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Abstract 1

Abstract

Construction of a ground-water model for a field area is not a straightforward process.
Data are virtually never complete or detailed enough to allow substitution into the model
equations and direct computation of the results of interest. Formal model calibration through
optimization, statistical, and geostatistical methods is being applied to an increasing extent to deal
with this problem and provide for quantitative evaluation and uncertainty analysis of the model.
However, these approaches are hampered by two pervasive problems: 1) nonlinearity of the
solution of the model equations with respect to some of the model (or hydrogeologic) input
variables (termed in this report system characteristics) and 2) detailed and generally unknown
spatial variability (heterogeneity) of some of the system characteristics such as log hydraulic
conductivity, specific storage, recharge and discharge, and boundary conditions. A theory is
developed in this report to address these problems. The theory allows construction and analysis of
a ground-water model of flow (and, by extension, transport) in heterogeneous media using a small
number of lumped or smoothed system characteristics (termed parameters). The theory fully
addresses both nonlinearity and heterogeneity in such a way that the parameters are not assumed
to be effective values.

The ground-water flow system is assumed to be adequately characterized by a set of
spatially and temporally distributed discrete values, B, of the system characteristics. This set
contains both small-scale variability that cannot be described in a model and large-scale variability
that can. The spatial and temporal variability in B are accounted for by imagining B to be
generated by a stochastic process wherein B is normally distributed, although normality is not
essential. Because B has too large a dimension to be estimated using the data normally available,
for modeling purposes B is replaced by a smoothed or lumped approximation y0, (where y isa
spatial and temporal interpolation matrix). Set y0, has the same form as the expected value of 3,
Y0, where @ is the set of drift parameters of the stochastic process; 0, is a best-fit vector to p. A
model function f(B), such as a computed hydraulic head or flux, is assumed to accurately
represent an actual field quantity, but the same function written using y0., f(y6.), contains error
from lumping or smoothing of B using y0,. Thus, the replacement of B by Y0, yields nonzero
mean model errors of the form E(f(B)— f(y0.)) throughout the model and covariances between
model errors at points throughout the model. These nonzero means and covariances are evaluated
through third- and fifth-order accuracy, respectively, using Taylor series expansions. They can
have a significant effect on construction and interpretation of a model that is calibrated by
estimating 0, .

Vector 0, is estimated as using weighted nonlinear least squares techniques to fit a set
of model functions f (y@) to a corresponding set of observations of f(), Y. These observations
are assumed to be corrupted by zero-mean, normally distributed observation errors, although, as
for B, normality is not essential. An analytical approximation of the nonlinear least squares
solution is obtained using Taylor series expansions and perturbation techniques that assume model
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and observation errors to be small. This solution is used to evaluate biases and other results to
second-order accuracy in the errors. The correct weight matrix to use in the analysis is shown to
be the inverse of the second-moment matrix E(Y —f£(y0,))(Y —£(y6.,))’, but the weight matrix is
assumed to be arbitrary in most developments. The best diagonal approximation is the inverse of
the matrix of diagonal elements of E(Y —£(y0,))(Y —f(y0.))’, and a method of estimating this
diagonal matrix when it is unknown is developed using a special objective function to compute 0.

When considered to be an estimate of f(y0, ), the estimate f (yé) is biased because of
nonlinearity in f() and f(y0) (0 = 0, or é), but when considered to be an estimate of f(3),

f (yé) is biased only because of components of nonlinearity in f() and f(y0) known as the
intrinsic nonlinearity. (Intrinsic nonlinearity in either f() or f(y0) is a component of the total
nonlinearity in either function that cannot be eliminated by a unique transformation of either B or
0, respectively.) Because both types of intrinsic nonlinearity can be small, f (yé) can be nearly
unbiased as an estimate of f(B). Analogous results hold for a prediction g(yé) (where g is some
function of parameters of interest to the investigator), except that in this case the intrinsic
nonlinearity is for the combination of either g(B) and f(B) or g(y0) and f(y0), termed the
combined intrinsic nonlinearity. The biases are evaluated to second-order accuracy using Taylor
series expansions and the analytical least squares solution, but an investigator would probably be
more interested in estimates of f() and g(B) than in estimates of fictitious variables f(y0,) and
g(y0.). Predictive accuracy of a model is thus strongly tied to the degree of intrinsic nonlinearity
of the models f(B) and f(y0,) together with the combined intrinsic nonlinearity of the models
and the predictions to be made with them.

Uncertainties in the estimates of 0., f(y0,), f(B), g(v0.), and g(B) (or some future
measurement of g(B) ) are addressed through nonlinear confidence regions, confidence intervals,
and prediction intervals. If B and the observation errors are normally distributed, statistical
distributions of functions of the weighted sums of squared errors in the estimates necessary to
define the regions and intervals approximate F distributions that are modified with correction
factors. These functions are very similar to the standard ones developed for linear models except
that the parameter set 0, is stochastic rather than fixed. The correction factors correct the
distributions to account for intrinsic nonlinearity of f(y0) and deviation of the weight matrix from
the correct one. The correction factors are derived using the Taylor series and perturbation
method used for the least squares; the generality of the factors and concepts leading to them are
verified by an independent method that does not rely on Taylor series and perturbations. Because
of the effects of spatial correlation, confidence regions and confidence intervals would generally
be too small without using components of the correction factors needed to correct for using an
incorrect weight matrix unless the correct one is used; prediction intervals may often be nearly
correct. Approximate bounds for the correction factors are developed for use when the
information on nonlinearity and heterogeneity necessary to calculate them is not available.
Measures of total model nonlinearity of f(y0), intrinsic nonlinearity of f(y0), and combined



Abstract

intrinsic nonlinearity of f(y0) and g(y0) help an investigator decide when the components of the
correction factors accounting for the types of intrinsic nonlinearity are not important.

Two examples are analyzed to test the validity and robustness of the theory when the
model error is large. Example 1 is for one-dimensional, steady-state flow in an aquifer having log
transmissivity (In7) that varies stochastically at small scale and recharge (W) that is constant.
Example 2 is for two-dimensional, steady-state flow in a zoned aquifer where In7 and W vary
spatially at both large and small scales, the small-scale variations being stochastic. Hydraulic head
data Y were generated as f(y0,) plus the sum of model errors f(f)—f(y0,) and small, zero-
mean, independent, normal observation errors, Y —f(B). The most important results are as
follows: 1) The total nonlinearity in f(y0) is large for both examples, but the intrinsic
nonlinearity in f(y0) and the combined intrinsic nonlinearity of f(y0) and g(y0) for g(y0) equal
to In7, W, and a predicted hydraulic head, are all small for both examples. As the theory predicts,
the corresponding biases also were found to be small. 2) The sum of the model and observation
errors, Y —f(y0,), has a nonzero mean and is not normally distributed for either example. 3)
Spatial correlations between elements of Y —f(y0,) are often large, and large values are usually
positive for both examples. 4) Residual set Y —f (y@) does not differ significantly from the zero-
mean, normally distributed set predicted by the theory for either example. 5) For example 2, use
of the correct, full weight matrix produced accurate confidence and prediction intervals, as
determined using a Monte Carlo procedure. (Because of severe ill conditioning, example 1
produced open-ended intervals that could not be formally analyzed.) 6) Use of the best diagonal
matrix for example 2 produced accurate confidence intervals only when the correction factors
were used. Otherwise, the intervals are too small as determined by the Monte Carlo procedure.
The prediction intervals did not have to be corrected. 7) Use of the estimated weight matrix for
example 2 produced confidence and prediction intervals that had to be corrected, but the minimum
containment probability of 0.92 for the intervals after correction remains slightly too small
compared to the nominal probability of 0.95 because the correction factors are more approximate
for this case than when the best diagonal weight matrix is used.
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1. Introduction

Background

Ground-water models simulate the processes involved in ground-water flow and
transport. They are among the most powerful tools available for use in water-resources studies.
They are used to 1) analyze the effects of possible hydrologic, geologic, and man-made
processes and features on synthetic flow systems, 2) analyze past and present actual flow
systems to better understand rates, directions, and causes of water movement and (or) transport’
within them, and 3) predict responses of actual flow systems to future changes or conditions such
as ground-water or surface-water development, changes in recharge or discharge rates,
contaminant spills, and so forth (Cooley, 1985; Anderson and Woesner, 1992, p. 4). Most
modern ground-water models represent the processes involved mathematically, and so in this
report the term ground-water model refers to this representation. Also, in this report concern is
explicitly on flow, but as will become obvious, the theory developed here is general enough to be
applied to transport as well.

Even when only flow is considered, construction of a ground-water model for a field
system using the types of data commonly available is not necessarily straightforward. Data are
virtually never complete and detailed enough to allow substitution into the model equations and
direct computation of the results of interest. A model can, of course, be fitted to observed data
by manual, trial and error calibration, but, though simple in concept, even this procedure is not
necessarily straightforward. (See, for example, the advice given by Konikow (1978).) In
addition, as argued by Carrera and Neuman (1986, p. 199-200), Cooley and Naff (1990, Chapter
1), and Hill (1992, p. 3-4), for example, the trial and error procedure is often highly subjective
and fails to provide a basis for both critical, quantitative evaluation and uncertainty analysis. For
these reasons, the attention of a number of investigators has turned to more formal optimization,
statistical, and geostatistical procedures. (See reviews by Yeh (1986), Carrera (1988), and Ginn
and Cushman (1990).)

Application of optimization, statistical, and geostatistical procedures to model calibration
and uncertainty analysis is hampered by two pervasive problems: 1) nonlinearity of the solution
of the model equations with respect to some of the model (or hydrogeologic) input variables
(termed in this report system characteristics), and 2) detailed and generally unknown spatial
variability (referred to as heterogeneity) of some of the system characteristics. These problems
are highly interrelated, as will be shown.

Nonlinearity. The model equations for ground-water flow include the flow equation(s),
boundary conditions, and initial conditions. The fundamental sources of nonlinearity in the
solution of these equations for hydraulic head are well known. They result from multiplicative
relations between system characteristics such as hydraulic conductivity and specific storage, and
hydraulic head or its spatial and temporal derivatives in the model equations. (See, for example,
Hill (1992, p. 69-70) for a discussion of nonlinearity from Darcy’s law.) These sources of
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nonlinearity are present even when the differential equations composing the model equations are
classified as being linear; the solution is still a nonlinear function of the multiplicative input
variables. For example, consider the standard linear differential equation for transient, three-
dimensional, ground-water flow in an isotropic, heterogeneous porous formation, which is

G oh, 8 oh, oh oh
5 KO-+ 5(K(x)5) 5, KE=) = 8,0 = wx.1) (1-1)

where x = the cartesian spatial coordinates x, y, and z; t = time; 4 = h(x,t) = hydraulic head as
a function of x and #; K(x) = hydraulic conductivity as a function of x; S, (x) = specific storage
as a function of x; and w(x,#) = source (negative for a sink) as a function of x and ¢. The
solution of (1-1) (and attendant boundary and initial conditions) is A(x,7). The solution is a
nonlinear function of K(x) and S,(x), but is a linear function of w(x,¢). Additional sources of
nonlinearity result when the model equations are classified as being nonlinear, as for unconfined
flow problems (which have an unknown free surface) or variably saturated flow problems (where
hydraulic conductivity and storativity are functions of pressure) or when a nonlinear hydraulic-
head or flux process is present. In this case the two sources of nonlinearity compound in their
effects on the solution of the flow equations.

Nonlinearity has a significant influence on methods of calibration and uncertainty
analysis. Virtually all optimization, statistical, and geostatistical methods known to me, except
Monte Carlo methods, are designed primarily to treat linear problems. Nonlinear problems are
either linearized or solved through some kind of iterative or sequential solution procedure
wherein each step solves a linear problem. For example, the Gauss-Newton method for fitting a
nonlinear function (such as the solution of the model equations) to data using least squares uses a
linearization of the function obtained from a truncated Taylor series at each iteration (Seber and
Wild, 1989, p. 25-26). Similarly, the modification proposed by Yeh and others (1996) to include
nonlinearity in the classical cokriging method (a linear geostatistical method) for simultaneously
estimating log-transmissivity and hydraulic head fields involves an iterative solution wherein a
linear cokriging problem is solved at each iteration. Finally, the statistical distributions used for
classical uncertainty analyses (or inference) are generally based on linear functions. (See Seber
and Wild (1989, Chapter 5).) All of these methods for incorporating nonlinearity are more
complicated, and can be less numerically stable, than their linear counterparts. Moreover, they
often only approximately account for nonlinearity (for example, the Yeh and others (1996)
method).

One might conclude from the discussion in the previous paragraph that problems too
nonlinear for linearization to provide good approximate results should be analyzed using other
methods, such as Monte Carlo methods. Monte Carlo methods appear to be straightforward
because they involve repeated sampling of a statistical distribution of system characteristics and
use of the sets of variables in the model equations to generate a statistical distribution of a model
function (such as the solution for hydraulic head) from which desired quantities such as means,
variances, and percentiles can be computed. However, Monte Carlo methods are no panacea. In



6 A Theory for Modeling Ground-Water Flow in Heterogeneous Media

particular, when the underlying statistical distribution is unknown or involves unknown
distributional parameters, as it does for application to ground-water models, then the Monte
Carlo analysis method reduces to a bootstrap method (Efron, 1982), which may not be accurate
unless the dimension of the observed-data set is large and (or) the degree of nonlinearity of the
model function is small (Cooley, 1997, p. 871-872). Again, nonlinearity seems to be a
significant factor. In addition, computational requirements may be large (Peck and others, 1988,
p. 129-130; Cooley, 1997), and, if realizations of the system characteristics of interest are
derived using least squares, then data censoring in generating sample data for ill-conditioned or
highly nonlinear problems can become a problem because of nonconvergence of the least
squares method (Cooley, 1997).

Heterogeneity. Characterization of both large- and small-scale spatial variability in
hydraulic conductivity (or transmissivity) fields and incorporation of this spatial variability into
ground-water models have been the subjects of extensive analysis spanning many years. (See,
for example, discussions and reviews in Freeze (1975), Dagan (1986), Gelhar (1986), Peck and
others (1988), and McLaughlin and Townley (1996).) However, other spatially defined system
characteristics such as recharge (or discharge), leakance (for two-dimensional models), specific
storage, and boundary conditions also vary spatially, at both large and small scales.
Characterization of spatial variability of these variables and incorporation of the spatial variation
into ground-water models have been the subjects of much less research. Freeze (1975)
considered spatial variability in the storage coefficient in addition to spatial variability of
hydraulic conductivity; Gomez-Hernandez and Gorelick (1989) examined spatial variability in
hydraulic conductivity, leakance, and recharge; and Graham and Tankersley (1994a, 1994b)
derived and used a geostatistical parameter estimation model for spatially variable transmissivity
and recharge. In addition, Neuman and Orr (1993) and Tartakovsky and Neuman (1998)
considered recharge to be stochastic and spatially variable in their derivations of conditional
moment, flow equations. All of the cited studies considered hydraulic conductivity (or
transmissivity) to be statistically independent of all other variables. (Gomez-Hernandez and
Gorelick (1989) varied hydraulic conductivity, leakance, and recharge separately.) However,
because of the strong relation of recharge, storativity, boundary conditions, and perhaps even
leakance to the same rock properties governing hydraulic conductivites of rocks involved in at
least shallow ground-water flow, these variables probably would not often be independent.
Realistic geostatistical characterization of all of the system characteristics for a ground-water
model does not seem to have been published.

Consideration of scales of variation is of major importance in characterizing
heterogeneity and incorporating heterogeneity into a model (Di Federico and others, 1999). It is
convenient to separate the scales into two classes: those that are too small to be explicitly
identified and represented in a ground-water model and those that are large enough to be
explicitly identified and represented. For example, a large, mappable, sudden facies change in a
rock unit could be represented as a hydraulic-conductivity zone boundary in a model; whereas, a
gradual facies change could be represented as a possible trend in hydraulic conductivity. Smaller
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scale variations might not be mappable or otherwise explicitly identifiable. From a purely
operational standpoint, the smallest scale at which variations can be represented explicitly in a
standard numerical model is at the grid-block scale. Smaller-scale variations must be lumped or
smoothed. Even so, if these grid-block and sub grid-block scale variations are not explicitly
identifiable, means must be devised for incorporating their influence into a model. Methods
using geostatistical representation such as those of RamaRao and others (1995), Kitanidis (1995),
and Yeh and others (1996) explicitly use the small scales of variation by relating small-scale
variations in a system characteristic (such as log transmissivity) to small-scale variations in the
model solution (such as hydraulic head). Methods that use lumping or smoothing of the system
characteristics, such as trend fitting (for example, Yoon and Yeh, 1976, and Hill and others,
1998), zonation (for example, Cooley and others, 1986, and D’ Agnese and others, 1999) and
others such as classification of sediment types (Kuiper, 1994) do not represent small-scale
variations explicitly. (See also reviews by Yeh (1986), Carrera (1988), and McLaughlin and
Townley (1996).)

Methods of lumping or smoothing the system characteristics are convenient for handling
heterogeneity because these methods result in a small number of variables to be estimated.
However, questions arise as to what a solution (for example, hydraulic head) to a model equation
using the smoothed variables actually represents. I suspect that most individuals constructing
models of field areas would like the solutions and computed fluxes obtained using smoothed or
lumped system characteristics to approximate spatial and temporal running averages of the
solutions and computed fluxes that would be obtained using variables varying at small scale.
These ideas also were discussed by McLaughlin and Townley (1996, p. 1134-1135) and
immediately bring to mind the concept of “effective values,” which can be loosely defined as
lumped or smoothed system characteristics that yield the average quantities just mentioned.
Note that this definition is determinstic in the sense that local values of the variables are
considered to be fixed, not realizations from a stochastic process. A similar, but more precise,
definition using spatial moments was used by Kitanidis (1990) to find the effective hydraulic
conductivity for gradually varying flow in a periodic medium.

Another definition of effective values is based on concepts of stochastic flow theory. For
this definition the running averages mentioned in the previous paragraph are replaced by
ensemble averages. Neuman and Orr (1993, p. 144) make a clear distinction between the
stochastic and other definitions of effective hydraulic conductivity, give a precise and useful
stochastic definition, and give a number of references for studies involving alternative
definitions. An important result of their study, which was for steady-state flow, is that in general
an effective hydraulic conducitivity field as defined by them does not exist. A follow-up study
by Tartakovsky and Neuman (1998) for transient flow came to a similar conclusion. Neuman
and Orr (1993) and Tartakovsky and Neuman (1998) argued that effective hydraulic conductivity
formulations obtained in previous studies only apply to special conditions. It seems quite
probable that these results would generalize to apply for alternative definitions of effective
hydraulic conductivity.
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The difficulty in defining an effective hydraulic conductivity value is the result of
nonlinearity of the model solution with respect to hydraulic conductivity. This can be deduced
from the facts that 1) the term causing the difficulty (labeled r,(x) by Neuman and Orr, 1993, p.
342) involves the product of hydraulic conductivity fluctuations and hydraulic gradient
fluctuations, which is the source of nonlinearity mentioned previously, and 2) effective values of
system characteristics that appear linearly in the model solution are readily defined. For
example, in forms of the stochastic flow equations derived by Neuman and Orr (1993) and
Tartakovsky and Neuman (1998) in which the random variability of hydraulic conductivity is set
to zero, the ensemble mean source term and boundary conditions are effective values because
they yield the ensemble mean hydraulic head and computed flux fields.

Because the model solution is nonlinear when considered to be a function of all system
characteristics, it appears that there is little hope of defining effective values of these variables
for general ground-water models that are based on standard flow equations such as (1-1). One
might conclude from this that lumped or smoothed system characteristics should not be used
with these models. Such a conclusion seems implicit in the conclusions of Neuman and Orr
(1993, p. 355-356) and Tartakovsky and Neuman (1998, p. 6). However, reasonable estimates
for lumped or smoothed system characteristics have been obtained using nonlinear regression to
calibrate models resulting from field studies (for example, Cooley, 1979; Cooley and others,
1986; Yager, 1996; Christensen and Cooley, 1999a, 1999b; and D’ Agnese and others, 1999), and
any biases in these estimates did not seem to be significant. (Note: other studies obtaining
similarly reasonable results undoubtedly exist.) These results indicate the possible existence of a
theoretical basis for using estimates of lumped or smoothed system characteristics in ground-
water models.

A theory involving estimation of lumped or smoothed system characteristics for ground-
water models must address the question of exactly what is being estimated. Yeh and others
(1996, p. 85) question the identity of the hydraulic head and lumped or smoothed transmissivity
fields estimated by minimizing an objective function of the differences between observed and
computed data. They also make the point that, because these fields are “often undefined”, “the
uncertainty associated with the output can not be addressed.” Although the work of Christensen
and Cooley (1999b) casts considerable doubt on the latter assertion, the question concerning
identity is valid. A nonlinear regression model is generally stated in terms of a true (or correct)
parameter set, which for a ground-water model would ideally represent a set of effective values.
Moreover, uncertainty in the estimates and predictions to be made with the model is with
reference to the true set and quantities computed using it. However, if clearly definable effective
values do not exist, then what is the true parameter set?

One possible approach to answering the question cited above is to consider the model to
be empirical. A model written in terms of parameters that do not have concrete physical
definitions fits the definition of an empirical model given by Jones (1983, p. 68-69). He defined
the parameter set being estimated by assuming that predictions to be made with the model will be
of the same types of data as included in the calibration-data set (Jones, 1983, p. 69). Then the
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true parameter set (termed the “best parameter” set by Jones, 1983, p. 69) is the set that
minimizes the limit of the objective function as the data set gets infinitely large. Presumably, the
infinitely large data set would encompass all potential predictions to be made with the model. A
major problem with this conceptualization as applied to a ground-water model is that the model
often is used to make predictions of types of quantities not potentially includable in the original
data set (for example, a computed flux distribution or the results of future development), which
again leaves the “best parameter” set undefined.

The above background discussion indicates the need for a new theory for modeling
ground-water flow using lumped and (or) smoothed system characteristics. This theory must
recognize and effectively deal with model nonlinearity that in general prevents lumping or
smoothing of the heterogeneous system characteristics to obtain effective values and that causes
the other difficulties mentioned. To address this need a viewpoint that differs from the viewpoint
used in previous studies is adopted in this report. The model parameters are defined physically
as the lumped or smoothed system characteristics, and estimates and uncertainty measures are
derived based on the physical definitions. Properties of the estimates and uncertainty measures
(for example, biases) are investigated using extensions of methods used to investigate classical
nonlinear regression models to determine when the lumped or smoothed properties would
produce accurate approximations.

Purpose and Scope

The purpose of this report is to describe a new theory for modeling ground-water flow in
heterogeneous media. The report
1. provides a sound theoretical framework and sound theoretical guidance for modeling ground-

water motion in heterogeneous media using lumped and (or) smoothed system characteristics
(termed model parameters, or simply parameters), and

2. provides a sound theoretical framework for estimating the parameters and assessing the
uncertainty of the estimates, model functions computed using the estimates, and predictions
to be made with the model. (The distinction between the last two quantities will become
apparent.)

The theory developed in this report seeks to explain some results observed from the field
studies cited earlier (Cooley, 1979; Cooley and others, 1986; Christensen and Cooley, 1999a,
1999b; Yager, 1996). That is:

1. Estimates of parameters, model functions, and predicted quantities are often physically
realistic, or close to what was expected, even though effective values of the system
characteristics probably do not exist.

2. Differences between the observed data and data computed using the parameter estimates are
normally distributed. That is, these differences behave as if the model were linear and as if
the differences between the observed data and data computed using the true parameters were
normally distributed.
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3. Measures of uncertainty (confidence intervals) for some parameters and computed model
functions appear to exclude reasonable values (or to be too small); whereas, the measures for
others do not.

These points are revisited in section 8 of this report after the theory has been completely

developed.

The approach taken is derived from work by Beale (1960), Johansen (1983), and
Hamilton and Wiens (1987). It uses a combination of Taylor series expansions and perturbation
theory to derive approximations of parameter estimates and statistical distributions necessary to
characterize model behavior and uncertainty when the model solution is a nonlinear function of
the parameters and when error resulting from lumping and smoothing heterogeneous fields of
system characteristics is significant. An approach that does not use the Taylor series and
perturbation approximations is used to verify the principal results of the approximate analyses
and extend the analyses to system characteristics having larger variances than those assumed for
the approximate analyses. The viewpoint is classical, based on sampling of data from specified
statistical distributions. A Bayesian viewpoint also could have been used, which would have
lead to developments that are parallel to those given here. The classical viewpoint is used
because the developments appeared to be more straightforward using it as compared to the
Bayesian viewpoint, and because I suspect that most practicing hydrologists are more familiar
with classical statistics than Bayesian statistics.

This report is designed to be read at three possible levels of understanding. If only the
introduction, the summaries at the end of each section, and the final summary and conclusions
section are read, the reader can obtain a quick overview of the principal results without having to
delve into the mathematics. In addition to a good knowledge of ground-water hydrology, only a
basic understanding of stochastic flow theory and statistics are required to understand these
sections. If all of the main text, exclusive of the appendices, is read, then the reader can
understand the main results without having to follow the derivations. A good understanding of
engineering mathematics, stochastic flow theory, and statistics is necessary to derive full benefit
of this reading. Finally, the appendices contain detailed derivations of all the results. Some of
these require some specialized knowledge of theoretical statistics. The derivations are presented
in detail to guide the interested reader unambiguously.
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2. Notation for Matrix Derivatives

In this report operator notation (Johansen, 1983, p. 174-175) is used to denote matrices of
partial derivatives. With this notation first and second partial derivatives of some vector f of
order » with respect to another vector 0 of order p are given by the matrices

pr=| 2 si=12,..,mj=12,...p (2-1)
00,

and

D’f = —aZL'i—l2 nj=12 ; k=12 (2-2)
agjaek £} sLipeeny 5_] ] r--sps ] a*“ap

Note that (2-1) is a standard matrix of order nx p, whereas (2-2) is a three-dimensional matrix
of order nx px p. Algebraic operations involving three-dimensional matrices can be confusing,
so all algebraic operations involving a three-dimensional matrix such as D*f will be explicit on i
and will use the two-dimensional slice D*f,, which is a standard matrix of order px p. For
example, a product of some vector Z of order #» with D*f would be given as ¥ Z,D*f, or
Y. D%f,Z,instead of Z'D*f or D’fZ , where the prime indicates transpose. Occasionally, the row
vector Df, or column vector Df;’ of order p will need to be used in calculations involving
Df and D°f .

Partial derivatives with respect to vectors other than 0 are denoted by an appropriately
subscripted operator. Thus, the partial derivatives of f with respect to a vector B of order m are
given by

D,f= |10 =120 m 2-3)
B,
and
2
D§f= o si=12,..,mj=12,...mk=12,....m (2-4)
op,0P:

Equations (2-3) and (2-4) are matrices of order nx mand nx mx m , respectively; operations on
the three-dimensional matrix are explicit on i as before.

Other alternatives exist for algebraic operations using three-dimensional matrices such as
(2-2) and (2-4). One example is the notation used by Johansen (1983, p. 181-184), and another
is the use of Vetter calculus (for example, Dettinger and Wilson, 1981). However, the explicit
notation adopted here has the advantage of being both simple and straightforward.



12 A Theory for Modeling Ground-Water Flow in Heterogeneous Media

3. Basic Theory

System Properties and Model

Initially, assume the ground-water flow system to be in steady state. The unsteady case is
considered later in this section. Further, assume the flow system to be adequately characterized
by three categories of hydrogeologic variables or system characteristics: 1) variables such as
hydraulic conductivity (or a transformation of the variables such as log hydraulic conductivity),
recharge from precipitation, and discharge from evapotranspiration that can vary spatially
throughout the model; 2) variables such as hydraulic heads and fluxes that can vary spatially
along internal and external boundaries of the model; and 3) variables such as spring and well
discharges that occur locally, at points. The variables in the first two categories can be
conceptualized as being continuously variable spatially as was done by Neuman and Orr (1993)
and McLaughlin and Townley (1996) or as being discretely variable spatially as was done by
Kitanidis (1995) and McLaughlin and Townley (1996). Discrete variation is often associated
with the discretization of a model region into a grid for numerical simulation (for example,
RamaRao and others, 1995; Kitanidis, 1995). However, discrete variation can be at as small a
scale as desired, thus potentially making it virtually the same as continuous variation. Because
all scales can be included in discrete variation and because it is straightforward to work with, the
discrete viewpoint is adopted in this report.

All of the system characteristics can be assembled into a vector B of order m. Each
element in this vector is the value of a system characteristic in a particular volume element for
category 1, a boundary segment for category 2, or a point for category 3. (An example is given
later in this section.) Because B includes all scales of variation necessary to produce an accurate
model, any model function of B, f (B) , is almost free of model error, assuming, of course, that
the model accurately represents the physical processes. The model function could be a computed
hydraulic head at some point, a computed flux at some point, or any other physically relevant
function of B.

The system characteristics in categories 1 and 2 contain scales of variability that are
explicitly contained in a ground-water flow model and smaller scales that are not. For example,
a model may be zoned for a particular characteristic so that none of the spatial variability within
each zone is explicitly contained in the model; the zone simply represents an average for the
characteristic. Models are constructed in this way because the order, m, of B is generally so
large that it is impossible to measure or otherwise estimate all of the elements in it. To include
the influence of this unknown variability (at a smaller scale than represented in the model), it is
common to imagine a stochastic process for p and use the stochastic properties of B in
modeling; a vast literature has emerged based on this concept. (See reviews by Gelhar, 1986,
and McLaughlin and Townley, 1996.)

Following Kitanidis (1995), assume the expected value of the stochastic vector f to have
the form y0, where y isan mx p interpolation or spatial averaging matrix to be examined later
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and O is a vector of drift parameters of order p. Also, assume vector B to be normally
distributed,

B ~ N(18, V,02) (3-1)

where V, O'fg is an mx m covariance matrix that gives the spatial covariances among all of the
elements of {3 ; the covariance V5, O'f, is simply the variance of f,. The normality assumption is
commonly made (for example Kitanidis, 1995; McLaughlin and Townley, 1996) and, for the
elements of P representing hydraulic conductivity, is known to be a good approximation if B is
written in terms of log hydraulic conductivity. This assumption is not essential to developing the
present theory, but some aspects of the theory would be difficult to express analytically if the
assumption were abandoned. As will be seen, the assumption can be indirectly tested.

A simple example for y is obtained if the hydrogeology of the region is such that the
drift for categories 1 and 2 can be approximated by zones of constant value. In this case y

assumes the form

11 01 01 01
1 0 --- 0

y={> > 7 (3-2)
01’ 017 0P 1P

where vectors 1.

1

and 0, of order m, are given by

1 0
1 0

1, = 0, = (3-3)
1 0

and f: m.=m. Thus parameter i lies in a zone having m; discrete values of £, init. By
perfé?lming the product y 0 it can be seen that the mean value of B, at each point in a zone is
given by 51_ . Note that if m, = 1, a category 3 variable is obtained. Other forms for y result
from using interpolation (Yeh, 1986, p. 98-99). An example of the use of finite element
interpolation is given in Hill and others (1998).

An example involving zonation is shown in figure 1-1 and table 1-1 for two zones of
transmissivity 7, two zones of recharge rate W, two boundary segments for specified head H; ,
and one pumping well Q. In this case, if InT, W, H,, and Q are normally distributed,
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where the overbars signify drift values and the form for y0 is given in table 1-1. Note that,
although all boundaries in the example are orthogonal and rectilinear for simplicity, they could

be nonorthogonal and curvilinear, as could occur for a real system. This would not change the
formof B, y, or 6 for the example.

EXPLANATION

(T, W) Drift transmissivity (T} and recharge rate (W)
for zone j, i=1,2

o a Location and drift pumping rate for well

Hp;  Drift specified hydraulic head for boundary
segment i, i-1,2

7//7/77, Boundary segment 1
QN\\\\\N - Boundary segment 2

” Zone boundary

Figure 1-1. Example involving zonation in conjunction with small-scale variability. Square
elements designate discrete elements of internal small-scale variability contained in f8.
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Table 1-1. Zonal information for the example.
[Vectors 1), 1,..., 17 are defined in (3-2) and (3-3); T, is geometric mean (drift) transmissivity in zone i; W, is

i

mean (drift) recharge rate in zone i; Hj, is mean (drift) specified head in boundary segment i; () is the mean
(drift) pumping rate from the well; @, is an element of © defined in (3-4); and m; is the number of values of £ !

defined for parameter i.]
Zone Definition g, m;
Vector

1, InT, 6
1, 1n]_‘2 12

1; w, 6

14 Wz 12

15 HB] 2

16 H, , 1

1; 0 1

m = 40

Assume that a set of n observations corresponding to » values of the model function
f(B) can be expressed in the form

Y=fp)+¢ (3-5)

where Y is the vector of observations of order » corresponding to the vector of model function
values f(B), and € is a vector of observation errors of order 7. Also, assume the errors to have
zero mean and to have the normal distribution

e ~N(0,v,0% ) (3-6)

where V, o is the observation-error covariance matrix. Matrix V, may often be block diagonal
corresponding to different types of model function and corresponding datain Y. As for B,
normality is not essential for the theory developed here, but some aspects of the theory are
difficult to state analytically if normality is not assumed. The normality assumption can be
indirectly tested. Finally, assume B and € to be statistically independent.

A Spatial Average for the Vector of System Characteristics, p

To construct a ground-water model, estimates of the system characteristics are needed.
However, the dimension of B is too large to permit a unique estimate of B to be obtained.
Furthermore, as discussed in section 1, reduction of the dimension of B by substituting a vector
of “effective values” of much smaller dimension may not be possible because effective values



16 A Theory for Modeling Ground-Water Flow in Heterogeneous Media

may often not exist. That is, if a vector of smaller dimension is used, it may not be able to
produce a model that reproduces both average fluxes and the average hydraulic head distribution.
As stated in section 1, the solution to this problem followed in this report is to estimate a vector
of reduced dimension that has a unique physical definition, but is not necessarily a vector of
effective values, then investigate the properties of this vector, its estimate, and the resulting
model and predictions to be made with it. If the properties are found to be favorable, then the
model can be accepted and used.

A possible candidate for the reduced vector might seem to be the vector of drift
parameters, 6. However, even though this vector has a unique physical definition, it is in fact
fictitious because the stochastic process is fictitious. Often, estimates of parameters of the real
physical system, which is imagined to be a realization of the stochastic process, are desired.
Thus, a vector of drift parameters is not an ideal candidate for the reduced vector, and one
pertaining to the real physical system should be selected. A vector containing the reduced vector
is defined in this report as a spatial average of B that has the same form as the drift. Itis derived
as the best-fit vector y0, obtained by minimizing (B — 79) (B—v6) with respect to general
parameter set 0 to obtain

0. =(y7)"'y'B (3-7)

Because B has an expected value of 76 , 0, has an expected value of 0.
If zonation is used for the drift, the indicated products in (3-7) may be performed using
(3-2) to give

m' 0 - 0
e 0O ml' .. 0
(ry)*= 2 (3-8)
0 0 m;,l
m'ly 0 0,
N 0 m' 0
(ry)" o ’ (3-9)
0 0, m;,ll'p
and
ml—l(l;aolza"'aﬂlp)ﬁ
A2 B m_l(O"l"...,O' )B
(y)'yp=| 2 (3-10)

m'l(ﬂ' 0, 1,)B
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Thus, (y'y)'] Y'B yields the average of values in B for each parameter in each zone. That is, for
parameter i

- ’ 14 ! ! 1
m,~‘(01,02,---,1,.,---,0,,)[37- ;)ﬁ, (3-11)
i JU

where j(i) indicates summation over all values of j for parameter i.

Properties of the Vector of Model Function Differences, f(3)—f(y0.)

Corresponding to model function vector f (B) is the model function vector f (79, ),
representing values of the same model function written using the spatial average instead of B .
Systematic discrepancies between f(B) and f(y8, ) are indicated by the expected value and
variance of the difference f (B) —f (79, ) An expression for this difference is given by (3-18)
using the following development. First, the errors e and e, are defined as

e=p — (3-12)
e.=p —70, (3-13)
These two errors are related using (3-7) as follows.

e. =B —y(y")'v'B B
=A-v(y'y)" v )e+176)
= @-v(y7) " v)e (3-14)

Second, expansion of f(B) and f(y0.)to second order around f (y0) using truncated Taylor
series yields

ﬁ(B)=ﬁ(¥§)+Dﬂfi(B—75)+-;-(B—76)' 2 £ (B-y0); i=1,2,...n (3-15)

£,10.) = £,(0) + D, £,7(6, —0) + %(e, —0)YD2 £,7(0, —0); i=12,...,m (3-16)

where D, f; and D; /i are row-vector and matrix components of D ,f and ngf as defined by
(2-3) and (2-4). They are evaluated at B =y0. Third, 6, —0 is expressed in terms of e as

0.-0 = (y7)'yB-0

= (Y7)"'y'(e+70)-0
=(¥'7)7'y'e (3-17)
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Fourth, expansion of f(B) —f(y0,) results in

fB) - £:(18.)= £,(B)~ £,(¥8) + £,(¥8) - £,(¥6.)
1, 1 oy o
=D, fe. +e D,/ e—E(G, -0)yD; £, (6, —6)
R B 1 ’ o\ ron-1,.1 .
=D, fid-y(y'Y) 'y )e+ge M, f; —y@ D" YD,f v Y)esi=1.2,....n (3-18)
Equation (3-18) is used in theorem 4.6.1 in Graybill (1976, p. 139-140) to evaluate the
expected value and variance of f(B) —f(y0,). The final result is obtained by using the facts that

E(e)=0and Var(e) = Vﬂafg , where E(---) and Var(---) stand for the ensemble expected value
(mean) and variance, respectively, and is

E(f,(B)- £,(v8.)) = —;—tr @, f, =7 YD £y Y)Vy)o, 5 i=12,...n (3-19)

where #r(---) stands for matrix trace. Because P has a symmetric distribution, (3-19) is third-
order accurate. Note that if the model is linear so that D ; £ is zero, the expected value is zero.
The variance of f(B) —£(y0,) is the matrix

Var(£(B) - £(v6.)) = [E(f;(B) - /(Y8 ))(/; B) - /;(¥6.))
—E(f;B) - £i(¥0.DE(S;(B) - f,(¥6.))] (3-20)

Evaluation of the first expected value using (3-18) and the fact that any triple product of a zero-
mean symmetrically distributed variable is zero yields

E(f,(B)- £:(y0 (S ,B) - £, (v6.))

=ED, f,I-y(YY) " v)e+ %e'(ngf, — 1YY YDLL YY)D, A—y(y'yY) " v)e
+=e(D;f, = Y YD, £, YN Vo)

= ED,f,A-y(y') " vNee'd-y(¥YY) 'Y )D,s f)

+§E(e'(n,§fi YYD, YD Y)E D, £, — Y YD f,v(rn Y )e)  (3-21)

Because e is symmetrically distributed, (3-21) is fifth-order accurate. Evaluation of the second
expected value uses the result from appendix A that for symmetric matrices A; and A |

EX'AX)(X'A,;x)=1r(A)r(A, o +2ir(A A, )o* (3-22)

where x~N(0,I6%). Let x=V,'"%¢, 6* =0, and
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A, =V 2D f, -y YD, £, v(yY) ' y)V}?. Then, from the definition of e,
E(ee')=V, 0'; , o that

E(f,(B)- £,(y0)(f,(B) - £, (¥6.))
=D, /,A-y¥V) ' Y)V,A -y YD, f )5,
+ i”« D, f, —Y) YD, £y VIV (D, £, - v YD, £,y Y)IV,)o;,

1 (AN D [ P (A LAY
+-tr (s £, = 1D YD, L 10D IV, (D, S, =YD 7Y D; £ IV Do, (3-23)
where I is the identity matrix. Finally, substitution of (3-19) and (3-23) yields the variance as

Var(£(B)~1(16.)) = D, £ A~ vG'n) " 1)V, A~ 1(yV) " ¥)D,f'0,
@ = YYD S OV 0 - Y Y B L Vb (29

Spatial covariance of f(B)—f(y8. ) exists whether or not the model is nonlinear. The magnitudes
of the sensitivities D, f strongly influence the magnitudes of the covariances.

