.00	•/1 - 2.0

TABLE 15.-Carbon (total) in rocks, stream sediments, mine spoil and associated materials, and soils-Continued

CARBON (TOTAL)

Sample, and collection locality	Study No. and method	Ratio	Mean	Devia-	Error	Observed range	
·····, ·····,	of analysis		(percent)	tion		(percent)	
	SOII	.SContinue	d				
iceance Creek Basin, Colo.,							
0- to 5-cm depth	15 (12)	108:108	3.0	1.71	1.18	0.87 - 12	
orthern Great Plains: North Dakota,							
South Dakota, Wyoming, and Montana Unglaciated area							
A horizon	16 (12)	88:88	1.7	1.55	1.04	.48 - 4.9	
C horizon	16 (12)	88:88	1.2	2.08	1.06	.20 - 4.4	
Glaciated area							
A horizon	16 (12)	48:48	2.3	1.44	1.04	.69 - 5.6	
C horizon	16 (12)	48:48	2.0	1.48	1.06	.33 - 3.5	
Combined data, unglaciated and							
glaciated areas							
A horizon	16 (12)	136:136	1.96	1.56	1.04	.48 - 5.6	
C horizon	16 (12)	136:136	1.4	1.98	1.06	.20 - 4.4	
ig Horn Basin, Wyo., O- to 40-cm depth	17 (12)	36:36	1.5	1.72	1.17	.36 - 4.5	
ind River Basin, Wyo., O- to 40-cm							
depth	17 (12)	36:36	.85	1.62	1.17	.42 - 3.2	
an Juan Basin, N. Mex.							
A horizon	11 (12)	47:47	.51	1.80	1.02	.11 - 2.1	
C horizon	11 (12)	47:47	.54	2.01	1.01	.090 - 1.5	
heppard-Shiprock-Doak Soil Association,							
N. Mex.							
A horizon	24 (12)	30:30	.36	1.36	1.06	.2064	
C horizon	24 (12)	30:30	.27	1.95	1.05	.080 - 1.1	

TABLE 15.-Carbon (total) in rocks, stream sediments, mine spoil and associated materials, and soils-Continued

TABLE 16.—Cerium in rocks, stream sediments, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
、 、		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone	1 (2)	78:80	55	1.77	1.39	<22 - 170
Shale	1 (2)	77:80	67	2.18	1.51	<22 - 250
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	52	1.64	1.62	22 - 100
Siltstone and shale	2 (2)	22:23	54	1.89	1.73	14 - 120
Dark shale	2 (2)	22:22	79	1.58	1.31	44 - 170

CARBON (TOTAL), CERIUM

	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	ROCK	(SContinue	d			
Core SamplesContinued						
Northern Great Plains, Fort Union Formation						
Fine-grained rocks Sandstone	3 (2) 4 (2)	50:50 42:42	65 113	1.55 1.20	1.63 1.11	22 - 160 75 - 160
**********	STRE	CAM SEDIMENT	S			
Northern Great Plains regional study	6 (2)	58:60	57	1.92	1.80	<22 - 180
	MINE SPOIL AN					
Mine spoil						
San Juan mine, New Mexico	11 (2)	10:12	55	1.20		<46 - 76
Topsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (2)	5:12	45	1.18		<46 - 60
		SOILS				
Piceance Creek and Uinta Basins, Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (2)	30:30	52	1.45	1.45	25 - 110
Powder River Basin, Wyo. and Mont. A horizon	13 (1)	4:64	<1 50			<150 - 200
B horizonC horizon	13 (1)	3:64 2:64	<1 50 <1 50			<150 - 150 <150 - 150
	13 (1)	2:04	(150			(150 - 150
Hanging Woman Creek, Mont. A horizon	14 (2)	15:16	56	1.59	1.49	<36 - 110
C horizon	14 (2)	16:16	58	1.45	1.45	28 - 93
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon C horizon	16 (2) 16 (2)	99:136 91:136	38 32	2.08 2.31		<22 - 130 <22 - 660
Big Horn Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	57	1.38	1.35	25 - 110
Wind River Basin, Wyo., 0- to 40-cm depth	17 (2)	36:36	55	1.53	2.26	26 - 160
San Juan Basin, N. Mex.	11 (0)	10.47	25	1 4 0		
A horizon C horizon	11 (2) 11 (2)	10:47 16:47	35 38	1.48 1.59		<46 - 76 <46 - 97
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizonC horizon	24 (2) 24 (2)	18:30 18:30	47 52	1.37 1.30		<46 - 89 <46 - 92

TABLE 16.-Cerium in rocks, stream sediments, mine spoil and associated materials, and soils-Continued

CERIUM

TABLES 4-77

TABLE 17.-Chlorine in soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
orthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana						
Combined data, unglaciated and						
glaciated areas						
glaciated areas A horizon	16 (5)	15:136	1,600	1.51		<1,000 - 4,000

TABLE 18.-Chromium in rocks, stream sediments, mine spoil and associated materials, soils, and plants (Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study and men of anal	thod	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
			ROCKS				
utcrop samples							
Northern Great Plains, Fort Union							
Formation							
Sandstone	1 (2	•	80:80	45	1.98	1.27	11 - 160
Shale	1 (2	2)	80:80	84	1.40	1.15	38 - 170
Core samples							
Hanging Woman Creek, Mont.							
Sandstone	2 (2	2)	24:24	5 9	1.55	1.18	27 - 110
Siltstone and shale	2 (2	2)	24:24	96	1.15	1.09	68 - 130
Dark shale	2 (2	2)	23:23	110	1.25	1.07	66 - 250
Northern Great Plains, Fort Union							
Formation							
Fine-grained rocks	3 (2	2)	50:50	72	1.39	1.10	29 - 120
Sandstone	4 (2)	42:42	46	1.50	1.19	24 - 240
Piceance Creek Basin, Colo.							
Green River Formation							
Mahogany zone (upper 100 m)	5 (2	2)	74:74	34	1.42	1.16	16 - 72
Middle 300 m	5 (•	53:53	38	2.26	1.17	7.0 - 410
Garden Gulch Member (lower 100 m)	5 (264:264	49	1.40		15 - 100
		STRE	AM SEDIMENTS	5		<u> </u>	
Northern Great Plains regional study	6 (2	2)	60:60	72	1.63	1.32	22 - 300
Powder River Basin, Wyo. and Mont.							
Size fractions							
>200 µm	7 (1)	24:24	26	2.59	1,90	7 - 100
100-200 μm	7 (24:24	18	2.12	1.18	10 - 150
63-100 um	7 (24:24	31	1.75	1.15	15 - 100
			- · · - ·	• -			30 - 200
<pre>63-100 µm</pre>	7 (24:24	79	1.73	1.13	

CHLORINE, CHROMIUM

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	STREAM SE	DIMENTSCon	tinued		· · · · · · · · · · · · · · · · · · ·	
Jinta and Piceance Creek Basins,	9 (2)	22.22	6 1	2.05	1 74	30 - 290
Colo. and Utah	8 (2)	32:32	61	2.05	1.74	30 - 290
Piceance Creek Basin, Colo.						
Roan and Black Sulphur Creeks	9 (1)	32:32	56	2.11	1.25	30 - 200
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
Mine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (2)	10:10	58	1.48		27 - 90
Dave Johnston mine, Wyoming	10 (2)	10:10	38	1.39		19 - 65
Hidden Valley mine, Wyoming	10 (2)	10:10	40	1.60		17 - 75
Kincaid mine, North Dakota	10 (2)	10:10	50	1.63		27 - 110
Savage mine, Montana	10 (2)	10:10	36 46	1.50 1.43		17 - 71 22 - 78
Velva mine, North DakotaBig Sky mine, Montana	10 (2) 10 (2)	10:10 10:10	37	1.45		18 - 55
Utility mine, Saskatchewan	10 (2)	10:10	38	1.29		26 - 54
San Juan mine, New Mexico	11 (2)	12:12	14	1.26	1.14	10 - 22
Topsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (2)	12:12	22	1.41	1.41	10 - 29
Plants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover	10 (2)	(.10	25	2.05	1 2 2	(20 - 1.12)
Beulah North mine, North Dakota	10 (2)	6:10	.35	2.05	1.32	<.29 - 1.12 <.2944
Dave Johnston mine, Wyoming	10 (2) 10 (2)	4:8 10:10	.29 1.54	1.31 1.53	1.32	.65 - 2.65
Hidden Valley mine, Wyoming Kincaid mine, North Dakota	10(2) 10(2)	7:9	.60	2.07	1.32	<.29 - 1.41
Savage mine, Montana	10(2) 10(2)	2:10	<.29		1.32	<.2935
Velva mine, North Dakota	10 (2)	4:8	.31	2.72	1.32	<.29 - 1.29
White sweetclover						
Big Sky mine, Montana	10 (2)	5:10	.30	1.53	1.32	< .29 50
Utility mine, Saskatchewan	10 (2)	5:10	.29	2.05	1.32	<.3091
Alfalfa						
Beulah North mine, North Dakota	10 (2)	3:3	.55	2.65		.28 - 1.69
Dave Johnston mine, Wyoming	10 (2)	3:3	.91	1.32		.67 - 1.17
Savage mine, Montana	10 (2)	3:3	.69	1.83		.45 - 1.36
Velva mine, North Dakota	10 (2)	3:3	•53	3.81		.14 - 2.06
Big Sky mine, Montana	10 (2)	3:3	.46	1.22		.3856
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (2)	20:20	.40	1.71	1.37	.16 - 1.1
Growing near mine spoil	26 (2)	20:20	.27	1.78	1.37	.1160
San Juan mine, New Mexico						
Fourwing saltbush	11 (2)	6:6	2.1	1.17		1.8 - 2.5
Alkali sacaton	11 (2)	6:6	.71	1.46		.4791

TABLE 18.-Chromium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLE 18.-Chromium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

		-				
Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		SOILS				
Piceance Creek and Uinta Basins,						
Colo. and Utah: alluvial, 0- to 40-cm depth	12 (2)	30:30	50	1.37	1.13	20 - 98
0- 10 40-cm depth	12 (2)	20:20	00	1.37	1.13	20 - 98
Powder River Basin, Wyo. and Mont.						
A horizonB horizon	13 (1) 13 (1)	64:64	43 46	1.73	1.29	15 - 70 15 - 70
C horizon	13(1) 13(1)	64:64 64:64	46	1.78	1.22	10 - 70
Yowder River Basin, Wyo. and Mont.	20 (1)	49.49	4.5	1.49	1.28	20 - 100
Soil, 0- to 2.5-cm depth Soil, 15- to 20-cm depth	20 (1) 20 (1)	48:48 48:48	45 49	1.49	1.20	20 - 100 20 - 100
,						
langing Woman Creek, Mont. A horizon	14 (2)	16.16	63	1.31	1.10	33 - 86
C horizon	14(2) 14(2)	16:16 16:16	57	1.31	1.10	22 - 87
Piceance Creek Basin, Colo., 0- to	15 (2)	100.100	5.0	1 63	1.39	12 - 110
5-cm depth	15 (2)	108:108	59	1.63	1.37	12 - 110
Northern Great Plains; North Dakota,						
South Dakota, Wyoming, and Montana						
Combined data, unglaciated and glaciated areas						
A horizon	16 (2)	136:136	45	1.56	1.48	11 - 160
C horizon	16 (2)	136:136	42	1.66	1.35	12 - 180
Big Horn Basin, Wyo., 0- to 40-cm depth	17 (2)	36:36	59	1.55	1.15	23 - 350
ig norm bubin, nyor, o to to the depen	1, (2)	30.30	5,5			
Vind River Basin, Wyo., 0- to 40-cm depth	17 (2)	26.26		1 50	1 1 1	16 04
	17 (2)	36:36	44	1.59	1.11	16 - 94
San Juan Basin, N. Mex.						
A horizon C horizon	11 (2) 11 (2)	47:47 47:47	18 18	1.45 1.51	1.51 1.32	7.6 - 42 6.3 - 47
C 10112011	11 (2)	47.47	10	1.91	1.52	0.5 47
Sheppard-Shiprock-Doak Soil Association,						
N. Mex. A horizon	24 (2)	30:30	20	1.54	1.46	9.8 - 40
C horizon	24 (2)	30:30	13	1.50	1.46	5.5 - 40
		PLANTS				
lative species (dry-weight basis)						
Galleta, San Juan Basin	19 (2)	25:25	1.0	1.38	1.17	0.56 - 1.8
Saltbush, fourwing, San Juan Basin	19 (2)	10:10	1.1	1.32	1.14	.81 - 1.9
Snakeweed, San Juan Basin	19 (2)	18:18	.85	1.32	1.19	.47 - 1.5
Native species (ash-weight basis)						
Lichen (Parmelia), Powder River	22 (1)	20.20	22	1 5 7	1 15	20 50
Basin, Wyo. and Mont	22 (1)	29:29	33	1.57	1.15	20 - 50
Sagebrush, big; Powder River Basin,						
Wyo. and Mont	20 (1)	41:41	18	1.74	1.33	5 - 150
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (1)	28:30	4.6	2.00	1.34	<2 - 10
Columbia Plateaus Province	23 (1)	30:30	12	1.59	1.34	5 - 20
Basin and Range Province	23 (1)	30:30	6.0	1.86	1.34	2 - 15
Northern Great Plains	23 (1)	20:20	6.3	2.60	1.38	1 - 30
Northern Rocky Mountains Province	23 (1)	20:20	6.6	2.44	1.38	2 - 30
Middle Rocky Mountains Province	23 (1)	20:20	11	1.89	1.38	5 - 30
Southern Rocky Mountains Province	23 (1)	20:20	5.7	2.27	1.38	2 - 15
Southern Rocky Mountains Province 70ming Basin Province	23 (1) 23 (1)	20:20 20:20	5.7 9.5	2.27	1.38 1.38	2 - 15 3 - 20

CHROMIUM

TABLE 19.—Cobalt in rocks, stream sediments, mine spoil and associated materials, soils, and plants [Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	ROCKS				
1 (2)	79:80	5.4	1.99	1.20	<1 - 16
1 (2)	80:80	9.1	1.90	1.24	3.3 - 42
a (a)		(0	0.10		
,					1.5 - 16
	24:24 23:23	13 16	1.29	1.10	7.4 - 19 12 - 21
- (2)				1.00	- - - k
3 (2)	50:50	8.7	1.61	1.17	2.3 - 36
4 (2)	42:42	11	1.50	1.06	4.7 - 36
5 (2)	74:74	10	1.24	1.18	6.3 - 16
5 (2)	53:53	9.4	1.76	1.17	1.1 - 41
5 (2)	117:264	9.0	1.36		<10 - 20
STR	EAM SEDIMENTS				
6 (2)	60:60	7.3	1.34	1.15	3.3 - 14
7 (1)	24:24	6	1.67	1.45	3 - 15
7 (1)	23:24	4	1.50	1.34	<2 - 7
7 (1)	24:24	3	1.35	1.22	2 - 7
7 (1)	24:24	6	1.28	1.13	3 - 10
9 (1)	32:32	8.0	1.48	1.17	5 - 15
MINE SPOIL AN	D ASSOCIATED	MATERIALS			
		* * * <u>* * * * * * * * * * * * * * * * </u>			<u>, , , , , , , , , , , , , , , , , , , </u>
10 (2)	10.10	9 A	1.17		7.3 - 11
					3.0 - 6.6
	10:10	6.8	1.43		2.8 - 10
10 (2)	10:10	6.8	1.47		3.6 - 11
10 (2)	10:10	6.8	1.35		4.3 - 13
10 (2)	10:10	6.6	1.28		4.1 - 10
					3.5 - 8.3
10 (2)	10:10	0.1	1.30		4.0 - 9.3
	and method of analysis 1 (2) 1 (2) 2 (2) 2 (2) 2 (2) 2 (2) 3 (2) 4 (2) 5 (2) 10 (2) 10 (2) 10 (2) 10 (2) 10 (2)	and method of analysis ROCKS 1 (2) 79:80 1 (2) 80:80 2 (2) 24:24 2 (2) 24:24 2 (2) 24:24 2 (2) 23:23 3 (2) 50:50 4 (2) 42:42 5 (2) 74:74 5 (2) 53:53 5 (2) 117:264 STREAM SEDIMENTS 6 (2) 60:60 7 (1) 24:24 7 (1) 23:24 7 (1) 24:24 7 (1) 24:24 7 (1) 24:24 9 (1) 32:32 MINE SPOIL AND ASSOCIATED 10 (2) 10:10 10 (2) 10:10	and method of analysis Ratio Itean (ppm) ROCKS ROCKS 1 (2) 79:80 5.4 1 (2) 80:80 9.1 2 (2) 24:24 6.9 2 (2) 24:24 13 2 (2) 24:24 13 2 (2) 24:24 13 2 (2) 24:24 11 5 (2) 74:74 10 5 (2) 74:74 10 5 (2) 74:74 9.0 STREAM SEDIMENTS 6 (2) 60:60 7.3 7 (1) 24:24 4 7 (1) 24:24 3 7 (1) 24:24 6 9 (1) 32:32 8.0 MINE SPOIL AND ASSOCIATED MATERIALS 10 (2) 10 (2) 10:10 6.8 10 (2) 10:10 6.8 10 (2) 10:10 6.8 10 (2) 10:10 6.6 10 (2) 10:10 6.6	and method of analysis Ratio Itean (ppm) Jectra tion ROCKS ROCKS 1.99 1 1.90 1 (2) 79:80 5.4 1.99 1 (2) 80:80 9.1 1.90 2 (2) 24:24 6.9 2.13 2 (2) 24:24 13 1.29 2 (2) 24:24 13 1.20 3 (2) 50:50 8.7 1.61 4 (2) 42:42 11 1.50 5 (2) 74:74 10 1.24 5 (2) 117:264 9.0 1.36 STREAM SEDIMENTS 6 (2) 60:60 7.3 1.34 7 (1) 24:24 6 1.67 7 (1) 24:24 4 1.50 7 (1) 24:24 6 1.28 9 (1) 32:32 8.0	and method of analysis Ratio Method (ppm) Jevia tion Error ROCKS ROCKS ROCKS 1.99 1.20 1 (2) 79:80 5.4 1.99 1.20 1 (2) 80:80 9.1 1.90 1.24 2 (2) 24:24 6.9 2.13 1.11 2 (2) 24:24 13 1.29 1.00 2 (2) 23:23 16 1.20 1.05 3 (2) 50:50 8.7 1.61 1.17 4 (2) 42:42 11 1.50 1.06 5 (2) 74:74 10 1.24 1.18 5 (2) 74:74 10 1.24 1.18 5 (2) 117:264 9.0 1.36 STREAM SEDIMENTS 6 (2) 60:60 7.3 1.34 1.15 7 (1) 24:24 6 1.28 1.34 9 (1) 32:32 8.0 1.48 1.17

COBALT

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed rang (ppm)
MINE	SPOIL AND ASSO	CIATED MATER	IALSContinu	ied		
ine spoilContinued						
San Juan mine, New Mexico	11 (2)	12:12	8.5	1.22	1.10	5.8 - 12
opsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (2)	12:12	6.0	1.14	1.11	4.9 - 7.4
lants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover						
Beulah North mine, North Dakota	10 (3)	9:10	.23	2.40	1.58	<.0354
Dave Johnston mine, Wyoming	10 (3)	10.10	.40	1.80	1.58	.20 - 1.4
Hidden Valley mine, Wyoming	10 (3)	10:10	.53	1.90	1.58	.23 - 1.22
Kincaid mine, North Dakota	10 (3)	9:10	.15	2.21	1.58	<.0343
Savage mine, Montana	10 (3)	10:10	.15	2.59	1.58	.0485
Velva mine, North Dakota	10 (3)	8:10	.09	2.69	1.58	<.0325
White sweetclover						
Big Sky mine, Montana	10 (3)	10:10	.27	1.78	1.58	.12 - 1.02
Utility mine, Saskatchewan	10 (3)	10:10	.13	1.57	1.58	.0531
Alfalfa						
Beulah North mine, North Dakota	10 (3)	2:3	.15	3.16		< . 07 - . 45
Dave Johnston mine, Wyoming	10 (3)	3:3	.21	2.02		.0935
Savage mine, Montana	10 (3)	3:3	.35	2.24		.1885
Velva mine, North Dakota	10 (3)	1:3				<.0731
Big Sky mine, Montana	10 (3)	3:3	.10	1.49		.0816
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (3)	15:20	.099	2.26		<.05844
Growing near mine spoil	26 (3)	10:20	.069	1.34		<.05413
San Juan mine, New Mexico						
Fourwing saltbush	11 (3)	6:6	.47	1.47		.2865
Alkali sacaton	11 (3)	6:6	.23	1.40		.1634
		SOILS				
iceance Creek and Uinta Basins,						
Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (2)	30:30	7.3	1.29	1.14	4 - 12
owder River Basin, Wyo. and Mont.						
A horizon	13 (1)	60:64	6.9	1.70	1.23	<3 - 30
B horizon	13 (1)	61:64	7.6	1.64	1.25	<3 - 20
C horizon	13 (1)	59:64	7.3	1.66	1.17	<3 - 20
owder River Basin, Wyo. and Mont.						
Soil, O- to 2.5-cm depth	20 (1)	46:48	6.3	1.37	1.09	<3 - 10
Soil, 12- to 20-cm depth	20 (1)	45:48	6.3	1.56	1.09	<5 - 20
anging Woman Creek, Mont.						
and the second invites	14 (2)	16:16	9.7	1.41	1.18	3.9 - 16
A horizonC horizon	14(2) 14(2)		9.3	1.41	1.25	5.0 - 16
A horizon		16:16	9.3	1.41	1.25	5.0 - 16
A horizon			9.3	1.41	1.25	5.0 - 16

.

TABLE 19.—Cobalt in rocks, stream sediments, mine spoil and associated materials, soils and plants—Continued

COBALT

TABLE 19.-Cobalt in rocks, stream sediments, mine spoil and associated materials, soils and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOII	_SContinued				
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon	16 (2) 16 (2)	135:136 136:136	6.4 6.6	1.48 1.49	1.24	<1.0 - 23 1.9 - 16
Big Horn Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	6.3	1.33	1.14	3.0 - 10
Vind River Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	5.5	1.49	1.16	2.1 - 16
San Juan Basin, N. Mex. A horizon C horizon	11 (2) 11 (2)	47:47 47:47	5.7 5.7	1.44 1.62	1.14 1.09	2.1 - 11 1.3 - 15
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon C horizon	24 (2) 24 (2)	30:30 30:30	4.9 4.4	1.28 1.37	1.21 1.09	3.1 - 11 2.6 - 8.9
		PLANTS				
Cultivated plants, northern Great						
Plains (dry-weight basis) Barley Oats Wheat, durum	21 (3) 21 (3) 21 (3) 21 (3) 21 (3)	15:18 17:21 14:20 35:54	0.028 .041 .024 .020	1.24 1.39 1.40 1.37	1.24 1.32 1.40 1.32	<0.028 - 0.044 <.024078 <.014040 <.012048
Wheat, hard red winter	21 (3)	17:17	.019	1.48	1.41	.014051
lative species (dry-weight basis) Galleta, San Juan Basin Saltbush, fourwing, San Juan Basin Snakeweed, San Juan Basin	19 (3) 19 (3) 19 (3)	25:25 10:10 18:18	.26 .11 .18	1.57 1.91 1.86	1.19 1.27 1.20	.07252 .04832 .05135
Mative species (ash-weight basis) Lichen (<u>Parmelia</u>), Powder River Basin, Wyo. and Mont	22 (3)	29:29	3.5	1.53	1.24	2 - 7
Sagebrush, big; Powder River Basin, Wyo. and Mont	20 (3)	37:39	2.0	1.97	1.46	<1 - 6
Sagebrush, big; regional study Colorado Plateaus Province Columbia Plateaus Province	23 (3) 23 (3) 23 (3) 23 (3) 23 (3) 23 (3) 23 (3) 23 (3) 23 (3)	24:30 30:30 20:20 19:20 15:20 16:20 20:20	1.2 2.9 1.8 2.3 1.5 1.2 1.2 2.1	1.91 1.66 1.62 2.76 2.15 2.14 1.89 2.31	1.30 1.30 1.55 1.55 1.55 1.55 1.55	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Availability studies, samples from Montana, North Dakota, South Dakota, and Wyoming (dry-weight basis) Wheatgrass, western	24 (3) 24 (3) 24 (3)	17:21 16:19 15:21	•11 •12 •11	1.94 1.99 3.17	 2.39	<.0439 <.0529 <.0443

.

TABLE 20.-Copper in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No, refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
utcrop samples						
Northern Great Plains, Fort Union Formation						
SandstoneShale	1 (2) 1 (2)	80:80 80:80	13 34	2.31 2.14	1.23	2.3 - 61 4.5 - 110
Core samples						
Hanging Woman Creek, Mont. Sandstone	2 (2)	24:24	13	1.96	1.0 9	5.8 - 62
	2 (2)					19 - 80
Siltstone and shale	2 (2)	24:24	51	1.52	1.23	19 - 80
Dark shale	2 (2)	22:22	54	1.48	1.41	10 - 94
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (2)	50:50	38	1.64	1.40	15 - 92
Sandstone	4 (2)	42:42	14	2.20	1.33	3.1 - 58
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	45	1.58	1.51	15 - 120
Middle 300 m	5 (2)	264:264	40	2.85	1.28	1.5 - 520
Garden Gulch Member (lower 100 m)	5 (2)	264:264	58	1.56		20 - 150
· · ·		EAM SEDIMENTS				
Jorthern Great Plains regional study	6 (2)	60:60	22	1.43	1.13	7.4 - 50
Powder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (1)	24:24	18	2.70	2.20	5 - 100
100-200 μm	7 (1)	24:24	9	1.96	1.21	3 - 50
63-100 µm	7 (1)	24:24	10	1.44	1.22	7 - 20
<63 µm	7 (1)	24:24	34	2.56	1.15	10 - 200
Jinta and Piceance Creek Basins, Colo. and Utah	- 8 (2)	32:32	31	1.34	1.11	20 - 93
	~ \+/	521.52				_ ~ ~ ~ ~ ~
Piceance Creek Basin, Colo. Roan and Black Sulphur Creeks	9(1)	32:32	17	1.37	1.15	10 - 30
	MINE SPOIL AN	ND ASSOCIATED	MATERIALS			
fine spoil						
Northern Great Plains						- /-
Beulah North mine, North Dakota	10 (2)	10:10	24	1.87		5 - 41
Dave Johnston mine, Wyoming	10 (2)	10:10	16	1.30		12 - 29
	10 (2)	10:10	18	1.37		9.6 - 26 8.8 - 47
Hidden Valley mine, Wyoming	10 (2)	10:10	24	1.64 1.50		8.8 - 47 7.6 - 29
Kincaid mine, North Dakota		10 10		1. 20		1.0 - 29
Kincaid mine, North Dakota Savage mine, Montana	10 (2)	10:10	20			
Kincaid mine, North Dakota Savage mine, Montana Velva mine, North Dakota	10 (2) 10 (2)	10:10	19	1.30		12 - 28
Kincaid mine, North Dakota Savage mine, Montana Velva mine, North Dakota Big Sky mine, Montana	10 (2) 10 (2) 10 (2)	10:10 10:10	19 19	1.30 1.45		12 - 28 12 - 34
Kincaid mine, North Dakota Savage mine, Montana Velva mine, North Dakota	10 (2) 10 (2)	10:10	19	1.30		12 - 28

COPPER

TABLE 20.-Copper in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

•

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	CIATED MATER	IALSContin	ued		
opsoil used in spoil reclamation San Juan mine, New Mexico	11 (2)	12:12	10	1.48	1.15	6.6 - 24
lants (dry-weight basis)						
Northern Great Plains Yellow sweetclover						
Beulah North mine, North Dakota	10 (2)	10:10	5.5	1.14	1.04	4.4 - 6.7
Dave Johnston mine, Wyoming	10 (2)	10:10	7.0	1.19	1.04	5.2 - 9.5
Hidden Valley mine, Wyming	10 (2)	10:10	8.0	1.27	1.04	5.6 - 11.4
Kincaid mine, North Dakota	10 (2)	10:10	9.0	1.20	1.04	6.7 - 12.6
Savage mine, Montana	10 (2)	10:10	5.9	1.27	1.04	4.1 - 9.3
Velva mine, North Dakota	10 (2)	10:10	7.2	1.18	1.04	5.9 - 9.5
White sweetclover		10.10	0.0	1.14	1.04	
Big Sky mine, Montana	10 (2)	10:10	8.2	1.16	1.04	6.5 - 9.8
Utility mine, Saskatchewan	10 (2)	10:10	6.9	1.14	1.04	5.3 - 9.0
Alfalfa						
Beulah North mine, North Dakota	10 (2)	3:3	6.3	1.11		5.6 - 6.8
Dave Johnston mine, Wyoming	10 (2)	3:3	12.0	1.16		10.4 - 14.0
Savage mine, Montana	10 (2)	3:3	6.8	1.06		6.4 - 7.1
Velva mine, North Dakota Big Sky mine, Montana	10 (2) 10 (2)	3:3 3:3	7.4 8.1	1.23 1.16		6.1 - 9.3 6.8 - 9.0
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (2)	20:20	3.2	1.44	1.33	1.6 - 5.9
Growing near mine spoil	26 (2)	20:20	2.8	1.45	1.33	1.6 - 6.0
San Juan mine, New Mexico						
Fourwing saltbush	11 (3)	6:6	9.7	1.16		8.4 - 12
Alkali sacaton	11 (3)	6:6	2.4	1.21		2.0 - 2.8
		SOILS				
iceance Creek and Uinta Basins,						
Colo. and Utah; alluvial,		20.00	20	1 70	1 50	10 05
0- to 40-cm depth	12 (2)	30:30	30	1.78	1.52	12 - 85
owder River Basin, Wyo. and Mont. A horizon		(1.(1	15	2.20	1.25	3 - 70
B horizon	13 (1)	64:64 64:64	15 17	2.00	1.37	3 - 70
C horizon	13 (1) 13 (1)	64:64	17	2.84	1.13	2 - 100
	15 (1)	04.04	17	2.04		2 100
owder River Basin, Wyo. and Mont.		10 10	1/	1 ()		2 20
Soil, 0- to 2.5-cm depth Soil, 15- to 20-cm depth	20 (1) 20 (1)	48:48 48:48	14 16	1.63 1.67	1.15 1.15	3 - 30 5 - 50
anging Woman Creek, Mont.						
A horizon	14 (2)	16:16	36	1.44	1.31	17 - 64
C horizon	14 (2)	16:16	33	1.82	1.63	11 - 80
ceance Creek Basin, Colo., 0- to 5-cm depth	15 (2)	107.109	30	1.93	1 6 1	<u> 7 - 122</u>
	15 (2)	107:108	30	1.95	1.61	<8.7 - 122
orthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana						
Combined data, unglaciated and						
	16 (2)	136:136	19	1.64	1.31	4.3 - 110

.

72

.

TABLE 20.— Copper in rocks,	stream sediments,	mine spoil and associated	l materials, soils, and	plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOIL	SContinued	l			
Big Horn Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	20	1.65	1.29	6.7 - 60
Vind River Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	15	1.70	1.38	4.7 - 67
San Juan Basin, N. Mex.						
A horizonB horizon	11 (2) 11 (2)	47:47 47:47	8.9 8.7	1.90 1.94	1.14 1.42	2.1 - 30 1.7 - 28
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon C horizon	24 (2) 24 (2)	30:30 30:30	8.8 6.3	1.41 1.73	1.16 1.42	4.9 - 19 1.6 - 17
		PLANTS				
Cultivated plants, northern Great						
Plains (dry-weight basis) Barley	21 (2)	10.10	1.0	1 1 2	1 00	4.0 5.9
Oat s	21 (3) 21 (3)	18:18 21:21	4.8 4.4	1.12	1.08	4.0 - 5.8 2.8 - 6.7
Wheat, durum	21 (3)	20:20	5.0	1.17	1.16	3.8 - 6.9
Wheat, hard red spring	21(3)	54:54	4.5	1.24	1.14	3.1 - 7.1
Wheat, hard red winter	21 (3)	17:17	3.9	1.17	1.10	2.9 - 5.0
Native species (dry-weight basis)						
Galleta, San Juan Basin	19 (3)	25:25	2.4	1.24	1.03	1.6 - 4.0
Saltbush, fourwing, San Juan Basin	19 (3)	10:10	4.7	1.28	1.04	3.3 - 7.0
Snakeweed, San Juan Basin	19 (3)	18:18	8.1	1.42	1.05	4.6 - 17
Native species (ash-weight basis)						
Lichen (Parmelia), Powder River			70		1 0/	20 150
Basin, Wyo. and Mont	22 (1)	29:29	70	1.44	1.26	30 - 150
Sagebrush, big; regional study						70 070
Colorado Plateaus Province	23 (3)	30:30	150	1.54	1.10	70 - 270
Columbia Plateaus Province	23 (3) 23 (3)	30:30	150 120	1.44	1.10	90 - 300 60 - 180
Basin and Range Province Northern Great Plains	23 (3)	30:30 20:20	120	1.37 1.39	1.10	110 - 240
Northern Rocky Mountains Province	23 (3)	20:20	210	2.19	1.08	100 - 1,000
Middle Rocky Mountains Province	23 (3)	20:20	150	1.68	1.08	70 - 280
Southern Rocky Mountains Province	23 (3)	20:20	140	1.60	1.08	80 - 300
Wyoming Basin Province	23 (3)	20:20	160	1.40	1.08	110 - 240
Availability studies, samples from Montana, North Dakota, South Dakota, and Wyoming (dry weight basis)						
Wheatgrass, western	18 (3)	21:21	•56	1.57		.34 - 1.5
Sagebrush, silver	18(3)	19:19	5.8	1.29		4.0 - 9.8

.

.

TABLE 21.-Dysprosium in rocks and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Core samples						
Northern Great Plains, Fort Union Formation						
Sandstone	4 (2)	5:42	4.9	1.9	1.31	<10 - 18
		SOILS				
an Juan Basin, N. Mex.						
A horizon	11 (2)	6:47	7.7	1.27		<10 - 13
C horizon	11 (2)	8:47	6.6	1.56		<10 - 17
Sheppard-Shiprock-Doak Soil Association, N• Mex•						
A horizon	24 (2)	8:30	7.8	1.52		<10 - 16
C horizon	24 (2)	1:30				<10 - 11

TABLE 22.-Erbium in rocks, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Core samples						
Northern Great Plains, Fort Union Formation						
sandstone	4 (2)	1:42				<4.2 - 5.2
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
Mine spoil						
San Juan mine, New Mexico	11 (2)	12:12	7.1	1.15	1.10	5.2 - 9.1
Topsoil used in spoil reclamation San Juan mine, New Mexico	11 (2)	12:12	6.5	1.10	1.07	5.2 - 7.5
		SOILS				
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon C horizon	24 (2) 24 (2)	17:30 13:30	4.9 4.5	1.31 1.37		<4.6 - 8.1 <4.6 - 7.3

DYSPROSIUM, ERBIUM

74

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Core samples						
Northern Great Plains, Fort Union Formation						
sandstone	4 (2)	33:42	2.5	1.8	2.08	<1.0 - 4.8
	PLANTS ASSOC	IATED WITH M	INE SPOIL			
Plants (dry-weight basis)						
San Juan mine, New Mexico						
Fourwing saltbushAlkali sacaton	11 (2) 11 (2)	3:6 3:6	0.29	2.28 2.54		<0.24 - 0.74 <.08233
	11 (2)	5:0	•11	2.94		(.08233
	01	THER PLANTS				
Native species (dry-weight basis)						
Galleta, San Juan Basin	19 (2)	14:25	0.17	1.86	1.85	<0.080 - 0.46
Saltbush, fourwing, San Juan Basin Snakeweed, San Juan Basin	19 (2) 19 (2)	4:10 9:18	.086 .13	4.10 2.35	3.09 1.98	<.1761 <.08640

TABLE 24.—Fluorine in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	- 1 (9)	54:80	370	1.50		<400 - 700
Shale	- 1 (9)	77:80	690	1.49	1.16	<400 - 1,300
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	- 2 (9)	21:24	480	1.39	1.25	<400 - 900
Siltstone and shale		23:24	800	1.34	1.10	<400 - 1,000
Dark shale	- 2 (9)	23:23	800	1.26	1.17	500 - 1,000
Northern Great Plains, Fort Union						
Formation						
Fine-grained rocks	- 3 (9)	45:50	600	1.51	1.22	300 - 1,200
Sandstone		39:42	300	1.4	1.15	<200 - 600

Core samplesContinued Piceance Creek Basin, Colo. Green River Formation Mahogany zone (upper.100 m) Middle 300 m Garden Gulch Member (lower 100 m) Cowder River Basin, Wyo. and Mont. Size fraction, <63 µm Jinta and Piceance Creek Basins, Colo. and Utah Mine spoil Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming	and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
Piceance Creek Basin, Colo. Green River Formation Mahogany zone (upper.100 m) Middle 300 m Garden Gulch Member (lower 100 m) Carden Gulch Member (lower 100 m) Powder River Basin, Wyo. and Mont. Size fraction, <63 µm Jinta and Piceance Creek Basins, Colo. and Utah Jinta and Piceance Creek Basins, Colo. and Utah Mine spoil Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming	ROCK	(SContinue	ed			
Green River Formation Mahogany zone (upper 100 m) Middle 300 m Garden Gulch Member (lower 100 m) Cowder River Basin, Wyo. and Mont. Size fraction, <63 µm Jinta and Piceance Creek Basins, Colo. and Utah Jinta and Piceance Creek Basins, Colo. and Utah Mine spoil Northern Great Plains Beulah North mine, North Dakota Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana						
Mahogany zone (upper.100 m) Middle 300 m Garden Gulch Member (lower 100 m) Cowder River Basin, Wyo. and Mont. Size fraction, <63 μm Jinta and Piceance Creek Basins, Colo. and Utah Mine spoil Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana						
Middle 300 m Garden Gulch Member (lower 100 m) Cowder River Basin, Wyo. and Mont. Size fraction, <63 µm Jinta and Piceance Creek Basins, Colo. and Utah Mine spoil Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota	>					
Garden Gulch Member (lower 100 m) Cowder River Basin, Wyo. and Mont. Size fraction, <63 µm Jinta and Piceance Creek Basins, Colo. and Utah Mine spoil Northern Great Plains Beulah North mine, North Dakota Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana	5 (9)	60:74	760	1.78	1.20	<400 - 2,300
Size fraction, <63 µm Sinta and Piceance Creek Basins, Colo. and Utah line spoil Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana	5 (9) 5 (9)	53:53 32:32	740 1,000	2.45 1.50	1.16	200 - 11,000 280 - 1,700
Size fraction, <63 µm Sinta and Piceance Creek Basins, Colo. and Utah line spoil Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana	STRF	EAM SEDIMENT	rs		••••••	
Size fraction, <63 µm Sinta and Piceance Creek Basins, Colo. and Utah line spoil Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana						
Colo. and Utah fine spoil Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana	7 (9)	17:24	0.046	1.42	1.36	<0.04 - 0.08
fine spoil Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana	8 (9)	32:32	9.0	2.99	2.08	.50 - 31
fine spoil Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana	MINE SPOIL AN	D ASSOCIATE	D MATERIALS			
Northern Great Plains Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana				·····	+ //	
Beulah North mine, North Dakota Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana						
Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana			7/0			500 1.100
Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana	10 (9)	10:10	760	1.29		500 - 1,100
Kincaid mine, North Dakota Savage mine, Montana	10 (9) 10 (9)	10:10 10:10	670 740	1.39 1.35		400 - 1,100 500 - 1,300
Savage mine, Montana	10 (9)	10:10	820	1.45		400 - 1,600
	10 (9)	10:10	810	1.29		500 - 1,200
	10 (9)	10:10	710	1.75		400 - 2,900
Big Sky mine, Montana	10 (9)	10:10	830	1.40		600 - 1,700
Utility mine, Saskatchewan	10 (9)	10:10	680	1.60		400 - 1,800
San Juan mine, New Mexico	11 (9)	11:12	450	1.13		<400 - 500
Copsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (9)	6:12	390	1.19		<400 - 500
Plants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover Beulah North mine, North Dakota	10 (9)	10:10	7.3	1.39	1.19	5 - 14
Dave Johnston mine, Wyoming	10 (9)	10:10	7.6	1.35	1.19	5 - 12
Hidden Valley mine, Wyoming	10 (9)	10:10	15.0	1.35	1.19	9 - 25
Kincaid mine, North Dakota	10 (9)	10:10	9.3	1.39	1.19	5 - 16
Savage mine, Montana	10 (9)	10:10	7.0	1.32	1.19	5 - 12
Velva mine, North Dakota	10 (9)	10:10	7.5	1.41	1.19	4 - 12
White sweetclover			<u> </u>		1	<i>(</i>
Big Sky mine, Montana	10 (9)	10:10	8.1	1.25	1.19	6 - 12
Utility mine, Saskatchewan	10 (9)	10:10	7.0	1.32	1.19	6 - 12
Alfalfa Beulah North mine North Deketa	10 (0)	3:3	3.8	2.18		2 - 9
Beulah North mine, North Dakota Dave Johnston mine, Wyoming	10 (9) 10 (9)	3:3	3.8	1.18		2 - 9 3 - 4
Savage mine, Montana	10 (9)	3:3	4.0	1.63		3 - 7
Velva mine, North Dakota	10 (9)	3:3	2.0	2.00		1 - 4
Big Sky mine, Montana	10 (9)	3:3	2.9	1.42		2 - 4
Crested wheatgrass, Dave Johnston						
mine, Wyoming Growing on mine spoil						
Growing near mine spoil	26 (9)	20:20	6.2	1.46	1.11	3 - 10

TABLE 24.-Fluorine in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

FLUORINE

.

TABLE 24.-Fluorine in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	OCIATED MATER	IALSContin	ued		
Plants (dry-weight basis)Continued						
San Juan mine, New Mexico						
Fourwing saltbushAlkali sacaton	11 (9) 11 (9)	6:6 6:6	20 7.8	1.36 1.18		15 - 34 6.0 - 9.0
		SOILS				
Piceance Creek and Uinta Basins,						
Colo. and Utah; alluvial,	12 (0)	27.20	(10)	1.1.6	1 07	(100 1 100
0- to 40-cm depth	12 (9)	27:30	610	1.46	1.07	<400 - 1,400
Powder River Basin, Wyo. and Mont.						
A horizon	13 (9)	34:64	410	1.48	1.26	<400 - 900
B horizonC horizon	13 (9)	42:64	450 4 9 0	1.56 1.48	1.22 1.14	<400 - 900
C horizon	13 (9)	47:64	490	1.40	1.14	<400 - 1,000
Hanging Woman Creek, Mont.						
A horizon	14 (9)	16:16	550	1.19	1.06	400 - 700
C horizon	14 (9)	16:16	580	1.26	1.05	400 - 800
Piceance Creek Basin, Colo., 0- to 5-cm						
depth	15 (9)	85:108	500	1.52	1.31	<400 - 1,600
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Unglaciated area A horizon	16 (9)	66:88	560	1.80	1.81	<400 - 2,700
Glaciated area	10 ())	00.00	500			
A horizon Combined data, unglaciated and glaciated areas	16 (9)	48:48	450	1.60	1.81	280 - 1,400
A horizon	16 (9)	96:136	510	1.82	1.81	<400 - 2,700
C horizon	16 (9)	126:136	670	1.57	1.68	<400 - 2,000
Big Horn Basin, Wyo., O- to 40-cm depth	17 (9)	18:36	400	1.24		<400 - 600
Wind River Basin, Wyo., O- to 40-cm						
depth	17 (9)	12:36	340	1.42		<400 - 700
San Juan Basin, N. Mex.						
A horizon	11 (9)	13:47	280	1.73		<400 - 900
C horizon	11 (9)	18:47	330	1.85		<400 - 1,200
		PLANTS				•
Cultivated plants, northern Great Plains (dry-weight basis)	0 (2)	0.00	<i></i>			(1)
Barley Oats	2 (9) 2 (9)	9:20	<1 <1			<1 - 2 <1 - 2
Wheat, durum	2 (9)	15:21 13:18	<1			<1 - 2 <1 - 2
Wheat, hard red spring	21 (9)	32:54	1.0	1.19		<1 - 2
Wheat, hard red winter	21 (9)	11:17	<1			<1 - 1
Native species (dry-weight basis)						
Galleta, San Juan Basin	19 (9)	25:25	8.5	1.33	1.12	4 - 14
Saltbush, fourwing, San Juan Basin	19 (9)	10:10	6.2	1.71	1.24	3 - 15
Snakeweed, San Juan Basin	19 (9)	18:18	9.4	1.36	1.13	6 - 14

,

TABLE 24.-Fluorine in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	PLAN	[SContinue	d			
ative species (dry-weight basis)						
Lichen (Parmelia), Powder River						
Basin, Wyo. and Mont	22 (9)	29:29	25	1.46	1.09	14 - 50
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (9)	30:30	8.1	1.29	1.15	6 - 12
Columbia Plateaus Province	23 (9)	30:30	10	1.48	1.15	6 - 22
Basin and Range Province	23 (9)	30:30	8.7	1.19	1.15	6 - 12
Northern Great Plains	23 (9)	20:20	8.0	1.28	1.13	5 - 11
Northern Rocky Mountains Province	23 (9)	20:20	9.6	1.64	1.13	6 - 22
Middle Rocky Mountains Province	23 (9)	20:20	9.0	1.18	1.13	8 - 13
Southern Rocky Mountains Province	23 (9)	20:20	8.1	1.40	1.13	5 - 13
Wyoming Basin Province	23 (9)	20:20	8.9	1.20	1.13	7 - 12

TABLE 25.-Gadolinium in rocks, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Core samples						
Northern Great Plains, Fort Union Formation sandstone	4 (2)	24:42	3.8	3.80	2.80	<2.2 - 22
	MINE SPOIL AN	D ASSOCIATED	MATERIALS	······		
Mine spoil						
San Juan mine, New Mexico	11 (2)	7:12	2.9	2.74		<2.2 - 11
Topsoil used in spoil reclamation San Juan mine, New Mexico	11 (2)	4:12	1.5	3.10		<2.2 - 6.9
		SOILS				
San Juan Basin, N. Mex.						
A horizon	11 (2)	25:47	2.8	3.35		<2.2 - 16
C horizon	11 (2)	22:47	2.3	2.98		<2.2 - 10
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (2)	8:30	.99	3.96		<2.2 - 10
C horizon	24 (2)	11:30	1.7	2.21		<2.2 - 9.2
		PLANTS			p	
Native species (dry-weight basis) Galleta, San Juan Basin	19 (2)	6:25	.12	3.93		<0.17- 1.1

FLUORINE, GADOLINIUM

TABLE 26.-Gallium in rocks, stream sediments, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (2)	80:80	11	1.69	1.18	3.2 - 23
Shale	1 (2)	80:80	26	1.50	1.19	9.7 - 46
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	12	1.50	1.19	6.1 - 22
Siltstone and shale	2 (2)	24:24	23	1.21	1.10	17 - 34
Dark shale	2 (2)	23:23	26	1.17	1.09	17 - 36
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (2)	50:50	18	1.42	1.20	8.1 - 40
Sandstone	4 (2)	42:42	5.3	1.50	1.12	2.6 - 11
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	5.1	1.54	1.29	3.2 - 17
Middle 300 m	5 (2)	10:53	J•1 			<4 - 5.8
Garden Gulch Member (lower 100 m)	5 (2)	264:264	22	1.34		10 - 70
	STR	EAM SEDIMENTS				
	((2)	60:60		1.45	1.26	3.5 - 20
Northern Great Plains regional study	6 (2)	00.00	11	1.45	1.20	5.9 20
Powder River Basin, Wyo. and Mont.						
Size fractions						
>200 µm	7 (1)	24:24	13	1.67	1.34	7 - 30
100-200 µm	7 (1)	24:24	10	1.44	1.16	7 - 20
63-100 μm	7 (1)	24:24	10	1.37	1.20	7 - 20
<63 µm	7 (1)	24:24	15	1.22	<1.02	10 - 30
Uinta and Piceance Creek Basins,						
Colo. and Utah						15 00
Asphalt Wash, Utah	8 (1)	8:8	17	1.17		15 - 20
Cottonwood Creek, Utah	8 (1)	8:8	20	1.24		15 - 30
Duck Creek, Colo	8 (1)	8:8	15	1.24		10 - 20
Ryan Gulch, Colo	8 (1)	8:8	22	1.34		15 - 30
Piceance Creek Basin, Colo.						
Roan Creek	9 (1)	16:16	15	1.09	1.16	15 - 20
Black Sulphur Creek	9 (1)	16:16	20	1.19	1.16	15 - 30
	MINE SPOIL AN	ID ASSOCIATED	MATERIALS			
Mine spoil						
Northern Great Plains	10 (2)	10:10	12	1.63		5.8 - 22
Northern Great Plains Beulah North mine, North Dakota	10 (2)					
	10 (2)	10:10	13	1.31		7.8 - 18
Beulah North mine, North Dakota			13 10 9.2	1.31 1.90 1.78		7.8 - 18 < $3.0 - 21$ < $3.1 - 18$

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia - tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	CIATED MATER	IALSContin	ued		
Mine spoilContinued						
Northern Great PlainsContinued						
Savage mine, Montana	10 (2)	10:10	11	1.41		6.9 - 16
Velva mine, North Dakota	10 (2)	9:10	8.5	1.65 1.65		<3.0 - 18 4.2 - 17
Big Sky mine, MontanaUtility mine, Saskatchewan	10 (2) 10 (2)	10:10 9:10	9.2 8.0	1.54		<3.1 - 12
San Juan mine, New Mexico	11 (2)	10:12	3,3	1.45		<2.2 - 5.5
	11 (2)	10.12	1.1	1.45		
Topsoil used in spoil reclamation San Juan mine, New Mexico	11 (2)	4:12	2.0	1.17		<2.2 - 2.8
		SOILS				
Piceance Creek and Uinta Basins,						
Colo. and Utah;		0.0.00				7 0 00
alluvial, 0- to 40-cm depth	12 (2)	30:30	15	1.32	1.10	7.2 - 29
Powder River Basin, Wyo. and Mont.						
A horizon	13 (1)	64:64	13	1.37	1.20	7 - 30
B horizonC horizon	13 (1)	64:64	15 15	1.30 1.50	1.29 1.21	7 - 30 7 - 30
	13 (1)	64:64	13	1.50	1.21	1 - 30
Powder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm depth	20 (1)	48:48	12	1.31	1.13	7 - 20
Soil, 15- to 20-cm depth	20 (1)	48:48	13	1.28	1.13	7 - 20
Hanging Woman Creek, Mont.						
A horizon	14 (2)	16:16	13	1.45	1.23	5.3 - 21
C horizon	14 (2)	16:16	12	1.51	1.39	5.8 - 22
Piceance Creek Basin, Colo., 0- to 5-cm						
depth	15 (2)	107:108	18	1.82	1.40	<2.2 - 39
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana						
Unglaciated area						0.7.05
Ĉ horizon Glaciated area	16 (2)	88:88	11	1.51	1.33	2.7 - 25
C horizon	16 (2)	48:48	10	1.58	1.33	2.8 - 22
Combined data, unglaciated and						
glaciated areas A horizon	16 (2)	126.126	11	1.44	1.30	4.2 - 29
C horizon	16 (2) 16 (2)	136:136 136:136	11	1.54	1.33	2.7 - 25
Big Horn Basin, Wyo., 0- to 40-cm depth	17 (2)	36:36	11	1.47	1.19	4.3 - 20
Wind River Basin, Wyo., 0- to 40-cm depth	17 (2)	36:36	15	1.32	1.17	7.3 - 23
aopen	17 (2)	20.20	. ,	1+72	1.1.1	,., 23
San Juan Basin, N. Mex.	11 (0)	21.47	2.0	1 00		()) - 6 6
A horizonC horizon	11 (2) 11 (2)	21:47 21:47	2.0 2.0	1.82 2.06		<2.2 - 6.6 <2.2 - 10
Sheppard-Shiprock-Doak Soil Association,						
N. Mex.						
A horizon	24 (2)	19:30	3.7	3.07		<2.2 - 13
C horizon	24 (2)	20:30	4.0	2.80		<2.2 - 14

TABLE 26.-Gallium in rocks, stream sediments, mine spoil and associated materials, and soils-Continued

GALLIUM

TABLE 27.-Germanium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leadere (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
utcrop samples						
Northern Great Plains, Fort Union						
Formation Sandstone	1 (18)	80:80	1.1	1.57	1.13	0.38 - 3.0
Shale	1 (18)	80:80	1.4	1.54	1.16	.75 - 5.5
ore samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (18)	24:24	.76	1.55	1.20	.35 - 2.0
Siltstone	2 (18)	24:24	1.1	1.36	1.23	.58 - 1.7
Dark shale	2 (18)	23:23	1.3	1.51	1.39	.53 - 2.5
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (18)	49:50	1.0	1.38	1.11	<.32 - 1.6
Sandstone	4 (18)	42:42	1.1	1.30	1.54	.60 - 1.7
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (18)	38:42	.44	1.92		.15 - 1.9
Middle 300 m	5 (18)	9:53				<.9 - 2.8
	STRE	EAM SEDIMENTS	5			
Northern Great Plains regional study	6 (18)	60:60	1.2	1.34	1.25	0.36 - 1.7
Powder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (5)	16:19	.71	3.36	1.13	<.1 - 1.7
100-200 µm	7 (5)	24:24	1.2	1.20	1.07	.78 - 1.8
63-100 μm <63 μm	7 (5) 7 (5)	24:24 24:24	1.3 1.4	1.13	1.03 1.08	1.0 - 1.6 1.1 - 1.7
· · · µ						
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
fine spoil						
Northern Great Plains						<i>(</i> 0 · · · · · · · · · · · · · · · · · · ·
Beulah North mine, North Dakota	10 (5)	9:10	.73	2.98		<0.1 - 1.8
Dave Johnston mine, Wyoming	10 (5)	9:10	.73	2.40		< .1 - 1.7
Hidden Valley mine, Wyoming	10 (5)	10:10	1.4	1.38		.92 - 2.2
Kinciad mine, Montana	10 (5)	9:10	.51	2.31		<.1 - 1.3 <.1 - 1.9
Savage mine, Montana	10 (5) 10 (5)	8:10 9:10	.58 .68	3.30 2.56		< .1 - 1.9
Velva mine, North DakotaBig Sky mine, Montana	10 (5)	10:10	.08	2.05		.18 - 1.9
Utility mine, Saskatchewan	10 (5)	8:10	.60	3.24		<.1 - 1.7
San Juan mine, New Mexico	11 (5)	12:12	1.4	1.59	1.17	.50 - 2.3
Copsoil used in spoil reclamation						

TABLE 27.-Germanium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		SOILS				
Piceance Creek and Uinta Basins,						
Colo. and Utah; alluvial, 0- to 40-cm depth	12 (5)	30:30	1.1	1.24	1.11	0.7 - 1.9
alluvial, o to 40 cm depth	12 (3)	50.50	1	1.2.4		0., 1.,
Hanging Woman Creek, Mont.						
A horizon	14 (5)	16:16	1.3	1.27	1.17	.83 - 1.8
C horizon	14 (5)	16:16	1.3	1.27	1.17	.78 - 1.8
Piceance Creek Basin, Colo., O- to 5-cm						
depth	15 (5)	105:108	.87	2.35	1.96	<.14 - 2.5
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon	16 (5)	130:136	1.6	1.27	1.13	<.10 - 2.7
C horizon	16 (5)	132:136	1.6	1.33	1.16	<.10 - 9.3
Big Horn Basin, Wyo., O- to 40 cm depth	17 (5)	32:36	.87	2.49	2.64	<.10 - 1.8
√ind River Basin, Wyo., 0- to 40 cm						
depth	17 (5)	32:36	•77	2.48	2.09	<.10 - 1.7
San Juan Basin, N. Mex.						
A horizon	11 (5)	47:47	1.4	1.22	1.24	.80 - 1.9
C horizon	11 (5)	47:47	1.3	1.20	1.20	.90 - 1.9
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (5)	30:30	1.3	1.17	1.09	.90 - 1.7
C horizon	24 (5)	30:30	1.2	1.20	1.31	.90 - 1.6
		PLANTS				
Cultivated plants, northern Great Plains						
(dry-weight basis) Barley	21 (1)	13:18	.030	1.52	1.34	<0.019 - 0.061
Oats	21 (1) 21 (1)	17:21	.030	1.32	1.34	<.02512
Wheat, durum	21 (1) 21 (1)	15:20	.026	1.96	1.96	<.01311
Wheat, hard red spring	21 (1) 21 (1)	30:54	.017	1.85	1.84	<.014068
Wheat, hard red winter	21 (1) 21 (1)	5:17	.0095	2.16	2.15	<.012036

TABLE 28.—Indium in soils

IADLE 40.—Instant in Sous
[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
rthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						

GERMANIUM, INDIUM

TABLE 29.-Iodine in rocks, stream sediments, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Core samples						
Northern Great Plains, Fort Union Formation						
Sandstone	4 (5)	38:42	0.71	1.4	1.70	<0.3 - 2.0
	STRI	EAM SEDIMENTS				
Powder River Basin, Wyoming and Montana Size fractions						
>200 µm	7 (5)	4:6	0.057	1.93		<0.05 - 0.15
63-100 μm	7 (5)	5:10	.052	1.86		<.051
<63 μm	7 (5)	5:6	.077	2.60		<.053
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
line spoil						
San Juan mine, New Mexico	11 (5)	1:12				<0.50 - 0.55
Copsoil used in spoil reclamation San Juan mine, New Mexico	11 (5)	4:12	0.46	1.24		<.5064
		SOILS				
Piceance Creek and Uinta Basins, Colo. and Utah;						
alluvial, 0- to 40-cm-depth	12 (5)	24:30	0.82	1.63	1.51	<0.5 - 1.8
Hanging Woman Creek, Mont.						
A horizon	14 (5)	11:16	.63	1.64	1.22	<.56 - 1.6
C horizon	14 (5)	6:16	•44	1.54		<.61 - 1.1
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and						
glaciated areas A horizon	16 (5)	115.196		2.48	2.04	<.050 - 2.3
C horizon	16 (5) 16 (5)	115:136 92:136	.33 .25	2.48	2.04	<.050 - 2.5
an Juan Basin, N. Mex.						
A horizon	11 (5)	7:47	.28	1.81		<.5097
C horizon	11 (5)	26:47	.57	2.46		<.50 - 3.8
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
C horizon	24 (5)	10:30	.37	2.01		<.50 - 1.9

TABLE 30.-Iron in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation.

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				
Dutcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (5)	80:80	1.5	1.98	<1.07	0.25 - 5.2
Shale	1 (5)	80:80	2.4	2.09	<1.08	.32 - 7.5
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (5)	24:24	2.4	1.51	1.06	1.2 - 7.1
Siltstone and shale	2 (5)	24:24	2.6	1.34	1.02	2.0 - 5.4
Dark shale	2(5)	23:23	2.8	1.38	1.05	1.5 - 5.0
Northern Great Plains, Fort Union	*					
Formation						
Fine-grained rocks	3 (5)	50:50	3.0	1.54	1.03	1.1 - 7.8
Sandstone	4 (5)	42:42	1.2	1.60	1.04	.41 - 4.3
Piceance Creek Basin, Colo.						
Green River Formation	5 /5	74:74	n n	1 20	1 04	1.1 - 3.9
Mahogany zone (upper 100 m)	5 (5)		2.2	1.29	1.06	
Middle 300 m	5 (5)	51:51 32:32	1.5 3.1	1.34 2.41	1.05	.54 - 2.4 .03 - 4.6
Garden Gulch Member (lower 100 m)	5 (5)	77:72	J•1	2.441	-	•0J - 4•0
	STR	EAM SEDIMENT	ſS			
Northern Great Plaine regional study-	6 (5)	60:60	2.3	1.29	<1.03	1.5 - 9.1
Northern Great Plains regional study	0 (3)	00.00	2.5	1.29	1.05	1.5 5.1
Powder River Basin, Wyo. and Mont.						
Size fractions						
>200 µm	7 (5)	19:19	1.9	1.75	1.47	1.2 - 4.7
100-200 μm	7 (5)	24:24	1.1	1.41	<1.02	.77 - 3.4
63-100 μm	7 (5)	24:24	1.2	1.33	1.03	.91 - 3.1
<63 μm	7 (5)	24:24	1.8	1.25	1.03	1.4 - 3.4
Jinta and Piceance Creek Basins,						
Colo. and Utah	0 (5)	0.0	1 0	1.10		1.6 - 2.1
Asphalt Wash, Utah	8 (5)	8:8	1.9 2.4	1.10 1.41		1.6 - 2.1 1.8 - 5.3
Cottonwood Creek, Utah Duck Creek, Colo	8 (5) 8 (5)	8:8 8:8	2.4 1.9	1.41		1.8 - 5.3 1.6 - 2.1
Ryan Gulch, Colo	8 (5)	8:8	2.1	1.14		1.8 - 2.6
	0 (5)	0:0	2 • 1	1.14		2
Piceance Creek Basin, Colo.						
Roan and Black Sulphur Creeks	9 (1)	32:32	2.2	1.33	1.07	1.5 - 5
	MINE SPOIL AN	ID ASSOCIATE	D MATERIALS			
Aine spoil						
Northern Great Plains						, , , , , , , , , , , , , , , , , , ,
Beulah North mine, North Dakota	10 (5)	10:10	3.2	1.31		1.7 - 4.7
Dave Johnston mine, Wyoming	10 (5)	10:10	1.9	1.33		1.1 - 3.1
Hidden Valley mine, Wyoming	10 (5)	10:10	2.1	1.35		1.3 - 3.8
Kincaid mine, North Dakota	10 (5)	10:10	2.8	1.20		2.2 - 3.7
Savage mine, Montana	10 (5)	10:10	2.4	1.22		1.8 - 3.2
Velva mine, North Dakota	10 (5)	10:10	2.3	1.07		2.1 - 2.6
Big Sky mine, Montana	10 (5) 10 (5)	10:10 10:10	2.3 2.1	1.18 1.16		1.8 - 3.2 1.7 - 2.9
Utility mine, Saskatchewan						

IRON

TABLE 30.-Iron in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

		nethod nalysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
MINE	SPOIL	AND ASSO	CIATED MATE	RIALSContinu	ed		
ine spoilContinued							
San Juan mine, New Mexico	11	(5)	12:12	1.7	1.17	1.08	1.3 - 2.1
opsoil used in spoil reclamation San Juan mine, New Mexico	11	(5)	12:12	1.4	1.09	1.07	1.3 - 1.6
lants (dry-weight basis)							
Northern Great Plains Yellow sweetclover							
Beulah North mine, North Dakota	10	(2)	10:10	.027	1.52	1.12	.013050
Dave Johnston mine, Wyoming		(2)	10:10	.019	1.34	1.42	.010026
Hidden Valley mine, Wyoming		(2)	10:10	.047	1.33	1.12	.029069
Kincaid mine, North Dakota	10	(2)	10:10	.043	1.58	1.12	.016069
Savage mine, Montana	10	(2)	10:10	.018	1.42	1.12	.014028
Velva mine, North Dakota	10	(2)	10:10	.023	1.80	1.12	.012065
White sweetclover		(0)					
Big Sky mine, Montana Utility mine, Saskatchewan		(2) (2)	10:10 10:10	.029 .019	1.27 1.37	1.12	.023045 .013033
Alfalfa							
Beulah North mine, North Dakota	10	(2)	3:3	.024	2.26		.011057
Dave Johnston mine, Wyoming		(2)	3:3	.027	1.37		.019035
Savage Mine, montana		(2)	3:3	.027	1.46		.018036
Velva mine, North Dakota		(2)	3:3	.022	2.80		.011072
Big Sky mine, Montana		(2)	3:3	.019	1.27		.015024
Crested wheatgrass, Dave Johnston mine, Wyoming							
Growing on mine spoil	26	(2)	20:20	.027	1.67	1.24	.012074
Growing near mine spoil	26	(2)	20:20	•01 9	1.55	1.24	.0081035
San Juan mine, New Mexico							
Fourwing saltbushAlkali sacaton		(2) (2)	6:6 6:6	.078 .031	1.27 1.50		.06211 .021051
		,	SOILS		<u> </u>		
iceance Creek and Uinta Basins,							
Colo. and Utah; alluvial,							
0- to 40-cm depth	12	(5)	30:30	*2.0	*0.50	*0.040	1.1 - 2.8
owder River Basin, Wyo. and Mont.							
A horizon		(5)	64:64	2.0	1.49	1.12	.87 - 5.2
B horizon		(5)	64:64	2.2	1.43	1.09	.75 - 6.1
C horizon	13	(5)	64:64	2.1	1.67	1.12	.66 - 8.4
langing Woman Creek, Mont.	1.4	(=)	16.16	4 2 4	+ 47	+ 000	17-34
A horizon		(5)	16:16	*2.6	*.47	*.080	1.7 - 3.4
C horizon	14	(5)	16:16	*2.5	*.67	*.15	1.3 - 3.7
iceance Creek Basin, Colo., O- to 5-cm							

TABLE 30.-Iron in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	SOIL	SContinued	1			
forthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon C horizon	16 (5) 16 (5)	136:136 136:136	2.1 2.2	1.41 1.40	1.02 1.02	0.26 - 6.5 .64 - 7.8
Big Horn Basin, Wyo., O- to 40-cm depth	17 (5)	36:36	1.2	1.38	1.07	.66 - 2.9
/ind River Basin, Wyo., 0- to 40-cm depth	17 (5)	36:36	1.5	1.36	1.07	.98 - 2.7
an Juan Basin, N. Mex. A horizon C horizon	11 (5) 11 (5)	47:47 47:47	1.1 1.2	1.62 1.58	1.03 1.04	.42 - 6.0 .41 - 2.5
heppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon C horizon	24 (5) 24 (5)	30:30 30:30	.91 .83	1.23 1.41	1.05 1.17	.58 - 1.2 .44 - 1.5
	, <u></u> , , 	PLANTS				
Cultivated plants, northern Great Plains (dry-weight basis)						
Barley	21 (1)	18:18	0.0088	1.32	1.21	0.0053 - 0.016
Oats	21 (1)	21:21	.0081	1.27	1.12	.0054014
Wheat, durum	21(1)	20:20	•00 98	1.23	1.23	.0057015
Wheat, hard red spring Wheat, hard red winter	21 (1) 21 (1)	54:54 17:17	.0048 .0034	1.32	1.17	.0028010 .00250043
lative species (dry-weight basis)	10 (2)	25.25	0530	1.49	1.09	22 - 12
Galleta, San Juan Basin Saltbush, fourwing, San Juan Basin	19 (2) 19 (2)	25:25 10:10	.0530 .0220	1.49	1.13	.2212 .0087043
Snakeweed, San Juan Basin	19 (2)	18:18	.0420	1.60	1.11	.019082
lative species (ash-weight basis) Lichen (<u>Parmelia</u>), Powder River Basin, Wyo. and Mont	22 (1)	29:29	1.4	1.30	1.21	.7 - 2
Sagebrush, big; regional study	22 (1)	23.23	1.4	1.30	1.21	•/ 2
Colorado Plateaus Province	23 (1)	30:30	.28	1.86	1.22	.157
Columbia Plateaus Province	23 (1)	30:30	1.1	1.60	1.22	.5 - 3
Basin and Range Province	23 (1)	30:30	.44	1.98	1.22	.2 - 1
Northern Great Plains Northern Rocky Mountains Province	23 (1) 23 (1)	20:20 20:20	.33 .35	2.19 1.94	1.27 1.27	.15 - 1 .15 - 1
Middle Rocky Mountains Province	23 (1)	20:20	.37	1,99	1.27	.2 - 1
Southern Rocky Mountains Province	23 (1) 23 (1)	20:20 20:20	.30 .53	1.89 1.84	1.27	.1570 .2 - 1.5
Availability studies, samples from Montana, North Dakota, South Dakota,	(*)		•20			
and Wyoming (dry-weight basis)			0.070			0010 0000
Wheatgrass, westernSagebrush, silver	18 (3) 18 (3)	21:21 19:19	.0073 .0120	1.99 1.85		.00180320 .00520440
	18 131					

86

.

TABLE 31.—Lanthanum in rocks, stream sediments, mine spoil and associated materials, soils, and plants [Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed Range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (2)	80:80	35	1.48	1.30	15 - 80
Shale	1 (2)	80:80	42	1.58	1.23	13 - 150
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	29	1.30	1.16	17 - 44
Siltstone and shale	2 (2)	24:24	39	1.17	1.13	29 - 56
Dark shale	2 (2)	23:23	44	1.19	1.12	29 - 60
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (2)	50:50	33	1.26	1.22	20 - 62
Sandstone	4 (2)	42:42	49	1.20	1.10	3 5 - 70
Piceance Creek Basin, Colo.	·					
Green River Formation Mahogany zone (upper 100 m)	5 (2)	74:74	35	1.48	1.38	13 - 85
Middle 300 m	5 (2)	53:53	32	1.40	1.32	15 - 66
	STDE	CAM SEDIMENTS	2			
			, 			
Northern Great Plains regional study	6 (2)	60:60	35	1.30	1.25	22 - 70
Powder River Basin, Wyo. and Mont. Size fraction, <63 µm	7 (1)	23:24	49	1.83	1.49	<30 - 150
	. ,					
Uinta and Piceance Creek Basins, Colo. and Utah	8 (1)	32:32	45	1.70	1.18	25 - 150
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
Mine spoil			· · · · · · · · · · · · · · · · · · ·			
San Juan mine, New Mexico	11 (2)	12:12	32	1.21	1.21	21 - 40
Topsoil used in spoil reclamation	11 (2)	12.12	<u>م</u> د	1 26	1 26	18 - 51
San Juan mine, New Mexico	11 (2)	12:12	25	1.36	1.26	18 - 51
Plants (dry-weight basis)						
San Juan mine, New Mexico						
Fourwing saltbush	11 (2)	2:6	<1.1			<1.2 - 1.8
Alkali sacaton	11 (2)	4:6	0.72	2.94		<0.38 - 2.3
		SOILS				
		90179			· • · · · · · · · · · · · · · · · · · ·	
Piceance Creek and Uinta Basins,						
Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (2)	30:30	39	1.16	1.15	26 - 65
Powder River Basin, Wyo. and Mont.						
A horizon	13 (1)	50:64	45	1.54	1.42	<30 - 100
	13 (1) 13 (1)	50:64 54:64	45 46	1.54 1.47	1.42 1.54	<30 - 100 <30 - 70

LANTHANUM

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOIL	SContinued				
owder River Basin, Wyo. and Mont.						
Soil, 15- to 20-cm depth	20 (1)	39:48	28	1.79	1.34	<30 - 70
anging Woman Creek, Mont.						
A horizon	14 (2)	16:16	36	1.27	1.21	21 - 49
C horizon	14 (2)	16:16	36	1.20	1.19	26 - 50
forthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon	16 (2)	128:136	23	1.47	1.39	<10 - 49
C horizon	16 (2)	127:136	23	1.55	1.38	<10 - 62
ig Horn Basin, Wyo., O- to 40-cm						
depth	17 (2)	36:36	36	1.20	1,15	25 - 56
ind River Basin, Wyo., O- to 40-cm						
depth	17 (2)	36:36	35	1.32	2.10	22 - 68
an Juan Basin, N. Mex.						
A horizon	11 (2)	47:47	27	1.38	1.28	6.9 - 43
C horizon	11 (2)	47:47	30	1.35	1.21	12 - 61
heppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (2)	30:30	28	1.24	1.17	18 - 43
C horizon	24 (2)	30:30	27	1.33	1.16	16 - 46
		PLANTS				
ative species (dry-weight basis)						
Galleta, San Juan Basin	19 (2)	20:25	1.3	1.98	1.95	<0.59 - 3.8
Saltbush, fourwing, San Juan Basin	19(2) 19(2)	5:10	1.3	2.79	2.73	<1.0 - 4.8

TABLE 31.-Lanthanum in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

$\label{eq:table 32} \text{TABLE 32}.-\text{Lead in rocks, stream sediments, mine spoil and associated materials, soils, and plants}$

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
utcrop samples						
utcrop samples Northern Great Plains, Fort Union Formation						

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia - tion	Error	Observed range (ppm)
	ROCK	(SContinued	1			
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	17:24	3.3	2.82	1.34	0.79 - 15
Siltstone and shale	2 (2)	24:24	14	1.46	1.17	6.0 - 25
Dark shale	2 (2)	23:23	22	1.19	1.08	17 - 37
Northern Great Plains, Fort Union Formation						
Fine-grained rocksSandstone	3 (2) 4 (2)	49:50 42:42	11 12	1.66 1.70	1.31	<2.8 - 29 5.5 - 130
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	21	1.71	1.40	3.5 - 170
Middle 300 m	5 (2)	52:53	14	1.91	1.48	<4 - 53
Garden Gulch Member (lower 100 m)	5 (2)	261:264	41	1.52		<20 - 150
	STRI	EAM SEDIMENT:	5			
Northern Great Plains regional study	6 (2)	57:60	5.9	2.10	1.79	<1.2 - 20
Powder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (1)	24:24	17	1.28	1.15	10 - 30
100-200 µm	7 (1)	24:24	11	1.26	1.23	7 - 15
63-100 µm	7 (1)	24:24	11	1.23	1.23	10 - 15
<63 µm	7 (1)	24:24	16	1.23	1.23	15 - 20
Jinta and Piceance Creek Basins, Colo. and Utah						
Asphalt Wash, Utah	8 (1)	8:8	18	1.16		15 - 20
Cottonwood Wash, Utah	8 (1)	8:8	19	1.26	·	15 - 3 0
Duck Creek, Colo	8 (1)	8:8	13	1.23		10 - 15
Ryan Gulch, Colo	8 (1)	8:8	19	1.14		15 - 20
Piceance Creek Basin, Colo. Roan and Black Sulphur Creeks	9 (1)	32:32	18	1.31	1.18	15 - 30
	MINE SPOIL AN		MATTOTALC			
	MINE SPUIL AN					
Mine spoil	1					
Northern Great Plains Beulah North mine, North Dakota	10 (2)	10:10	16	1.82		5.0 - 33
Dave Johnston mine, Wyoming	10 (2)	10:10	28	1.48		13 - 44
Hidden Valley mine, Wyoming	10 (2)	9:10	17	2.28		<2.1 - 35
Kincaid mine, North Dakota	10 (2)	10:10	17	2.14		3.2 - 36
Savage mine, Montana	10 (2)	10:10	17	1.78		4.2 - 35
Velva mine, North Dakota	10 (2)	10:10	14	1.90		3 - 24
Big Sky mine, Montana	10 (2)	10:10	17	1.75		6.9 - 39
Utility mine, Saskatchewan	10 (2)	10:10	16	1.71		5.6 - 31
San Juan mine, New Mexico	11 (2)	12:12	11	1.33	1.11	6.6 - 17
Topsoil used in spoil reclamation San Juan mine, New Mexico	11 (2)	12:12	11	1.15	1.18	8.2 - 13
Plants (dry-weight basis)						
San Juan mine, New Mexico						
Fourwing saltbush	11 (2)	6:6	1.2	1.34		0.096 - 1.7
Alkali sacaton	11 (2)	6:6	1.4	1.27		1.0 - 1.8

•

TABLE 32.-Lead in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

LEAD

-

TABLE 32.-Lead in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOILS				
12 (2)	30:30	12	1.63	1.22	4.8 - 26
	61-61	10	1 20	1 15	15 100
• •					15 - 100 10 - 30
13 (1)	64:64	17	1.29	1.11	10 - 30
		_			
20 (1)					10 - 30
20 (1)	48:48	17	1.45	1.19	10 - 100
14 (2)	16.16	7.7	1.55	1.39	2.8 -, 12
14 (2)	16:16	7.1	1.65	1.62	2.9 - 13
15 (2)	107:108	26	2.09	1.73	<3.3 - 56
16 (2)	136:136	16	1.54	1.43	5.1 - 41
16 (2)	135:136	15	1.71	1.39	<1.2 - 47
17 (2)	36:36	8.6	1.44	1.35	3.1 - 16
17 (2)	36:36	12	1.35	1.55	6.0 - 25
				/	7 0 01
11 (2)	4/:4/ 47:47	13	1.28	1.14	7.8 - 21 5.1 - 24
24 (2)	30:30	11	1.20	1.17	8.4 - 19
24 (2)	30:30	9.7	1.29	1.22	6.0 - 18
	PLANTS				
19 (2)					0.40 - 8.0
19 (2) 19 (2)	6:10 18:18	•52 1•1	1.37	1.14	<.4178 .58 - 3.0
22 (1)	29:29	110	1.64	1.17	30 - 200
20 (1)	41:41	59	1.55	1.30	<30 - 150
	05.00		1		(20 50
					<20 - 50 <20 - 70
• •					<20 - 70 <20 - 30
					<20 - 50
23 (1)	19:20	50	3.72	1.18	<20 - 700
23 (1)	16:20	21	1.73	1.18	<20 - 50
23 (1)	19:20	26	2.00	1.18	<20 - 70
23 (1)	18:20	22	1.36	1.18	<20 - 30
	and method of analysis 12 (2) 13 (1) 13 (1) 13 (1) 13 (1) 20 (1) 20 (1) 20 (1) 14 (2) 14 (2) 14 (2) 15 (2) 16 (2) 17 (2) 17 (2) 11 (2) 17 (2) 11 (2) 11 (2) 24 (2) 23 (1) 23 (1)	and method of analysis Ratio SOILS 12 (2) 30:30 13 (1) 64:64 13 (1) 64:64 13 (1) 64:64 13 (1) 64:64 13 (1) 64:64 20 (1) 48:48 20 (1) 48:48 20 (1) 48:48 20 (1) 48:48 14 (2) 16:16 15 (2) 107:108 16 (2) 136:136 16 (2) 135:136 17 (2) 36:36 11 (2) 47:47 24 (2) 30:30 PLANTS 19 (2) 19 (2) 25:25 19 (2) 18:18 22 (1) 29:29 20 (1) 41:41 23 (1) 25:30 23 (1) 25:30 23 (1) 16:20 23 (1) 16:20 23 (1) 16:20 23 (1) 19:20	and method of analysis Ratio Itean (ppm) SOILS 12 (2) 30:30 12 13 (1) 64:64 19 13 (1) 64:64 18 13 (1) 64:64 17 20 (1) 48:48 17 20 (1) 48:48 17 20 (1) 48:48 17 14 (2) 16:16 7.7 14 (2) 107:108 26 16 (2) 135:136 16 16 (2) 135:136 15 17 (2) 36:36 8.6 17 (2) 36:36 12 11 (2) 47:47 13 11 (2) 47:47 12 24 (2) 30:30 9.7 PLANTS .52 19 (2) 25:25 0.88 19 (2) 18:18 .11 22 (1) 29:29 110 20 (1) 41:41 59 23 (1) 25:30 23	and method of analysis Ratio Iten (ppm) Levia tion SOILS SOILS 12 (2) 30:30 12 1.63 13 (1) 64:64 19 1.38 13 (1) 64:64 18 1.31 13 (1) 64:64 18 1.31 13 (1) 64:64 18 1.31 13 (1) 64:64 18 1.31 13 (1) 64:64 17 1.29 20 (1) 48:48 17 1.45 14 (2) 16:16 7.7 1.55 14 (2) 16:16 7.1 1.65 15 (2) 107:108 26 2.09 16 (2) 136:136 16 1.54 17 (2) 36:36 8.6 1.44 17 (2) 36:36 12 1.35 11 (2) 47:47 13 1.28 11 (2) 47:47 12 1.36 24 (2) 30:30 9.7 1.29 <td>and method of analysis Ratio Mean (ppm) Devia tion Error SOILS 12 (2) 30:30 12 1.63 1.22 13 (1) 64:64 19 1.38 1.15 13 (1) 64:64 19 1.38 1.15 13 (1) 64:64 17 1.29 1.11 20 (1) 48:48 17 1.45 1.19 20 (1) 48:48 17 1.45 1.19 14 (2) 16:16 7.7 1.55 1.39 14 (2) 107:108 26 2.09 1.73 16 (2) 135:136 15 1.71 1.35 17 (2) 36:36 8.6 1.44 1.35 17 (2) 36:36 12 1.35 1.55 11 (2) 47:47 13 1.28 1.14 11 (2) 47:47 12 1.36 1.17 24 (2) 30:30 9.7 1.29 1.27</td>	and method of analysis Ratio Mean (ppm) Devia tion Error SOILS 12 (2) 30:30 12 1.63 1.22 13 (1) 64:64 19 1.38 1.15 13 (1) 64:64 19 1.38 1.15 13 (1) 64:64 17 1.29 1.11 20 (1) 48:48 17 1.45 1.19 20 (1) 48:48 17 1.45 1.19 14 (2) 16:16 7.7 1.55 1.39 14 (2) 107:108 26 2.09 1.73 16 (2) 135:136 15 1.71 1.35 17 (2) 36:36 8.6 1.44 1.35 17 (2) 36:36 12 1.35 1.55 11 (2) 47:47 13 1.28 1.14 11 (2) 47:47 12 1.36 1.17 24 (2) 30:30 9.7 1.29 1.27

TABLE 32.—Lead in rocks,	stream sediments,	, mine spoil and associate	d materials, soils, a	nd plants—Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	PLAN	TSContinued				
vailability studies, samples from						
vailability studies, samples from Montana, North Dakota, South Dakota,						
, , ,						
Montana, North Dakota, South Dakota,	18 (3)	21:21	0.63	1.96		0.20 - 2.4
Montana, North Dakota, South Dakota, and Wyoming (dry-weight basis)	18 (3) 18 (3)	21:21 19:19	0.63 1.1	1.96 1.23		0.20 - 2.4 .80 - 1.8

TABLE 33.—Lithium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (3)	80:80	15	1.37	1.03	8.0 - 26
Shale	1 (3)	80:80	31	1.78	1.09	14 - 210
ore samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (3)	24:24	12	1.73	1.31	3.4 - 2.3
Siltstone and shale	2 (3)	24:24	35	1.37	1.09	20 - 56
Dark shale	2 (3)	23:23	41	1.18	1.05	32 - 51
Northern Great Plains, Fort Union						
Formation						
Fine-grained rocks	3 (3)	50:50	32	1.24	1.03	18 - 54
Sandstone	4 (3)	42:42	20	1.20	1.40	13 - 30
Piceance Creek Basin, Colo.						
Green River Formation						
Mahogany zone (upper 100 m)	5 (3)	71:74	35	2.24	1.13	<4.8 - 140
Middle 300 m	5 (3)	53:53	65	1.75	1.05	13 - 190
Garden Gulch Member (lower 100 m)	5 (3)	32:32	63	1.29		30 - 90
	STRE	EAM SEDIMENTS				
Northern Great Plains regional study	6 (3)	60:60	19	1.19	1.03	10 - 29
owder River Basin, Wyo. and Mont.						
Size fractions						
>200 µm	7 (3)	18:18	12	2.05	1.23	6 - 34
100-200 μm	7 (3)	24:24	11	1.48	1.23	6 - 34
63-100 μm	7 (3)	24:24	12	1.35	1.23	8 - 35
<63 µm	7 (3)	24:24	18	1.25	1.23	13 - 39
inta and Piceance Creek Basins,						
Colo. and Utah	0 (0)					
Asphalt Wash, Utah	8 (3)	8:8	38	1.34		29 - 64
Cottonwood Creek, Utah	8 (3)	8:8	23	1.18		17 - 30
Duck Creek, Colo	8 (3)	8:8	40	1.30		26 - 60
Ryan Gulch, Colo	8 (3)	8:8	31	1.30		21 - 44

LEAD, LITHIUM

TABLE 33.-Lithium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	MINE SPOIL AND	D ASSOCIATED	MATERIALS			
line spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (3)	10.10	24	1.20		16 - 2 9
Dave Johnston mine, Wyoming	10 (3)	10:10	20	1.22		14 - 25
Hidden Valley mine, Wyoming	10 (3)	10:10	28	1.28		18 - 39
Kincaid mine, North Dakota	10 (3)	10:10	23 24	1.31 1.13		14 - 32 20 - 29
Savage mine, Montana Velva mine North Dakota	10 (3) 10 (3)	10:10 10:10	24	1.13		20 - 29 21 - 33
Big Sky mine, Montana	10(3) 10(3)	10:10	29	1.30		21 - 55
Utility mine, Saskatchewan	10 (3)	10:10	23	1.17		18 - 29
ottitty mine, Jaskatchewan	10 (5)	10.10	25	1.17		10 27
San Juan mine, New Mexico	11 (3)	12:12	22	1.10	1.03	1 9 - 26
opsoil used in spoil reclamation					1	16 00
San Juan mine, New Mexico	11 (3)	12:12	17	1.11	1.03	16 - 22
lants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover	10 (2)	10.10	0	1 4 1	1 10	.5 - 1.5
Beulah North mine, North Dakota	10 (3)	10:10	.8 .9	1.41 1.45	1.18 1.18	.5 - 1.6
Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming	10 (3) 10 (3)	10:10 10:10	2.0	1.90	1.18	.8 - 7.0
Kincaid mine, North Dakota	10 (3)	10:10	1.6	1.38	1.18	.9 - 2.7
Savage mine, Montana	10 (3)	10:10	.5	1.25	1,18	.47
Velva mine, North Dakota	10 (3)	10:10	1.4	1.64	1.18	.8 - 3.7
White sweetclover						
Big Sky mine, Montana	10 (3)	10:10	•4	1.37	1.18	.26
Utility mine, Saskatchewan	10 (3)	10:10	1.2	1.69	1.18	.6 - 2.3
Alfalfa						
Beulah North mine, North Dakota	10 (3)	3:3	2.0	3.05		.6 - 4.3
Dave Johnston mine, Wyoming	10 (3)	3:3	.7	1.30		.6 - 1.0
Savage mine, Montana	10 (3)	3:3	1.2	1.45		.9 - 1.8
Velva mine, North Dakota	10 (3)	3:3	4.0	1.28		3.1 - 5.0
Big Sky mine, Montana	10 (3)	2:3	• 5	1.42		<.57
Crested wheatgrass, Dave Johnston						
mine, Wyoming Growing on mine spoil	26 (3)	20:20	1.3	1.87	1.11	.58 - 4.0
Growing near mine spoil	26 (3)	20:20	.82	1.92	1.11	.29 - 1.8
San Juan mine, New Mexico						
Fourwing saltbush	11 (3)	6:6	1.7	1.47		1.1 - 2.5
Alkali sacaton	11 (3)	6:6	.29	1.72		.1646
		SOILS				
						<u> </u>
Piceance Creek and Uinta Basins, Colo. and Utah; alluvial, 0- to 40-cm depth	12 (3)	30:30	37	1.64	1.04	15 - 85
Yowder River Basin, Wyo. and Mont.	12 (2)	62.61	0.0	1 55	1 00	210 - 42
A horizon	13 (3)	63:64	22	1.55	1.09	<10 - 43 <10 - 46
B horizon	13 (3)	62:64	25 25	1.53 1.66	1.08 1.07	<10 - 46 <10 - 44
C horizon	13 (3)	61:64	و ۲	1.00	1.07	10 - 44
owder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm depth	20 (3)	48:48	21	1.36	1.07	11 - 35
Soil, 15- to 20-cm depth	20 (3)	48:48	24	1.33	1.07	14 - 47

.

TABLE 33.-Lithium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

.