The product y(y'y) "'y’ can be evaluated for the zonation example and then applied to
D,,2 fi—v¢y7'y'D ,,2 £ y(y7)™y' to illustrate the meaning of this term. From (3-2) and (3-9)

m1_11]1; 0, e 01;;
L 0 my1,1, - 0
Yy ly'=| * P 2 (3-25)
0, 0, - m1,1

where 0, is an m, x m, submatrix of zeros. Thus, a submatrix of y(y'y)™ y’D; Yo'y
corresponding to parameters & and / is

(mkml)—llk > > Dzrfil;zz_.l_z > 0" fi

ak) () m,my a() 1@y 0B,0p,

1,1 (3-26)

which is a m, X m, submatrix for which each element is the average second derivative with
respect to values of f; pertaining to parameters £ and /. From this it is apparent that
D, f; = YY) ¥ D, £ y(y'y)"'y' is a matrix of deviations of 8 f, /9,08, values from their
averages as defined in (3-26). Ifthese deviations are small, then the second term in (3-24) may
be small, even if the magnitude of Df,,f were large. A similar observation may be made for
(3-19).

For purposes of comparison, the expected value and variance of the difference
f(B) —f(y0) also can be computed. From (3-12) and (3-15)
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£,(B)- £,(y0) = Dﬂf,e+%e' ; fe;i=12,..n (3-27)

Hence, using the same procedures as before,

E/,®)= £,0(8) =~ tr DSV )03 i=12,...m (3-28)
and
Var(f(B) - £(y8))=D,£V,D, f'c? +—;—[tr(Df, AR AN (3-29)

Because ¥0, is a best-fit vector to B, £,(y0,) would be expected to be closer to f;(B)
than f; (y(_)) would. In this case E(f(B)—f(y0,)) should be smaller in magnitude than
E(f(8)-£(y0)), and Var(£(3)-£(y6. )) should be smaller in magnitude than Var(£(8)~(y8)).

Neuman and Orr (1993) obtained a result almost analogous to (3-28) using a much
different method. They allowed for conditioning of their results on possible hydraulic
conductivity data. They then showed that the conditional (and unconditional) ensemble mean
hydraulic head and flux distribution (analogous to E(f(B)) are not obtained from a solution of
the standard ground-water flow equation written in terms of the conditional (or unconditional)
ensemble mean hydraulic conductivity distribution (analogous to f (75)) . They also derived a
correction term analogous in effect to the trace term in (3-28). The main conceptual differences
are that (3-28) applies to all types of system characteristics but involves only the unconditional
mean 0.

Properties of the Error Vector, Y —-f(y0,)

The above discussion focused on errors in the model function resulting from smoothing
the small-scale variability inherent in B by replacing p with y0,. These errors are model errors.
(See also discussion by Hill, 1992, p. 42-43.) By adding the observation-error vector Y —f(B)
from (3-5) to the model-error vector f(B)—f(y0,) from (3-18), the total-error vector Y —£(y0,)
is obtained as

Y, -£.(y6.) =Y, - f,(B)+ £.(B) - £:(¥9.)
=&+ D, f,(I- 7(7’7)“7’)e+%e’(D§fi —y() YD (YY) e i=1,2,...m (3-30)

The expected value and variance of the total error are obtained from (3-30). From (3-6) it can be
seen that E(g) = 0. Thus, the expected value of Y —f(y0,) is the same as the expected value of

f(B)—£(y6.), or
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1 ; oty .
EY, - f,(v8.) = Etr((qufi -y YDLLYY ) YIVe)o 55 i=12,..n (3-31)

Also, because £ and e are assumed to be statistically independent, the variance of Y —f(y0,) is

Var(Y —£(y0.)) =Var(e) + Var(f(B) — £(y6.))
=V, 0, + DA —y(y) V)V, A-y(yV) Y )D,f'o;
+%[tr((1),§fi — YYD £ YY) YIVe(Ds £, - v YDy j;y(y'y)-ly')vﬁ)]a,;‘ (3-32)

For purposes that will become apparent in sections 4 and 5, the linear-model component of the
variance (which involves D ,f but not Df,f ) is defined as

V.ol =V,0; + D AA—y(y) ' YIV,A—v('7) Y )Dsf o (3-33)
so that
Var(Y —£(v0,)) = V.o’

2l O3, = YO Y DL I YV, £ = D Y B LY ks (334)

For comparison Y —f(y0) can be expanded like (3-30) using (3-12) and (3-15) to obtain

Y,——f,.('yé)=gi+Dﬂf,e+%e'D§f,-e;i=1,2,...,n (3-35)
from which

E(Y, - f.(y0)) = %tr(]); fV)0%s i=12,.m (3-36)
and

Var(Y ~£(y8)) = V,o? + D,fV,D, f'c3 + %[tr(D; AR AP (3-37)

Note that because of the quadratic terms involving e in both (3-30) and (3-35), neither set
of total errors is normally distributed.

Reducing Model Error

It is important to consider how the model error terms in the variance (3-32) might be
reduced. Some ideas are obtained by examining D, £,(I-v(v"y) "' y)V, A—y(yY)'y)D, f; .
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First of all, if p = m, then y(y'y) "'y’ =1, and the term is zero. Because m can be very large,
generally much larger than #, letting p = m is not generally possible. Temporarily,

V=>A-yD YV, A=y 'Y) (3-38)

for convenience, so that D, £, VD, f/ may be examined. In (C-14), appendix C, D, fy is shown
to be independent of m, so that D, f has elements of order m™, termed O(m™), in magnitude.
Therefore, the magnitude of the model error term may be small if m is large and V is diagonal,
because for V diagonal

' < a i afj‘ & - - -
D, VD, f; = & Vo= § O Wiu00m™) = 00m™) (339)

Matrix V can approach diagonal if V,, approaches diagonal and m is large. This is because as
m—> o, (y'y)™ = 0,so0 that I-y(y'y)"'y > I. (See, for example, (3-8) and (3-25).) Matrix
V, approaches diagonal as the correlation lengths implied by its covariances get shorter, but is
full with increasingly larger covariances as correlation lengths get longer.

To some extent the stochastic process generating B can be designed at the descretion of
the investigator constructing a model. The above analysis suggests that all trends and features of
large enough scale to be identified be removed from the stochastic process and incorporated into
y0. This should be done even if geostatistical analysis indicates that B (or some subset of it)
could be represented differently, for example as a stationary random process having a long
enough correlation length that an identified trend could be interpreted as a random fluctuation. It
is better to assign the trend to the drift and reinterpret the stochastic process to reduce both the
magnitude of V, and the correlation length. Ideally, V, should represent only random noise,
with no nonzero covariances. If only short correlation lengths are implied by V, , then
D, /,VD, f; should be close to O(m™). For large m, then, the term D, /,VD, J:j’ could be
small. However, if significant features are not identified and incorporated into y0, elements in
V, could be large and correlation lengths could be long simply as a result of the unidentified
features. Because V,; would not be diagonal, a large value of m would not necessarily make the
magnitude of the term small. Thorough hydrogeologic field work, resulting in identification and
incorporation of all significant hydrogeologic features, is very important.

Modifications for Unsteady Flow

For general unsteady flow, B is distributed in both space and time. The drift yé also
extends over both space and time, which can be accomplished by making y an interpolation
matrix over both space and time and allowing elements of 0 to be different at different points in
time. Vector B is distributed as a correlated random function around the drift, but probably
would often be continuously variable temporally rather than discretely variable. However, if
discrete time elements are small enough, then discrete time variation approximates continuous
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variation. This viewpoint has the advantage of not requiring a separate formulation from the one
adopted for spatial variability.

As an example of time-dependent variability, let the vector of drift parameters at any time
t between times ¢, and #,,, be well described by a linear function of time. Then

r+1

8()=0,0, +0,,0,, (3-40)

where 0, is the set of drift parameters at time t,, é,ﬂ is the set of drift parameters at time ¢,,,,
and

t (3-41)

r+1 " Cr

If the spatial variability of the drift can be approximated by zones of constant value, then y of
(3-2) is replaced for r=1, for example, by

-0'1111 01 01 01 0';11 01 01 01 |
0, 0'1112 0, 0, 0, 0'512 0, 0,
0P 0p 0p Glllp 0P Op 0p O';IP
Y=|ol1, 0 0 - 0 o1, 0 0 - 0 (3-42)
02 0'1212 02 02 02 0'2212 0, 02
o, o, 0, - o1, 0, 0, 0, - 0,1,

where 1, and 0, are given by (3-3) and superscripts of the form & on the o functions designate
discrete time elements of B centered at t* between #, and f,. Any number of these elements
may be accommodated. Vector 0 is redefined to correspond with y as

= |0
0= ;
{92] (3-43)

This redefined vector is not time dependent. Finally, note that a more complicated time
dependent drift can be accommodated by using more than one linear function contiguously in
time so that » >1. The added functions add rows and columns in block diagonal form to (3-42).
A more complicated function of time than linear might often reduce the number r and thus the
number of parameters in 0.

Some variables such as hydraulic conductivity might be constant with time, but others
such as recharge might vary, even somewhat erratically, with time. Vector B and drift ¥6 must
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reflect these types of variability. The type of drift variability is easily specified using parameter
subsets 0, but specifying the type of time variability in B also requires the use of V,o ,2, . Let
some variable at a point in space be given at two different points in time as B, and f3,, and let
corresponding rows of y be y, and y,. Then, if the variable is constant in time, y,0 =7y ,0 and
B: = B, so that for all k, CoW(B;, B,) = Cov(f;, B,) (and symmetric relations). Thus,
Ve =Vau =V3u =V, . These relations further induce the relations V;, =V, =V;, =V;;,
which specify that the correlation between g, and S, is unity. Note that, although a correlation
of unity makes V, singular, matrices such as D, fI-y(y'y)"y)V, A-v(y7) "' v)D,f'c}
probably would not be singular as shown below; V,o almost certainly would not be singular.

As an example, let the spatial order of B be 3 and the temporal order be 2, so that each of
the pairs (B,, £,), (B,, Bs), and (B;, B,) is a variable at a fixed spatial location for two
different time elements. Then the full covariance matrix Vo7 is

V,su V,mz VﬂlS Vﬂl4 VﬂlS Vﬂ16
V,B2l Vﬁzz Vﬂ23 Vﬂ24 Vﬁ25 Vﬂ26
Vﬂclzg - Vﬂ31 Vﬂ32 Vﬁ33 V/}34 Vﬂ35 V/i36 o2 (3-44)
Vﬂ41 Vﬂ42 Vﬂ43 Vﬂ44 Vﬂ45 V;m /
V,351 Vﬁ52 Vﬂ53 VﬂS4 Vpss V,ssc
_Vﬂﬁl Vﬂ62 V/m Vﬂ64 Vﬁ65 Vﬁ66 i

Now let g, = B,, B, = B, and f; = S, so that all three variables are constant in time. Then
Ve =V =Vou = Vias Voo =Vsi =Vgiy =Vgys, and Vg =V = Vars = Vre - Application
of the three sets of equalities yields

Vﬁll Vﬂ12 Vﬂ13 Vﬂll Vﬂ12 V,BI3 ]
Vin Vﬂzz Vi Van szz Vg
V.ol = Vﬁ3l Vﬂ32 Vﬂ33 Vﬂ31 Vﬂ32 Vs 2
PNy V. Ve Ve Ve, Vi |0f (3-45)
Bl1 12 B13 A1l B12 B13
Vin Voo Vi Veu Ven Vin
_Vﬂ31 Ve Veszs Vst Visn Vs

which is a four-fold repetition of the underlying 3 x 3 spatial covariance matrix. Thus, if the
rank of the spatial covariance matrix is 3, the rank of the full covariance matrix is also 3 because
each row and column is repeated three times. (The determinant of a matrix is zero if any row or
column is repeated.) This argument generalizes inductively, so that, in general, the rank of
Vo fg is no less than the rank of the spatial covariance matrix contained within it.

Finally, elements of matrices such as D ,f and Di,f are computed at their respective
spatial and temporal points. Thus, even if all variables specified in § are constant in time,
covariance matrices such as D, f(I—y(y'n)"'y)V, A—y(y') 'y )D,f'c, or D,fV,D,f'o



Basic Theory 25

reflect the temporal variation of f(B) inherent in unsteady flow. Consider the example for
which V ﬂ0'§ was computed using (3-45) for simplicity. Then an element of the matrix is

6f o, _3

o , U
Vo = +
kl el a,Bk 6'8[ k=1 ¢

of .
Vﬁ Y % of, Y, J
1 0Py op, *

V.
1 = 0B, T Op,

Me
M

D, fVsD,f; =

(]
{

b . of.
=%§6f, V;fkef"'%%af’ Viua /,
k=1 21 9f3, of, k=1 21 OB, OP,.s
, of
T R/ S R
k=1 ¢=1 3 aﬂe k=1 ¢=1 aﬂk+3 aﬂus
O )
_3 3 (aﬁ (2 (-46
J=1 k=1 aﬂk+3 aﬁg aﬂe+3

Now, the sensitivities are not truly additive because S, (or S,) applies for one time element and
Piss (or B,.;) applies for the next contiguous time element. Thus, the sums represent the time
varying sensitivities. If flow were steady, then the sensitivities would be constant in time, so that
the full covariance matrix would be just the steady-state covariance matrix.

The above analysis shows that all results obtained for steady flow can be applied for
unsteady flow, if v, 0, and B incorporate the time variant properties. Thus, no distinction
between the two types of flow is made in subsequent developments.

Summary of Principal Results

The ground-water flow system is assumed to be adequately characterized by a set of m
system characteristics, termed 3, that fall into three categories: 1) variables such as hydraulic
conductivity, recharge, and discharge that can vary spatially throughout the model; 2) variables
such as hydraulic heads and fluxes that can vary spatially along internal and external boundaries
of the model; and 3) variables such as spring and well discharges that occur locally, at points.
Initially, flow also is assumed to be steady state so that B varies only spatially. Vector B thus
contains discrete values of the system characteristics in volume elements for category 1,
boundary segments for category 2, or points for category 3. The discretization is assumed to be
fine enough that any model function of B, f(B), is almost free of model error.

Vector B represents small-scale variability that cannot be explicitly described in a model
and larger-scale variability that can. The influence of the small-scale variability is included in a
model by imagining a stochastic process for B and using the stochastic properties of B in
modeling. Specifically, in (3-1) B is assumed to be normally distributed with a mean given by
an interpolation yé of a set of p drift parameters 0 and covariance given by a spatial covariance
matrix V, o;.

A set of n observations Y differs from a set of n corresponding values f(B) of the model
function f(B) by an observation-error vector €, which is considered to be normally distributed
with a mean vector of zero and covariance matrix V, o7. The model and distribution are stated
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by (3-5) and (3-6), respectively. The normality assumed for B and € is not essential for the
theory developed in this report, and the assumption can be indirectly tested.

The vector B has too large a dimension to be estimated. Hence, a vector of reduced
dimension that has the same form as the drift is to be estimated. The vector to be estimated is
obtained as the vector y0, that is the best fit to B. It is derived by minimizing the criterion
(B—v0)'(B—7v0©) with respect general set of parameters 0 to obtain 0, = (y’y)"'y'B, which is (3-
7). The estimate of 0, is derived in section 4.

The model function f() and model function f(y0,) do not in general have the same
expected value (ensemble average) if the model is nonlinear in § or y9,. A third-order correct
result for the expected value of the difference, or model error, f(B) —f(y0.) is given by (3-19).
The covariance matrix for this difference is given by (3-24) and indicates that model error
resulting from replacing B with y0, can be highly correlated throughout the model.

Error vector Y —f£(y0,) is obtained by adding the observation error Y —f(p) to the
model error f(B)—f£(y0,). The expected value of this error is the same as the expected value of
f(B) —f(y0.) because the expected value of the observation error is zero. The covariance matrix
for the error vector, (3-32), is obtained by adding V, o> to the variance of f(B)—f(y0,) because
B and & are assumed to be statistically independent. If V, o7 is diagonal or nearly so, the
correlations among the errors Y, — £,(v0,), i = 1,2,...,n, are reduced over the correlations among
the differences f,(B)- f;(y0.),i=1,2,...,n.

Model error can be reduced by selecting the stochastic process so that correlation lengths
in V, are as short as possible. That is, trends and significant hydrogeologic features should be
represented in Y0 so that V, o represents mostly short-correlation length variability. This
deduction results from an analysis of the covariance matrix for f(B) —f(y0,) given by (3-39)
that showed that the magnitudes of the covariance terms can be small if V, is diagonal and m is
large.

For general unsteady flow B is distributed in both space and time, and the drift yf—) varies
in both space and time. Time variation of the drift is accomplished in the theory developed in
this report by making y an interpolation matrix in both space and time and by allowing elements
of © to be different at different points in time. Time variation of B is approximated using the
same discrete viewpoint adopted for spatial variation because time elements can be made small
enough to approximate continuous variation. All results obtained for steady flow can be applied
for unsteady flow, if 1y, 0, and B incorporate the time variant properties. The vectors and
matrices are simply augmented to account for any number of time elements and a time variant
drift. Thus, further developments will not distinguish between the two types of flow.
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4. Estimation and Prediction

Estimation of the Vector of Spatial Average System Characteristics,
0.

Vector 6, must be estimated because, being a linear combination involving B, it is
unknown. Vector 0, and the procedure used to estimate it must both be constructed so that 0,
has a unique estimate. Weighted least squares estimation is shown here to lead to desirable
properties and uncertainty estimates for parameters and predictions. For this method the
following objective function is minimized.

S(8) = (Y - £(y9)) o(Y - £(y0)) Cy

where 0 is an arbitrary vector of parameters of order p and ® is an arbitrary, positive definite
nx n weight matrix, possible forms for which are to be developed. Note that, strictly speaking,
weighted least squares is the term often applied when ® is diagonal (Draper and Smith, 1998, p.
223). However, Seber and Wild (1989, p. 27) use the term as a synonym for generalized least
squares, which is expressed for the theory developed in this report as

o' o« E(Y —£(v0,))(Y —£(¥0,))’ as shown in section 5. For nomenclatural convenience, the
term weighted least squares is generalized further in this report so that @ can be arbitrary and
nondiagonal, but is positive definite. The term generalized least squares (also called Gauss-
Markov estimation) is applied when @' oc E(Y —£(y0.))(Y —f(6.))’. Another objective
function is introduced when ® is unknown. Because weights are approximated, this case can be
termed approximate weighted least squares.

Note that model error is included in the matrix E(Y —f(y0,)XY —£(y0.,))’, which is not
standard statistical usage (for example, Seber and Wild, 1989, p. 28). This is not without
precedent. For example, Tasker and Stedinger (1989) employed a similar idea to derive a
generalized least squares model for regional regression analysis of floods.

In modeling studies, S(0) is minimized using standard techniques of nonlinear regression
such as adaptive least squares (Cooley and Hill, 1992). However, to develop the theory that is
used to analyze the estimates and predictions to be made with them, and to develop the theory
underlying the uncertainty analysis methods, an approximate analytical solution of the
minimization problem is needed. This solution is obtained using extensions of methods given by
Johansen (1983). First, the linear-model component of the error vector Y —f(y0) is defined as

U=e+D,fe (4-2)
which from (3-1) and (3-6) has the normal distribution

U~N(@,V,0! +D,fV, D, f'c}) (4-3)
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Next the estimate 0 is expressed as 0, plus a term | that is first order in U, plus a term q that is
second order in U, e, and their product, or

(§=5+l+q (4-4)

Vectors | and q are obtained in appendix B by a combination Taylor series expansion and
perturbation technique that formally assumes Var(U) to be small. The solutions are

| = (Df'@Df) ' Df'@U (4-5)
and
1
q=(DfoDf) ™ (ZD* flo}Z +%Df’§(oj (€'D%f,e~I'D* ) (4-6)
1/2

where @;* and ®, stand for row i and columnj of ©'’? and w, respectively, and

Z=(I-R)o2U (4-7)

in which
1 1
R = 02Df (Df o Df) ' Df ‘o2 (4-8)

The robustness of results obtained using (4-4) is explored in section 7.

Bias in the Estimate 6 of 0,

Bias in the estimate © of 0, results because the model functions f B, £(y8.), and £(y0)
are nonlinear in §, 0,, and 0, respectively. The bias is derived here in the same manner as used
in standard nonlinear regression (Seber and Wild, 1989, p. 182) except that in the present
instance there are additional influences from model error. The following development leads to
the main result, (4-15).

First the linear-model component of the error vector Y —f(y0,) is defined as

U. =s+Dyfe, =e+D,fI-y(y'7) '7)e 4-9)
which has the normal distribution

U. ~N(@O,V,0; +D £ - y(¥)"v)V,d - y@h)"'y)D, f'o ;)
= N(0,V,c?) (4-10)

where V,o? =Var(U,) as defined by (3-33).
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The difference 0 — 0, can be written using (3-17), (4-5), (4-6), and (4-9) as

0-0,=0-06 -(0,-0)
=l+q-(y7) "y
1
= (Df'oDf) " Df'oU + (Df @Df)™ > D’ flo?Z + % Df’§ @, (€D} f,e—I'D*£1)
— (Df'oDf) " Df'oDf(y'y) ' y'e

1
= (Df'eDf) "' Df'oU, + (Df'oDf)™ (;1)2 flo?Z +%Df'§mj (e'D5f,e—I'D*£)1) 4-11)
where the result Df = D, fy ((C-14), appendix C) was used. Hence, the bias is

E®-6.)=E(q)

1
= (Df'oDf)™ ® ED? flo?Z)+ %Df’? o, E'D} f,e-I'D’ £)]) (4-12)

1
For reasons that are apparent later, E(D* flo?Z) is not evaluated. The second expected value is

E(e'D, f,e—I'D*f ) =tr(D% f,V,05 —D* f,Var() 4-13)
in which (4-5) is used to yield
Var(l) = (Df oDf) ' Df o(V,o; + D ,V,D f'5} )oDf(Df oDf) (4-14)

With (4-13), the bias is written
1
E®©-0.) = (Df'oDf) " (T E(D*flo?Z) + %Df'z ®; tr(D} f,Vy05 =D fVar())) (4-15)
i J

Because E@.) = 0, the bias in 0 as an estimate of 0, is the same as the bias in 0 asan
estimate of 0.

Bias in Estimates of the Model Function Vectors f(3) and f(y60,)

Expression of the difference f; (y@) — f:(B) using (B-11), appendix B, yields
£.(0)~ £,B) =~(£,(®) - £,(/®) + £,(1) - /,(¥6)

1 1 1

1 1
1, o 3% . L 5. 1 - o
~-Dyfe——e D fie+o, ‘R(@’U+-Zoje D;fje)+;mi *@-R)zojl D7l
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1
+Df,(DIODA) ' ZD £l Z
0 1 R
-, (I—R)Z_o)f(Dﬂfje+§(e'Df,fje—I'szjl)) +o Ro’e
J
1
+Df,(Df@Df)" 2D fl0; Z (4-16)

so that the bias may be written by using (4-13) to obtain

E(f,(0) - £,(B) ~ —gmf ' A-R)Z}r (D} £,V,0 ; DS, Var()

L
+Df, (DfwDf) ' TE(D f 10} Z) (4-17)

Again, model nonlinearity can cause bias. Similarly, writing the difference f; (yé) - £,(¥6.)
using (3-18) and (4-16) results in

40 - £,(00.) = £,B) - £,(18.) + £,(¥0) - £,(B)

~D, f,A-y(yY) " v)e+ % D, f; — v YD, S, vy Y)e

1 1

1 1 1 1
—0,2(I-R)Zo? (Dﬂfje+%(e'Df3fje—l’D2fjl))+(o,. ‘Ro’s
J
1
+ Df. (DfoDf) " =D flo2Z (4-18)
k

so that the bias is

E(f,() - £,00.) =~ (@ £, =Y4'D YD, £, 1D 1)V, o,

1 1 1
- %mi 2I-R)zo’tr(D; f,V, 05 —D’f,Var()) + Df, (Df'a)Df)“%E(Dz filolZ) 4-19)
J

The bias in f (yé) as an estimate of £(y0,) is the difference between the bias in f (yé) as an
estimate of f(B) and the bias in f(y0,) as an estimate of f(B).

Bias and Other Properties of the Residuals, Y —f(y0)

Bias. Residuals Y - f(y9) are the estimates of the errors Y —f(y6.). Second-order
approximations are computed in appendix B and are
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1 1 ! 1
Y, - (9~ 0,2(I-R)0?U +—;-Z(o} (e'D; f,e—I'D? fjl))—Df,.(Df'con)'l%D2 FALYY
J

i=12,..n (4-20)

Residuals have the same form when written in terms of U, rather than U. This important result
is obtained by using the identity ®;"’*(I1-R)o'"’Df(y"y) ' y'e = 0, which results because
I-R)o'’Df =0:
N - 3 1 : 2 2 ' -1 2 %
Y- £,(y0)~ 0,21 -R)®?U, +;Zm§(e D, f,e—I'D" f,)) - Df, (Df @Df) %D filo?Z;
J
i=12,...,n (4-21)

Hence, either U or U, can be used to get the expected values of the residuals as

1 1 1
EY, - £,(y0)) ~ %m,. 2(I- R)%cofE(e'D; f,e=I'D* £) - Df,(Df 'oDf)" % ED’ flw?Z)
1 1 1 1

= Em,._? I-R)ze2r(D} f,V,05 — D’ f Var(l)) - Df,(Df ©Df) " z E(D’ flo?Z);
J
i=12,...,n (4-22)

Model nonlinearity can cause the expected values of the residuals to be biased as estimates of
expected values of the errors ¥, — f,(y0,) given by (3-31). Model nonlinearity also can cause the
residuals to have a non-normal distribution. (Note the quadratic terms involving e and | in
(4-21).)

Effects of nonlinearity on measures of non randomness from model error. Residuals
from a modeling problem are commonly analyzed for indications of non randomness resulting
from model error (Draper and Smith, 1998, p. 59-61; Cooley and Naff, 1990, p. 167-171; Hill,
1998, p. 20-24). A sum of all residuals of nearly zero is taken to indicate a good overall fit of a
ground-water model to the data, and a nearly horizontal band of data for a plot of weighted
residuals ©"'?(Y —f(y9)) in relation to weighted estimated model function values ®!'*f(y9)) is
taken to indicate a lack of model error. These measures also can be affected by nonlinearity.
First the sum is examined. A weighted residual is written as

1
of (Y -1(y9))
1 1 1 1
~(I-R), (02U, + %Xm} (e'D; f,e-I'D* £,1)) - (.),.21)f(1)f'c,on)"§1)2 flo2Z (4-23)
j
where (I-R), isrow i of I-R. For a linear model the sum of weighted residuals should not

be significant because, from £(U. ) = 0, its expected value is zero. However, for a nonlinear
model the expected value is
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E(o? (Y- £(10)) ~ £ (L-R), = 20} r(D} /, V05 - D/, Var(h)

1

1 1
~Y 02 Df(Df'oDf)™ %E(Dz flo2Z) (4-24)

It is possible for model nonlinearity to substantially increase the magnitude of the sum of
residuals.

The extent to which a plot of weighted residuals in relation to estimated weighted model
function values deviates from a horizontal band can be evaluated by computing the slope of a
line through the data, which is given from the following development as (4-27). (This
development can be skipped, if desired.) The standard equation for the slope in linear regression
(Draper and Smith, 1998, p. 25) indicates that the slope is proportional to
z o f(10)o"* (Y - £(y0)) - zm‘”f(ye)z ®"2(Y - £(y0))/n. Evaluation of the first term in this
expressmn through second order terms in U ¢, and their product using (4-23) and (B-11),
appendix B, yields

z @31 (1)o7 (Y~ 110)

-3 (m?f(yé) + R,.(m%U + lZmée'D% f,e +l(1 - R)iZm%I’DZ £
m;Df(Df(on)"ZDz fklcol 27Z)(I-R), (cozU +~ zco2 €D’ f,e—-I'D} £,1)

—m,-li Df(Df'oDf)™ 2D2 fklco Z)

=z m,.%f(yé)((l -R), (m]EU. + %;m; €D} f,e-I'D’£,1)

1 1

~02Df(Df'oDf) '3 D* f,l02Z) (4-25)
k

where R; is row i of R and, because R is symmetric, idempotent (Cooley and Naff, 1990, p.
165), RI-R)=R'(I-R)=0. Similarly, evaluation of the second term results in

L | .
o (yO)Zo! (Y -£(y0)/n
1 1 1

zz(mff(ye)+R,((o2U+%Zm e'D2fe)+ (I-R), zm2| D/

i J

1 1 1 1
+eo,?])f(Df’me)"§D2 fkkon)z_((I—R),.(mZU‘ +;Zm} €D’ f,e—I'D; £,1)
i J

1

1 1
- o2DEf(DfoDf) 'S D? fl0?Z)/n
k
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1 _ 1 1
~% 02 (18)L(( - R), (02U, +%Zm§ €D f,e—I'D} £ D)
i i J

1 1

—co2Df(1)mef)-‘z:1)2 flolZ)/n (4-26)

Combination of (4-25) and (4-26) gives

1

= oM (10)o? (Y - £(18)) - o f (O o f(Y - £(10))/n

1 _ 1 1
~2 0/ {(1)(A~R),@U. + 30} (D} f,e-I'D" 1))
1 1 l

—o)ZDf(chon)"Zszklm Z)- szf(ye)z((I R), (mZU +— z(oZ(e'D2 2 f,e—I'D% £ 1))

1

—mZDf(Df ‘oDf)” Zszklm Z)/n (4-27)

The slope of a line through the plot is altered from what it would be for a linear model. For a
linear model the slope should not be significant unless an intercept is needed, but for a nonlinear
model it could be significant just because of model nonlinearity. Note that the slope has an
expected value of zero for a linear model, but this is not necessarily true for a nonlinear model.
Seber and Wild (1989, p. 179) cite the same behavior for the classical nonlinear model. The
slope and its implications are analyzed further later in this section.

Bias in Predictions, g(yé)

Predictions to be made with the model also are affected by model nonlinearity A
predlctlon, defined as any function of 79 of interest that is not contained in f (yO) is termed
g(y()) That is, g('yO) can be the same type of function as any element f, (y(-)) (suchas a
hydraulic head or flux), but was not observed as ¥,. Variables g(f) and g(y0,) are predicted
using g(10). A

Development of the bias E(g(y0)— g(B)) starts with

—_— — 1 —_ , i
8B =g(10)+D; g(B-10)+—(B-10) D, 2(B-76)
=g(10)+D 8¢+ —e'D2 2ge (4-28)
where D, g is the row vector [0g/0f,] evaluated at B = 79 and D & 1s the matrix

[0%g /8B, 0p,;] evaluated at 8 = 70 Then, the difference g(yG) g(B) is written using (4-28)
and (B-13), appendix B, as
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2(10) - 2(B) = —(g(B) - £(y0)) + £(¥0) - £(v6)

1 1
1 Py 1 =
~-D, ge —Ee’D;ge+Q'co2U+5(I'D2gl—Q’Zc)§l’D2fjl)
J
1 1
| R , _ 1
+;Q §m§e D’ f,e + Dg(Df'oDf) 1§D2filmi2Z

1

1 1
) 1, ' 247 1 r 21
=-D, ge +Qm2U—;(eD/23ge—Q >J;co;eD;f,e)+—2-(| D’gl-Q o]l D*fD)

1
+Dg(Df'oDf)" =D’ flo?Z

where

1

Q = 0?Df (Df'@Df) ' Dg’
The bias is
E(g(y0)- g(B) ~ —%(tr(Dﬁ gvy)- Q'§ 0}r(D; £,V,)) 0%

1

+ %(tr(D2 gVar() - Q's? tr(D’ f Var (1)) + Dg(Df oDf) " 3 E(D’ Fflo?Z)
J i

Note that the form of (4-31) is similar to (4-17).
Development of the bias E(g(y0) — g(y0.)) proceeds from

— —-— 1 J— , —
£(y9.) = g(y6) + Dg(6, —0) + ;(9. -6)'D’g(6, - 6)
n N D) 1 [/ I\ ™ AR
=g(y0) + Dg(yy) 'y e+—e7(yY) 'D’g(yy) ' ye
Then, (4-28), (4-29), and (4-32) are combined, to get

g(10) - g(v0.) = g(B) - g(18.) + g(v0) - g(B)
~Dyg-y(vy)"'v)e+ %e’(D,f g-va'yYD; gy(vr) ' v)e

1 1

1
' 5 1, ' 3 r 1, ’ 21
-D,ge+Q mZU—;(engge—Q?m}enfgf,e)+;(| ngI—Q§m}l D*f}h)

1
+Dg(Df'oDf) ' =D flo?Z

Again, the bias is

(4-29)

(4-30)

(4-31)

(4-32)

(4-33)
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E(g(9) - (10.) ~ (D8 - 14D YD gD 1)V, Do,
1 1
- %(tr(Df, gv,)- Q'§ o tr(D} £,V )0, + —;—(tr(DZ gVarQ)) - Q'§ o’ tr(D* f Var())
1

+ Dg(DfoDf)' 5 E(D* flo?Z) (4-34)

Equation (4-34) is analogous to (4-19). The bias in g(yé) as an estimate of g(y0,) is the
difference between the bias in g(y0) as an estimate of g(B) and the bias in g(y0.) asan
estimate of g(B).

The Concept of Intrinsic Nonlinearity

Model nonlinearity can cause potentially significant bias in estimates of 0, , estimates of
model functions f(B) and f(y0.), and predictions of g(B) and g(y0.). Ifthese biases were
truly significant, then use of a ground-water model could be severely compromised, unless, of
course, the biases could be estimated. It turns out that many of the bias terms are small if unique
transformations ¢(0) and a(f), of vectors 0 and B, nearly linearize the model so that
transformed second-derivative matrices of the form D;f and D.f are small. (Note that this
symbolic notation for the matrices is slightly improper in that f is not the same function of ¢ or
o asitisof @ or B. The notation is used to keep the number of variable names at a minimum,
and simply implies substitution of 6(¢) for 0 or B(a) for B in f when evaluating the
derivatives.) Only the existence of the transformations is needed because they never need be
used. Ifthe transformations substantially reduce, or even eliminate, nonlinearity, then certain
terms in the biases can be small, even though 0 and B actually used in the model functions are
not necessarily the sets that produce minimum degrees of nonlinearity. This is because, as will
be shown, the terms involve the second-derivative matrices and can be invariant under
transformations such as ¢$(0) and o(p).

Beale (1960, p. 57) introduced a quantitative measure of the degree to which a model can
be linearized by transformation of 8 to ¢(0), which he termed the intrinsic nonlinearity. (He did
not consider the f(B) model.) Bates and Watts (1980) expanded on this concept and introduced
another measure, which they termed the intrinsic curvature. Seber and Wild (1989, Chapter 4)
give a good discussion of the ideas, and the interrelations among the ideas, of Beale (1960),
Bates and Watts (1980), and others. For the theory developed in this report curvature measures
such as introduced by Bates and Watts (1980) are not nearly as useful as extensions of Beale’s
(1960) results. The extensions are obtained using Johansen’s (1983) methods of analysis, which
are a simplification of Beale’s (1960) methods. In addition, in this report the term intrinsic
nonlinearity is not just applied to a single measure, but instead is applied to the model as a
whole. Thus, the term low (degree of) intrinsic nonlinearity is applied to a model that can nearly
be linearized, and the term high (degree of) intrinsic nonlinearity applied to a model that cannot
nearly be linearized.
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There are two types of intrinsic nonlinearity, one for f as a function of 0, f(y0), and one
for f as a function of B, f(B) . The former involves second derivative matrix D*f , and the latter
involves second derivative matrix ngf . Both of these types could be referred to as model
intrinsic nonlinearity. However, the form of the terms that express the intrinsic nonlinearity for
f(B) involve both D3f and I-R or Q in such a way that, to be small, the terms must satisfy
some special requirements. This type of intrinsic nonlinearity is referred to in this report as
system intrinsic nonlinearity, and unless otherwise indicated, the term model intrinsic
nonlinearity in this report refers only to the type for f(y0). Some measures of intrinsic
nonlinearity are indicated as the ideas are developed further.

In appendix C the method given in Seber and Wild (1989, p. 692-694) is used to show
that terms of the form (I - R)Z a> xD’f;y and Q'L &2 x'D’ f;y —x'D’gy reflecting types of
model intrinsic nonlinearity aré invariant under transformatlon of 6. In these terms x and y are
given vectors of order p. Extensions of Seber and Wild’s (1989) methods are used to show that
terms of the form of (I- R)X &}’ ¢'D7 f,e and Q'L &/’ e'D} f,e—e'D; ge reflecting types of
system intrinsic nonlinearity aﬂso can be apprommateiy mvanant under transformatlon of B.
However, as shown in appendix C, the nonlinear component of the transformation from ngf to
D2f must behave similarly to the nonlinear component of the transformation from D*f to D;f
in order to allow for approximate invariance of the terms. The invariance, and approximate
invariance for the terms involving e, causes the terms to take on values dictated by the smallest
values of the matrices D}f , D, D} g, and D’ g, which are transformations of D’f, D3f,
D’g, and D’ 285 respectlvely The same transformation of @ or B must make both D’ o and
D;g or Dif and D’ g small for terms involving both D*f and D*g or D’f and ngg SO
these terms may often be larger than terms involving only D*f or D2 f. Because the former
terms involve both the model function f and the prediction function g, the intrinsic nonlinearity
indicated by these terms is termed in this report the combined intrinsic nonlinearity. As before,
there are two types of combined intrinsic nonlinearity. The type for f(y0)and g(y0) is termed
the model combined intrinsic nonlinearity, and the type for f(B) and g(B) is termed the system
combined intrinsic nonlinearity.

Effect of Intrinsic Nonlinearity on Estimates of Model Functions and
Residuals

Effect on bias. All of the bias terms involve one or more of the terms
Df,(Df'oDf)™ zE(D2 flo/’Z), Dg(Df'oDf) 'S EMD* flo)’Z), I-R)xd’? EA'D*f)),
A-R)zo o E@D? f,e), EA'D’gl)-Q zm”lE(i'D2 £h,or !
E(e'D)g ge) Q Zm” 2E(e'D2 7,¢). Inappendix C the first three terms are shown to be small
when the model intrinsic nonlinearity is small; the fourth is shown to be small when the system
intrinsic nonlinearity is small; the fifth is shown to be small when the model combined intrinsic
nonlinearity is small; and the sixth is shown to be small when the system combined intrinsic
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nonlinearity is small. It is worthwhile to explore the effects of intrinsic nonlinearity on the bias
terms.

The bias in © as an estimate of 0, is given by (4-12) or (4-15). With g(y6) =6,,
(Df'oDf)'s ED? f,l0,*Z), where (Df'oDf);" is row i of (Df'oDf)™', is of the form
Dg(Df'oDf 5"§E(D2 filo,/*Z). Therefore, if the model intrinsic nonlinearity is small, the bias
becomes

E®-0,)= %(Df’me)" Df'Sa, (D £,V 0 ~D*f,Var () (4-35)

Note that the trace term is the difference between the contribution of nonlinearity to
EfP)-f (yé)) (which can be seen from (3-28)) and the contribution of nonlinearity to
E(f (yéo) —f (76)) , where éo =0+1. Itis tempting to speculate that the similarity of the two
terms could often cause their difference to be small. This possibility has not been investigated in
this report.

For small model and system types of intrinsic nonlinearity, the bias in f (yé) as an
estimate of f(p) is obtained from (4-17) as

E(f,(y0)- f,(B)) ~0;i=12,...,n (4-36)

In other words, estimates of f(f3) are nearly unbiased if both types of intrinsic nonlinearity are
small. However, under these same circumstances the bias in f(y0) as an estimate of f(y0,) is
given from (4-19) as

E(f,(10) - £,(¥8.)) ~ %tr((Dﬁ2 £ =@ YD Ly Y )V)ossi=12,..n (4-37)

which is the bias in f(y0,) as an estimate of f(8) . Because interest is generally in replicating
f(B), not £(y0,), the bias given by (4-37) would not seem to be too important.