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOII	.SContinued				
Hanging Woman Creek, Mont.						
A horizon C horizon	14 (3) 14 (3)	16:16 16:16	25 24	1.16 1.24	1.03 1.04	20 - 30 13 - 31
Piceance Creek Basin, Colo., O- to 5-cm depth	15 (3)	108:108	34	1.55	1.10	16 - 140
orthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon	16 (3)	136:136	19	1.40	1.06	7.0 - 40
C horizon	16 (3)	134:136	21	1.48	1.13	<5.0 - 110
ig Horn Basin, Wyo., 0- to 40-cm depth	17 (3)	36:36	18	1.31	1.11	10 - 32
ind River Basin, Wyo., O- to 40-cm depth	17 (3)	36:36	15	1.49	1.08	8.0 - 40
an Juan Basin, N. Mex.						
A horizon C horizon	11 (3) 11 (3)	47:47 47:47	12 13	1.58 1.70	1.21 1.29	5.0 - 31 5.0 - 32
heppard-Shiprock-Doak Soil Association, N. Mex.				• • •		
A horizonC horizon	24 (3)	30:30	13	1.13	1.07	11 - 18
C nor1201	24 (3)	30:30	12	1.37	1.12	5.0 - 25
		PLANTS				
Cultivated plants, northern Great Plains (dry-weight basis)			0.10	1 (0		
Oats Wheat, durum	21 (3) 21 (3)	6:21 8:20	0.10 .035	1.48 2.13		<0.11 - 0.21 <.06016
Wheat, hard red spring	21 (3) 21 (3)	16:54	.037	3.16	1.56	<.06832
Wheat, hard red winter	21 (3)	1:17	<.068			<.068068
ative species (dry-weight basis)						
Galleta, San Juan Basin	19 (3)	21:25	.36	1.42	1.11	<.2277
Saltbush, fourwing, San Juan Basin Snakeweed, San Juan Basin	19 (3) 19 (3)	5:10 18:18	.45 .63	1.58 1.73	1.15 1.18	<.4292 .26 - 1.4
ative species (ash-weight basis) Lichen (Parmelia), Powder River						
Basin, Wyo. and Mont	22 (3)	29:29	6.3	1.44	1.14	4 - 12
agebrush, big; Powder River Basin,	00 (0)		10	1 70	1 10	2 / 2
Wyo. and Mont	20 (3)	41:41	10	1.78	1.18	2 - 48
Gagebrush, big; regional study Colorado Plateaus Province	23 (3)	2 9:3 0	10	2.60	1.17	<4 - 114
Columbia Plateaus Province	23 (3)	29:3 0 29:3 0	8.4	1.97	1.17	<4 - 114 <4 - 24
Basin and Range Province	23 (3)	26:30	13	2.64	1.17	<4 - 160
Northern Great Plains	23 (3)	20:20	16	2.56	1.25	4 - 59
Northern Rocky Mountains Province	23 (3)	16:20	5.9	1.86	1.25	<4 - 14
Middle Rocky Mountains Province	23 (3)	17:20	6.8	2.37	1.25	<4 - 17
Southern Rocky Mountains Province	23 (3)	13:20	4.8	3.38	1.25	<4 - 33
Wyoming Basin Province	23 (3)	20:20	12	1.99	1.25	4 - 26

TABLE 34.-Magnesium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method histed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard error. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				
utcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone Shale	1 (3) 1 (3)	80:80 80:80	1.1 1.4	3.5 2.63	<1.12 1.10	0.60 - 3.9 .060 - 3.3
ore samples						
Hanging Woman Creek, Mont. Sandstone	2 (2)	24.24	2.6	2 10		20 - 5 1
Siltstone and shale	2 (3)	24:24 24:24	1.6	2.19 1.46		.29 - 5.1 .67 - 1.8
Dark shale	2 (3) 2 (3)	24:24	.94	1.40		.48 - 1.3
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (3)	50:50	1.4	1.55	1.02	.47 - 2.9
Sandstone	4 (3)	42:42	1.1	2.00	1.02	.19 - 3.0
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (3)	74:74	2.9	1.45	1.06	.32 - 5.4
Middle 300 m	5 (3)	53:53	4.2	1.44	1.05	1.1 - 7.8
Garden Gulch Member (lower 100 m)	5 (3)	32:32	2.2	1.77		.45 - 7.2
	STRE	CAM SEDIMENT	ſS			
Northern Great Plains regional study	((2)		0.00		(1	
First-order streams	6 (3)	20:20	0.98	1.27	<1.02	0.61 - 1.6
Second-order streams Third-order streams	6 (3) 6 (3)	20:20 20:20	1.2 .98	1.44 1.45	<1.04 <1.04	.59 - 2.2 .48 - 1.5
Infit ofder Screams	0 (3)	20.20	• 70	1.45	1.04	.40 1.5
Powder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (3)	18:18	0.61	2.52	1.18	.22 - 2.8
100-200 μm	7 (3)	24:24	.60	1.51	1.08	.35 - 1.9
63-100 μm	7 (3)	24:24	1.1	1.22	1.06	.72 - 2.0
<63 μm	7 (3)	24:24	1.8	1.08	1.03	1.6 - 2.4
Uinta and Piceance Creek Basins, Colo. and Utah	0 (2)	0.0		1 20		00 1
Asphalt Wash, Utah	8 (3) 8 (3)	8:8 8:8	1.2 .62	1.33 1.28		.98 - 2.1 .4093
Cottonwood Creek, UtahDuck Creek, Colo	8 (3)	8:8 8:8	.62 1.0	1.28		.83 - 1.3
Ryan Gulch, Colo	8 (3)	8:8	.67	1.19		.53 - 1.1
	•••					
Piceance Creek Basin, Colo. Roan and Black Sulphur Creeks	9 (1)	32:32	1.4	1.23	1.12	.7 - 1.5
	MINE SPOIL AN	D ASSOCIATE	D MATERIALS			
ine spoil						
Northern Great Plains Beulah North mine, North Dakota	10 (5)	10.10	1.3	1.27		0.78 - 1.6

MINE SPOIL AND ASSOCIATED MATERIALSContinued Mine spoilContinued Northern Great PlainsContinued Dave Johnston mine, Wyoming 10 (5) 10:10 0.36 1.44 Hidden Valley mine, Wyoming 10 (5) 10:10 .43 1.51 Kincaid mine, North Dakota 10 (5) 10:10 1.4 1.17 Savage mine Montana 10 (5) 10:10 2.1 1.16 Velva mine, North Dakota 10 (5) 10:10 1.3 1.10 Big Sky mine, Montana 10 (5) 10:10 1.3 1.23 Utility mine, Saskatchewan 10 (5) 10:10 1.4 1.34 San Juan mine, New Mexico 11 (5) 12:12 .56 1.13 1.01 Topsoil used in spoil reclamation San Juan mine, New Mexico 11 (5) 12:12 .42 1.05 1.01	$\begin{array}{r} 0.14 - 0.49 \\ .2599 \\ 1.1 - 1.7 \\ 1.7 - 2.8 \\ 1.1 - 1.6 \\ .81 - 1.7 \\ .94 - 2.7 \\ .4567 \\ .4046 \end{array}$
Northern Great PlainsContinued 10 (5) 10:10 0.36 1.44 Hidden Valley mine, Wyoming 10 (5) 10:10 .43 1.51 Kincaid mine, North Dakota 10 (5) 10:10 1.4 1.17 Savage mine Montana 10 (5) 10:10 2.1 1.16 Velva mine, North Dakota 10 (5) 10:10 1.3 1.10 Big Sky mine, Montana 10 (5) 10:10 1.3 1.23 Utility mine, Saskatchewan 10 (5) 10:10 1.4 1.34 San Juan mine, New Mexico 11 (5) 12:12 .56 1.13 1.01	.2599 1.1 - 1.7 1.7 - 2.8 1.1 - 1.6 .81 - 1.7 .94 - 2.7 .4567
Dave Johnston mine, Wyoming 10 (5) 10:10 0.36 1.44 Hidden Valley mine, Wyoming 10 (5) 10:10 .43 1.51 Kincaid mine, North Dakota 10 (5) 10:10 1.4 1.17 Savage mine Montana 10 (5) 10:10 1.4 1.17 Velva mine, North Dakota 10 (5) 10:10 1.3 1.10 Velva mine, Montana 10 (5) 10:10 1.3 1.10 Utility mine, Saskatchewan 10 (5) 10:10 1.3 1.23 San Juan mine, New Mexico 11 (5) 12:12 .56 1.13 1.01	.2599 1.1 - 1.7 1.7 - 2.8 1.1 - 1.6 .81 - 1.7 .94 - 2.7 .4567
Hidden Valley mine, Wyoming 10 (5) 10:10 .43 1.51 Kincaid mine, North Dakota 10 (5) 10:10 1.4 1.17 Savage mine Montana 10 (5) 10:10 2.1 1.16 Velva mine, North Dakota 10 (5) 10:10 1.3 1.10 Velva mine, Mortana 10 (5) 10:10 1.3 1.23 Big Sky mine, Montana 10 (5) 10:10 1.3 1.23 Utility mine, Saskatchewan 10 (5) 10:10 1.4 1.34 San Juan mine, New Mexico 11 (5) 12:12 .56 1.13 1.01	.2599 1.1 - 1.7 1.7 - 2.8 1.1 - 1.6 .81 - 1.7 .94 - 2.7 .4567
Kincaid mine, North Dakota 10 (5) 10:10 1.4 1.17 Savage mine Montana 10 (5) 10:10 2.1 1.16 Velva mine, North Dakota 10 (5) 10:10 1.3 1.10 Big Sky mine, Montana 10 (5) 10:10 1.3 1.23 Utility mine, Saskatchewan 10 (5) 10:10 1.4 1.34 San Juan mine, New Mexico 11 (5) 12:12 .56 1.13 1.01 Topsoil used in spoil reclamation San Juan mine, New Mexico 11 (5) 12:12 .42 1.05 1.01	1.1 - 1.7 $1.7 - 2.8$ $1.1 - 1.6$ $.81 - 1.7$ $.94 - 2.7$ $.4567$
Savage mine Montana 10 (5) 10:10 2.1 1.16 Velva mine, North Dakota 10 (5) 10:10 1.3 1.10 Big Sky mine, Montana 10 (5) 10:10 1.3 1.23 Utility mine, Saskatchewan 10 (5) 10:10 1.4 1.34 San Juan mine, New Mexico 11 (5) 12:12 .56 1.13 1.01 Copsoil used in spoil reclamation San Juan mine, New Mexico 11 (5) 12:12 .42 1.05 1.01	1.7 - 2.8 1.1 - 1.6 .81 - 1.7 .94 - 2.7 .4567
Velva mine, North Dakota 10 (5) 10:10 1.3 1.10 Big Sky mine, Montana 10 (5) 10:10 1.3 1.23 Utility mine, Saskatchewan 10 (5) 10:10 1.4 1.34 San Juan mine, New Mexico 11 (5) 12:12 .56 1.13 1.01 Copsoil used in spoil reclamation San Juan mine, New Mexico 11 (5) 12:12 .42 1.05 1.01	1.1 - 1.6 .81 - 1.7 .94 - 2.7 .4567
Big Sky mine, Montana 10 (5) 10:10 1.3 1.23 Utility mine, Saskatchewan 10 (5) 10:10 1.4 1.34 San Juan mine, New Mexico 11 (5) 12:12 .56 1.13 1.01 'opsoil used in spoil reclamation San Juan mine, New Mexico 11 (5) 12:12 .42 1.05 1.01	.81 - 1.7 .94 - 2.7 .4567
Utility mine, Saskatchewan 10 (5) 10:10 1.4 1.34 San Juan mine, New Mexico 11 (5) 12:12 .56 1.13 1.01 Sopsoil used in spoil reclamation San Juan mine, New Mexico 11 (5) 12:12 .42 1.05 1.01	.94 - 2.7 .4567
San Juan mine, New Mexico 11 (5) 12:12 .56 1.13 1.01 Yopsoil used in spoil reclamation San Juan mine, New Mexico 11 (5) 12:12 .42 1.05 1.01	.4567
Copsoil used in spoil reclamation San Juan mine, New Mexico 11 (5) 12:12 .42 1.05 1.01	
San Juan mine, New Mexico 11 (5) 12:12 .42 1.05 1.01	.4046
	.4040
Plants (dry-weight basis)	
Northern Great Plains	
Yellow sweetclover Beulah North mine, North Dakota 10 (2) 10:10 .89 1.21 1.17	.70 - 1.13
Beulah North mine, North Dakota 10 (2) 10:10 .89 1.21 1.17 Dave Johnston mine, Wyoming 10 (2) 10:10 .47 1.52 1.17	.26 - 1.01
Hidden Valley mine, Wyoming 10 (2) 10:10 .68 1.37 1.17	.45 - 1.18
Kincaid mine, North Dakota 10 (2) 10:10 .55 1.57 1.17	.2294
Savage mine, Montana 10 (2) 10.10 .46 1.47 1.17	.2285
Velva mine, North Dakota 10 (5) 10:10 .65 1.27 1.17	.46 - 1.06
White sweetclover	
Big Sky mine, Montana 10 (2) 10:10 .57 1.62 1.17	.22 - 1.00
Utility mine, Saskatchewan 10 (2) 10:10 .38 1.48 1.17	.1857
Alfalfa	
Beulah North mine, North Dakota 10 (2) 3:3 .52 2.03	.25 - 1.04
Dave Johnston mine, Wyoming 10 (2) 3:3 .30 1.24	.2537
Savage mine, Montana 10 (2) 3:3 .53 1.31 Velve mine, North Dakota 10 (2) 3:3 .34 1.27	.3966
Velva mine, North Dakota 10 (2) 3:3 .34 1.27 Big Sky mine, Montana 10 (2) 3:3 .42 1.35	.2743 .3258
Crested wheatgrass, Dave Johnston mine, Wyoming	
Growing on mine spoil 26 (2) 20:20 .11 1.19 1.17	.0817
Growing near mine spoil 26 (2) 20:20 .12 1.25 1.17	.0817
San Juan mine, New Mexico	
Fourwing saltbush 11 (3) 6:6 .72 1.13	.06184
Alkali sacaton 11 (3) 6:6 .10 1.23	.08212
SOILS	
Piceance Creek and Uinta Basins,	
Colo. and Utah; alluvial,	
0- to 40-cm depth 12 (3) 30:30 1.4 1.63 1.01	0.45 - 3.9
Powder River Basin, Wyo. and Mont.	
A horizon 13 (3) 64:64 .54 1.87 1.03	.14 - 1.5
B horizon 13 (3) 64:64 .67 1.72 1.02	.20 - 1.7
C horizon 13 (3) 64:64 .83 1.90 1.07	.13 - 1.7
Hanging Woman Creek, Mont.	F0 1 1
A horizon 14 (3) 16:16 *1.1 *.30 *.014	.58 - 1.6
C horizon 14 (3) 16:16 *1.3 *.49 *.020	.47 - 2.2

MAGNESIUM

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	SOIL	SContinue	d			
Piceance Creek Basin, Colo., O- to 5-cm depth	15 (5)	108:108	1.9	1.48	1.14	0.51 - 2.7
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Unglaciated area						
C horizon Glaciated area	16 (5)	88:88	1.2	1.81	1.01	.21 - 3.5
C horizon Combined data, unglaciated and glaciated areas	16 (5)	48:48	1.6	1.50	1.01	.39 - 2.6
A horizon	16 (5)	136:136	.66	1.67	1.02	.18 - 2.7
C horizon	16 (5)	136.136	1.3	1.73	1.01	.21 - 3.5
ig Horn Basin, Wyo., O- to 40-cm depth	17 (5)	36:36	.86	1.41	1.04	.38 - 2.6
lind River Basin, Wyo., O- to 40-cm depth	17 (5)	36:36	.63	1.54	1.05	.32 - 1.6
an Juan Basin, N. Mex.						
A horizonC horizon	11 (5) 11 (5)	47:47 47:47	.33 .37	1.64 1.77	1.03 1.04	.1182 .09697
Sheppard-Shiprock-Doak Soil Association, N. Mex.	(-)					
A horizon		30:30	.25	1.29	1.05	.1744
C horizon	24 (5)	30:30	.23	1.58	1.02	.1172
		PLANTS				
Cultivated plants northern Great Plains (dry-weight basis)					_	
Barley Oats	21 (3)	18:18	0.12	1.13	1.05	0.10 - 0.16 .1016
Wheat, durum	21 (3) 21 (3)	21:21 20:20	.13	1.14	1.13	.1219
Wheat, hard red spring	21 (3)	54:54	.15	1.19	1.10	.1127
Wheat, hard red winter	21 (3)	17.17	.14	1.09	1.05	.1216
lative species (dry-weight basis)						
Galleta, San Juan Basin Saltbush, fourwing, San Juan Basin	19 (3)	25:25	.063 .58	1.57 1.31	1.05	.02714 .3678
Snakeweed, San Juan Basin	19 (3) 19 (3)	10:10 18:18	.14	1.40	1.03	.06736
lative species (ash-weight basis) Lichen (Parmelia), Powder River Basin,					1 10	2
Wyo. and Mont Sagebrush, big; regional study	22 (1)	29:29	•64	1.30	1.10	.3 - 1
Colorado Plateaus Province	23 (3)	30:30	3.2	1.29	1.08	2.2 - 5.8
Columbia Plateaus Province	23 (3)	30:30	2.6	1.28	1.08	1.7 - 4.6 2.2 - 4.0
Basin and Range Province Northern Great Plains	23 (3) 23 (3)	30:30 20:20	3.0 3.6	1.21	1.08 1.11	2.2 - 4.0 2.2 - 6.0
Northern Rocky Mountains Province	23 (3)	20:20	3.2	1.27	1.11	1.8 - 4.0
Middle Rocky Mountains Province	23 (3)	20:20	2.7	1.40	1.11	1.8 - 4.8
Southern Rocky Mountains Province Wyoming Basin Province	23 (3) 23 (3)	20:20 20:20	2.6 3.2	1.34 1.27	1.11 1.11	1.8 - 3.3 2.4 - 4.6
vailability studies, samples from Montana, North Dakota, South Dakota, and Wyoming (dry weight basis)						
Wheatgrass, western	18 (3)	21:21	.07	1.36		.0414
Sagebrush, silver	18 (3)	19:19	.22	1.30		.1433
Plant biomass, above-ground parts	18 (3)	21:21	.11	1.75	1.06	.0549

TABLE 34.-Magnesium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

MAGNESIUM

TABLE 35.-Manganese in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Dutcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone Shale	1 (2) 1 (2)	79:80 80:80	280 320	3.55 3.90	1.20 1.27	18 - >4,600 46 - 2,700
Core samples						
Hanging Woman Creek, Mont. Sandstone	2 (2)	17:24	450	1.54	1.41	260 - 1,000
Siltstone and shale	2 (2)	15:24	450	1.76	1.17	250 - 1,300
Dark shale	2 (2)	11:23	400	2.10	1.29	200 - 1,700
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (2)	50:50	3 00	2.55	1.23	2,500 - 4,700
Sandstone	4 (2)	42:42	233	1.60	1.08	89 - 970
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	310	1.35	1.20	190 - 780
Middle 300 m	5 (2)	53:53	220	1.44	1.33	64 - 420
Garden Gulch Member (lower 100 m)	5 (2)	264:264	280	1.31		100 - 700
······································	STR	EAM SEDIMENTS	3			
Northern Great Plains regional study	6 (2)	60:60	440	1.60	1.18	170 - 2,900
Powder River Basin, Wyo. and Mont. Size fractions						
200 μm	7 (1)	24:24	310	1.63	1.50	200 - 700
100-200 µm	7 (1)	24:24	220	1.38	1.12	150 - 300
63-100 µm <63 µm	7 (1) 7 (1)	24:24 24:24	220 300	1.32 1.49	<1.01 1.15	150 - 500 200 - 700
	/ (1)	24.24	100	1.49	1.17	200 700
Uinta and Piceance Creek Basins, Colo. and Utah						
Asphalt Wash, Utah	8 (2)	8:8	520	1.07		480 - 580
Cottonwood Creek, Utah	8 (2)	8:8	580	1.23		460 - 800
Duck Creek, ColoRyan Gulch, Colo	8 (2) 8 (2)	8:8 8:8	610 480	1.15 1.19		460 - 690 390 - 590
Piceance Creek Basin, Colo.			-			
Roan and Black Sulphur Creeks	9 (1)	32:32	260	1.38	1.15	150 - 500
	MINE SPOIL AN	ID ASSOCIATED	MATERIALS			· · · · · · · · · · · · · · · · · · ·
Mine spoil				· · · · ·		
Northern Great Plains						
Beulah North mine, North Dakota	10 (2)	9:10	340	1.83		<110 - 790
Dave Johnston mine, Wyoming	10(2)	1:10				<110 - 200
Hidden Valley mine, Wyoming	10 (2)	6:10	210	2.30		<100 - 1,000
Kincaid mine, North Dakota	10 (2) 10 (2)	10:10 6:10	39 0 220	1.27 2.19		310 - 560 <110 - 1,300
	10 (4)	0.10	220	2.17		<pre>\110 - 1,300</pre>
Savage mine, Montana	10 (2)	10.10	260	1 20		200 - 340
Savage mine, Montana Velva mine, North Dakota Big Sky mine, Montana	10 (2) 10 (2)	10:10 7:10	260 190	1.20 1.49		200 - 340 < $100 - 290$

MANGANESE

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND AS	SSOCIATED MATE	RIALSContin	nued		
fine spoilContinued	11 (2)	12:12	340	1.32	1.12	190 - 430
San Juan mine, New Mexico	11 (2)	12.12	540	1.52	1.12	190 490
Fopsoil used in spoil reclamation			- / -			
San Juan mine, New Mexico	11 (2)	12:12	260	1.36	1.26	190 - 430
lants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover						
Beulah North mine, North Dakota	10 (2)	10:10	18	1.28	1.16	11 -26
Dave Johnston mine, Wyoming	10 (2)	10:10	27	1.29	1.16	18 - 40
Hidden Valley mine, Wyoming	10 (2)	10:10	29	1.64	1.16	15 - 66
Kincaid mine, North Dakota	10 (2)	10:10	25	1.45	1.16	13 - 50
Savage mine, Montana	10 (2)	10:10	17	1.30	1.16	12 - 24
Velva mine, North Dakota	10 (2)	10:10	26	1.35	1.16	18 - 50
White sweetclover						14 00
Big Sky mine, Montana	10 (2)	10:10	23	1.23	1.16	16 - 29
Utility mine, Saskatchewan	10 (2)	10:10	17	1.35	1.16	11 - 24
Alfalfa						
Beulah North mine, North Dakota	10 (2)	3:3	32	1.64		22 - 57
Dave Johnston mine, Wyoming	10 (2)	3:3	27	1.37		19 - 35
Savage mine, Montana	10 (2)	3:3	45	1.67		27 - 74
Velva mine, North Dakota	10 (2)	3:3	25	1.93		14 - 52
Big Sky mine, Montana	10 (2)	3:3	30	1.83		15 - 45
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (2)	20:20	39	1.53	1.23	23 - 140
Growing near mine spoil	26 (2)	20:20	16	1.51	1.23	5.6 - 36
San Juan mine, New Mexico						
Fourwing saltbush	11 (2)	6:6	160	1.59		90 - 240
Alkali sacaton	11 (2)	6:6	50	1.51		31 - 74
		SOILS				
ficeance Creek and Uinta Basins, Colo.						
and Utah; alluvial, 0- to 40-cm depth	12 (2)	30:30	450	1.28	1.25	190 - 740
Powder River Basin, Wyo. and Mont.						
A horizon	13 (1)	64:64	250	1.86	1.18	100 - 1,500
B horizon	13 (1)	64:64	220	1.75	1.42	70 - 1,000
C horizon	13 (1)	64:64	195	2.06	1.13	30 - 1,000
owder River Basin, Wyo. and Mont.			_			
Soil, 0- to 2.5-cm depth	20 (1)	48:48	250	1.63	<1.02	70 - 1,000
Soil, 15- to 20-cm depth	20 (1)	48:48	230	1.56	<1.02	100 - 700
anging Woman Creek, Mont.						
A horizon	14 (2)	16:16	510	1.36	1.31	330 - 1,100
C horizon	14 (2)	16:16	510	1.59	1.17	250 - 1,300
Piceance Creek Basin, Colo., O- to 5-cm				1 (5	1 (0	00 <u>1</u> 200
Piceance Creek Basin, Colo., 0- to 5-cm depth	15 (2)	108:108	480	1.65	1.60	02 - 1,200
depthorthern Great Plains; North Dakota,	15 (2)	108:108	480	1.00	1.60	82 - 1,200
depth Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Unglaciated area	15 (2)	108:108	480	1.65	1.60	82 - 1,200
depth Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana	15 (2) 16 (5)	108:108 63:88 45:88	480 330 180	2.76 4.20	1.80 1.81 1.79	<pre><2 - 1,200 <200 - 3,800 <200 - 3,100</pre>

TABLE 35.-Manganese in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

MANGANESE

TABLE 35.-Manganese in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study and me of ana	thod	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		S011	SContinue	1			
Northern Great Plains; North Dakota,							
South Dakota, Wyoming, and MontanaCont	inued						
Glaciated area							
A horizon		(5)	46:48	720	1.83	1.81	<200 - 2,200
C horizon	16	(5)	39:48	440	2.37	1.79	<200 - 2,200
Combined data, unglaciated and							
glaciated areas							
A horizon		(5)	109:136	460	2.38	1.81	<200 - 3,800
C horizon	16	(5)	84:136	300	2.96	1.79	<200 - 3,100
Big Horn Basin, Wyo., O- to 40-cm depth	17	(2)	36:36	400	1.38	1.11	140 - 710
lind Divon Posin Live O to 40 am							
Wind River Basin, Wyo., 0- to 40-cm depth	17	(2)	36:36	330	1.43	1.15	140 - 700
uchru	17	(2)	20.20	0.00	1+40	1.17	140 - 700
San Juan Basin, N. Mex.							
A horizon	11	(2)	47:47	230	1.76	1.20	73 - 1,700
C horizon		(2)	47:47	180	1.76	1.25	33 - 510
Sheppard-Shiprock-Doak Soil Association,							
N Mex.							
A horizon	24	(2)	30:30	240	1.42	1.28	120 - 470
C horizon	24	(2)	30:30	220	1.63	1.37	81 - 1,100
T			PLANTS				
Native species (dry-weight basis)		,					
Galleta, San Juan Basin	19	(2)	25:25	85	1.76	1.25	22 - 200
Saltbush, fourwing, San Juan Basin		(2)	10:10	71	1.60	1.21	29 - 160
Snakeweed, San Juan Basin		(2)	18:18	50	1.29	1.11	28 - 83
		(-)					-
Native species (ash-weight basis)							
Lichen (Parmelia), Powder River							
Basin, Wyo. and Mont	22	(1)	29:29	270	1.67	1.17	100 - 500
Sagebrush, big; Powder River Basin,							
Wyo. and Mont	20	(1)	41:41	480	1.52	1.18	300 - 1,500
Sagebrush, big; regional study		(1)	20.20	700	1.07	1 00	200 1 500
Colorado Plateaus Province		(1)	30:30	700	1.84	1.22	200 - 1,500
Columbia Plateaus Province		(1)	30:30	850	1.45	1.22	500 - 1,500
Basin and Range Province		(1)	30:30	800	1.85	1.22	150 - 1,500
Northern Great Plains		(1)	20:20	780	1.75	1.15	300 - 2,000
Northern Rocky Mountains Province		(1)	20:20	1,300	2.44	1.15	500 - 7,000
Middle Rocky Mountains Province		(1)	20:20	680	1.91	1.15	200 - 1,500
Southern Rocky Mountains Province		(1)	20:20	840	1.82	1.15	300 - 2,000
Wyoming Basin Province	23	(1)	20:20	760	1.83	1.15	300 - 1,500
Availability studies, samples from							
Montana, North Dakota, South Dakota,							
and Wyoming (dry weight basis)	10	(2)	21.21	10	1 5 1		7 2 25
Wheatgrass, western		(3)	21:21	19	1.51		7.2 - 35
Sagebrush, silverPlant biomass, above-ground parts		(3) (3)	19:19 21:21	38 25	1.46 1.43	1.04	15 - 69 9.4 - 55
	18		/ 1 * / 1			1.114	

TABLE 36.—Mercury in rocks, stream sediments, mine spoil and associated materials, soils, and plants [Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Shale	Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
Northern Great Plains, Fort Union Formation Smale 1 (4) 80:80 0.032 1.80 1.24 0.010 - 0. Shale 1 (4) 80:80 .060 2.02 1.10 .0204 Core samples 1 (4) 80:80 .060 2.02 1.10 .0204 Sandstone 2 (4) 24:24 .063 1.25 1.15 .0404 Sandstone 2 (4) 24:24 .063 1.25 1.11 .0201 Dark shale .0044 2 (4) 24:24 .063 1.25 1.11 .0202 Northern Great Plains, Fort Union Formation 7 64 24:24 .08 1.90 1.12 .012 Piceance Creak Basin, Colo. Green River Formation			ROCKS				
Tormation 1 (4) 80:80 0.032 1.80 1.24 0.010 - 0. Shale	Outcrop samples						
Shale	Formation						
Hanging Woman Creek, Mont. Sandstone							0.010 - 0.17 .02048
Sandstone 2 (4) 24:24 .031 1.62 1.37 .020 - 1.0 Dark shale 2 (4) 23:23 .11 1.92 1.09 .0400 Dark shale 2 (4) 23:23 .11 1.92 1.09 .0400 Northern Great Plains, Fort Union Finegrained rocks 3 (4) 50:50 .10 1.55 1.11 .0302 Sandstone 4 (4) 42:42 .08 1.90 1.12 .012 Piceance Creek Basin, Colo. Green River Formation Mahogany zone (upper 100 m) 5 (4) 74:74 .11 1.36 1.15 .0302 Garden Gulch Member (lower 100 m) 5 (4) 32:32 .088 1.43 .0402 STREAM SEDIMENTS Stream SEDIMENTS Vorthern Great Plains regional study 6 (4) 60:60 0.055 1.34 1.19 0.03 - 0.1 Stream SEDIMENTS Vorthern Great Plains regional study 7 (4) 17:17 .041 4.16 1.24 .0101 Yogo presentent fore thasin (wyo, and Mont. Steg fr	Core samples						
Silestone and shale		2 (4)	24.24	.031	1.62	1.37	.02010
Dark shale 2 (4) 23:23 .11 1.92 1.09 .0404. Northern Great Plains, Fort Union Formation 7 3 (4) 50:50 .10 1.55 1.11 .0302. Standstone 4 (4) 42:42 .08 1.90 1.12 .012. Piceance Greek Basin, Colo. Green River Formation 4 (4) 42:42 .08 1.90 1.12 .012. Middla 300 m		• •					
Pormation 3 (4) 50:50 .10 1.55 1.11 .0302. Sandstone 4 (4) 42:42 .08 1.90 1.12 .012. Piceance Creek Basin, Colo. Green River Formation Mahogany zone (upper 100 m) 5 (4) 74:74 .11 1.36 1.15 .0302. Middle 300 m							.04044
Sandstone 4 (4) 42:42 .08 1.90 1.12 .0124 Piceance Creek Basin, Colo. Green River Formation Mahogany zone (upper 100 m)							
Green River Formation Mahogany zone (upper 100 m)	0	• •					.03024 .0124
Mahogany zone (upper 100 m)	•						
Middle 300 m		5 (4)	74:74	.11	1.36	1.15	.03023
STREAM SEDIMENTS STREAM SEDIMENTS Northern Great Plains regional study 6 (4) 60:60 0.055 1.34 1.19 0.03 - 0.1 Size fractions >200 µm				.10	1.34	1.17	.0521
Northern Great Plains regional study 6 (4) 60:60 0.055 1.34 1.19 0.03 - 0.1 Powder River Basin, Wyo. and Mont. Size fractions 7 (4) 17:17 .041 4.16 1.24 .0119 100-200 µm 7 (4) 24:24 .019 1.83 1.24 .0119 63-100 µm 7 (4) 24:24 .019 1.77 1.24 .0100 63 µm 7 (4) 24:24 .030 1.42 1.24 .0201 MINE SPOIL AND ASSOCIATED MATERIALS Mine spoil MINE SPOIL AND ASSOCIATED MATERIALS Mine spoil 0 (4) 10:10 .034 1.55 - .02001 Mine spoil 0 (4) 10:10 .034 1.53 .04011 Kincaid mine, North Dakota 10 (4) 10:10 .038 1.58 .02002 Savage mine, Montana 10 (4) 10:10 .055 1.43 .03004 Velva mine, North Dakota 10 (4) <td< td=""><td>Garden Gulch Member (lower 100 m)</td><td>5 (4)</td><td>32:32</td><td>.088</td><td>1.43</td><td></td><td>.04021</td></td<>	Garden Gulch Member (lower 100 m)	5 (4)	32:32	.088	1.43		.04021
Powder River Basin, Wyo. and Mont. Size fractions >200 μm	*****	STRI	EAM SEDIMENT	3			
Size fractions 7 (4) 17:17 .041 4.16 1.24 .0119 100-200 µm 7 (4) 24:24 .019 1.83 1.24 .0100 63-100 µm 7 (4) 24:24 .019 1.77 1.24 .0100 63-100 µm 7 (4) 24:24 .019 1.77 1.24 .0100 63-100 µm 7 (4) 24:24 .030 1.42 1.24 .0200 63 µm 7 (4) 24:24 .030 1.42 1.24 .0200 MINE SPOIL AND ASSOCIATED MATERIALS Mine spoil Seulah North mine, North Dakota 10 (4) 10:10 .034 1.55 - .02007 Hidden Valley mine, Wyoming 10 (4) 10:10 .034 1.55 - .02007 Kincaid mine, North Dakota 10 (4) 10:10 .058 1.58 - .02010 Kincaid mine, North Dakota 10 (4) 10:10 .052 1.43 - .03009 Velva mine, North Dakota 10 (4) <	Northern Great Plains regional study	6 (4)	60:60	0.055	1.34	1.19	0.03 - 0.12
100-200 µm	Size fractions						
63-100 µm 7 (4) 24:24 .019 1.77 1.24 .0106 <63 µm							.0119
<63 µm	•						
Mine spoil Northern Great Plains Beulah North mine, North Dakota 10 (4) 9:10 0.055 2.19 <0.010							.0106
Northern Great Plains Beulah North mine, North Dakota 10 (4) 9:10 0.055 2.19 <0.010		MINE SPOIL AN	D ASSOCIATED	MATERIALS			
Beulah North mine, North Dakota 10 (4) 9:10 0.055 2.19 <0.010 - 0.1	Mine spoil					·····	
Dave Johnston mine, Wyoming 10 (4) 10:10 .034 1.55 - .02007 Hidden Valley mine, Wyoming 10 (4) 10:10 .074 1.53 .04012 Kincaid mine, North Dakota 10 (4) 10:10 .058 1.58 .02007 Savage mine, Montana 10 (4) 10:10 .052 1.43 .03009 Velva mine, North Dakota 10 (4) 10:10 .046 1.12 .04005 Big Sky mine, Montana 10 (4) 10:10 .046 1.12 .04005 Big Sky mine, Montana 10 (4) 10:10 .055 1.93 .01012 Utility mine, Saskatchewan 10 (4) 10:10 .062 1.61 .04005 San Juan mine, New Mexico 11 (4) 12:12 .030 1.80 1.16 .02009 Topsoil used in spoil reclamation 11 12:12 .030 1.80 1.16 .02009	Northern Great Plains						
Hidden Valley mine, Wyoming 10 (4) 10:10 .074 1.53 .04015 Kincaid mine, North Dakota 10 (4) 10:10 .058 1.58 .02010 Savage mine, Montana 10 (4) 10:10 .052 1.43 .03009 Velva mine, North Dakota 10 (4) 10:10 .046 1.12 .04005 Big Sky mine, Montana 10 (4) 10:10 .046 1.12 .04005 Utility mine, Saskatchewan 10 (4) 10:10 .055 1.93 .01012 San Juan mine, New Mexico 11 (4) 12:12 .030 1.80 1.16 .02009 Topsoil used in spoil reclamation 11 12:12 .030 1.80 1.16 .02009	Beulah North mine, North Dakota	10 (4)	9:10	0.055	2.19		<0.010 - 0.120
Kincaid mine, North Dakota 10 (4) 10:10 .058 1.58 .02010 Savage mine, Montana 10 (4) 10:10 .052 1.43 .03009 Velva mine, North Dakota 10 (4) 10:10 .046 1.12 .04005 Big Sky mine, Montana 10 (4) 10:10 .046 1.12 .04005 Utility mine, Saskatchewan 10 (4) 10:10 .055 1.93 .01012 San Juan mine, New Mexico 10 (4) 10:10 .062 1.61 .04009 Fopsoil used in spoil reclamation 11 (4) 12:12 .030 1.80 1.16 .02009						-	.020070
Savage mine, Montana 10 (4) 10:10 .052 1.43 .03009 Velva mine, North Dakota 10 (4) 10:10 .046 1.12 .04005 Big Sky mine, Montana 10 (4) 10:10 .055 1.93 .01012 Utility mine, Saskatchewan 10 (4) 10:10 .062 1.61 .04009 San Juan mine, New Mexico 11 (4) 12:12 .030 1.80 1.16 .02009 Copsoil used in spoil reclamation 10 10 10 10 10 10 10 10	• • • •						.040130
Velva mine, North Dakota 10 (4) 10:10 .046 1.12 .04005 Big Sky mine, Montana 10 (4) 10:10 .055 1.93 .01012 Utility mine, Saskatchewan 10 (4) 10:10 .062 1.61 .04005 San Juan mine, New Mexico 11 (4) 12:12 .030 1.80 1.16 .02005 Copsoil used in spoil reclamation 10 10 10 10 10 10							.020100
Big Sky mine, Montana 10 (4) 10:10 .055 1.93 .01012 Utility mine, Saskatchewan 10 (4) 10:10 .062 1.61 .04019 San Juan mine, New Mexico 11 (4) 12:12 .030 1.80 1.16 .02009 Copsoil used in spoil reclamation .040 .010 .020 .010							
Utility mine, Saskatchewan 10 (4) 10:10 .062 1.61 .040 .19 San Juan mine, New Mexico 11 (4) 12:12 .030 1.80 1.16 .020 - .09 Sopsoil used in spoil reclamation		• •					
Copsoil used in spoil reclamation							.040190
	San Juan mine, New Mexico	11 (4)	12:12	.030	1.80	1.16	.020090
San Juan mine, New Mexico 11 (4) 12:12 .010 2.01 1.22 .01006							
	San Juan mine, New Mexico	11 (4)	12:12	.010	2.01	1.22	.010060

.

TABLE 36.—Mercury in rocks, st	ream sediments,	mine spoil and as	ssociated materials,	soils, and plants-Continued	l
-		-			

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSC	CIATED MATER	IALSContinu	ed		
lants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover						
Beulah North mine, North Dakota	10 (4)	10:10	0.011	1.25	1.22	0.01 - 0.02
Dave Johnston mine, Wyoming	10 (4)	9:10	.010	1.00	1.22	<.0701
Hidden Valley mine, Wyoming Kincaid mine, North Dakota	10 (4) 10 (4)	10:10 10:10	.015 .015	1.53 1.43	1.22	.0103 .0102
Savage mine, Montana	10 (4)	10:10	.012	1.40	1.22	.0102
Velva mine, North Dakota	10 (4)	10:10	.010	1.00	1.22	
White sweetclover						
Big Sky mine, Montana	10 (4)	10:10	.010	1.00	1.22	
Utility mine, Saskatchewan	10 (4)	8:10	.010	1.00	1.22	<.0101
Alfalfa Roulab North mine North Dekotorres	10 (4)	3:3	.013	1.49		.0102
Beulah North mine, North Dakota Dave Johnston mine, Wyoming	10 (4) 10 (4)	1:3	<.01	1.49		<.0102
Savage mine, North Dakota	10 (4)	2:3	.015	1.60		<.0102
Velva mine, North Dakota	10 (4)	2:3	.010	1.00		<.0101
Big Sky mine, Montana	10 (4)	3:3	.013	1.49		.0102
Crested wheatgrass, Dave Johnston						
mine, Wyoming	26 (1)	20.20		1 20	1 20	01 00
Growing on mine spoil	26 (4)	20:20 20:20	.011 .011	1.29	1.28 1.28	.0102 .0102
Growing near mine spoil	26 (4)	20:20	•011	1.33	1.20	.0102
San Juan mine, New Mexico Fourwing saltbush	11 (4)	6:6	.13	1.58		.08020
Alkali sacaton		6:6	.20	1.31		.1525
		SOILS				
iceance Creek and Uinta Basins, Colo.						
and Utah; alluvial, 0- to 40-cm depth	12 (4)	30:30	0.027	1.31	1.24	0.02 - 0.05
owder River Basin, Wyo. and Mont.			001		1 25	01 07
A horizonB horizon	13 (4) 13 (4)	64:64 63:64	.021 .022	1.61 1.80	1.35	.0107 <.0109
C horizon	13(4) 13(4)	64:64	.022	1.80	1.20	.0116
	13 (7)	04.04	•025	1.00		
owder River Basin, Wyo. and Mont. Soil, O- to 2.5-cm depth	20 (4)	48:48	.020	1.43	1.29	.0104
Soil, 15- to 20-cm depth	20 (4)	48:48	.023	1.43	1.29	.0104
anging Woman Creek, Mont.						
A horizon	14 (4)	16:16	.027	1.28	1.24	.0204
C horizon	14 (4)	16:16	.030	1.46	1.26	.0104
iceance Creek Basin, Colorado, 0- to 5-			~ ~ ~	0.50	1 4 7	01 00
cm depth	15 (4)	108:108	.041	2.53	1.47	.0122
orthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Unglaciated area						
A horizon	16 (4)	87:88	.021	1.48	1.05	<.010050
Glaciated area	16 (1)	10.10	016	1 40	1 05	010 070
A horizon Combined data, unglaciated and	16 (4)	48:48	.026	1.40	1.05	.010070
glaciated areas						
glaciated areas A horizon	16 (4)	135:136	.023	1.68	1.05	<.01007

Sample, and collection locality	Study No. and method of analysi		Mean (ppm)	Devia- tion	Error	Observed range (ppm)
• · · · · · · · · · · · · · · · · · · ·	S	SOILSContinued	1			
Big Horn Basin, Wyo., O- to 40-cm depth-	17 (4)	36:36	0.026	1.33	1.16	0.020 - 0.050
Vind River Basin, Wyo., O- to 40-cm						
depth	17 (4)	35:36	.020	1.45	1.28	<.010030
San Juan Basin, N. Mex.						
A horizon	11 (4)	47:47	.020	1.49	1.56	.010060
C horizon	11 (4)	46:47	.020	1.85	1.35	<.010060
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (4)	29:30	.020	1.55	1.46	<.010030
C horizon	24 (4)	25:30	.020	1.72	1.91	<.010040
		PLANTS				
Native species (dry-weight basis)						
Galleta, San Juan Basin	19 (4)	25:25	0.25	1.44	1.13	0.15 - 0.50
Saltbush, fourwing, San Juan Basin	19 (4)	10:10	.11	1.61	1.17	.05020
Snakeweed, San Juan Basin	19 (4)	18:18	.19	1.51	1.15	.1045
Natíve species (dry-weight basis) Líchen (Parmelia), Powder River						
Basin, Wyo. and Mont	22 (3)	29:29	.098	1.20	1.07	.0713
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (4)	30:30	.027	1.51	1.21	.0204
Columbia Plateaus Province	23 (4)	30:30	.032	1.40	1.21	.0205
Basin and Range Province	23 (4)	30:30	.030	1.35	1.21	.0205
Northern Great Plains	23 (4)	20:20	.025	1.48	1.34	.0206
Northern Rocky Mountains Province	23 (4)	20:20	.024	1.46	1.34	.0205
Middle Rocky Mountains Province	23 (4)	20:20	.021	1.61	1.34	.0103
Southern Rocky Mountains Province	23 (4)	20:20	.020	1.41	1.34	.0103
Wyoming Basin Province	23 (4)	20:20	.023	1.30	1.34	.0203

TABLE 36.-Mercury in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLE 37.-Molybdenum in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation		77.00	5.0	2 10	1 25	(1) ())
Sandstone	· 1 (2)	77:80	5.0	2.19	1.35	<1.4 - 21
Shale	1 (2)	80:80	8.1	2.16	1.28	1.2 - 26
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	5.0	1.82	1.36	2.0 - 13
Siltstone and shale	2 (2)	24:24	8.7	1.32	1.30	5.2 - 14
Dark shale	2(2)	23:23	8.5	1.77	1.20	1.1 - 19

MERCURY, MOLYBDENUM

TABLE 37.-Molybdenum in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	ROCK	(SContinued	l	****		·····
Core samplesContinued						
Northern Great Plains, Fort Union Formation						
Fine-grained rocksSandstone	3 (2) 4 (2)	50:50 40:42	6.1 1.8	1.64 1.60	1.82	2.2 - 13 <1.0 - 7.2
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	14	1.68	1.33	3.5 - 44
Middle 300 m	5 (2)	52:53	8.7	1.79	1.28	<2 - 27
Garden Gulch Member (lower 100 m)	5 (2)	243:264	19	1.97		<7 - 70
	STRI	EAM SEDIMENTS	3			
Northern Great Plains regional study	6 (2)	54:60	4.8	1.96	1.79	<2.2 - 11
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
fine spoil						
Northern Great Plains	10 (2)	10-10		1 60		21-02
Beulah North mine, North Dakota Dave Johnston mine, Wyoming	10 (2) 10 (2)	10:10 7:10	5.5 2.0	1.69 2.17		2.1 - 9.3 <.56 - 6.2
Hidden Valley mine, Wyoming	10(2) 10(2)	10:10	3.8	1.73		1.1 - 7.8
Kincaid mine, North Dakota	10 (2)	10:10	4.9	1.75		1.9 - 11
Ssvage mine, Montana	10 (2)	8:10	3.2	2.32		<.8 - 9.9
Velva mine, North Dakota	10 (2)	10:10	4.4	1.30		2.5 - 6.1
Big Sky mine, Montana Utility mine, Saskatchewan	10 (2) 10 (2)	10:10 10:10	4.6 4.1	1.32 1.56		2.5 - 6.5 2.2 - 7.6
San Juan mine, New Mexico	11 (2)	12:12	2.7	1.13	1.11	2.1 - 3.2
Copsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (2)	12:12	1.8	1.29	1.12	1.3 - 2.8
Plants (dry-weight basis)						
Northern Great Plains Yellow sweetclover						
Beulah North mine, North Dakota	10 (2)	10:10	2.6	1.60	1.15	1.2 - 8.3
Dave Johnston mine, Wyoming	10 (2)	10:10	3.1	2.18	1.15	1.5 - 14.0
Hidden Valley mine, Wyoming Kincaid mine, North Dakota	10 (2) 10 (2)	10:10	3.4 6.5	1.68	1.15 1.15	1.9 - 9.5
Kincaid mine, North Dakota Savage mine, Montana	10(2) 10(2)	10:10 10:10	6.4	1.84 1.30	1.15	2.8 - 18.0 4.8 - 10.4
Velva mine, North Dakota	10 (2)	10:10	7.9	1.25	1.15	5.3 - 11.8
White sweetclover	10 (2)	10.10	10	1 00		10 20
Big Sky mine, Montana Utility mine, Saskatchewan	10 (2) 10 (2)	10:10 10:10	13 11	1.23	1.15	10 - 20 6.4 - 15.9
Alfalfa Baul b Namb in Namb D b i	10 (0)	n - n				00 / F
Beulah North mine, North Dakota Dave Johnston mine, Wyoming	10 (2) 10 (2)	3:3 3:3	2.8 4.3	1.52 1.30		2.2 - 4.5 3.5 - 5.8
Savage mine, Montana	10(2) 10(2)	3:3	7.4	2.06		4.4 - 17.0
Velva mine, North Dakota	10 (2)	3:3	5.0	1.54		3.1 - 7.1
Big Sky mine, Montana	10 (2)	3:3	8.5	1.30		6.4 - 10.8
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (2)	12:20	•43	1.37	1.21	<.3984
		8:20				<.3858

MOLYBDENUM

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	CIATED MATER	IALSContin	ued		
Plants (dry-weight basis)Continued				-		
San Juan mine, New Mexico						
Fourwing saltbushAlkali sacaton	11 (2) 11 (2)	6:6 6:6	0.73 .70	1.57 1.29		0.53 - 1.3 .4890
		SOILS				
ficeance Creek and Uinta Basins,						
Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (2)	30:30	5.7	1.45	1.23	2.6 - 10
owder River Basin, Wyo. and Mont.						
A horizon	13 (1)	15:64	.86	1.42		<2 - 7
B horizon	13 (1)	21:64	1.3	1.45		<2 - 7
C horizon	13 (1)	16:64	.81	1.60		<2 - 15
owder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm depth	20 (1)	3:48	<3			<3 - 20
Soil, 15- to 20-cm depth	20 (1)	3:48	<3			<3 - 20
anging Woman Creek, Mont.						
A horizon	14 (2)	15:16	5.7	1.59	1.43	<3.3 - 10
C horizon	14 (2)	16:16	5.2	1.60	1.60	2.1 - 9.4
iceance Creek Basin, Colo., O- to 5-cm						
depth	15 (2)	102:108	5.4	2.05	1.51	<1.04 - 14
lorthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas A horizon	16 (2)	118:136	3.8	1.68	1.57	<1.0 - 12
C horizon	16 (2)	120:136	4.0	1.72	1.90	<1.1 - 18
the Horn Party live On to (Over depth-	17 (2)	25.26		1.47	1.24	<2.2 - 11
ig Horn Basin, Wyo., 0- to 40-cm depth	17 (2)	35:36	4.8	1.47	1.24	\2.2 - 11
lind River Basin, Wyo., 0- to 40-cm						
depth	17 (2)	35:36	4.7	1.55	1.23	<2.2 - 11
San Juan Basin, N. Mex.						
A horizon	11 (2)	31:47	1.2	1.71	1.37	<1.0 - 6.5
C horizon	11 (2)	47:47	1.4	1.57	1.36	1.0 - 3.6
Sheppard-Shiprock-Doak Soil Association,						
N. Mex.						
A horizon	24 (2)	13:30	.98	1.21		<1.0 - 1.4
C horizon	24 (2)	12:30	.86	1.81		<1.0 - 3.4
		PLANTS				
Cultivated plants, northern Great						
Plains (dry-weight basis)						
Barley	21 (6)	18:18	0.92	1.46	1.22	0.58 - 2.4
OatsWheat, durum	21 (6) 21 (6)	21:21 20:20	.88 .48	1.56 1.46	1.24 1.31	.28 - 1.9 .2288
Wheat, hard red spring	21 (6)	54:54	.40	1.72	1.22	.08 - 1.1
Wheat, hard red winter	21 (6)	17:17	.64	1.33	1.11	.4 - 1.1

.49 .54

10:10 18:18

1.64 1.27

 1.13
 .24 - 1.5

 1.06
 .38 - .99

TABLE 37.-Molybdenum in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

MOLYBDENUM

Saltbush, fourwing, San Juan Basin----19 (2)Snakeweed, San Juan Basin-----19 (2)

Native species (dry-weight basis)

104

TABLE 37.—Molybdenum in rocks, stream sediments, mine spoil and associated materials, soils, and	a plants—Contini	led
--	------------------	-----

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	PLAN	TSContinue	d			
ative species (ash-weight basis)						
Sagebrush, big; Powder River Basin,						
Wyo. and Mont	20 (1)	41:41	10	1.51	1.23	<7 - 30
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (6)	30:30	16	1.58	1.46	10 - 30
Columbia Plateaus Province	23 (6)	30:30	16	2.21	1.46	4 - 50
Basin and Range Province	23 (6)	30:30	21	1.80	1.46	10 - 80
Northern Great Plains Province	23 (6)	20:20	12	1.89	1.29	4 - 20
Northern Rocky Mountains	23 (6)	20:20	13	1.98	1.29	4 - 20
Middle Rocky Mountains Province	23 (6)	20:20	10	2.17	1.29	4 - 30
Southern Rocky Mountains Province	23 (6)	20:20	11	1.71	1.29	4 - 30
Wyoming Basin Province	23 (6)	20:20	10	2.11	1.29	10 - 40

TABLE 38.-Neodymium in rocks, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
·····		ROCKS				
Core samples						
Northern Great Plains, Fort Union						
Formation Sandstone	4 (2)	35:42	69	1.60	1.30	<46 - 140
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
Mine spoil						
San Juan mine, New Mexico	11 (2)	5:12	41	1.79		<46 - 98
Topsoil used in spoil reclamation San Juan mine, New Mexico	11 (2)	2:12				<46 - 53
		SOILS				
Piceance Creek and Uinta Basins, Colo. and Utah; alluvial, O- to 40-cm depth	12 (2)	4:30	<53			<53 - 74
Powder River Basin, Wyo. and Mont.						
A horizon	13 (1)	17:64	45	1.16		<70 - 100
B horizon	13 (1)	13:63	44			<70 - 70
C horizon	13 (1)	11:62	42			<70 - 70
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon	16 (2)	11:136				<46 - 140
C horizon	16 (2)	4:136				<46 - 72

MOLYBDENUM, NEODYMINUM

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOIL	SContinued				
Wind River Basin, Wyo., 0- to 40-cm						
depth	17 (2)	1:36				<220 - 340
San Juan Basin, N. Mex.						
A horizon	11 (2)	6:47				<46 - 79
C horizon	11 (2)	9:47				<46 - 100
Sheppard-Shiprock-Doak Soil Association,						
N. Mex.						
A horizon	24 (2)	2:30				<46 - 100
C horizon	24 (2)	5:30	24	1.98		<46 - 85

TABLE 38.-Neodymium in rocks, mine spoil and associated materials, and soils-Continued

TABLE 39.-Nickel in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union Formation						
SandstoneShale	1 (2) 1 (2)	79:80 80:80	16 31	2.65 1.89	1.15 1.15	<1.0 - 66 9.1 - 150
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	25	2.20	1.14	5.9 - 70
Siltstone and shale	2 (2)	24:24	49	1.27	1.09	33 - 68
Dark shale	2 (2)	23:23	59	1.23	1.08	37 - 78
Worthern Great Plains, Fort Union Formation						
Fine-grained rocksSandstone	3 (2)	49:50	30 26	1.72	1.11 1.07	<8.3 - 94 10 - 80
Sands cone	4 (2)	42:42	20	1.60	1.07	10 - 80
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	26	1.26	1.15	14 - 47
Middle 300 m	5 (2)	53:53	25	2.42	1.18	1.5 - 190
Garden Gulch Member (lower 100 m)	5 (2)	264:264	29	1.33		15 - 70
	STR	EAM SEDIMENTS	;			
lorthern Great Plains regional study	6 (2)	60:60	24	1.38	1.17	10 - 45
owder River Basin, Wyo. and Mont. Size fractions						
>200 um	7 (1)	24:24	13	2.12	1.70	3 - 50
100-200 µm	7 (1)	24:24	6	1.62	1.33	3 - 15
63-100 µm	7 (1)	24:24	6	1.45	1.37	3 - 15
<63 µm	7 (1)	24:24	13	1.42	1.37	10 - 30

NEODYMIUM, NICKEL

106

TABLE 39.-Nickel in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	STREAM SE	DIMENTSCon	tinued			
linta and Piceance Creek Basins, Colo. and Utah	8 (2)	32:32	43	1.76	1.63	10 - 170
liceance Creek Basin, Colo. Roan Creek	0 (1)	16:16	15	1 07	1.07	15 20
Black Sulphur Creek	9 (1) 9 (1)	16:16	15 18	1.07 1.20	1.07 1.07	15 - 20 15 - 30
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
ine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (2)	10:10	31	1.28		22 - 42
Dave Johnston mine, Wyoming	10 (2)	10:10	15	1.46		8.0 - 24
Hidden Valley mine, Wyoming	10 (2)	10:10	16	1.62		4.6 - 25
Kincaid mine, North Dakota	10 (2)	10:10	24	1.53		10 - 42
Savage mine, Montana	10 (2)	10:10	18	1.34		11 - 28
Velva mine, North Dakota	10 (2)	10:10	21	1.27		15 - 29
Big Sky mine, Montana	10 (2)	10:10	14	1.42		8.6 - 22
Utility mine, Saskatchewan	10 (2)	10:10	20	1.38		11 - 29
San Juan mine, New Mexico	11 (2)	12:12	12	1.18	1.06	9.4 - 16
opsoil used in spoil reclamation San Juan mine, New Mexico	11 (2)	12:12	8.6	1.14	1.06	7.1 - 11
lants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover	10 (2)	10.10	2 /	1 3 2	1.10	2.2 - 5.1
Beulah North mine, North Dakota	10 (2)	10:10	3.4	1.32		1.4 - 11.1
Dave Johnston mine, Wyoming	10 (2)	10:10	4.1	2.03 1.74	1.10 1.10	1.4 - 7.7
Hidden Valley mine, Wyoming	10 (2)	10:10	4.1		1.10	.9 - 4.0
Kincaid mine, North Dakota	10 (2)	10:10	2.2	1.54 1.58	1.10	1.7 - 6.9
Savage mine, Montana	10 (2) 10 (2)	10:10 10:10	2.8 2.2	1.58	1.10	.9 - 3.8
White sweetclover						
Big Sky mine, Montana	10 (2)	10:10	3.4	1.66	1.10	1.3 - 6.2
Utility mine, Saskatchewan	10 (2)	10:10	1.0	1.59	1.10	.6 - 2.3
Alfalfa						
Beulah North mine, North Dakota	10 (2)	10:10	1.6	2.55		.6 - 3.4
Dave Johnston mine, Wyoming	10 (2)	10:10	1.9	1.28		1.4 - 2.3
Savage mine, Montana	10 (2)	10:10	1.9	1.10		1.8 - 2.1
Velva mine, North Dakota	10 (2)	10:10	1.7	1.25		1.4 - 2.2
Big Sky mine, Montana	10 (2)	10:10	1.2	1.55		.8 - 1.8
San Juan mine, New Mexico Fourwing saltbush	11 (2)	6:6	1.9	1.62		1.1 - 3.4
Alkali sacaton	11 (2)	6:6	.71	1.33		.49 - 1.1
		SOILS				
Piceance Creek and Uinta Basins,						
Colo. and Utah; alluvial,	12 (2)	30.20	20	1.42	1.19	8 .9 - 35
0- to 40-cm depth	12 (2)	30:30	20	1.442	1.19	CC - 4.0
Powder River Basin, Wyo. and Mont. A horizon	13 (1)	64:64	15	1.81	1.38	5 - 50
A HOLIZON	12 (1)					
B horizon	13 (1)	64:64	17	1.78	1.30	7 - 70

TABLE 39.-Nickel in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOII	.SContinued				
Powder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm depth Soil, 15- to 20-cm depth	20 (1) 20 (1)	46:48 47:48	14 15	1.48 1.61	1.23	<5 - 30 <7 - 50
langing Woman Creek, Mont.						
A horizon C horizon	14 (2) 14 (2)	16:16 16:16	31 29	1.40 1.55	1.13 1.27	14 - 52 13 - 56
Ciceance Creek Basin, Colo., O- to 5-cm depth	15 (2)	107:108	21	1.83	1.39	<3.4 - 42
lorthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Unglaciated area						
C horizon	16 (2)	88:88	18	1.67	1.24	4.1 - 54
Glaciated area C horizon Combined data, unglaciated and	16 (2)	48:48	22	1.44	1.24	9.1 - 44
glaciated areas A horizon	16 (2)	136:136	18	1.46	1.26	4.3 - 64
C horizon	16 (2)	136:136	19	1.61	1.24	4.1 - 54
Big Horn Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	22	1.37	1.13	9.9 - 35
Vind River Basin, Wyo., O- to 40-cm depth	17 (2)	36:36	18	1.55	1.16	5.8 - 40
San Juan Basin, N. Mex. A horizon	11 (2)	47:47	8.4	1.59	1.10	2.8 - 19
C horizon	11 (2)	47:47	8.6	1.55	1.10	2.3 - 22
Sheppard-Shiprock-Doak Association, N. Mex.			ć			
A horizon C horizon	24 (2) 24 (2)	30:30 30:30	6.2 5.4	1.29	1.18 1.09	3.8 - 12 2.2 - 12
		PLANTS				
Cultivated plants, northern Great						
Plains (dry-weight basis)	21 (1)	10.10	0.20	1 73	1.45	0.10 - 0.67
Barley Oats	21 (1) 21 (1)	18:18 19:21	0.20 .53	1.73 1.46	1.45	<.2794
Wheat, durum	21 (1)	20:20	.29	1.14	1.11	.2036
Wheat, hard red spring	21 (1)	54:54	.32	1.42	1.20	.1767
Wheat, hard red winter	21 (1)	17:17	.27	1.29	1.14	. 18 - .45
Native species (dry-weight basis) Galleta, San Juan Basin	19 (2)	25:25	.83	1.33	1.18	.50 - 1.8
Saltbush, fourwing, San Juan Basin	19 (2)	10:10	1.2	1.35	1.41	.50 - 3.4
Snakeweed, San Juan Basin	19 (2)	18:18	.66	1.38	1.21	.39 - 1.4
lative species (ash-weight basis) Lichen (<u>Parmelia</u>), Powder River			10		1 20	7 15
Basin, Wyo. and Mont	22 (1)	29:29	10	1.44	1.20	7 - 15
Sagebrush, big; Powder River Basin, Wyo. and Mont	20 (1)	41:41	16	1.49	1.29	<10 - 30
Sagebrush, big; regional study	00 (1)	00.00	20	2.20	1 00	Z10 50
	23 (1)	28:30	20	2.20	1.22	<10 - 50
Colorado Plateaus Province Columbia Plateaus Province	23 (1)	30:30	33	1.91	1.22	10 - 100

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	PLAN	TSContinue	đ			<u> </u>
ative species (ash-weight basis)Cont	inued					
Sagebrush, big; regional studyConti	nued					
Northern Great Plains	23 (1)	20:20	31	2.53	1.28	10 - 150
Northern Rocky Mountains Province	23 (1)	19:20	19	2.21	1.28	<10 - 70
Middle Rocky Mountains Province	23 (1)	20:20	21	2.15	1.28	10 - 70
Wyoming Basin Province	23 (1)	19:20	15	1.99	1.28	<10 - 50
vailability studies, samples from						
Montana, North Dakota, South Dakota,						
and Wyoming (dry weight basis)						
Wheatgrass, western	18 (3)	12:21	.13	2.26		<.0767
Sagebrush, silver	18 (3)	19:19	1.1	1.51		.46 - 2.0
Plant biomass, above-ground parts		21:21	.38	1.79	1.18	.17 - 1.2

TABLE 39.-Nickel in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLE 40.-Niobium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
utcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (2)	80:80	7.6	1.53	1.41	2.4 - 16
Shale	1 (2)	80:80	39	1.51	1.32	17 - 81
ore samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	5.4	1.51	1.39	2.2 - 11
Siltstone and shale	2 (2)	24:24	7.7	1.50	1.35	4.2 - 18
Dark shale	2 (2)	23:23	7.5	1.62	1.54	3.2 - 18
Northern Great Plains, Fort Union						
Formation						
Fine-grained rocks	3 (2)	50:50	6.8	1.51	1.38	2.6 - 19
Sandstone	4 (2)	42:42	18	1.5	1.24	5.4 - 37
Piceance Creek Basin, Colo.						
Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	64:74	11	1.87	1.90	<4.0 - 39
Middle 300 m	5 (2)	48:53	10	2.03	1.54	<4.0 - 30
	STRE	CAM SEDIMENTS	3			
orthern Great Plains regional study	6 (2)	60:60	7.2	1.67	1.58	2.2 - 17
owder River Basin, Wyo. and Mont.						
Size fractions						
100-200 µm	7 (1)	13:24	6	1.44	1.37	<7 - 10
63-100 um	7 (1)	20:24	10	1.47	<1.01	>7 - 20
<63 µm	7 (1)	24:24	14	1.43	1.37	10 - 30

NICKEL, NIOBIUM

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	STREAM SEI	DIMENTSCon	tinued			
inta and Piceance Creek Basins,						
Colo, and Utah	9 (1)	0.0	13	1.23		10 - 15
Ashphalt Wash, UtahCottonwood Creek, Utah	8 (1) 8 (1)	8:8 8:8	13	1.23		10 - 15 10 - 15
Duck Creek, Colo	8 (1)	8:8	9.2	1.30		7 - 15
Ryan Gulch, Colo	8 (1)	8:8	14	1.15		10 - 15
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
ine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (2)	9:10	9.9	1.92		<2.8 - 24
Dave Johnston mine, Wyoming	10 (2)	9:10	9.9	1.91		<2.9 - 22
Hidden Valley mine, Wyoming	10 (2)	10:10	12	1.35		8.2 - 21
Kincaid mine, North Dakota	10 (2)	6:10	6.3	2.23		<2.5 - 24
Savage mine, Montana	10 (2)	7:10	6.9	1.88		<3 - 17
Velva mine, North Dakota	10 (2)	9:10	9.1	1.84		<3 - 25
Big Sky mine, Montana	10 (2)	9:10	9.3	1.70		<2.8 - 17
Utility mine, Saskatchewan	10 (2)	7:10	7.0	2.12		<3 - 18
San Juan mine, New Mexico	11 (2)	12:12	9.2	1.41	1.26	5.1 - 15
opsoil used in spoil reclamation					1	7 /
San Juan mine, New Mexico	11 (2)	12:12	11	1.26	1.20	7.5 - 16
lants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover	10 (0)	0.10	1.0	1 00	1 5 7	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Beulah North mine, North Dakota	10 (2)	9:10	1.0	1.92	1.57	<.3 - 2.3
Dave Johnston mine, Wyoming	10 (2)	9:10	1.5	2.16	1.57 1.57	<.3 - 3.8 .7 - 6.7
Hidden Valley mine, Wyoming	10 (2)	10:10	1.8	1.85		
Kincaid mine, North Dakota	10 (2)	8:10	1.0	2.58 2.55	1.57 1.57	<.3 - 2.9
Savage mine, MontanaVelva mine, North Dakota	10 (2) 10 (2)	8:10 7:10	.7 1.2	2.33	1.57	<.3 - 2.8 <.3 - 3.0
White sweetclover						
Big Sky mine, Montana	10 (2)	10:10	1.1	1.68	1.57	.6 - 2.9
Utility mine, Saskatchewan	10 (2)	10:10	1.1	1.55	1.57	.5 - 1.8
San Juan mine, New Mexico						
Fourwing saltbush	11 (2)	4:6	1.0	2.83		<.52 - 3.0
Alkali sacaton	11 (2)	6:6	.65	1.99		.26 - 1.3
		SOILS				
iceance Creek and Uinta Basins, Colo.						
and Utah; alluvial, 0- to 40-cm depth	12 (2)	30:30	30	1.41	1.35	15 - 57
owder River Basin, Wyo. and Mont. A horizon	13 (1)	32:64	6.2	1.41		<7 - 15
B horizon	13 (1)	32:64	6.6	1.38		<7 - 15
C horizon	13 (1)	27:64	5.4	1.39		<7 - 15
owder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm depth	20 (1)	26:48	6.2	1.68		<10 - 10
Soil, 15- to 20-cm depth	20 (1)	26:48	6.2	1.68	~	<10 - 10
inging Woman Creek, Mont.						
anging Woman Creek, Mont. A horizon	14 (2)	16:16	8.4	1.56	1.56	3 - 15

TABLE 40.-Niobium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

NIOBIUM

TABLE 40.-Niobium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOII	.SContinued				
Piceance Creek Basin, Colo., O- to 5-cm depth	15 (2)	97:108	7.0	2.11	1.97	<2.2 - 21
orthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon	16 (2)	133:136	4.8	1.51	1.48	<2.2 - 19
C horizon	16 (2)	131:136	4.8	1.65	1.55	<2.2 - 22
Big Horn Basin, Wyo., 0- to 40-cm depth	17 (2)	36:36	8.9	1.32	1.38	4.5 - 15
Vind River Basin, Wyo., O- to 40-cm						
depth	17 (2)	36:36	7.4	1.39	1.41	3.1 - 16
San Juan Basin, N. Mex.						
A horizon	11 (2)	47:47	13	1.27	1.32	6.4 - 22
C horizon	11 (2)	47:47	12	1.32	1.18	5.0 - 21
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (2)	30:30	10	1.26	1.15	5.6 - 15
C horizon	24 (2)	28:30	9.2	1.43	1.26	<4.6 - 15
		PLANTS				
Cultivated plants, Northern Great						
Plains (dry-weight basis) Barley	21 (1)	14.19	0.22	1.53	1.53	<0.19 - 0.82
Oats	21 (1) 21 (1)	14:18 19:21	0.33	1.33	1.46	<.2794
Wheat, durum	21 (1) 21 (1)	33:54	.18	1.48	1.78	<.1574
Wheat, hard red spring	21 (1) 21 (1)	11:17	.18	1.60	1.60	<.1248
Wheat, hard red spring	21 (1)	16:20	.26	1.68	1.68	<.1595
Native species (dry-weight basis)						
Galleta, San Juan Basin	19 (2)	22:25	.70	2.01	1.65	<.24 - 2.0
Saltbush, fourwing, San Juan Basin	19 (2)	4:10	.41	3.23	2.31	<.36 - 2.2
Snakeweed, San Juan Basin	19 (2)	14:18	.41	1.96	1.62	<.22 - 1.2

TABLE 41.—Phosphorus in stream sediments, plants associated with mine spoil, soils, and other plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed Range (percent)
	STRE	AM SEDIMENT	ſS			
nta and Piceance Creek Basins, Colo. and Utah	9 (2)	32:32	0.083	1.17	1.04	0.061 - 0.11

TABLE 41.—Phosphorus in stream sediments, plants associated with mine spoil, soils, and other plants—Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	PLANTS ASSOCI	ATED WITH M	IINE SPOIL			
lants (dry-weight basis)						
Northern Great Plains Yellow sweetclover						
Beulah North mine, North Dakota	10 (6)	10:10	.99	1.23	1.14	.0613
Dave Johnston mine, Wyoming	10 (6)	10:10	.12	1.28	1.14	.0918
Hidden Valley mine, Wyoming	10 (6)	10:10	.12	1.20	1.14	.0915
Kincaid mine, North Dakota	10 (6)	10:10	.13	1.18	1.14	.0916
Savage mine, Montana	10 (6)	10:10	.09	1.33	1.14	.0614
Velva mine, North Dakota	10 (6)	10:10	.12	1.41	1.14	.0620
White sweetclover						
Big Sky mine, Montana	10 (6)	10:10	.10	1.17	1.14	.0812
Utility mine, Saskatchewan	10 (6)	10:10	.13	1.28	1.14	.0918
Alfalfa		2.2	~7	1.14		0(00
Beulah North mine, North Dakota	10 (6)	3:3	.07	1.16		.0608
Dave Johnston mine, Wyoming	10 (6)	3:3	.13	1.18		.1115
Savage mine, Montana	10 (6)	3:3	.08	1.12		.0709
Velva mine, North DakotaBig Sky mine, Montana	10 (6) 10 (6)	3:3 3:3	.10 .10	1.30		.0615 .0711
big Sky mine, Montana	10 (8)	3:3	•10	1.50		•07 - •11
Crested wheatgrass, Dave Johnston mine, Wyoming			0.04	1 20	, , 7	0/1 17
Growing on mine spoil	26 (6)	20:20	.084	1.38	1.17	.04117 .0919
Growing near mine spoil	26 (6)	20:20	.13	1.24	1.17	.0919
San Juan mine, New Mexico Fourwing saltbush	11 (6)	6:6	•084	1.27		.06512
Alkali sacaton	11 (6) 11 (6)	6:6	.034	1.14		.026039
		SOILS				
orthern Great Plains; North Dakota						·········
South Dakota, Wyoming, and Montana						
Combined data, unglaciated and glaciated areas						
A horizon	16 (5)	107:136	0.074	1.37	1.49	<0.044 - 0.13
C horizon	16 (5)	92:136	.078	1.49	1.49	<.04413
		PLANTS				
ultivated plants, northern Great Plains (dry-weight basis)						
Barley	21 (6)	18:18	0.20	1.16	1.11	0.16 - 0.32
Oats	21 (6)	21:21	.25	1.21	1.15	.1632
Wheat, durum	21 (6)	20:20	.29	1.14	1.11	.2036
Wheat, hard red spring	21 (6)	54:54	.29	1.29	1.18	.1550
Wheat, hard red winter	21 (6)	17:17	.26	1.18	1.12	.1832
ative species (dry-weight basis)						
Galleta, San Juan Basin	19 (6)	25:25	.056	1.52	1.11	.01613
Saltbush, fourwing, San Juan Basin	19 (6)	10:10	.091	1.53	1.11	.05917
Verslaveral Con Iven Destance	19 (6)	18:18	.062	1.33	1.07	.04210
Snakeweed, San Juan Basin						
ative species (ash-weight basis)						
ative species (ash-weight basis) Sagebrush, big; regional study		20,20	2 2	1 20	1 07	16
ative species (ash-weight basis)	23 (6) 23 (6)	30:30 30:30	3.3 3.1	1.32 1.40	1.07	1.6 - 4.4 1.7 - 4.4

112

TABLE 41.—Phosphorus in stream sediments, plants associated with mine spoil, soils, and other plants—(Continued
--	-----------

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	PLAN	TSContinu	ed			
ative species (ash-weight basis)Continue						
Sagebrush, big; regional studyContinue	d	30:30	3.1	1.22	1.07	2.3 - 4.0
		30:30 20:20	3.1 3.3	1.22	1.07	2.3 - 4.0 2.4 - 4.2
Sagebrush, big; regional studyContinue Basin and Range Province	d 23 (6)					
Sagebrush, big; regional studyContinue Basin and Range Province Northern Great Plains	d 23 (6) 23 (6)	20:20	3.3	1.23	1.05	2.4 - 4.2
Sagebrush, big; regional studyContinue Basin and Range Province Northern Great Plains Northern Rocky Mountains Province	d 23 (6) 23 (6) 23 (6)	20:20 20:20	3.3 3.6	1.23	1.05	2.4 - 4.2 2.4 - 4.6

TABLE 42.—Potassium in rocks, stream sediments, mine spoil and associated materials, soils, and plants [Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geo

element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation.

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
·····		ROCKS				
Dutcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (5)	80:80	1.4	1.36	<1.03	0.59 - 2.2
Shale	1 (5)	80:80	1.9	1.99	<1.07	.24 - 3.3
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (5)	24:24	1.6	1.35	1.12	.91 - 2.3
Siltstone and shale	2 (5)	24:24	2.2	1.18	1.03	2.0 - 5.4
Dark shale	2 (5)	23:23	2.2	1.26	1.07	1.1 - 2.7
Northern Great Plains, Fort Union						
Formation						
Fine-grained rocks	3 (5)	50:50	2.2	1.24	1.02	1.3 - 3.2
Sandstone		42:42	1.5	1.20	1.04	1.0 - 2.4
Piceance Creek Basin, Colo.						
Green River Formation						
Mahogany zone (upper 100 m)	5 (5)	74:74	1.7	1.67	1.01	.25 - 5.1
Middle 300 m		51:51	1.2	1.52	1.02	.27 - 3.0
Garden Gulch Member (lower 100 m)		32:32	1.9	1.33		.70 - 2.8
	STRE	EAM SEDIMENTS	3			
Northern Great Plains regional study	6 (5)	60:60	1.7	1.09	1.01	1.3 - 2.2
Powder River Basin, Wyo. and Mont.						
Size fractions						
>200 um	7 (5)	19:19	1.7	1.16	1.06	1.1 - 2.0

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	STREAM SEL	DIMENTSCo	ntinued			
Powder River Basin, Wyo. and MontContin Size fractionsContinued	ued					
100-200 um	7 (5)	24:24	1.5	1.18	1.03	1.1 - 2.0
63-100 µm	7 (5)	24:24	1.5	1.13	1.03	1.2 - 2.0
<63 µm	7 (5)	24:24	1.7	1.08	1.04	1.5 - 2.2
Jinta and Piceance Creek Basins, Colo. and Utah						
Asphalt Wash, Utah	8 (5)	8:8	2.2	1.04		2.1 - 2.4
Cottonwood Creek, Utah	8 (5)	8:8	1.6	1.12		1.4 - 1.9
Duck Creek, Colo	8 (5)	8:8	1.8	1.09		1.8 - 2.3
Ryan Gulch, Colo	8 (5)	8:8	2.1	1.10		1.8 - 2.3
Piceance Creek Basin, Colo. Roan and Black Sulphur Creeks	9 (1)	32:32	3.1	1.09	1.01	3 - 5
Koan and Black Sulphur Greeks	, (1)		J•1		1.01	
	MINE SPOIL AND	D ASSOCIATE	D MATERIALS			
fine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (5)	10:10	1.8	1.10		1.6 - 2.1
Dave Johnston mine, Wyoming	10 (5)	10:10	2.0	1.11		1.6 - 2.2
Hidden Valley mine, Wyoming	10 (5)	10:10	1.3	1.14		1.0 - 1.6
Kincaid mine, North Dakota	10 (5)	10:10	1.7	1.16		1.4 - 2.1
Savage mine, Montana	10 (5)	10:10	1.9	1.09		1.7 - 2.2
Velva mine, North Dakota	10 (5)	10:10	1.6	1.04		1.4 - 1.7
Big Sky mine, Montana	10 (5)	10:10	1.9	1.10		1.5 - 2.0
Utility mine, Saskatchewan	10 (5)	10:10	1.5	1.05		1.4 - 1.6
San Juan mine, New Mexico	11 (5)	12:12	1.4	1.12	1.01	1.1 - 1.6
opsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (5)	12:12	1.5	1.05	1.01	1.4 - 1.6
Plants (dry-weight basis)						
Northern Great Plains Yellow sweetclover						
	10 (3)	10:10	1.2	1.11	1.04	1.0 - 1.4
Beulah North mine, North Dakota Dave Johnston mine, Wyoming	10 (3)	10:10	1.8	1.28	1.04	1.3 - 2.5
Hidden Valley mine, Wyoming	10 (3)	10:10	1.6	1.09	1.04	1.5 - 1.8
Kincaid mine, North Dakota	10 (3)	10:10	1.6	1.15	1.04	1.2 - 1.9
Savage mine, Montana	10(3)	10:10	1.3	1.20	1.04	1.0 - 1.9
Velva mine, North Dakota	10 (3)	10:10	1.4	1.15	1.04	1.1 - 1.7
White sweetclover						
Big Sky mine, Montana	10 (3)	10:10	1.9	1.12	1.04	1.7 - 2.5
Utility mine, Saskatchewan	10 (3)	10:10	1.2	1.11	1.04	1.1 - 1.5
Alfalfa		2.2		1.14		
Beulah North mine, North Dakota	10 (3)	3:3	1.1	1.16		1.0 - 1.3
Dave Johnston mine, Wyoming	10 (3)	3:3	1.5	1.19		1.3 - 1.9
Savage mine, Montana	10 (3)	3:3	1.0	1.17		.9 - 1.2
Velva mine, North Dakota	10 (3) 10 (3)	3:3 3:3	1.5 1.9	1.17 1.08		1.2 - 1.6 1.8 - 2.0
Big Sky mine, Montana						

TABLE 42.-Potassium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

POTASSIUM

TABLE 42.-Potassium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
MINE	SPOIL AND ASSO	CIATED MATE	RIALSContinu	ıed		
Plants (dry-weight basis)Continued						
Northern Great PlainsContinued Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil Growing near mine spoil	26 (3) 26 (3)	20:20 20:20	1.2 1.1			0.72 - 1.6 .90 - 1.4
San Juan mine, New Mexico Fourwing saltbush	11 (3)	6:6	2.6	1.24		2.1 - 3.2
Alkali sacaton	11 (3)	6:6	.24	1.34		.1635
		SOILS				
Piceance Creek and Uinta Basins, Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (5)	30:30	*2.1	*0.45	0.028	0.96 - 3.1
Powder River Basin, Wyo. and Mont. A horizon	12 (5)	64:64	1.9	1.12	1.04	1.6 - 2.7
B horizon	13 (5) 13 (5)	64:64 64:64	1.9	1.12	1.04	1.6 - 2.7 1.6 - 2.8
C horizon	13 (5)	64:64	1.9	1.13	1.04	1.6 - 2.6
langing Woman Creek, Mont.						. /
A horizon C horizon	14 (5) 14 (5)	16:16 16:16	*1.8 *1.7	*.21 *.13	*.041 *.042	1.4 - 2.1 1.3 - 1.8
Piceance Creek Basin, Colo., O- to 5-cm						
depth Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Unglaciated area	15 (5)	108:108	2.3	1.22	1.05	.77 - 3.2
A horizon C horizon	16 (5) 16 (5)	88:88 88:88	1.9 1.8	1.12	1.02	1.4 - 2.6 1.2 - 3.0
Glaciated area A horizon	16 (5)	48:48	1.7	1.09	1.02	1.3 - 2.0
C horizon Combined data, unglaciated and glaciated areas	16 (5)	48:48	1.5	1.16	1.02	1.0 - 2.0
A horizonC horizon	16 (5) 16 (5)	136:136 136:136	1.8 1.7	1.13 1.19	1.02 1.02	1.3 - 2.7 1.0 - 3.0
Big Horn Basin, Wyo., O- to 40-cm depth	17 (5)	36:36	1.5	1.19	1.07	.97 - 2.0
Vind River Basin, Wyo., O- to 40-cm depth	17 (5)	36:36	1.5	1.19	1.07	.97 - 2.0
San Juan Basin, N. Mex. A horizon	11 (5)	47.47	17	1 2 1	1 02	<u> 25 – </u>))
C horizon	11 (5) 11 (5)	47:47 47:47	1.7 1.5	1.21 1.31	1.02	.85 - 2.3 .56 - 2.3
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (5)	30:30	2.1	1.05	1.09	1.8 - 2.4
C horizon	24 (5)	30:30	2.1	1.17	1.09	1.7 - 3.1

TABLE 42.—Potassium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		PLANTS				
Cultivated plants, northern Great						
Plains (dry-weight basis)						
Barley	21 (3)	18:18	0.44	1.16	1.04	0.34 - 0.64
0ats	21 (3)	21:21	.45	1.11	1.06	.4054
Wheat, durum	21 (3)	20:20	•42	1.21	1.14	. 25 - . 60
Wheat, hard red spring	21 (3)	54:54	.39	1.24	1.13	.2462
Wheat, hard red winter	21 (3)	17:17	.37	1.14	1.07	.3049
Native species (dry-weight basis)						
Galleta, San Juan Basin	19 (3)	25:25	.36	1.84	1.78	.096 - 1.1
Saltbush, fourwing, San Juan Basin	19 (3)	10:10	3.0	1.56	1.53	1.0 - 4.6
Snakeweed, San Juan Basin	19 (3)	18:18	.74	1.48	1.45	.37 - 2.0
Native species (ash-weight basis)						
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (3)	30:30	30	1.12	1.06	25 - 37
Columbia Plateaus Province	23 (3)	30:30	27	1.17	1.06	18 - 33
Basin and Range Province	23 (3)	30:30	30	1.13	1.06	23 - 34
Northern Great Plains	23 (3)	20:20	29	1.12	1.03	25 - 33
Northern Rocky Mountains Province	23 (3)	20:20	30	1.12	1.03	26 - 35
Middle Rocky Mountains Province	23 (3)	20:20	29	1.15	1.03	21 - 34
Southern Rocky Mountains Province	23 (3)	20:20	30	1.17	1.03	22 - 36
Wyoming Basin Province	23 (3)	20:20	29	1.18	1.03	22 - 34
Availability studies, samples from						
Montana, North Dakota, South Dakota, and Wyoming (dry-weight basis)						
Wheatgrass, western	18 (3)	21:21	.31	1.46		.1449
Sagebrush, silver	18(3) 18(3)	19:19	•31 1•1	1.40		.17 - 1.3
Plant biomass, above-ground parts	18 (3)	21:21	.29	1.10	1.04	.1364
rianc bromass, above-ground parts	10 (3)	21:21	•29	1.54	1.04	•15 - •04

TABLE 43.—Praseodymium in topsoil associated with mine soil and other soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	TOPSOIL ASSOC	IATED WITH N	INE SPOIL			
Topsoil used in spoil reclamation San Juan mine, New Mexico	11 (2)	2:12				<46 - 52
		SOILS				
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas A horizon C horizon	16 (2) 16 (2)	1:136 3:136				<22 - 54 <22 - 43

TABLE 43.—Praseodymium in topsoil associated with mine soil and other soils—Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	S 011	SContinue	1			
Wind River Basin, Wyo., 0- to 40-cm						
depth	17 (2)	1:36				<22 - 66
San Juan Basin, N. Mex.						
A horizon	11 (2)	6:47				<46 - 64
C horizon	11 (2)	2:47				<46 - 50
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (2)	1:30				<46 - 48
C horizon	24 (2)	1:30				<46 - 47

TABLE 44.-Rubidium in rocks, stream sediments, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation.

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union Fórmation						
Sandstone	1 (3)	80:80	58	1.36	1.04	25 - 100
Shale	1 (3)	80:80	110	1.85	1.06	15 - 200
core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (3)	24:24	52	1.42	1.18	25 - 84
Siltstone and shale	2 (3)	24:24	9 0	1.34	1.27	51 - 130
Dark shale	2 (3)	23:23	88	1.47	1.14	33 - 140
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (3)	50:50	110	1.29	1.04	65 - 170
Sandstone	4 (3)	42:42	5 9	1.20	1.05	35 - 9 0
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (3)	73:74	68	1.49	2.36	<8.0 - 120
Middle 300 m	5 (3)	53:53	100	1.30	1.06	40 - 170
Garden Gulch Member (lower 100 m)	5 (3)	32:32	98	1.27		60 - 140
	STRI	EAM SEDIMENTS	3		<u></u>	
Northern Great Plains regional study	6 (3)	60:60	70	1.19	1.06	50 - 100
Powder River Basin, Wyo. and Mont.						
Size fractions >200 µm	7 (3)	18:18	60	1.34	1.16	35 - 90
100-200 μm	7 (3)	24:24	49	1.34	1.16	33 - 90 30 - 80
63-100 µm	7 (3)	24:24	53	1.36	1.16	25 - 70
	• •	24:24	61	1.30	1.16	40 - 110
<63 μm	7 (3)	24:24	01	1.2/	1.16	40 - 110

PRASEODYMIUM, RUBIDIUM

TABLE 44.-Rubidium in rocks, stream sediments, mine spoil and associated materials, and soils-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
fine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (3)	10:10	68	1.19		49 - 87
Dave Johnston mine, Wyoming	10 (3)	10:10	82	1.17		57 - 96
Hidden Valley mine, Wyoming	10 (3)	10:10	69	1.32		44 - 110
Kincaid mine, North Dakota	10 (3)	10:10	57	1.26		38 - 76
Savage mine, Montana	10 (3)	10:10	72	1.15		64 - 89
Velva mine, North Dakota	10 (3)	10:10	55	1.14		48 ~ 75
Big Sky mine, Montana	10 (3)	10:10	70	1.12		59 - 85
Utility mine, Saskatchewan	10 (3)	10:10	51	1.10		44 - 60
San Juan mine, New Mexico	11 (3)	12:12	71	1.14	1.06	55 - 80
Copsoil used in spoil reclamation			70	1 05	1.04	<r 75<="" td=""></r>
San Juan mine, New Mexico	11 (3)	12:12	70	1.05	1.04	65 - 75
		SOILS				
iceance Creek and Uinta Basins,						
Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (3)	30:30	*88	*12.0	*2.16	45 - 130
owder River Basin, Wyo. and Mont.						
A horizon	13 (3)	64:64	*84	*13.1	*7.55	58 - 110
B horizon	13 (3)	64:64	*87	*16.4	*16.4	13 - 120
C horizon	13 (3)	64:64	*86	*15.1	*4.52	56 - 110
langing Woman Creek, Mont.						<i>.</i>
A horizon	14 (3)	16:16	*80	*13.6	*7.42	60 - 110
C horizon	14 (3)	16:16	*74			46 - 95
Piceance Creek Basin, Colo., O- to 5-cm						
depth	15 (3)	108:108	105	1.29	1.09	40 - 190
Northern Great Plains; North Dakota,						
South Dakota, Wyoming, and Montana						
Unglaciated area						
A horizon	16 (3)	88:88	77	1.20	1.07	52 - 110
C horizon	16 (3)	88:88	75	1.29	1.09	40 - 150
Glaciated area	14 (2)	10.10	(F	1 10	1 07	20 07
A horizon	16 (3)	48:48	65	1.18	1.07	38 - 86
C horizon	16 (3)	48:48	58	1.29	1.09	30 - 100
Combined data, unglaciated and						
glaciated areas A horizon	16 (3)	136:136	72	1.21	1.07	38 - 110
C horizon	16(3) 16(3)	136:136	69	1.32	1.09	30 - 150
Big Horn Basin, Wyo., 0- to 40-cm depth	17 (3)	36:36	55	1.32	1.25	30 - 9 0
	17 (3)	00.00		1.74	1.4	20 20
Wind River Basin, Wyo., O- to 40-cm depth	17 (3)	36:36	63	1.35	1.33	30 - 110
San Juan Basin, N. Mex.						
A horizon	11 (3)	47:47	57	1.56	1.64	15 - 110
C horizon	11 (3)	47:47	62	1.47	1.30	25 - 110
Sheppard-Shiprock-Doak Soil Association,						
N. Mex.	0 () ()	20.20	0.2		1 00	(5 110
A horizon	24 (3)	30:30	83	1.15	1.08	65 - 110
C horizon	24 (3)	30:30	86	1.22	1.16	65 - 140

118

TABLES 4-77

TABLE 45.-Scandium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed Range (ppm)
		ROCKS				
Dutcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone	1 (2)	69:80	5.7	2.06	1.23	<3.0 - 15
Shale	1 (2)	80:80	12	1.49	1.17	4.3 - 27
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	7.4	1.52	1.22	3.3 - 15
Siltstone and shale Dark shale	2 (2) 2 (2)	24:24 23:23	16 19	1.34 1.20	1.15 1.09	9.2 - 27 13 - 24
Northern Great Plains, Fort Union						
Formation	o (o)	10 50			1 24	(2.2.0.0)
Fine-grained rocksSandstone	3 (2) 4 (2)	48:50 42:42	11 10	1.64 1.50	1.34 1.16	<3.3 - 24 4.6 - 28
Janus Lone	4 (2)	42.42	10	1.JU	1.10	4.0 - 20
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	6.3	1.47	1.40	2.8 - 15
Middle 300 m	5 (2)	53:53	6.3	1.37	1.18	2.0 - 11
Garden Gulch Member (lower 100 m)	5 (2)	199:264	11	1.37		<10 - 20
	STR	EAM SEDIMENTS				
Northern Great Plains regional study	6 (2)	59:60	7.8	1.54	1.32	2.1 - >22
Powder River Basin, Wyo. and Mont.						
Size fractions >200 μm	7 (1)	15:24	3	2.28	1.52	<2 - 10
63-100 μm	7 (1)	20:24	3 3	1.55	1.22	<2 - 7
<63 μm	7 (1)	24:24	6	1.48	1.36	3 - 15
Jinta and Piceance Creek Basins,						
Colo. and Utah	0.415	0.0	10	1 00		7
Asphalt Wash, Utah	8 (1)	8:8	12 11	1.33 1.28		7 - 15 7 - 15
Cottonwood Creek, UtahDuck Creek, Colo	8 (1)	8:8 8:8	7	1.34		7 - 13 5 - 10
Ryan Gulch, Colo	8 (1) 8 (1)	8:8	12	1.34		7 - 15
			-			
Piceance Creek Basin, Colo. Roan and Black Sulphur Creeks	9 (1)	32:32	8.0	1.37	1.16	7 - 15
	MINE SPOIL AN	ID ASSOCIATED	MATERIALS			
Mine spoil						
San Juan mine, New Mexico	11 (2)	12:12	5.4	1.33	1.09	3.6 - 9.0
Topsoil used in spoil reclamation						

Sample, and collection locality	Study and me of ana	thod	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL A	AND ASSO	CIATED MATER	ALSContinu	ied		
Plants (dry-weight basis)							
San Juan mine, New Mexico							
Fourwing saltbushAlkali sacaton	11 11	(2) (2)	6:6 6:6	0.43	1.21		0.34 - 0.51 .1424
			SOILS				
Piceance Creek and Uinta Basins, Colo. and Utah; alluvial, O- to 40-cm depth	12	(2)	30:30	7.8	1.19	1.10	3.1 - 12
Powder River Basin, Wyo. and Mont.							
A horizon		(1)	58:64	7.5	1.49	1.24	<5 - 15
B horizonC horizon	13	• •	62:64 59:64	8.6 8.5	1.50 1.63	1.25 1.24	<5 - 15 <5 - 15
6 II01120II	13	(1)	59:64	0.0	1.03	1.4	() - ()
Powder River Basin, Wyo. and Mont.							
Soil, 0- to 2.5-cm depth		(1)	44:48	7.9	1.32	1.18	<3 - 15
Soil, 15- to 20-cm depth	20	(1)	47:48	7.8	1.60	1.18	<3 - 15
langing Woman Creek, Mont.							
A horizon		(2)	16:16	10	1.45	1.23	3.8 - 16
C horizon	14	(2)	16:16	9.2	1.60	1.40	4.1 - 16
Ciceance Creek Basin, Colo., O- to 5-cm depth	15	(2)	99:108	6.8	1.66	1.48	<2.1 - 13
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas							
A horizon		(2)	114:136	5.4	1.67	1.57	<3.0 - 17
C horizon	16	(2)	122:136	5.7	1.75	1.70	<3.0 - 24
Big Horn Basin, Wyo., 0- to 40-cm depth	17	(2)	32:36	5.9	1.59	1.19	<3.0 - 12
Wind River Basin, Wyo., O- to 40-cm							
depth	17	(2)	34:36	5.3	1.47	1.23	<3.0 - 11
San Juan Basin, N. Mex.							
A horizon	11	(2)	47:47	3.6	1.59	1.12	1.5 - 11
C horizon		(2)	47:47	4.0	1.61	1.15	1.5 - 11
Sheppard-Shiprock-Doak Soil Association, N. Mex.							
A horizon	24	(2)	30:30	2.9	1.22	1.16	2.0 - 4.3
C horizon		(2)	30:30	2.5	1.32	1.15	1.7 - 4.4
			PLANTS				
Native species (dry-weight basis)							
Galleta, San Juan Basin		(2)	22:25	0.25	1.43	1.29	<0.13 - 0.51
Saltbush, fourwing, San Juan Basin		(2)	8:10	.30	1.55	1.36	<.1959
Snakeweed, San Juan Basin	19	(2)	18:18	.26	1.41	1.28	.1361

TABLE 45.—Scandium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLES 4-77

TABLE 46.-Selenium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union Formation Sandstone	1 (19)	68:80	0.19	1.96	1.85	<0.10 - 0.66
Core samples	1 (18)	00.00	0.19	1.90	1.05	(0.10 0.00
Hanging Woman Creek, Mont.	a (1 a)	7.0/	0/0	0.7/		(10 - 20
Sandstone	2 (18)	7:24	.042	2.74		<.1029
Siltstone and shale	2 (18)	19:24	.21	2.24	2.19	<.1079
Dark shale	2 (18)	20:23	.30	2.70	1.37	<.1099
Northern Great Plains, Fort Union Formation						
Fine-grained rocksSandstone	3 (18)	35:50	.16 .31	2.28	1.92 1.90	<.0862 <.2 - 1.5
Sandstone	4 (18)	31:42	.51	1.80	1.90	<.2 - 1.5
	STRE	EAM SEDIMENTS				
Northern Great Plains regional study	6 (5)	50:60	0.19	1.78	1.59	<0.1146
Powder River Basin, Wyo. and Mont.						
Size fractions						
>200 µm	7 (5)	10:19	.12	2.69	2.23	<.160
100-200 μm	7 (5)	14:24	.13	2.18	1.97	<.148
63-100 µm	7 (5)	17:24	.13	1.83	1.29	<.150
<63 μm	7 (5)	18:24	.17	2.92	2.66	<.154
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
Mine spoil		····				
Northern Great Plains						
Beulah North mine, North Dakota	10 (5)	8:10	0.19	1.97		<0.1 - 0.41
Dave Johnston mine, Wyoming	10 (5)	9:10	.28	1.99		<.169
Hidden Valley mine, Wyoming	10 (5)	10:10	.31	1.45		.1849
Kincaid mine, North Dakota	10 (5)	8:10	.22	1.90		<.145
Savage mine, Montana	10 (5)	8:10	.20	2.40		<.166
Velva mine, North Dakota	10 (5)	9:10	.21	1.78		<.154
Big Sky mine, Montana	10 (5)	7:10	.17	1 .9 0		<.140
Utility mine, Saskatchewan	10 (5)	7:10	.17	1.94		<.139
San Juan mine, New Mexico	11 (5)	6:12	.19	2.40		<.270
Topsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (5)	5:12	.18	1.91		<.250
Plants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover	10 (10)	10.10	• -	0.07		00 10
Beulah North mine, North Dakota	10 (13)	10:10	.15	2.05	1.45	.0860
Dave Johnston mine, Wyoming	10 (13)	10:10	.37	2.73	1.45	.10 - 3.00

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	CIATED MATER	ALSContinu	ıed		
lantsContinued						
Northern Great PlainsContinued						
Yellow sweetcloverContinued						
Hidden Valley mine, Wyoming	10 (13)	10:10	0.53	1.85	1.45	0.15 - 1.20
Kincaid mine, North Dakota	10 (13)	10:10	.17	2.28	1.45	.0655
Savage mine, Montana	10 (13)	10:10	1.30	2.50	1.45	.60 - 6.00
Velva mine, North Dakota	10 (13)	10:10	.49	2.07	1.45	.15 - 2.00
White sweetclover						
Big Sky mine, Montana	10 (13)	10:10	•42	2.26	1.45	.08 - 1.00
Utility mine, Saskatchewan	10 (13)	10:10	.23	1.93	1.45	.0650
Alfalfa			• •	2 4 4		0();
Beulah North mine, North Dakota	10 (13)	3:3	.18	2.66		.0635
Dave Johnston mine, Wyoming	10 (13)	3:3	.34	2.11		.2080
Savage mine, Montana	10 (13)	3:3	1.10	2.09		.75 - 2.70
Velva mine, North Dakota	10 (13)	3:3	.33	1.18		.3040
Big Sky mine, Montana	10 (13)	3:3	.22	2.13		.1045
Crested wheatgrass, Dave Johnston						
mine, Wyoming						10 70
Growing on mine spoil	26 (13)	20:20	.27	1.73	1.21	.1070
Growing near mine spoil	26 (13)	20:20	•23	1.91	1.21	.1060
San Juan mine, New Mexico				2.10		10 / 5
Fourwing saltbush	11 (13)	6:6	•22	2.10		.1045
Alkali sacaton	11 (13)	6:6	.096	1.13		.08010
		SOILS				
iceance Creek and Uinta Basins, Colo.						
and Utah; alluvial, 0- to 40-cm depth	12 (5)	12:30	0.07 9	2.72		<0.1 - 0.57
owder River Basin, Wyo. and Mont.						
A horizon	13 (5)	52:64	.25	2.40	1.71	<.1 - 1.1
B horizon	13 (5)	57:64	.30	2.27	1.69	<.1 - 2.2
C horizon	13 (5)	49:64	.23	2.42	1.76	<.1 - 1.6
langing Woman Creek, Mont.						
A horizon	14 (5)	12:16	.17	1.91	1.87	<.1237
C horizon	14 (5)	12:16	.18	2.04	2.04	<.1145
Piceance Creek Basin, Colo., O- to 5-cm						
depth	15 (5)	97:108	•28	2.03	1.72	<.11 - 1.2
lorthern Great Plains; North Dakota,						
South Dakota, Wyoming, and Montana						
Unglaciated area		(0.00		2.02	2 10	< 10 20
A horizon	16 (5)	62:88	.43	2.93	2.18	<.10 - 20
Glaciated area	14 453	(0 (0		0 / 5	3 10	< 10 - 10
	16 (5)	42:48	.47	2.45	2.18	<.10 - 10
A horizon Combined data, unglaciated and						
A horizon Combined data, unglaciated and glaciated areas						
Combined data, unglaciated and	16 (5)	104:136	.45	2.72	2.18	<.10 - 20
Combined data, unglaciated and glaciated areas	16 (5) 16 (5)	104:136 95:136	•45 •34	2.72 2.61	2.18 2.92	<.10 - 20 <.10 - 26
Combined data, unglaciated and glaciated areas A horizon						

TABLE 46.—Selenium in rocks, stream sediments, mine spoil and associated materials, soils, and plants—Continued

Sample, and collection locality	Study I and met of anal	hod	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		SOII	_SContinued				
Wind River Basin, Wyo., O- to 40-cm							
depth	17 (5)	17:36	0.098	2.28		<0.10 - 0.38
San Juan Basin, N. Mex.							
A horizon	11 (5)	15:47	.14	2.35		<.2080
C horizon	11 (5)	13:47	.13	2.25		<.2050
Sheppard-Shiprock-Doak Soil Association, N. Mex.							
A horizon	24 (5)	17:30	.23	1.77		<.2050
C horizon	24 (5)	16:30	.20	1.85		<.2070
			PLANTS				
Cultivated plants, northern Great							
Plains (dry-weight basis)							
Barley	21 (13)	18:18	0.45	1.88	1.09	0.20 - 1.8
Oats	21 (,	21:21	.48	1.60	1.05	.15 - 1.0
Wheat, durum	21 (13)	20:20	.84	1.60	1.12	.40 - 2.2
Wheat, hard red spring	21 (13)	54:54	.64	1.85	1.11	.15 - 2.2
Wheat, hard red winter	21 (13)	17:17	.44	1.63	1.09	.15 - 1.0
Native species (dry-weight basis)							
Galleta, San Juan Basin	19 (25:25	.12	1.62	1.05	.06045
Saltbush, fourwing, San Juan Basin	19 (10:10	.81	3.07	1.12	.15 - 4.5
Snakeweed, San Juan Basin	19 (13)	18:18	.27	1.84	1.06	.080 - 1.2
Native species (dry-weight basis)							
Lichen (<u>Parmelia</u>), Powder River							
Basin, Wyo. and Mont	22 (13)	29:29	.35	1.42	1.07	.2070
Sagebrush, big; Powder River Basin,		~ / \					
Wyo. and Mont	20 (24)	41:41	.43	2.63	1.13	.08 - 4.8
Sagebrush, big; regional study							
Colorado Plateaus Province	23 (30:30	.17	3.05	1.23	.04 - 4
Columbia Plateaus Province	23 (,	30:30	.063	2.76	1.23	.0103
Basin and Range Province	23 (30:30	.11	4.65	1.23	.02 - 7
Northern Great Plains	23 (20:20	.29	4.36	1.37	.04 - 2
Northern Rocky Mountains Province	23 (20:20	.035	2.54	1.37	.0115
Middle Rocky Mountains Province	23 (20:20	.093	4.49	1.39	.02 - 1.8
Southern Rocky Mountains Province	23 (20:20	.078	3.15	1.37	.0290
Wyoming Basin Province	23 (13)	20:20	.18	4.13	1.37	.04 - 1.6

SELENIUM

TABLE 47.-Silicon in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation.