Effects on residuals. Properties of residuals change materially when both model and
system types of intrinsic nonlinearity are small. In this case the residuals given by (4-21) can be
written

1 1
Y, - (1) ~o,2A-R)o?U,;i=12,..n (4-38)
so that
E(Y, - f,(18)) = 0;i=12,...,n (4-39)

Even though the errors Y, — f,(y0,) may have nonzero expected values, the residuals have
expected values of nearly zero. The variance also is simplified. From (4-38)
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Var(Y —£(y0)) ~ o 2(I-R)0¥ar(U.)o?(I-R) @ 2

1
=o 2(I-R)o*V.0?(I-R)o 20’ (4-40)

Another form of the variance is useful in section 5 for examining model uncertainty. Let T.be
the nonlinear terms in (3-21). Then from the results of appendix C the product
(I-R)e""’T,e"*(I - R) is exactly of the form that is small when system intrinsic nonlinearity
is small. Therefore in this instance

Var(Y—f(yé))~m‘5(l—R>m5( o; +E(f(B) f(y6. ))(f(B) f(y0. )))mz I-R)o?

=0 2(I R)CozE(Y f(v0.))Y - £(v6.))' 602 (I-R)o : (4-41)

Finally, because U, is assumed to be normally distributed

1 1

~f(y0) ~ N(0,0 A -R)0?V.0’ A -R) 0 202)

~ N(0,0 >(I-R)02E(Y - £(y0.))(Y —£(10.)) 0> (I -R) o 2) (4-42)

The residuals can be normally distributed even when the errors Y —f£(y0, ) are not. In addition,
the residuals behave as if the model were nearly linear.

Detection of intrinsic nonlinearity. An analysis of the residuals from a specific
modeling problem indicates the possible importance of intrinsic nonlinearity. If model and
system types of intrinsic nonlinearity are both small, then from (4-23) the sum of weighted
residuals is

1

T2 (Y -f(y0) ~ 21 -R),02U, (4-43)

and from (4-27) the slope of the weighted residual plot is proportional to

T o ()07 (Y ~1(19)) % 0 f () oF (Y ~1(18))/n

_ _ 1
~ L 02f(10)I - R),0?U, -% 02(y0)Z (I - R),02U. /n (4-44)

That is, if both types of intrinsic nonlinearity are small, both the sum of weighted residuals and
the slope of the plot of weighted residuals in relation to o}’ *f(y0) are the values expected for a
linear model. The slope should not be significant unless an intercept is needed.
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From (4-42), a sample distribution of weighted residuals that is not significantly different
from normal adds evidence that both types of intrinsic nonlinearity are small and suggests in
addition that U, is normally distributed. If U, is normal, then the deviation of the distribution
of Y —-£(y0,) from normality results from model nonlinearity.

A check for model intrinsic nonlinearity only is to premultiply the weighted residual
vector by R. From (4-23) and the fact that R(I —R) = 0, the result should be a vector of nearly
zero values if model intrinsic nonlinearity is small. In theory Df used in R is computed at 6 =0,
which is unknown. However, note that DfJ = D f , where J is the Jacobian defined by (C-1),
appendix C, and D f is nearly constant when model intrinsic nonlinearity is small. Hence,
because R is invariant under transformation of parameters, it is nearly constant when 0 is varied
if model intrinsic nonlinearity is small. In this case any set 6 not too remote from 0 can be used
to compute Df, and thus R, for the check except 0 = 0. If0=0, the product of R and the
weighted residual vector is always zero.

Effect of Intrinsic Nonlinearity and Combined Intrinsic Nonlinearity on
Predictions

The effect of intrinsic nonlinearity and combined intrinsic nonlinearity on biases in
predictions is similar to the effect of intrinsic nonlinearity on biases in estimates. That is, if the
model intrinsic nonlinearity is small, then (4-31) becomes

E(g(y8) - g(B))
i 1

- ——;—(tr(nggVﬂ )= QLo r(D} 1,V )0 +§(tr(D2gVar(l» ~QT e} (D[ Var () (4-45)

and, if both the model and system types of combined intrinsic nonlinearity are small, then
E(g(¥))-g(B) ~ 0 (4-46)

Because (4-46) requires that f and g both be nearly linearized by the same transformations of 0
and B, (4-46) may be harder to satisfy than (4-45). For example, if g(B) = B, and g(yé) =7y ,.é R
where vy, is row i of y, then (4-45) is equivalent to (4-35). (There is no additional bias from
estimating S, with y,0,.) However, if g(B) were, for example, a hydraulic head, and most of
the data in Y were hydraulic head data, then small model and system types of intrinsic
nonlinearity would probably imply small model and system types of combined intrinsic
r%onlinearity as well. Evaluation of bias £ (g(y@) — 2(v0,)) adds the term
—tr(Dyg - Y1) YD, gY(Y'Y) ' Y)V,)o,; to both (4-45) and (4-46). (See (4-34).) As for

-37), interest generally is in predicting g() not g(y6.), so the extra component of bias may
not be too important.

Residuals that pertain to predictions can be derived using constrained regression as

discussed in section 5 and appendix E. These residuals can be analyzed with methods analogous
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to those used for the standard residuals to detect both types of combined intrinsic nonlinearity.
Discussion of this is deferred to section 5 after discussion of the basic concepts of the
constrained regression.

Estimation and Prediction When the Weights are Unknown

The theory developed in this report thus far is valid for any weight matrix, ® . For
Gauss-Markov estimation o is defined using o' oc E(Y —£(y0.))(Y —£(¥0.))’, which, from
(3-32) is generally full (that is, not diagonal). This definition (the second-moment matrix) is
used instead of Var(Y —f£(y0,)) (the covariance matrix) used in classical regression because of
the nonzero vector £(Y —f(y0.)). As shown in (B-18)-(B-22), any squared linear combination
of the form E(I ’(é —0.))? is minimized through third-order terms by using this definition.
Obenchain (1975, p. 378) considered the classical linear model with correlated errors and
suggested letting @~ be diagonal, with diagonal elements given by the variances of the errors.
He cited several benefits from this definition, including the fact that the model would fit the data
(with the residuals having a mixture of positive and negative signs) instead of being
systematically offset from the data (with the residuals tending to have one sign) as can happen in
Gauss-Markov estimation. For the theory developed in this report the variances of the errors
would be replaced by E(Y, — f,(y60.))” . However, if E(Y —£(y0.))(Y —£(0.))’ is unknown, its
diagonal elements E(Y, — f,(y9.))’ might also be unknown.

Diagonal elements E(Y, — £,(y0.))* can be estimated from field evidence for large-scale
heterogeneity (Christensen and Cooley, 1999b), estimates of observation-error variances (Hill,
1998, p. 45-49), and analysis of residuals (Cooley and Naff, 1990, Chapter 5). These methods
generally result in grouping the diagonal elements into g groups, each of which appears to have
nearly uniform values. In this case the objective function S(0) is written

S©) = Z g, T~ £,(10)) (4-47)

where @ is the weight for group k and i(k) indicates summation over the observations in group
k.

An analysis of residuals yields estimated weights w,, that give apparently uniform
average variability of weighted residuals for all groups (Cooley and Naff, 1990, p. 168-171), that
is, so that

> (¥, - £,(19))*w,, (4-48)

1
nq i(q)

1 - 1 ;
— >~ f,(10))’ W, * — (X, — £,(40)) g, ~ -~
R n, i(2)

where n, is the number of observations in group k. From (4-48) the estimated weights
approximately satisfy
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way < (1~ £,GA)) (4-49)

n, i®

An objective function that, when minimized with respect to 0, gives normal equations
having weights exactly satisfying (4-49) is

(0) =3 Enin(E (- £,G0)°) (4-50)

Appendix D shows that, through third order in ¥, - £,(y6.), £(0) and S(8)+ constants are
proportional when @_ is defined as

2
O-e nk

Yo TS B, - £,10.))
itk)

1 k=12,....9 (4-51)

This definition is approximately equivalent to the definition proposed by Obenchain (1975)
discussed earlier, the approximation resulting from grouping the errors. Appendix D also shows
that the normal equations obtained from 4(6) and S(0) are equivalent through second order in
Y, — £,(y0.) under the same conditions. Barlebo and others (1998, p. 154) used (4-49) to
compute the weights in the normal equations, but they did not formally justify the procedure.

The above analysis leads to the conclusion that the results for estimation and prediction,
including effects of the various types of intrinsic nonlinearity, may be approximately applied
when the weights are unknown.

Summary of Principal Results

Vector 0, is estimated using nonlinear least squares based on the objective function
given by (4-1), S(0) = (Y - £(y0)) o(Y —f(y0)) . In this function ® is a positive definite weight
matrix that is proportional to the inverse of E(Y —f£(y0,))(Y —£(y8.))’" for generalized least
squares (Gauss-Markov estimation) but is arbitrary for most developments. The inverse of the
second-moment matrix E(Y —f£(y0,))Y —£(v0,))" is shown to be the correct weight matrix to
use for Gauss-Markov-type estimation instead of the inverse of the matrix Var(Y —£(y0,)) used
in classical regression because of the nonzero vector E(Y —£(y0,)). As a basis for the theory
needed to analyze the estimate © of 0, and functions of the estimate, an analytical solution for
the estimate that is second-order correctin €, e = — yﬁ , and their products is obtained using
Taylor series and perturbation expansions; the solution is given by (4-4)-(4-6).

The second-order-correct approximation for 0 is used to develop approximate
expressions for the biases E(0-0.), E(f(y0)—f(B)), and E(f(y0)-f(y0.)) given by (4-15),
(4-17), and (4-19), respectively. These biases can all be nonzero because of model nonlinearity
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with respect to 6 and B. In spite of the presence of model error, the biases are zero for a linear
model.

Model residuals, defined as Y —f (yé) , are estimates of the errors Y —£(y0,). An
approximate expression (4-22) shows that the estimates can be biased as estimates of Y —£(y0,)
because of model nonlinearity. Measures used to gage the quahty of fit of a specific model to
field data such as the sum of weighted residuals Zm” 2(Y — £(y9)) (where ©!'%is row i of ®'?)
and the plot of weighted residuals ®"?(Y - £(y9)) in relation to weighted model function values

®'"2f(y0) also can be affected by model nonlinearity. For a linear model both the sum of
weighted residuals and the slope of the plot should not be significant if the model is correct.
However, for a general model both the sum and the slope can be significant because of model
nonlinearity, which can be seen from (4-23) and (4-27), respectively.

A prediction to be made with the model is defined as any function of yé of interest that is
not contained in f (yé). It is termed g(yé) and is used to predict g(B) or g(y0.). Note that
function g('yé) can be the same type of function as any element f, (yé) (for example hydraulic
head or flux), but it was not observed as Y,. Biases E(g(yé) -g(PB)) and E (g(yé) - g(y9,)) are
given by (4-31) and (4-34), respectively. As for the model function biases, the prediction biases
can be nonzero because of model nonlinearity.

If the biases in (yé) , Y-F (yé) , and g(yé) were large, they could severely compromise
use of a ground-water model, unless they could be adequately estimated. However, many of the
bias terms can be small if unique transformations ¢(0) and a(B) nearly linearize the models
f(y9) and f(B). The transformations do not have to be known. If such a transformation for 0
exists, then the model intrinsic nonlinearity is said to be small. If such a transformation for 3
exists, and if in addition certain approximations applied to second derivatives of f(8) and
explained in appendix C are accurate, then the system intrinsic nonlinearity is said to be small.
Other bias terms pertaining to the predictions are small if the transformations nearly linearize
f(y0) and g(y0), and f(B) and g(B), simultaneously. If these transformations exist, then
model and system types of combined intrinsic nonlinearity are both said to be small, assuming
for the latter accurate approximations for the second derivatives of f() and g(B).

If the model intrinsic nonlinearity is small, then as shown by (4-35) some of the bias in 0
is eliminated, and as shown by (4-36), if model and system types of intrinsic nonlinearity are
small, f (y@) is nearly unbiased as an estimate of f(). The generally nonzero component
E(f(y6.)—£(p)) remains as bias in the estimate of f(y0,), as shown in (4-37). However, a
ground-water study generally is concerned with estimating f(8) , not £(y0,), so this bias may
not be important. Properties of the residuals also change when intrinsic nonlinearity is small.
That is, when model and system types of intrinsic nonlinearity are small, the residuals become
nearly unbiased (E(Y -f (yé)) ~ 0 as given by (4-39)), their covariance matrix is nearly like the
covariance matrix for a linear model (as shown in (4-40) and (4-41)), and, if e and € are
normally distributed, they can be normally distributed as given by (4-42).

The presence of significant model and system types of intrinsic nonlinearity can be tested
for by examining the slope of the plot of weighted residuals in relation to weighted estimated
function values and the product of the R matrix (defined by (4-8)) with the vector of weighted
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residuals. Although R is defined using quantities computed at © =0, any 0 not too remote from
0 except 0 may be used to compute R for the test. From (4-23), a nearly zero vector of the
product of R and the vector of weighted residuals indicates that the model intrinsic nonlinearity
is small, and from (4-44) the absence of a significant slope suggests that both model and system
types of intrinsic nonlinearity are small. A sample distribution of weighted residuals that is

nearly normal adds evidence that both types of intrinsic nonlinearity are small. Similar tests for
combined intrinsic nonlinearity are developed in section 5.

The second-moment matrix necessary for Gauss-Markov estimation often would be
unknown. Obenchain (1975) suggested using the diagonal elements of this matrix and indicated
several benefits from this definition, including a better fit of the model to the data than often
results from Gauss-Markov estimation. Although it is likely that the diagonal elements also
would be unknown, they might be estimated from field evidence for large-scale heterogeneity,
estimates of observation-error variances, and analysis of residuals. These methods generally
result in grouping the diagonal elements into ¢ groups, each of which appears to have nearly
uniform values. Objective function S(0) is then written in the form of (4-47) to incorporate
these groups. A formulation that automatically weights residuals in each of the groups according
to the ai)parent variance for the group results from minimizing the objective function (4-50),
£(0) =— anln( T (¥, - £,(y9))*) , where n, is the number of observations in group k. Through
second orcfer in V-t (y9.) , the normal equations resulting from using ¢(0) and S(0) are shown
to be the same. Hence, the bias and other analyses developed for the case when the weight
matrix is known may be used as an approximation when the weight matrix is unknown.
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5. Uncertainty Analyses

Confidence Regions, Confidence Intervals, and Prediction Intervals

Section 4 dealt with estimation of 0, and functions f (79 ), £(B), g(v8. ) and g(B).
Principal concerns were with possible biases in the estimates 0, f (yﬁ and g yG Expressions
were derived to indicate how accurate the estimates are, on the average. These expressions do
not indicate either the precision of the estimates, or how close specific estimates might be to the
values of interest (values of @, , £,(y0,), £,(B), g(¥0.), or g(B)). Uncertainty in prediction of
specific future observations, which contain additional future measurement error, also was not
addressed by the average-accuracy expressions. However, estimates of uncertainty are necessary
in order to express the confidence that an investigator has in the results (flow system analysis and
predictions) of a model study. In this report uncertainty in estimates is expressed through
confidence regions and confidence intervals. Uncertainty in predictions of future observations is
expressed through prediction intervals.

A joint confidence region for all parameters (simply referred to in this report as a
confidence region) is defined as a usually closed but possibly open region that has a specified
probability 1 -« of containing the true (as opposed to estimated) parameter set 0,. Itisa
random region that always encloses 0. An interpretation is that if many realizations of e and €
were used for an equal number of regressions to find values of 0, then the fraction of associated
confidence regions containing 0, would be approximately 1— . A major difference between
the confidence region defined here and a confidence region defined for a classical linear or
nonlinear model is that the true parameter set for a classical model is considered to be fixed;
whereas, the true parameter set 0, used here is stochastic. The theories pertaining to the two
types of regions turn out to be analogous, however. Cooley and Naff (1990, p. 172-175) give a
thorough discussion of confidence regions, including a generalization for parameter subsets, for a
linear approximation of the classical nonlinear model. Graybill (1976, p. 183-192) gives a
complete theoretical foundation for confidence regions for a classical linear model, and Seber
and Wild (1989, Chapter 5) discuss approximate confidence regions for the classical nonlinear
model.

A type of confidence interval derived directly from a confidence region is called a
Scheffé interval (Graybill, 1976, p. 199; Seber and Wild, 1989, p. 194). For the confidence
region used in this report it is an interval for some function of parameters 0, , say g(yO, ) ,
computed as the maximum and minimum values of g(y0) taken over all parameter sets 0 lying
within the confidence region. It is a simultaneous interval so that g(y0,) lies within its Scheffé
interval with probability 1 -« while all other linearizable functions of 0, lie within their
Scheffé intervals with the same probability. That is, the probability is only « that any one of the
virtually infinite number of possible Scheffé intervals will not contain its respective function of
0, . The term “linearizable” was used to eliminate pathologic functions of 0 that cannot be
linearized using Taylor series, as is required for the analysis used in this report. Scheffé
intervals for nonlinear models are discussed within a classical context by Vecchia and Cooley
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(1987), and are further discussed and applied to a field problem by Christensen and Cooley
(1999a). Approximate Scheffé intervals are briefly discussed for the classical nonlinear model
by Seber and Wild (1989, p. 194), and a thorough discussion of the theory as applied to the
classical linear model is given by Graybill (1976, p. 195-200).

An individual confidence interval for g(yﬁ,) is defined as a usually closed but possibly
open interval around g(yé) that contains g(yO,) with specified probability 1-«. As for a
confidence region and Scheffé interval, an individual confidence interval is random, but it is not
simultaneous. It applies only to the selected function so that, in contrast to the Scheffé interval,
a fraction a of all individual confidence intervals for linearizable functions of 0, will not
contain their respective functions of 0,. Also, a confidence interval as defined in this report
differs from the classical one in that the parameter set 0, is stochastic in the present case instead
of being fixed as in the classical case. As noted by Cooley (2000, p. 1161) this gives the
confidence interval as defined here some of the properties of a prediction interval. An individual
confidence interval could also be obtained for g(B), which would in general be larger than an
individual confidence interval for g(ye,) because it receives an extra component of variance
from the difference g(B)— g(y@ ) This interval has more in common with prediction intervals
than with confidence intervals, so is included with them. Individual confidence intervals for
classical nonlinear models are discussed by Seber and Wild (1989, Chapter 5), and a thorough
discussion of their theoretical basis as one type in a family of joint intervals for a classical linear
model is given by Graybill (1976, p. 201-204).

Finally, an individual prediction interval for some future observation Y, of g(B) is
defined as a usually closed but possibly open interval around g(yé) that contains Y, with
specified probability 1 -« . Because Y, and g(B) are both stochastic, the only difference
between a prediction interval and a confidence interval for g(B) is the extra component of
variance from the difference ¥, — g(B), which is the variance from a future measurement error.
A classical prediction interval also is defined for the stochastic variable Y, so it does not differ
in definition from the one defined in this report. Approximate prediction intervals for a classical
linearized model are discussed in Seber and Wild (1989, p. 193-194), and prediction intervals for
a classical linear model are derived and discussed by Graybill (1976, p. 267-270). Christensen
and Cooley (1999b) discuss and apply prediction intervals to two field sites using a nonlinear
model in a classical context where model error was assumed to add variance analogous in form
to measurement error variance. They showed that both new and old data are contained in their
prediction intervals with apparently correct or slightly conservative probability.

In the following sections and associated appendices, confidence regions, confidence
intervals, and prediction intervals are derived using the combination Taylor series and
perturbation methods used for estimation. These methods were used by Johansen (1983) and
Hamilton and Wiens (1987) for similar analyses applied to the classical nonlinear model. In the
last section of appendix F many of the results are extended to apply approximately when the
small-variance conditions for the perturbation analysis are violated.
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Development of Confidence Regions and Scheffé Intervals

Statistical distribution and confidence region when the weight matrix is known. For
the formal derivation of the statistical distribution necessary to define a confidence region, it is
assumed that Var(U), Var(U.), and Var(D, fe) are all small, and that Var(D, fe) is much
smaller than Var(U,). These assumptions were used to derive distribution (F-57) in appendix F,
which is repeated here as

(5®)-SO)/p _
S©)/(n- p)

¢,F(p,n—p) (5-1)

where F(p,n— p) signifies an F random variable with p and n— p degrees of freedom and ¢, is
a correction factor defined by (5-3). Equation (5-1) implies the (1 —a)x100 percent confidence
region

5(0.)-S(©0) <—2—5@)c,F,(p,n- p) (5-2)

h—p

where F, (p,n— p)is the upper a point of the F(p,n— p) random variable. That is,
(1-a)x100 percent of the continuum of possible F(p,n— p) values are less than F, (p,n— p),
which yields the inequality in (5-2). As discussed earlier, (5-2) defines a region that has a
(1-a)x100 percent chance of containing S(0,). If equality is used, then S(0.) is replaced
with a bounding surface of S(0) values that forms the limit of the confidence region.

Correction factor. The correction factor is defined as

ol +(r,o;+y,00)/p

= ~ - (5-3)
o, + (7,05 +7,0.)/(n-p)
where, from the definitions following (F-59),
1 1
7405 =({r(I-R)e’V.0?)~n+ p)o] (5-4)
and
" 1 1

7:0¢ = E(S®) - r(@ -R)o?V.0?)o? (5-5)

and, from the definitions following (F-63),

1 1

VWO = (rr(Ro?V,0?) - p)o’ (5-6)
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and

1 1

y,0¢ = E(80.)-8(0)) - tr(Ro?V,0?)o’ (5-7)

More detailed definitions of the terms (termed component correction factors) 7,05, 7,0;,
7.0, and y,07} from the perturbation analysis are given by (F-60)-(F-62), (F-64), and (F-65).
Factors 7, 0'; and 7, of, correct for the possibility that ®™ # V,, and factors 7,0 and y,0
correct for model intrinsic nonlinearity. The latter two factors are zero when there is neither
model nor system types of intrinsic nonlinearity. Finally, note that @' cannot be entirely
arbitrary; it should be composed of V, plus a matrix Va,af, /o, where V, is dependent only on
model error ((F-61), appendix F).

In the last section of appendix F the mean and variance of an expression that is analogous
to, but more general than, (5-1) are analyzed using a method that does not rely on Taylor series
expansions or perturbations. The analysis shows that the small-variance assumptions can be
relaxed if the correction factors are written in terms of Q instead of V., where

Q=E(Y -f(y0.))(Y -£(y6.))'/ o (5-8)

Distribution (5-1) written using the redefined correction factors, (F-133)-(F-135), is most
accurate if (V)" o, is twice or more (E(f,(B) - f,(¥0.))*)""?, i = 1,2,...,n. The redefinitions
give a more accurate indication of errors resulting from the form of ® than the original factors
because Q is the correct form for o' for Gauss-Markov estimation, not V.. However, as
indicated by (G-7) and associated text in appendix G, the difference between Q and V, is of
order larger than the order of terms dropped for the perturbation analysis, so that any differences
resulting from the two different variances may often be small. Hence, in this section Q and V.,
are often used interchangeably. Finally, note from the forms of (5-3)-(5-7) that the value of ¢, is
unchanged by the redefinition.

A useful form for the correction factor is given by (5-18) and can be developed as
follows. When model intrinsic nonlinearity is small the expected value of S (é) can be obtained
from (F-99) as

1 1

E(S(6)) ~ (I -R)0’Qu?)o? (5-9)
Now let

r(I-R)o2Qo?)o’ = b(n—-ap)o? (5-10)
where

1 1

b=tr(0:Qw?)/n (5-11)
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Then to evaluate a, (5-10) is used with (5-11) to yield

1o 1o
bap =bn—-tr(0?Qw?) +tr(Ro2Qw?)

1 1

= r(Ro2Qw?) (5-12)
from which
1 1
a=tr(R(w/b)?Q(w/b)?)/p (5-13)
Also
1o
E(S(0,)) = tr(oQ)c? = tr(@2Qa?)o?’ =bno? (5-14)

so that, for small model intrinsic nonlinearity,

E(S(8,)—S(®)) ~ bno? —b(n - ap)o? = bapo’ (5-15)
From (5-4) and (5-10) using redefined correction factors

(n—p)o; +7,04+7,0; =b(n-ap)s; +7,0; (5-16)
Similarly, from (5-6) and (5-12)

po’l+y,0; +y,01 =bapol +y,cL (5-17)

so that the correction factor can be written as

o, +(y,0,+7,0,)/p _ (n—p)ap+y,02/b)

¢, = — (5-18)
o, +(7,05+7,0.)(n-p) pn-ap+y,o. /b
If the model intrinsic nonlinearity is negligible, then (5-18) becomes
2 + 2 / _
c O, +ty,03/P =(rt pla (5-19)

" ol+p,00(n-p) n-ap

Relation between the correction factor and spatial correlation. An approximation given
by (5-20) can be used to illustrate the relation between the correction factor and spatial
correlation. The approximation is based on replacing arbitrary positive definite matrix b~
with b®~', defined as a diagonal matrix composed of the diagonal elements of Q. Then
(®/b)""*Q(d/b)"? is similar to a correlation matrix. This matrix is approximated with the form
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1 ¢ ¢ c

(‘/b%Q“/b%~ c b e i oisa

O/b)2Q(d/b)? ~ =(l-o)l+c (5-20)
c ¢ ¢ 1

where 0 <c¢ <1 so that significant spatial correlation from model error is assumed to be positive,
and 1 is a matrix of ones. Equation (5-20) has the correct limits when Q is diagonal and when
all correlations implied in Q are unity. If ¥ (I-R), is small (as is often the case and is easily
checked for any particular model), then the'sum of any row or column of R is approximately
unity. This assumption yields the two useful results

1

1
R(&/b)2Q(d/b)? ~(1-c)R+cl (5-21)
and
, 1 1 .
(I-R)(®/b)2Q(d/b)? ~(1-c)A-R) (5-22)
in which
L] 1
R = &2Df(Df'&Df) " Df'H? (5-23)

Use of the approximation to investigate spatial correlation effects is based on replacement
of @ with ® and use of (5-21) so that (5-13) becomes

1 1

a=tr(R(®/b)>QU®/b)*)/p ~ 1-c+cnlp (5-24)
which gives

n—ap ~(1-c)(n- p) (5-25)
and

ap=(l-c)p+cn (5-26)

Then expression of (5-18) and (5-19) in terms of ¢ gives

_ 0.+ (o +10)Ip  (n=pX(A—c)p+cn+y,0l/b)
ol +(F,05+7,00)/(n-p)  p-c)n—-p)+7,0;/b)

(5-27)

r

and
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¢ ~ 20'52:"}’20'/2; /p z(l—c)p+cn (5-28)

o, +7,05/(n—p)  (1-0)p
Equations (5-27) and (5-28) show the dependence of the ratio ((S(0,)-S (é)) /p) /(S'(é) /(n— p))
on the spatial correlation from model error when a diagonal weight matrix is used. When
positive correlation is large as indicated by a large value of ¢, the ratio becomes much larger than
given by F(p,n— p). The large spatial correlation causes S (é) to be too small compared to
S(0,)as indicated by a large value of a. (See (5-24).) This type of behavior is verified by
synthetic examples, some of which are given in section 7. In the last section of appendix F it is
argued that use of @ should cause the ratio to be more nearly ¢, F(p,n— p) distributed than use
of arbitrary choices for . If Q and ® are unknown, then ¢, cannot be exactly evaluated for
practical work, and a different technique given in the final part of this section can be used.

Approximate evaluation of the correction factor. The component correction factor

7,04 is given by (G-1), appendix G, and (G-1) is evaluated in (G-2)-(G-7). Examination of
(G-1)-(G-7) shows that 7,5 can be written in terms of (@/5)"">Q(w/b)"'? and b’c. As for
¢,, ¥, cannot be evaluated exactly unless Q and o are known. In the simplest case where
bo' is set equal to Q (for example, when spatial correlation is small enough to be ignored so
that Q ~bd™' or when using Gauss-Markov estimation), (o/5)"'*Q(w/b)"'* can be set equal to
L, so that

710! ~ =5 (C) - 2ur (€)' (5:29)
where
11 1
C, = (I-R),Z020>Df (Df oDf) " D’ f,(Df oDf) ' Df o (5-30)
J

In all cases, from (F-65), y,07} equals —7,o,. Insection 6, 7,0, is derived and investigated
using general concepts of intrinsic nonlinearity. Finally, examination of (F-57) using (F-59) and
(F-63) or (F-66) shows that substitution of @ for @/5 does not change the confidence region or
any of the confidence intervals.

An estimate of bo’. Substitution of (5-29) into (5-27) gives a correction for model
intrinsic nonlinearity in terms of bo?, which is unknown and so must be estimated. If model
intrinsic nonlinearity is small, 52 may be written using the combination of (5-9) and (5-10) as

, _ ES®)
e (5-31)

which has as an estimate
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()

S =

n—ap (5-32)
Model intrinsic nonlinearity is rarely large (Seber and Wild, 1989, p. 136), so 7,0 will often
not be needed.

Computation of a Scheffé interval when the weight matrix is known. As discussed
earlier in this section, a Scheffé interval for g(y0, ) is found from the maximum and minimum
values of g(y0) over the confidence region. Vecchia and Cooley (1987, p. 1240-1241) argued
that, if there are no maxima or minima of g(y09) within the confidence region that are more
extreme than those on the boundary, the interval can be obtained by finding extreme values of
2(y0) on the boundary of the confidence region. Christensen and Cooley (1999a, p. 816) gave a
graphical proof that the interval can be obtained using the method of Lagrange multipliers by
finding extreme values of

L(8,1) = g(y0) +z<n—{’;S(é)c,Fa (p,n— p)—S(8) +S(6)) (5-33)

where A is the Lagrange multiplier. Cooley (1999, p. 118) argued that the assumption about
existence of alternative maxima and minima is almost nonrestrictive, and Christensen and
Cooley (1999a, p. 812) showed that the assumption held for a field case. Numerical
methodology for solution of (5-33) is given in Vecchia and Cooley (1987).

Confidence region and Scheffé interval when the weight matrix is unknown. When the
weight matrix is unknown, #(0) given by (4-50) should be the objective function instead of
S(8). The analysis developed for the ® -known case can be used as an approximation when the
weight matrix is unknown. This is shown as follows. For convenience let

n.=Y-£(30,) (5-34)
and
fi=Y-1(y0) (5-35)

Then, use of (D-9), appendix D, yields, through third order in n. and 7,

£8.) - £(9) z%(S(e.)—S(é)) (5-36)

£

where S(0) is defined using (4-47). From (F-55), appendix F, the right-hand side is
approximately proportional to a chi squared random variable. However, to help compensate for
the approximate nature of (5-36), o is approximated with S (é) /(b(n—ap)) so that an F random
variable may be used. This idea is developed as follows. Modification of (5-36) by using the
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approximation and the idea that b ~ 1 if the error groups adequately reflect the error structure
results in:

S(6,)-S(0)

fe*—féz - =
(0.)-£(0) ~ (n—ap) 5@

(5-37)
Then (5-1) gives

(S0.)-S@)/p __n-p

A 20.)—£(0)) ~c,F(p,n—
S$(0)/(n-p) p(n—ap)(( )=4(©0)) ~ ¢, F(p,n-p)

or
£0.)—£(6) ~ p—(:—_:;i))c,F(p,n—- ») (5-38)

If model intrinsic nonlinearity is small so that (5-19) is approximately valid, then

£8.)~£(8) ~ apF(p,n - p) (5-39)
so that an approximate confidence region is given by

£(6.) - £(8) < apF,, (p,n - p) (5-40)

Because n—ap =0 if a=n/ p, ais bounded above by n/p. In this case a very conservative
confidence region is given by

20.)—£(0) < nF, (p,n— p) (5-41)
A Scheffé interval based on (5-40) is computed by finding extreme values of
L(8,2) = g(16) + A (apF, (p.n— p) - £(8) + £(8)) (5-42)

Numerical methodology for computing a Scheffé interval from (5-42) is given in Cooley (1999).

Development of Individual Confidence Intervals

Statistical distribution and confidence interval when the weight matrix is known.
Consider the distribution of (S(8)-S ((:))) /(S(é) /(n— p)), where O is a regression estimate that
is constrained so that g(y0) = g(y0,). This regression estimate is derived in appendix E using



Uncertainty Analyses 53

the same methods as used to derive the unconstrained regression estimate 0. In appendix F, 0
is used to derive the stated distribution using the same methods and assumptions as used for
(5-1). The result is (F-57), which is repeated here in the form

S(6)-S(®)

2 ~c,F(l,n- 5-43
SO gy FGnP) (5-43)

where ¢, is a correction factor defined by (5-45). From (5-43) note that, by analogy with
(5-2),

S(0)-S(0) < S(©®) ¢.F,(,n-p) (5-44)
n-p

The maximum and minimum values of g(y0) over region (5-44) (termed a likelihood region) are
the maximum and minimum values of g(y0) that could equal g(y0,) at probability level « .
That these limits forma (1 -a)x100 percent individual confidence interval is shown graphically
by Christensen and Cooley (1999b, p. 2637-2638). For further developments in this section note
that F(1l,n— p) =t*(n— p), where t(n— p)is the Student ¢ random variable with n— p degrees
of freedom.

Correction factor. The correction factor is defined analogously to ¢, as

2 2 4
o, +7wo-/3 +}/IO-£

o2 +(f,0% +7,64)(n-p)

c

[4

(5-45)

where 7,0} and 7,0, are defined by (5-4) and (5-5), respectively. From the definitions
following (F-66), y,05 and 7,0, are defined for (5-45) as

1 1
7,07} = (F}GQ'ODEV@EQ—- Do’ (5-46)

and

y108 = E(S(8)-S(8)) -

1 1
! —Q'0?V.02Qo (5-47)
Q
More detailed definitions based on the perturbation analysis are given by (F-67) and (F-68).
Factor y,07 corrects for the possibility that ™' # V,, and factor ¥, o, corrects for model
intrinsic nonlinearity and model combined intrinsic nonlinearity.

As before, an expression analogous to, but more general than, (5-43) is analyzed in the
last section of appendix F. The same conclusions as reached before, regarding use of Q instead
of V., to improve the accuracy of the correction factors, are again reached.



54 A Theory for Modeling Ground-Water Flow in Heterogeneous Media

Approximate evaluation of the correction factor. To evaluate ¢, in terms of Q and o,
first note from (5-46) that

l l
ol + ywo/f, +y,00 = QIQ Q'w2V, (ona +y,0 (5-48)

As indicated previously, up to the order of the perturbation approximations used, Q and V. may
be used interchangeably. However, by using the definitions of V, and Q in (3-21) it can be
seen that Q'®'*(Q-V,)®"?Q = 0 so that Q'0"’Q0"’Q > Q'0"?*V,0'?Q. Thus, a larger
value for (5-48) is

] I
Ol +7,0,+y,00 ~ _(—)%Q 02Qw2Qo? +y,0 (5-49)

Correction factor c, is obtained by using (5-49) and the definition for ;9w0'fg in (5-45) as

1 1
_(n-p)Q'(0/5)*QAw/b)*Q+Q'Qy,0, /b)
QQ(n—ap+7,052/b) (5-50)

C

c

When spatial correlation is small or Gauss-Markov estimation is used, 7,0 /b may be evaluated
using (5-29). Computation of y, o /b is discussed in section 6.

Relation between the correction factor and spattal correlation. Equation (5-50) shows
possible strong dependence of the ratio (S((-)) S(O)) /(S (6) /(n— p)) on spatlal correlation when
® =0 # bQ™. Expansion the form Z(Q —ZQ /n)* leads to the relation 0 < Q lQ < nQ Q
where Q isQusing ® = @. Therefore if spatlal correlation were positive and large
((®/6)"*Q(@/b)"'* near 1) and if most entries in Q had the same sign, the numerator of ¢,
could be large if 7 were large, as is the numerator of ¢, from (5-27). However, unlike c,, c,
could be small, even if 7 and correlation were large, if Q'(6/5)">Q(é/b)">Q were small
compared with Q'Q as could occur if entries in Q were fairly uniform and equally divided by
sign. Component correction factor y, o /b defined for c, is for model combined intrinsic
nonlinearity and so is less likely to be near zero than is y, o> /b defined for c,. The former
component correction factor is given as (G-8), appendix G, and is evaluated in (G-9), (G-11), (G-
14), (G-15), and (G-17)-(G-19). The final result is lengthy, but straightforward, and so is not
given here. In section 6, y,0 is investigated using general concepts of combined intrinsic
nonlinearity.

Computation of an individual confidence interval when the weight matrix is known.
As discussed after (5-44), an individual confidence interval is found from the maximum and
minimum values of g(y0) over the likelihood region, (5-44). If there are no maxima or minima
of g(y0) more extreme than those on the boundary of (5-44), then an individual confidence
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interval is calculated in the same manner as for the Scheffé interval. That is, an individual
confidence interval is calculated from extreme values of

1O = 51+ 2, il (=)= S©0)+S6) (5-51)

where t,,,(n— p) isthe (1-a/2)x100 percentile of the ¢ distribution, and
t2,,(n—p)=F,(1,n- p). Numerical methodology is the same as used for a Scheff¢ interval.

Individual confidence interval when the weight matrix is unknown. As for confidence
regions and Scheffé intervals, when the weights are unknown £(0) defined by (4-50) should be
used in place of S(0). An analysis like the one given by (5-34)-(5-42) applies for the present
caseif n=Y —f(ya) replaces n, =Y —f(y0,). Thus,

&y (6 S®)-S®)

£(0) — £(0) = (n — ap) ————— (5-52)
)= (n—ap @)
so that, from (5-43), as an approximation
£(0) - £(6) ~ c t*(n-p) (5-53)
n—-p
If model intrinsic nonlinearity is small, then ¢, is given by (5-50) so that (5-53) becomes
1 1

~ A ! 2 2

0®) - £®) ~ (L2l OVR@OGIDNQ ) 2y ) (5-54)

QQ

where o is replaced by the diagonal matrix of @, values, ;.

Because o, and Q are assumed to be unknown, (5-54) cannot be directly used. A
useful approximate bound for Q'(w,, /5)"*Q(w_ /b)"">Q is obtained as follows. For
convenience, temporarily let (o /5)"">Q (o /b)""? =C. Then, if ®, adequately approximates
® , diagonal entries of C are all approximately 1°s and off diagonal entries are all less than or
equal to approximately 1 in magnitude. Assuming that all significant off-diagonal entries in C
are positive, the approximate maximum magnitude of an entry of the row vector Q'C is given
either by the sum of all positive values of O, or the negative of the sum of all negative values of
Q,. Leteither sumbe Y, , where i(s) indicates the sum over all entries having the same sign.
Then the approximate maximum value that Q'CQ could have, V,, , is obtained as

Ve =max 2(X 0, xQ)) = maX(ZQ) (5-55)

IO RO
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where the maximum over s (max(---)) indicates the maximum for either the sum over positive
. .S, . .
signs or the sum over negative signs. Finally, as an approximate bound

Q'(0,/b)’Q(w,/b)?Q 4

< 5-56
Q'Q Q'Q (29

Hamilton and Wiens (1987) and Cooley (1997) found that for the cases they studied
7,02 /b did not increase the size of a confidence interval more than about 6 percent, although
Hamilton and Wiens (1987) found that y,o? /b could decrease the size of a confidence interval
as much as about 35 percent. Thus, an approximate, perhaps conservative, confidence interval
can be computed by using (5-56) in (5-54), neglecting y, o /b , and finding extreme values of

L(e,z)=g(ye>+z(g%t;/2(n—p)—e(e>+f(é» (5-57)

Detection of Combined Intrinsic Nonlinearity

Analysis of weighted residuals to detect possible significant model and system types of
intrinsic nonlinearity was discussed in section 4, where it was found that significant model and
system types of intrinsic nonlinearity can be indicated by a slope of the plot of weighted
residuals in relation to weighted function values that is significantly different than zero. It also
was found that premultiplication of the weighted residual vector by R should yield a vector of
nearly zero values if model intrinsic nonlinearity is small. Similar measures for model and
system types of combined intrinsic nonlinearity are developed using a weighted constrained
residual vector (I - QQ'/Q'Q)w'/?(Y —£(y0)) that equals the standard residual vector when
model intrinsic nonlinearity and model combined intrinsic nonlinearity are both small. This is
shown as follows. Use of (E-29), appendix E, yields

a-32 o2 (Y —£rB))

z(I—g%)(I R+g%)(a)2U +— Zml(e'sze—lszT))

—a g%)(R g%) ©2DE(Df oDf)" (zDkalm,gz nglQ}QQ'm;U‘)
+% I —% QQQ( Dl -ey(yy) ' D’g(y'y) " y'e)

1

= —R)(miU, +5§m§.(e'1)§ fe-1D*f 1))
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R
QQ

1
)a)ZDf(Df con)"l(zD2 £ Im,zz Dgl Q{Q Q'w2U.) (5-58)

Next (C-4) and (C-11), appendix C, show that the nonlinear model terms are small in magnitude
if the model intrinsic nonlinearity and the model combined intrinsic nonlinearity are small.
Finally, comparison of (5-58) with (4-23) shows that, in this instance, welghted constrained and
standard weighted residuals are both approximately given by (I - R}(o'*U, +— Zu)” ’e'D; fe).
If model intrinsic nonlinearity and model combined intrinsic nonlinearity are both small,

the sum of weighted constrained residuals should be nearly the same as the sum of weighted
residuals, or

QQ’

QQ) (oz(Y f(yO)) Z(I R); (mZU*+ Zm 2¢'D? IRE Zmz(Y f(yO)) (5-59)

@-
where (I-QQ'/Q'Q), isrow i of I-QQ'/Q’'Q. Additionally, if the weighted constrained
residual vector is premultiplied by R, the result should be a vector of nearly zero values if the
model combined intrinsic nonlinearity is small. Matrix R and vector Q can be computed for the
test using the same set of parameters as used to compute R for the test applied to residuals. (See
discussion in the paragraph following (4-44).)