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				
utcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone	1 (5)	80:80	27	1.35	<1.03	12 - 41
Shale	1 (5)	80:80	27	1.16	1.02	16 - 34
ore samples						
Hanging Woman Creek, Mont.						17 00
Sandstone	2 (5)	24:24	27	1.28	1.01	17 - 39
Siltstone and shale	2 (5)	24:24	29	1.08	1.02	25 - 32
Dark shale	2 (5)	23:23	25	1.12	1.05	18 - 28
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (5)	50:50	27	1.11	1.01	21 - 33
Sandstone	4 (5)	42:42	33	1.10	1.03	26 - 41
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (5)	74:74	15	1.25	1.03	6.7 - 24
Middle 300 m	5 (5)	51:51	14	1.30	1.04	4.9 - 22
Garden Gulch Member (lower 100 m)	5 (5)	32:32	22	1.59		2.0 - 35
	STR	EAM SEDIMENT	S			
orthern Great Plains regional study	6 (5)	60:60	30	1.09	1.02	22 - 35
owder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (5)	19:19	*32	*14.79	*8.13	14 - 37
100-200 µm	7 (5)	24:24	*36	*5.76	*2.00	27 - 39
63-100 µm	7 (5)	24:24	*35	*5.25	*2.84	27 - 37
<63 µm	7 (5)	24:24	*31	*3.69	*2.96	26 - 34
	MINE SPOIL AN	ID ASSOCIATED	MATERIALS			
ine spoil						
Northern Great Plains			_			
Beulah North mine, North Dakota	10 (5)	10:10	28	1.13		22 - 34
Dave Johnston mine, Wyoming	10 (5)	10:10	31	1.13		23 - 35
Hidden Valley mine, Wyoming	10 (5)	10:10	31	1.13		25 - 36
Kincaid mine, North Dakota	10 (5)	10:10	26	1.11		20 - 29
Savage mine, Montana	10 (5)	10:10	25	1.10		22 - 28
Velva mine, North Dakota	10 (5)	10:10	29	1.05		26 - 31
Big Sky mine, Montana Utility mine, Saskatchewan	10 (5) 10 (5)	10:10 10:10	29 28	1.14 1.09		21 - 34 32 - 35
San Juan mine, New Mexico	11 (5)	12:12	30	1.11	1.01	23 - 32
opsoil used in spoil reclamation						

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
MINE	SPOIL AND ASSO	CIATED MATER	IALSContinu	ed		
lants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover Beulah North mine, North Dakota	10 (2)	10:10	0.08	1.76	1.27	0.03 - 0.24
Dave Johnston mine, Wyoming	10 (3) 10 (3)	10:10	.10	1.70	1.27	.0515
Hidden Valley mine, Wyoming	10 (3)	10:10	.34	1.58	1.27	.1669
Kincaid mine, North Dakota	10(3)	10:10	.14	1.80	1.27	.0429
Savage mine, Montana	10 (3)	10:10	.06	1.39	1.27	.0413
Velva mine, North Dakota	10 (3)	10:10	.10	1.95	1.27	.0539
White sweetclover						
Big Sky mine, Montana	10 (3)	10:10	.10	1.23	1.27	.0713
Utility mine, Saskatchewan	10 (3)	10:10	.07	1.46	1.27	.0414
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (3)	20:20	.98	1.46	1.15	.44 - 1.9
Growing near mine spoil	26 (3)	20:20	1.2	1.35	1.15	.7 - 1.9
		SOILS				
iceance Creek and Uinta Basins,		· · · · · · · · · · · · · · · · · · ·				
Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (5)	30:30	*27	*4.10	*1.14	18 - 35
owder River Basin, Wyo. and Mont.						
A horizon	13 (5)	64:64	*35	*3.78	*3.16	26 - 43
B horizon	13 (5)	64:64	*34	*3.55	*2.28	26 - 40
C horizon	13 (5)	64:64	*32	*5.24	*1.49	20 - 42
anging Woman Creek, Mont.						05 00
A horizon	14 (5)	16:16	*29	*2.37	*.52	25 - 33
C horizon	14 (5)	16:16	*28	*3.50	*.50	23 - 35
iceance Creek Basin, Colo., 0- to 5-cm depth	15 (5)	108:108	26	1.15	1.05	15 - 34
	15 (5)	100.100	20	1.19	1.05	15 54
orthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana						
Unglaciated area C horizon	16 (5)	88:88	*29	*3.59	*1.22	22 - 39
Glaciated area	10 (3)	00:00	~ 2 3	~		22 - 39
C horizon	16 (5)	48:48	*27	*2.74	*1.22	22 - 36
Combined data, unglaciated and glaciated areas	10 (5)	40.40	27	2071		
A horizon	16 (5)	136:136	*31	*3. 55	*1.22	22 - 38
C horizon	16 (5)	136:136	*28	*1.13	*1.22	22 - 39
ig Horn Basin, Wyo., O- to 40-cm depth	17 (5)	36:36	32	1.10	1.03	25 - 38
ind River Basin, Wyo., O- to 40-cm						

11 (5) 11 (5)

24 (5) 24 (5) 47:47

47:47

30:30

30:30

36

34

34

34

1.09

1.10

1.05

1.06

1.02

1.03

1.06

1.04

San Juan Basin, N. Mex.

N. Mex.

A horizon------C horizon------

A horizon------C horizon------

Sheppard-Shiprock-Doak Soil Association,

TABLE 47.-Silicon in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

30 - 42 27 - 40

30 - 37 31 - 38

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		PLANTS				
ultivated plants, northern Great						
Plains (dry-weight basis)						
Barley	21 (3)	18:18	0.24	1.19	1.10	0.18 - 0.32
0ats	21 (3)	21:21	.64	1.27	1.16	.43 - 1.0
Wheat, durum	21 (3)	20:20	.0081	2.12	1.56	.0014022
Wheat, hard red spring	21 (3)	54:54	.0130	1.45	1.28	.0048029
Wheat, hard red winter	21 (3)	17:17	.0095	1.44	1.28	.00420140
ative species (ash-weight basis) Lichen (<u>Parmelia</u>), Powder River Basin, Wyo. and Mont	21 (3)	29:29	9.0	1.56	1.08	4.2 - 17

TABLE 47.-Silicon in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLE 48.-Silver in rocks, soils and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed Range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation		10.00	0.14	0 70		
Sandstone	1 (2)	40:80	0.16	2.73		<0.22 - 1.3
Shale	1 (2)	6 9: 80	.36	1.71	1.42	<.2287
Core samples						
Northern Great Plains, Fort Union						
Formation sandstone	4 (2)	3:42	.23	1.6	1.15	<.4660
		SOILS		·····		
Piceance and Uinta Basins, Colo.						
and Utah; alluvial, 0- to 40-cm depth	12 (2)	28:30	0.3	1.48	1.38	<0.23 - 0.84
Hanging Woman Creek, Montana						
A horizon	14 (2)	12:16	.29	1.55	1.34	<.2349
C horizon	14 (2)	11:16	.28	1.59	1.59	<.2349
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaicated areas						
A horizon	16 (2)	22:136	.14	1.58		<.2249
C horizon	16(2)	29:136	.13	1.90		<.2256
			••••			
Big Horn Basin, Wyo. 0-40-cm depth	17 (2)	19:36	.22	1.33		<.2240
Wind River Basin, Wyo., 0-40-cm depth	17 (2)	7:36	.14	1.63		<.2240

SILICON, SILVER

TABLES 4-77

TABLE 48.—Silver in rocks, soils and plants—Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		PLANTS				
tive species (ash weight basis)					<u></u>	
Sagebrush, big; Powder River Basin,	20 (1)	1:41				<1 - 1

TABLE 49.—Sodium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to inethod listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation.

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				
Dutcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone	1 (3)	80:80	0.49	2.74	<1.11	0.037 - 1.5
Shale	1 (3)	79:80	.42	2.53	1.14	<.062 - 1.1
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (3)	24:24	.84	1.23	1.02	.55 - 1.1
Siltstone and shale	2 (3)	24:24	•64	1.75	1.05	.1298
Dark shale	2 (3)	23:23	• 54	1.36	1.03	.1879
Northern Great Plains, Fort Union Formatior						
Fine-grained rocks	3 (3)	50:50	.64	1.77	1.06	.18 - 1.6
Sandstone	4 (3)	42:42	.85	1.60	1.01	.26 - 1.64
Piceance Creek Basin, Colo.						
Green River Formation						
Mahogary zone (upper 100 m)	5 (3)	74:74	1.4	1.68	1.08	.1 - 3.7
Middle 300 m	5 (3)	53:53	3.3	1.64	1.04	.69 - 25
Garden Gulch Member (lower 100 m)	5 (3)	32:32	.82	1.28		.45 - 1.5
	STR	EAM SEDIMENT	S			
Northern Great Plains regional study	6 (3)	60:60	0.71	1.91	<1.07	0.14 - 1.9
Powder River Basin, Wyo. and Mont.						
Size fractions						
>200 µm	7 (3)	18:18	.95	1.17	1.04	.57 - 1.36
100-200 µm	7 (3)	24:24	.72	1.18	1.08	.4490
63-100 μπ	7 (3)	24:24	.80	1.10	<1.01	.6697
<63 µm	7 (3)	24:24	.84	1.09	<1.01	.68 - 1.0

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed rang (percent)
	STREAM SE	DIMENTSCor	ntinued			
Jinta and Piceance Creek Basins,						
Colo. and Utah						
Asphalt Wash, Utah	8 (3)	8:8	2.4	1.18		1.8 - 3.0
Cottonwood Creek, Utah	8 (3)	8:8	2.5	1.11		2.1 - 2.8
Duck Creek, Colo	8 (3)	8:8	1.8	1.52		.95 - 3.0
Ryan Gulch, Colo	8 (3)	8:8	2.5	1.09		2.2 - 2.8
iceance Creek Basin, Colo.						
Roan Creek	9 (1)	16:16	2.2	1.18	1.14	2 - 3
Black Sulphur Creek	9 (1)	16:16	3.0	1.09	1.14	3 - 3
	MINE SPOIL AN	D ASSOCIATE	MATERIALS			****
ine spoil						<u></u>
Northern Great Plains						
Beulah North mine, North Dakota	10 (5)	10:10	0.87	1.38		0.057 - 1.5
Dave Johnston mine, Wyoming	10 (5)	10.10	.37	1.39		.2056
Hidden Valley mine, Wyoming	10 (5)	10:10	.089	2.32		.05995
Kincaid mine, North Dakota	10 (5)	10:10	1.1	1.16		.89 - 1.4
Savage mine, Montana	10 (5)	10:10	.53	1.22		.4068
Velva mine, North Dakota	10 (5)	10:10	.95	1.35		.44 - 1.3
Big Sky mine, Montana	10 (5)	10:10	.51	1.74		.28 - 2.3
Utility mine, Saskatchewan	10 (5)	10:10	.82	1.26		.52 - 1.1
San Juan mine, New Mexico	11 (5)	12:12	1.7	1.22	1.02	1.2 - 2.0
opsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (5)	12:12	1.2	1.04	1.02	1.1 - 1.3
lants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover						
Beulah North mine, North Dakota	10 (3)	10:10	.003	1.62	1.16	.0014006
Dave Johnston mine, Wyoming	10 (3)	10:10	.003	1.74	1.16	.0012007
Hidden Valley mine, Wyoming	10 (3)	10:10	.004	1.55	1.16	.0019009
Kincaid mine, North Dakota	10 (3)	10:10	.034	2.61	1.16	.0070207
Savage mine, Montana	10 (3)	10:10	.002	1.42	1.16	.0012003
Velva mine, North Dakota	10 (3)	10:10	.003	2.09	1.16	.0012011
White sweetclover						
Big Sky mine, Montana Utility mine, Saskatchewan	10 (3) 10 (3)	10:10 10:10	.004 .010	1.36 2.36	1.16 1.16	.0019005 .0035079
	10 (3)	10.10	•••••	2.50		•••••
Alfalfa Baulah Nautharitan Nauth Dahat	10 (0)	2 2	000	2.05		000 000
Beulah North mine, North Dakota	10 (3)	3:3	.008	3.95		.002031
Dave Johnston mine, Wyoming	10 (3)	3:3	.013	2.91		.006042
Savage mine, Montana	10 (3)	3:3	.009	1.57		.005013
Velva mine, North Dakota	10 (3)	3:3	.009	2.02		.004016
Big Sky mine, Montana	10 (3)	3:3	.006	1.19		.005007
Crested wheatgrass, Dave Johnston						
mine, Wyoming	04 40	00.00	<u></u>	1 4 6	1 00	0001
Growing on mine spoil	26 (3)	20:20	.0011	1.69	1.28	.0004002
Growing near mine spoil	26 (3)	20:20	•0008	2.00	1.28	.00040022
a -						
San Juan mine, New Mexico						
San Juan mine, New Mexico Fourwing saltbush Alkali sacaton	11 (3)	6:6 6:6	.74 .15			.054 - 2.0

TABLE 49.—Sodium in rocks, stream sediments, mine spoil and associated materials, soils, and plants—Continued

TABLE 49.-Sodium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		SOILS				
ficeance Creek and Uinta Basins,						
Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (3)	30:30	*1.1	*0.48	*0.028	0.3 - 2
owder River Basin, Wyo. and Mont.						
A horizon	13 (3)	64:64	.48	1.42	1.05	.2293
B horizon	13 (3)	64:64	.43	1.56	1.03	.1393
C horizon	13 (3)	64:64	.45	1.64	1.12	.16 - 1
langing Woman Creek, Mont.						
A horizon	14 (3)	16:16	*.72	*.14	*.029	.5392
C horizon	14 (3)	16:16	*.77	*.17	*.020	.55 - 1.1
Piceance Creek Basin, Colo., 0- to 5-cm depth	15 (3)	108:108	1.4	1.65	1.09	.18 - 3.5
deptn	13 (3)	100:100	1.4	1.01	1.07	•10 - 5•5
Northern Great Plains: North Dakota,						
South Dakota, Wyoming, and Montana						
Combined data, unglaciated and						
glaciated areas	16 (5)	126,126	+ 03	*.36	*.019	.22 - 1.6
A horizon C horizon	16 (5) 16 (5)	136:136 136:136	*.83 *.85	*.33	*.019	.074 - 1.8
0 101 201	10 (5)	150.150	•05	• 3 3	•034	
Big Horn Basin, Wyo., 0- to 40-cm depth	17 (5)	36:36	.53	1.53	1.03	.20 - 1.5
Wind River Basin, Wyo., O- to 40-cm						
depth	17 (5)	36:36	1.3	1.26	1.03	.61 - 2.1
San Juan Basin, N. Mex. A horizon	11 (5)	47:47	.84	1.67	1.87	.10 - 2.1
C horizon	11 (5)	47:47	.91	1.56	1.06	.19 - 2.0
Sheppard-Shipmock-Doak Soil Association, N. Mex.						
A horizon	24 (5)	30:30	1.1	1.17	1.03	.85 - 1.7
C horizon	24 (5)	30:30	1.1	1.23	1.06	.70 - 1.6
		PLANTS				
Cultivated plants, northern Great						
Plains (dry-weight basis)						
Barley	21 (3)	18:18	0.018	2.13	1.04	0.0044 - 0.057
Oats	21 (3)	21:21	.0052	2.03	1.29	.0016025
Wheat, durum	21 (3)	20:20	.0021	2.21	1.02	.0006011
Wheat, hard red spring	21 (3)	54:54	.0011	1.69	1.27	.00040061
Wheat, hard red winter	21 (3)	17:17	.0009	1.45	1.19	.00060021
Native species (dry-weight basis)						
Lichen (Parmelia), Powder River						
Basin, Wyo. and Mont	22 (3)	29:29	.040	1.37	1.14	.0206
Sagebruch bigs regional study						
Sagebrush, big; regional study Colorado Plateaus Province	23 (3)	30:30	.067	2.18	1.13	.0224
Columbia Plateaus Province	23 (3)	30:30	.21	1.51	1.13	.1245
Basin and Range Province	23 (3)	30:30	.14	2.83	1.13	.05 - 1.5
Northern Great Plains	23 (3)	20:20	.11	2.13	1.10	.0640
		20:20	.072	1.97	1.10	.0323
Northern Rocky Mountains Province	23 (3)	20.20				
Northern Rocky Mountains Province Middle Rocky Mountains Province	23 (3)	20:20	.11	3.70	1.10	.05 - 1.1

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
	PLAN	TSContinue	ed			
ailability atudioa complos from						
ailability studies, samples from Montana. North Dakota. South Dakota.						
ailability studies, samples from Montana, North Dakota, South Dakota, and Wyoming (dry-weight basis)						
Montana, North Dakota, South Dakota,	18 (3)	21:21	0.0024	1.79		0.00086 - 0.0067
Montana, North Dakota, South Dakota, and Wyoming (dry-weight basis)	18 (3) 18 (3)	21:21 19:19	0.0024 .0067	1.79 2.43		0.00086 - 0.0067 .0018050

TABLE 49.—Sodium in rocks, stream sediments, mine spoil and associated materials, soils, and plants—Continued

TABLE 50.—Strontium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
······································		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (2)	80:80	160	1.96	1.14	43 - 420
Shale	1 (2)	80:80	170	1.83	1.17	27 - 550
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	240	1.25	1.12	13 - 90
Siltstone and shale	2 (2)	24:24	250	1.13	1.09	190 - 330
Dark shale	2 (2)	23:23	25	1.18	1.08	180 - 320
Northern Great Plains, Fort Union						
Formation						
Sandstone	4 (2)	42:42	194	1.50	1.11	100 - 350
Piceance Creek Basin, Colo.						
Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	72:74	540	1.38	1.34	<200 - 990
Middle 300 m	5 (2)	53:53	340	1.37	1.13	170 - 790
Garden Gulch Member (lower 100 m)	5 (2)	264:264	290	1.42		100 - 700
	STR	EAM SEDIMENTS				
Northern Great Plains regional study	6 (5)	60:60	300	1.41	1.16	140 - 650
Powder River Basin, Wyo. and Mont.						
Size fractions						
>200 µm	7 (1)	24:24	180	1.51	1.27	100 - 500
100-200 μm	7 (1)	24:24	130	1.32	1.26	70 - 200
63-100 μm	7 (1)	24:24	140	1.29	<1.01	100 - 200
<63 μm	7 (1)	24:24	180	1.24	1.15	100 - 300

SODIUM, STRONTIUM

	TABLE 50.—Strontium in rock	s, stream sediments:	s, mine spoil and	l associated material	s, soils, and p	olants—Continued
--	-----------------------------	----------------------	-------------------	-----------------------	-----------------	------------------

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	STREAM SE	DIMENTSCon	tinued			
Jinta and Piceance Creek Basins,						
Colo. and Ltah Asphalt Wash, Utah	8 (2)	8:8	310	1.32		240 - 500
Cottonwood Creek, Utah	8 (2)	8:8	430	1.36		250 - 570
Duck Creek, Cclo	8 (2)	8:8	450	1.14		350 - 510
Ryan Gulch, Colo	8 (2)	8:8	220	1.28		170 - 380
iceance Creek Basin, Colo.						
Roan and Black Sulphur Creeks	9 (1)	32:32	520	1.13	1.12	500 - 700
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
line spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (2)	10:10	270	1.57		150 - 830
Dave Johnston mine, Wyoming	10 (2)	10:10	120	1.30		74 - 160
Hidden Valley mine, Wyoming	10 (2)	10:10	110	1.39		56 - 170 180 - 320
Kincaid mine, North Dakota Savage mine, Montana	10 (2) 10 (2)	10:10 10:10	250 150	1.19		180 - 320 94 - 240
Velva mine, North Dakota	10(2) 10(2)	10:10	250	1.20		160 - 320
Big Sky mine, Montana	10 (2)	10:10	110	1.20		85 - 140
Utility mine, Saskatchewan	10 (2)	10:10	200	1.46		120 - 400
San Juan mine, New Mexico	11 (2)	12:12	270	1.14	1.05	220 - 330
Copsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (2)	12:12	190	1.55	1.57	48 - 260
Plants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover						50 1/5
Beulah North mine, North Dakota	10 (2)	10:10	90	1.42	1.23	53 - 145
Dave Johnston mine, Wyoming	10 (2)	10:10	84	1.32	1.23	49 - 119
Hidden Valley mine, Wyoming	10 (2)	10:10	39	1.27	1.23	26 - 55 82 - 251
Kincaid mine, North Dakota Savage mine, Montana	10 (2) 10 (2)	10:10 10:10	150 60	1.47 1.24	1.23 1.23	44 - 92
Velva mine, North Dakota	10 (2)	10:10	94	1.35	1.23	52 - 149
White sweetclover						
Big Sky mine, Montana	10 (2)	10:10	48	1.51	1.23	24 - 87
Utility mine, Saskatchewan	10 (2)	10:10	63	1.29	1.23	46 - 93
Alfalfa						
Beulah North mine, North Dakota	10 (2)	3:3	270	1.53		168 - 360
Dave Johnston mine, Wyoming	10 (2)	3:3	82	1.61		59 - 143
Savage mine, Montana	10 (2)	3:3	120	1.57		74 - 178
Velva mine, North Dakota	10 (2)	3:3	130	1.70		72 - 206
Big Sky mine, Montana	10 (2)	3:3	83	1.34		63 - 113
Crested wheatgrass, Dave Johnston						
mine, Wyoming	0/ /0>	20.20	25	1 25		1/ /1
Growing on mine spoil Growing near mine spoil	26 (2) 26 (2)	20:20 20:20	25 25	1.35 1.25		14 - 41 16 - 39
- ·						
San Juan mine, New Mexico Fourwing saltbush	11 (2)	6:6	48	1.38		35 - 71
iourwing saidbush						

STRONTIUM

TABLE 50.—Strontium in rocks, stream sediments, mine spoil and associated materials, soils, and plants—Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		SOILS				
Piceance Creek and Uinta Basins, Colo. and Utah; alluvial, O- to 40-cm depth	12 (2)	30:30	370	1.41	1.10	170 - 770
Powder River Basin, Wyo. and Mont.					1.05	70 000
A horizon	13 (1)	64:64	140	1.47	1.25	70 - 300
B horizon C horizon	13 (1) 13 (1)	64:64 64:64	160 190	1.70 1.87	1.31 1.25	70 - 700 70 - 1,000
owder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm depth	20 (1)	48:48	160	1.53	1.23	50 - 500
Soil, 15- to 2-cm depth	20 (1)	48:48	160	1.47	1.23	100 - 500
langing Woman Creek, Mont. A horizon	14 (2)	16:16	210	1.25	1.08	140 - 320
C horizon	14 (2)	16:16	240	1.25	1.08	140 - 320 140 - 350
Piceance Creek Basin, Colo., O- to 5-cm						
depth	15 (2)	108:108	280	1.54	1.25	61 - 660
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Unglaciated area						
A horizon	16 (2)	88:88	150	1.54	1.18	58 - 440
C horizon	16 (2)	88:88	190	1.54	1.14	82 - 880
Glaciated area	·- /					
A horizon	16 (2)	48:48	180	1.24	1.18	110 - 260
C horizon Combined data, unglaciated and glaciated areas	16 (2)	48:48	240	1.24	1.14	120 - 370
A horizon	16 (2)	136:136	160	1.47	1.18	58 - 440
C horizon	16 (2)	136:136	210	1.48	1.14	82 - 880
Big Horn Basin, Wyo., 0- to 40-cm depth	17 (2)	36:36	230	1.39	1.08	76 - 480
Vind River Basin, Wyo., O- to 40-cm						
depth	17 (2)	36:36	340	1.42	1.13	190 - 690
San Juan Basin, N. Mex.			1(0	1 07	1 00	00 //0
A horizonC horizon	11(2)	47:47 47:47	160 202	1.37 1.42	1.09 1.10	88 - 440 110 - 680
	11 (2)	4/;4/	202	1.442	1.10	110 - 000
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon C horizon	24 (2)	30:30	220	1.21	1.07	160 - 340 130 - 340
C 1101 12011	24 (2)	30:30	210	1.25	1.22	130 - 340
		PLANTS				
Cultivated plants, northern Great						
Plains (dry-weight basis) Barley	21 (1)	18:18	0.98	1.63	1.19	042-28
Oats	21 (1) 21 (1)	21:21	1.4	1.03	1.19	0.42 - 2.8 .79 - 3.0
Wheat, durum	21 (1) 21 (1)	20:20	1.5	1.36	1.34	.51 - 2.0
Wheat, hard red spring	21 (1)	54:54	1.2	1.63	1.41	.40 - 3.9
Wheat, hard red winter	21 (1)	17:17	1.1	1.57	1.37	.60 - 2.5
Native species (dry-weight basis)	10 (2)	25.25	24	1 20	1 00	17 - 43
Galleta, San Juan Basin	19 (2)	25:25	24 87	1.29	1.08	17 - 43
Saltbush, fourwing, San Juan Basin	19 (2)	10:10	0/	1.70	1.18	48 - 240

132

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	PLAN	TSContinu	ed			
Native species (ash-weight basis)						
Lichen (<u>Parmelia</u>), Powder River						
Basin, Wyo. and Mont	22 (1)	29:29	350	1.82	1.20	150 - 1,000
Sagebrush, big; Powder River Basin,						
u ,	20 (1)	61.61	590	1.77	1.20	150 - 1,500
Wyo. and Mont	20 (1)	41:41	190	1.77	1.20	100 - 1,000
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (1)	30:30	1,200	3.03	1.50	300 - 3,000
Columbia Plateaus Province	23 (1)	30:30	93 0	2.38	1.50	150 - 1,500
Basin and Range Province	23 (1)	30:30	1,400	1.72	1.50	500 - 3,000
Northern Great Plains	23 (1)	20:20	1,500	1.71	1.12	500 - 3,000
Northern Rocky Mountains Province	23 (1)	20:20	1,100	2.51	1.12	200 - 2,000
Middle Rocky Mountains Province	23 (1)	20:20	1,100	2.58	1.12	200 - 3,000
Southern Rocky Mountains Province	23 (1)	20:20	1,100	2.54	1.12	200 - 3,000
Wyoming Easin Province	23 (1)	20:20	1,500	1.60	1.12	1,000 - 3,000

TABLE 50.-Strontium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLE 51.-Sulfur (total) in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed Range (percent)
	· · · · · · · · · · · · · · · · · · ·	ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (5)	26:80	0.028			<0.08 - 0.77
Shale	1 (5)	37:80	.055			<.0887
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (5)	16:24	.12	2.13	1.55	<.0582
Siltstone and shale	2 (5)	23:24	.17	1.66	1.32	<.0540
Dark shale	2 (5)	23:23	.32	1.33	1.29	.1752
Northern Great Plains, Fort Union						
Formation						
Fine-grained rocks	3 (5)	27:50	.066	2.58		<.0655
Sandstone	4 (5)	28:42	.05	2.70	1.37	<.0439
Processo Creak Provin Cala						
Piceance Creek Basin, Colo. Green River Formation						
	F (F)	7, 7/	0.0	0.00	1 27	(0.20 0.0
Mahogany zone (upper 100 m)	5 (5)	71:74	.23	2.22	1.34	<.03288
Middle 300 m	5 (5)	51:51	.21	1.75	1.40	.04971
Garden Gulch Member (lower 100 m)	5 (5)	32:32	.53	1.68		.13 - 1.3

Dudder River Basin, Wyo. and Mont. 7 (5) 16:24 .01 1.73 1.57 <.0829	Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
wider River Rasin, Wyo, and Nont. 7 (5) 16:24 .01 1.73 1.57 <.0829 MINE SPOIL AND ASSOCIATED MATERIALS Jane apoil Northern Great Plains Beulah North mine, North Dakota 10 (5) 10:10 0.41 2.09 0.16 - 1.1 Dave Johnston mine, Kyoming 10 (5) 10:10 .069 2.43 <0.03 - 20 Hike Mailey Mine, North Dakota 10 (5) 10:10 .016 - 1.1 .03 - 4.6 <0.03 - 4.6 Savage mine, North Dakota 10 (5) 10:10 .016 - 1.1 .06 - 2.03 - 4.6 <0.03 - 4.6 Vava mine, North Dakota 10 (5) 10:10 .017 - 2.48 <0.03 - 4.6 Savage mine, North Dakota 10 (5) 7:10 .061 - 2.80 <0.3 - 67 Utility mine, Saskatchewan 10 (5) 7:10 .061 - 2.80 <0.3 - 67 San Juan mine, New Mexico 11 (5) 12:12 .10 1.55 1.13 .060 - 2.24 lants (dry-weight basis) Northern Great Plains 10 (7) 10:10 .22 .165 .130 1.99 <th></th> <th>STRE</th> <th>CAM SEDIMENT</th> <th>S</th> <th></th> <th></th> <th></th>		STRE	CAM SEDIMENT	S			
Size fraction, (63 jm	orthern Great Plains regional study	6 (5)	46:60	0.12	1.87	1.31	<0.08 - 0.48
MINE SPOIL AND ASSOCIATED MATERIALS ine spoil Northern Great Plains Beulah North mine, North Dakota	'owder River Basin, Wyo. and Mont.						
ine spoil Northern Great Plains Beulah North mine, North Dakota	Size fraction, <63 µm	7 (5)	16:24	.01	1.73	1.57	<.0829
Northern Great Plains Beulah North Mine, North Dakota 10 (5) 10:10 0.41 2.09 0.16 1.1 Dave Johnston mine, Wyoming 10 (5) 10:10 .069 2.43 .046 20 Hidden Valley mine, Wyoming 10 (5) 10:10 .086 1.75 .046 20 Kincaid mine, North Dakota 10 (5) 2:10 .035 1.80 <.03		MINE SPOIL AN	D ASSOCIATEI) MATERIALS			
Bealah North mine, North Dakota 10 (5) 10:10 0.41 2.09 0.16 - 1.1 Dave Johnston mine, Wyoming 10 (5) 10:10 .069 2.43 0.046 - 2.0 Hidden Valley mine, Worth Dakota 10 (5) 10:10 .17 3.01 C.0346 Savage mine, Month Dakota 10 (5) 2:10 .035 1.80 C.0346 Savage mine, Month Dakota 10 (5) 8:10 .079 2.04 C.0346 Big Sky mine, Montana 10 (5) 8:10 .079 2.04 C.0346 Utility mine, Saskatchewan 10 (5) 7:10 .081 2.80 C.0352 San Juan mine, New Mexico 11 (5) 12:12 .10 1.55 1.13 .06024 Lants (dry-weight basis) Norther Creat Plains Yellow sweetclover Beulah North mine, North Dakota	ine spoil						
Dave Johnston mine, Wyoming	Northern Great Plains						
Hidden Valley mine, Wyoning	Beulah North mine, North Dakota	10 (5)	10:10	0.41	2.09		0.16 - 1.1
Kincaid mine, North Dakota 10 (5) 10:10 .7 3.01 (.03) 46 Savage mine, North Dakota 10 (5) 2:10 .035 1,80 (.03) 16 Big Sky mine, Montana 10 (5) 9:10 .17 2.48 (.03) 67 Dutilty mine, Saskatchewan 10 (5) 9:10 .17 2.48 (.03) 52 opsoil used in spoil reclamation Sam Juan mine, New Mexico 11 (5) 12:12 .10 1.55 1.13 .06024 lants (dry-weight basis) Northern Great Plains Yellow sweetclover 10 (7) 10:10 0.31 1.38 1.09 0.20 - 0.53 Dave Johnston mine, Woming 10 (7) 10:10 .29 1.34 1.09 .1245 Savage mine, North Dakota 10 (7) 10:10 .29 1.34 1.09 .2265 Savage mine, North Dakota 10 (7) 10:10 .29 1.44 .20 .2265 Savage mine, North Dakota 10 (7) 10:10 .26 1.29 1.09 .1736							
Savage mine, Montana							
Velva mine, North Dakota							
Big Sky mine, Montana							
Utility mine, Saskatchewan		. ,					
San Juan mine, New Mexico 11 (5) 12:12 .26 1.63 1.30 .09852 opsoil used in spoil reclamation San Juan mine, New Mexico 11 (5) 12:12 .10 1.55 1.13 .06024 lants (dry-weight basis) Northern Great Plains Yellow sweetclover Beulah North mine, North Dakota 10 (7) 10:10 .29 1.34 1.09 .1845 Hidden Valley mine, Wyoming 10 (7) 10:10 .29 1.34 1.09 .1243 Kincaid mine, North Dakota 10 (7) 10:10 .32 1.30 1.09 .2265 Savage mine, Nonthana 10 (7) 10:10 .44 1.44 .40 .2265 White sweetclover Big Sky mine, Nonthana 10 (7) 10:10 .26 1.29 1.09 .1736 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1736 Dave Johnston mine, Wyoming 10 (7) 3:3 .31 1.42 .2648 Beulah North mine, North Dakota	· · ·						
San Juan mine, New Mexico 11 (5) 12:12 .10 1.55 1.13 .06024 lants (dry-weight basis) Northern Great Plains Yeilow sweetclover Beulah North mine, North Dakota 10 (7) 10:10 .29 1.34 1.09 1845 Hidden Valley mine, Wyoming 10 (7) 10:10 .29 1.34 1.09 .22053 Savage mine, North Dakota 10 (7) 10:10 .32 1.30 1.09 .2143 Kincaid mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .2265 Savage mine, Nonthaa 10 (7) 10:10 .29 1.42 1.09 .2050 White sweetclover Big Sky mine, Nontana 10 (7) 10:10 .26 1.29 1.09 .1736 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1736 Dave Johnston mine, North Dakota 10 (7) 3:3 .27 1.28 .2236 Dave Johnston mine, North Dakota 10 (7)<	Utility mine, Saskatchewan	10 (5)	7:10	.081 ·	2.80		<.0350
San Juan mine, New Mexico 11 (5) 12:12 .10 1.55 1.13 .06024 Lants (dry-weight basis) Northern Creat Plains Yellow sweetclover Beulah North mine, North Dakota 10 (7) 10:10 0.31 1.38 1.09 0.20 - 0.53 Dave Johnston mine, Wyoming 10 (7) 10:10 .29 1.34 1.09 .1845 Hidden Valley mine, Wyoning 10 (7) 10:10 .32 1.30 1.09 .2265 Savage mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .2265 White sweetclover 10 (7) 10:10 .29 1.42 1.09 .2053 White sweetclover 10 (7) 10:10 .26 1.29 1.09 .1736 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1736 Savage mine, Montana 10 (7) 3:3 .39 1.42 .2648 Savage mine, North Dakota 10 (7) </td <td>San Juan mine, New Mexico</td> <td>11 (5)</td> <td>12:12</td> <td>•26</td> <td>1.63</td> <td>1.30</td> <td>.09852</td>	San Juan mine, New Mexico	11 (5)	12:12	•26	1.63	1.30	.09852
lants (dry-weight basis) Northern Great Plains Yellow sweetclover Beulah North Mine, North Dakota 10 (7) 10:10 0.31 1.38 1.09 0.20 - 0.53 Dave Johnston mine, Wyoming 10 (7) 10:10 .29 1.34 1.09 .1845 Hidden Valley mine, Worth Dakota 10 (7) 10:10 .29 1.34 1.09 .2143 Kincaid mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .2265 Savage mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .2265 White sweetclover 10 (7) 10:10 .29 1.42 1.09 .2050 White sweetclover 10 (7) 10:10 .26 1.29 1.09 .1736 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1736 Alfalfa Beulah North mine, North Dakota 10 (7) 3:3 .39 1.42 2236 Savage mine, Montana							
Northern Great Plains Yellow sweetclover Beulah North mine, North Dakota 10 (7) 10:10 0.31 1.38 1.09 0.20 - 0.53 Dave Johnston mine, Wyoming 10 (7) 10:10 .29 1.34 1.09 .1845 Hidden Valley mine, Wyoming 10 (7) 10:10 .29 1.34 1.09 .2143 Kincaid mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .2265 Savage mine, North Dakota 10 (7) 10:10 .19 1.23 1.09 .1427 Velva mine, North Dakota 10 (7) 10:10 .29 1.42 1.09 .2050 White sweetclover Big Sky mine, Montana 10 (7) 10:10 .26 1.29 1.09 .1736 Dave Johnston mine, North Dakota 10 (7) 10:10 .26 1.29 1.09 .1736 Bauelah North mine, North Dakota 10 (7) 3:3 .39 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .26 1.28	San Juan mine, New Mexico	11 (5)	12:12	.10	1.55	1.13	.06024
Yellow sweetclover Beulah North Mine, North Dakota 10 (7) 10:10 0.31 1.38 1.09 0.20 - 0.53 Dave Johnston mine, Wyoming 10 (7) 10:10 .29 1.34 1.09 .1845 Hidden Valley mine, Wyoming 10 (7) 10:10 .32 1.30 1.09 .2143 Kincaid mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .2265 Savage mine, Montana 10 (7) 10:10 .44 1.34 1.09 .2265 Savage mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .2265 White sweetclover 10 (7) 10:10 .26 1.29 1.09 .1736 White sweetclover 10 (7) 10:10 .26 1.29 1.09 .1736 Wilitity mine, Saskatchewan 10 (7) 3:3 .27 1.28 .2236 Dave Johnston mine, Worth Dakota 10 (7) 3:3 .21 1.30 .2648 Savage mi	lants (dry-weight basis)						
Beulah North mine, North Dakota 10 (7) 10:10 0.31 1.38 1.09 0.20 - 0.53 Dave Johnston mine, Wyoming 10 (7) 10:10 .29 1.34 1.09 .1845 Hidden Valley mine, Wyoming 10 (7) 10:10 .32 1.30 1.09 .2143 Kincaid mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .2265 Savage mine, Montana 10 (7) 10:10 .19 1.23 1.09 .1427 Velva mine, North Dakota 10 (7) 10:10 .29 1.42 1.09 .2050 White sweetclover Big Sky mine, Montana 10 (7) 10:10 .26 1.29 1.09 .1736 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1736 Alfalfa Beulah North mine, North Dakota 10 (7) 3:3 .37 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .22 1.30 .1830 Velva mine, North Dakota <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Dave Johnston mine, Wyoming 10 (7) 10:10 .29 1.34 1.09 .1845 Hidden Valley mine, Wyoming 10 (7) 10:10 .32 1.30 1.09 .2143 Kincaid mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .2265 Savage mine, Nontana 10 (7) 10:10 .19 1.23 1.09 .1427 Velva mine, North Dakota 10 (7) 10:10 .29 1.42 1.09 .2050 White sweetclover Big Sky mine, Montana 10 (7) 10:10 .26 1.29 1.09 .1736 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1736 Alfalfa Beulah North mine, North Dakota 10 (7) 3:3 .39 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .39 1.42 .2648 Bave Johnston mine, Worth Dakota 10 (7) 3:3 .22 1.30 .1830 Velva mine, North D		10 (7)	10.10	0.31	1 38	1 09	0.20 - 0.53
Hidden Valley mine, Wyoming 10 (7) 10:10 .32 1.30 1.09 .2143 Kincaid mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .2265 Savage mine, Montana 10 (7) 10:10 .19 1.23 1.09 .1427 Velva mine, North Dakota 10 (7) 10:10 .29 1.42 1.09 .2050 White sweetclover Big Sky mine, Montana 10 (7) 10:10 .26 1.29 1.09 .1736 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1739 Alfalfa Beulah North Dakota 10 (7) 3:3 .39 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .27 1.28 .2648 Savage mine, Montana 10 (7) 3:3 .39 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .22 1.30 .1830 Velva mine, North Dakota 10 (7) 3							
Kincaid mine, North Dakota 10 (7) 10:10 .44 1.34 1.09 .22 = .65 Savage mine, Montana 10 (7) 10:10 .19 1.23 1.09 .14 = .27 Velva mine, North Dakota 10 (7) 10:10 .29 1.42 1.09 .20 = .50 White sweetclover Big Sky mine, Montana 10 (7) 10:10 .26 1.29 1.09 .17 = .36 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .17 = .36 Alfalfa Beulah North mine, North Dakota 10 (7) 3:3 .27 1.28 .22 = .36 Dave Johnston mine, Wyoming 10 (7) 3:3 .39 1.42 .26 = .48 Savage mine, Montana 10 (7) 3:3 .22 1.30 .18 = .30 Velva mine, North Dakota 10 (7) 3:3 .26 1.28 .29 = .33 Big Sky mine, Montana 10 (7) 3:3 .31 1.07 .29 = .33 Grested wheatgrass, Dave Johnston mine, Wyoming .10 (7) 20:20 <							
Savage mine, Montana							
Velva mine, North Dakota 10 (7) 10:10 .29 1.42 1.09 .2050 White sweetclover Big Sky mine, Montana 10 (7) 10:10 .26 1.29 1.09 .1736 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1739 Alfalfa Beulah North mine, North Dakota 10 (7) 3:3 .27 1.28 .2236 Dave Johnston mine, Wyoming 10 (7) 3:3 .39 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .22 1.30 .1830 Velva mine, North Dakota 10 (7) 3:3 .26 1.28 .2033 Big Sky mine, Montana 10 (7) 3:3 .31 1.07 .2933 Crested wheatgrass, Dave Johnston mine, Wyoming .26 (7) 20:20 .18 1.45 1.05 .0933 Growing on mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico <td></td> <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td>		. ,					
Big Sky mine, Montana 10 (7) 10:10 .26 1.29 1.09 .1736 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1739 Alfalfa Beulah North mine, North Dakota 10 (7) 3:3 .27 1.28 .2236 Dave Johnston mine, Wyoming 10 (7) 3:3 .39 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .22 1.30 .1830 Velva mine, North Dakota 10 (7) 3:3 .26 1.28 .2033 Big Sky mine, Montana 10 (7) 3:3 .31 1.07 .2933 Crested wheatgrass, Dave Johnston mine, Wyoming .26 (7) 20:20 .18 1.45 1.05 .0933 Growing on mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico 11 (7) 6:6 .45 1.17 .4052		. ,					
Big Sky mine, Montana 10 (7) 10:10 .26 1.29 1.09 .1736 Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1739 Alfalfa Beulah North mine, North Dakota 10 (7) 3:3 .27 1.28 .2236 Dave Johnston mine, Wyoming 10 (7) 3:3 .39 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .22 1.30 .1830 Velva mine, North Dakota 10 (7) 3:3 .26 1.28 .2033 Big Sky mine, Montana 10 (7) 3:3 .31 1.07 .2933 Crested wheatgrass, Dave Johnston mine, Wyoming .26 (7) 20:20 .18 1.45 1.05 .0933 Growing on mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico .40 .45 1.17 .4052	White sweetclover						
Utility mine, Saskatchewan 10 (7) 10:10 .26 1.29 1.09 .1739 Alfalfa Beulah North mine, North Dakota 10 (7) 3:3 .27 1.28 .2236 Dave Johnston mine, Wyoming 10 (7) 3:3 .39 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .22 1.30 .1830 Velva mine, North Dakota 10 (7) 3:3 .26 1.28 .2033 Big Sky mine, Montana 10 (7) 3:3 .31 1.07 .2933 Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil 26 (7) 20:20 .18 1.45 1.05 .0933 Growing near mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico Fourwing saltbush 11 (7) 6:6 .45 1.17 .4052		10 (7)	10:10	.26	1.29	1.09	.1736
Beulah North mine, North Dakota 10 (7) 3:3 .27 1.28 .2236 Dave Johnston mine, Wyoming 10 (7) 3:3 .39 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .22 1.30 .1830 Velva mine, North Dakota 10 (7) 3:3 .26 1.28 .2033 Big Sky mine, Montana 10 (7) 3:3 .31 1.07 .2933 Crested wheatgrass, Dave Johnston			10:10	•26	1.29	. 1.09	
Dave Johnston mine, Wyoming 10 (7) 3:3 .39 1.42 .2648 Savage mine, Montana 10 (7) 3:3 .22 1.30 .1830 Velva mine, North Dakota 10 (7) 3:3 .26 1.28 .2033 Big Sky mine, Montana 10 (7) 3:3 .31 1.07 .2933 Crested wheatgrass, Dave Johnston	Alfalfa						
Savage mine, Montana 10 (7) 3:3 .22 1.30 .1830 Velva mine, North Dakota 10 (7) 3:3 .26 1.28 .2033 Big Sky mine, Montana 10 (7) 3:3 .31 1.07 .2933 Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil 26 (7) 20:20 .18 1.45 1.05 .0933 Growing near mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico Fourwing saltbush 11 (7) 6:6 .45 1.17 .4052	Beulah North mine, North Dakota	10 (7)	3:3				
Velva mine, North Dakota 10 (7) 3:3 .26 1.28 .2033 Big Sky mine, Montana 10 (7) 3:3 .31 1.07 .2933 Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil 26 (7) 20:20 .18 1.45 1.05 .0933 Growing near mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico Fourwing saltbush 11 (7) 6:6 .45 1.17 .4052							
Big Sky mine, Montana 10 (7) 3:3 .31 1.07 .2933 Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil 26 (7) 20:20 .18 1.45 1.05 .0933 Growing near mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico Fourwing saltbush 11 (7) 6:6 .45 1.17 .4052		. ,					
Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil 26 (7) 20:20 .18 1.45 1.05 .0933 Growing near mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico Fourwing saltbush 11 (7) 6:6 .45 1.17 .4052							
mine, Wyoming Growing on mine spoil 26 (7) 20:20 .18 1.45 1.05 .0933 Growing near mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico Fourwing saltbush 11 (7) 6:6 .45 1.17 .4052	Big Sky mine, Montana	10 (7)	3:3	.31	1.07		.2933
Growing on mine spoil 26 (7) 20:20 .18 1.45 1.05 .0933 Growing near mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico Fourwing saltbush 11 (7) 6:6 .45 1.17 .4052							
Growing near mine spoil 26 (7) 20:20 .17 1.29 1.05 .1027 San Juan mine, New Mexico Fourwing saltbush 11 (7) 6:6 .45 1.17 .4052		26 (7)	20.20	10	1 4 5	1 05	00 - 33
Fourwing saltbush 11 (7) 6:6 .45 1.174052							
Fourwing saltbush 11 (7) 6:6 .45 1.17 .4052	San Juan mine, New Mexico						
		11 (7)	6:6	.45	1.17		.4052
	Alkali sacaton	11 (7)	6:6	.15	1.20		.1218