The slope of the plot of weighted constrained residuals in relation to weighted function
values ®/2f(y0) should not be significant if model and system types of intrinsic nonlinearity
and model and system types of combined intrinsic nonlinearity are all small, as shown by the
following development of (5-62). (This development can be skipped if desired.) The slope is
proportional to ¥ 0! 2f(y0)(1-QQ'/Q'Q),0'"*(Y —f(y0))
- o) (76)2 (i -QQ'/Q'Q),0"*(Y-f (76)) /n. Evaluation of the first term to second order
usi'ng (E-5), (E-14), (E-28), and (5-58) results in

1

2ecviny . QQ’
To(y0)I - 2 Y —-f(y0
o/ f(y0)( QQ)co( (1))
~ % QQ 2 1 2 r 2,07
~Z((x),.f(‘y().)+(R——QQ) (02U, +— Zm D, f,e—1'D* £ 1))
QQ’ » ~ 1 , 2
+(R- Q) (osz(Df(on) (ZD2fk|a),%Z D’g |~,—Q—Q o?U.,)

002 (Pl v De Yo+ za) (D, T -y "D, () v

1 1 1
«(I-R),(0U, +—;-Z_0)]2~ @D fe—1D>f,T))— (R~ g%) mZDf(chon)‘l (zDka l0?Z

~ 1 1
-D’gl —Q'02U,
g Q,QQm )
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1 1 1
~ S0 f(10. (A -R), (02U, + %Z_n)}(e’Df, fe-1D*f,1)-(R- g%) mZDf(Df ‘wDf)™
i J
~ L ~ 1 1
2 2 ' _
(D’ f 10} Z-Dgl 6,6Q ®2U.)) (5-60)

Similarly evaluation of the second term yields

SoHOB)Z( - 3%) 02 (Y~ £(y0)) /

1

~z:co2f(ye )Z(@-R), (mZU +— zmz(e'D 2 fe—1'D2f,1))

~(R- g%) mzl)f(l)fmnf)“ (zDka lm,’;’Z Dgl 650 '02U.))/n (5-61)

Combination of (5-60) and (5-61) results in

QQ’

200 - 22 02 (V108 -s0r1(Hza -T2

QQ

~ T (10.)(( ~R)i(m5U. +—;- z_mé @D fe—1'D*f,1)-(R- gQ

— )0 (Y £(y0))/n

), a)2Df(Df ‘oDf)”

1 1

I ~ 1 1 1 1 ~ ~
D’ f T} Z-Dgl Q—}éQ'szt))—mef(VGt)Z((I ~R),(@?U, +§§w% €D} fe- 1D’ f,1)
QQ -1 2 2 1 ’ l
—(R—QQ),szf(Dmef) (=D fklm,zz Dl QQQm2U,.))/n (5-62)

When the model and system types of intrinsic nonlinearity and the model and system types of
combined intrinsic nonlinearity are negligible, the slope is the slope for a linear model, which
should not be significant. Note that in this case the expected value of the slope is zero.

The constrained regression estimate 6 , which yields the constrained weighted residuals,
is obtained with the constraint g(y0) = g(y0.). However, g(y0.) is unknown. Therefore, the
confidence limits of g(y0.) must be used instead of g(y0.), and the necessary values of 0 are
found by solving the appropriate extreme value problem, (5-51) or (5-57), depending on whether
or not @ is known. Note that this gives two sets of constrained weighted residuals to analyze for
each confidence interval, one set at each confidence limit.

Development of Individual Prediction Intervals

Forms for predicted variables, covariances, and sum of squared errors. A predicted
observation is given by
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Y,=gB+e¢, (5-63)

where &, is a predicted observation error that is assumed to have the marginal normal
distribution

£, ~N(0,V,,00) (5-64)

and V, o} = Var(e,). Equation (5-63) can be written in terms of a combined model and

epe

observation error, ¥, — g(y6.), by using (4-28) and (4-32) as follows.
Y, =g(10.)+g(B) - g(v0) + g(¥0) - g(v8.) + ¢,

1 r f, = ! 1 f, !, - - '
=8(10.)+D,ge+ e Djge—Dg(y'y) " y'e =) 'Dg(yh) ' ve +¢,

= g(y0.)+ U, + %e'a);g —y(r) " D2g(rh) M y)e

=g(18.)+v, (5-65)
where

0. =U} + = (D}g - ()" D’grD) Ve (5-66)
and

U, =D, g@-1(r))'Y)e+¢, (5-67)

The form for v, implicitly assumes that model errors e remain the same for predictions as
they were for the original model. This should be true for errors in framework properties such as
hydraulic conductivity, and is correct for all types of error if the prediction interval is used to
bound a present value of g(B) by setting ¥, to zero. The form is an approximation for future
values of hydrologic variables such as recharge and discharge. In fact, if the model errors for
recharge and discharge were controlled mainly by transient processes, then there might be little
to tie the original model errors for recharge and discharge to the predicted model errors for
recharge and discharge. In this instance the two sets of errors could have the same mean and
spatial covariance, but could be nearly independent of each other. This case is addressed by
setting the appropriate covariances to zero as explained below.

Assume ¢, and e to be independent, as are € and e. However, £, and € may be
correlated, so let

Cov(g,¢,)=C,,0. (5-68)

Also, let
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Var(U,) =D, g0 —y(y)"'Y)V, A—-y(yh) 'y)D, g'o s +V,, 02 =V, 0} (5-69)
and

Cov(U.,U,) = EM, £ -y(v))"'v) e+e)e'T-y(v) ' Y) Dy &' +¢,)
= Dﬁ f(a- Y(W)_l Y) Vﬂ a- 'Y(W)—l ') Dp 8’0'/29 + C.':po-s
= Cepo; + Cspaj =C, ol (5-70)

where C,,0; =D, fI-y(y})"'y)V, A-y(y})"'y") D, g'c; and the covariance between U,
and U, results because of (5-68) and because U, and U, involve the same model errors, e. If
some of the model errors for the predictions were envisioned to be independent of the original
model errors as discussed above, then these covariances could be set equal to zero.

Addition of the predicted observation to the set of observations implies a corresponding
augmented sum of squares function. For a Gauss-Markov type of estimation this would be of the
following form (which neglects nonlinear terms in the covariance matrix because only the form
of the matrix is of interest here).

14

Y-f¢9)|[V. C, 1 [Y-£f(10)
v C, V, v

=(Y-£(y0))'(V." + V.'C,C, V. /CXY - £(y9)) - 2(Y - £(¥0))'V.'C v/ C
+v?/C (5-71)

where v=Y -g(y0), C=V, -C 'V, 'C »» and the augmented matrix was inverted by
partitioning (Hohn, 1964, p. 108-109). In terms of a general weight matrix, the augmented sum
of squares has the same form and is defined as

S, (8,0) = (Y — £(y8))’ W(Y — £(y8)) + 2(Y —£(y8)) W, v + W, v’ (5-72)

where W, W, and W, compose a general, augmented weight matrix, W, , defined by

w [W w”] (5-73)
“Tlwow,

p

Statistical distribution and prediction interval when the weight matrix is known. As for
the statistical distribution used to define the individual confidence interval, derivation of the
appropriate distribution to define a prediction interval involves minimizing the sum of squares
subject to a constraint. In the present case the function to minimize is S,(8,v) subject to the
constraint g(y0)+v =Y,. The constrained parameter vector is therefore (0,0). It is convenient
to replace v with ¥, —@, , so that @, is the new parameter. With this definition the augmented
sum of squares becomes
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S.(0,6,) = (Y —£(y0)) W(Y - £(v0)) + 2(Y — £(yO)) W, (L, —6,)
+W,(¥,-0,) (5-74)

Note from the relations v=Y, —g(y0) =Y -6, that
6, =g(y0) (3-75)

Equation (5-75) becomes the new constraint for the constrained regression. Special cases of
(3-75) are 0, = g(y0), 0, =g(y6,), and 9 = g(y0). The constrained regression estimate
(0 ) ) is derlved to second order accuracy in appendix E.

In appendix F the appropriate distribution to define a prediction interval is derived as
(F-89), which is repeated here in the form

S,(0.6,)-5,0.,6,)
S(éé)/(n—p)

~ cptz(n -p) (5-76)

where (é, ép) are unconstrained regression estimates obtained by minimizing S,(0,6,)and c, is
a correction factor to be defined by (5-78). Equation (5-76) implies the likelihood region

S,(6.9,)

S,(0,6,)-5,(,0,)<
n—p

ept(n = p) (5-77)

Maximum and minimum values of g(y0) + v over the likelihood region are the maximum and
minimum values that Y, could have at probability level « , which defines the prediction interval.
Correction factor. The correction factor ¢, is defined as

_ O-z +7wao-/23 +}’IGJ: 5 78
cp - 2 A 2 A 4 / _ ( - )
O-s +(ywao-ﬂ +7Iao-e) (n p)

where, from (F-91)-(F-95), appendix F, perturbation-based forms for the component correction
factors are

1 1

Fua0y = (r(@, -R,)W2V,, W2) —n+ p)o’ (5-79)
A A 1 1
7o = E(S,(8,8,)-r(@, -R,)W2V,,W2)o! (5-80)
) 1wy wi )
70 = (g QWY WiQu Do (5-81)
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and

1 1 1

Yol = E(S,(0,0,)-5,0.0,)) - Q, W2V, W2Q,o! (5-82)

’
a a

In (5-79)-(5-82), I, is the identity matrix of order n+1,

1

1 1
R, = WD f,(D,f;W,D f,)" D f,W; (5-83)

1
Q,=W2D £, W, D f)'D,H (5-84)
and
V.,0 =Var(U,,) (5-85)

in which D, f, and D,/ are augmented variables defined by (E-46) and (E-48), and

U Y 5-86
‘a—U‘ (- )

4

1
As before, factors 7,05 and y,,07; correct for the possibility that W? # V., , and factors

7u0. and y,,0¢ correct for model intrinsic nonlinearity and model combined intrinsic
nonlinearity.

An analysis of an expression analogous to, but more general than, (5-76) was performed
using the same methods as used for individual confidence intervals. This analysis is omitted here
because it is almost identical to the analysis for individual confidence intervals and reaches
nearly identical conclusions. The only difference in conclusions is that the generalization of
distribution (5-76) behaves even more like a (correction factor)x t* (n— p) distribution than does
the generalization of (5-43).

Approximate evaluation of the correction factor. First the general augmented form of
Q, Q,, is defined by
Q- Q EQY ~1(0.))T, - g(10.))/o (5-87)
"B, - g(8))Y ~1(y8.)) /o’ ba,

in which, using (5-65)-(5-67) and (5-69),

bd,' = E(Y, - g(19.))’ lo} = E@W?)lo?]
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1 1,1 =11
=V, + 70 (D g =v()) Y Dy gY(r) YV, )0 /0
1 -1+ -1 s
+ EW(((DE g=1(0D Y Dy gv(vh) Y WV,) o, /0! (5-88)
Second, the general weight matrix W, is replaced by a block diagonal weight matrix created by
ignoring terms corresponding to the off-diagonal covariances between Y —f(y0,) and

Y, — g(y0.). The general weight matrix ® replaces W and the general weight @, replaces W),.
Thus, the weight matrix is given by

Vo)
®, = (5-89)

r
pr

Third, by analogy with (5-48) and (5-49), the numerator of ¢, becomes

1 1

0-62‘ +ywao-2 +7lao.: = _Tl_'Q;mZV‘amgan-z + 7Iao.:
Q.Q,
1 1 1
<— 102Q,02Q,0! +y,08 , (5-90)
Q.Q, !
where now
1
Qa = (DgDafa (Dafr;mal)afa)"] Dah’ (5'91)

Fourth, evaluation of Q, using (5-89), (E-48), and (E-56), appendix E, yields
Q
Q, = - (5-92)

Fifth, (5-90) is expressed using (5-87), (5-89), and (5-92) as
1 1

1 1 1 1 1
oty oty ot Q'(@/b?Q@/b)?Q-2w, (w,/b)?C' @/b)2Q+d, )bo?
& wa™~ B 1a>~ ¢ Q'Q+w;]

+10% (5-93)

where C = E(Y ~£(y8.))(¥, - £(16.))/ 02

&

Evaluation of the denominator of ¢, uses the definition of R, as
R, =0/D f,(D f.0,D f)"'D f o /?. Then, from (5-89) and (E-56), appendix E,

a~a a
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R 0
= 5-94
R, L), 1] (5-94)

Evaluation of 7,0 shows that

1 1
Pwa0p = (tr(@, ~R,)O2V.,02) - n+ p)o;
1 1
<(r(@, -R,)0:Q,02)-n+p)o;
1 1

= (tr(I-R)02Qa?) - n+ p)o?
=7,03 (5-95)

The component correction factor and, therefore, the form of the denominator for ¢, are the same
as for ¢, and c,. Finally, c, can be expressed as

1 1 1 1 1
. (n-p)Q' (©/5)2 Q©/5)*Q~-20,2(w,/b)>C' ©/5)*Q+d,' +( QQ+w, )y,07 /b)

, - - (5-96)
QQ+w, )Yn-ap+7,0;/b)

where, as shown in appendix G, 7,02 = 7,02. Component correction factor 7,0 is evaluated
in (G-31)-(G-42), appendix G. The result is lengthy and is not given here. In section 6, y,,o is
investigated using general concepts of combined intrinsic nonlinearity. When spatial correlation
is small or Gauss-Markov estimation is used, 7,02 may be evaluated using (5-29).

The relation between the correction factor and spatial correlation. Although (5-96)
shows dependence of the ratio (S, (5, 5,,) -5, (6, 9; NS, (é, 6 ,)/(n— p)) on spatial correlation,
the dependence is less than that displayed by (5-50) because of terms involving co;,l . In fact, if
w,=a, and ®,' >>Q'Q, then from (G-46), appendix G, y,,02 ~ 0, and, letting
n-ap=(-c)n-p),

¢, ~ 1 (5-97)
l-c+y,0; (b(n— p))
Furthermore, because 7,07 /b is usually small,
o o~ (5-98)
P l-c

which, unlike c,, has no dependence on n. Behavior of prediction intervals when w;l >>Q'Q
is analyzed further later in this section.

Computation of a prediction interval when the weight matrix is known and is block
diagonal. When W, = o, (5-74), written in terms of estimates 0 and ép , reduces to
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S,0.6,)=5®)+w,(¥,-6,) (5-99)

so that @ is the standard regressmn estimate obtained by minimizing S(0), and 6 =Y,.
Therefore, when W, = o, S,,(G o o) = S(G) Similarly, when W, =o,, S,(6, u) from (5-72)
reduces to

S,(0,0)=S(0)+w,v’ (5-100)

which is more convenient than S, (0,6, ) for calculating prediction intervals. Finally, because
the prediction limits are the maximum and minimum limits (extreme values) of g(y0)+v over
the likelihood region (5-77), a prediction interval can be computed under the same assumptions
as used for (5-51) from the extreme values of

L(O,v,4)=g(y0)+v +/1(§:—elcpt§,2(n~p) —S(G)—a)pv2 + S(é)) (5-101)
n-p

Numerical methodology for finding the extreme values is given by Vecchia and Cooley (1987).
Often the second moment of ¥, — g(y0,) will be known rather than the weight @,. This
second moment is given by @,'60°2, so (5-100) would be written incorporating it as

S,(0,0) = S(6)+( ‘”)ba%f (5-102)

6‘

Variance bo’ is unknown. Christensen and Cooley (1999b, p. 2629) argued that replacement of
bo? with its estimate s (given by (5-32)) should lead to a slightly conservative prediction
interval. Thus, when @,'bo is known, the prediction interval should be computed from

L(®,0,1) = g(yﬂ)+u+l(§% t2,(n—p)-S(©)- ( )s202+S(9)) (5-103)

The estimated weight (@,/(bo?))s® simply replaces the known, general weight @, in (5-101)
when making the calculations.

Approximate prediction interval when the predicted error predominates. With the
above background, the approximate form for a prediction interval for the fairly common case
where @, = @, and a);‘ >> Q'Q can now be developed. The development utilizes linearized
models for f(y0) and g(y0), but the interval also will be shown to apply for nonlinear models.
The linearized models are obtained as Taylor series expansions about y6 that retain only the
first-order terms rather than both the first- and second-order terms as previously done. This
yields

f(y0) ~ £(y0) + Df(0 - 6) (5-104)
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and
2(y0) ~ g(y0) + Dg(0 - 0) (5-105)

As shown in appendix H, insertion of (5-104) and (5-105) into (5-101) followed by solution of
the extreme value problem gives the limits of g(y0)+ 5 =7, , as

0 1
Y, =g(y0)+ (ffez c,ts(n— pQ'Q+w,'))? (5-106)

which has the form of a standard linear prediction interval (Seber and Wild, 1989, p. 193).
When 0, = @, and &,' >> Q'Q, (5-32), (5-98), and (5-106) can be combined to obtain

1
Y, =g(¥0) tt,,(n- p)@;'s*)? (5-107)

If the variance @&;'bo? is known, then (&, /(b ?))s” should replace weight @, so that @&;'bo;
replaces @,'s”.

Equation (5-106) also applies for nonlinear models when values of 7,0 and y, o are
both small in magnitude. This is because model intrinsic nonlinearity and model combined
intrinsic nonlinearity are both small so that an equation of the form of (5-106) could have been
derived using parameters ¢ for which the models are nearly linear. Since Q'Q and g(yé) are
both invariant under transformation of parameters, (5-106) is valid for nonlinear models
g(yé) and f(y0). This analysis also applies to (5-107) when w;‘ >> Q'Q. Equation (5-107)
implies that the variance of g(y0,) — g(y0) is small compared to the variance of ¥, — g(y6,)
because &,'s” is the estimated variance of ¥, — g(v8, ), but (5-107) implies that
&, - g(y9)) K@;'s*)""* has an approximate #(n— p) distribution.

An important conclusion to be drawn from (5-107) is that, if @, = @, and a);‘ >>Q'Q,
the effects of spatial correlation are contained almost wholly in the estimates g(y0) and s°
when &, is known and in the estimate g(y6) when @,'bo’? is known. In the latter case spatial
correlation has negligible effect on width of the prediction interval.

Testing prediction intervals for accuracy. Christensen and Cooley (1999b) showed that
general prediction intervals can be tested for overall accuracy using a cross-validation procedure
whereby Y values are withdrawn from the data set Y and predicted using prediction intervals one
(or a few) at a time. The percentage of Y values that should be contained in their prediction
intervals at probability & can be determined and compared with the actual number of Y values
that are contained in their prediction intervals. This procedure should test primarily for the
possibility that one or more correction factors ¢, should be larger than the values used. In the
two field cases that Christensen and Cooley (1999b) studied, values of ¢, were implicitly
assumed to be unity, and no evidence was found to indicate that the prediction intervals were too
small. Christensen and Cooley (1999b) also used new data to test the prediction intervals and
again found no evidence to indicate that they were too small.
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Prediction interval when the weight matrix is unknown. When the weight matrix is
unknown, an extension of £(8) can be used instead of S,(8,6,). Two separate formulations are
used depending on whether Y, is contained in one of the g error groups or not. Both
formulations lead to approximations of (5-76). If ¥, is contained in one of the error groups, for
example group j, then the augmented form /7 ,(0,v) is defined by

1
£,(0,0) = £, +8,In(E (Y, = ;) +5y0°) (5-108)

where &, is the Kronecker delta defined by (A-3), appendix A. If Y, is not in an error group,
then an equation like (5-108) would involve a separate error group and term In(v*), which has a
value of negative infinity when v is zero (such as, for example, when v = ). This problem is
eliminated by defining ¢ ,(0,0) when v is not in an error group as

aA)P
£,0,0) = 40+~

&

v* (5-109)

where @,'bo}is presumed to be known.

If Y, is contained in one of the error groups, then expansion of (5-108) using the same
ideas as employed in appendix D yields

£,8,5)-£,0,0)~ (@) +0,0? -S®) (5-110)
o

£

where 6=0 and @ . replaces (?)p. Next, substitution of S(0)/(n— ap) for o’ as was done to
obtain (5-37) results in

S®) + w0 - S(0)

£,(0,5)-£,(0,0) ~ (n— ap)
0,0)-£,0,0)=(n—ap @)

(5-111)

If Y, is not in an error group, then estimation of @, [(bo?) with (n—ap)@, / S(é) in (5-109)
and use of (5-52) shows that

S(©@)+a,5* - S(0)

Ea(E,U —Ea(é,ﬁ ~ (n—ap) R (5-112)
) ) p 5@
Use of (5-111) or (5-112) with (5-76) results in the approximate distribution
¢,0,0)-2,6,0)~2"2c 1*(n-p) (5-113)

n-p
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If model intrinsic nonlinearity is small, then ¢, can be simplified so that (5-113) can be written
1 1 1 1 1
~ A L "(®./5)Q,./0)2Q-2w,2(w,/b)*C' @,./b)*Q+ad;
0G5 b0~ & OV Q@ /D2Q 20, @, D) C @ D) Q+
QQ+w,

+¥.,021b)t* (n—- p) (5-114)

where, as in (5-54), ®, replaces &, and, if Y, is in an error group, a);' = co(;j‘ and, if ¥, is not
in an error group, @,' =@, .

Matrices Q and ®, are assumed to be unknown, so the numerator of the correction
factor must be approximately bounded with a form like (5-56). The same argument as used to
obtain (5-55) may be used for the numerator written in the form Q’, (® oo ! b)? Q, @/ 5)2Q,
(where @, is ©_ augmented with @) to obtain

Vs = maX(£0,,)’ (5-115)
i(s)

Use of (5-92) to evaluate (5-115) yields

Vixa =V fOr a sum of positive values

A1 (5-116)
Vsa = Ve +20,2V,2 + @, for a sum of negative values
As an approximate bound
1 1
[ 2 2
Q. (0, /b)) Q, (")Q‘L/b) Q, < Vs (5-117)

QQ+w), " QQ+w,

As for (5-57), y,,02 /b probably will not increase the width of a prediction interval
significantly. Therefore (5-114) and (5-117) can be used to compute an approximate prediction
interval by finding extreme values of

L©,0,1)=g(v9) +u+/1(—’—V”'““’—_]tj,é (n-p)-£,0,0) +€a(é,f))) (5-118)
QQ+w,

where either (5-108) or (5-109) is used to compute £ ,(0,0) and ¢ a(é, 0). Note that because of
the logarithmic form of ¢ ,(0,v), solution of (5-118) is always a nonlinear problem, even if
g(y0) and f(y0) are both linear. This also applies to (5-57).
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Summary of Principal Results

Results of section 4 indicate how accurate an average estimate of 0., £(y0.), f(B),
g(y0.), or g(P) (or some future measurement of g(f) ) might be, but do not indicate either
precision of the estimates or how close a specific estimate might be to the value it estimates.
These uncertainties are addressed in this section through confidence regions, confidence
intervals, and prediction intervals. A joint confidence region for all parameters (referred to here
simply as a confidence region) is a usually closed but possibly open region around 0 that hasa
specified probability 1 - of containing the true (as opposed to estimated) parameter set 0,. As
used here, it differs from a classical confidence region in that 0, is stochastic rather than fixed.
A Scheffé-type confidence interval for g(y0.) is derived from a confidence region as the
maximum and minimum limits of g(y0) over the confidence region. This interval is
simultaneous in that g(y0,) lies within its Scheffé interval with probability 1« while all other
linearizable functions of 0, lie within their Scheffé intervals with the same probability. (The
limitation to linearizable functions eliminates pathologic functions of 0, to which the theory
developed here does not apply.) An individual confidence interval for g(y0.) is a usually
closed but possibly open interval around g(yé) that contains g(y0.) with specified probability
-« . Itis not simultaneous; it applies only to the selected function so that a fraction a of all
individual confidence intervals for linearizable functions of 6, will not contain their respective
functions of 0, . Again, as used here, the individual confidence interval differs from the classical
one in that 0, is stochastic rather than fixed. Finally, an individual prediction interval for some
future observation Y, of g(B) is a usually closed but possibly open interval around g(yé) that
contains ¥, with specified probability 1-« .

The approximate confidence region given by (5-2) is derived by a combination second-
order Taylor series and perturbation method that formally assumes model and observation error
variances to be small, with the model-error variance Var(D ,fe) being much smaller than the
observation-error variance Var(g). However, a different method is used to show that
approximate validity also holds when the variances are not small. The confidence region is
defined using the standard upper a point of the F random variable for the sum of squares ratio
((S(8.) - S(8))/ P) /(S(é) /(n— p)) and applies for nonlinear models f(y0) and f(B) and an
arbitrary weight matrix . Equation (5-2) contains a correction factor ¢, that is defined by
(5-3) and corrects for both @' not being proportional to E(Y —f(y0.))(Y —£(y0.))’ and
nonzero model intrinsic nonlinearity. Matrix E(Y —£(y0.))(Y —f(y0.))’ would have to be
known to exactly calculate ¢,. An approximation given by (5-20) is used to illustrate the effect
of correlations implied by the matrix. The resulting approximation for ¢, is given by (5-27) and
uses a diagonal weight matrix @ o< [E(Y, — f,(y6.))*]™" and a constant effective spatial
correlation c¢. The approximate form for ¢, shows that when positive spatial correlation from
model error is significant, a confidence region and Scheffé interval would be too small without
using c¢,. This results primarily because S (6) is too small compared to S(0,). Sum of squares
S (é) does not measure the systematic variation of Y from f(y0,) that is caused by the spatial
correlation.
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A Scheffé interval for g(y0,) is computed by finding the limits of g(y0) over the
confidence region. Ifthere are no maxima or minima of g(y®) within the confidence region that
are more extreme than those on the boundary, then the computation can be made using a
Lagrange multiplier formulation given by (5-33) that yields limits of g(y0) on the boundary of
the confidence region.

When the weight matrix is unknown, £(0) should be used instead of S(0) to describe the
confidence region. An analysis shows that an approximate confidence region and Scheffé
interval based on ¢(0) can be constructed using the theory developed for the case where the
weight matrix is known. The confidence region is given by (5-41), and the Lagrange multiplier
formulation for a Scheffé interval is given by (5-42).

An individual confidence interval is computed using methods analogous to those used to
compute a Scheff¢ interval. In this report a region defined by (5-44), analogous to a confidence
region, is constructed from the ratio (S(8)— S(0))/(S(0)/(n— p)), where @ is a regression
estimate that is constrained so that g(y0) = g(y0.). The region is defined using the square of
the standard upper /2 point of the Student ¢ random variable and a correction factor ¢, that is
analogous to ¢,. Maximum and minimum limits of g(y®) over the region, termed a likelihood
region, form the confidence interval. Correction factor c,, which is defined by (5-45), corrects
for ' not being proportional to E(Y —f(y0.))(Y —£(y6.))’, model intrinsic nonlinearity, and
model combined intrinsic nonlinearity. Spatial correlation can cause ¢, to be large. However,
c, also can be near unity (no correction) even if spatial correlation is large, as shown by the
analysis following (5-50).

When the weight matrix is known, the Lagrange multiplier formulation for finding the
limits of g(y@) is given by (5-51). When the weight matrix is unknown, the theory developed
for when the weight matrix is known is again used to obtain an approximate likelihood region
and Lagrange multiplier formulation based on £(0) instead of S(0). The Lagrange multiplier
formulation is given by (5-57), which is written in terms of an approximate bound developed for
the correction factor that is needed when the weight matrix is unknown.

Model and system types of combined intrinsic nonlinearity might be detected by
analyzing the weighted residuals obtained from the constrained regression. The analysis is
analogous to the analysis of standard weighted residuals used to detect model and system types
of intrinsic nonlinearity. The components of the product of R and the weighted constrained
residual vector (I - QQ’/Q'Q)o"2(Y — £(y0)) defined by (5-58) will not necessarily be
approximately zero if the model combined intrinsic nonlinearity is significant, and the plot of the
components of the weighted constrained residual vector in relation to components of the
weighted function vector @'/*f(y0) may exhibit a significantly nonzero slope if model and
system types of intrinsic nonlinearity and model and system types of combined intrinsic
nonlinearity are significant.

A prediction interval is derived using a regression that is constrained so that
g(y(N)) +0 =Y,, where U is the predicted error and (5, D) is the constrained parameter vector.
The constrained regression estimate is obtained by constrained minimization of a sum of squares
function that is augmented by including terms resulting from the predicted error &'. The
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augmented problem is completely analogous to the problem for individual confidence intervals
except in the augmented case there is one more parameter and one more observation. Correction
factor c¢,, which is analogous to c,, corrects for the possibility that W, !, the inverse of the
augmented weight matrix, is not proportional to E(Y —£(y0,))(Y —£(y6.))’ (augmented to
include products involving the predicted error) and for model intrinsic, and model combined
intrinsic, nonlinearity. An approximation for c, is derived by defining o' as a block diagonal
matrix with © and a general prediction weight @, forming the diagonal blocks. Analysis of ¢,
as given by (5-96) shows that spatial correlation can cause ¢, to be large, but that, in general, c,
should be less dependent on spatial correlation than ¢,. A cross-validation method developed by
Christensen and Cooley (1999b) can be used to test the possibility that one or more values of ¢,
are too small.

When the weight matrix is known, the usual Lagrange multiplier formulation, augmented
to include the predicted error, is used to compute limits of the prediction interval. This is given
by (5-101). If the model intrinsic and model combined intrinsic types of nonlinearity are small,
then (5-106), which has the form of a standard linear prediction interval, may be used instead of
(5-101). When the weight matrix is unknown, augmented forms, £ (0, v), of £(0) are used for
the prediction interval. The form of /,(6, v) depends on whether the prediction is contained in
one of the g error groups or not. Ifitis, £,(0,v) is given by (5-108) and if it is not £,(0,v) is
given by (5-109). Approximate theory based on the weight-matrix-known case is used to obtain
the Lagrange multiplier formulation given by (5-118), which applies to both forms of ¢ ,(0,v).
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6. Further Analysis of Intrinsic Nonlinearity and Combined
Intrinsic Nonlinearity

As shown in Section 5, the F, value for confidence regions, and the ¢,,, value for
confidence and prediction intervals, have to be adjusted with correction factors because the F
and ¢ distributions do not approximate the actual distributions of the pertinent variables well
when o' # Q and when model and system types of intrinsic nonlinearity and model and system
types of combined intrinsic nonlinearity are significant. The correction factors are derived in
appendix F using the combined Taylor series and perturbation method and are evaluated in
appendix G. The correction factors for @' # Q are further investigated without using the
Taylor series and perturbation method in the last section of appendix F where the original
assumptions for the method are shown to be overly restrictive if the correction factors are
redefined in terms of Q rather than V,. Inthe present section the analysis of the correction
factors for model and system types of intrinsic nonlinearity and model and system types of
combined intrinsic nonlinearity is continued.

Analysis of Intrinsic Nonlinearity

General forms for component correction factors. To begin the analysis, the residual
vector is expanded as the sum of a vector of the form of the linear-model residual vector and two
components that will be shown to be functions of model intrinsic nonlinearity:

i 1 1 1 A
Y-1(y0) =0 *(I-R)o*(Y-1(16,)) + o *(I-R)o’ (f(y6,) - £(19))
1 1

+0 2R’ (Y -£(y9)) (6-1)

Use of linear model (5-104) labeled f,(y6), where 6 =0, and 0 = 0, facilitates showing that the
second term on the right-hand side is a function of model intrinsic nonlinearity. With these
relations and the relation (I - R)o"?Df =0, (6-1) can be written

Y-f(10) =0 21 -R)o? (Y -£(18,)) + ® >(A-R)o? (f(y0,) -, (¥0.) - £(y8) + £, (v9))
1 1

+o *Ro? (Y -f(19)) (6-2)

In appendix I the last two terms on the right-hand side of (6-1) or (6-2) are shown to be zero if
the model intrinsic nonlinearity is zero. The effects of system intrinsic nonlinearity are

contained solely in the error vector ® /> - R)o"?(Y —£(y0,)) in which Y —£(y0,)=U, +d,
where d =f(B)-£,(B)—£(y0,)+£,(v0.) ((F-103), appendix F). The intrinsic system
nonlinearity is small if ®"/?(I - R)o'/?d is small, which is shown in (F-104)-(F-108). These
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analyses are accomplished without using perturbation approximations. Equation (6-2) also is
shown in appendix I to correspond to the perturbation form given by (B-12), appendix B.

Component correction factors 7,0} and y,o! for ¢, can be expressed in terms of Q
rather than V, by using (6-2) in (F-134) and (F-136), appendix F:

7,08 = E(S@) - (Y —£(¥.))0>(I- R)o? (Y —£(10,)))
= 2E(f(y0.) £, (¥0.) — £(y8) + £, (¥8))'0> (I - R)o (Y — £(16.))
+ E(€(y0.) ~ £, (v0.) — £(10) + f,(10)) 0> (I - R)a? (£(y0,) — £, (16, ) — £(y8) + £, (v8))

1

+ E(Y - 1(18)) 0 Ro2 (Y - £(y9)) (6-3)

1

y,0¢ = E(S(8.)-S(®)— (Y —£(y8.))’0*Ro? (Y —£(+8,)))

1 1
=-E(S(0)— (Y - £(10.))0? (I - R)o2 (Y - £(y0.,)))
= _7; 1 O-: (6'4)

Equations (6-3) and (6-4) substantiate that the component correction factors are a direct function
of the degree of model intrinsic nonlinearity, but do not correct for system intrinsic nonlinearity.

Approximations and approximate bounds for component correction factors. Analysis
of the terms on the right-hand side of (6-3) would be very difficult in general. An approximate
analysis can be made for Gauss-Markov estimation using the assumptions adopted for the
perturbation analysis together with the additional assumption that @' =V, ~ Q. The
approximation for y,o! is given by (6-9) using the following development. In appendix I the
three terms on the right-hand side of (6-3) are evaluated using the above assumptions as
(6-5)-(6-7):

2E(£(10.) —£,(v0.) - £(¥0) + f,(19))' 0> (L - R)o? (Y — £(¥8,))
~-231r(C})o? =-2p0! (6-5)

EE(¥0.) —£,(10.) — £(y0) + 1, (¥8)) 0 (1 - R)o2 (f(¥0,) — £, (¥8, ) — £(¥8) + £, (Y0))

1
~ 3’ (€ +%Ztr(Cf)aj =%aa: (6-6)

E(Y - £(10))0?Ro? (Y - f(18))
~3tr(C)o! = o (6-7)



74 A Theory for Modeling Ground-Water Flow in Heterogeneous Media

Variables a and f are as defined by Johansen (1983, p. 183-184), and C, is defined by (G-3),
which is

11 1
C, =(I-R),X 0?0’ Df(Df oDf)"' D’ f,(Df'oDf) " Df'o? (6-8)
J
From (6-3) and (6-5)-(6-7)

. 1
710l= (20 (C,)~25m(C)o!

=~ (@-4p)o! (6-9)

Following Johansen (1983, p. 184), bounds for 7, can be delveloped from o and g.
From (6-6) and (6-7) @ =28 +1r*(C,) so that @ > 28 or f/a <—. Also, because t(C?)>0,
plaz0,sothat 0< B/a < . Finally, because 7, can be written’as

.«
71 =—(1—4£) (6-10)
4 a

it follows that

a _ . _«a
-—<y, <= 6-11

4 Vi 2 ( )
Equations (6-11) and (I-12), appendix I, indicate that 7, o} is bounded by

. 1 1
L EE I'D’fLo?(-R)za’lD’ 1)

i J
1 1

~ TE(f(Y0,) -1, (v0,)) 0’ I - R)w* (f(v0,) — £,(10,)) (6-12)

where éo =0, +1. and |, is defined by (F-5). The ideas of (I-1)-(I-5) also allow the bounds to
be written as

+ E(F(¥9,) —£,(18,)) 0> (I - Ry (10, ) — £, (10, )
= £E(f(Y,) — £, (y,) - Dfp) o(f (18, ) ~ £, (10, ) - DFy) (6-13)

where

¥ = (DfoDf) ' Df o(f(vd,) - f,(v0,)) (6-14)
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The analysis of bounds and the development leading to (6-12)-(6-14) are very similar to
the original development of the concepts of model intrinsic nonlinearity given by Beale (1960).
In fact, Johansen (1983, p. 178) scaled (6-12) to define a measure of model intrinsic nonlinearity
from Beale (1960, p. 59) as (in the notation used in this report)

1 1 1
N, =———ECILDfLo2-R)za2liD*f L 6-15
Wpr 2o DM REeED L) (6-15)
where
(p+2)c? = EQ.Df'oDfL,)*/po? (6-16)

This measure, which is directly proportional to the bounds, is a scaled measure of the sum of
squared weighted discrepancies between linear (f; (79(@0 ))) and nonlinear (f ('yﬂ(tito ))) model
results when the models are written in terms of best-transformation parameters ¢ . The reasons
for the scaling ((p +2)o) are explained by Beale (1960, p. 54-59).
Evaluation of approximate bounds. If 6isa good estimate of 0, , then

£(v0.) —£,(y0.) - £(y0) + £, (yé)| <lf(yé) ~f, (yé)| so that 7,0 as defined by (6-9) could be
greater in magnitude than 7, o} as defined without the perturbation approximations by (6-3),
assuming 0 is the same for both. In this case, the bounds for (6-9) given by (6-12) or (6-13)
could bound (6-3) as well. If Q and o were known, then one possibility for computing (6-12)
would be to evaluate it directly from (6-6). However, computer codes are not available for
computing the required second derivative matrices for most ground-water models. Another
possibility is to use Monte Carlo simulations of the right-hand side of (6-12) in which as an
approximation I, ~ N(0,(Df'oDf) ' Df'o'*(e/b)"*Q(w/b)"* o' *Df (Df oDf) 'bs?). In
most cases bo is unknown, so that its estimate s> must be substituted in the calculations.
Similarly, 0. also is unknown, so that the estimate 0 must be substituted for 0, , and 60 must
now be computed as 0+ l,, where 0 is fixed during the Monte Carlo simulations. In this case,
the Monte Carlo method is a type of percentile bootstrap method (Efron, 1982, p. 78-84). If Q
is unknown, then (6-12) cannot be approximated using the correct distribution for éo . In this
case the importance of intrinsic nonlinearity is gaged by an empirical measure described later in
this section.

Analysis of Combined Intrinsic Nonlinearity for Confidence Intervals

General forms for component correction factors. As before, expansion of the
constrained residual vector yields an identity, the right-hand side of which is the sum of a vector
having the form of the linear-model constrained residual vector and two components that will be
shown to be functions of model combined intrinsic nonlinearity:
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Y-f(y9)=0 2I-R +—g%)m5(y —£(y0.))+o *I-R + g%)m (£(v0.) - £(y0))

- QQ’

2(R- Y —f(v0 6-17
+o 2( QQ)m( (¥9)) (6-17)

The second term on the right-hand side is a function of model combined intrinsic nonlinearity.
The equation needed to show this is obtained by expanding (6-17) using the idea used to obtain
(6-2), along with the constraint g(y0.) = g(y@) and the relation

QQ' | ~.  Q s e ~
== ®? f,(y0.) - f, () =—,—D Dfo Df) DfoDf(0, — 0
Q,Qm((v) (v9)) 0 2(Dfo D) ( )
=L g( —a)_

0.)—g,(y0 6-18
Q0 Q0 (76.) - g,(¥0)) (6-18)

where g,(y0) is linear model (5-105). The equation needed is

Y—f(yﬁ)=m‘2(I—R+g%)m2(Y £(10.)) +@ 2 (1~ R)o? (f(y0.)~£, (6.)