TABLE 51.-Sulfur (total) in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLE 51.-Sulfur (total) in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		SOILS				
iceance and Uinta Basins, Colo. and Utah; alluvial, O- to 40-cm depth	12 (5)	10:30	0.067	1.44		<0.08 - 0.15
langing Woman Creek, Mont. A horizon C horizon	14 (5) 14 (5)	4:16 10:16	.041 .11	1.63 2.34	 1.23	<.08728 <.138
orthern Great Plains; North Dakota, South Dakcta, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizor C hcrizon	16 (5) 16 (5)	57:136 72:136	.034 .047	2.64 4.71	 1.58	<.04062 <.040 - 2.0
ig Horn Basin, Wyo., O- to 40-cm depth	17 (5)	8:36				<.08096
ind River Easin, Wyo., O- to 40-cm depth	17 (5)	3:36	.15	1.82		<.08028
an Juan Basin, N. Mex. A horizon	11 (5)	47:47	.10	1.45	1.24	.04742
C horizon	11 (5)	47:47	.14	2.44	1.10	.057 - 3.3
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon C horizon	24 (5) 24 (5)	18:30 18:30	.040 .040	1.42 1.69		<.032065 <.03213
		PLANTS				
Cultivated plants, northern Great Plains (dry-weight basis)						
Barley	21 (7)	18:18	0.15	1.16	1.08	0.12 - 0.22
Oats	21 (7)	21:21	.18	1.12	1.03	.1422
Wheat, durum	21 (7)	20:20	.18	1.13	1.07	.1422
Wheat, hard red spring	21 (7) 21 (7)	54:54 17:17	.18 .15	1.11 1.11	1.07 1.07	.1422 .1319
ative species (dry-weight basis)						
Galleta, San Juan Basin	19 (7)	25:25	.099	1.38	1.06	.0522
Saltbush, fourwing, San Juan Basin	19 (7)	10:10	.30	1.39	1.06	.1554
Snakeweed, San Juan Basin	19 (7)	17:17	.11	1.41	1.07	.0524
Mative species (dry-weight basis) Lichen (<u>Parmelia</u>), Powder River						
Basin, Wyo. and Mont Sagebrush, big; regional study	22 (7)	29:29	.067	1.36	1.19	.0413
Colorado Plateaus Province	23 (7)	30:30	•15	1.29	1.08	.1021
Columbia Plateaus Province	23 (7)	30:30	.16	1.21	1.08	.1322
Basin and Range Province Northern Great Plains	23 (7) 23 (7)	30:30 20:20	.16 .13	1.19 1.27	1.08 1.08	.1121 .1018
Northern Rocky Mountains Province	23 (7)	20:20	.13	1.27	1.08	.0919
Middle Rocky Mountains Province	23 (7)	20:20	.11	1.28	1.08	.0816
Southern Rocky Mountains Province	23 (7)	20:20	.12	1.29	1.08	.0916
Wyoming Basin Province	23 (7)	20:20	.14	1.18	1.08	.1219

SULFUR (TOTAL)

TABLE 52.—Terbium in soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed Range (ppm)	
		SOILS					
an Juan Basin, N. Mex.							
A horizon	11 (2)	2:47				<22 - 29	
C horizon	11 (2)	2:47				<22 - 38	
neppard-Shiprock-Doak Soil Association, N. Mex.							
A horizon	24 (2)	3:30				<22 - 36	
C horizon	24 (2)	6:30	17	1.37		<22 - 31	

TABLE 53.-Thorium in rocks, stream sediments, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (8)	7 9: 80	7.1	1.46	1.21	<3.0 - 16
Shale	1 (8)	80:80	13	1.34	1.11	8.1 - 30
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (8)	24:24	6.3	1.42	1.28	3.4 - 13
Siltstone and shale	2 (8)	24:24	12	1.29	1.23	7.2 - 22
Dark shale	2 (8)	23:23	14	1.25	1.11	9.6 - 23
Northern Great Plains, Fort Union						
Formation						
Fine-grained rocks	3 (8)	50:50	13	1.46	1.31	5.4 - 29
Sandstone	4 (8)	42:42	9.3	1.3	1.14	5.5 - 15
Piceance Creek Basin, Colo.			•			
Green River Formation						
Mahogany zone (upper 100 m)	5 (8)	60:60	8.3	1.33		4.9 - 20
Middle 300 m	5 (8)	43:53	8.7	1.35		<4.4 - 23
Garden Gulch Member (lower 100 m)	5 (8)	32:32	9.0	1.64		4.0 - 37
	STRE	AM SEDIMENT:	3			
orthern Great Plains regional study	6 (8)	57:60	9.4	1.33	1.07	<4.0 - 17
owder River Basin, Wyo. and Mont.						
Size fractions						
>200 µm	7 (8)	18:18	7.5	2.20	1.10	3.5 - 50
100-200 µm	7 (8)	23:23	7.0	1.47	1.04	4.5 - 14
63-100 µm	7 (8)	23:23	7.9	1.58	1.49	4.3 - 20
<63 µm	7 (8)	22:22	15	1.76	1.22	3.9 - 54

TERBIUM, THORIUM

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
fine spoil						
Northern Great Plains Beulah North mine, North Dakota Dave Johiston mine, Wyoming	10 (8) 10 (8)	10:10 10:10	8.7 12	1.23		5.5 - 10 9.5 - 17
Hidden Valley mine, Wyoming Kincaid mine, North Dakota Savage mine, Montana	10 (8) 10 (8) 10 (8)	10:10 10:10 10:10	12 8.7 8.2	1.22 1.22 1.21		7.1 - 15 6.9 - 14 5.2 - 9.9
Velva mine, North DakotaBig Sky mine, Montana Utility mine, Saskatchewan	10 (8) 10 (8) 10 (8)	10:10 10:10 10:10	7.1 8.6 7.7	1.13 1.22 1.17	 	5.7 - 8.3 5.6 - 11 6.3 - 11
San Juan mine, New Mexico	11 (8)	12:12	9.8	1.14	1.14	7.9 - 12
Copsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (8)	12:12	7.7	1.19	1.16	6.0 - 11
		SOILS				
Piceance Creek and Uinta Basins, Colo. and Utah; alluvial, O- to 40-cm depth	12 (8)	30:30	9.3	1.30	1.16	5.4 - 30
Yowder River Basin, Wyo. and Mont. Soil, O- to 2.5-cm depth Soil, 15- to 20-cm depth	20 (8) 20 (8)	48:48 48:48	9.4 9.6	1.26	1.10 1.10	5.3 - 15 5.6 - 15
Hanging Woman Creek, Mont. A horizon	14 (8)	16:16	9.9	1.15	1.12	7.8 - 14
C horizon	14 (8)	16:16	9.9	1.16	1.12	6.9 - 12
liceance Creek Basin, Colo., O- to 5-cm depth	15 (8)	108:108	12	1.23	1.16	6.1 - 19
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Unglaciated area						
A horizon C horizon Glaciated area	16 (8) 16 (8)	88:88 88:88	8.8 8.3	1.20 1.34	k.12 1.27	5.9 - 13 3.7 - 18
A horizon C horizon Combined data, unglaciated and glaciated areas	16 (8) 16 (8)	48:48 48:48	7.7 7.0	1.25 1.35	1.12 1.27	3.0 - 11 3.1 - 14
A horizon C horizon	16 (8) 16 (8)	136:136 136:136	8.4 7.8	1.23 1.36	1.12 1.27	3.0 - 13 3.1 - 18
Big Horn Basin, Wyo., O- to 40-cm depth	17 (8)	36:36	8.5	1.27	1.13	4.3 - 14
Vind River Basin, Wyo., O- to 40-cm depth	17 (8)	36:36	12	1.43	1.10	6.3 - 30
Gan Juan Basin, N. Mex. A horizon C horizon	11 (8) 11 (8)	47:47 47:47	8.2 8.3	1.35 1.38	1.18 1.12	3.9 - 15 3.9 - 16
Sheppard-Shiorock-Doak Soil Association, N. Mex.						
A horizon	24 (8) 24 (8)	30:30 30:30	7.7 7.0	1.25 1.31	1.17 1.15	4.9 - 11 3.9 - 11

TABLE 53.—Thorium in rocks, stream sediments, mine spoil and associated materials, and soils—Continued

THORIUM

TABLE 54.-Thulium in rocks and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed Range (ppm)
		ROCKS				
Core samples						
Northern Great Plains, Fort Union Formation Sandstone	4 (2)	1:42				<2.2 - 3.8
		SOILS				
San Juan Basin, N. Mex. A horizon	11 (2)	1:47				<2.2 - 2.6
Sheppard-Shiprock-Doak Soil Association, N. Mex. A horizon	24 (2)	1:30				<2.2 - 4.6

TABLE 55.-Tin in rocks, stream sediments, mine spoil and associated materials, and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	ROCKS				
1 (18)	80:80	1.1	1.66	1.25	0.18 - 2.4
1 (18)	80:80	1.4	1.69	1.37	.21 - 3.3
2 (18)	24:24	.72	1.89	1.69	.1 - 1.6
2(18)	24:24	1.3	1.94	1.64	.15 - 2.3
2 (18)	23:23	1.3	1.69	1.64	.42 - 2.4
3 (18)	50:50	1.3	1.74	1.41	.11 - 3.1
4 (18)	42:42	1.3	1.40	1.29	.50 - 3.9
5 (18)	39:42	1.7	2.74		<.15 -16
				2.10	.4 -21
- • •					.50 - 4.8
	and method of analysis 1 (18) 1 (18) 2 (18) 2 (18) 2 (18) 3 (18)	and method of analysis ROCKS 1 (18) 80:80 1 (18) 80:80 2 (18) 24:24 2 (18) 24:24 2 (18) 24:24 2 (18) 23:23 3 (18) 50:50 4 (18) 42:42 5 (18) 39:42 5 (18) 48:48	and method of analysis Ratio Ineatt (ppm) ROCKS 1 (18) 80:80 1.1 1 (18) 80:80 1.4 2 (18) 24:24 .72 2 (18) 24:24 1.3 2 (18) 23:23 1.3 3 (18) 50:50 1.3 4 (18) 42:42 1.3 5 (18) 39:42 1.7 5 (18) 48:48 1.6	and method of analysis Ratio Mean (ppm) Devia tion ROCKS 1 (18) 80:80 1.1 1.66 1 (18) 80:80 1.4 1.69 2 (18) 24:24 .72 1.89 2 (18) 24:24 1.3 1.94 2 (18) 23:23 1.3 1.69 3 (18) 50:50 1.3 1.74 4 (18) 42:42 1.3 1.40 5 (18) 39:42 1.7 2.74 5 (18) 48:48 1.6 2.19	and method of analysis Ratio Itean (ppm) Devia tion Error ROCKS 1 (18) 80:80 1.1 1.66 1.25 1 (18) 80:80 1.4 1.69 1.37 2 (18) 24:24 .72 1.89 1.69 2 (18) 24:24 1.3 1.94 1.64 2 (18) 24:24 1.3 1.69 1.64 3 (18) 50:50 1.3 1.74 1.41 4 (18) 42:42 1.3 1.40 1.29 5 (18) 39:42 1.7 2.74 5 (18) 48:48 1.6 2.19 2.10

THULIUM, TIN

•

TABLE 55.-Tin in rocks, stream sediments, mine spoil and associated materials, and soils-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	STRI	EAM SEDIMENTS				
Northern Great Plains regional study	6 (18)	60:60	0.97	1.37	1.27	0.47 ~ 1.5
Powder River Basin, Wyo. and Mont. Size fractions						
100-200 µm	7 (5)	14:24	.17	3.32	1.88	<.1 - 1.6
63-100 µm	7 (5)	21:24	.36	3.73	2.87	<.1 - 1.4
<63 μm	7 (5)	24:24	1.2	1.77	1.14	.44 - 4.7
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
fine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (5)	8:10	0.61	3.48		<0.1 - 2.0
Dave Johnston mine, Wyoming	10 (5)	8:10	.73	3.30		<.1 - 2.5
Hidden Valley mine, Wyoming	10 (5)	10:10	1.4	1.47		.68 - 2.1
Kincaid mine, North Dakota	10 (5)	9:10	.85	2.65		<.1 - 3.7
Savage mine, Montana	10 (5)	8:10	.76	3.20		<.1 - 2.0
Velva mine, North Dakota	10 (5)	9:10	1.1	2.56		<.1 - 3.3
Big Sky mine, Montana	10 (5)	7:10	.56	3.60		<.1 - 1.7
Utility mine, Saskatchewan	10 (5)	7:10	•51	3.36		<.1 - 1.8
San Juan mine, New Mexico	11 (5)	12:12	1.9	1.27	1.29	1.4 - 2.8
Topsoil used in spoil reclamation				2.07		
San Juan πine, New Mexico	11 (5)	11:12	1.1	2.24	1.60	<.2 - 2.6
		SOILS				
Piceance Creek and Uinta Basins, Colo. and Utah; alluvial, O- to 40-cm depth	12 (5)	30:30	1.3	1.22	1.20	0.71 - 1.8
Hanging Woman Creek, Mont. A horizon	14 (5)	16.16	1 1	1.40	1.34	.69 - 2.0
C horizon	14 (5) 14 (5)	16:16 16:16	1.1 1.2	1.40	1.34	.67 - 1.7
Piceance Creek Basin, Colo., O- to 5-cm						
depth	15 (5)	92:108	.82	3.90	2.99	<.11 -11
Northern Great Plains; North Dakota, South Dakcta, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A hcrizon	16 (5)	129:136	.86	1.86	1.51	<.10 - 5.6
C horizon	16 (5)	128:136	.94	1.94	1.44	<.10 - 4.8
Big Horn Basin, Wyo., 0- to 40-cm depth	17 (5)	34:36	•72	2.15	2.27	<.10 - 1.8
Wind River Easin, Wyo., O- to 40-cm depth	17 (5)	32:36	.81	2.61	2.43	<.10 - 2.8
San Juan Basin, N. Mex.	11 (5)	24.47	10	2 (0	0.04	< 20 L 5
A horizon C horizon	11 (5) 11 (5)	34:47 39:47	.43 .62	2.68 2.55	2.04 1.66	<.20 - 1.5 <.20 - 2.7
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (5)	24:30	.76	3.33	2.06	<.20 - 2.7
	24 (5)	22:30	.75			<.20 - 5.4

TABLE 56.—Titanium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard error. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
utcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone	1 (5)	80:80	2,300	1.47	1.06	790 - 3,900
Shale	1 (5)	80:80	3,400	1.35	1.05	1,900 - 8,900
Core samples						
Hanging Woman Creek, Mont.	0.45	04 04	0.000	1 20	1 00	1 000 / 500
Sandstone	2 (5)	24:24	2,900	1.29	1.08	1,900 - 4,500
Siltstone and shaleDark shale	2 (5)	24:24	4,000	1.10 1.11	1.02 1.04	3,200 - 4,500 3,400 - 4,600
Valk Snale	2 (5)	23:23	4,100	1.11	1.04	3,400 - 4,000
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (5)	50:50	3,800	1.16	1.03	2,500 - 4,700
Sandstone	4 (5)	42:42	2,600	1.20	1.04	1,700 - 4,400
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (5)	74:74	1,700	1.31	1.09	630 - 2,900
Middle 300 m	5 (5)	51:51	1,400	1.39	1.05	490 - 4,500
Garden Gulch Member (lower 100 m)	5 (5)	32:32	2,700	1.28		1,200 - 3,600
	STR	EAM SEDIMENT	rs			
Northern Great Plains regional study						
First-order streams	6 (5)	20:20	3,200	1.12	1.04	2,600 - 4,100
Second-order streams	6 (5)	20:20	3,300	1.17	1.04	2,700 - 4,500
Third-order streams	6 (5)	20:20	3,600	1.21	1.02	2,300 - 4,800
Powder River Basin, Wyo. and Mont.						
Size fractions						
>200 µm	7 (5)	19:19	1,100	1.88	1.42	500 - 3,100
100-200 μm	7 (5)	24:24	1,400	1.38	1.06	900 - 3,500
63-100 μm	7 (5)	24:24	2,400	1.49 1.48	1.05 1.03	1,400 - 7,200 2,600 - 12,000
<63 µm	7 (5)	24:24	4,600	1.48	1.03	2,000 -12,000
Jinta and Piceance Creek Basins,	0 ())	22.20	2.200	1 (0	1 20	1 000 5 000
Colo. and Utah	8 (1)	32:32	2,200	1.49	1.30	1,000 - 5,000
Piceance Creek Basin, Colo.						
Roan and Black Sulphur Creeks	9 (1)	32:32	2,100	1.63	1.28	1,000 - 5,000
	MINE SPOIL AN	ID ASSOCIATE	D MATERIALS			
fine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (5)	10:10	3,400	1.07		3,100 - 3,700
Dave Johnston mine, Wyoming	10 (5)	10:10	2,500	1.18		2,000 - 3,300
Hidden Valley mine, Wyoming	10 (5)	10:10	3,800	1.15		2,800 - 4,400
Kincaid mine, North Dakota	10 (5)	10.10	3,000	1.22		2,100 - 4,000
Savage mine, Montana	10 (5)	10:10	2,500	1.10		2,000 - 2,70

TITANIUM

-

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	CIATED MAT	ERIALSConti	nued		
fine spoilContinued						
Northern Great PlainsContinued						
Velva mine, North Dakota	10 (5)	10:10	2,700	1.07		2,300 - 3,000
Big Sky mine, Montana	10 (5)	10:10	2,700	1.09		2,300 - 3,000
Utility mine, Saskatchewan	10 (5)	10:10	2,400	1.19		1,700 - 3,500
San Juan mine, New Mexico	11 (5)	12:12	2,700	1.14	1.04	2,100 - 3,200
Copsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (5)	12:12	2,300	1.05	1.04	2,100 - 2,500
Plants (dry-weight basis)						
Northern Great Plains Yellow sweetclover						
Beulat North mine, North Dakota	10 (2)	10:10	6.5	2.36	1.62	1 - 21
Dave Johnston mine, Wyoming	10 (2)	7:7	9.6	1.66	1.62	5 - 22
Hidder Valley mine, Wyoming	10 (2)	10:10	74	1.83	1.62	28 - 202
Kincaid mine, North Dakota	10 (2)	10:10	24	1.95	1.62	5 - 50
Savage mine, Montana	10 (2)	9:9	4.4	2.80	1.62	1 - 19
Velva mine, North Dakota	10 (2)	10:10	7.5	2.48	1.62	3 - 42
White sweetclover						
Big Sky mine, Montana	10 (2)	10:10	15	1.83	1.62	6 - 29
Utility mine, Saskatchewan	10 (2)	10:10	9.2	1.92	1.62	4 - 23
Alfalfa						
Beulah North mine, North Dakota	10 (2)	3:3	24	3.08		8 - 79
Dave Johnston mine, Wyoming	10 (2)	3:3	43	1.45		29 - 59
Savage mine, Montana	10 (2)	3:3	30	1.48		21 - 46
Velva mine, North Dakota	10 (2)	3:3	25	3.43		11 - 103
Big Sky mire, Montana	10 (2)	3:3	21	1.16		18 - 24
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (2)	20:20	26	1.79	1.28	11 - 74
Growing near mine spoil	26 (2)	20:20	16	2.12	1.28	3 - 50
San Juan mine, New Mexico						
Fourwing saltbush	11 (2)	6:6	43	1.50		25 - 64
Alkali sacaton	11 (2)	6:6	16	2.59		5.3 - 44
		SOILS				
Piceance Creek and Uinta Basins,						
Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (5)	30:30	*2,700	*310	*51	700 - 4,200
Powder River Basin, Wyo. and Mont.						
A horizon	13 (5)	64:64	*2,800	*710	*290	1,300 - 4,100
B horizon	13 (5)	64:64	*2,900	*680	*200	1,200 - 4,300
C horizon	13 (5)	64:64	*2,800	*890	*260	820 - 4,200
Hanging Woman Creek, Mont.						
A horizon	14 (5)	16:16	*3,000	*370	*140	2,500 - 3,600
C horizon	14 (5)	16:16	*2,900	*480	*90	1,700 - 3,400

TABLE 56.-Titanium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TITANIUM

TABLE 56.-Titanium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	S011	SContinue	•d			
Piceance Creek Basin, Colo., O- to 5-cm depth	15 (5)	108:108	2,800	1.20		1,500 - 3,800
Northern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon	16 (5)	136:136	*2,500	*2 30	*200	1,100 - 3,700
C horizon	16 (5)	136:136	*2,500	*580	*140	710 - 3,800
ig Horn Basin, Wyo., O- to 40-cm depth	17 (5)	36:36	2,600	1.22	1.05	1,600 - 3,800
ind River Basin, Wyo., O- to 40-cm						
depth	17 (5)	36:36	2,200	1.22	1.07	1,500 - 3,200
an Juan Basin, N. Mex.						
A horizon	11 (5)	47:47	2,100	1.38	1.06	910 - 4,000
C horizon	11 (5)	47:47	2,200	1.41	1.05	880 - 3,800
heppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (5)	30:30	2,200	1.23	1.06	1,500 - 3,000
C horizon	24 (5)	30:30	1,800	1.31	1.19	990 - 3,000
		PLANTS				
Cultivated plants, northern Great Plains (dry-weight basis)						
Barley	21 (1)	17:18	0.32	2.09	1.18	<0.09 - 1.6
Oats	21 (1)	17:21	.24	2.16	1.02	<.11 - 1.4
Wheat, durum Wheat, hard red spring	21(1)	20:20	.17 .20	1.66 2.03	1.66 1.33	.07940 <.07 - 1.4
Wheat, hard red winter	$21 (1) \\ 21 (1)$	53:54 16:17	.11	1.47	1.33	<.0619
ative species (dry-weight basis)						
Galleta, San Juan Basin	19 (2)	25:25	46	2.01	1.22	8.6 - 170
Saltbush, fourwing, San Juan Basin	19 (2)	10:10	10	2.06	1.23	3.5 - 29
Snakeweed, San Juan Basin	19 (2)	18:18	31	2.06	1.23	5.5 - 75
ative species (ash-weight basis)						
Lichen (<u>Parmelia</u>), Powder River Basin, Wyo. and Mont	22 (1)	2 9: 29	1,700	1.44	1.12	1,000 - 3,000
Sagebrush, big; Powder River Basin,						0.00
Wyo. and Mont	20 (1)	41:41	1,000	1.54	1.38	200 - 2,000
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (1)	30:30	520	1.96	1.22	200 - 1,500
Columbia Plateaus Province	23 (1)	30:30	1,500	1.62 1.79	1.20 1.22	700 - 5,000 300 - 1,500
Basin and Range Province Northern Great Plains	23 (1) 23 (1)	30:30 20:20	670 520	1.79	1.22	300 - 2,000
Northern Rocky Mountains Province	23 (1)	20:20	550	1.77	1.19	200 - 1,500
Middle Rocky Mountains Province	23 (1)	20:20	630.	1.91	1.19	300 - 2,000
Southern Rocky Mountains Province	23 (1)	20:20	480	1.81	1.19	200 - 1,000
Wyoming Basin Province	23 (1)	20:20	750	1.76	1.19	300 - 1,500

TABLES 4-77

TABLE 57.-Uranium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation.

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed Range (ppm)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone	1 (8)	80:80	2.7	1.41	1.05	1.4 - 9.0
Shale	1 (8)	80:80	4.1	1.49	<1.04	2.6 - 10
core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (8)	24:24	2.2	1.30	1.09	1.6 - 3.4
Siltstone and shale	2 (8)	24:24	4.1	1.42	1.21	2.9 - 7.8
Dark shale	2 (8)	23:23	4.5	1.34	1.05	3.4 - 11
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (8)	50:50	3.7	1.31	1.08	2.4 - 9.3
Sandstone	4 (8)	42:42	2.7	1.40	1.04	1.3 - 5.5
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (8)	74:74	4.9	1.35	1.04	2.7 - 11
Middle 300 m	5 (8)	47:53	4.3	1.48		<1.6 - 12
Garden Gulch Member (lower 100 m)	5 (8)	32:32	5.9	1.68		2.0 - 15
	STRI	EAM SEDIMENTS				
Northern Great Plains regional	····					
study	6 (8)	60:60	3.4	1.38	1.14	2.2 - 12
Powder River Basin, Wyo. and Mont. Size fractions						
>200 µm	7 (8)	19:19	3.2	1.95	1.32	1.4 - 20
100-200 µm	7 (8)	24:24	2.0	1.31	1.05	1.3 - 4.7
63-100 µm	7 (8)	24:24	2.8	1.34	1.01	1.7 - 5.5
<63 µm	7 (8)	24:24	5.6	1.88	1.02	1.7 - 22
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
				<u></u>	·····	
Mine spoil Northern Great Plains						
Beulah North mine, North Dakota	10 (8)	10:10	3.0	1.17		2.3 - 3.7
Dave Johnston mine, Wyoming	10 (8)	10:10	5.6	1.34		2.4 - 10
Hidden Valley mine, Wyoming	10 (8)	10:10	5.1	1.09		4.3 - 5.7
Kincaid mine, North Dakota	10 (8)	10:10	3.3	1.29		1.8 - 4.7
Savage mine, Montana	10 (8)	10:10	3.6	1.26		2.8 - 5.1
Velva mine, North Dakota	10 (8)	10:10	2.7	1.13		2.1 - 3.3
Big Sky mine, Montana	10 (8)	10:10	3.5	1.19		2.3 - 4.3
Utility mine, Saskatchewan	10 (8)	10:10	2.7	1.22		2.1 - 4.3
San Juan mine, New Mexico	11 (8)	12:12	4.1	1.17	1.03	3.4 - 5.6
Topsoil used in spoil reclamation						

TABLE 57.-Uranium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	DCIATED MATER	IALSContinu	ed		
lants (dry-weight basis)						
Northern Great Plains						
Alfalfa Beulah North mine, North Dakota	10 (13)	2:3	0.035	1.98		<0.02 - 0.068
Dave Johnston mine, Wyoming	10 (13)	3:3	.200	1.87		.133403
Savage mine, Montana	10 (13)	3:3	.048	1.45		.036073
Velva mine, North Dakota	10 (13)	3:3	.086	1.20		.071103
Big Sky mine, Montana	10 (13)	3:3	.037	1.27		.030048
Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil	26 (13)	19:20	.062	2.95	1.35	<.02855
Growing near mine spoil	26 (13)	9:20	.021	1.94	1.35	<.021067
San Juan mine, New Mexico Fourwing saltbush	11 (13)	6.6	11	1.27	~-	.07213
Alkali sacaton	11 (13) 11 (13)	6:6 6:6	.11 .13	1.27		.1016
** **********************************		SOILS				
			<u> </u>			
iceance Creek and Uinta Basins, Colo.	12 (9)	30.30	3 5	1 22	1 1 2	24-6
and Utah; alluvial, 0- to 40-cm depth	12 (8)	30:30	3.5	1.22	1.12	2.4 - 6
owder River Basin, Wyo. and Mont.			100	47 FF	47 10	10 (0
A horizonB horizon	13 (22)	63:63	*20	*7.55 *8.12	*7.13 *6.70	10 - 40 <10 - 40
C horizon	13 (22) 13 (22)	61:64 62:64	*17 *19	*6.50	*6.50	<10 - 40 <10 - 40
	15 (22)	02101	.,		0000	
owder River Basin, Wyo. and Mont.	20 (8)	(9. (9	3 0	1.28	1 03	1.7 - 7.0
Soil, 0- to 2.5-cm depth Soil, 15- to 20-cm depth	20 (8) 20 (8)	48:48 48:48	3.0 3.0	1.28	1.03 1.03	2.2 - 7.0
anging Woman Creek, Mont.						
A horizon	14 (8)	16:16	3.0	1.13	1.06	2.5 - 3.9
C horizon	14 (8)	16:16	3.4	1.21	1.05	2.4 - 4.6
iceance Creek Basin, Colo., O- to 5-cm						
depth	15 (8)	108:108	3.3	1.21	1.05	1 .9 - 5.4
orthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana						
Unglaciated area A horizon	16 (8)	88:88	2.5	1.23	1.04	1.4 - 4.9
C horizon	16 (8)	88:88	2.8	1.41	1.06	1.5 - 11
Glaciated area						
A horizon	16 (8)	48:48	2.0	1.21	1.04	1.1 - 2.9
C horizon	16 (8)	48:48	2.2	1.42	1.06	.69 - 5.2
Combined data, unglaciated and glaciated areas						
A horizon	16 (8)	136:136	2.3	1.25	1.04	1.1 - 4.9
C horizon	16 (8)	136:136	2.6	1.44	1.06	.69 - 11
ig Horn Basin, Wyo., O- to 40-cm depth	17 (8)	36:36	2.7	1.25	1.05	1.7 - 4.5
ind River Basin, Wyo., 0- to 40-cm						
depth	17 (8)	36:36	2.8	1.20	1.05	2.2 - 4.5
an Juan Basin, N. Mex.						
A horizon	11 (8)	47:47	2.5	1.30	1.06	1.3 - 5.1
A 10112011	11 (0)	-//	2	100	1.00	1.0 0.0

144

TABLE 57.-Uranium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOII	.SContinued				
Sheppard-Shipcock-Doak Soil Association,						
N. Mex.	- / /->					
A horizon	24 (8)	30:30	2.2	1.22	1.08	1.5 - 3.2
C horizon	24 (8)	30:30	1.9	1.28	1.06	1.1 - 3.0
		PLANTS				
Native species (drv-weight basis)						
Galleta, San Juan Basin	19 (13)	25:25	0.089	1.53	1.10	0.040 - 0.19
Saltbush, fourwing, San Juan Basin	19 (13)	4:10	.044	1.36	1.07	<.034072
Snakeweed, San Juan Basin	19 (13)	17:18	.11	1.66	1.12	<.02921
Native specie; (ash-weight basis)						
Lichen (Parnelia), Powder River						
Basin, Wys. and Mont	22 (13)	28:29	1.3	2.42	1.17	<.4 - 7.0
Sagebrush, big Powder River Basin,						
Wyo. and Mont	20 (13)	28:41	.56	2.05	1.49	<.4 - 3.5
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (13)	10:30	.29	2.08		<.4 - 1.4
Columbia Plateaus Province	23 (13)	8:30	.30	1.50		<.48
Basin and Range Province	23 (13)	3:30	<.4			<.44
Northern Great Plains	23 (13)	8:20	.28	3.21		<.4 - 4.6
Northern Rocky Mountains Province	23 (13)	6:20	.24	2.25		<.4 - 1.4
Middle Rocky Mountains Province	23 (13)	5:20	.27	1.58		<.48
Southern Rocky Mountains Province	23 (13)	2:20	<.4			<.48
Wyoming Basin Province	23 (13)	11:20	.42	2.25		<.4 - 4.4

TABLE 58.-Vanadium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia - tion	Error	Observed Range (ppm)
	• • • • • • • • • • • • • • • • • • • •	ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (2)	79:8 0	46	1.68	1.28	<18 - 110
Shale	1 (2)	80:80	97	1.51	1.21	39 - 230
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	59	1.50	1.09	33 - 110
Siltstone and shale	2 (2)	24:24	130	1.28	1.14	85 - 190
Dark shale	2 (2)	23:23	150	1.17	1.08	110 - 190

URANIUM, VANADIUM

TABLE 58.—Vanadium in rocks, stream sediments, mine spoil and associated materials, soils, and plants—Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	ROCH	(SContinued				
ore samplesContinued						
Northern Great Plains, Fort Union Formation						
Fine-grained rocksSandstone	3 (2) 4 (2)	50:50 42:42	86 75	1.47 1.50	1.15	32 - 150 38 - 180
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	74	1.41	1.31	3.7 - 150
Middle 300 mGarden Gulch Member (lower 100 m)	5 (2) 5 (2)	53:53 264:264	91 130	1.50 1.37	1.24	15 - 180 50 - 300
	STRI	EAM SEDIMENTS				
orthern Great Plains regional study	6 (2)	60:60	73	1.34	1.16	27 - 140
owder River Basin, Wyoming and Montana Size fractions						
>200 µm	7 (1)	24:24	5ż	2.35	1.58	15 - 200
100-200 µm	7 (1)	24:24	37	1.57	1.18	20 - 150
63-100 μm <63 μm	7 (1) 7 (1)	24:24 24:24	54 92	1.41 1.46	1.29 1.24	30 - 150 50 - 300
inta and Piceance Creek Basins Colo. and Utah	8 (1)	32:32	99	1.35	1.25	70 - 200
coro. and oran	8 (1)	52.52	,,	1.55	1.25	70 200
iceance Creek Basin, Colorado Roan and Black Sulphur Creeks	9 (1)	32:32	70	1.37	1.16	50 - 150
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
ine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (2)	10:10	78	1.28		50 - 110
Dave Johnnston mine, Wyoming	10 (2)	10:10	73	1.29		51 - 120
Hidden Valley mine, Wyoming Kincaid mine, North Dakota	10 (2) 10 (2)	10:10 10:10	76 63	1.40 1.40		36 - 110 40 - 100
Savage mine, Montana	10(2) 10(2)	10:10	61	1.34		32 - 93
Velva mine, North Dakota	10(2) 10(2)	10:10	68	1.26		44 - 94
Big Sky mine, Montana	10(2)	10:10	50	1.27		37 - 71
Utility mine, Saskatchewan	10 (2)	10:10	62	1.24		42 - 86
San Juan mine, New Mexico	11 (2)	12:12	56	1.26	1.06	38 - 78
opsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (2)	12:12	45	1.08	1.09	40 - 50
lants (dry-weight basis)						
Northern Great Plains			,			
Yellow sweetclover Beulah North mine, North Dakota	10 (2)	9: 10	.38	1.45	1.25	< . 27 - . 76
Dave Johnston mine, Wyoming	10 (2)	9:10	•54	1.34	1.25	.3474
Hidden Valley mine, Wyoming	10(2) 10(2)	9:9 9:10	1.9	2.44	1.25	<.3 - 4.9
Kincaid mine, North Dakota	10 (2)	8:8	.9	1.71	1.25	.4 - 2.0
			• •			
Savage mine, Montana	10 (2)	4:9	.25	1.70	1.25	< . 27 - . 54

TABLE 58 - Vanadium in roche stream codimente	, mine spoil and associated materials, soils, and plants-Continued
TABLE 55.— Vanadium in rocks, stream seatments,	, mine spou and associated materials, sous, and plants-Continued

MIN "lants (dry-weight basis)Continued Northern Great PlainsContinued White sweetclover Big Sky mine, Montana Utility mine, Saskatchewan Alfalfa Beulah North mine, North Dakota Dave Johnston mine, Wyoming Savage mine, Montana	$\begin{array}{cccc} & 10 & (2) \\ \hline & 26 & (2) \\ \hline & 26 & (2) \\ \hline & 11 & (2) \end{array}$	8:8 8:10 1:3 3:3 1:2 1:3 19:20 14:20 6:6 6:6	0.50 .35 <1.4 1.5 <1.4 .82 .63	1.23 1.51 1.12 1.36 1.11	1.25 1.25 	0.42 - 0.77 $<.2775$ $<1.4 - 2.3$ $1.4 - 1.8$ $<1.4 - 1.8$ $<1.4 - 5.2$ $<.69 - 1.5$ $<.5298$
Northern Great PlainsContinued White sweetclover Big Sky mine, Montana Utility mine, Saskatchewan Alfalfa Beulah North mine, North Dakota Dave Johnston mine, Wyoming Savage mine, Montana Velva mine, North Dakota Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil	$\begin{array}{cccc} & 10 & (2) \\ \hline & 26 & (2) \\ \hline & 26 & (2) \\ \hline & 11 & (2) \end{array}$	8:10 1:3 3:3 1:2 1:3 19:20 14:20 6:6	.35 <1.4 1.5 <1.4	1.51 1.12 	1.25 	<.2775 <1.4 - 2.3 1.4 - 1.8 <1.4 - 1.8 <1.4 - 5.2 <.69 - 1.5
<pre>White sweetclover Big Sky mine, Montana Utility mine, Saskatchewan Alfalfa Beulah North mine, North Dakota Dave Johnston mine, Wyoming Savage mine, Montana Velva mine, North Dakota Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltoush</pre>	$\begin{array}{cccc} & 10 & (2) \\ \hline & 26 & (2) \\ \hline & 26 & (2) \\ \hline & 11 & (2) \end{array}$	8:10 1:3 3:3 1:2 1:3 19:20 14:20 6:6	.35 <1.4 1.5 <1.4	1.51 1.12 	1.25 	<.2775 <1.4 - 2.3 1.4 - 1.8 <1.4 - 1.8 <1.4 - 5.2 <.69 - 1.5
Utility mine, Saskatchewan Alfalfa Beulah North mine, North Dakota Dave Johnston mine, Wyoming Savage mine, Montana Velva mine, North Dakota Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltoush	$\begin{array}{cccc} & 10 & (2) \\ \hline & 26 & (2) \\ \hline & 26 & (2) \\ \hline & 11 & (2) \end{array}$	8:10 1:3 3:3 1:2 1:3 19:20 14:20 6:6	.35 <1.4 1.5 <1.4	1.51 1.12 	1.25 	<.2775 <1.4 - 2.3 1.4 - 1.8 <1.4 - 1.8 <1.4 - 5.2 <.69 - 1.5
Beulah North mine, North Dakota Dave Johnston mine, Wyoming Savage mine, Montana Velva mine, North Dakota Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltbush	$\begin{array}{cccc} - & 10 & (2) \\ - & 10 & (2) \\ - & 10 & (2) \\ - & 26 & (2) \\ - & 26 & (2) \\ - & 11 & (2) \\ \end{array}$	3:3 1:2 1:3 19:20 14:20 6:6	1.5 <1.4 .82	1.12 		1.4 - 1.8 < $1.4 - 1.8$ < $1.4 - 5.2$ <.69 - 1.5
Dave Johnston mine, Wyoming Savage mine, Montana Velva mine, North Dakota Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltoush	$\begin{array}{cccc} - & 10 & (2) \\ - & 10 & (2) \\ - & 10 & (2) \\ - & 26 & (2) \\ - & 26 & (2) \\ - & 11 & (2) \\ \end{array}$	3:3 1:2 1:3 19:20 14:20 6:6	1.5 <1.4 .82	1.12 		1.4 - 1.8 < $1.4 - 1.8$ < $1.4 - 5.2$ <.69 - 1.5
Savage mine, Montana Velva mine, North Dakota Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltbush	$\begin{array}{cccc} - & 10 & (2) \\ - & 10 & (2) \\ - & 26 & (2) \\ - & 26 & (2) \\ - & 11 & (2) \\ \end{array}$	1:2 1:3 19:20 14:20 6:6	<1.4 .82	 1.36		<1.4 - 1.8 <1.4 - 5.2 <.69 - 1.5
Velva mine, North Dakota Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltbush	- 10 (2) - 26 (2) - 26 (2) - 11 (2)	1:3 19:20 14:20 6:6	<1.4 .82			<1.4 - 5.2
Crested wheatgrass, Dave Johnston mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltoush	- 26 (2) - 26 (2) - 11 (2)	1 9: 20 14:20 6:6	.82	1.36		<.69 - 1.5
mine, Wyoming Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltoush	- 26 (2) - 11 (2)	14:20 6:6				
Growing on mine spoil Growing near mine spoil San Juan mine, New Mexico Fourwing saltoush	- 26 (2) - 11 (2)	14:20 6:6				
Growing near mine spoil San Juan mine, New Mexico Fourwing saltoush	- 26 (2) - 11 (2)	6:6	.63	1.11		<.5298
Fourwing saltoush						
Alkali sacaton	- 11 (2)	6:6	1.9	1.27		1.5 - 2.7
		•	.94	1.47		.62 - 1.4
		SOILS				

iceance Creek and Uinta Basins, Colo. and Utah; alluvial, O- to 40-cm depth	- 12 (2)	30:30	68	1.31	1.13	41 - 110
owder River Basin, Wyo. and Mont.			<i>(</i> -	1 ()		20 150
A horizon		64:64	65	1.62	1.21	30 - 150
B horizon		64:64	78	1.47	1.28 1.22	30 - 150 30 - 200
C HOLTZON	- 13 (1)	64:64	72	1.79	1.22	50 - 200
owder River Basin, Wyo. and Mont.		10.10			,	20 150
Soil, 0- to 2.5-cm depth		48:48	77	1.36	1.21	30 - 150
Soil, 15- to 20-cm depth	- 20 (1)	48:48	87	1.39	1.23	50 - 150
anging Woman Creek, Mont.	.,					10 10-
A horizon	• •	16:16	87	1.27	1.13	49 - 120
C horizon	- 14 (2)	16:16	79	1.37	1.23	40 - 120
iceance Creek Basin, Colo., O- to 5-cm						
depth	- 15 (2)	108:108	56	1.58	1.34	7.5 - 120
orthern Great Plains; North Dakota, South Dakcta, Wyoming, and Montana						
Unglaciated area						
A horizon	- 16 (2)	88:88	52	1.35	1.25	20 - 96
C horizon		88:88	50	1.43	1.18	19 - 100
Glaciated area						
A horizon	,	48:48	58	1.33	1.25	24 - 89
C horizon Combined data, unglaciated and	- 16 (2)	48:48	64	1.45	1.18	24 - 150
glaciated areas						
A horizor		136:136	54	1.35	1.25	20 - 96
C horizon	- 16 (2)	136:136	54	1.46	1.18	19 - 150
ig Horn Basin, Wyo., O- to 40-cm depth-	- 17 (2)	36:36	68	1.34	1.09	40 - 110
nd River Basin, Wyo., O- to 40-cm						
depth	- 17 (2)	36:36	48	1.32	1.11	23 - 110

VANADIUM

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SO	ILSContinued				
an Juan Basin, N. Mex.						
A horizon	11 (2)	47:47	41	1.49	1.09	15 - 94
B horizon	11 (2)	47:47	44	1.55	1.14	15 - 97
heppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (2)	30:30	28	1.21	1.09	20 - 42
C horizon	24 (2)	30:30	28	1.40	1.09	14 - 53
		PLANTS				
lative species (dry-weight basis)						
Galleta, San Juan Basin	19 (2)	25:25	1.3	1.47	1.12	0.063 - 2.7
Saltbush, fourwing, San Juan Basin	19 (2)	10:10	.70	1.50	1.13	.40 - 1.2
Snakeweed, San Juan Basin	19 (2)	18:18	1.1	1.63	1.16	.49 - 2.1
lative species (ash-weight basis)						
Lichen (Parmelia), Powder River Basin, Wyo. and Mont	22 (1)	29:29	58	1.31	1.15	30 - 70
Basin, wyo. and Mont	22 (1)	29:29	30	1.51	1.15	30 - 70
Sagebrush, big; Powder River Basin,						
Wyo. and Mont	20 (1)	41:41	31	1.93	1.39	15 - 70
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (1)	14:30	8.1	1.69	1.27	<10 - 20
Columbia Plateaus Province	23 (1)	30:30	33	1.91	1.36	15 - 100
Basin and Range Province	23 (1)	19:30	12	1.86	1.27	<10 - 50
Northern Great Plains	23 (1)	7:20	8.2	1.93	1.17	<15 - 70
Northern Rocky Mountains Province	23 (1)	8:20	10	1.77	1.17	<15 - 50
Middle Rocky Mountains Province	23 (1)	10:20	12	1.75	1.17	<15 - 50
Southern Rocky Mountains Province	23 (1)	7:20	10	1.42	1.17	<15 - 20
Wyoming Basin Province	23 (1)	13:20	14	1.70	1.17	<15 - 50

TABLE 58.-Vanadium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

TABLE 59.-Ytterbium in rocks, stream sediments, mine spoil and associated materials, soils and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				
utcrop samples						
utcrop samples Northern Great Plains, Fort Union Formation						

148

149

TABLE 59.--Ytterbium in rocks, stream sediments, mine spoil and associated materials, soils and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	ROCK	(SContinued				
Core samples						
Hanging Womand Creek, Mont.						
Sandstone	2 (2)	24:24	1.8	1.66	1.54	0.68 - 3.4
Siltstone and shale	2 (2)	24:24	4.0	1.10	1.09	3.4 - 4.8
Dark shale	2 (2)	23:23	4.0	1.10	1.09	3.4 - 4.8
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (2)	50 : 50	2.9	1.31	1.19	1.4 - 5.1
Sandstone	4 (2)	42:42	2.1	1.30	1.15	1.2 - 4.3
Piceance Creek Easin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	1.4	1.37	1.14	86 - 3.5
Middle 300 m	5 (2)	52:53	1.3	1.32	1.15	<.9 - 2.3
Garden Gulch Member (lower 100 m)	5 (2)	178:264	1.9	1.31		<2 - 5
	STRE	EAM SEDIMENTS				
Northern Great Plains regional study	6 (2)	60:60	3.0	1.35	1.29	1.3 - 7.8
Powder River Basin, Wyo. and Mont. Size Fraction						
>200 µm	7 (1)	24:24	2	1.53	1.30	1 - 3
100-200 μm	7 (1)	24:24	2	1.45	1.18	1 - 3
63-100 μm	7 (1)	24:24	2	1.54	<1.01	1.5 - 7
<63 µm	7 (1)	24:24	6	1.76	1.33	3 - 20
linta and Piceance Creek Basins, Colo. and Utah						
Asphalt Wash, Utah	8 (1)	8:8	2.5	1.32		1.5 - 3
Cottonwood Creek, Utah	8 (1)	8:8	3.1	1.53		2 - 5
Duck Creek, Colo	8 (1)	8:8	2.1	1.26		1.5 - 3
Ryan Gulch, Colo	8 (1)	8:8	2.9	1.15		2 - 3
Piceance Creek Basin, Colo. Roan and Black Sulphur Creeks	9(1)	32:32	2.0	1.38	1.27	1.5 - 3
·	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
Aine spoil						
Northern Great Plains Roulab North mine, North Dekaterreger	10 (2)	10.10	2 1	1 25		1.1 - 3.1
Beulah North mine, North Dakota Dave Johnston mine, Wyoming	10 (2) 10 (2)	10:10 10:10	2.1 1.8	1.35 1.51		1.0 - 3.2
Hidden Valley mine, Wyoming	10(2) 10(2)	10:10	2.5	1.32		1.0 - 3.2 1.4 - 3.7
Kincaid mine, North Dakota	10 (2)	10:10	2.0	1.33		1.2 - 2.7
Savage mine, Montana	10 (2)	10:10	1.8	1.41		.93 - 3.2
Velva mine, North Dakota	10 (2)	10:10	1.4	1.44		.70 - 2.1
Big Sky mine, Montana	10 (2)	10:10	2.7	1.75		1.2 - 9.5
Utility mine, Saskatchewan	10 (2)	10:10	1.6	1.36		1.0 - 2.4
San Juan mine, New Mexico	11 (2)	12:12	1.6	1.25	1.15	1.1 - 2.5
Copsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (2)	12:12	1.6	1.10	1.10	1.3 - 1.8

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MIN	E SPOIL AND ASSO	DCIATED MATER	IALSContinu	ed		
Plants (dry-weight basis)						
San Juan mine, New Mexico Alkali sacaton	11 (2)	3:6	0.046	1.51		<.038060
		SOILS				
iceance Creek and Unita Basins,						
Colo. and Utah; alluvial,	12 (2)	20.20	2.4	1 1 9	1 1 2	1 4 - 4 6
0- to 40-cm depth	12 (2)	30:30	2.6	1.18	1.13	1.4 - 4.6
owder River Basin, Wyo. and Mont.						
A horizon		64:64	2.1	1.40	1.33	1 - 7
B horizonC horizon		64:64 64:64	1.9	1.37 1.38	1.37 1.16	1 - 3 <1 - 3
	13 (2)	04.04	1.0	1.30	1.10	1 - 1
owder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm		47:47	1.8	1.31	1.29	1 - 5
Soil, 15- to 20-cm depth	20 (1)	48:48	1.8	1.30	1.29	1 - 5
anging Woman Creek, Mont.						
A horizon		16:16	3.2	1.26	1.17	1.9 - 4.5
C horizon	14 (2)	16:16	3.0	1.29	1.29	1.7 - 4.0
iceance Creek Basin, Colo., O- to 5-cm						
depth	- 15 (2)	108:108	16	1.52	1.34	4.9 - 36
lorthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Unglaciated area						
A horizon	· 16 (2)	88:88	2.5	1.45	1.43	.78 - 5.8
Glaciated area A horizon	- 16 (2)	48:48	2.2	1.31	1.43	1.2 - 4.6
Combined data, unglaciated and glaciated areas		40.40	2	1.51	1.45	1.2 4.0
A horizon		136:136	2.4	1.41	1.43	.78 - 5.8
C horizon	16 (2)	136:136	2.1	1.49	1.34	.57 - 4.7
ig Horn Basin, Wyo., O- to 40-cm						
depth	- 17 (2)	36:36	2.7	1.33	1.11	1.2 - 4.3
and Divor Pooin Une On the 40-and						
<pre>/ind River Basin, Wyo., 0- to 40-cm depth</pre>	- 17 (2)	36:36	2.2	1.49	1.70	.80 - 6.3
	(-)					
an Juan Basin, N. Mex.				1 00	1.07	0/ 0 (
A horizonC horizon	• •	47:47 47:47	1.6 1.6	1.28 1.45	1.24 1.13	.84 - 2.6 .69 - 5.8
	11 (2)	7/.4/	1.0	1.447	1.17	•07 J•0
heppard-Shiprock-Doak Soil Association,						
N. Mex. A horizon	- 24 (2)	30:30	2.0	1.41	1.37	1.1 - 4.4
C horizon		30:30	1.6	1.48	1.78	.57 - 3.3
			· ·			
		PLANTS				
lative species (dry-weight basis)						
Galleta, San Juan Basin	- 19 (2)	19:25	0.083	1.61	1.32	0.056 - 0.29
Snakeweed, San Juan Basin		14:18	.068	1.39	1.22	<.04713
ative species (ash-weight basis) Sagebrush, big; Powder River Basin, Wyoming and Montana	- 20 (1)	4:41	<2			<2 - 3

TABLE 59.-Ytterbium in rocks, stream sediments, mine spoil and associated materials, soils and plants-Continued

.

TABLES 4-77

TABLE 60.—Yttrium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				
Outcrop samples						
Northern Great Plains, Fort Union Formation						
Sandstone Shale	1 (2) 1 (2)	79:80 80:80	17 22	1.73 1.54	1.22 1.23	<4.6 - 44 7.9 - 82
Core samples						
Hanging Woman Creek Mont.	2 (2)	0/-0/	15	1.77	1 20	0 0 20
Sandstone	2 (2)	24:24	15	1.44	1.28	8.0 - 28
Siltstore and shale Dark shale	2 (2) 2 (2)	24:24 23:23	24 28	1.20	1.01 1.22	17 - 33 22 - 41
Northern Great Plains, Fort Union	- <-/					
Formation Fine-grained rocks	3 (2)	50:50	19	1.33	1.27	8.5 - 35
Sandstone	4 (2)	42:42	30	1.33	1.19	13 - 52
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	14	1.42	1.19	7.5 - 40
Middle 300 m	5 (2)	52:53	13	1.61	1.27	<2 - 29
	STR	EAM SEDIMENTS				
Northern Great Plains regional study	6 (2)	60:60	21	1.24	1.15	12 - 52
Powder River Basin, Wyo. and Mont. Size fractions	- /->					
>200 µm	7 (1)	24:24	18	1.56	1.31	10 - 30
100-200 μm	7 (1)	24:24	13	3.04	<1.01	10 - 20
63-100 μm <63 μm	7 (1) 7 (1)	24:24 24:24	48 48	1.67 1.67	1.34 1.34	20 - 50 20 - 150
Uinta Creek and Piceance Creek Basins, Colo. and Utah						
Asphalt Wash, Utah	8 (1)	8:8	29	1.15		20 - 30
Cottonwood Creek, Utah	8 (1)	8:8	34	1.27		30 - 50
Duck Creek, Colo	8 (1)	8:8	22	1.33		15 - 30
Ryan Gulch, Colo	8 (1)	8:8	27	1.21		20 - 30
Piceance Creek Basin, Colo.						
Roan and Black Sulphur Creeks	9 (1)	32:32	22	1.31	1.21	15 - 30
	MINE SPOIL AN	ID ASSOCIATED	MATERIALS			
Mine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (2)	10:10	18	1.26		13 - 26
Dave Johnston mine, Wyoming	10 (2)	10:10	19	1.31		12 - 26
Hidden Valley mine, Wyoming	10 (2)	10:10	23	1.18		18 - 29

TABLE 60.-Yttrium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	CIATED MATER	IALSContin	ued		
ine spoilContinued						
Northern Great PlainsContinued						
Kincaid mine, North Dakota	10 (2)	10:10	19	1.32		12 - 27
Savage mine, Montana	10 (2)	10:10	17	1.40		10 - 27
Velva mine, North Dakota	10 (2)	10:10	16	1.29		10 - 23
Big Sky mine, Montana	10 (2)	10:10	23	1.46		16 - 57
Utility mine, Saskatchewan	10 (2)	10:10	17	1.32		12 - 27
San Juan mine, New Mexico	11 (2)	12:12	32	1.23	1.11	22 - 41
opsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (2)	12:12	27	1.11	1.08	22 - 32
ants (dry-weight basis)						
San Juan mine, New Mexico						
Fourwing slatbushAlkali sacaton	11 (2) 11 (2)	6:6 6:6	.81 .47	1.42 1.45		.60 - 1.3 .3068
		SOILS		z 4. 1 4 		
iceance Creek and Uinta Basins,						
Colo. and Utah; alluvial,						
0- to 40-cm depth	12 (2)	30:30	18	1.15	1.13	11 - 29
owder River Basin, Wyo. and Mont.						
A horizon	13 (1)	64:64	19	1.38	1.35	10 - 30
B horizon	13 (1)	62:64	17	1.38	1.34	<10 - 30
C horizon	13 (1)	62:64	17	1.40	1.23	<10 - 30
owder River Basin, Wyo. and Mont.						
Soil, 0- to 5-cm depth	20 (1)	48:48	17	1.28	1.18	1 - 5
Soil, 15- to 20-cm depth	20 (1)	48:48	18	1.27	1.19	10 - 30
anging Woman, Creek, Mont.						
A horizon	14 (2)	16:16	24	1.19	1.13	15 - 29
C horizon	14 (2)	16:16	23	1.29	1.29	15 - 38
iceance Creek Basin, Colo. O- to 5-cm						
depth	15 (2)	108:108	16	1.52	1.34	4.9 - 36
orthern Great Plains; North Dakota, South Dakota, Wyoming, and Montana Combined data, unglaciated and						
glaciated areas		106 106	10		1	<u> </u>
A horizon	16 (2)	136:136	18	1.46	1.34	3.1 - 54
C horizon	16 (2)	136:136	17	1.47	1.32	3.1 - 42
g Horn Basin, Wyo., 0- to 40-cm depth	17 (2)	36:36	20	1.28	1.15	10 - 29
nd River Basin, Wyo., O- to 40-cm						
depth	17 (2)	36:36	17	1.35	1.53	9.6 - 39
n Juan Basin						
A horizon	11 (2)	47:47	28	1.34	1.18	15 - 46
C horizon	11 (2)	47:47	29	1.45	1.19	13 - 57

TABLE 60.—Yttrium in rocks	s, stream sediments, mine	spoil and associated materials, so	oils, and plants—Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	SOII	SContinued				
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
A horizon	24 (2)	30:30	30	1.33	1.14	18 - 71
C horizon	24 (2)	30:30	1.6	1.48	1.78	.57 - 3.3
		PLANTS				
Native species (dry-weight basis)						
Galleta, San Juan Basin	19 (2)	25:25	0.83	1.80	1.28	0.19 - 3.7
Saltbush, fourwing, San Juan Basin	19 (2)	7:10	.32	1.87	1.30	< . 22 - . 72
Snakeweed, San Juan Basin	19 (2)	18:18	.68	1.61	1.22	.26 - 1.4
Native species (ash-weight basis)						
Lichen (Parmelia), Powder River						
Basin, Wyo. and Mont	22 (1)	29:29	32	1.43	1.21	20 - 70
Sagebrush, big; Powder River Basin,						
Wyo. and Mont	20 (1)	5:41	<20			<20 - 30

TABLE 61.-Zinc in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic mean. Deviation, geometric deviation, except that values preceded by asterisk are standard deviation. Error, geometric error attributed to laboratory procedures, except that values preceded by asterisk are standard deviation.

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)
		ROCKS				
butcrop samples						
Northern Great Plains, Fort Union						
Formation						
Sandstone	1 (3)	80:80	44	1.64	1.27	10 - 120
Shale	1 (3)	80:80	80	1.86	<1.06	12 - 220
Core samples						
Hanging Woman Creek, Montana						
Sandstone	2 (3)	24:24	60	1.42		31 - 100
Siltstone and shale	2 (3)	24:24	110	1.16	1.05	86 - 150
Dark shale	2 (3)	23:23	130	1.17	1.01	80 - 140
Northern Great Plains, Fort Union						
Formation						
Fine-grained rocks	3 (3)	50:50	59	1.32	1.26	30 - 110
Sandstone	4 (3)	42:42	62	1.4	1.01	33 - 117

TABLE 61.-Zinc in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Middle 300 m	Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (percent)	Devia- tion	Error	Observed range (percent)		
Piceance Creek Basin, Colorado Green River Formation Mahogay zone (upper 100 a)		ROCK	(SContinue	d					
Green River Formation 5 (3) 7 4:74 7 1.23 1.08 47 1.08 47 1.00 Management 5 (3) 3:3:3:3 91 1.23 1.08 47 1.03 1.23 1.05 30 2.00 1.13 1.03 0.123 1.13 1.13 1.05 30 2.20 1.12 1.13 42 1.12 1.12 1.12 2.24 1.12 1.10 2.20 2.2 1.12 1.10 2.2 2.2 2.2 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspan="2" td=""><td>Core samplesContinued</td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Core samplesContinued</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Core samplesContinued						
Midale 300 m	-								
Garden Gulch Member (lower 100 m) 5 (3) 32:32 120 1.25 68 - 160 STREAM SEDIMENTS STREAM SEDIMENTS Souther Great Plains regional study 6 (3) 60:60 71 1.22 1.13 42 - 120 Powder River Basin, Wyo. and Mont. Size fractions 200 up		5 (3)	74:74	79			47 - 140		
STREAM SEDIMENTS STREAM SEDIMENTS International study							30 - 200		
orthern Great Plains regional study 6 (3) 60:60 71 1.22 1.13 42 - 120 owder River Basin, Wyo. and Mont. Size fractions 7 (3) 18:18 46 1.71 1.20 24 - 92 100-200 µm	Garden Gulch Member (lower 100 m)	5 (3)	32:32	120	1.25		68 - 160		
Order River Basin, Wo. and Mont. Size fractions >200 um		STRE	EAM SEDIMENT	S					
Size fractions 7 (3) 18:18 46 1.71 1.20 24 - 92 100-200 µm 7 (3) 24:24 35 1.40 1.20 22 - 89 63 µm 7 (3) 24:24 38 1.26 1.20 28 - 91 MINE SPOIL AND ASSOCIATED MATERIALS	orthern Great Plains regional study	6 (3)	60:60	71	1.22	1.13	42 - 120		
100-200 µm	Size fractions								
63100 µm 7 (3) 24:24 38 1.26 1.20 28 - 91 MINE SPOIL AND ASSOCIATED MATERIALS WINE, MONTADASCATTED MATERIALS WINE, MONTADASCATTED MATERIALS Vilanta Mine, North Dakota									
Kincid Mine, North Dakota Initian Initian <thinitian< th=""> Initian <thinitian< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></thinitian<></thinitian<>	•								
Mine spoil Northern Great Plains Beulah North Mine, North Dakota 10 (3) 10:10 87 1.14 68 - 100 Dave Johnston Mine, Wyoming 10 (3) 10:10 59 1.18 43 - 70 Hidden Valley Mine, Wyoming 10 (3) 10:10 70 1.20 54 - 91 Savage Mine, Montana 10 (3) 10:10 67 1.23 44 - 81 Velva Mine, North Dakota 10 (3) 10:10 67 1.23 42 - 66 Utility Mine, Saskatchewan 10 (3) 10:10 50 1.17 42 - 66 Utility Mine, Saskatchewan							28 - 91 55 - 110		
Northern Great Plains 10 (3) 10:10 87 1.14 68 100 Dave Johnston Mine, Wyoming 10 (3) 10:10 59 1.18 43 70 Hidden Valley Mine, Wyoming 10 (3) 10:10 70 1.20 54 91 Kincaid Mine, North Dakota 10 (3) 10:10 74 1.32 43 710 Savage Mine, Montana 10 (3) 10:10 65 1.08 56 71 Big Sky Mine, North Dakota 10 (3) 10:10 64 1.23 50 -100 San Juan mine, New Mexico 11 (3) 12:12 56 1.14 1.04 47 66 Copsoil used in spoil reclamation San Juan mine, New Mexico 11 (3) 12:12 48 1.08 1.02 39 - 49 Plants (dry weight basis) Northern Great Plains 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Woming 10 (3) 10:10 33 1.41 1.06<		MINE SPOIL AN	D ASSOCIATE	MATERIALS		<u></u>			
Beulah North Mine, North Dakota 10 (3) 10:10 87 1.14 68 - 100 Dave Johnston Mine, Wyoning 10 (3) 10:10 59 1.18 43 - 70 Hidden Valley Mine, Wyoning 10 (3) 10:10 70 1.20 43 - 70 Kincaid Mine, North Dakota 10 (3) 10:10 74 1.32 43 - 110 Savage Mine, Montana 10 (3) 10:10 65 1.08 56 - 71 Big Sky Mine, North Dakota 10 (3) 10:10 50 1.17 42 - 66 Utility Mine, Saskatchewan 10 (3) 10:10 64 1.23 50 - 100 San Juan mine, New Mexico 11 (3) 12:12 56 1.14 1.04 47 - 66 Copsoil used in spoil reclamation Savage mine, Morth Dakota 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, Worth Dakota <td< td=""><td>fine spoil</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	fine spoil								
Beulah North Mine, North Dakota 10 (3) 10:10 87 1.14 68 - 100 Dave Johnston Mine, Wyoning 10 (3) 10:10 59 1.18 43 - 70 Hidden Valley Mine, Wyoning 10 (3) 10:10 70 1.20 43 - 70 Kincaid Mine, North Dakota 10 (3) 10:10 74 1.32 43 - 110 Savage Mine, Montana 10 (3) 10:10 65 1.08 56 - 71 Big Sky Mine, North Dakota 10 (3) 10:10 50 1.17 42 - 66 Utility Mine, Saskatchewan 10 (3) 10:10 64 1.23 50 - 100 San Juan mine, New Mexico 11 (3) 12:12 56 1.14 1.04 47 - 66 Copsoil used in spoil reclamation Savage mine, Morth Dakota 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, Worth Dakota <td< td=""><td>Northern Great Plains</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Northern Great Plains								
Hidden Valley Mine, Wyoming 10 (3) 10:10 70 1.20 54 - 91 Kincaid Mine, North Dakota 10 (3) 10:10 74 1.32 43 - 110 Savage Mine, Montana 10 (3) 10:10 67 1.23 44 - 81 Velva Mine, North Dakota 10 (3) 10:10 65 1.08 56 - 71 Big Sky Mine, Montana 10 (3) 10:10 64 1.23 50 - 100 San Juan mine, New Mexico 11 (3) 12:12 56 1.14 1.04 47 - 66 Ropsoil used in spoil reclamation 3 10:10 25 1.36 1.06 15 - 44 Paus Johnston mine, New Mexico 11 (3) 12:12 48 1.08 1.02 39 - 49 Plants (dry weight basis) 3 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 58	Beulah North Mine, North Dakota	10 (3)	10:10	87	1.14		68 - 100		
Kincaid Mine, North Dakota 10 (3) 10:10 74 1.32 43 - 110 Savage Mine, Montana 10 (3) 10:10 67 1.23 44 - 81 Velva Mine, North Dakota 10 (3) 10:10 65 1.08 56 - 71 Big Sky Mine, Montana 10 (3) 10:10 50 1.17 42 - 66 Utility Mine, Saskatchewan 10 (3) 10:10 64 1.23 50 - 100 San Juan mine, New Mexico 11 (3) 12:12 56 1.14 1.04 47 - 66 Opsoil used in spoil reclamation San Juan mine, New Mexico 11 (3) 12:12 48 1.08 1.02 39 - 49 Valats (dry weight basis) Northern Great Plains Yelva Mine, North Dakota 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Woming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 S	Dave Johnston Mine, Wyoming	10 (3)	10:10	59	1.18				
Savage Mine, Montana		10 (3)							
Velva Mine, North Dakota 10 (3) 10:10 65 1.08 56 - 71 Big Sky Mine, Montana 10 (3) 10:10 50 1.17 42 - 66 Utility Mine, Saskatchewan 10 (3) 10:10 64 1.23 50 - 100 San Juan mine, New Mexico 11 (3) 12:12 56 1.14 1.04 47 - 66 'opsoil used in spoil reclamation 11 (3) 12:12 48 1.08 1.02 39 - 49 'lants (dry weight basis) 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Woming 10 (3) 10:10 25 1.33 1.06 18 - 49 Savage mine, North Dakota 10 (3) 10:10 33 1.41 1.06 19 - 53 Velva mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, Montana 10 (3) 10:10 35 1.33 1.06 18 - 33 Velva mine, North Dakota 10 (3) 10:10 23									
Big Sky Mine, Montana 10 (3) 10:10 50 1.17 42 - 66 Utility Mine, Saskatchewan 10 (3) 10:10 64 1.23 50 - 100 San Juan mine, New Mexico 11 (3) 12:12 56 1.14 1.04 47 - 66 'opsoil used in spoil reclamation 11 (3) 12:12 48 1.08 1.02 39 - 49 'lants (dry weight basis)									
Utility Mine, Saskatchewan 10 (3) 10:10 64 1.23 50 - 100 San Juan mine, New Mexico 11 (3) 12:12 56 1.14 1.04 47 - 66 Sopsoil used in spoil reclamation San Juan mine, New Mexico 11 (3) 12:12 48 1.08 1.02 39 - 49 lants (dry weight basis) Northern Great Plains Yellow sweetclover 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, Wyoming 10 (3) 10:10 43 1.22 1.06 33 - 58 Kincaid mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, Montana 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover Big Sky mine, Montana 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover Big Sky mine, North Dakota 10 (3) 10:10 24 1.46									
Sopsoil used in spoil reclamation San Juan mine, New Mexico 11 (3) 12:12 48 1.08 1.02 39 - 49 Plants (dry weight basis) Northern Great Plains Yellow sweetclover Beulah North Mine, North Dakota 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, Wyoming 10 (3) 10:10 43 1.22 1.06 33 - 58 Kincaid mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, North Dakota 10 (3) 10:10 18 1.56 1.06 8 - 33 Velva mine, North Dakota 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover Big Sky mine, Montana 10 (3) 10:10 26 1.20 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 26 1.46 1.06 10 - 35 Alfalfa Beulah North mine, North Dakota 10 (3) 3:3		• •							
San Juan mine, New Mexico 11 (3) 12:12 48 1.08 1.02 39 - 49 Plants (dry weight basis) Northern Great Plains Yellow sweetclover Beulah North mine, North Dakota 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, Wyoming 10 (3) 10:10 43 1.22 1.06 33 - 58 Kincaid mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, Montana 10 (3) 10:10 18 1.56 1.06 8 - 33 Velva mine, North Dakota 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover Big Sky mine, Montana 10 (3) 10:10 36 1.20 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa Beulah North mine, North Dakota 10 (3)	San Juan mine, New Mexico	11 (3)	12:12	56	1.14	1.04	47 - 66		
<pre>Plants (dry weight basis) Northern Great Plains Yellow sweetclover Beulah North mine, North Dakota 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, Wyoming 10 (3) 10:10 43 1.22 1.06 33 - 58 Kincaid mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, Montana 10 (3) 10:10 18 1.56 1.06 8 - 33 Velva mine, North Dakota 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover Big Sky mine, Montana 10 (3) 10:10 36 1.20 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa Beulah North Dakota 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) 3:3 35 1.45 25 - 52</pre>	opsoil used in spoil reclamation								
Northern Great Plains Yellow sweetclover Beulah North mine, North Dakota 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, Wyoming 10 (3) 10:10 43 1.22 1.06 33 - 58 Kincaid mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, Montana 10 (3) 10:10 18 1.56 1.06 8 - 33 Velva mine, North Dakota 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover 10 (3) 10:10 36 1.20 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa 10 (3) 3:3 35 1.47	San Juan mine, New Mexico	11 (3)	12:12	48	1.08	1.02	39 - 49		
Yellow sweetclover Beulah North mine, North Dakota 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, Wyoming 10 (3) 10:10 43 1.22 1.06 33 - 58 Kincaid mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, Montana 10 (3) 10:10 18 1.56 1.06 8 - 33 Velva mine, North Dakota 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover Big Sky mine, Montana 10 (3) 10:10 26 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 36 1.20 1.06 26 - 49 Marketa 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa Beulah North mine, North Dakota 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming <td< td=""><td>Plants (dry weight basis)</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Plants (dry weight basis)								
Beulah North mine, North Dakota 10 (3) 10:10 25 1.36 1.06 15 - 44 Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, Wyoming 10 (3) 10:10 43 1.22 1.06 33 - 58 Kincaid mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, Montana 10 (3) 10:10 18 1.56 1.06 8 - 33 Velva mine, North Dakota 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover 10 (3) 10:10 36 1.20 1.06 26 - 49 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 36 1.20 1.06 10 - 35 Alfalfa 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) <	Northern Great Plains								
Dave Johnston mine, Wyoming 10 (3) 10:10 33 1.41 1.06 19 - 53 Hidden Valley mine, Wyoming 10 (3) 10:10 43 1.22 1.06 33 - 58 Kincaid mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, Montana 10 (3) 10:10 18 1.56 1.06 8 - 33 Velva mine, North Dakota 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover 10 (3) 10:10 36 1.20 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) 3:3 35 1.45 29 - 57 Savage mine, Montana 10 (3) 3:3 35 1.45 25 - 52		10 (2)	10:10	25	1.26	1 04	15 44		
Hidden Valley mine, Wyoming 10 (3) 10:10 43 1.22 1.06 33 - 58 Kincaid mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, Montana 10 (3) 10:10 18 1.56 1.06 8 - 33 Velva mine, North Dakota 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover Big Sky mine, Montana 10 (3) 10:10 36 1.20 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa Beulah North mine, North Dakota 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) 3:3 35 1.45 29 - 57 Savage mine, Montana 10 (3) 3:3 35 1.45 29 - 57									
Kincaid mine, North Dakota 10 (3) 10:10 35 1.33 1.06 18 - 49 Savage mine, Montana 10 (3) 10:10 18 1.56 1.06 8 - 33 Velva mine, North Dakota 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover 10 (3) 10:10 36 1.20 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa Beulah North mine, North Dakota 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) 3:3 35 1.45 29 - 57 Savage mine, Montana 10 (3) 3:3 35 1.45 25 - 52									
Savage mine, Montana 10 (3) 10:10 18 1.56 1.06 8 - 33 Velva mine, North Dakota 10 (3) 10:10 23 1.41 1.06 15 - 40 White sweetclover Big Sky mine, Montana 10 (3) 10:10 36 1.20 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa Beulah North mine, North Dakota 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) 3:3 35 1.45 29 - 57 Savage mine, Montana 10 (3) 3:3 35 1.45 25 - 52									
White sweetclover Big Sky mine, Montana 10 (3) 10:10 36 1.20 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa Beulah North mine, North Dakota 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) 3:3 43 1.40 29 - 57 Savage mine, Montana 10 (3) 3:3 35 1.45 25 - 52							8 - 33		
Big Sky mine, Montana 10 (3) 10:10 36 1.20 1.06 26 - 49 Utility mine, Saskatchewan 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa Beulah North mine, North Dakota 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) 3:3 43 1.40 29 - 57 Savage mine, Montana 10 (3) 3:3 35 1.45 25 - 52	Velva mine, North Dakota	10 (3)			1.41	1.06	15 - 40		
Utility mine, Saskatchewan 10 (3) 10:10 22 1.46 1.06 10 - 35 Alfalfa Beulah North mine, North Dakota 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) 3:3 43 1.40 29 - 57 Savage mine, Montana 10 (3) 3:3 35 1.45 25 - 52			10.10	24	1.00	1.06	26 / 0		
Beulah North mine, North Dakota 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) 3:3 43 1.40 29 - 57 Savage mine, Montana 10 (3) 3:3 35 1.45 25 - 52	• • •								
Beulah North mine, North Dakota 10 (3) 3:3 35 1.47 23 - 49 Dave Johnston mine, Wyoming 10 (3) 3:3 43 1.40 29 - 57 Savage mine, Montana 10 (3) 3:3 35 1.45 25 - 52	Alfalfa								
Dave Johnston mine, Wyoming 10 (3) 3:3 43 1.40 29 - 57 Savage mine, Montana 10 (3) 3:3 35 1.45 25 - 52		10 (3)	3:3	35	1.47		23 - 49		
	Dave Johnston mine, Wyoming			43	1.40				
veiva mine, North Dakota 10 (3) 3:3 25 1.41 17 - 34									
Big Sky mine, Montana 10 (3) 3:3 39 1.24 34 - 50									

TABLE 61.-Zinc in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	OCIATED MATER	IALSContin	ued		
Plants (dry-weight basis)Continued						
Northern Great PlainsContinued Crested wheatgrass, Dave Johnston mine, Wyoming						
Growing on mine spoil Growing near mine spoil	26 (3) 26 (3)	20:20 20:20	26 20	1.19 1.24	1.06 1.06	18 - 32 13 - 28
San Juan mine, New Mexico Fourwing saltbush	11 (3)	6:6	56	1.71		27 - 86
Alkali sacaton	11 (3)	6:6	14	1.30		11 - 17
		SOILS				
Piceance and Uinta Basins, Colo.	12 (2)	20.20	(5		1.02	33 - 110
and Utah; alluvial, 0- to 40-cm depth	12 (3)	30:30	65	1.21	1.02	55 - 110
Powder River Basin, Wyo. and Mont.	12 (2)		<i>(</i>)	1 50	1.05	20 120
A horizon	13 (3)	64:64	61	1.50	1.05	20 - 130
B horizon	13 (3) 13 (3)	64:64 64:64	62 60	1.47 1.75	1.07 1.04	19 - 130 15 - 140
	15 (5)	04.04	00	1.75	1.04	15 140
Powder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm depth	20 (3)	48:48	59	1.31	1.05	28 - 93
Soil, 15- to 20-cm depth	20 (3)	48:48	61 .	1.35	1.05	25 - 104
langing Woman Creek, Mont.						
A horizon	14 (3)	16:16	83	1.16	1.03	65 - 100
C horizon	14 (3)	16:16	77	1.26	1.02	42 - 110
Piceance Creek Basin, Colorado, O- to						
5-cm depth	15 (3)	108:108	80	1.23	1.05	45 - 140
Northern Great Plains; North Dakota, South Dakcta, Wyoming, and Montana Combined data, unglaciated and glaciated areas						
A horizon	16 (3)	136:136	*63	*20	*7.72	14 - 170
C horizon	16 (3)	136:136	*59	*19	*7.72	18 - 120
Big Horn Basin, Wyo., O- to 40-cm depth	17 (3)	36:36	57	1.33	1.11	34 - 110
acpen	1, (3)	20.20	21			54 110
Vind River Easin, Wyo., 0- to 40-cm depth	17 (3)	36:36	43	1.31	1.08	28 - 83
Con Luon Poola N. Mo-						
San Juan Basin, N. Mex. A horizon	11 (3)	47:47	39	1.49	1.14	18 - 84
C horizon	11 (3)	47:47	37	1.66	1.03	12 - 91
Sheppard-Shiprock-Doak Soil Association, N. Mex.						
	A ((A)					
A horizon	24 (3)	30:30	31	1.18	1.07	23 - 44

TABLE 61.-Zinc in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Frror	Observed range (ppm)
		PLANTS				
ultivated plants, northern Great						
Plains (dry weight basis)						
Barley	21 (3)	18:18	28	1.38	1.13	13 - 49
Oats	21 (3)	21:21	27	1.23	1.09	19 - 44
Wheat, durham	21 (3)	20:20	36	1.34	1.17	17 - 50
Wheat, hard red spring	21 (3)	54:54	38	1.33	1.12	23 - 74
Wheat, hard red winter	21 (3)	17:17	27	1.22	1.08	20 - 38
ative species (dry weight basis)						
Galleta, San Juan Basin	19 (3)	25:25	13	1.44	1.09	8.4 - 37
Saltbush, fourwing, San Juan Basin	19 (3)	10:10	19	2.37	1.09	6.8 - 77
Snakeweed, San Juan Basin	19 (3)	18:18	17	1.34	1.03	9.6 - 27
ative species (ash weight basis)						
Sagebrush, big: Powder River Basin,						
Wyo. and Mont	20 (3)	41:41	410	1.29	1.09	200 - 800
Sagebrush, big; regional study						
Colorado Plateaus Province	23 (3)	30:30	420	1.73	1.05	200 - 1,000
Columbia Plateaus Province	23 (3)	30:30	330	1.67	1.05	200 - 940
Basin and Range Province	23 (3)	30:30	350	1.56	1.05	210 - 1,380
Northern Great Plains	23 (3)	20:20	490	1.62	1.05	280 - 800
Northern Rocky Mountains Province	23 (3)	20:20	530	2.12	1.05	330 - 2,400
Middle Rocky Mountains Province	23 (3)	20:20	430	1.49	1.05	200 - 700
Southern Rocky Mountains Province	23 (3)	20:20	430	1.42	1.05	280 - 79 0
Wyoming Basin Province	23 (3)	20:20	380	1.33	1.05	250 - 510
vailability studies, samples from						
Montana, North Dakota, South Dakota,						
and Wyoming (dry weight basis)						
Wheatgrass, western	18 (3)	21:21	15	1.53		5.7 - 34
Sagebrush, silver	18 (3)	19:19	34	1.38		19 - 64
Plant biomass, above-ground parts	18 (3)	21:21	27	1.23	1.05	19 - 41

TABLE 62.-Zirconium in rocks, stream sediments, mine spoil and associated materials, soils, and plants

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		ROCKS				
utcrop samples						
Northern Great Plains, Fort Union						
Formation						
,	1 (2)	80:80	270	1.68	1.26	100 - 590

156

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
	ROCK	(SContinue)	1			
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	2 (2)	24:24	200	1.51	1.39	85 - 430
Siltstone and shale	2 (2)	24:24	250	1.25	1.18	140 - 330
Dark shale	2 (2)	23:23	220	1.30	1.16	140 - 350
Northern Great Plains, Fort Union Formation						
Fine-grained rocks	3 (2)	50:50	200	1.44	1.26	99 - 49 0
Sandstone	4 (2)	42:42	325	1.60	1.25	130 - 850
Piceance Creek Basin, Colo. Green River Formation						
Mahogany zone (upper 100 m)	5 (2)	74:74	75	1.44	1.20	29 - 210
Middle 300 m	5 (2)	53:53	88	1.44	1.33	9.8 - 210
Garden Gulch Member (lower 100 m)	5 (2)	32:32	120	1.25		68 - 160
	STRE	EAM SEDIMENT:	5			,,
Northern Great Plains regional study	6 (2)	59:60	350	1.50	1.38	150 - >9 70
Powder River Basin, Wyo. and Mont. Size fractions >200 μπ	7 (1)	04 - 24		1 50	1 22	30 - 200
	7 (1)	24:24	61	1.59 1.42	1.23 1.27	50 - 150
100-200 μm 63-100 μm	7 (1)	24:24 24:24	76 210	2.16	1.41	70 - 1,500
63-100 μm	7 (1) 7 (1)	24:24	820	2.72	1.41	200 - 7,000
Jinta and Piceance Creek Basins, Colo. and Utah	8 (1)	32:32	220	1.52	1.19	100 - 700
	8 (1)	52.52	220	1. 52	1.17	100 ,00
Piceance Creek Basin, Colo.	A (1)		100	1.45		70 700
Roan and Black Sulphur Creeks	9 (1)	32:32	180	1.65	1.15	70 - 700
	MINE SPOIL AN	D ASSOCIATED	MATERIALS			
Mine spoil						
Northern Great Plains						
Beulah North mine, North Dakota	10 (2)	10:10	180	1.68		69 - 47 0
Dave Johnston mine, Wyoming	10 (2)	10:10	180	1.41		90 - 280
Hidden Valley mine, Wyoming	10 (2)	10:10	300	1.21		200 - 390
Kincaid mine, North Dakota	10 (2)	10:10	170	1.45		95 - 3 10
Savage mine, Montana	10 (2)	10:10	180	1.38		92 - 310
Velva mine, North Dakota	10 (2)	10:10	190	1.28		140 - 290
Big Sky mine, Montana	10 (2)	10:10	210	1.31		120 - 290
Utility mine, Saskatchewan	10 (2)	10:10	160	1.40		91 - 210
San Juan mine, New Mexico	11 (2)	12:12	3 00	1.35	1.37	190 - 600
Copsoil used in spoil reclamation						
San Juan mine, New Mexico	11 (2)	11:12	420	1.51	1.51	260 - >1,00
-an each mine, new nexted	(2)	11.16	720			,1,00

TABLE 62.-Zirconium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

.