, QQ'

—f<76>+f0(76))+w‘5(k )wZ(Y (1)) +o 2 Qsz (£(v0.) - £(10))

L QQ’ - Q 5
2 (f £ (y0 2 0.)—g,(y0
QQm £, (v6.) —£,(y0)) +o Q,Q(go(v ) —8&0(Y9))

_1 Q
QQ

=o 2(I-R + g%)mz(Y f(y0.) +o 2(1 R+

QQ’
QQ

- 2

g%)m5 (F(v0.) £, (19.) — £(18) + £, (v8))

QQ’
0.)—g,(v6. 0) + g,(Y0 2R
QQ(g(y ) — o(Y0.) — g(¥0) + £, (Y0)) +& 2( Q0

1
e

)m2 (Y - 1(y0)) (6-19)

In appendix I all terms on the right-hand side of (6-17) or (6-19) except the first term are shown
to be zero if the model combined intrinsic nonlinearity is zero. This is accomplished using an
extension of the argument used for (6-2). As before, the system intrinsic nonlinearity is
contained in the error vector @ “*(I-R)o (Y —£f(0.)). If o "*(I - R)®"'*d is small, the
system intrinsic nonlinearity is small. Equation (6-19) also is shown in appendix I to correspond
to the perturbation form (E-29), appendix E.

The component correction factor y,o! pertaining to an individual confidence interval
can be expressed in terms of Q by using (6-19) in (F-147) to obtain
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y,0* = E(S@®) - SB) - (Y ~£(10,)) 02 %mi (Y ~£(19,)))

= E(S@®)- (Y -£(6.)Y 0> (1R + gQ o7 (Y ~£(19.)) - 710

1

= 2E((f(ve.)—fo(ve,)—f(vb’)+fo(76))h>5 ~(2(Y0.) - £,(10.) — g(y0)

v 2,08)-2 A - R+ Q07 (Y - £4/0.)) + B0~ £, (10.) ~11D)
Q QQ'

QQ QQ

+f, (?'9))0)2 —(8(¥0.) - g,(¥6.) - g(79)+go(79))66)(1 R+ Q0

- @ (E(y0.) ~ £, (40.) — £(y0) + £, (D) —é%(g( ¥0.) - g0 (10.) — 2(49)
QQ’

+2,(¥9)) + E(Y - 1(10))0? (R - Q Q)(D2 (Y-1(48)-7,0} (6-20)

=)

Equation (6-20) substantiates that the component correction factor is a direct function of the
degree of model combined intrinsic nonlinearity, but does not correct for system combined
intrinsic nonlinearity.

Approximations and approximate bounds for component correction factors. As before,
an approximate analysis for Gauss-Markov estimation uses the assumptions from perturbation
analysis and the additional assumption that @ =V, ~ Q. The approximation for y,o? is given
by (6-27) using the following development. In appendix I the three terms on the right-hand side
of (6-20) are evaluated as (6-21)-(6-23):

2E((f(y0.) ~f, (ve.)—f(76>+f0 (¥0)o? —(g(y0.) - g,(¥0.) — (v0)
Q' QQ’
(19)——(1-R : Y -f(y0.
+ g, (y »QQx +QQ><»( (¥0.))

-2ztr(c Yo ! +2E(s o2 Z 1. D*f,(Dfo Df) " Dfn? (R—g%)szf
o (Df® Df)"D2gT.6%Q’a»5,.U,) (6-21)
E((£(y0.) £, (10.) - £(y0) + £, (10)) 0> —(g(10.) - £,(10.) - g(¥0) + g, (76»(%2—)0 -R
QQ Q

o Q)(mz(f (18.) £, (v8.) — F(y0) + £, (79))—@(3'(79 - £6(¥8.)— g(¥8) + £,(16)))

~=20r’(€)ot + 230 €0t -3 @ r(F ot -2 ir€ Fo!
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1 ~ 1 ~ 1 o o 1 ~ o~
+ ;Zﬂ”(Fi )o; + e r(F)o; = " tr*(C,-F)o; + 52, - F)*)o; (6-22)

E(Y - £(y8))'0? (R - g‘é)m (Y —£(70)

~2tr(Co? + 2tr(F?)o

[ 1 Pl - 1
-2E(Z03Z 1. D*f, (Dfo Df) ' Dfr? (R - %}szf(Dﬁo Df)"Dgl. QI—Q Q0?U.) (6-23)

where C ., F,, and A are defined by (G-10), (G-12), and (G-13), appendix G, respectively,
which are (6-24)-(6-26):
QQ’

04 QQ

1
C,=I-R+ =), Za?(R- )0)2Df(Dfa) Df)"'D’f, (Dfto Df)"Df’ 0)2 R-=2) (6-24)
QQ” 7’ QQ QQ
F = L A (6-25)
QQ
~ QQ'. oo i o3 QQ
A =(R-55)0’Df (Df > Df) "D *g(Dfe> Df) 'Df’ 02 (R - =) (6-26)
QQ QQ

Substitution of (6-21)-(6-23) into (6-20) yields

rio! =3 @€ -F)ol+ -z (€ -F) !

~zr(Cyo} + s ir (F)o! - 7,0° (6-27)
To form general bounds for (v, +7,)o, let

5=Z.tr2(éi_ii)+22'tr((ai _E)z) (6-28)

Then

71470 STzt F)+ o (F) (6-29)

and

. a1 ~ ~
7147 222 (€)= (C)) (6-30)
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When g(y0) is linear, as, for example, when the confidence interval is for a parameter, A=0
and (6-29) and (6-30) form the bounds + @ /4. These are of the same form as the bounds for (6-
9). When the model combined intrinsic nonlinearity is very small so that C S F,- , the bounds
given by (6-29) and (6-30) may be very wide.

Equation (6-29) indicates that the upper bound of (7, +7,)a is

7, +5,)0" <X E(zl D1, 02 'D%, QQQ I-R+ g%)(zmzl D1, —aQ—QI DT
+ %613 E(D%1.)

- E(E0B,) £, (08,)Yo? —(2By)— £ (18,)) QQ)(I R+g%)(co2 (£(8,)

~1,(v6,)) —%(g (18,) - 2, (Y6, ) + é%E(g 00,) - £, (18,))’ (6-31)

which also can be written in the form

(1 +7,)0] < E€(8,) - 1,(v8,) - Df§) o(f(y8,) - £, (v8, ) — DIY)

2 ~ ~

——E(g(0,) - g,(16,))’ | 6-32
+ 90 L 0) - & (18,) (6-32)

where 6, =0, + I, in which 1, is defined by (F-7), and

¥ {@f o ‘g?; P _ iy m'oﬁ)oﬁ (F(vB,) ~£,(18,))
, (DfoDN) "Dy’

20 (2(Y8,) - 2,(16,)) (6-33)

as can be verified by substituting (6-33) into (6-32). Equation (6-30) indicates that the lower
bound of (y, +7,)o! is

7, +5)0t 2 E(zIDfI o7 g, -2y R+QQ)(zm2| DT, - L D%l

QQ QQ Q'Q
QQ’

——E(ZI 'DfI. mz(l R+- Q)zm2| /D 1,)

-£,(18, )—E-Q—(g(y6 0)— 20 (¥8,))) — 2E(E(Y8,) — (£, (v8,)) 0)2(1 -R+—=~

)(602 (£(16,)

QQ
QQ

)(D2
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o (F(¥8,) —£,(v6,)) (6-34)
or

(7 +7)0! 2 E(£(10,) - £,(v8,) — DIG) o(f(v8,) — f, (v8,) — D)

~2E(f(y8,) —£,(Y8,) — Dy, ) o(f(y8,) - £, (v8,) — Df,,) (6-35)
where
¥, = —( (Dfo 'g,)(; DeQ _ ptipr)” Df'mZJoﬁ (18, ~£,(18,) (6-36)

as can be verified by substituting (6-36) into (6-35). If Q were known, the bounds could be
obtained by Monte Carlo simulation similar to the method outlined for (6-12).

Analysis of Combined Intrinsic Nonlinearity for Prediction Intervals

General forms for component correction factors. Prediction intervals are analyzed in
the same way as were confidence intervals. The final form for the augmented constrained
residual vector is given by (6-41) as shown by the following development. First, expansion of
the augmented residual vector analogously to (6-1) yields

_1 1 1 1
Ya —fa(ye’ 0p ) = Waz(la —Ra)waz (Ya —fa(ye*’ 0;))+Waz(la _I{a)“,a2 (fa(ye*Se;)
1

~£,(18,6,))+ W, >R, W2 (Y, —f,(v0,6,)) (6-37)

or

1 1 1 1
Y, —£,(10,0,)=W,2 (I, ~R)OW2(Y, ~£,(16.,0,)+ W, (I, -R,)W2 (£, (6., 6,)
1 1

~£,,(¥8.,6,)~£,(¥0,8,) +£,,(¥0, 6,)) + W, 2R, W2 (Y, ~£,(18, 6, )) (6-38)

All terms on the right-hand side of (6-37) or (6-38) except the first are zero if model intrinsic
nonlinearity is zero as can be shown using an analysis exactly analogous to the one used for (6-1)
or (6-2). Also, the effects of system intrinsic nonlinearity are contained in the first term on the
right-hand side of (6-38). Finally, the expansion given by (6-38) corresponds to the expansion
obtained by perturbation analysis. All of these results are so similar to the ones obtained
previously that they are not elaborated further here.
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Next, expansion of the augmented, constrained residual vector analogously to (6-17)
produces

1 1
Y, -£,(/8,0,)=W,2(I, R, g g YW2(Y, —f, (0., 0°))+ W2 (I, R
L 0.9, _ 1 Q.
W2 (£, (10.. 48,8,)+W.2 (R, - W2 (Y, -1, (48,0 6-39
g W L0 0) 1,08.5,)) s W R, ~ LOOWE Y, -L,0.0) 639

Then, use of the relation

ggaWZ(f0a(79., 0:)-1,,(y0,0,)) = Qé D_h(D.f'W,D.f,)"D.{'W.D,f,(6., -0,)

& by, -6,)=—2 (Dg(6. -8)-6. +4,)

!/
a a

QQ Q.Q,
Q,

0, o(Y0 0 , 6-40
Q,Q (¥6.) — £,(Y8) - ,+6,) (6-40)

and the constraint g(y0,)+v, = g(y@) +0 in (6-39) shows that

1 1

Y, -£,(46,8,)=W,2(1, -R, gg )WZ(Y ~£,(y0.,6.))+W,2(I, -R,)W2(f, (1., 6))
£ (19..00) £, (18, 8,)+ £, (8,8, + W.2 R, - 2L )Wy, -1, (418, 7.))
-1Q,Q! -1Q,Q,
W 2 "sz 9.,0 f 90 W, ? “W2 f,. (-).,GP
*W. o ¢ . (¥0.,65)—£,(v0,8,)) - 00 (f,,(¥6., 0.)
1
~ = -1 qQ,
—f,,(v0,6,)+W,? 0)-6, +0
Oa(y p))+ Q Q (Y ) + )
—Wai L 240y + 01 - g(48) - D)
Q.Q,
-1 Q,Q, Q,Q,
=W21— WZY—f 0., W’I—R sz 9.,0
2, QaQa) (Y, —£,(0., 6,)) + W, 2 ( +QaQa) (£,(v6.,8))
—£,,(10.,0,)—£,(10,8,) +£,,(0,6,)) - W,> afzé—(g(ve,) — 2,(y0.) - g(v8)
~ ] Q,Q, . ot
+g,(Y0))+ W, 2 (R, — 00 ~a<a\W2(Y, -f,(v6,8,)) (6-41)

where the relations v, =Y, - 19; andv=Y, - 6 , were used. As before, all terms on the right-
hand side of (6-39) or (6-41) except the first are zero if the model combined intrinsic nonlinearity
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is zero. The method of showing this is the same as used for (6-17) or (6-19) and is not given in
this report. The expansion of Y, —f, (76, 7 ») given by (6-41) corresponds to the expansion
obtained by the perturbation method.

The component correction factors 7,,0¢ and y,,0: can be expressed analogously to
(6-3) and (6-20) as

7100 = E(S,0,6,)- (Y, -£,(18.,6,)) W2(I, -R, W2 (Y, —f,(¥0.,6.)))
1

=2E(f,(18.,6,) ~£,,(¥9., 6,) — 1,19, 0,) + £,,(40, 6, ) W2 (I, -R )W (Y,

-£,(v0.,6,))+ E(f,(10.,60,) 1, (0., 0,) —£,(10, 8,) +£,,(v8, 6, W2 (1,

1

~R)W (£, (v6.,6,) - foa(Yen 0,)~ f(79,49p)+f0a(79 9,))

+E(Y, —f,(v8, 6, ))'WE a, - ,,)Wz (Y, -£,(y8,6,)) (6-42)
and

710t = E(S,®8,8,)~5,0,6,)~ (Y, ~£,18., 0. ))wzg g“wmf —£,(+0..6.))

= E(S,(8,8,)-(Y, -f,(v6.,6 ,,))WZ(I ~R, +QQ )WZ(Y —£,(¥6.,6.)))

a a

_J;Iao-:

1
=2E((£,(¥6.,6,) - £,,(18.,6,) - £,(0,6,) + an (v0,6,)) W} —(g(¥6.) - g,(6.)

—e(B)+ g, QQQ gag YW2(Y, ~£,(10.,80) + E(f, (10..6")
—1,,(16.,6,)—1,(v0,8 )+f0¢,<76, ﬁp))'w,? ~(g(y0.) - £,(Y0.) — g(10) - g,(¥6))

Q, Q.Q,
. W2 f (v0.,60 f,.(v6.,0 » —f 9 6? f,,(v0,60

Q.0 % ~Ra+ QW 0y )~ 1,,(16.,0,)~1,(18,8,)+1£,,(v6,6,))

Q. ! Q.Q

0) - g,(10))) + E(Y, -£,(10, 0 )) W2 (R, - ~2-2
QQ (¥9.) - 2(v8) — g, (Y6))) + E( ¥6,8,))'W2( 00
Wf (Y, -£,(10,8,)-7,0° (6-43)

Approximations and approximate bounds for component correction factors. The
assumptions adopted for the perturbation analysis and the assumption that W' =V, ~Q_
allow an idealized analysis of the same type as that leading to (6-13) to conclude that, for Gauss-
Markov estimation, 7, 0. is bounded by
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Ao A A 1 1 A A oA
+ E(f,(¥8,,6,) ~ 0, (¥8,, 0,)) W2 (I, —R YW2 (£, (v8,, 0;) — L6, (10, 6,))
= iE‘(fa (790 4 62) - an ('Yéo > 6’2 ) - Dafa\ila ),wa (fa (790 > 62) - f()a (790 > 0101) - Dafal’l\!a) (6'44)
where [é; ég] = é;m =0, +I, and
Vo = (DL W,D,8) "D AW, (,08,,67) —f0, (048, 67)) (6-45)

Similarly, the upper bound for (y,,+7,,)o is analogous to (6-31) and (6-32):

Fra*t 712078 < E(E,(18,,00) ~ 1, (v8,, 02)) W2 —(2(¥8,) — 24 (18,)) Q‘,’é X1, -
, Q.0 Q ~ ~

sz 0,, £,,(18,,600)) ——== 0,)-g,(10
Y 2 4y W2 (f,(70,, 0°) —£,, (18,,82)) QaQa(g(v o)~ £0(16,)))

E(g(y'éo)_go('yﬁo))z
= E(f,(¥8,, 0°) — £,,(¥8,, 8°) =D £, ,)'W, (£,(y8,,8°) — £,,(v8,, 82) - D,£,¥,)

E(g(18,) - g,(16,))’ (6-46)

a a

where [0, §°]=8;, =#., + I, and

Q.Q,
(Dafc:wa Dafa)~l Dah,
Q.Q,

- D fW.Df)'D Q! : w2
wa={( el e Q"—(Daf,:w,,D,,f,,)"Daf;Waz]WZ(fa(veoa 0,)

(8(¥8,) - £,(¥6,)) (6-47)

~£0,(¥8,,6,)) +
Finally, the lower bound is analogous to (6-34) and (6-35):

1t 7100t 2 B (18, 89) L0, (1B, 5O W2 — (g(rBy) - 20 (180) QQ;) XI, -

Q (18,)))

© Q.Q,
QQ

a a

XA
Q.. 0- 6

- 2E(f, (v8,, 6,) — £, (Y0, p))'WZ(I -R,+

0a

)WZ( (YOO’ p) an(YGO’ p))

= E(f,(18,,0°) —£,,(¥8,, 82) ~ D £, ,)'W, (£,(v8,, 8,) — £,,(v8,, 6,;) - D,£,¥,)
—2E(f,(¥8,,8°) —£,,(¥8,, 8°) =D £, 0. )W, (£, (¥8,, 0 ) — £, (v8,,6°)
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-D.f.y,.) (6-48)

where

_ D,f,W,D f,)"'D,HQ! 2 lwaek (8. 7
Yoo = ‘[( - aQ‘:é) ah Qa _(])aft;“’aDafa)_lDafl;‘v"2 Jwaz (fa ('Yeo, 61?)

- an ('Yeo > Yp )) (6'49)

If the elements corresponding to the covariances in Q_ are neglected when forming the
weight matrix, W, = ®, so that (6-44)-(6-49) can be expressed in terms of unaugmented
variables using (E-38)-(E-40), (E-48), (E-56), appendix E, (5-89), (5-91), (5-92), and (5-94).
The results are that (6-44) and (6-45) become (6-13) and (6-14), respectively, and that (6-46)-(6-
49) become

(1ot 71008 < E(£(¥8,) £, (¥8,) - DIW) o(f(v0,) - £, (v6,) — D)

. 2
———E 0 . (Y0 6-50
+ty,0,v,)+ Q0+ (8(18,) - £,(16,))? (6-50)

where

V= {(D foDO"DEQ _ peone) ' Dito: ]mé(f(véo)—fo (48,

QQ+w,
(Df)m(;’f)_l"g (200, 2,(18,) (6-51)
7, = %(Q o7 (1(r8,) ~£,(18,)) - (2(1B,) - 2,(19,))) (6-52)
and

1o+ 7120078 2 E(£(¥8,) - £, (¥8,) - DEG) o(f(y8,) - £, (v6,) — D)
+ prpﬁp) —2E((£(v8,) —£,(v6,) - DﬁT’o)’m(f('Yao) —1£,(v0,) - Dfy,)
+ WOpprOp) (6'53)

where

¥ = _( (DfoDf)” DeQ_ by prw? ]mf(f(yéo) -£,18,)) (6-54)
QQ+w,
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-1 1

o,
—L Qo (f(y0,) -, (10 6-55
Q0+ _lQm((v o) —£(v6,)) (6-35)

'/NIOp
The result that (6-44) and (6-45) become (6-13) and (6-14) when W, = @, confirms the
result obtained with the perturbation method that, at least when W, =0, 7,0° =7,0}. Also,
when @, ' >>Q'Q, (6-50) and (6-53) become (6-13) because, from (H 12), appendlx H,
9 - 9 This confirms the result of (G-46) that ¥, 5} ~ 0 when w,' >>Q'Q.
A Monte Carlo method to compute bounds for y,,0. could be developed as an extension
of the method used to compute bounds for y,o! discussed previously.

Empirical Measures of Model Intrinsic Nonlinearity, Model Combined
Intrinsic Nonlinearity, and Total Model Nonlinearity

A measure of model intrinsic nonlinearity. 1f V,(or Q) is unknown, then (6-12) cannot
be approximated using the correct distribution for éo. In this case an empirical measure of
model intrinsic nonlinearity similar to the one derived by Beale (1960, p. 57-59) and revised by
Linssen (1975, p. 97-98) can be developed to indicate the importance of model intrinsic
nonlinearity. A measure similar to the square of Linssen’s measure combines (6-15) and (6-16)
with the expected values replaced by sample averages computed using sets 0, ~0 onthe
perlphery of the linear confidence reglon Y -£,(v9,) (Y —£,(y0,) - S (9)
=(0, - 0)'Df (on(B —9)< pe, S(B)F (p,n—p)/(n—- p), where £,(y0,) = f(ye)+ Df(B -0)
and Df indicates evaluationat © =9 . However, values of the earlier form given by Beale
(1960, p. 58) (without the correction factor) presented by Guttman and Meeter (1965) are
consistently larger than corresponding values of (6-15) also presented by them. A possibly
better approximation would be to place the sets 0, —0 on the surface where
©, - é)'Df‘ '‘oDf 0, - é) is equal to its estimated expected value, aps®, obtained by substituting
s* for bo? in (5-15).

Beale (1960) and Linssen (1975) both defined their empirical measures in terms of
specific regression 0. However, to conform to the theoretical measure (6-15), the empirical
measure is defined here to be independent of any specific regression. For practical use, the
measure must be evaluated at 6, which makes it analogous to Beale’s and Linssen’s measures.
The measure of model intrinsic nonlinearity based on the foregoing ideas is thus defined as

A 1 2 ,
Npin = W;ﬁ (f(y0,) - £,(v8,) - Dfy, )’ o(f(v0,) - £, (v0,) - Dfy,)/(2p) (6-56)

where

y, =(Df'oDf)" Df o(f(y8,)- £, (18,)) (6-57)
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and the 2p parameter sets 0, are obtained as 6, = (0, — )+ 0 for which the change 0, — 0 is
computed using the Cooley and Naff (1990, p. 189) method, except that Cooley and Naff’s d” is
set equal to the expected value apbo’. This definition uses a linear probability region

(Y -£,(10,))o(Y —£,(y8,))— S(8) = (6, — 0)'Df wDf (8, — 8) centered on 6 and having a
diameter apbo instead of the linear confidence region centered on 0 used by Beale and
Linssen. The measure is, therefore, defined to be independent of any specific regression. For
practical calculation apbo? is replaced in (6-56) with aps® because bo” is unknown.

Similarly, the sensitivity matrix Df and parameter set 0 are replaced with Df and 6 because Df
and O is unknown. Ifa is unknown, then its bound »/ p can be used.

A measure of model combined intrinsic nonlinearity. The measure of the model
combined intrinsic nonlinearity is based on (6-32) and (6-35). It is independent of a specific
regression and is defined in three parts. The first part is drawn from the first terms on the right-
hand sides of (6-32) and (6-35) and is

A

M, = fwz Z(f('yez) f,(v0,) - Dfy, ) o(f (v0,) - £,(v6,) - Dfy,)/2 (6-58)

where

(Df'oDf) ' Dg’

W, =y, + 20 (g(40,)—g,(19,) (6-59)
v = —( @ f"’"g?; DeQY_ prwpr)- Df'm%)mé(f 19,1, 40,)) (6-60)
E= E%Q'(co/b)in(m/b)ZQ (6-61)

Parameter sets 0, = (0, —0)+ 6 form limits of a probablhty interval of the same width as a

linear confidence interval, but are centered on 0 instead of 0 . They are computed as described
later in this section. Two quantities in addition to M are needed to measure the importance of
the sum y +7, related to bounds (6-32) and (6-35). In scaled form these are

B, = ; baz Z(g(vef) £,(¥0,)*/(2Q'Q) (6-62)
and
B, = (f(yee) ~£,(y0,) - Dfy} Yo (f (v8,) — £,(v0,) — Dfy} ) /2 (6-63)

51702
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where the unportance of (y +7, )0' is measured by the larger in magnitude of
(M. +2B, ¥ bo? and (M —2B,¥ bo?. Note that B, is M__ asif f(y0,) were the linear
model f,(y0,) and B, is M as if g(y0,) were the linear functlon 2,(v9,).

Parameter sets 0, are located at points on the surface where (9 - 0)'Df'oDf ©, -0) is
equal to its expected value when 0, —0 has the same distribution as 1I,. From (F-66), this
expected value is given by o +y,0 4> Where, from (5-49),

1 1
ol +y,05~ Q—}QQ'((o/b)2 Q(w/b)? Qbo? =£ bo? (6-64)

If ® or o is used for ®, (6-64) has the approximate bound given from (5-56) as

V. .bo?/Q'Q, which can be used when £ is unknown. Points on the surface corresponding to
the ends of the probability interval can be used to evaluate 8,, since nonlinearity effects in these
areas would seem to be most important. This idea follows from an alternative to the use of
expected values in 7,0 suggested by Spj6tvoll (Johansen, 1983, p. 189). Values of 0, at the
ends of the linearized probability interval are computed using (H-12) with a);l set equal to zero,
d? set equal to Q'(@/b)">Q(w/)"*Qbo?/Q'Q, and g(y0) replaced with g(y0). The
average using the two values is used as the sample average. For practical use bo is replaced by
s*, 0 is replaced by 0, and derivatives are evaluated at 0 .

A measure of total model nonlinearity. Finally, a measure of model nonlinearity for a
model using parameters 0 instead of ¢ can be defined. This type of nonlinearity is referred to
as the total model nonlinearity because it is the sum of model intrinsic nonlinearity and
parameter effects nonlinearity, the latter of which is the part of the total model nonlinearity that
can be removed by the transformation ¢(0) (Draper and Smith, 1998, p. 528-529). A
modification of the measure of the total model nonlinearity as defined by Beale (1960, p. 54) is
defined in this report as the average sum of weighted, squared discrepancies between nonlinear
and linear model values scaled using the squared diameter of the expected value of the linear
probability region, apbo’

M= 1
apbo? =

¥ (£(19,) 1, (v0, ) o(f(10,) ~ £,(10,)) (2 ) (6-65)

Parameter sets 0, are defined in the same way as for N i » and the measure is modified for
practical evaluation analogously to N ..

Summary of Principal Results

Component correction factors 7,07, y,07, 7,01, and y,,0., which are components of
correction factors c,, ¢, and c,developed in section 5, correct for model intrinsic nonlinearity
and model combined intrinsic nonlinearity that can affect the confidence regions, and confidence
and prediction intervals, also developed in section 5. These component factors are analyzed
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using a method that is free of the assumptions and restrictions inherent in the combined Taylor
series and perturbation method originally used to derive them. The new method is based on
expansion of the residual vector Y —f(y0) as an identity that is the sum of three vectors, two of
which are shown to be zero when model intrinsic nonlinearity is zero, and a third given as

o ">(I-R)o"*(Y —£(Y6,)) , which has the form of the residual vector for a classical linear
model. System intrinsic nonlinearity is contained in the third term. Factor 7,0 is given by (6-
3), which is 7,07} = E(Y - £(y6)) (Y — £(y8)) - E(Y - £(y0.))0'> (I - R)o"*(Y - £(0.)) as
obtained using the identity. Factor y,0 equals — 7,0 when used in ¢, and is given by (6-20)
when used in ¢,. Development of (6-20) is analogous to development of (6-3), but is more
complex because of the constraints used in developing quantities for individual confidence
intervals. The factors correspond exactly to the same factors derived using the Taylor
series/perturbation method when the perturbation approximations are used. However, they apply
more generally and establish the fact that the concepts of model intrinsic nonlinearity and model
combined intrinsic nonlinearity are valid beyond the Taylor series/perturbation approximation.

An approximate analysis for Gauss-Markov estimation uses the Taylor series/
perturbation forms of the factors together with the assumption that
@' E(Y - £(y0.))(Y - £(70.))'0"? ~ I to give approximate bounds (6-11) for 7,5 that are the
same as bounds originally obtained for the classical nonlinear model by Johansen (1983). The
bounds are written in nonperturbation form as (6-12) and (6-13). The analyses are extended to
yield approximate bounds for y,o asused in c,. The bounds are given in terms of 7,0 by
(6-31) (or (6-32)) and (6-34) (or (6-35)).

All of the methods extend readily to apply for 7,,0: and y,,0; as obtained for
prediction intervals. Component correction factors 7,0 and y,,6. are given by (6-42) and (6-
43), respectively; approximate bounds for 7,,0¢ for Gauss-Markov estimation are given by (6-
44); and similar bounds for y,,0! are given by (6-46) and (6-48). These are all of the same form
as the bounds for 7,0 and y,0!. When the augmented weight matrix is given by o, , the
bounds assume the simplified forms given by 7,6 = 7,57, (6-50), and (6-53). These forms
confirm the generality of results obtained using the Taylor series/perturbation method. In
particular, when E(Y, — g(v0.))? >> Var(Dg(6, —60.)) (where 8, is © obtained using a linear
model approximation), y,o! ~ 0.

Measures of model intrinsic nonlinearity and model combined intrinsic nonlinearity are
defined to indicate the possible importance of ¥, and 7,0 when estimates of bounds for
these factors cannot be computed because the second moment matrix of Y —f(y6,) is unknown.
These measures are given by (6-56)-(6-64). A quantity known as the total model nonlinearity
measures the weighted sum of squared discrepancies between model functions f(y0) and
linearized approximations of them. This measure is given by (6-65) and is always greater than or
equal to the measure of model intrinsic nonlinearity.
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7. Experimental Results

The objective of this section is to explore consequences of the theory presented in
sections 1-6 for two specific hypothetical examples. The investigation is intended to test, for the
two examples, the validity and robustness of the theory when the model error is large. Thus, the
investigation is not, and is not intended to be, exhaustive. Such an investigation is beyond the
scope of this report. The first example is for one-dimensional, steady-state flow in an aquifer
having spatially (one-dimensionally) varying transmissivity and constant recharge.
Transmissivity varies stochastically and only at small scale. Although the example is
numerically simple, it turns out to be rather ill conditioned. The second example is for two-
dimensional, steady-state flow and is based on the example used by Cooley and Naff (1990,

p. 79-81). Both transmissivity and recharge vary spatially (two dimensionally) at both large and
small scales, with the small-scale variations being stochastic. This example is much more
numerically complex than the first, but turns out to be well conditioned.

To provide for flexibility in interpretation of results, all variables in both examples are
scaled with arbitrary length parameters /, and /, and an arbitrary time parameter ¢, to make
them dimensionless. Thus, 4 is (hydraulic head)/1,; x and y are distance/l,;; T is transmissivity
xt, /(l41,); Wis (recharge rate) xt./1,; qis flux xt, [(I,1,); and Q is (pumping discharge)
xt, [(I31 ;) - Specific values of these variables such as x = L are scaled consistently. For
simplicity, the modifier “dimensionless” is omitted when discussing these variables.

Example 1 — One-Dimensional, Steady-State Flow with Recharge

Models and stochastic properties. Consider a general, one-dimensional, steady-state
flow system for which the hydrogeology is depicted in figure 7-1. Hydraulic head is known at
the lower (x = 0) end of the system and the (Darcy) flux is known at the upper (x = L) end.
Recharge and transmissivity can vary from block (Ax;) to block in the system. The solution for
hydraulic head A(x) at any point x that lies in block j is given by

94 Qg 1 W, L=y
h(x) = _']J-,—(x_xj—l) - El '_}i"_—‘z‘( %(x_xj—l)z + El —f(Ax:)z)"' hy (7-1)

J J

where 7, is transmissivity in block i, W, is recharge rate in block i, A, is the known hydraulic

1 I

head at x =0, and

N
941 =9, — Ej W.Ax; (7-2)
in which g, is the known flux at x = L and N is the number of blocks. This is the f(p) model.

For simplicity let W be invariant and constant over the flow region, 0 < x < L. Also, let
all 7, be independently and identically log-normally distributed so that for this example (3-1) is
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B, =InT, ~ N@,,52); i=1,2,.-.,N} (7-3)

Bin =W, ~N@,,0); i=12,...,N

where 6, isthe InT drift parameter and 52 is the W drift parameter. Recharge W was placed in
B because it is to be estimated as a

W7 WZ Wr WN G- . 11 .
o, | | | [ 7.2 parameter. Giving all B, a variance
: s s s s i of zero fixes them at the value of 6, in
g g 7 T the stochastic process. For this system,
Ak A, oA e Ar y is defined by (3-2), and 1, and 1,
w0 X %2 o % i Kt each have dimension N
EXPLANATION (m, = N and m, = N). Specific values
T, Transmissivity for block i of length Ax, =x,x,, for the quantities needed to specify

W, Recharge rate for block / of length Ax; =x;x, example 1 are given in table 7-1.

N1
hy Specified hydraulic head (h) at x=0, the lower end

q, Specified Darcy flux (g) at x=L, the upper end
Figure 7-1. Assumed hydrogeology of the one-

dimensional, ground-water flow system for example
1.

Table 7-1. Model specifications for example 1.

Drift transmissivity: exp(@l) =T =1,000

Drift recharge rate: 6, =W =0.003

Known hydraulic head at x =0: h, =10

Known fluxat x=L: q, =20

Block size: Ax, =100,i=12,...,N

Standard deviation of the In7" process: o, =0.5

Observation-error covariance matrix: vV, =1, o,=0.1

Number of blocks: N=30

Number of observations: n=11, at x =50, 350, 650, 950, 1,250, 1,550,
1,850, 2,150, 2,450, 2,750, 2,950

Number of parameters: p=2

A one-dimensional stochastic transmissivity process with no spatial correlation is not
physically realistic (Bakr and others, 1978). However, this simple example is intended to
provide an initial test of the validity and robustness of the theory presented here, and the
uncorrelated, one-dimensional process is sufficient for this purpose. Some results for spatially
correlated transmissivities are given later in this section.
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From (3-7), (3-10), and (3-11), 6., is simply the arithmetic average, (3-11), of the g,
values over all values of i pertaining to parameter j, so that the transmissivity corresponding to
0., is simply the geometric mean, 7., of the 7, values. By replacing all 7, with 7, and all ¥,
with , = W, (7-1) becomes f(y0.), which can be rearranged to become

q w 1
hx)=—-2Lx+—x(L-—x)+h 7-4
(x) I le( 2x) o (7-4)

Examination of (7-1) reveals that it can be written as a linear model in terms of the 2N
quantities ¢, /T;, i=12,...,N, and W, /T,, i=1,2,...,N. These constitute a one-to-one
transformation of the 2N linearly independent system characteristics In7;, i =1,2,...,N, and
W,,i=12,...,N, and thus form the transformation o(f). Similarly, (7-4) can be written as a
linear model in terms of the two quantities g, /T and W /T . These constitute a one-to-one
transformation of the two parameters In7 and W composing 0 and thus form the transformation
¢(0) . Because both transformations linearize their respective models, both models ((7-1) and
(7-4)) have no model intrinsic nonlinearity. The system intrinsic nonlinearity is defined in this
report to be in terms of I — R, which would be computed using (7-4), and ngf , which would be
computed using (7-1). For the system intrinsic nonlinearity to be small, A definedas A =J ;,'yJ
by (C-24), appendix C, must be nearly constant. It is a straightforward task to compute J ;?1 and
vJ , then A to show that A is constant (not a function of B or 0). However, the approximation
given by (C-27) also must be accurate. Evaluation of this expression revealed that it is not exact.
Whether or not it is accurate enough to yield small system intrinsic nonlinearity must be
determined by testing numerical results, which is done later in this section.

Mean errors, covariances, and other population properties. The vector of mean errors
E(f(B)-£(y0.)), the matrix of second moments E(f(B)—f£(y0.))E(P)—£(y0.)) , and the
covariance matrix Var(f(B) — f(y0.)) were approximated for the 11 observation points given in
table 7-1. Rather than develop the computer codes necessary to use (3-19), (3-23), and (3-24) to
approximate these quantities, they were approximated using straightforward Monte Carlo
simulations. For each realization a value of B was generated from (7-3), 6,, was computed, then
these were used directly in the integrated finite difference solutions for A(x) and A.(x) given by
Cooley and Naff (1990, p. 81-83), which are exact for the boundary value problems leading to
(7-1) and (7-4). Means, second moments, and covariances of the errors were computed as
standard sample quantities. Values of sample skewness and kurtosis of the errors also were
computed to check for deviations of the error distributions from normality. This would have
been tedious using the Taylor series expansions, but was straightforward using the Monte Carlo
method.

Results for a Monte Carlo sample size of 15,000 are given in figure 7-2 and tables 7-2
and 7-3. Mean errors E(f(B) —f(y0.)) increase steadily from the known head boundary to the
known flux boundary, where they are large, over 9. This suggests a large degree of total system
nonlinearity (nonlinearity in f(B) ). However, although mean errors E(f(y0.) —f (y(—))) show a
similar increase, the increase is small because the average, 6.,, varies with the small standard
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Figure 7-2. Curves containing mean model
functions E(f(B)), E(f(v6.)), and f(y9)
representing mean hydraulic heads for small-scale
InT variability, average In7 variability over
0<x <L, and the fixed InT drift for example 1.

deviation of 0.5/+/30 = 0.091 about
0,. That produces a small value of
EE€Y(y) YD, fiy(Y'Y) ' y'e)/2 in (3-
18) for all i. Values of elements in the
second moment matrix

E(f(B) —£(y0.))AB)—1(v6.))’
increase in the same manner as do
errors E(f(B)—f(y6.)). Values of the
standard deviations reach a maximum at
about the halfway point in the system,
but then decrease toward the known
flux boundary. Correlations are large
for most pairs of errors, but are
especially large for pairs near the
known flux boundary. Values of
skewness and kurtosis indicate that the
distribution of errors is not normal,
being especially skewed and leptokurtic
near the known head boundary. A
similar increase in deviation of model
errors from normality also was found to

occur near a specified head boundary by Smith and Freeze (1979, p. 525). These results show
that model errors have the potential of having a significant detrimental influence on regression

modeling of the flow system.

Table 7-2. Values of mean, skewness, and kurtosis for the distribution of f,(B)— f,(y6.)

at observation points, 7, for example 1.

Obs. no. Mean  Skewness Kurtosis
1 0.187 1.55 7.21
2 1.30 0.848 4.29
3 2.35 0.657 3.81
4 3.37 0.515 3.45
5 4.39 0.455 3.37
6 5.36 0.430 3.36
7 6.28 0.417 3.40
8 7.17 0.396 3.40
9 8.03 0.441 348

10 8.85 0.567 3.63
11 9.38 0.752 3.94

*Compare with the theoretical value of 0 for a normal distribution of f,(B)— f,(y0.).
"Compare with the theoretical value of 3 for a normal distribution of f,(B)— f;(y0.).
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Table 7-3. Second moment and correlation matrices for the distribution of f;(B)— f;(y6.) at
observation points, i, for example 1.

a. Second moment matrix
Obs.

Second moment values with the diagonal in the first column

1 0.746 1.56 1.65 1.73 1.81 1.85 1.90 1.96 201 207 211
2 10.1 114 119 124 129 133 138 142 14.6 148

3 19.1 213 222 231 239 246 254 26.1 26.6

4 29.6 3.6 328 339 350 36.1 371 37.8

5 40.2 423 437 452 465 47.8 487

6 50.3 525 544  56.1 579 5838
7

8

9

1

1

60.5 63.1 65.1 67.0 68.2
70.8 73.5 756 771

81.0 83.8 854

91.0 932

97.7

-0

b. Correlation matrix

I?(E& Standard deviation in the first column and correlations in the remaining columns
1 0.843 0.536 0.378 0.304 0.254 0.215 0.186 0.162 0.143 0.133 0.130
2 290 0.759 0.602 0.507 0.440 0.388 0.347 0.316 0.296 0.291
3 3.78 0.830 0.693 0.600 0.528 0.468 0.424 0.396 0.388

4 428 0.860 0.741 0.647 0.576 0.518 0.476 0.464

5 457 0.883 0.769 0.682 0.609 0.550 0.529

6 465 0.887 0.783 0.695 0.622 0.591

7 459 0.895 0.786 0.696 0.652

8 440 0.891 0.776 0.717

9 4.07 0.881 0.798

10 3.57 0915

11 3.10

Nonlmeanty measures using ® =®. Values of the nonlinearity measures
N, Nmln , M B and BU given by (6-56)-(6-65) and obtained using ® = @ are tabulated for
InT, W, and head at x =3,000 in table 7-4. (All three of these are specific functions that have
been labeled g(y0) in general here. However, for clarity In7 and W are used instead of g(y0).
Similarly for clarity 4 at x = 3,000 is labeled /,. Weight matrix @ used to compute the
measures is obtained as explained later in this sectlon ) Total model nonlinearity N is large; the
sum of weighted, squared discrepancies is about 38 times the squared diameter of the region on
the periphery of which the discrepancies are computed. However, as was expected, model
intrinsic nonlinearity is, to within round-off error, zero. Model combined intrinsic nonlinearity is
small for InT" but is somewhat larger for . It is, to within round-off error, zero for 4, as
should be expected because the solution for head, (7-4), has no intrinsic nonlinearity. The
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bounds for (y, +7, Yo} would be large for W and h,, but the large bound for 7, would be far
too conservative, the reason for which is discussed after (6-30). Additional inquiry into model
combined intrinsic nonlinearity for W is presented after the following regression results.