TABLE 62.-Zirconium in rocks, stream sediments, mine spoil and associated materials, soils, and plants-Continued

Sample, and collection locality	Study No. and method of analysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
MINE	SPOIL AND ASSO	CIATED MATER	IALSContinu	ıed		
lants (dry-weight basis)						
Northern Great Plains						
Yellow sweetclover	10 (0)			1 27		07.1 7
Beulah North mine, North Dakota	10 (2)	10:10	1.1	1.37	1.50	0.7 - 1.7
Dave Johnston mine, Wyoming Hidden Valley mine, Wyoming	10 (2) 10 (2)	10:10 10:10	1.6 3.9	1.48 1.75	1.50 1.50	.7 - 2.7 1.8 - 9.9
Kincaid mine, North Dakota	10(2) 10(2)	10:10	2.6	1.42	1.50	1.7 - 4.5
Savage mine, Montana	10 (2)	9:9	.9	1.26	1.50	.6 - 1.3
Velva mine, North Dakota	10 (2)	9:10	.98	2.37	1.50	<.3 - 3.9
White sweetclover						
Big Sky mine, Montana	10 (2)	10:10	1.5	1.40	1.50	.9 - 2.5
Utility mine, Saskatchewan	10 (2)	8:10	.97	2.47	1.50	<.3 - 2.6
Alfalfa						
Beulah North mine, North Dakota	10 (2)	1:3	<1.4			<1.4 - 3.4
Dave Johnston mine, Wyoming	10 (2)	3:3	3.1	1.12		2.8 - 3.5
Savage mine, Montana	10 (2)	1:3	<1.4			<1.4 - 1.8
Velva mine, North Dakota	10 (2)	2:3	1.7	2.87		<1.4 - 5.2
San Juan mine, New Mexico						
Fourwing saltbush	11 (2)	6:6	5.1	1.61		3.1 - 8.6
Alkali sacaton	11 (2)	6:6	1.9	2.49		.54 - 5.3
		SOILS				
iceance Creek and Uinta Basins, Colo.						
and Utah; alluvial, 0- to 40-cm depth	12 (2)	30:30	340	1.34	1.25	200 - 570
owder River Basin, Wyo. and Mont.						
A horizon	13 (1)	64:64	230	1.71	1.30	70 - 700
B horizon	13 (1)	64:64	200	1.57	1.44	70 - 700
C horizon	13 (1)	64:64	160	1.73	1.31	50 - 700
owder River Basin, Wyo. and Mont.						
Soil, 0- to 2.5-cm depth	20 (1)	48:48	150	1.45	1.20	70 - 500
Soil, 15- to 20-cm depth	20 (1)	48:48	140	1.40	1.20	70 - 300
anging Woman Creek, Mont.						
A horizon	14 (2)	16:16	300	1.29	1.29	170 - 500
C horizon	14 (2)	16:16	300	1.25	1.25	220 - 490
iceance Creek Basin, Colo., O- to 5-cm			246	,		
depth	15 (2)	108:108	260	1.55	1.43	54 - 700
orthern Great Plains; North Dakota,						
South Dakota, Wyoming, and Montana						
Unglaciated area						
	16 (2)	88:88	280	1.46	1.63	94 - 600
A horizon						
Glaciated area	17 (0)	48:48	240	1.57	1.63	61 - 660
Glaciated area A horizon	16 (2)					
Glaciated area A horizon Combined data, unglaciated and	16 (2)					
Glaciated area A horizon Combined data, unglaciated and glaciated areas		136.136	260	1 5 1	1 63	60 - 660
Glaciated area A horizon Combined data, unglaciated and glaciated areas A horizon	16 (2)	136:136	260	1.51	1.63	60 - 660 59 - 810
Glaciated area A horizon Combined data, unglaciated and glaciated areas		136:136 136:136	260 230	1.51 1.54	1.63 1.47	60 - 660 59 - 810

Sample, and collection locality	and m	y No. ethod alysis	Ratio	Mean (ppm)	Devia- tion	Error	Observed range (ppm)
		S 011	.SContinued	1			
Vind River Basin, Wyo., O- to 40-cm							
depth	17	(2)	36:36	240	1.40	1.41	95 - 490
San Juan Basin, N. Mex.							
A horizon	11	(2)	46:47	430	1.65	1.57	130 ->1,000
C horizon		(2)	46:47	330	1.64	1.33	120 ->1,000
Sheppard-Shiprock-Doak Soil Association, N. Mex.							
A horizon	24	(2)	30:30	390	1.45	1.41	210 - 970
C horizon	24	(2)	29:30	270	1.82	1.44	97 ->1,000
			PLANTS				
Cultivated plants, northern Great							
Plains (dry-weight basis)							
Barley	21	(1)	6:18	0.09	1.49		<0.077 - 0.15
0ats	21	(1)	6:21	.14	1.06		<.1116
Wheat, durum	21	(1)	17:20	.11	1.39		<.06919
Wheat, hard red spring	21	(1)	52:54	.13	1.40	1.34	<.0825
Wheat, hard red winter	21	(1)	15:17	.10	1.36	1.31	<.0616
Native species (dry-weight basis)							
Galleta, San Juan Basin	19	(2)	25:25	7.5	2.15	1.32	1.5 - 20
Saltbush, fourwing, San Juan Basin	19	(2)	9:10	1.7	2.06	1.30	<.52 - 3.4
Snakeweed, San Juan Basin	19	(2)	18:18	5.2	2.10	1.31	1.2 - 23
Native species (ash-weight basis)							
Lichen (<u>Parmelia</u>), Powder River							
Basin, Wyo. and Mont	22	(1)	29:29	77	1.39	1.28	50 - 150
Sagebrush, big; Powder River Basin,							
Wyo. and Mont	20	(1)	41:41	57	1.58	1.27	20 - 150
Sagebrush, big; regional study							
Colorado Plateaus Province		(1)	21:30	22	1.81	1.34	<20 - 70
Columbia Plateaus Province		(1)	30:30	45	1.70	1.34	20 - 100
Basin and Range Province		(1)	22:30	22	1.79	1.34	<20 - 50
Northern Great Plains		(1)	16:20	24	1.74	1.44	<20 - 70
Northern Rocky Mountains Province		(1)	17:20	23	1.59	1.44	<20 - 50
Middle Rocky Mountains Province		(1)	19:20	32	2.45	1.44	<20 - 150
Southern Rocky Mountains Province		(1)	16:20	24	1.65	1.44	<20 - 50
Wyoming Basin Province	23	(1)	20:20	33	1.78	1.44	20 - 70

ZIRCONIUM

TABLE 63.—Parameters measured in extraction studies of soils from San Juan Basin, N. Mex. (study No. 19)

[Explanation of column headings: Analytical method refers to method listed in table 1. Ratio, number of samples in which the element or radical was found in measurable concentrations to number of samples analyzed; other parameters were measured in all 47 samples. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate column heading is not applicable, or no data available]

Parameter	Soil horizon	Reporting units ¹	Analytical method	Ratio	Mean	Devia - tion	Error	Observed range
			DTPA I	EXTRACTION	-			
Cadmium	А	ppm	3	19:47	0.05	1.14	1.19	<0.05 - 0.08
	С	p pm	3	7:47	.05	1.00	1.13	<.0505
Cobalt	А	ppm	3	46:47	.39	1.49	1.59	< .1 75
	С	ppm	3	43:47	.29	1.90	2.00	<.165
Copper	А	ppm	3	47:47	.70	1.67	1.20	.3 - 2.8
	С	ppm	3	47:47	.58	1.89	1.14	.19 - 3.3
Iron	А	ppm	3	47:47	9.1	1.77	1.39	2.8 - 51
	С	p pm	3	47:47	9.9	2.17	1.67	1.5 - 48
Manganese	А	p pm	3	47:47	7.7	1.57	1.24	2.3 - 20
-	С	ppm	3	47:47	4.5	1.94	1.17	.6 - 15
Nickel	A	ppm	3	47:47	.45	1.61	1.32	.1 - 1.2
	C	ppm	3	47:47	.41	1.78	1.53	.19
Lead	А	ppm	3	47:47	.77	2.17	2.42	.05 - 2.2
	C	p pm	3	45:47	•52	2.45	2.27	<.1 - 2.5
Zinc	А	ppm	3	47:47	.40	1.60	1.37	.2 - 1.9
	С	p pm	3	47:47	.29	1.70	1.35	.1 - 2.1
			AMMONIUM AC	ETATE EXTRA	CTION			
Calcium	A	ppm	3	47:47	12.4	2.14	1.09	2.7 - 42
	C	p pm	3	47:47	29.5	2.02	1.06	3.2 - 230
Magnesium	А	ppm	3	47:47	1.3	1.70	1.05	.5 - 4.3
0	С	p pm	3	47:47	2.5	2.04	1.03	.4 - 9.9
Potassium	A	ppm	3	47:47	1.2	2.15	2.12	.21 - 4.1
	С	p pm	3	47:47	.64	3.00	2.33	.1 - 3.6
Sodium	A	ppm	3	47:47	•25	3.17	1.60	.09 - 48
			WATER-SATURA	ATION EXTRA	CTION			
Calcium	A	me/L	3	47:47	5.4	1.84	1.14	1.6 - 36.3
	С	me/L	3	47:47	5.6	2.92	1.20	.6 - 63.6
Chloride	А	me/L	9	27:47	.51	4.05	1.97	<.5 - 75
	С	me/L	9	32:47	1.4	7.92	3.04	<.5 - 75
lagnesium	A	me/L	3	47:47	1.1	1.63	1.18	.3 - 5.1
	С	me/L	3	47:47	2.1	3.53	1.28	.3 - 40.0
Potassium	А	me/L	3	47:47	1.2	1.66	2.42	.2 - 3.2
	С	me/L	3	47:47	.74	1.72	1.48	.1 - 3.1
Sodium	A	me/L	3	47:47	1.7	3.51	1.48	.2 - 680
	С	me/L	3	47:47	8.2	4.16	1.22	.5 - 440
Sulfate	А	me/L	9	25:47				<1.0 - 510
	c	me/L	9	32:47				<1.0 - 450

	Soi1	Reporting	Analytical	Ratio	Mean	Devia-	Error	
Parameter	horizon	units ¹	method			tion		Observed range
		WAT	FER-SATURATION	EXTRACTION-	-Continued			
Specific conductance	А	mmhos/cm	15	47:47	0.86	2.38	1.05	0.33 - 66
	С	mmhos/cm	15	47:47	1.3	3.00	1.10	.28 - 47
			HOT-WATE	R EXTRACTIO	N			
Boron	A	ppm	16	15:47	0.33	1.99	2.56	<0.5 - 4.0
	С	p pm	16	27:47	.52	1.95	3.16	<.5 - 3.5
			REPLACEME	NT BY SODIU	JM			
CEC (cation exchange		11.00	2				1.04	
capacity)	A C	me/100 g me/100 g	3 3	47:47 47:47	10.2 13.0	2.40 1.71	1.26	0.2 - 37.3 4.2 - 40.8
·····			CAL	CULATED				
SAR (sodium adsorp-								
tion ratios)	A C		11 11	47:47 47:47	0.95 4.1	3.02 3.22	1.45 1.26	0.11 - 155 .30 - 96.6
ESP (exchangeable								
sodium percentages)	A C	percent percent	11 11	47:47 47:47	1.6	2.45 2.81	1.69 1.17	.3 - 57 .5 - 56.5

lppm, parts per million; me/L, milliequivalents per liter; mmhos/cm, reciprocal milliohms per centimeter; me/100 g, milliequivalents per 100 grams.

 TABLE 64...—Parameters measured in extraction studies of soil from the Sheppard-Shiprock-Doak Soil Association, San Juan Basin which is likely to be used as topsoil in mined-land reclamation (study No. 24)

[Explanation of column headings: Analytical method refers to method listed in table 1. Ratio, number of samples in which the element or radical was found in measurable concentrations to number of samples analyzed; other parameters were measured in all 30 samples. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Parameter	Soil horizon	Reporting units ¹	Analytical method	Ratio	Mean	Devia- tion	Error	Observed range
			DTPA E	XTRACTION				
Cadmium	A	ppm	3	3:30				<0.05 - 0.08
	С	p pm	3	0:30	<0.05			
Cobalt	А	- ppm	3	3:30				<.23
	С	p pm	3	6:30	.15	1.37		<.23
Copper	А	ppm	3	30:30	.55	1.36	1,15	.395
	С	p pm	3	30:30	.35	2.45	4.15	.1 - 8.8
ron	A	ppm	3	30:30	7.6	1.25	1.09	4.4 - 12
	С	p pm	3	30:30	7.7	1.20	1.07	5.6 - 11
ead	A	ppm	3	26:30	.72	1.41	1.51	<.5 - 1.2
	С	p pm	3	16:30	.55	1.27	1.40	<.58
langanese	A	ppm	3	30:30	10.8	1.47	1.14	5.8 - 23
-	С	p pm	3	30:30	6.2	1.43	1.14	1.8 - 12

 TABLE 64.—Parameters measured in extraction studies of soil from the Sheppard-Shiprock-Doak Soil Association, San Juan Basin which is likely to be used as topsoil in mined-land reclamation (study No. 24)—Continued

	Soil	Reporting	Analytical	Ratio	Mean	Devia-	Error	
Parameter	horizon	units ¹	method			tion		Observed range
			DTPA EXTRAC	TIONConti	nued			
Nickel	A C	ppm ppm	3 3	20:30 23:30	0.24	1.70 1.81	1.82 1.68	<0.2 - 0.7 <.29
Zinc				30:30	.45	1.38	1.20	.3 - 1.1
21nc	A C	p pm	3 3	30:30	.45	1.23	1.20	.153
			AMMONIUM ACE	TATE EXTRAC	CTION			
Calcium	A	ppm	3	30:30	4.1	1.39	1.09	2.0 - 6.4
	С	p pm	3	30:30	4.9	2.65	1.11	1.5 - 32
Magnesium	A C	ppm ppm	3 3	30:30 30:30	1.2 2.1	1.32 2.69	1.15 1.13	.7 2.1 .6 - 23
Potassium	A	ppm	3	30:30	.67	1.57	1.30	.2 - 1.5
	C	ppm	3	26:30	.20	1.95	1.65	<.16
Sodium	A C	ppm ppm	3 3	30:30 30:30	.60 1.4	2.0 9 1.77	1.78 1.37	.2 - 2.8 .55 - 4.5
			WATER-SATURA	TION EXTRAC	CTION			*******
Calcium	A	me/L	3	30:30	4.1	1.39	1.09	2.0 - 6.4
	C	me/1	3	30:30	4.9	2.65	1.11	1.5 - 32.3
Chloride	A	me/L	9	3:30				<.5 - 1.0
	С	me/L	9	25:30	2.7	6.70	1.66	<1.0 - 49.0
Magnesium	Α	me/L	3	30:30	1.2	1.32	1.15	.7 - 2.1
	С	me/L	3	30:30	2.1	2.69	1.13	.6 - 22.7
Potassium	А	me/L	3	30:30	.67	1.57	1.30	.2 - 1.5
	С	me/L	3	26:30	.20	1.95	1.65	<.16
Sodium	A	me/L	3	30:30	.60	2.09	1.78	.2 - 2.8
	C	me/L	3	30:30	8.0	2.74	1.08	.7 - 61.1
C			0	15 20	0.0	1 57	1 20	Z1 0 - 2 0
Sulfate	A C	me/L me/L	9 9	15:30 26:30	.98 3.2	1.56 4.55	1.38 1.32	<1.0 - 2.0 <1.0 - 65.0
a							1 07	2 0
Specific conductance	A C	mmhos/cm mmhos/cm	15 15	30:30 30:30	.53 1.2	1.29 2.24	1.07 1.07	•3 - •8 •5 - 7•0
			HOT-WATE	R EXTRACTIO	N			· · · · · · · · · · · · · · · · · ·
Boron	A	p pm	16	1:30				<0.5 - 0.5
	C	ppm	16	10:30	.35	2.00		<.5 - 2.0
			REPLACEME	NT BY SODIU	JM			
CEC (cation exchange capacity)	A	me/100 g	3	30:30	10.4	1.18	1.11	7.3 - 14.3
capacity)	C	me/100 g me/100 g	3	30:30	11.6	1.18	1.20	6.0 - 21.1

TABLE 64.—Parameters measured in extraction studies of soil from the Sheppard-Shiprock-Doak Soil Association, San Juan Basin which is
likely to be used as topsoil in mined-land reclamation (study No. 24)—Continued

Parameter	Soil horizon	Reporting units ¹	Analytical method	Ratio	Mean	Devia - tion	Error	Observed range
			CALC	ULATED				
AR (sodium adsorp-								
tion ratios)	Α		11	30:30	0.37	2.25	1.35	0.13 - 2.2
	С		11	30:30	4.2	2.25	1.08	.42 - 20.3
SP (exchangeable								
sodium percentages)	Α	percent	11	30:30	6.8	1.68	1.48	2.2 - 28.9
	С	percent	11	30:30	4.7	1.75	1.33	1.3 - 11.6

lppm, parts per million; me/L, milliequivalents per liter; mmhos/cm, reciprocal milliohms per centimeter; me/l00 g, milliequivalents per 100 grams.

TABLE 65.—Parameters measured in extraction studies of soils and mine spoil from San Juan mine, New Mexico (study No. 11) [Explanation of column headings: Analytical method refers to method listed in table 1. Ratio, number of samples in which the element or radical was found in measurable concentrations to number of samples analyzed; other parameters were measured in all 12 samples. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Parameter	Soil horizon	Reporting units ¹	Analytical method	Ratio	Mean	Devia- tion	Error	Observed range
			DTPA E	XTRACTION				
Cadmium	Topsoil	. ppm	3	3:12				<0.05 - 0.05
	Spoi1	p pm	3	11:12	0.05	1.00	1.11	<.0505
Cobalt	Topsoil	. ppm	3	2:12				<.11
	Spoi1	ppm	3	2:12				<.1 - 1.4
Copper	Topsoil	. ppm	3	12:12	.71	1.68	1.08	.5 - 2.2
	Spoi1	p pm	3	12:12	2.0	1.18	1.04	1.5 - 2.4
Iron	Topsoil	. ppm	3	12:12	13	2.93	1.32	6.4 - 130
	Spoi1	p pm	3	12:12	61	1.98	1.13	30 - 210
Manganese==========	Topsoil	. ppm	3	12:12	8.1	1.78	1.09	5.6 - 32
	Spoi1	ppm	3	12:12	12	2.32	1.06	5.4 - 55
Nickel	Topsoil	ppm	3	5:12	.038	4.82		<.054
	Spoi1	ppm	3	12:12	.20	2.23		.1090
Lead	Topsoil	ppm	3	7:12	.13	4.13	2.04	<.1 - 1.5
	Spoil	ppm	3	10:12	•45	2.74	1.45	<.10 - 1.4
Zinc	Topsoil	L ppm	3	12:12	.39	2.25	1.43	.2 - 2.2
	Spoi1	ppm	3	12:12	1.5	1.89	1.05	.8 - 5.2
<u> </u>		·····	AMMONIUM ACE	TATE EXTRA	CTION			
Calcium	Topsoil	me/100 g	3	12:12	29	1.25	1.07	22 - 47
	Spoil	me/100 g	3	12:12	33	1.12	1.06	29 - 43
Magnesium	Topsoil	me/100 g	3	12:12	3.5	1.24	1.02	3.0 - 5.7
	Spoil	me/100 g	3	12:12	7.3	1.50	1.05	4.3 - 15
Potassium	Topsoil	me/100 g	3	12:12	•24	1.23	1.12	.23
	Spoi1	me/100 g	3	12:12	.35	1.16	1.00	.34

	Soil	Reporting	Analytical	Ratio	Mean	Devia-	Error	
Parameter	horizon	units ¹	method			tion		Observed range
		AMM	IONIUM ACETATE E	XTRACTION-	Continued	1		
Sodium	Topsoil	me/100 g	3	12:12	1.7	2.87	1.17	0.5 - 10
	Spoil	me/100 g	3	12:12	21	1.97	1.18	4.2 - 43
			WATER-SATURA	TION EXTRA	CTION			
Calcium	Topsoil	me/L	3	12:12	11	1.96	1.13	5.9 - 30
	Spoil	me/L	3	12:12	26	1.13	1.05	23 - 33
Chloride	Topsoil	me/L	9	12:12	7.2	1.62	1.19	3 - 15
	Spoil	me/L	9	12:12	19	1.50	1.13	9 - 31
Magnesium	Topsoil	me/L	3	12:12	4.8	2.11	1.15	2.4 - 15
	Spoil	me/L	3	12:12	27	1.68	1.11	15 - 71
Potassium	Topsoil	me/L	3	12:12	•38	1.46	1.20	•2 - •7
	Spoil	me/L	3	12:12	•64	1.17	1.06	•5 - •8
Sodium	Topsoil	me/L	3	12:12	21	3.15	1.10	6.5 - 120
	Spoil	me/L	3	12:12	260	1.69	1.10	97 - 500
Sulfate	Topsoil	me/L	9	12:12	18	3.12	1.14	5 - 95
	Spoil	me/L	9	12:12	230	1.79	1.13	75 - 480
Specific conductance	Topsoil	mmhos/cm	15	12:12	2.8	2.37	1.15	1.3 - 11
	Spoil	mmhos/cm	15	12:12	9.6	1.70	1.45	4.0 - 17
			HOT-WATEF	EXTRACTION	N			
Boron	Topsoil Spoil	p pm	16 16	8:12 11:12	0.60 1.8	2.56 2.91	1.10 1.46	<0.5 - 3.5 <.5 - 11.4
			REPLACEME	NT BY SODI	UM			
CEC (cation exchange	Topsoil	me/100 g	3	12:12	17	1.62	1.08	12 - 46
capacity)	Spoil	me/100 g	3	12:12	36	1.41	1.08	22 - 68
			CALC	ULATED				
SAR (sodium adsorp-	Topsoil		11	12:12	7.6	2.26	1.11	2.7 - 25
tion ratios)	Spoil		11	12:12	51	1.56		20 - 78
ESP (exchangeable	Topsoil	percent	11	12:12	4.8	2.48	1.19	1.5 - 18
sodium percentages)	Spoil	percent	11	12:12	32	1.68		9.4 - 49

TABLE 65.—Parameters measured in extraction studies of soils and mine spoil from San Juan mine, New Mexico (study no. 11)—Continued

lppm, ppm, parts per million; me/100 g, milliequivalents per 100 grams; me/L, milliequivalents per liter; mmshos/cm, reciprocal milliohms per centimeter.

165

TABLE 66.—E'lements measured in DTPA extracts of soils from the unglaciated area of the northern Great Plains (study No. 18) [Explanation of column headings: Analytical method refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available

Parameter	Soil horizon	Analytical method	Ratio	Mean (ppm)	Deviation	Error	Observed range (ppm)
			DTPA EXTRA	CTION			
Cadium	A	3	21:21	0.10	1.66		0.040 - 0.30
	С	3	19:21	.020	3.12		<.01010
Cobalt	А	3 3	21:21	.20	1.65		.06040
	С	3	21:21	.20	2.28		.05040
Copper	А	3	21:21	.40	1.77		.10 - 1.2
	С	3 3	21:21	.40	1.72		.1080
Iron	A	3	21:21	11	2.13		2.0 - 50
	С	3	21:21	7.0	1.60		3.0 - 19
Lead	А	3 3	21:21	.60	2.21		.20 - 2.6
	С	3	21:21	.30	1.40		.2060
langanese	А	3	21:21	.60	1,51		4.0 - 15
-	С	3 3	21:21	.30	1.87		1.0 - 14
Nickel	A	3	21:21	.60	2.21		.20 - 2.6
	С	3 3	21:21	.50	1.96		.10 - 2.1
Zinc	А	3	21:21	.60	2.33		.20 - 5.3
	С	3	21:21	.050	2.03		.01020

TABLE 67.—pH determinations for rocks, streams sediments, mine spoil and soils

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Mean, arithmetric mean. Deviation, arithmetic deviation. Error, airthmetic error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

	· · · · · · · · · · · · · · · · · · ·					
Sample, and collection locality	Study No. and method of analysis	Number of samples	Mean (standard units)	Devia- tion	Error	Observed range (standard units)
		ROCKS				
Core samples						
Hanging Woman Creek, Mont.						
Sandstone	- 2(9)	24	9.0	0.66	0.15	7 -10
Siltstone and shale		24	8.1	1.04	•21	5 - 9
Dark shale	- 2 (9)	23	7.7	•8	.44	5.4 - 8.4
Northern Great Plains,						
Fort Union Formation						
Sandstone	- 4 (9)	12	7.8	1.1		4.1 - 8.9
	ST	REAM SEDIMENTS	3	<u>.</u>		
Northern Great Plains regional study	- 6(9)	60	7.7	0.34	0.14	6.1 - 8.5
	·····	MINE SPOIL				<u></u>
Northern Great Plains regional study				<u></u>		
Beulah North mine, North Dakota	- 10 (9)	10	7.0	0.69		6.2 - 8.7
	• •	10	6.2	1.6		4.0 - 8.5
Dave Johnston mine, Wyoming	- 10 (9)	10	0.2	1.0		4.0 - 0.3

	Study N	10.		Mean			
	and metho	od of	Number of	(standard	Devia-		Observed range
Sample, and collection locality	analys	ls	samples	units)	tion	Error	(standard units
		MINE	SPOILContin	ued			
Hidden Valley mine, Wyoming	10	(9)	10	6.6	0.96		5.4 - 7.8
Kincaid mine, North Dakota		(9)	10	7.8	.71		7.1 - 9.4
Savage mine, Montana	10	(9)	10	8.2	.49		7.0 - 8.5
Velva mine, North Dakota		(9)	10	7.8	.40		7.0 - 8.5
Big Sky mine, Montana		(9)	10	7.6	.53		6.5 - 8.5
Utility mine, Saskatchewan		(9)	10	7.8	1.3		4.4 - 9.0
an Juan mine, New Mexico	11	(9)	12	7.6	.87	.12	6.3 - 8.4
			SOILS				
owder River Basin, Wyo. and Mont.							
A horizon	13	(9)	64	7.2	0.46	0.26	6.0 - 7.9
B horizon		(9)	64	7.4	.40	.36	6.7 - 8.2
C horizon		(9)	64	7.5	.41	.29	6.2 - 8.5
langing Woman Creek, Mont.							
A horizon	14	(9)	16	8.1	.34	.21	7.0 - 8.7
C horizon	14	(9)	16	8.4	.40	.25	7.5 - 9.1
Goils used in extraction studies, San Juan Basin, N. Mex.							
Regional study							
A horizon	19	(9)	47	8.1	.30	.061	7.3 - 8.6
C horizon		(9)	47	8.3	.81	.14	7.4 - 9.2
Sheppard-Shiprock-Doak Soil Associati	on						
A horizon	24	(9)	30	7.9	.38	.055	7.0 - 8.4
C horizon	24	(9)	30	8.6	.29	.039	7.8 - 9.2
San Juan mine, topsoil	11	(9)	12	8.0	.67	.076	6.6 - 8.4

TABLE 67.-pH determinations for rocks, streams sediments, mine spoil and soils-Continued

TABLE 68.-Geochemical summary of ground water from North Dakota and Montana (study No. 25)

[Explanation of column headings: Analytical method refers to method listed in table 1. Ratio, number of samples in which the element was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic means. Deviation, geometric deviation, except that values preced by asterisk are standard deviations. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Parameter	Concentration units ¹	Analytical method	Ratio	Mean	Deviation	Error	Observed range
luminum	μg/L	2	18:19	24	2.36	1.55	<5 - 90
rsenic	µg/L	3	9:19	<1			<1 - 26
arium	μg/L	2	19:19	50	2.58	1.09	13 - 520
ryllium	µg/L	2	9:19	<7			
icarbonate	mg/L	17	19:19	665	1.63	1.01	251 -1,160
.smuth	μg/L	2	0:19	<14			
ron	μg/L	6	19:19	175	2.72	1.07	23 - 800
omine	mg/L	6	15:19	.21	2.87	1.33	<.1 - 1.7
admium	μg/L	3	2:19	<1			<1 - 1
lcium	mg/L	3	19:19	28	4.50	1.04	1.8 - 350
nlorine	mg/L	6	19:19	15	3.45	1.07	1.8 - 170
romium	µg/L	2	0:19	<14			
balt	μg/L	2	0:19	<14			
pper	µg/L	2	8:19	<1			<1 - 15
luorine	mg/L	9	19:19	.6	3.19		.1 - 7.5

166

TABLE 68.-Geochemical summary of ground water from North Dakota and Montana (study No. 25)-Continued

Parameter	Concentration units ¹	Analytical method	Ratio	Mean	Deviation	Error	Observed range
allium	μg/L	2	0:19	<2			÷-
ermanium	µg/L	2	0:19	<15			
odine	mg/L	6	8:19	<.01			<178
ron	ug/L	2	19:19	427	3.88	1.11	70 -5,000
ead	µg/L	2	0:19	<14			
ithium	μg/L	3	19:19	49	1.79	1.18	20 - 150
agnesium	mg/L	3	18:19	12		1.11	<.1 - 240
anganese	ug/L	2	15:19	31	3.73	1.23	<1 - 470
ercury	μg/L	4	4:19	<.1			<.11
olybdenum	µg/L	2	7:19	<1			<1 - 30
icke1	µg/L	2	0:19	<14			
tassium	mg/L	3	19:19	4.6	1.77	1.03	1.5 - 34
²⁶ Radium	pCi/L	20	16:19	.40	3.12	1.15	<.1 - 4.2
elenium	ug/L	3	6:19	<1			<1 - 6
ilica	mg/L	6	19:19	14	1.61	1.03	6.2 - 27
ilver	µg/L	2	0:19	<3			
dium	mg/L	3	19:19	219	2.97	1.03	23 - 760
rontium	ug/L	2	19:19	551	2.40	1.22	110 -3,800
ulfate	mg/L	6	19:10	128		1.04	4.7 -2,400
in	μg/L	2	0:19	<18			
itanium	ug/L	2	1:19	<2			<2 - 150
ranium	µg/L	13	18:19	.74		1.23	<.01 - 40
anadium	μg/L	2	0:19	<14			
inc	μg/L	3	16:19	42		1.06	<10 -1,600
irconium	μg/L	2	0:19	<25			
lkalinity (as CaCO ₃)	mg/L	11	19:19	576	1.60		206 -1,070
ross alpha (as U natural)-	ug/L	21	4:19	<4.2			<4.2 - 49
ross beta (as Sr/Y-90)	pCi/L	21	15:19	5.7	1.87	1.29	<2.9 - 22
issolved solids (residue	•						
at 180°C)	mg/L	14		1,030	1.92	1.01	281 -4,140
ardness (total as CaCO ₃)	mg/L	11	19:19	126	4.98	1.06	5 -1,900
1	s.u.	9	19:19	*7.8	*.64	1.03	6.55 - 8.89
odium absorption ratio		11	19:19	8.5		1.04	.7 - 86
pecific conductance	mhos/cm	15		1,690	1.66		495 -4,300
emperature	°C	19	19:19	9.6	1.27	1.01	7.1 - 20.4

^lμg/L, micrograms per liter; mg/L, milligrams per liter; pCi/L, picocuries per liter; s.u., standard units; μmhos/cm, reciprocal micro-phms per centimeter; °C, degrees Celsius.

TABLE 69.—Geochemical summary of ground water from Poplar River Basin, Saskatchewan and Montana (Study No. 27) [Explanation of column headings: Method of analysis refers to method listed in table 1. Ratio, number of samples in which the element or other parameter was found in measurable concentrations to number of samples analyzed. Mean. geometric mean, except that values preceded by asterisk are arithmetic means. Deviation, geometric deviation, except that values preceded by asterisk are standard deviations. Leaders (-) in figure column indicate no data available]

Parameter	Concentration units ¹	Analytical method	Ratio	Mean	Deviation	Observed range
Arsenic	μg/L	2	7:9	1.13	1.84	<1 - 3
arium	μg/L	2	6:9	23		<1 - 400
Bicarbonate	mg/L	17	9:9	673	1.62	190 - 910
Boron	μg/L	6	9:9 1,	080	3.97	40 - 2,900
Bromine	μg/L	6	7:9	210	3.29	<10 - 1,600

Parameter	Concentration units ¹	Analytical method	Ratio	Mean	Deviation	Observed range
alcium	mg/L	3	9:9	46	4.53	3.4 - 440
arbon, dissolved organic	mg/L	10	9:9	5.4	1.80	1.7 - 14
arbonate	mg/L	17	3:9			<1 - 21
hlorine	mg/L	6	9:9	13	4.75	1.6 - 160
hromium	µg/L	3	0:9	<1		
opper	μg/L	3	4:9			<1 - 30
vanide	mg/L	6	1:9			<.0103
luorine	mg/L	9	9:9	.4	3.07	.1 - 2.3
odine	ug/L	6	6:9	10	1.87	<10 - 30
ron	µg/L	6	9:9	700	3.85	90 - 5,500
agnesium	mg/L	3	9:9	23		.9 - 340
anganese	ug/L	3	7:9	41		<1 - 850
ercury	μg/L	4	0:9	<.1	~ -	
olybdenum	µg/L	3	3:9			<1 - 10
henols	µg/L	6	7:9	3.2		<1 - 40
hosphate (as P)	mg/L	6	9:9	.03		.0180
hosphorus (as P)	mg/L	6	7:9	.04		.0180
otassium	mg/L	3	9:9	6.8	2.08	1.9 - 11
²⁶ Radium	pCi/L	20	9:9	•40	2.59	.13 - 2.3
elenium	μg/L	3	1:9			<1 - 63
ilica	mg/L	6	9:9	12	1.30	7.9 - 17
odium	mg/L	3	9:9	110		1.4 - 670
trontium	μg/L	3	9:9	477	3.45	80 - 1.700
ulfate	μg/L mg/L	6	9:9	186		10 - 1,600
itanium	μg/L	3	0:9	<1		
ranium	ug/L	13	9:9	1.7		.4 - 190
anadium	μg/L	6	2:9			<1 - 10
inc	μg/L μg/L	3	8:9	44		<1 - 970
issolved solids (residue						
at 180°C)	mg/L	14	9:9 1	,065	2.22	185 - 3,450
ardness (total as CaCO3)	mg/L	11	9:9	214		12 - 2,500
H	S.u.	9	9:9	*7.8	*.66	7.2 - 8.9
odium absorption ratio		11	9:9	4.4		.05 - 50
emperature	°C	11	9:9	6.4	1.66	2.1 - 10.6

TABLE 69.—Geochemical summary of ground water from Poplar River Basin, Saskatchewan and Montana (Study No. 27)—Continued

 $l_{\mu\rm g}/L$, micrograms per liter; mg/L, milligrams per liter; pCi/L, picocuries per liter; s.u., standard units; °C, degrees Celsius.

TABLE 70.—Geochemical summary of ground water from the Powder River coal region, Montana and Wyoming (Study No. 28) [Explanation of column headings: Method of analysis refers to method listed in table 1. Ratio, number of samples in which the element or other parameter was found in measurable concentrations to number of samples analyzed. Mean, geometric mean, except that values preceded by asterisk are arithmetic means. Deviation, geometric deviation, except that values preceded by asterisk are standard deviations. Leaders (-) in figure column indicate no data available]

Parameter	Concentration units ¹	Analytical method	Ratio	Mean	Deviation	Observed range
luminum	μg/L	2	19:19	17	1.9	<6 - 60
rsenic	µg/L	3	6:20			<1 - 6
arium	µg/L	2	9:15	24	2.7	6 - 128
icarbonate	mg/L	17	20:20	504	1.6	195 -1,4 00
oron	μg/L	6	19:19	148	2.2	32 - 422
romine	mg/L	6	13:20	.15	2.0	<.17
admium	µg/L	3	3:20			<1 - 1
alcium	mg/L	3	20:20	24		1.9 - 530
hlorine	mg/L	6	20:20	8.7	2.1	1.9 - 47
opper	µg/L	2	4:19			<1 - 14

TABLE 70.-Geochemical summary of ground water from the Powder River coal region, Montana and Wyoming (Study No. 28)-Continued

Parameter	Concentration units ¹	Analytical method	Ratio	Mean	Deviation	Observed range
luorine	mg/L	9	20:20	0.68	2.8	0.1 - 14
lodine	mg/L	6	4:20	.01	1.4	<.0102
[ron	μg/L	6	20:20	170		7 -28,000
Lithium	μg/L	3	20:20	36	2.4	10 - 180
lagnesium	mg/L	3	20:20	13		.6 - 150
langanese	µg/L	3	20:20	21		.7 - 4,800
lercury	µg/L	4	4:20			<.12
Potassium	mg/L	3	2020	3.9	2.0	1.5 - 12
²²⁶ Radium	pCi/L	20	17:18	•23	2.0	<.18
Selenium	µg/L	3	5:20			<1 - 12
Silica	mg/L	6	20:20	11	1.6	5.8 - 26
Sodium	mg/L	3	20:20	173	3.0	24 - 1,000
Strontium	ug/L	2	15:16	444	4.1	19 - 2,754
Sulfate	mg/L	6	20:20	292		5.5 - 1,800
Uranium	µg/L	13	16:18	•25		<.01 - 7.3
Zinc	µg/L	3	20:20	50		.7 - 1,800
Gross beta (as Cs-137)	pCi/L	21	12:18	6.6	1.8	<4 - 14
Dissolved solids (residue						
at 180°C)	mg/L	14	20:20	1,080	1.9	345 - 3,190
Hardness (total as CaCO3)	mg/L	11	20:20	112	6.9	7 - 1,900
Sodium absorption ratio		11	20:20	6.9	6.0	.4 - 73
рИ	s.u.	9	20:20	*7.7	*.6	6.5 - 8.5
Specific conductance	mhos/cm	15	20:20	1,500	1.8	582 - 4,000

l $_{\mu}g/L,$ micrograms per liter; mg/L, milligrams per liter; pCi/L, picocuries per liter; s.u., standard units; $_{\mu}mhos/cm$, reciprocal micro-ohms per centimeter; °C, degrees Celsius.

٠

TABLE 71.-Shale-outcrop mineralogy, Fort Uniton Formation, northern Great Plains

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the mineral was found to number of samples examined. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Mineral	Study No. and method of analysis	Ratio	Mean (percent)	Deviation	Error	Observed range (percent)
0-1-1++	. (22)	20.(0	2 (2.02		(0.1
Calcite	1 (23)	28:60	3.6	2.83		<0.1 - 28
Dolomite	1 (23)	40:60	5.2	3.70		<.1 - 24
Gypsum	1 (23)	11:60	2.0	2.21		<.12 - 7.3
ayered silicates	1 (23)	60:60	50	1.41	1.05	17 - 76
licrocline	1 (23)	56:60	3.2	1.57	1.46	<.5 - 9.8
Pyrite	1 (23)	18:60	1.9	1.37		<.1 - 3.0
uartz	1 (23)	60:60	30	1.30	1.05	14 - 57
derite	1 (23)	36:60	.6	1.60		<.1 - 1.3
Sodic plagioclase	1 (23)	52:60	4.2	1.96	1.90	<.5 - 11

.

TABLE 72.-Sandstone outcrop mineralogy, Fort Union Formation, northern Great Plains

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the mineral was found to number of samples examined. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Mineral	Study No. and method of analysis	Ratio	Mean (percent)	Deviation	Error	Observed range (percent)
Calcite	1 (23)	30:60	0.8	10.6		<0.1 - 61
Dolomite	1 (23)	47:60	2.7	7.68	1.06	<.1 - 41
Layered silicates	1 (23)	60:60	21	1.75	1.19	4.8 - 64
Microcline	1 (23)	57:60	4.3	2.79	1.14	<.5 - 16
Quartz	1 (23)	60:60	43	1.41	1.02	19 - 89
Sodic plagioclase	1 (23)	53:60	3.9	4.67	1.17	< . 5 - 26

TABLE 73.—Mineralogy of fine-grained rocks cored from the Fort Union Formation, northern Great Plains

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the mineral was found to number of samples examined. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Nineral	Study No. and method of analysis	Ratio	Mean (percent)	Deviation	Observed range (percent)
Calcite	3 (23)	17:38	0.73	3.95	<0.25 - 10
Carbonate, mixed	3 (23)	2:38	.31	2.77	<.25 - 22
Chlorite	3 (23)	34:38	18.5		<.25 - 65
Clay, total	3 (23)	38:38	47.2	1.41	12 - 80
Dolomite	3 (23)	22:38	1.56		<.25 - 33
Kaolinite	3 (23)	26:38	5.20		<.25 - 80
Microcline	3 (23)	37:38	1.65	1.89	<.25 - 6
Quartz	3 23)	38:38	25.7	1.44	14.0 - 49.0
Siderite	3 (23)	16:38	.66	3.79	<.25 - 20
Sodic plagioclase	3 (23)	38:38	3.51	1.99	1 - 10

TABLE 74.—Mineralogy of three rock types from drill cores at the Hanging Woman Creek site, Big Horn County, Mont.

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the mineral was found to number of samples examined. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Mineral, and rock type	Study No. and method of analysis	Ratio	Mean (percent)	Deviation	Observed range (percent)
Calcite					
Sandstone	2 (23)	12:24	2.5	4.9	<0.25 - 19
Siltstone plus shale	2(23)	11:24	1.5	1.8	<.25 - 5.5
Dark shale	2 (23)	1:23			< . 2578
Calcium-rich dolomite					
Sandstone	2 (23)	10:24	14	21	< . 25 - 56
Siltstone plus shale	2 (23)	4:24	.21	.64	<.25 - 2.6
Dark shale	2 (23)	0:23			
Calcium-rich siderite					
Sandstone	2 (23)	11:24	.89	1.8	<.25 - 8.2
Siltstone plus shale	2 (23)	8:24	.68	1.5	<.25 - 6.4
Dark shale	2 (23)	12:23	1.3	1.8	<.25 - 6.8
Chlorite					
Sandstone	2 (23)	23:24	3.8	2.5	<.25 - 10
Siltstone plus shale	2 (23)	24:24	11	7.0	2.7 - 25
Dark shale	2 (23)	22:23	14	9.5	<.25 - 27

Mineral, and rock type	Study No. and method of analysis	Ratio	Mean (percent)	Deviation	Observed range (percent)
Dolomite					
Sandstone	2 (23)	12:24	2.2	2.5	<0.25 - 7.1
Siltstone plus shale	2 (23)	14:24	2.3	2.3	<.25 - 6.2
Dark shale	2 (23)	13:23	1.0	.73	<.25 - 2.1
Gypsum					
Sandstone	2 (23)	1:24			<.25 - 5.9
Siltstone plus shale	2 (23)	0:24			
Dark shale	2 (23)	1:23			<.25 - 4.6
Illite					
Sandstone	2 (23)	24:24	3.0	1.7	1.10 - 8.2
Siltstone plus shale	2 (23)	24:24	12	6.7	3.8 - 25
Dark shale	2 (23)	23:23	15	6.4	6.1 - 27
Kaolinite					
Sandstone	2 (23)	22:24	8.5	7.1	<.25 - 23
Siltstone plus shale	2 (23)	23:24	12	8.4	<.25 - 33
Dark shale	2 (23)	23:23	8.1	17	3.8 - 32
Magnesian calcite					
Sandstone	2 (23)	1:24			< . 25 - . 87
Siltstone plus shale	2 (23)	2:24	.11	.38	<.25 - 1.4
Dark shale	2 (23)	0:23			
Marcasite					
Sandstone	2 (23)	1:24			<.25 - 10
Siltstone plus shale	2 (23)	0:24			
Dark shale	2 (23)	0:23			
Microcline					
Sandstone	2 (23)	16:24	4.1	4.3	<.5 - 16
Siltstone plus shale	2 (23)	13:23	2.2	2.3	<.5 - 7.0
Dark shale	2 (23)	11:23	1.9	2.1	<.5 - 6.9
Oligoclase					
Sandstone	2 (23)	24:24	9.6	3.0	4.3 - 18
Siltstone plus shale	2 (23)	21:24	7.4	4.4	<.5 - 14.1
Dark shale	2 (23)	22:23	4.6	2.8	<.5 - 10.2
Pyrite					
Sandstone	2 (23)	1:24			<.1 - 3.5
Siltstone plus shale	2 (23)	10:24	•88	1.1	<.1 - 3.3
Dark shale	2 (23)	19:23	2.6	1.9	<.1 - 6.8
Quartz					
Sandstone	2 (23)	24:24	37	12	23 - 71
Siltstone plus shale	2 (23)	24:24	33	4.5	24 - 40
Dark shale	2 (23)	23:23	28	3.3	16 - 32
Siderite					
Sandstone	2 (23)	9:24	•30	•53	<.25 - 2.1
Siltstone plus shale	2 (23)	14:24	.45	.48	<.25 - 1.5
Dark shale	2 (23)	4:23	.12	•29	< . 25 - 22
Silicates, layered ¹					
Sandstone	2 (23)	24:24	28	10	11 - 44
Siltstone plus shale	2 (23)	24:24	52	7.3	38 - 66
Dark shale	2 (23)	23:23	61	5.5	54 - 78
Smectite					
Sandstone	2 (23)	24:24	13	8.0	1.2 - 31
Siltstone plus shale	2 (23)	24:24	17	7.7	4.8 - 36
Dark shale	2 (23)	20:23	15	13	<.25 - 35

TABLE 74.-Mineralogy of three rock types from drill cores at the Hanging Woman Creek site, Big Horn County, Mont.-Continued

¹The category "silicates, layered" includes the following other categories that are listed individually in the tabulation: chlorite, illite, kaolinite, and smectite.

TABLE 75.-Mineralogy of stream sediments from the northern Great Plains

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the mineral was found to number of samples examined. Mean, geometric mean. Deviation, geometric deviation. Error, geometric error attributed to laboratory procedures.]

Mineral	Study No. and method of analysis	Ratio	Mean (percent)	Deviation	Error	Observed range (percent)
Calcite	6 (23)	26:30	1.5	1.84	1.08	<0.1 - 8.7
Dolomite	6 (23)	25:30	1.7	2.29	1.04	<.1 - 8.0
ayered silicates	6 (23)	30:30	35	1.03	1.003	21 - 59
licrocline	6 (23)	30:30	5.2	1.14	1.14	2.0 - 9.8
)uartz	6 (23)	30:30	43	1.01	1.001	28 - 63
odic plagioclase	6 (23)	30:30	7.3	1.39	1.03	1.1 - 19

TABLE 76.-Mineralogy of soils used in extraction studies, northern Great Plains

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the mineral was found to number of samples examined. Mean, arithmetric mean. Deviation, standard deviation. Error, standard error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Mineral, and soil horizon	Study No. and method of analysis	Ratio	Mean (percent)	Deviation	Error	Observed range (percent)
			(percent)			
Calcite						
A horizon	18 (23)	9:21	<0.1			<0.1 - 0.7
C horizon	18 (23)	19:21	5.3	5.2	0.86	<.1 - 15
Dolomite						
A horizon	18 (23)	16:21	.75	.94	.33	<.1 - 3.5
C horizon	18 (23)	20:21	3.3	3.5	.46	<.1 - 12
Layered silicates						
A horizon	18 (23)	21:21	28	10.7	2.8	7.3 - 56
C horizon	18 (23)	21:21	30	9.1	2.8	16 - 45
licrocline						
A horizon	18 (23)	13:21	4.9	5.2	3.1	<.5 - 19
C horizon	18 (23)	13:21	3.8	4.0	1.3	<.5 - 16
Juartz						
A horizon	18 (23)	21:21	50	8.8	1.5	30 - 67
C horizon	18 (23)	21:21	47	10.7	1.7	26 - 62
Siderite						
A horizon	18 (23)	2:21	<.1			<.15
C horizon	18 (23)	2:21	<.1			<.13
odic plagioclase						
A horizon	18 (23)	19:21	9.6	7.9	2.3	<.5 - 33
C horizon	18 (23)	21:21	8.7	7.2	.8	.6 - 26

TABLES 4-77

TABLE 77.-Mineralogy of soils from Hanging Woman Creek, Mont.

[Explanation of column headings: Study No. refers to study described in text; method of analysis (in parentheses) refers to method listed in table 1. Ratio, number of samples in which the mineral was found to number of samples examined. Mean, arithmetic mean. Deviation, standard deviation. Error, standard error attributed to laboratory procedures. Leaders (-) in figure column indicate no data available]

Mineral	Study No. and method of analysis	Ratio	Mean (percent)	Deviation	Error	Observed range (percent)
*·····		h	WHOLE SAMPLE			
Calcite	14 (23)	14:16				<0.2 - 11
Dolomite	14 (23)	14:16				<.2 - 3.9
Layered silicates	14 (23)	16:16	40	6.8	1.6	27 - 51
Microcline	14 (23)	16:16	5.4	2.3	.89	2.2 - 9
Quartz	14 (23)	16:16	42	7.6	1.5	30 - 55
Sodic plagioclase	14 (23)	16:16	7.6	2.2	1.3	3.4 - 11
		SAND FRACTI	ION (2 mm to 0.05	mm) ¹		
Layered silicates	14 (23)	15:16	8.5	4.9	1.7	<3 - 15
Microcline	14 (23)	16:16	9.1	2.1	2.0	3.2 - 11
Quartz	14 (23)	16:16	74	7.1	2.5	64 - 88
Sodic plagioclase	14 (23)	16:16	8.6	3.0	2.3	5.7 - 18
		SILT FRACTION	N (0.05 mm to 0.00)2 mm) ¹		
Layered silicates	14 (23)	16:16	21	6.2	5.9	15 - 36
Microcline	14 (23)	16:16	7.3	2.0	1.2	2 - 11
Quartz	14 (23)	16:16	60	5.8	5.2	49 - 67
Sodic plagioclase	14 (23)	16:16	12	2.0	.94	7.2 - 16
		CLAY FRA	ACTION (<0.002 mm))1		
Layered silicates	14 (23)	16:16		6.4	6.4	67 - 91
Microcline	14 (23)	6:16				<2 - 8
Quartz	14 (23)	16:16	13	3.9	3.9	9 - 24
Sodic plagioclase	14 (23)	14:16	4.0	3.1	2.6	(2 - 10)

 $^{1}\ensuremath{\mathsf{Calcite}}$ and dolomite were removed by the dispersion treatment.