Table 7-4. Values of the nonlinearity measures for log transmissivity, recharge rate, and
hydraulic head at x = 3,000 for example 1.

[The value of a needed was computed using (5-13) as 4.6056; the value of b needed was computed using (5-11) as
1.0000; and the value of £ needed was computed using (6-62) as 0.97400.]

N=38.0
N_. =2.98x10"
For log transmissivity: For recharge rate:  For head at 3,000:

M_. =0.0346 M, =0.171 M, =1.10x107
B, =7.75x107"® B, =0 B, =0253
B, =0.0346 B, =0.171 B, =0.253

Regression results and analysis of residuals using ® = ®. A regression was performed
using the method of Cooley and Hill (1992) on hydraulic-head data Y from a realization of the
Monte Carlo process. A vector of zero-mean random normal deviates having a standard
deviation of 0.1 (table 7-1) was added to f(B) to account for a small observation error. Note that
the diagonal elements of the second moment matrix of table 7-3a are increased by only 0.01 by

adding these deviates to the

100 ™ i | | T 2500 stochastic process; model error
90 - ] _ completely dominates the process.
80 ftrby n / 2000 Hence, the theoretical conditions for
‘:’ 70 |- |1 B validity of the theory are not
I sl 1500 = satisfied, and robustness of the
T = .. ..
© ol i 2 theory is being tested. Initially the
) < S  weight matrix ® used was @, the
< 40 - 1000 ») . i
5 Z  diagonal matrix, each element of
> 30 | - é - . .
T > +~  which is the inverse of the sum of
- —{ 500 .
0.01 and the diagonal value of the
° ) second moment matrix from table 7-
1 | 1 | 1 . -
% 500 1000 1500 2000 2500 3000 3a. Partial results for 0 = Q™' and
DISTANCE (x) o =1 are discussed later in this

section.

The data, regression curve,
and spatial 7 distribution are
illustrated in figure 7-3. The
systematic bias shown in figure 7-2

Figure 7-3. Hydraulic head data Y, at observation points
i (dots) along x, fitted model f (yé) using ® = @, and the
T distribution for example 1.
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is completely absent from the fit of the regression curve to the data, which suggests small system
intrinsic nonlinearity. (Several other regressions also were performed for comparison and
produced the same results.) Note that the pattern of residuals appears to be both rather
systematic and related to the local variations in 7. However, the four groups of like signs has a
greater than 10 percent chance of occurring by chance alone (Draper and Smith, 1998, p. 193-
198). Thus, correlation from model error could not be conclusively identified from the pattern of

residuals in this plot.

Weighted residuals @'"2(Y —f(y9)) are compared with measures of their theoretically
correct values in figure 7-4. Measures of the theoretically correct values are 1) the sample means

of ordered simulated, weighted
residuals generated at the 11
observation points by Monte Carlo
simulation from the weighted form of
(4-42), and 2) the means plus and minus
2 times the sample standard deviations
of these same ordered, simulated,
weighted residuals. For comparison, in
figure 7-5 the weighted residuals are
plotted with the same theoretical
measures, but are obtained from the
incorrect distribution
N(0,(I-R)S(6)/(n—- p)), which,
noting that

R = &">Df(Df'&Df) ' DED'>
=&"’Df(Df'ODF) ' DfD"? in the
present example, generally would be
used for field studies. Plotting positions
(approximations of the cumulative
percents for the statistical distribution)
F, =100(i-1/2)/n, i=12,...,n,
(Draper and Smith, 1998, p. 71) were
used for both plots, and 10,000 Monte
Carlo simulations were used to generate
both sets of theoretical measures.

All of the residuals are
contained within the two-standard
deviation limits when the simulated
residuals are correct, but three are not
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WEIGHTED RESIDUAL (&/2(v-£(Y8)) )

Figure 7-4. Probability plot of weighted residuals
@2 (Y - £(y0)) (dots), sample mean (solid line) of
ordered, simulated, weighted residuals from the
theoretically correct distribution, and plus and minus
2 standard deviation limits (dashed lines) of the
ordered, simulated, weighted residuals for example 1.

when the simulated residuals are incorrect. Note that the means and limits when the simulated
residuals are correct differ from the means and limits when the simulated residuals are incorrect.
The mean has more of an S shape, the tails are more variable, and the center is less variable for
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the correct residuals as compared to the
T frrT———— L T incorrect residuals. The S shape
999 F E appears to be reflected by the residuals.

99.99

i The plot of weighted residuals
versus weighted function values shown
] in figure 7-6 has a mean weighted
7 residual of 0.0149 and a slope of
—0.0921, neither of which are large.
Visually, it appears to have a wave-like
pattern, although the four groups of like
signs could occur by chance greater
than 10 percent of the time (Draper and
Smith, 1998, p. 193-198). Thus, there
is no quantitative evidence from the
mean residual, the slope of the plot, or
3 E the sequence of signs that the residuals
0.5 plot is abnormal. Any correlation of

01k 3 residuals resulting from the correlation
a: of errors shown in table 7-3b is not

0.01 Lieununn L, Lo Lo, L

-2 -1 0 1 2 conclusively shown in the plot.
WEIGHTED RESIDUAL (@."(y-f (y8)) A measure of model intrinsic

Figure 7-5. Probability plot of weighted residuals nonlinearity that can be used m addition
®"*(Y —£(y0)) (dots), sample mean (solid line) of to (6'5.6) and (6"5?) for a spec1§c
ordered, simulated, weighted residuals from the regression was indicated in sect.lon 4to
incorrect distribution N(0,(I ~R)S(®)/(n— p)),and  0¢ the product of R and the weighted
plus and minus 2 standard deviation limits (dashed residual vector. The squared length of

lines) of the ordered, simulated, weighted residuals this procht’ vlegtor, I%iven by n
from the same distribution for example 1. (Y -f(y8))0""Ro (Y —£(y0)) , can
be used as a summary measure. Note

that the expected value of this function
appears in the component correction factor defined by (6-3). Similarly, a measure of model
combined intrinsic nonlinearity was indicated in section 5 to be the product of R and the
weighted constrained residual vector. The squared length of this product vector, given by
(Y -£(10)) 0> (R -QQ'/Q'Q)w"*(Y — £(y0)), can be used as a summary measure in addition
to the general measures given by (6-58)-(6-63). The expected value of this function appears in
the component correction factor defined by (6-20). Values of the functions were computed using
® =® and found to be near zero. In particular, the value of the second function for # is only
slightly larger than values for In7 and 4,. Therefore, model combined intrinsic nonlinearity for
W does not appear to be significant, even though M, for it is not near zero.

Confidence intervals using ® = ®. Values of 0,,, their estimates éi , 95 percent

linearized confidence intervals computed from éi tt,,(n—-p)cS (é)(Df' ‘®Df ;' /(n— p))"?

% E
98
95 |
90 E

80F
70|
60 E
50 E
a0F
30F
20F

CUMULATIVE PERCENT (F)




Experimental Results 97

(where (Df’ dDf );! is the ith diagonal element of (Df' dDf )™"), and 95 percent nonlinear
confidence intervals computed using (5-51) are shown together with their uncorrected (¢, =1)
counterparts in figure 7-7. Value hp. = g(M) ), its estimate h its 95 percent linearized
confidence interval computed from h t,,(n—p)c, S(G)Dg(Df ®Df) ' Dg’ /(n— p))"?, and
its 95 percent npnlinear confidence interval computed using (5-51) also are shown in corrected
and uncorrected forms in the figure.
The uncorrected confidence
intervals are apparently too small; one
out of the three linearized intervals and
two out of the three nonlinear intervals
do not contain their true values.
Correction factors ¢, were computed

2 I —| T T | E—

-
T
1

?

N
T

WEIGHTED RESIDUAL
(@2(v-1(y8) )

using (5-50) with ;91 and y, set to zero. 5 I 2 S S R TR TR TR
Linearized intervals using the correction WEIGHTED FUNCTION VALUE (&2 (y9)
factors are large, true values falling well

within the intervals. The nonlinear Figure 7-6. Plot of weighted residuals

intervals show the effects of severe ill ®!"*(Y - £(y0)) in relation to weighted function
conditioning, which is indicated by a values ®!/*f(y0) for example 1.

value of 0.997 for the linearized
correlation (Cooley and Naff, 1990 p-
117) between the estimates In T and W . Because of this ll conditioning, only ratios W /InT
are unique for the upper limits of the confidence intervals for InT and W so that the confidence
intervals are open ended (unbounded). Also, the solution for the lower limit of the confidence
interval for 4, is unique only in terms of the ratio. The uncorrected nonlinear confidence
interval for 4, is the same as the linear one, and the lower limit of the corrected interval
probably only differs from the lower limit for the corrected linear interval because of the
influence of the nonuniqueness. This correspondence occurs because of the absence of model
intrinsic and model combined intrinsic types of nonlinearity, as explained in the paragraph
following (5-107). Corrected confidence intervals all contain their true values, and so may be
accurate. However, because of the ill-conditioning problem, the actual containment probabilities
could not be investigated by Monte Carlo analysis as was done for example 2 discussed later in
this section.

Results for alternative weight matrices. Regressions also were performed using
o = Q"' (Gauss-Markov estimation) and ® = I (ordinary least squares). Gauss-Markov
estimation produced nearly the same parameter estimates and model fit to the data as obtained
using ® = ®, and ordinary least squares produced results only slightly different. Linearized
confidence intervals for In7., W, and h,. are shown in figure 7-8. Both corrected and
uncorrected intervals are shown for ordinary least squares; no correction is required for Gauss-
Markov estimation. Corrected intervals using both methods are nearly the same and both are
smaller than comparable intervals obtained using ® = ® (figure 7-7). This may indicate that the
latter intervals are somewhat conservative. Uncorrected intervals using ordinary least squares
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Figure 7-7. True values In7,, W, and h,. , their estimates obtained using ® = ®, and their 95
percent confidence intervals for example 1.

are smaller than comparable, uncorrected intervals obtained using ® = ®. The former intervals
for W and h,. do not contain their true values, and are likely to be more inaccurate than the
latter intervals. However, all intervals except those using Gauss-Markov estimation require
correction for model error. Finally, although not illustrated, neither set of residuals appears to
differ from a set expected for the theoretical zero-mean normal distribution.

Correction factors and bounds. Correction factors and bounds V. /Q'Q for & given by
(5-56) (with o _ replaced by both & and I) are given in table 7-5. Note that the values of a
suggest that, as predicted by theory, S(é) /(n— p) considerably underestimates bo 2, the value
of (n—ap)/(n—- p) being 0.199 when ® = ® and 0.0707 using ordinary least squares. Only a
small part of the total variance, bo?, is variance about the regression curves. Values of ¢, and

P2

c, are therefore large. Correction factors ¢, and ¢, obtained using ordinary least squares are
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Figure 7-8. True values InT,, W, and B, their estimates obtained using Gauss-Markov
estimation and ordinary least squares, and their 95 percent linearized confidence intervals for

example 1.

larger than correction factors ¢, and ¢, obtained using ® = @, reflecting the theoretically
predicted result that F and ¢ distributions are approximated better when ® = ® than when o is
arbitrary. The bounds V,, . /Q'Q for & are twice or more the value of & except for the bound
pertaining to &, obtained using ordinary least squares. The requirement for the bound to be
more than approximate is that the error groups accurately reflect the error structure. Because I
does not approximate @ well, the bound is less than &. Correction factors are needed for all
confidence intervals and both confidence regions. The bounds for & generally would give much
larger confidence intervals than using & .
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Table 7-5. Correction factors for example 1.

[a is computed using (5-13); b is computed using (5-11); ¢, is computed using (5-19); ¢, is computed using (5-
50) with y, =0; & is computed using (6-62); V,,. / Q'Q is computed using (5-56) with ® ; replaced by ® or
L]

Weight  yhiable a b5 ¢ ¢ & V,./QQ
matrix
o InT 4.61 1.00 232 490 0974 2.62
w 4.61 1.00 232 5.85 1.16 3.53
hp 4.61 1.00 232 12.6 2.51 3.77
I nT 5.18 502 733 9.19 0.649 3.29
w 518 50.2 733 993 0.702 4.10
h 518 502 733 528 3.73 2.96

14

Correlated errors. Thus far, values of In7, have been uncorrelated. However, InT
values often are considered to be correlated (Bakr and others, 1978; Delhomme, 1979; Gelhar,
1986). As is suggested in section 3, when the correlation is manifested as a definite trend, the
stochastic process used to apply the present theory should probably consider the trend to be the
drift 'yﬁ , even if the data showing the trend also could be considered to be a realization of a
process having stationary drift. This idea is illustrated here for a one-dimensional, stationary,
exponentially correlated, In 7 process. To specify this process, (7-3) is replaced with a form in
which for simplicity # is not a parameter:

B=InT~ N(v0,V,02) (7-5)
where B has order m=N, y=1, @=InT is the stationary drift, and
Vay = exp(—lx,. -x j|/ ?) ‘ (7-6)

In (7-6) ¢ is the correlation length. Realizations of B can be generated using the simple method
given by Kitanidis (1997, p. 191).
Figure 7-9 illustrates a realization of the correlated In 7 process that shows a distinct

linear trend. The drift @ =In7 and the mean 6, = In7, also are shown. For this realization,

=0.5 and £=3,000. It is apparent that estimating 6, would yield a very crude model of the
system the trend needs to be included. One means of doing this is to revise the drift to be the
linear trend, so that the revised drift is 79 where 0=[6,, 0,1, 6, and 6, are drift values of
In7 atx=0and x=L,y, =(L-X)/L,and y =%, /L, i=12,....m, where X, is x at the
midpoint in block Ax,. Note that because of this revision, 0, =0 for thls reahzatlon Revised
residuals B —y0, from the fit of Y0, to B are given by

B—v0. =B—-y(yD ' YB=A-y(y'D'Y)B (7-7)
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Then, revised values of B, B,,,, dispersed about the revised drift yé are given by

rev>

B =710 +(I-y(y7)"'Y)B (7-8)

which has revised covariance matrix (I-y(y"y)"v")V,A—y(y"y)"'¥')o;. Thus, because the
rank of this covariance matrix is m—p,

B, ~ N(YO,(L—¥(Y'y) " Y)V, A~ ¥(Y7) ' y)o2) (7-9)

is a singular normal distribution.
The change from distribution (7-5) to distribution (7-9) changes Var(f(B) —f(y0.)). For
example, the linearized version of this covariance matrix, which was originally
D, f(A-11'/m)V,(I1-11"/m)D ,f'c}, is revised to be
D £ -y(y) "' y)V,A—y(y'y) " y)D 4f'c; where y is for the linear drift. Note that, although
Var(B,,,) is singular, if m— p>n, ,
which would generally be the case, 8.0 I I T l T
Var(f(B..,) —£(y0.)) would be full
rank, n, if D ,f has rank n. Original
and revised, linearized correlation
matrices are given in table 7-6. For the
revised process, standard deviations of
the model errors are greatly reduced,
positive correlations are reduced, and
negative correlations replace some of
the original positive correlations.
Correction factors a,
c,, & and ¢, also were computed in
the same way as in table 7-5 assuming

~
o

LOGTRANSMISSIVITY (inT)
o I3
=Y o
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Figure 7-9. Realization (dots) from a stationary

) ’ ; random process having an exponential covariance
W - 0, using the covariance matrices function for which o, =0.5 and £=3,000. The
derived from table 7-6, and setting 7, drift @ of the process, the revised drift (the drift of

and 7, to_ze.ro. For the original process residuals), and the mean 6, of the realization also
where InT is constant, the model used

to calculate the correction factors is (7-
4), where W =0. For the revised case
a model with linearly varying In7 is needed. This is

are shown.

I
hry=—2L LT "1, (7-10)
(T, /T,) T, |\ T,
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where T, =e® is Tat x=0 and T, =e® is Tat x = L. With use of (7-4) and table 7-6a,
correction factors a and ¢, are computed to be a =4.68 and ¢, =7.42; for In7,, £ =4.68 and
¢, =7.42. With use of (7-10) and table 7-6b, correction factors a and ¢, are computed to be
a=1.05 and ¢, =1.06; for In7,, £ =0.601 and ¢, =0.608; for nT,, £=0.596 and

¢, =0.603. Examination of the equations used to compute these correction factors shows that
the reduction in magnitudes by the revision results primarily from the change in correlation
structure. Thus, not only are the magnitudes of the model errors greatly reduced, but also,
because of the change in correlation structure, the need for correction is virtually eliminated by
the revision for this example. Not using the correction factors would give conservative
individual confidence intervals.

Table 7-6. Standard deviations and correlations of model errors resulting from the original and
revised, correlated log-transmissivity processes for example 1.

a. Correlation matrix, original process using (7-4)

nO(Es. Standard deviation in the first column and correlations in the remaining columns

1 0484 0950 0.883 0.818 0.756 0.697 0.644 0601 0.575 0.599 0.699
2 3.01 0966 0.908 0.845 0.784 0.728 0.680 0.651 0.676 0.782
3 4.89 0975 0924 0866 0.809 0.759 0.727 0.749 0.855

4 6.15 0979 0.934 0.881 0.830 0.795 0.812 0.910

5 6.83 0981 0940 0.893 0.856 0.865 0.948

6 6.96 0.983 0945 0908 0908 0.970

7 6.60 0984 0.952 0942 0978

8 5.76 0985 0.968 0.974

9 4.50 0.988 0.967

10 2.87 0.976

11 1.70

b. Correlation matrix, revised process using (7-10)

Obs. Standard deviation in the first column and correlations in the remaining columns

8

0337 0895 0729 0.511 0.170 -0.359 -0.646 -0.598 -0.481 -0.361 -0.293
1.73 0.900 0676 0282 -0.367 -0.763 -0.739 -0.614 -0.478 -0.399

2.17 0875 0488 -0.267 -0.820 -0.863 -0.751 -0.606 -0516

1.99 0.780  0.007 -0.745 -0919 -0.857 -0.722 -0.627

1.51 0.532 -0377 -0.776 -0.840 -0.761 -0.677

1.16 0482 -0.102 -0.375 -0.447 -0.426
1.29 0.743 0423 0219 0.151

1.56 0.861  0.651 0.541

1.54 0.890 0.774

0985 0.941

0.235

——\0 00 I O\ L DWW N e

—_— o
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Example 2 -Two-Dimensional, Steady-State Flow in a Zoned System

Model and stochastic properties. This example is based on an example problem used by
Cooley and Naff (1990, p. 79-81). The assumed hydrogeology is illustrated in figure 7-10.
There are three zones of constant drift for 7 and W; a river having a known streambed specific
conductance, R,; two wells pumping at known rates , and Q, ; a specified head boundary on
which hydraulic head varies linearly between the values 4,,, hg,, and Ay, ; and a known flux
boundary composed of five no-flow (¢, = 0) segments and two segments along the north
boundary where g, and g, are known, nonzero, values.

The stochastic process involves both W and T and is defined only for small scale (grid-
cell to grid-cell) variability. For simplicity, In7, and W, for grid-cells i are all assumed to be
statistically independent. Specifically, the assumed distributions are

=T, ~N@,,V,,02); i=ik); k=123
p @ Viuop)s i = i(k) } -1

Bion =W, ~NO 1 Vyiun 1in05)s i =i(k); k=456

where ‘ﬁ//_,: =0.5 and [V, 5 ox =0.0001. At river cells, # does not appear in the flow
equation, so f,, is not defined by (7-11) and can be set to zero at these cells. Matrix y is
defined by (3-2) with 1, having dimension m, equal to the number of grid cells occupied by
parameter k. Three more parameters, Ay, hy,, and h,,, are estimated in the regression.
Distributions (7-11) could be augmented as for the first example to incorporate these parameters,
but, because the distributions are never used, they are ignored. Specific values for the variables
needed to specify example 2 are given in table 7-7.

As for example 1, a two-dimensional transmissivity process with no spatial correlation is
not physically realistic (Bakr and others, 1978). This idea might be extended to the recharge
process as well. However, as for example 1 the example is intended to provide a test of the
validity and robustness of the theory, and the uncorrelated process is sufficient for this purpose.

Mean errors, covariances, and other population properties. As for example 1, the
vector of mean model functions (mean hydraulic heads) E(f(p)), the vector of mean errors
E(f(B)—1£(y0.)), the matrix of second moments E(f(B)—f(y0.))f(B) - £(y0.))’, the covariance
matrix Var(f(B)—f£(y0.)) , and the vectors of skewness and kurtosis were approximated for the
32 observation points shown in figure 7-10. Monte Carlo simulation using the integrated finite
difference model in Cooley and Naff (1990, p. 81-83) was again used for the calculations.

Partial results for a Monte Carlo sample size of 5,000 are given in table 7-8; off-diagonal second
moments and correlations are not shown. The magnitudes of the mean errors range between 0
and 4.15 and correlate closely with the magnitudes of the mean hydraulic heads; the mean errors
are not large but do indicate measurable total system nonlinearity in zone 3 and at pumping
wells. All positive values of mean error occur in zone 1 under the influence of ground-water
discharge and pumping from the two wells. The values that have smallest magnitude occur at
and near the river. The largest second-moment values are associated with the largest magnitudes
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16 —7pdh &2 ha1 of mean error; they are variable and
15 - 2 o again are small near the river. Because
-,: &S W 027 B of its permeable bed, the river nearly
13 ﬁl: 7t S forms a specified head boundary of
; G20 :'21 '2{; W river elevation 4.5; hence, the smaller
1 mu o7 2 . ot errors and variances of errors near it.
¥ " e e Skewness ranges from —0.661 to
§ S D | o s ; 0.964, with 13 negative and 19 positive
] | P . T ' ) values. Most negative values are
7 Qe l: M— e associated with the positive errors.
5 —}”m P SN al g3 Kurtosis ranges from 2.95 to 4.87, with
= {I————J ¢ E all but one, except along the specified
3| l{ (T, Wy o E head boundary, being greater than 3.
T .: :,31'1” ﬂ,i' i Thus, even though the mean errors are
! Tl "“;“I‘;' “I"I'W“:S“T‘]fs not large, the error distribution is not
COLUMN normal. It is skewed and generally
EXPLANATION leptokurtic, as for example 1.
(T, w;)  Transmissivity(r) and recharge rate(w;/ Most oﬂ-dlagonal second
in zone /, i=1, 2, 3 moments and correlations are small.
TR} Transmissivity (7,) and specific river-bed Out of the 496 distinct correlations, 44
conductance (7} lie between —0.2 and 1.0; 12 lie between
0; Location and pumping rate for well j, i=1, 2 0.5 and 1.0; 3 lie between 0.8 and 1.0,
----- Boundary of no flow (Darcy flux, g, equals 0) being 0.826, 0.832, and 0.837 between
v/////, Boundary segment 1 of specified Darcy flux, qg; observations 28 and 32, 14 and 20, and
\\\\\" Boundary segment 2 of specified Darcy flux, qg, 14 and 19, respectively; 6 lie between

—0.36 and —0.26, and are between
observation 15 and each of observations
18, 21, 23, 28, and 32. Most large
correlations involve observation 13 and
higher numbers. As is shown later in
this section, these small numbers of
correlations are sufficient to yield

2. significant model-error influences.

hgz

:I hg;
:1} 400

o Observation location and number

Specified hydraulic head boundary-Heads
vary linearly between values hg; and hgy, etc.

Grid spacing of 400

Figure 7-10. Assumed hydrogeology of the two-
dimensional, ground-water flow system for example

Nonlinearity measures using ® =& . Values of the nonlinearity measures N and N min
were computed using ® obtained in the same way as for example 1. Values of M min > 1§U , and
f? were computed using the same @ for the six parameters of In7 and W, and for hydraulic
head 4, at grid pomt (13, 9), the point selected for predlctlon Values of N and N are
N=1 43 and N, =0.0157. Valuesof M, B,,and B, are all less than, or on the order of;
107, the largest being M_. =8.06x107 for W,. Thus, only total model nonlinearity is
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Table 7-7. Model specifications for example 2.

105

Drift transmissivities:

Drift recharge rates:

Known streambed specific conductance:

Known river elevation above an arbitrary datum:

Specified hydraulic heads:

Known fluxes:
Known pumping rates:

Standard deviation of the InT process:
Standard deviation of the W process:

exp(9,) =T, =50
eXp(gz) =T, = 500
e_xp(0_3_) =T, =20

6, =W, =0.0003
0, =W, =-0.0001
6, =W, =0.0002
R, =0.1

4.5

hy, =10

hy, =5

hy, =5.5

gy =05

q,, =0.28

0, =-100,000

Q, =-50,000

0.50,, witho, =1
0.0001c 5, with o, =1

Observation-error covariance matrix: V.=Lo, =01
Number of blocks: N =162
Number of observations: n=32

Number of parameters: p=9

significant, and both model intrinsic, and model combined intrinsic, types of nonlinearity are
probably negligible. Values of (Y —f(y0))'®"*Ra" (Y - £(y0)) and

(Y -£(19))'d"* (R - QQ'/Q'Q)d"2 (Y — £(y0)) obtained using sensitivities Df and results
discussed next were always near zero, which corresponds with this conclusion.

Regression results and analysis of residuals using ® = ®». Hydraulic head data Y used
for the regression were obtained by adding a vector of zero-mean random normal deviates (small
observation errors) having a standard deviation of 0.1 to a realization f() of the Monte Carlo
process. As for example 1, this increases the diagonal elements of the second moment matrix
(table 7-8) by only 0.01, so that again model error completely dominates the stochastic process.
Initially, the weight matrix used was & . Partial results for ® = Q™' and o =1 are considered
later in this section.

The data Y and residuals Y —f (yé) are illustrated in map form in figure 7-11. There
seems to be no systematic pattern‘in the residuals. Weighted residuals &"2(Y - f(y9)) are
plotted with their theoretically correct measures in the same way as for example 1 in figure 7-12.
For comparison the weighted residuals are plotted in figure 7-13 with theoretical measures of the
(incorrect) distribution N(0, (I - R)S (é) /(n— p)) that generally would be used for field studies.
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Table 7-8. Values of mean model function, mean error, second moment, variance, skewness,
and kurtosis for the distribution of f;(B)— f;(y0.) at observation points, i, for example 2.

Obs. Mean model . Mean Second Variance Skewness Kurtosis®
no. function error moment
1 58.1 -2.06 52.8 48.6 0.270 3.30
2 74.2 -2.10 86.5 82.1 0.245 3.22
3 57.6 -2.26 494 443 0.206 3.18
4 29.6 -1.30 25.6 23.9 0.316 3.30
5 6.80 -0.077 0.318 0.312 0.563 3.65
6 5.74 -0.032 0.149 0.148 0.821 4.12
7 5.83 -0.031 0.173 0.172 0.964 4.87
8 5.50 0 0 0 0 3
9 4.20 0.003 0.007 0.007 -0.661 3.94
10 4.50 -0.002 <0.001 <0.001 -0.547 3.94
11 -40.7 2.45 83.4 77.4 -0.330 3.27
12 5.56 0 0 0 0 3
13 5.64 -0.058 0.115 0.112 0.672 3.77
14 12.1 -0.122 1.84 1.83 0.432 3.37
15 3.70 0.008 0.026 0.025 -0.265 2.95
16 -85.0 4.15 205.7 188.5 -0.632 3.83
17 6.29 -0.079 0.215 0.209 0.552 3.65
18 -14.9 1.18 14.2 12.8 -0.364 3.19
19 16.6 -0.198 3.03 2.99 0.335 3.23
20 12.4 -0.146 1.87 1.85 0.368 3.28
21 4.19 0.001 0.006 0.006 -0.519 3.40
22 -16.7 1.24 13.5 11.9 -0.277 3.24
23 -3.25 0.628 4.08 3.69 -0.389 3.26
24 8.33 0 0 0 0 3
25 53.8 -1.60 20.6 18.1 0.149 3.20
26 38.3 -1.28 16.2 14.6 0.233 3.44
27 0.342 0.325 1.45 1.35 -0.615 3.54
28 -2.11 0.512 2.60 2.34 -0.340 3.12
29 7.36 -0.040 0.860 0.859 0.881 4.30
30 5.57 0.199 1.19 1.15 -0.622 3.68
31 83.1 -1.83 25.4 22.0 0.323 3.66
32 1.50 0.236 1.06 1.01 -0.511 3.46

"Compare with the theoretical value of 0 for a normal distribution of f;(B)— f;(6.).
*Compare with the theoretical value of 3 for a normal distribution of f;(B)— f;(y0.).

As in example 1, 10,000 Monte Carlo simulations were used to obtain both sets of theoretical
measures. All but one of the weighted residuals are contained within the +2 standard deviation
limits for the theoretically correct distribution. The limits for the correct distribution allow for
greater variability in tail values from set to set of weighted residuals than does the incorrect
distribution. However, all but two of the weighted residuals are contained within the limits for
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the incorrect distribution, and the data

are well within the limits at the tails. 16 —rrar -
E% 8.32 -0. 5.26
Both sets of measures display similar S 54 7 ? °e ok
. i ea21 3019 048 328 407 .

shapes that appear to be reflected in the - s ave s 036,

. . - -3.62 830
weighted residuals. Hence, the 13 o 21 0.005]

. . i 1690  12.53 404 -22.00 -0.005
weighted residuals appear to follow the Y TRy T, Tois oo
normal distribution (4-42) expected for 14 o oz B ST ¥
a model having negligible model and ¥ A cer | loos a0s
system types of intrinsic nonlinearity. § ® 'L""'""""’: obe 5070 ssa
Furthermore, neither the map 7 | ool | 4y o]
distribution of residuals nor the 7] E TS

. . 1 821 6.39 5.94 5.58
weighted res1dualsi plot that would be 5 LS, T o oo
used for field studies detect the - :r——l kS !
. . : l
influence of correlation of model errors. 3 | 5:-::’ |

The plot of weighted residuals . i 505‘:13 710',? E
! ) .
in relation to weighted function values L ————t--r--rr--r-r T
®)'*£(y0) is shown in figure 7-14. ! 3 ° C7OLUI\:N noonwom
Except for the three near-zero weighted
residual values beyond the weighted Figure 7-11. Hydraulic head data Y, (upper number)
Y 2 igu Y C i

function value of 50, the plot does not and residuals Y, — £;(y0) (lower number) at
appear abnormal. The three cited observation points i for ® = ® for example 2.

values occur for specified head nodes 8,
12, and 24 for which the data values are
only subject to the small observation errors and the weights are large. Therefore, the large
weights make the values of &''*f(y9) large, and the linear segments of head distribution along
the boundary are fitted closely to only three values of head on the boundary. Thus, this plot too
does not show any obvious effects of model-error correlation. Finally, neither the mean
weighted residual value of — 0.0428 nor the slope of —3.07x10~ are large in magnitude, which
corresponds with the other indications of small model and system types of intrinsic nonlinearity.
Confidence and prediction intervals using ® =®. Valuesof 6., i =12,...,6, and hp. R
their estimates é,. and I;p, and both their corrected 95 percent linearized, and corrected 95
percent nonlinear confidence intervals are shown in figure 7-15. All are computed in the same
manner as for example 1. Linear and nonlinear prediction intervals for Y,, computed using
h,tt,,,(n- p)c,S@O)DZDIGD) ' Dg’' +é,')/(n— p))"? and (5-101), also are shown on the
figure. Correction factors ¢, and c, used in the calculations are listed in table 7-9. The effects
of model nonlinearity are small; linear and nonlinear confidence intervals have nearly the same
size. The effects of model error are variable. The value of c, is 4.22 for %,, so an uncorrected
confidence interval for 4,. would be only about half the size it should be. However, an
uncorrected confidence interval for In7,, or W., would be about 81 percent of its corrected size.
The value of InT7., is slightly outside of both its linear and its nonlinear confidence intervals.



108 A Theory for Modeling Ground-Water Flow in Heterogeneous Media

99.99 frrrrrrrrrrrrrrrere prevrrTTT— T e T Finally, the prediction interval for ¥,
contains its predicted value, which is
considerably different than 4,,. This
difference shows the large effect of
heterogeneity in 7, W, or both. Note the
small value of ¢, compared with the
corresponding value of ¢, which is
why confidence and prediction intervals
have similar sizes in spite of the large
predicted error variance of
approximately @,'bo? =19.6.

Monte Carlo accuracy checks
using ® =®. A Monte Carlo analysis
3 was performed to check the accuracy of
y the confidence and prediction intervals.
For each realization a data set Y was
generated as for the above example;
0.05 then values of 0, , £, or ¥, 6, and
0.01 St I — s e fzp orY, ', were computed; finally a

WEIGHTED RESIDUAL (&,2(v-r(yd)) nonlinear confidence or prediction
interval was computed and checked to
see if it contained a value
InT,,W.,i=123,h,,or Y,. For
comparison, the analysis also was
performed for uncorrected confidence
intervals. Results for 500 realizations
are given in table 7-10. Corrected
confidence and prediction intervals
appear to be accurate. The average
containment probability for the confidence intervals is 0.945, and the lowest is 0.934. For the
prediction interval the containment probability of 0.952 is nearly exact. In contrast, uncorrected
confidence intervals are too small, with the largest containment probability being 0.892 and the
smallest 0.656. These results show the importance of correcting confidence intervals for model-
error correlations. Because ¢, = 0.902, uncorrected prediction intervals would be about 5
percent larger than corrected ones, and so would be accurate or slightly conservative. The theory
presented in section 5, indicates that uncorrected prediction intervals should be more accurate
than corresponding confidence intervals if the value of @, used is accurate.

The theory predicts that, if a model has small model and system types of intrinsic
nonlinearity, then E(f (yé)) approximately equals E(f(B)) as given by (4-36) and additionally, if
the model and system types of combined intrinsic nonlinearity are small, then £ (g(yé))
approximately equals E(g(B)) as given in (4-46). These ideas were checked using the Monte

999
99.8 &
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v e

Figure 7-12. Probability plot of weighted residuals
®'"2(Y - £(y0)) (dots), sample mean (solid line) of
ordered, simulated, weighted residuals from the
theoretically correct distribution, and plus and minus
2 standard deviation limits (dashed lines) of the
ordered, simulated, weighted residuals for example 2.
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Carlo results. All values of E(f,(B))
are predicted to within less than 1 9989 e T T T T
percent by E(f,(y0)) except at 99.9F
observations number i = 23, 27, and 28, 88 ]
where the values are 0.0783, 0.0588,
and 0.0761 units greater than
E(f, (yé)) . These errors represent
—2.39, 18.8, and —3.60 percent of
E(f,(B)), respectively. For the six
parameters, the percent changes of
E (é,.) from the drift parameters
0, =E@.), i=12,...,6, are 1.18,
0.982,2.29,7.35, 6.74, and 4.41. In
addition, the percent decrease of E (h )
from 4, is —0.789 percent. Thus, the
biases are small, which corresponds
with the other indications of small
model and system types of intrinsic 02 ]
nonlinearity. 0.05 F

Results for alternative weight 0.01 Jrusssssssn R b dssssssiiiii, S
matrices. As for example 1, Gauss-
Markov (0 = Q™) and ordinary least
squares (o = I) regressions also were
performed. In contrast to the results of
example 1, figure 7-16 shows that
ordinary least squares estimates are
noticeably different from Gauss-
Markov estimates for nT,, W,, W,,
and #,, and corrected, linearized
confidence intervals for ordinary least
squares are different from (generally
larger than) the same intervals for Gauss-Markov estimates. Comparison with figure 7-15 shows
that Gauss-Markov estimates and confidence intervals are generally closer to corresponding
estimates and intervals using ® =®. Thus, in contrast to example 1, Gauss-Markov estimation
and regression using ® = @ produce very similar estimates and confidence intervals, if the
confidence intervals using ® = @ are corrected for model-error correlation. Finally, as for
example 1, neither set of residuals (not illustrated) appears to differ from one expected for the
theoretical zero-mean normal distribution.

Results for an unknown weight matrix. The entire analysis yielding regression
estimates, confidence intervals, and prediction intervals was repeated for the case where Q and
® are unknown. For this case, the observations must be grouped using assumptions regarding

CUMULATIVE PERCENT (F))

WEIGHTED RESIDUAL (Osi"z(Y-f(Yé)) )

Figure 7-13. Probability plot of weighted residuals
®V2(Y —£(y9)) (dots), sample mean (solid line) of
ordered, simulated, weighted residuals from the
incorrect distribution N(0, (I - R)S(0)/(n - p)), and
plus and minus 2 standard deviation limits (dashed
lines) of the ordered, simulated, weighted residuals
from the same distribution for example 2.
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similarities of model and observation errors. The three error groups illustrated in figure 7-17
were obtained according to the following criteria.
Group 1-- Upland areas of similar hydrogeology (apparent 7 and W); large magnitudes of
sensitivities and most residuals based on ordinary least squares.
Group 2-- Lowland area of nearly uniform hydrogeology (apparent 7 and #); small
magnitudes of sensitivities and most residuals based on ordinary least squares.
Group 3-- Lowland area of hydrogeology similar to that of group 2; large magnitudes of
sensitivities and most residuals based on ordinary least squares.
The theoretical weight matrix @,

3 i (which would be unknown for field
éé 1, . . studies) was approximated by inverting
E = Lol the diagonal matrix of group averages
@ NE °re :' . . . ' of €2, values. Elements @, ,, and
gj_gfg Lo . . - @6, TOT Observations 11 and 16 (the
s pumping wells) were additionally
2160 70 20 30 40 0 0 70 80 0 weighted by the ratio of the group
WEIGHTED FUNCTION VALUE ( &1 (Y8)) average to the average of the two
second moments for these observations.
Figure 7-14. Plot of weighted residuals This ratio also is used as a multiplier
®!'2(Y —£(y8)) in relation to weighted function occupying the position of a weight in
values ®!'*f(y9) for example 2. £(0) . The ratio would be unknown and
would have to be estimated, if needed,
for field studies.

Values of the nonlinearity measures were computed in the same manner as computed
previously, except weight matrix ® . was used in the present case. The value of N is1.58 and
the value of N_, is 0.0230, only slightly larger than those obtained using @ . The values of
M s B,,and B, for the six parameters of In7 and W, and for h,, are all less than, or on the
order of, 107, with the largest being M. =6.66x10" for W,. Thus, only total model
nonlinearity is significant, and model intrinsic, and model combined intrinsic, types of
nonlinearity are negligible. As before, values of (Y - f(y0))'0"’RoY>(Y - f(y9)) and
(Y —£(10)) 02 (R —QQ'/ Q' Q0> (Y —£(y0)) (where R and Q are computed using
sensitivities Df and Dg and weight matrix ® ) are near zero, which agrees with this conclusion.

The same hydraulic-head data set Y as used for the previous analyses also was used for
the present one. The data and residuals Y —f (yé) are illustrated in map form in figure 7-18, and
weighted residuals are plotted together with correct and incorrect theoretical distributional
measures in figures 7-19 and 7-20. Weights used to compute the theoretical measures are the
ones estimated by the regression, which are w,,, k£ =1,2,3, as given by (4-49) with equality
replacing proportionality. Otherwise, the plots were constructed in the same manner as were the
analogous ones in figures 7-11 - 7-13. Features of the plots in figures 7-18 - 7-20 are very
similar to features in figures 7-11 - 7-13 discussed previously. Weighted residuals are plotted in
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INTERVALTYPE INTERVALTYPE INTERVALTYPE
EXPLANATION

LT; Linear, for InT,;, i=1,2, 3

95 percent confidence

i { i, = Estimate N
Linear, for Wi, i=1,2,3 or prediction interval

True value

W,
NT; Nonlinear, for InTj, i=1,2, 3
NW;  Nonlinear, for W, i=1,2 3
Lc  Linear confidence interval

NC  Nonlinear confidence interval
LP Linear prediction interval

NP Nonlinear prediction interval

Figure 7-15. True zonal values InT,,, W, (i =1,2,3), and A, , their estimates obtained using
o =®, and their 95 percent confidence or prediction intervals for example 2.

relation to weighted function values in figure 7-21. Note that the three residuals for observations
on the constant head boundary do not correspond to large weighted function values in the present
case because group weights were used for them. No abnormalities are obvious, so that model-
error correlation is not obvious from the plots. Also, neither the mean residual value of 0.0788
nor the slope of —2.46x 107 are large in magnitude, which again agrees with the other
indications of small model and system types of intrinsic nonlinearity.
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Table 7-9. Correction factors for example 2.

[a is computed using (5-13); b is computed using (5-11); ¢, is computed using (5-19); ¢, is computed using (5-50)
with ¥, =0; ¢, is computed using (5-96) with y , =0; & is computed using (6-62); V,, /Q'Q is computed
using (5-56); weight matrix used is @, I, or @, as appropriate; a’);lbagz =19.624; a)(_;gof =4.1496; -, not

computed]

Weight

. Variable a b c, C, c, 4 Ve 1Q'Q
matrix
® InT, 1.70 1.00 234 1.51 - 1.10 5.47
In7, 1.70 1.00 234 3.62 - 2.63 9.47
InT, 1.70 1.00 2.34 1.66 - 1.20 7.19
W, 1.70 1.00 234 1.55 - 1.13 7.08
W, 1.70  1.00 2.34 1.51 - 1.10 4.87
W, 1.70 1.00 234 1.55 - 1.13 8.38
h,or?, 1.70 1.00 234 422 0902 3.07 9.78
I InT, 227 190 451 1.88 - 0.948 3.42
In7, 227 19.0 451 18.1 - 9.13 3.21
InT; 227 19.0 451 219 - 1.10 5.69
W, 227 19.0 451 1.89 - 0.951 3.58
W, 227 190 451 133 - 0.672 6.16
W, 227 19.0 451 211 - 1.06 5.82
h,or?Y, 227 190 451 844 195 4.25 8.06
o, InT, 1.90 0914 293 1.83 - 1.19 5.10
InT, 1.90 0914 293 7.78 - 5.04 7.74
InT; 1.90 0914 293 275 - 1.78 6.70
W, 1.90 0914 293 1.98 - 1.28 6.89
w, 1.90 0914 293 1.99 - 1.29 4.72
W, 1.90 0914 293 252 - 1.64 7.55
h,orY, 190 0914 293 922 3.75 5.97 7.48

True values 6., i=1.2,...,6, and A, , their estimates, their corrected 95 percent
linearized and nonlinear confidence intervals, and the 95 percent linearized and nonlinear
prediction interval are shown in figure 7-22. The linearized confidence intervals are computed
as in figure 7-15 except weights w, replace weights @, used before. To correspond with this,
group weight w, replaces @, for the prediction interval. Nonlinear confidence intervals are
computed using (5-57), and the nonlinear prediction interval is computed using (5-118). To
make the intervals as accurate as possible for testing purposes, known factor £ is used in place
of bound ¥, /Q'Q in (5-57) and the extension of & applying for prediction intervals is used in

place of V., /(Q'Q + co;‘) in (5-118). This extension is defined as
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1
Q.Q,

&, = Q.L(W,/b)2Q,(W,/b)?Q, (7-12)

In the present example £ is computed using ® = ®; and &, is computed using W, = o, .
Matrix o, is ®; augmented with @, (in which j =3 here) by analogy with (5-89).
Correction factors c., ¢,, and & used are given in table 7-9; the value of &, is 2.43.
Table 7-10. Containment probabilities for 95 percent confidence and prediction intervals
obtained using ® = ® for example 2.

a. Corrected intervals b. Uncorrected intervals
Variable No. Containment Variable No. Containment
outside probability outside probability
interval® Interval®
InT, 27 0.946 InT, 54 0.892
InT,, 28 0.944 InT, 156 0.688
In7, 23 0.954 InT., 63 0.874
w., 32 0.936 w., 69 0.862
w., 33 0.934 w., 56 0.888
W., 25 0.950 w., 62 0.876
B 26 0.948 h,. 174 0.656
Y, 24 0.952 " Computed for 500 realizations

Computed for 500 realizations

Linearized confidence intervals for parameters in figure 7-22 are only slightly larger than
corresponding intervals obtained using ® = @ shown in figure 7-15. The linearized confidence
interval for A, is much smaller than the one in figure 7-15. Nonlinear confidence intervals can
be much larger than the corresponding linear intervals, probably because of the nonlinearity
resulting from the logarithmic form of the objective function £(0) rather than because of model
nonlinearity. The large value of & for 4, (5.97 in table 7-9) has apparently combined with this
process to yield a large nonlinear confidence interval for 7,, . Because of this, this confidence
interval is much larger than the prediction interval for which &, is much smaller (2.43). When
the two intervals were recalculated with no correction, the prediction interval was computed to
be (-27.0, -19.0), and the confidence interval was computed to be (-26.0, —19.8), so that the
expected larger prediction interval was obtained. As shown next, the confidence interval for 4,
is extremely conservative because of the large value of &. Because the correction factors are
computed using constant weight matrices @, or o, , they are only approximate when applied
to confidence and prediction intervals computed using ¢(0) or £,(0). These intervals use new
weights computed for each realization of Y.
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EXPLANATION

GT; Linear, Gauss-Markov for InT,j, i=1,2, 3

95 percent confidence

. . . P Estimate PV
OT;  Linear, ordinary least squares for InT,;, i=1,2, 3 or prediction interval

True value
GW; Linear, Gauss-Markov for W,;, i=1, 2, 3

ow;  Linear, ordinary least squares for W, i=1,2, 3
GH Linear, Gauss-Markov for hp*

OH  Linear, ordinary least squares for hy«
Figure 7-16. True zonal values In7,, W., (i =1,2,3), and h,., their estimates obtained using
Gauss-Markov estimation or ordinary least squares, and their 95 percent linearized confidence
intervals for example 2.

A Monte Carlo analysis was performed to check the containment probabilities by
generating data sets Y and calculating corresponding nonlinear confidence and prediction
intervals as was done using ® =®. The results are shown in table 7-11. Because of the greater
degree of approximation used when @ is unknown than when ® = ®, results when @ is
unknown are not as accurate as when o =@®. The confidence intervals for In7,, and 4,. are
large compared to confidence intervals using ® = @ (figures 7-15 and 7-22), and are apparently
very conservative because their containment probabilities are both 1.00. As discussed in the
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| previous paragraph, this probably
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results because the correction factors
are too large. For example, when the
Monte Carlo analysis applying for 4,
was rerun using £ = 2.8, a containment
probability of 0.948 was obtained. The
confidence intervals for quantities other
than In7,, and 4,, seem to be too small
because the containment probabilities !
are all less than 0.95. However, the E
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0.92, so that the intervals are not greatly 5 1 . r e
in error. This bias probably is because 7 o
the correction factors are too small.
Finally, correction of all confidence
intervals and the prediction interval is L L R
1 3 5 7 9 1 13 15

needed. When the intervals are COLUMN
uncorrected, the largest containment
probability is 0.892 and the smallest is Figure 7-17. Error group numbers for observation
only 0.624 (table 7-11). points for example 2.

It appears that correction factors
computed assuming @, is known and
used when @ is unknown could be less accurate than correction factors computed and used
when o, is known. To check this idea, the Monte Carlo analysis was repeated using ® = o
The results for corrected confidence intervals are shown in table 7-11c. The results are better
than those in table 7-11a in that the very large containment probabilities for In7., and 4,, have
been decreased and are now accurate, and the remaining probabilities have been increased and
are slightly more accurate, averaging approximately 0.934 now, whereas for o, unknown they
average approximately 0.928. However, grouping the errors yields confidence intervals that are
less accurate than those obtained by not grouping the errors (that is, using ® = @, table 7-10a).
This corresponds with the theory developed in appendix F, which predicts that the likelihood
region is most nearly 7 distributed when Q™' is approximated as a weight matrix by & . Itis
encouraging that confidence and prediction intervals using ® = ®, ® = ©;, and unknown
weights all are of acceptable accuracy when the error structure is dominated by model errors.

Correction factors and bounds. As has been shown in the previous discussions, it is
generally necessary to use the correction factors to increase the accuracy of confidence and
prediction intervals to an acceptable level. Values of a indicate that S (é) /(n— p)underestimates
bo? (table 7-9), with the bias for ordinary least squares being the largest
((n—ap)/(n— p)=0.503) asit is for example 1. The smallest bias is obtained using ® = ®, for
which (n—ap)/(n— p) =0.726. If the matrix of group averages ®, were used as a known
weight matrix, then the underestimate would be (n— ap)/(n— p) = 0.648. Thus, while the biases
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are considerably smaller than those for

88.20 -0.46 . . .
16 7% SN example 1, they are still significant, and
15 ) 2 832] 131 526 ) dictable by th
: N am ap O the rankings ar? pre‘ ictable y.t e
7 o 222 280 ose theory as explained in the previous
13 [} e
‘E 650 128 [eos 2200 135 0,006 paragraph. Values of ¢, and c,
. XTI o g0 1.61 1585 generally are largest using ordinary )
a a1 008 [El.p t0ary 255 least squares and smallest using ® = ®,
| . ¢ . .
. | 473 oz | [ 008 487 although some small reverses in value
[« R p . . .
S | op, P occur. This again conforms with the
] | 00a] | L 2 o00r] theory. The approximate bounds for &
7 4 .
. i 005 are all large except for the bounds
5 - Ik ey pertaining to In 7, using ordinary least
. :__l W | squares. The failure of this bound is
: 50.80 . .
34 | KN : explained by the fact that I is not a good
55.53 : 70.01 ! . . A
7 E 035 1% i approximation of @ . All values of &
L S e S At utey et ey s s Bl St obtained using group averages are
1 3 5 7 9 1 13 15 .
unded by V7, /Q'Q, which conforms
COLUMN bounded by ¥,../QQ,

with the idea that @, is an adequate
Figure 7-18. Hydraulic head data Y, (upper number)  approximation of ® and that the error
and residuals ¥, - f ('yé) (lower number) at groups are adequate. Use of the bounds
observation points i for ® unknown for example 2. often would yield much larger

confidence intervals than use of £.

Summary of Principal Results

Two examples are analyzed to test the validity and robustness of the theory developed in
this report when the model error is large. Example 1 is for one-dimensional, steady-state flow in
an aquifer having transmissivity (7) that varies stochastically and one dimensionally at small
scale and recharge (W) that is constant. Example 2 is for two-dimensional, steady-state flow in a
zoned aquifer where transmissivity and recharge vary spatially at both large and small scales, the
small-scale variations being stochastic.

An analytical solution (7-1) for example 1 allows for potential block-to-block variation in
In7T and W (that is, B) along the flow path. This solution is simplified in (7-4) to be in terms of
constant average In7" over all blocks (4,, =In7,) and the constant drift value of recharge
(5 2 = W) . The two solutions (one using block-to-block variations in 7" and # and the other
using spatially constant 7 and W) show that the intrinsic nonlinearity of both models is zero and
that transformations a(B) and ¢(0) linearize both models. Even so, system intrinsic
nonlinearity may not be small unless the approximations discussed in section 4 are accurate.
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| Figure 7-19. Probability plot of weighted residuals wi.> (Y —f (yﬁ)) (dots), sample mean (solid
\ line) of ordered, simulated, weighted residuals from the theoretically correct distribution, and
plus and minus 2 standard deviation limits (dashed lines) of the ordered, simulated weighted
residuals for example 2. Matrix w; is the diagonal matrix [wg, ].

i Valuesof g, =InT,, i=12,...,N (where N is the number of blocks), are assumed to be
independently and identically normally distributed as N (51 , O /2,) , where O'f, =0.25. Values of
B..v =W, are assumed to be constant at the drift value 6, .

The vector of mean errors E(f(B) — £(y0.)), the matrix of second moments
EfP)-£(v0.)E(P)—£(y0.))’, the covariance matrix Var(f(B) —f(y0.)), and the vectors of
skewness and kurtosis for the errors f(B)—f(y6.) were approximated for 11 observation points
using a Monte Carlo method. Mean errors increase steadily from the known head boundary at
| the lower end of the system to the known flux boundary at the upper end, where they are large.
| Terms in the second moment matrix and correlations computed from the covariance matrix are
large, especially near the known flux boundary. Values of skewness and kurtosis indicate that
the distribution of f(B) —£(y0.) is not normal. These results all show that the system total
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Figure 7-20. Probability plot of weighted residuals w2 (Y —f(y0)) (dots), sample mean (solid
line) of ordered, simulated, weighted residuals from the incorrect distribution

N@O,d-R)S (é) /(n— p)), and plus and minus 2 standard deviation limits (dashed lines) of the
ordered, simulated, weighted residuals from the same distribution for example 2. Matrix w; is
used to compute R and is the diagonal matrix [wy, ].

nonlinearity is large and that model error has the potential of having a large, possibly
detrimental, effect on regression modeling of the flow system.

Measures of total model nonlinearity, model intrinsic nonlinearity, and model combined
intrinsic nonlinearity defined by (6-56) - (6-65) were computed using weight matrix @,
calculated as described in the next paragraph. These values show that the model as written in
terms of average values is highly nonlinear, but confirm that it has no model intrinsic
nonlinearity. Model combined intrinsic nonlinearity also is zero for g(y0) =4, (the predicted
value of hydraulic head at the known flux boundary), but model combined intrinsic nonlinearity
for parameters In7 and W is larger. Subsequent analyses of regression results indicate that these
model combined types of intrinsic nonlinearity are both negligible.
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| Hydraulic head data Y for regression analysis were obtained by adding a vector of zero-

mean random normal deviates having a standard deviation of 0.1 to f(B) obtained as a
realization from the Monte Carlo process. This simulates the additive influence of a small
observation error on the data and adds only 0.01 to the diagonal elements of the second moment
matrix; model error completely dominates the process. Thus, analysis using these data tests the
robustness of the theory when the assumption of small model-error variances is not satisfied.

Each diagonal element of @ used for the regression was obtained by inverting the sum of 0.01
anda diagonal element of the second-moment matrix.

Regression using ® = ® produced the estimate 0. The vectors of residuals Y —f (yé)
and weighted residuals @"?(Y — f(y0)) were analyzed for signs of spatial correlation inherited
from model-error correlations and non-normality resulting from the non-normal distribution of
f(B)—£(y0.). Probability plots were made of weighted residuals together with theoretical
' measures consisting of the means plus and minus two standard deviation limits of ordered,
| simulated residuals generated by Monte

Carlo simulation from both the T T T
theoretically correct distribution of . 21 . .
residuals and the (incorrect) distribution é -~ L * |
that would be used in field studies 0D . e
(NO,d-R)S®)/(n- p)). The I e
residuals lie within the limits of the % g:e A e Tt e i
correct distribution, but three points lie g -

outside of the limits for the incorrect 2k . 1
distribution. The plot of weighted .

residuals in relation to weighted e e 0 0 2 30 40 w0 &
function values @, *f (}'é) shows a WEIGHTED FUNCTION VALUE { w’G’ff('yé))
suspicious, but not abnormal, pattern. Figure 7-21. Plot of weighted residuals

Both the mean weighted residual and
the slope are negligible, which is
predicted if both model and system
types of intrinsic nonlinearity are small.

Linearized and nonlinear 95
percent confidence intervals for In7,, W, and g(y0.) = h,. demonstrate that correction factors
(¢, values) must be used because several uncorrected confidence intervals do not contain their
true values In7,, W, or h,., whereas their corrected counterparts do. The nonlinear confidence
intervals also show the effect of a severe ill-conditioning problem involving a very large
correlation between él (In 72) and éz (W) . That is, one limit of each of the intervals is unique
only for the ratio W /InT . Thus, the nonlinear confidence intervals for In7, and W are
unbounded on one side.

Regressions also were conducted using Gauss-Markov estimation and ordinary least
squares (o =I). Only linearized confidence intervals were computed. When no correction
factors are used, linearized confidence intervals obtained using Gauss-Markov estimation (which

wY2(Y —£(y9)) in relation to weighted function
values wl’f(y0) for example 2. Matrix wy; is the
diagonal matrix [wg, ].
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Figure 7-22. True zonal values In7,,, W., (i =1,2,3), and 4,., their estimates obtained when @
is unknown, and their 95 percent confidence or prediction intervals for example 2.

require no correction) are largest and corresponding uncorrected intervals obtained using
ordinary least squares are smallest, with uncorrected intervals obtained using ® = @ lying in
between. These results primarily reflect the fact that unless S (6) /(n— p) is divided by a factor
that corrects for spatial correlation, this quantity considerably underestimates E(S(0.))/n when
o =& (where the factor equals 0.199) and for ordinary least squares (where the factor equals
0.0707). Correction using c,, which contains the factor, produces confidence intervals obtained
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Table 7-11. Containment probabilities for 95 percent confidence and prediction intervals when
® is unknown for example 2.

a. Corrected intervals b. Uncorrected intervals
Variable No. Containment Variable  No. Containment
outside probability outside probability
interval Interval’
InT, 37 0.926 InT, 54 0.892
InT, 0 1.00 InT., 177 0.646
" InT., 23 0.954 InT., 77 0.846
/ W, 42 0.916 W, 62 0.876
w., 38 0.924 w., 63 0.874
W, 41 0.918 W, 85 0.830
J h,. 0 1.00 hp* 188 0.624
¥, 13 0.974 Y, 153 0.694
' Computed for 500 realizations N Computed for 500 realizations

c. Corrected intervals computed

using ® = @ .

Variable No. Containment
outside \ probability
interval

InT,, 33 0.934

InT, 27 0.946

| InT., 29 0.942
| A 34 0.932
w., 31 0.938
W., 37 0.926
h 26 0.948

Computed for 500 realizations

using ® = @ that are larger than corrected intervals obtained using ordinary least squares, which
| are in turn similar to the intervals obtained using Gauss-Markov estimation.

The case involving correlated values of In7, was examined to test the concept outlined in
| section 3 that when correlation is manifested as a trend, the trend should be considered to be the
- drift. It was found that model error and the effect of correlation could be reduced considerably
by removing the trend from linearly trending In 7 data generated from a stationary process
having exponential covariance with a long correlation length. The need to use correction factors
when computing confidence intervals was eliminated.
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For example 2, the stochastic process involves both 7 and W varying grid cell by grid
cell. Drift values are defined for three zones. All grid-cell values In7, and W,, where i is a grid-
cell number and there are N cells, are assumed to be statistically independent, so that g, =In7,
has the normal distribution N(6,,0.5%), k =1,2,3,and B, =W, has the normal distribution
N@@,,0.0001%), where k =4,5,6.

As for example 1, the vector of mean errors E(f(B) —f(y0.)), the matrix of second
moments E(f(B)—f(y0.))F(B)—£(y0.))", the covariance matrix Var(f(B) —£(y0.)), and the
vectors of skewness and kurtosis were approximated for 32 observation points using a Monte
Carlo method. Model results were obtained with an integrated finite difference model. The
magnitudes of mean model errors are generally small, but are measurable in one zone and at
pumping wells. Diagonal elements of the second moment matrix correlate closely with
magnitudes of mean hydraulic heads, E(f(8)). Correlations computed from the covariance
matrix are often small; only 12 out of the possible 496 distinct correlations are over 0.5. Values
of skewness and kurtosis again indicate that the statistical distribution of model errors is not
normal. Thus, even in the absence of widespread large correlations, model errors may have a
significant effect on model analyses.

Values of the same model nonlinearity measures used for example 1 indicate that the
model for example 2 is not as nonlinear as the model for example 1. Model intrinsic nonlinearity
is larger than for example 1, but is small. Values of the model combined intrinsic nonlinearity
measures for all six parameters and a predicted head (%,) are all of the order of 107,
Therefore, model intrinsic nonlinearity and model combined intrinsic nonlinearity should have
little influence on model predictions and uncertainty analysis.

The philosophy of obtaining the hydraulic head data Y for example 2 is the same as used
for example 1. Zero-mean random normal deviates having a standard deviation of 0.1 were
added to f(B) obtained as a realization of the Monte Carlo process to yield an error structure
dominated by model error. Weight matrix @ was obtained in the same way as for example 1.
Regression produced estimates of the three zonal In7 parameters, the three zonal /¥ parameters,
and three hydraulic heads defining the hydraulic heads along a specified head boundary.

Probability plots for the weighted residuals obtained as for example 1 suggest that the
weighted residuals follow the theoretically expected normal distribution. However, in contrast to
example 1, the weighted residuals also lie inside of the two-standard deviation limits for the
incorrect distribution, which means that this plot, which would be used in field studies, would
not detect the influence of model-error correlations. The plot of weighted residuals in relation to
weighted function values has no visually apparent abnormalities; the slope and mean are both
small in magnitude. These results suggest small model and system types of intrinsic
nonlinearity.

Comparison of corrected linear and nonlinear confidence intervals for all six In7 and W
parameters and 4, shows that the effect of model nonlinearity is small. Magnitudes of the
correction factors show that all intervals need correction using the correction factors. The
prediction interval contains its predicted value Y,, which is considerably different than 4,,. .

This difference shows the large effect of heterogeneity in 7, W, or both.
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A Monte Carlo process consisting of repeated applications of the procedure used to
calculate the nonlinear 95 percent confidence and prediction intervals was used to check the
accuracy of the intervals. Both corrected and uncorrected intervals were computed. Corrected
confidence intervals and the corrected prediction interval were found to be accurate, the average
containment probability being nearly 0.95. In contrast, uncorrected confidence intervals were
found to be too small, the largest and smallest containment probabilities being 0.892 and 0.656,
respectively. The uncorrected prediction interval is accurate, however,

The Monte Carlo results also were used to check for bias in E(f (yé)) and E(g(yé)) , the
latter applying for the six In7" and W parameters and 4,. These means should be nearly
unbiased for a model with small model and system intrinsic, and model and system combined
intrinsic, types of nonlinearity. This was found to be true, with the biases in E(f (yé)) being
negligible and the largest percent change in E(g(yé)) from E(g(y0.)) being 7.35 percent for
g(y0)=6,=W,.

Regression estimates and linearized confidence intervals also were computed based on
Gauss-Markov estimation and ordinary least squares. In contrast to the results of example 1,
Gauss-Markov estimates are different from estimates obtained using ordinary least squares, and
linearized confidence intervals obtained using the former method are generally smaller than
corresponding corrected intervals obtained using the latter. Also in contrast to example 1,
estimates and confidence intervals obtained using Gauss-Markov estimation are very similar to
corresponding estimates and corrected confidence intervals obtained using ® =®.

The entire analysis yielding regression estimates, confidence intervals, and prediction
intervals was repeated for the case where the weight matrix is unknown. Errors were grouped
into three groups according to similarities in hydrogeology, sensitivities, and residuals obtained
using ordinary least squares. An additional weighting adjustment was made to observations at
the two pumping wells to account for the large model errors at these points.

The nonlinearity measures and the results of analyzing the residuals from the regression
are very similar to the corresponding measures and results obtained using ® = ®. Regression
estimates and linearized confidence intervals for parameters are similar to the corresponding
estimates and intervals obtained using ® = @ ; the prediction interval is smaller than the one
obtained before. Nonlinear confidence and prediction intervals can be much larger than those
obtained using ® = @. This appears to result more from the logarithmic form of £(0), which
causes weights to be calculated as part of the procedure to obtain the intervals, than from model
nonlinearity.

A Monte Carlo analysis of the accuracy of the confidence and prediction intervals
confirms that the large intervals are very conservative. The other corrected intervals are not
quite as accurate as the ones obtained using ® = @ because the containment probabilities are all
less than 0.95, the smallest being approximately 0.92. The correction factors, which were
derived assuming known weights, are less accurate when calculated using weights calculated
during the regression; use of the bounds would produce much larger intervals. All intervals need
to be corrected; the containment probabilities for uncorrected nonlinear confidence intervals
range from 0.624 to 0.892.
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8. Summary and Conclusions

Application of geostatistical and statistical optimization procedures to ground-water
model calibration and uncertainty analysis is hampered by two pervasive problems:
1) nonlinearity of the solution of the model equations with respect to some of the hydrogeologic
input variables (termed system characteristics), and 2) detailed and generally unknown spatial
variability (heterogeneity) of some of the system characteristics. Because of the lack of detailed
site-specific information on heterogeneity, heterogeneity is often described geostatistically.
However, efficient inclusion of both nonlinearity and heterogeneity in geostatistical and
statistical optimization formulations of ground-water models has remained elusive. This report
describes a new theory and approach for efficient modeling of ground-water flow to include
nonlinearity and a geostatistical description of heterogeneity using a small number of model
parameters. The theory provides a sound framework for 1) lumping and smoothing the system
characteristics to define the model parameters and 2) estimating the parameters and assessing the
uncertainty of the estimates, model functions computed using the estimates, and predictions to be
made with the model.

The following general conclusions can be drawn from this report. A brief summary of
the results leading to each conclusion also is included.
1. The vector of system characteristics, B, can be replaced with a lumped or smoothed
approximation Y0, (where 7y is a spatial and temporal interpolation matrix) when constructing a
ground-water model. This idea is used because B, which contains both small and large scales of
variability (or heterogeneity) in such properties as hydraulic conductivity, recharge, discharge,
boundary conditions, pumping rates from wells, and other quantities that characterize the
ground-water system, has too large a dimension to be estimated using the data normally
available. The small-scale variability contained in B is accounted for by imagining B to be
generated by a stochastic process. Vector y0, is a spatial and temporal average having the same
form as the drift, Y0, of the stochastic process, but is a best-fit vector to B. Vector 6. does not
have to be a vector of effective values. A model function f(B), such as a computed hydraulic
head or flux, is assumed to accurately represent a field quantity because of the detailed nature of
B, but a model function f(y6.,) contains error resulting from lumping or smoothing of B by
v0.. Thus, the replacement process yields mean model errors of the form E(f(B)— f(y0.))
throughout the model and correlations between model errors at points throughout the model.
This can be regarded as the penalty paid when replacing B with y0.. The nonzero means and
correlations can have a significant effect on construction and interpretation of a model that is
calibrated by estimating 0, .
2. Vector 0, can be estimated as 6 using weighted nonlinear least squares techniques. The
estimate f (y@) (where fis a vector of computed values of one or more model functions
corresponding to data Y at observation points used for the least squares) is a biased estimate of
f(y0,) because of (total) nonlinearity in f(B) and intrinsic nonlinearity in both f(8) and f(y0).
(Intrinsic nonlinearity in f(B) or f(y0) is the portion of total nonlinearity that could not in
theory be eliminated by some unique transformation of B or 0, respectively, although to yield
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only small bias, small intrinsic nonlinearity in f() must be combined with the requirement that
approximations of second derivatives of f(8) explained in appendix C be accurate. Special
terminology was applied for the various types of nonlinearity, and the reader is referred to
section 4 for an explanation.) When considered to be an estimate of f(f8), f (yé) is biased only
because of intrinsic nonlinearity in f() and f(y0). Because the intrinsic nonlinearity can be
small and the approximations can be accurate, f (yé) can be a nearly unbiased estimate of f(j),
but, because total nonlinearity is generally much larger, f (yé) can often be more biased as an
estimate of f(y0.). Analogously, the prediction g(yé) (where g is some function of parameters
of interest to the investigator) is a biased estimate of g(y0.) because of (total) nonlinearity in
g(B) and combined intrinsic nonlinearity in g(B), f(B), g(y0), and f(y6). (Combined
intrinsic nonlinearity is the portion of total nonlinearity in the pairs g(B) and f(B) or g(y0) and
f(y0) that could not in theory be eliminated by some unique transformation of B or 0,
respectively. Again, special terminology was applied for the various types of nonlinearity, and
the reader is referred to section 4 for an explanation.) When considered to be an estimate
ofg(PB), g(yé) is biased only because of combined intrinsic nonlinearity or inaccurate
approximations of the second derivatives of f() and g(B), as explained in appendix C.
Combined intrinsic nonlinearity may often be larger than intrinsic nonlinearity, but should
generally be much smaller than total nonlinearity, so g(y@) should generally be expected to be
less biased as an estimate of g(B) than as an estimate of g(y0.). An investigator would
probably be more interested in estimates of the real variables f(B) and g(B) than the fictitious
variables f(y0.) and g(y0.), so the extra component of bias with respect to the functions of
v0. may not be too important. In any case, the predictive accuracy of a model is strongly tied to
the degree of intrinsic nonlinearity and combined intrinsic nonlinearity of the models f() and
f(y0), and predictions g(B) and g(y0). As a final point of interest, the forms of the terms
expressing bias from total nonlinearity contained in the biases E(f (y@) —f(y0,)) and

E( g(y@) —g(¥0,)) show that the terms express an interaction of heterogeneity and nonlinearity
because the terms equal zero if there is no small-scale heterogeneity, a condition that is
expressed as 3= 0 and y =1 (the identity matrix).

3. The correct weight matrix to use when estimating 0 and evaluating uncertainty in 0,f (y@) ,
and g(yé) is the inverse of the second moment matrix for the total error vector,
Y-£(y0.)=Y-£(B)+f(P)—£(y0.), where Y —f(B) is an observation-error vector and

f(B) —f(y9.) is the model-error vector. However, Obenchain (1975) argued that use of this
matrix can produce a poor model fit to the data Y. In cases where this proves to be true or where
the data on B are insufficient to compute this matrix, a diagonal estimate of it may be used. This
diagonal weight matrix is ideally composed of inverses of the diagonal elements of the second
moment matrix, but for practical computation the errors may be grouped based on similarities in
factors believed to cause the errors. The theory implies that a weight matrix based only on
observation errors would not be a good substitute unless model errors were small.

4. Distributions of functions of the sums of squared, weighted errors that are F and ¢
distributed for a classical linear model form the basis for confidence regions for 0., confidence
intervals for g(y0.), and prediction intervals for g(y0.)+ v, (where v, is a predicted
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combination model and observation error) used for model uncertainty analyses. A combination
Taylor series and perturbation technique that assumes the variances of Y —f(y0.) and
f(B)—f(y0.) to be small, with the latter being much smaller than the former, was used to derive
these distributions for a nonlinear model and an arbitrary weight matrix, the latter to allow for
the choices for the weight matrix given earlier in this section. The functions of the sums of
squared, weighted errors were found to have distributions that are multiples of the F and >
distributions, where the multipliers are termed correction factors. The correction factors are
functions of intrinsic nonlinearity of f(y0), combined intrinsic nonlinearity of f(y0) and g(y0),
and the deviation of the weight matrix from the inverse of the second moment matrix for

Y —f(y0.). Corrections for nonlinearity in f(8) and g() cannot be made readily.

5. Additional analyses (appendix F) that do not use Taylor series and perturbation expansions
show that the corrected F and #* distributions apply approximately even when the model and
observation errors are large. However, the analyses also show that the approximations should
get worse the further the distribution of Y —f(y0,) deviates from normal, and the correction
factors do not directly include these non-normality effects. Two examples where the model error
variance composes most of the total error variance, and both are large, yield results that are
predicted accurately by the theory, even though Y —f(y0.) in both cases is definitely not
normally distributed. In particular, approximate nonlinear confidence and prediction intervals
have close to correct containment probability if the critical # value is multiplied by the
appropriate correction factor, but intervals can be much too small if the factor is omitted. More
study is needed to determine the potential for inaccuracies from assuming Y —f(y0.) to be
normally distributed when it is not.

6. Magnitudes of the correction factors are problem dependent. Normally the contribution from
intrinsic nonlinearity of f(y0) can be neglected; the contribution from combined intrinsic
nonlinearity of f(y0) and g(y0) was observed to be small for the two example problems, but
this may not always be the case. The importance of both of these contributions can be tested.
Contribution from model error can be minimized by using a structure y0 that accounts for as
much variability in the field set B as possible, consistent with the necessity of designing a
nonsingular problem. However, results from example 2 show that even localized large
correlations resulting from model error may have a significant effect on the magnitudes of the
correction factors and thus on the confidence and prediction intervals. The localized correlations
would probably not be detected by an analysis of residuals. Therefore, prediction intervals
should be tested for accurate containment probability by using techniques such as the cross-
validation techniques proposed by Christensen and Cooley (1999b). Any new data also should
be similarly tested to determine whether or not they are contained in their prediction intervals
with nearly correct probability.

7. When the geostatistical data are insufficient to permit estimation of the correction factors or a
diagonal weight matrix, then a method that assumes the weights to be unknown can be used to
estimate 0, and compute confidence and prediction intervals, with approximate bounds
replacing the correction factors. To use this method, only the error grouping discussed in section
4 needs to be known. The method will probably produce conservative confidence and prediction
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intervals if most of the variability in the diagonal second moments can be accounted for by
grouping the errors. Prediction intervals often will be more accurate than confidence intervals if
the variance of v, is accurately known.

8. The theory developed for modeling ground-water flow in heterogeneous media using
regression methodology explains the observed field results listed in the introduction:

a) Estimates f (yé) and g(yé) often are physically realistic or close to what should be expected,
even when effective values of the form of 6 to replace B are known not to exist. Biases are tied
to the magnitudes of intrinsic nonlinearity of f(8) and f(y0), and combined model intrinsic
nonlinearity of f(8) and g(B), and f(y0) and g(y0), all which can be small. If the major
hydrogeologic features are accurately contained in a model, the biases can be reduced further.
The importance of the intrinsic and combined intrinsic types of nonlinearity for f(y0) and g(y0)
can be evaluated for any particular model by using measures derived in this report and in
previous studies (Linssen, 1975; Johansen, 1983). Evaluation of the types of intrinsic
nonlinearity for f(B) and g(B) is more difficult, but can be carried out by analyzing residuals.
The analyses carried out for the two examples in this report indicate that biases from intrinsic
nonlinearity are insignificant for both them. However, development of better diagnostic
methodology is needed, and this is beyond the scope of this report.

} b) Residuals Y —f (yé) often behave as if the model were linear and as if errors Y —f(y0.) had
' a zero-mean normal distribution. If intrinsic nonlinearity in f(8) and f(y0) is smalland  has a
normal distribution, then the residuals have a zero-mean normal distribution as if the model were
linear and as if Y —f(y0.) had a zero-mean normal distribution. Model nonlinearity and model
error do not manifest themselves as an abnormality in the residuals in this case. Both examples
have residuals that appear to have zero-mean, normal distributions. In a field situation, log
hydraulic conductivity is known to often have nearly a normal distribution, which yields the
required near-normal distribution for at least some elements of B .

c) Some confidence intervals appear to exclude reasonable values; whereas, others do not. This
characteristic is explained by correction factors that can vary greatly from one confidence
interval to another; uncorrected confidence intervals can range from accurate to highly
inaccurate. For example, in example 2 the ordinary least squares confidence interval for the
recharge in zone 2 is only about 15 percent too small without correction; whereas, the ordinary
least squares confidence interval for log transmissivity for zone 2 is about 425 percent too small
without correction.

9. Finally, although not emphasized earlier, it is worth noting that model function f(B) can be
interpreted very broadly. For example, f(B) can be a model function for various types of
models, including stochastic models such as proposed by Neuman and Orr (1993) and
Tartakovsky and Neuman (1998). Function f(f) can even be interpreted as data directly on B,
suchas f;(B) = B, (the ith error-free observation, which is the jth element of §). If this is the
only type of data in f(B), then the entire theory would cover the use of direct observations of
to construct a model. More commonly, the data could be mixtures of more than one type, as, for
example, data on a model function such as hydraulic head and direct observations of B, and

f(B) would be defined accordingly.
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. . , ,
Appendix A — Evaluation of E(x'A x)(x'A jx)
Let x =[x,] be a zero-mean normal random variable so that
x~ N(0,Ic?) (A-1)

where I is the identity matrix and o is an arbitrary variance. Then, for arbitrary symmetric
matrices A; =[a,] and A, =[a,],

E(x'A x)(x'A ;x)
= E()}; ;a,.k,xkx, )(%)Zr}ajq,qu,)
= §;§ ;a,-,dajq,E(xkx,qu,)

=33X3aua,, (6,0, + 54,0, +846,)0"
qr

4
(% ;aiklajlk +§Zl:aik1ajkl +§Zl:aikkajll)o-

(%;aikkaﬂl + 2§;ail¢1aﬂk )o!
r(A)r(A )ot + 2tr(A A Yot (A-2)

where 6, is the Kronecker delta,

Li=j
6,j={ (A-3)
0,i#j

and the standard result E(x,x,x,x,) =(5,,6, + 0,0, + 6,0, )c" is obtained by using the
characteristic function for a multivariate normal distribution (Anderson, 1958, p. 39).
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Appendix B — Second-Order Correct Parameter and
Parameter Function Estimates; Third-Order Correct Sum of
| Squares Estimate

Second-Order Correct Parameter Estimates

To develop | and q in 6 -0 =1+ q, methods used by Johansen (1983) are extended to
include model error from heterogeneity. First, expansion of f(y0) through second order around
f(y0) using a truncated Taylor series yields

| £.(v9) =f,.(yé)+Dfi(e—§)+%(9~§)'D2f,. 0-0);i=12,...,n (B-1)

‘where Df, and D’ f, are row-vector and matrix components of Df and D’f as defined by

(2-1) and (2-2). They are evaluated at 6 = 0. Second, use of (B-1) and (4-4) gives, up through
| second order in U and e,
A —_ ~ f— 1 A — ’ A —
1:00) = £,(16)+ Df,(6-0)+ (6 -6)'D" £, (6-6)
— 1 ,
=0+ D0+ +-1+'D £, (I+ @)

~ £.(y8) + Df1 + Df q + %mz 1l (B-2)
Df, =Df, + (0-0)'D*f,
~Df, +I'D’ £, (B-3)

where Df’,. indicates evaluation at 6 =6 . Third, S (0) is minimized using (3-35), (4-2), (B-2),
and (B-3), keeping terms up through second order in U, e, or their product. The result is

EDfw, (Y, - £,(19))
~S3(0f/+ D’ fDo,(, - £,(40)-Df1-Df,q - %I'szjl)

Lo Ly
~231Dflo, U, + e Dj,f,e-Df,I—ijq-;lDijl) +22D*flw, U, —Df D
i g L)
=0 (B-4)

Because | is the first-order solution, it must satisfy

Z§Dfi""ij U, -Dfh=0 (B-5)
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or, in matrix form,

| = (Df'oDf) ' Df 0U (B-6)
Putting (B-5) into (B-4) gives

3D/, (%e'n; fe-Dfq -%l'n2 SP+3ED* 1o, U, ~Df)

=0 (B-7)
Now, use of (B-6) in the last term in (B-7) yields

;§sz,. lw, (U, - Df)D)

= 2D/, lo,(U - Df(Df'oDf) "' Df o U)

1 1 1

1
- %D, lo,0 (I- 0> Df(DfoDf) " Df'0?)o?U
_r !
=rD’flo,0 *I-R)o?U
1

=D o0 02Z

1
3D, lo?Z (B-8)

where ®, istowiof ®, o'’ isrowiof ®/*, Z=(I-R)e"?U, and
R = o' ’Df (Df'oDf) 'Df'w"?. Thus, (B-7) becomes

1

1 r r r r )
7Dl (e D f,e~I'D’f)~DfoDfq + 3D’ fl;Z =0 (B-9)
or
L
q=(Df'oDf)" (ZD? flo?Z + ;Df’z ®;(e'D} f,e—-I'D’ £,1) (B-10)
i J

where @ is columnj of ®.

Second-Order Correct Parameter Function Estimates

An estimated model function value f, (0), a residual Y, — f, (v0), and a prediction
g(y0) are developed using | and q. An estimated model function value is expressed to second
order using (B-2), (B-6), and (B-10) as
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f,-wé)zﬁ(yé‘>+nﬂ+nﬁq+—;—l'nzﬁI

_ £.(y8) + Df,(Df'oDf) ' Df'oU + Df,(Df'oDf) " (D2 fiko > Z

+—;—Df’2mj(e'D2fe——lD2fl))+ Lip2s)
J
o Lo
- £.(y0) + ®, 20’ D (Df oDf) ' Df 02 (0>U +5(x)2(o'l ;co,.e'l); £,©
1 1 11 1
+—;—m, (I~ 0 DD oDf) ' Dfw?)o’e™ Ta D £+ D, (Df'oDf) " D* f,l0} Z
1 1 1
=ﬁ(ye)+m,2R(m2U+—;-Z(o e'sze)+ Lo, 2(I R)zm2|D2f,
J
1

+Df, (Df’me)"§D2 filo?Z ' (B-11)

where ®Y/? is row k of @'

A residual is defined as Y, — f; (yé) . Then a second-order approximation is computed
using (3-5), (3-27), and (B-11) as follows.

Y, - £,(0) =Y, - [, B+, (B) ACORI®) (79) £,(Y0))

1 1 1
~& +Dyfie+— e'DZfe o, 2R((o”-U+ Z(o e'DZfe)——— ,.Z(I—R),?m}I'szjl
1

-Df, (Df’mnf)‘l% D’ filoZZ

1

L 1 1
=0,2(I-R)@?U +%Zm§(e'D2fe—l D’ f,1)-Df, (Dmef)“2D2fklm,%Z (B-12)
J

A prediction g(yé) of g(B) or g(y0,) can be computed using an equation analogous to
(B-2) together with (B-6) and (B-10):

2(19) = 2(r8) + Dg(0-8) + -0~ 0/D’2 0-0)

~ g(y0) + Dgl + Dgq + %I'ngl

_ 2(y0) + Dg(Df'@Df) " Df U + Dg(Df'oDf) ' (£ D f,lm,%z
+%Df’§mj(e'D2 fre-VDf )+ Lrp2gl

= g(70) +Q'm5U +;(|'1)2 gI—Q'mim-l§mjl'D2 D
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1 1
1 5 - ’ ' - 2
+-Qo’e 1§o)je D}, f,e+Dg(DfoDf)" =D’ flo} Z
1 1 1
0 ) 1y ’ 2 1~ 2,0
=g(y9)+Qm2U+;(ID2gI—Q§)m}Iszjl)+;Q§:mfeD;fje
1

+ Dg(DfoDf) "' =D flo?Z (B-13)

where Q = o'’ Df(Df oDf) ' Dg’.

Third-Order Correct Sum of Squares Estimate

To obtain all of the terms through fourth order in U, e, and their product resulting from
the second-order expansion for f (y@) , the term I'D* £, q must be kept in (B-2). This does not
result in true fourth-order accuracy in U, e, and their product for the sum of squares because, in
order to obtain this, a third-order term of the Taylor series would have to be retained. This term
is not retained because evaluation of third-order derivatives of f is not practical.

With the added term, (B-12) becomes

1

1 1 1 1
Y, - £,(y0) r®,2(I- R)(@?U +§me(e'D2 f,e-I'D’£.)) - Df,(Df'oDf) ™" §D2 flo?Z
J
-I'D*f,q (B-14)

so that

S©) =2, - £,(08)w, (¥, - £,(r8)

I 1 1 1
~3 Y (0, 2(I-R)}0?U+ % To?(ED,f,e-I'D’f1)-Df, (Df’con)‘l§D2 filo2Z
i ¢ J

1 1 1
’ ) 2 1 2 (il '
-lDzﬁq)m,,(m/(l—R)(m2U+5§];m;(eD;j;e—|szjl))
1
-Df, (Df'con)"%Dz filolZ-I'D*f,q)
oo | 1 1
~(@*U+ 5%&)} €D} f,e-I'D’ £ ) A - R); §(m,. Yw,0,>(I-R)(0?U
1 1 1
1 2 (al ’ 2 1 2 (il r '
+;Zj}mf(eDf,,fje—lszjl))—2((ozU+5§a)f(eDzﬁfje—lszjl)) I-R)
1 1 1 il
’Zz(‘oi2)'wiszé’(Df'me)—le:Dkakol%Z_2U'(’)2(I"R)Zz(ﬂ)i2)'wil|’D2ftq
i ¢ i ¢
1

1
+>k:m;zr1)2 £, (Df'oDf)"'s Y Dfw,Df, (1)1"'<01)f)—‘§1)2 flo?Z
i ¢
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i 1

=(m2U+-;~§co§(e'D2f] e-I'D> £, )y - R)(m2U+ Zm (e'DZfe—Iszl))
1 1 !

-2(0?U +%Zm§ €D} f,e—I'D” £)) (X~ R)cosz(chon)'IZszklco,EZ

J

1 1 1
-2U'e2 (- R)Z(m YI'D’ f.q +Io; ZI szk(Dmef)"Zszklm,%Z

1

- (U +lzm5.(e'1)2fe-| D’ £,h)(1-R)(@?U +~ Z(oz(e’sze—I'szl))
l
-2U'e 2(I R)Z((o YI'D’ f,q +Zco ZID f, DfoDf)” ):szkl(u) (B-15)
where (I- R)o"?Df =0. Now, use of (B-10) gives

1 1 1

U'e?(I-R)%(0?)ID’ f,q=Z's(0})1'D"fq
1 1
=Z2'3(0?) D/, (Df'oDf) ' (D’ f o2 Z +—;-Df’2(o (€D’ fe—I'D* )
i J J

1 1
= zmgzmsz (Df'anf)'l§D2fklm,%z

k

[y

+5 20} o2 Z|'1)2 f, Of'oDf)™ Df’% o,(e'D% fe-1I'D*f)]) (B-16)
Finally, substitution of (B-16) into (B-15) results in

S(6) ~ (m5U+%Z_a)f(e'D2 fe=I'D’ £hyd- R)(sz +— Zcoz(e'D2 f,e=I'D*£.h)

-To 27ZI'D? £, (Df me)-‘znszlmZz

- %mZZI'DZ 7, (f'oDf) ' Df's o, (e'D? f,e—I'D* £ (B-17)
J

Proof that Any Squared Linear Combination E(l’(é -0,))? is Minimized
Through Third-Order Terms When o' o E(Y —£(y0.))(Y —f(y0.))

This proof is an adaptation of the Gauss-Markov theorem as glven by Beck and Arnold
(1977, p. 232-234). Use of (3-30) and (4-11) allows the solution for 0 -0, to be expressed in
the form

6-0. = (Df'oDf) ' Df'o(Y — £(6.)) + A (B-18)
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where
1
A = (Df'oDf)" (ZD* flo?Z + %Df T o, vy YDLLYYY) e -I'D*£ 1) (B-19)
i J

Let Qo? = E(Y —£(y0.))(Y —£(y0.))’. Then, if @ < Q' the solution 8, — 0. is given by
6, -0, =(DFQ'Df)'DFQ (Y —£(10.)) +A, (B-20)
where A, is A for which ® oc Q™'. Combination of (B-18) and (B-20) gives

6-0.=0,-0,+C(Y—£(10.))+A—A,
=(DfQ'DF) ' DIQ (Y - £(40.)) + C'(Y — £(y0.)) + A (B-21)

where C’ = (Df oDf) "' Df'o — (Df'Q'Df)'Df'Q™'. Now (B-21), the definition of Q, the fact
that C'Df =0, and the fact that expected values of third order products involving U, and e are
zero are used to obtain, through third order in U, and e, the squared linear combination

E'(6-0.))* = 'E(DfQ'DE) ' DEQ (Y - £(16.)) + C'(Y —£(¥0.)) + A)
«((Y-1(76.))Q'DE(DFQ'DE) " +(Y - £(0.))C’ + A)!

~I'(DfQ'Df) "o + 2C'E(Y - £(v0.))(Y — £(10,)) Q"' Df(DE'Q'Df)

+C'QCo)l

=1I'(DI'Q7'Df) 'lo? +1'C'Q7'Clo (B-22)

Thus, because C’ =0 when ® < Q™', E('(6-0. ))? is minimized through third-order terms by
selecting ® to be proportional to Q.
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Appendix C — Invariance of Terms Expressing Intrinsic
Nonlinearity and Combined Intrinsic Nonlinearity

Terms Expressing Intrinsic Nonlinearity with Respect to f(y0)

An expression of the form (I - R)Zo!/*x'D’ f,y is shown to be invariant under a unique
transformation of 0 to ¢(0). Under these circumstances the expression takes on a value
conforming to the smallest magnitude that the transformation of the matrix D? f, could have,
and the magnitude of the expression can be small if the transformation nearly linearizes f. Note
that the actual transformation that makes f most nearly linear does not have to be obtained to
show the required invariance.

The Jacobian for the transformation evaluated at © =0 is defined as the nonsingular
p X p matrix

o6,
J= =12,.., 1,2,..., C-1
{WJI p;Jj= p (C-1)

J

Then Df transforms to D,f and D*f transforms to D;f , where

Df) =D f = [%:l, i=12,..,nj=12,..,p (C-2)
J
and
2
Dif =[ o/ ;i=L2..,n7=012,..,p; k=12,....p (C-3)
0¢,0¢,

Both matrices are evaluated at ¢ = §(0).
With the above relations, the subject expression transforms from 0 to ¢ as follows.

1

I- R)Za)zx’sz-y

1
0% f;
_ 5 -1 2 ]
— (- 0*DI(Df D) Df o’ )Zw 2?1 agaok

1

— (T— 2 . 1 0 e o O o’
= (1 - o’ DEI(IDf'oDE)) " IDf'o )20) ,2151( D}/, 50+ Do) 5505,

1 1 1
2 r - 1.2 &L
= (I -02D,f(D,foD,f) 1D¢fm2)§; }g{:(a‘l’ D¢f,§g D¢f1m)x.~yk
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—(-wD JA(D,foD,)"'D, fo? LY zlkzla‘b sz,(,fg

1

=(I-R)x o2J'x)D}f,J"y) (C-4)

where (I-o'’D (D ,foD,f)"'D fo ”Z)zco;”mfj =0, and

1 1

R, = 0’D f(D f'oD )" D f'o’ (C-5)

Equation (C-4) shows that (I -R ¢)Z ®/*(J7'x)'D} f,(d"y) has the same form as, and is equal

to, (I- R)Z o'/’x'D? £,y no matter what transformation of the form ¢(0) (including @ itself) is

used. Thus, it is invariant under transformation of @ to ¢(8). Note that R also is invariant.
Forms for x (and y) encountered in this report are x =1, x = (Df'@Df) "' Df;,

x = (Df'oDf) ' Dg’, and x=06, -0 =(y'y) " y’e. Then forms for J'x are

J7'1= J7(Df'oDf) ' Df'oU
= (J'Df oDfJ) " IDf'oU
=(D,foD,f)"D,foU (C-6)

37 (Df oDf) ' Df’ = (J'Df o DY) J'Df’
=D, foD,)"'D, f/ (C-7)

J7'(Df'wDf) "' Dg’ = (J'Df oD£I) ' IDg’
=(D,foD,f)"'D,g’ (C-8)

I e = (W )1 (10)e (C-9)

where DgJ =D, g and

yi=|§ 20 96, \_)\ %, ci=12m;j =12, p (C-10)
06, of, | | o9,

which is evaluated at $ . Equation (C-10) is the transformation of y , where f is written as a
function of y0, and 0 is written as 0(¢) (the inverse transformation of ¢(0)). Because e and U
are random variables that are not functions of 0, they do not transform.
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Terms Expressing Combined Intrinsic Nonlinearity with Respect to
f(y6) and g(y6)

Next, an expression of the form Q'L @}*x'D’ f,y —x'D’gy is shown to be invariant
under transformation of @ to ¢(@). Therefore, if the same transformation transforms matrices
D’f and D’g to matrices that are small in magnitude, the expression will be small in
magnitude. That is, if the same transformation nearly linearizes both f and g, the expression will
be small in magnitude.

Transformation of the subject expression shows invariance in the same way as does (C-4)
as follows.

1
Q'%:cojx'szjy —xDgy

=D, (Df'(DDf)_lDf’a)%z m%fzp: azfj r p 0'g .
g I J i=1 k=1 ag}agk ol ko1 aelaak Vi

0 K
D - T
rr 06, of: 86,00,

1

1
=DgI(JDIwDfI) IDf'0? To} § O p

=190, !

LM'@

)X, Vi

o O¢ o oK)
) +D,
=1 k=1 (60 ¢g69k g59 69

M’u

)X, ¥y

-
(]

S
=

=D,g(D,foD,f)"'D fm 2 Y, — D2 ‘
v d e E 6, f 29,7 A & 26, 06, g 08, "

1

=Q,Z0} (YD} S,y -0 Diedy) (C-11)

where D,g(D,f'oD,f)"'D, f’m1/22m1’2D¢f -D,g =0 and

1

Q, =02D f(D,f'oD,f)"'D,g’ (C-12)

Terms Expressing Intrinsic Nonlinearity with Respect to f(f3)

Invariance of the form (I — R)Z ®’e'D7, f e can only be shown to be approximate. In
this case unique transformations ¢(0) and a(B) are used. First some preliminary relations are
needed. Because of the equality = 79 + e, where e is not functionally dependent on 0, the
chain rule of calculus gives

of, m Of 0O m  Of,
o 3 Y0 _2 Y . (C-13)
08, = 0P, 00, = 0P,

or, if evaluated at the set § = yé R
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Df = D ,fy (C-14)

The derivative of (C-13) is

%y_g 0 of, OB, _mm 3f
p) =L =33 g (C-15)
603 (691) = aﬂr (k—l aﬂk 7k]) aee Parlion aﬂkaﬁ ykjy ¢
or, if evaluated at the set p = 76 ,
sz Y'D fy’ i=1 2: N (C-16)

Finally, the Jacobian of the transformation a(B) evaluated at P =y is defined as the mx m
nonsingular matrix

J, = [:ﬂ" }; i=12,m;j=12,..m (C-17)
a;
so that
9
D,fJ, =D f= l:af },1_12, a1 j=12,m (C-18)
J

Next, the approximate relation of & to ¢ is obtained. From the definition [_3 = 'yé ,

dB=yd® (C-19)
Also
dB=J,da (C-20)
and
d0=Jdé (C-21)

Substitution of (C-20) and (C-21) into (C-19) and premultiplication of the result by J ;,1 yield
do =3, yId¢ (C-22)

Now, if @ and B transform similarly because B is just at smaller scale than 6, then yJ is an
approximate interpolation of J, , so that at p =y, J'yJ is approximately constant. With this
approximation, (C-22) can be integrated to give
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o~ 7L$ + [integration constants) (C-23)
where
A=J ;91 vJ (C-24)

With the above results, transformation of (I- R)z @) ’e'D’, ;e in an analogous manner
to transformation of (I — R)S ®/’x'D’f,y results in

1

I-R)zoleD}fe
J

1 1 Yww 0°f
= (I - o2 Df(Df oDf) ' Df'w? 2
(I- o> Df(Df'oDf) m)zm’5k=xaﬂaﬂk
: Lol w baf RV
=(1- 2Dfo’Df“‘Df’2 ®2 D2 C-25
A-0D A0 0D 0D otz § £ CEDLS BrDS, grpren (©29

where the derivatives are evaluated at p =y0. The term involving D_f must be written in terms
of D,f in order to remove it as was done in (C-4). First (C-2), (C-14), (C-18), and (C-24) are
used to obtain

D,f =DfJ =D fyJ = D, fJ;vJ =D, fA (C-26)
Next, approximation of 8’/ 9,0, evaluated at B = yé with its best-fit vector Aa, gives

o’a

9p,0pB,

~ A, (C-27)

where ag; i =1,2,...,m; k=1,2,...,m is a set of vectors equal to the set
(AW, A)'A'w 0% a./ 0,0, and wi is a set of weight matrices to be explained. Again, the
derivatives are evaluated at B =y0. Finally, substitution of (C-26) and (C-27) into (C-25) yields

1

I-R)zw2eD) f e
J

1 1

1
Ln m o da.
~(1-o?D (D ,foD,0)" D f(o2)2m121§1 z (8ﬂ, D.f— %5, +D, fa,)ee,
1
=(I-R,)Zo] I eYDLf,3 e (C-28)

If each approximation of D, f;6’a/9p,6p, with D, f,a, is accurate, then
(I-R)s0'/%e'D} f,e is nearly invariant and the term is small if D f, is small. If each
J
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approximation is not accurate, then the term may not be small even if D2 S is small. The
weight matrices are conceptually designed to give the most nearly invariant final result. An
approximation analogous to (C-27) is developed with a different perspective in paragraphs
containing (F-104)-(F-108), appendix F.

Finally, (C-4), (C-16), and (C- 28) are used to show that the expressions
I-Rx ®) ey YD f,¥(y'y) ' v'e and (I- R)S 02Dy f; @ YD, YY) v )e
are at least approx1mate1y invariant. First

1
a- R)Zcozey(w) DL fv(rn) Ty

1

=(I-R)Zoleyyn) D f,(’'Nve (C-29)

so that, with (y'y)"'y'e=x =y, (C-29) is of the form (I- R)T @ *x'D* £,y , which from (C-4) is
invariant. The difference between (C-28) and (C-29) gives thé second expression, which,
therefore, is approximately invariant.

Terms Expressing Combined Intrinsic Nonlinearity with Respect to

f(B) and g(B)

As for (I- R)Zm”ze'sz e, invariance of the form Q Zm”ze'sz e—e¢'D’ge can only
be shown to be approximate. The same basis and approximatioris as used to get (C-28) are again
used, but they are extended to involve g(B) also. For this note that

D,g=Dgl=D,gyJ =D, gJ/yJ =D, gk (C-30)

Then

1

Q'?w 2¢'D?2 2fe—eD’ge

1 1 lm m aZL m m 62
= Dg(Df'oDf) ™ Df" 2 :
g ( )" Df'o Z ®;x X %Gﬂke,ek z. 1aﬁaﬂk
-D g(D,foD,)"'D fmIZcoég Z(G;“sz % . p / Oa )ee
¢ j’=l ~ 6ﬂ, a jaﬂk al j aﬁ;aﬁk i“k
mm o ., Ou R
—X 2 (- -D,g_—+D e
5 2 op P8 op, " Pe8 ap.0p,.)
A B 1 lm m 6(1’ 2 aa
~D,g(D,foD,f)"'D,fo 22 ,22 > (—D.f +J ) €€
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mom oo ., O
"El kgl(aﬁi D.g B, +D¢gaik)eiek

1

=Q,zw2(J,e)D.f,(J &)~ (I, e)D g e) (C-31)
J

so that Q'L 0/ *¢'D% f,e—e'D ;ge is approximately invariant.

Finélly, use of (C-11), (C-16), and (C-31) shows that the expressions
Q'zo; %Yy YD, £y Ye—ey(y'y) " y'Digy(y'y) 'y'e and
Q'zo}’e(D} f, -y(y1) YD, £,y(0y) Ve — € (D} g —v(y'y) ¥ D} gy(y'y) " y)e also are
appjroximately invariant. The development is analogous to the development in (C-29) and the
discussion following (C-29).



142 A Theory for Modeling Ground-Water Flow in Heterogeneous Media

Appendix D — Third-Order Analysis of the Objective Function
When the Weights are Unknown

When the weights are unknown, an objective function can be written as (4-50):

1

#0) == ImIn($ n?) (D-1)
2 k=1 i(k)

where

n, =Y, - f,(yY0) ' (D-2)

Through third order in 7, , £(0) is shown in this section to be proportional to (4-47) plus some
constants, so that through second order in 7, the normal equations obtained by minimizing
£(0) are equivalent to the normal equations obtained by minimizing (4-47).

First a set of weights @ o ¥ = 12,...q , are defined from

-2
-1 - O-s

— 7. 2. =
@D, " i(zk:)E(Yi L (0D k L2,.,q (D-3)

Because the expected value and variance of ¥, — £,(y0,) are taken to be uniform in each group,

,-(% E(Y, - £,(¥8.))* =nE(Y, - f,(v6.))* (D-4)
so that
E(Y, - £,(¥8.))* =aw_ 0! (D-5)

Now expansion of £(0) through second order in 5} —E(Y, — £,(y0.))’ using a truncated Taylor
series yields

N l q 4 2 l q 5 2 2 _ -1 _2
£(0) ~ 5 E]nkln(nk(ono-g )+ 2 E]nk i(zk;) ) 02 ln([%‘j) ) —0g50;)

In( 3. n) (! - w0,02)0) -w,0] (D-6)

14 ’
+—-2n A A2
4k§1 ki(%j%;) o(m?)om3})

where the derivatives are evaluated at 7} = 2 =E(Y, — £,(y6.))’:

0 1 1)
om?) (&) 2 n, on ®7)
(k)
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? o 1 _ &
————— In(T 7? — Gk (D-8)
s " ) 2w o

Substitution of (D-7) and (D-8) into (D-6) produces

14
Z(0)~;anln(nka)6k0' ) +— Za)Gk > (7] -, o?l)

20, k= ick)

7 @?

1
_—— G Y Y (n?-w -
ot B ! - 0G0 0] —0g07)

2
1 4 1 q n 1 9 @ )
=—¥nln(nolcH+—3 @, ¥ n’ - >k ¥ Y,
261 " (o502 207 k=1 O w3 dotia m i® Ja
1 4 2 N
Za) zn 2o, XN ——
40' k= Ok r(k)n 40-52 & Yo Ty
2
9 @ 14
- Ls@o)-— 3%y s L3 n et o2)-22 D-9
0'8 ©) 40-;1 k=1 Ry, (k) j(k)ﬂl 77, = n(n, Gk 6) (D-9)

where n = é n, . Thus, through third order in 7,, £(0) and S(0) + constants are proportional, the
k=
proportionality factor being >
Minimization of £(0) with respect to @ using (D-1) yields

Zvg 2 D, (Y - £,(78) =0 (D-10)
where
Wy &2 (¥~ £,(0)’ (D-11)

Also, minimization of S(0) using (4-47) results in
Log 2 D7, (4~ £,08) =0 (D-12)

From (D-9) it can be seen that (D-10) and (D-12) differ by terms of third order in #,. Thus,
through second order in 7, the two sets of normal equations are equivalent.
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Appendix E — Second-Order Correct Constrained
Regression Estimates; Third-Order Correct Constrained
Sum of Squares Estimates

Second-Order Correct Constrained Parameter Estimates for
Confidence Intervals

~

A Lagrange multiplier formulation is used to obtain a constrained regression estimate, 0,
of 0,. The approximation method and solution procedure are similar to the ones used in
appendix B to obtain 0.

Firstlet 0 -0 =1 + q, where T is the first-order term and q is the second-order term,
both of which are to be obtained. Then, a second-order Taylor series expansion gives, up
through second-order in U, and e,

£,(18) = £,(y0) + Df, (8- 0) + g(é ~8)'D*/,(6-0)

= /(48 + DfT+Df G+ %(T +@ DY, (T +9)

~ £(y0)+ Df T +Df g+ %T'Wﬂ (E-1)
and

2(y0) =g(10) + Dg(6 - 0) + %(6 ~0yD2g(6-0)

~ g(10) + Dgl + Dgg + %T’D2 o (E-2)
Next using (3-17),

£,(0.) = £,(y0) + Df,(0,-0) + %(e, —~0)'D?/,(6,-0)

= £,(y8) + Df,(y'y) ' y'e + ée’v(v'v)"szi (Y'y)'ye (E-3)
and

2(y8.) =g(y0) + Dg(6,-0) + %(e,, ~6)D’g(0.-0)

n rN=1_1 1 ' 1N roN-l o
=g(y0) + Dg(y'y) ’7e+;e YY) 'D’g(y'y ) 'y'e (E-4)
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Combination of (E-1) and (E-3), and (E-2) and (E-4), results in

£,49) =f,-(ye*)+Df,-(6—e.)+§(6—6>'1>2ﬁ(6—6) —%(9*—6)'1)21:(0*—6)

T P ) ~ 17 v 1, D ’ ’
~ f,(10.)+Df,(1 - (y'y) ' v'e) + Df,q +;| D*f 1 —507(777‘ D f,y(y'y)' y'e (E-5)
and

g(¥0) =g(10,) + Dg(6-0.) +§(6—6)'D2g(6— 0) —%(e,, ~0)D’g (8, -6)

1~
|

T PR ) ~ ' T 1 1, 1\ [
~g(y0,)+Dg(l - (y'y) 'y e)+ng+5 D’gl —Eev(vv)‘ngv(w)‘ve (E-6)

The constrained regression estimate is obtained by minimizing S(0) subject to the
constraint that g(y0) = g(y0,). This can be formulated as the Lagrange multiplier problem
(Boas, 1966, p. 145-150)

L(0,2) =S(0)+21(g(y0.) - g(¥0)) E-7)

Minimization of (E-7) is accomplished using (3-30), (4-9), (C-16), (E-5), and (E-6), keeping
terms up through second order in U, , e, or their product. The result with respect to 0 is

aL ) A >
- 22X Dfioy (¥, - £,(v0))-24Dg

~=22% (Of/+ D D)o, (¥, - £,(00.) - D, (T - (yy) ' v'e) - DS
—STDT +2ey(ry)! DS, (1) v'e) ~2(Dg’+ Dg)

=23z (Df'+ D*f N, (U, + %e’(Df«,f, —y(r'7)' YDA fy(ry ) y)e-Df, (1
01’ Ye) - D E--T' DT +—ex(r'y)' DY, (7' v'e) ~24(Dg’+ D¢ 1)
~-252Dfo, (U, + %e’Df, £, e=Df,(-(yy)'y'e) - D, § —%T'D%T)

—ZZZ‘,D2f,Twy(U,j -Df, (T—('y'y)_ly'e))-— Z/I(Dg'+D2gT)
ij
=0

or

' 1 r T ,\-1.,7 ~ lNr T
;%Df, a, U, +-2- engfje—ij(l—(y'y)lye)—ijq—;I D’f, 1)
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+2ED*f10,U, - Df,A-(yy)'y'e)+ A (Dg'+D%g1)=0 (E-8)
i

where Dz. and Dg indicate evaluation at = 6 . The result with respect to 4 is

oL

= =2(g(y0 0

Y) (g(y0.) - g(10))

~=2(Dg(F - (yy)"v'e) + Dgi + “T'D2gl ——e Yyy)' D’g(y'y) v'e)

=0

or

Dg(T-(y'y)"'y'e) + Dgg + 1Dl - e Ty'Y)' D (YY) ye = (E-9)
Because | is the first-order solution, it must satisfy

LI Dfjw, U, -Df, (I-(yy)"y'e))+ A Dg'=0 (E-10)

or, in matrix form,

T —(yy )‘l ye =D f'con)‘1 DfoU,+ A (Df’me)“ Dg' (E-11)
and
Dg(I—(y'yy'y'e) = 0 (E-12)

To solve for 4 (E-11) is premultiplied by Dg and (E-12) is used to get
Dg(Df'oDf)"'Df'oU, + ADg(Df'oDf) ' Dg'=0
or

r -1 [}
Dg® f'oDf) ' DfoU, (E-13)

A=-
Dg(Df'oDf) " Dg’

Then, substitution of (E-13) into (E-11) yields

Dg®f'oDf) ' Df'oU,
Dg(®f'oDf) "' Dg’

T-(v)"'y'e = (DfoDf)"'DfoU, - (Df'oDf) "' Dg’
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DgDg® f'oDf)™
Dg® f'oDf)" Dg’

1 1 1

= (Df'oDf) "' Df'o? (02 DfDf'oDf) " Df'n?

= (Df'oDf)" I - )Df'oU,

1 1
_ o’Df(Df'oDf) ' Dg'Dg(Df'wDf) ' Df'n’ )(‘);U
Dg® f'oDf)™ Dg' )

= (Df'oDf) " Df! % R——QQ 2U
(Df'oDf) 0?( QQ)(o

To evaluate q (E-14) is substituted into (E-8) to get

QQ’

1
Do, U, +- Le'D? fe) - chon(Df(on)“Df(oZ(R—Q QQ, -y,
J

- Df'oDfq '52 Df'o,1'D*f,1+3 D*f,To, (U.-DIA - (v'y)'ve))
J ]
+1(Dg'+Dgl)

; QQ'

___l [} 2 2 2 _1 2
2§Df0) e'D fje+cho QQ U. - Df'oDfq ZDfa) IDfJ

+% D, 1o, (U, -DE(1 - (y'y)'y'e)) +4(Dg’ + D’gl1) =0

where Df'o'’Ro"? = Df'o. Now

1
U. -Df(T <(y'y)"'y'e) =U, — DE(Df'oDf) ' Df'w? (R - QQ'

)(oZU
Q'Q
QQ’

Q'Q

1 1 1

= 0 2 (I1- o?Df(D f'oDf) "' Df'o? (R -

1
= (I-Df(DfoDf) ' Df w2 (R - )m2 U,

- Jov.

=0?(I-R+ QQ' )sz,
Q'Q

where RQQ'=QQ'. Let Z=(I1-R+QQ'/Q'Q)®"*U,. Then (E-15) becomes

- QQ’
—-ZDfm eD:fe+Dfw? —=
ﬁfl QQ

V. Dmef”—%z Dfo, 1'Df,T
+3 sz,.T(o?i+/1(Dg'+ D’gl)=0

or

147

(E-14)

(E-15)

(E-16)

(E-17)
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q=Dfo Df)'l(Dfm2 g% 2U +3 D2f|m2z+ EDfo, ;@D fe-TDf,1)
+A(Dg’ +D’gl)) (E-18)

Putting (E-14) and (E-18) into (E-9) permits evaluation of A :

Dg(Df'oDf) ' Df'o? (R - g% )mZU + Dg(Df'oDf) " (Df o> g% 2U +3D? 71 (02Z

+%>1:Df’m (€'D%f,e—1'D*f, 1) +A(Dg’ +D2gl))+ 1'D’gl - e’v(v'v )'D’g(y'y)'y'e
QQ’
Q'Q
+/1(QQ+Dg(Dmef)“D2gl)+ 'ngl——ev(vv)ng(w)

1 1

= Q'®2U. + Dg(Df'oDf)" zD2f|m5 +-zQ'm§(e'D2fe—| ‘D fT)

=Q'R- )coZU +Qm2U +Dg(Df(on)“2D2f,I(o2Z +— ZQ(oz(e'sze—l szT)

+ A(Q'Q + Dg(Df oDf) ' D? gI ) + 1'D? gl —e'y('y"y Y' Dg(y'y)'v'e

=0
where
QR ——g,%) —QR-Q'=0 (E-19)
Therefore,
i 1 -l 1 -
—E(Q'mZU. +Dg(Df'me)-‘§ sz,.Im?Z+5§:Q'm§ (eD} fre— 'szjl)
1~, i 1 ' o 1, Y1,

+5| Dgl —Eev(vv)‘ng(w)‘v €) (E-20)

where, through first order in the temporary variable £ (which is all that is required),

7 = (Q'Q +Dg(Df'oDf) ' D’gl)™ = (Q'Q+¢)”
~(QQ) " -(QQ+8)7?, ¢
=(Q'Q)"' - (Q'Q)’ Dg(Df'wDf) ' D¢l (E-21)

Putting (E-21) into (E-20) yields, through second order
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1 o1 1
Ar —b%(Q'sz. +Dg(Df'oDf) 'S D* £ l0?Z +%ZQ'0)§ (eD}fe—1 D2 f1)
i J

1~, T 1 ’ RS T ]
+5I D’gl —Eev(w)lng(w)‘v e)+

1 L1
Dg(Df'oDf) "' D’glQ'w2U. E-22)
Q) g(Df'wDf) " D°glQ'® (

Next, substitution of (E-22) into (E-18) gives

~(Df'o Df)“(Dfa)Zg% 2U +2 szlco2Z+ szm (€D} f,e- 1D f,T)

1

—(—(QmZU +Dg(Dfa)Df)"2D2f,|m2Z+ zQa)Z(e'D 2 fe-1'D2f,T)

1

Dg(Df oDf) ' D’g1 Qw2 U.)(Dg’ + D*gl))

T 'i'__ ' ) —1D2 1, _
D’g 2e7(7'v) gy 'y )(QQ)2

1 ' 1
’ - ) 2 T.. 27 1 ’ ’ T I
~ (DfoDf) ™ (Df'w? g—%mlu, +2 D/ 03,.2Z +-3Dfo,(e D, fe—1'D*f,1)

1
2

—@(szU + Dg(Df'wDf) s D’ f T} Z +%Z_Q’m?(e’D2fe—l’D D

Tr v 1, o P '
+;| D’gl ——ev(w)‘ng(H)‘v e)Dg’ +

1

Dg(Df'oDf) ' D’g1Q'@>U,Dg’

1
Q)
_ﬁq 0TU.D%T) (E-23)

Pairs of terms in (E-23) evaluate to become the following.

1 1
. 3QQ" 1 1

Dfo? —o?U, ———D 2U
*e® YV T

1 1
= Df 0’0’ Df(Df'oDf) ' Dg’ Q

l 1
0. ——L_DgQoL.
00® V' Tqo e
~0 (E-24)

1 :
z sz,. | (0,22 —;;—QDg'Dg(Df'(on)_IZ sz:' “)zzz

.
=( —éDg'Dg(Df’me)'l XD fle?Z

—

= Df'oDf (Df'oDf) ™ (I - 616Dg'1)g(1)f ‘oDf)™ )Df ' oDf (Df me)—lz D*f I aﬁ

1 1 1 1

= Df'o? (o> Df(Df ©Df)™ Df'oﬁ - IQ minf(Df'me)“‘ Dg'Dg(Df'oDf) ' Df w?)0?
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r

« Df(Df me)“z D flw?Z

= Df’mi(R QQ )m’Df(chon)"'Z D’f, |co2z (E-25)

R
%% Df'(l)j(e’])'zﬂfje_ I’Dij I)— ZL_Q}_QDglé:lejz(erDZ fe__ "D f I)

- % Df oDf(DfoDf) £Df'w, (¢'D); e~ D)

- %61_0 Df oDf (Df oDf) ' Dg’ > Qm]% (e'D’, fe—1'D’ £

= —;-Df’co% (m%Df(Df’a)Df)'l Df’% ®, - —é—Q—m%Df(Df'me)" Dg'Q'§ mé )e'D? fe— 1D’ £,T)
- % Dfw? R- %%) %j(oé €D} fe-1'D*£,) (E-26)

1

1
Dg(Df'eDf)"'D’glQ'w?U.Dg’ - 6%Q'mZU.DZg I

1
Q'Q)’

1 1 1
= —(I1-——DgDg(Df'oDf) " )D’gl —Q'®?U,
(Q,Qgg(m))gQ,Qw
: Q' %Df(Df Df)'D2gl ) %U (E-27)
=-Df'o?(R-—— ® ——=Qo’U. i
o?( Q'Q)m g Q0

Use of (E-24)-(E-27) in (E-23) yields

1 l
4 = (Df'oDf) ' (Df'w2 (R - gQ )m2Df(Df(on)"Z P> £l (02Z +— Dfm (R

' T 1 7y T [J 1, \~ [ AP
)Zw (e'D} fe~ sz-l)—-z-aal)g(l D’gl-ey(y'y) D’g(y'y)'y'e)

QU 2Dfl)f Df) ' DT — ’%U
QQ)co (Df'wDf) gQ,QQm .)

_QQ’
QQ

- Df’mi R -
3 QQ’
= (Df'oDf) " (Df 02 (R - 20 )(mZDf(Df me)“(z D2 f]1 co2Z D’gl —Q—QQ coZU )
1

+§§m§(e'nzf;e-7'n2fﬁ»—EQ—,Q—Dg'(T'DZgI erryy' D’g(y'y)'y'e)) (E-28)
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Third-Order Correct Constrained Sum of Squares Estimate for
Confidence Intervals

First a second-order correct constrained residual is computed using (3-30), (E-5), (E-14),
and (E-28) as follows.

Y, —f(vé) =Y, - £,(y8.) + £,(8.) - £,(10)
~ Uy 4~ e ‘D3 £, — vy YDLLy(r'y) ¥)e-Df,(T-(v'y)' y'e)-Df, q

—5 T 'D‘*fi T +5e’7(7'77‘ D2 f(y'y)' y'e
1
= U., -Df, Of'oDf) ' Df'o? (R - g%) 2U - (e’D2 fe-TD2ET)

- Df, O f'oDf) ' (Df'o? (R - g%)(mznf(nfml)f)—‘(zwfk |m,§Z Dgl ———Q m2U )

QQ
1 i~ i~ ~
+13 03D} fe-TD7f, 1) -1 Dg/(I'D7gT —e'ry'y /' Dglr'y )''e)
27 2 Q Q
(102 L QQ 3
= (D,Z(I—‘(Dzl)f(DfICODf)—lDf'(D QI ’DZ fj rD2f I))

-1 - ; T 1 ' l
_ Df, @ f'oDf) (DfmZ(R—g%)mZDf(Dfmnf) ‘e’ fklcokZ—nglﬂQa)zU.)
—1$D ("D*gT - ey(y'y V' D2g(y'y Y'y'e))

=co,.'5(1—R+QQ )(a)2U +12m (e'D} fe- IDZfT))
QQ
—m,._%(R QQ' )szf(Dmef)'l(ZDkalc),%Z Dlgl— 1 Q'm%U.)
Q'Q Q'Q
Q

®,? (—ﬁu D gl —ey(y'y V' D’g(y'y ) v'e) (E-29)

1
+—
2

As for computation of (B-15), the term 1'D? /,q must be kept in the approximation (E-1) in
order to obtain fourth-order accuracy in the approximation of the second-order Taylor series
expansion of f(y0). Thus, to obtain the approximation for S(8), this term is subtracted from
(E-29) and the result is used to get, through fourth order in U, , e, and their products,

S(8) = (Y - f(yé))'co(Y £(v0))

z(oﬂ(l-RJrgQ )(co"U +12m 2(e'D% f,e-1'Df,1))
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1 1 _1 ~ ~
0 (R-2Q )mmf(nfconf)-‘(zn ST Z-pigi Q’mZU.)+lm2—?—(l'D2g|

QQ QQ QQ

1 1

Yy )’ ng(y'y)'ly'e)—m'iz_w?T'sz,ﬁ)'co(m‘z(l—R+g%)(mzu oL sz(e'D 2 fe
J

"D’ f1)-0 (R~ g%)szf(Df'con)'l > D’ flo?Z-D* gTaaQ'mEU, )

1 1
1 - T T ' RS R ) ST ~
e 2 6%(' D’gl-e'y(yy)Y' D’g(yy)'y'e) - 2203' D’f,q)

z(sz‘+%Zm§(e'Di,fje—T'szjT))’(I—R+g%)((ozU +12(o (eD} fre— 1'D’f, 1)

+(0?U, +12co 2(e'D} f,e—1'D? fl)) Q (l'D gl-eyyy)' D’g(y'y)'v'e)

1

1 ) 1y 2,7 5 2 7 '3 ' , -
+————, (I'D*gT —e'y(y'y y' D*g(y'y )'y'e)’ + (=D JZIwEZ—D g'——, Q'®w?U.)' (D f'oDf)
4Q'Q i QQ
1

e Df'o2(R - -g%)minfa) foDf)™ = D’ f10?Z-D’ gTé—éQ'miU,)
-zULmia—mgQ s 1Tp? 1 (E-30)

Evaluation of the combination of the last two terms, using (E-28) for q , results in
2 07 %N 2 T 1 ’ : ’ ' -1 7 3 QQ -1 2
ED’*f10?Z-D gI%QmZU,)(Dmef) choz(R—Q )coZDf(Df(on) ED fl(o Z
-D’gl QQQmZU) 2sz I'sz O f'oDf)” (Df'o 2(R gQ o2 Df(chon)‘l(zD f|m2z
1 1
1 ’ T 1 1T T ’ 1, [
-D’gl QQQmZU D+7Ze; (e'D} fre- l'sz,-l))—;@Dg(l Dgl —ey(y'y)' D’g(y'y)'v'e))
1 1 r 1 ~ L
= _Z'z_ mf I'D’ £, f'oDf)™ 1)f'o)2 (R ——g,&)mzl)f(l)f'm])f)-lz_1)2 filo?Z
1 i QQ
+(—=Q coZU) 1'D’g® f'oDf) ' Df w? (R - )mZDf(Dmef)“ngl
QQ Q
1 QQ’ 1 ~
-Z zm§ 'szj(])f'me)"Df’mz(R—@)me (e'D} f,e— D2fT)
J j

1
¥ ~QfQ Z's 1 T'D* f, D) Dg'(I'D2gT —ey(y'y ) D g(r'y V' v'e) (E-31)
7

Substitution of (E-31) into (E-30) yields the final result,
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S(é)z(mfu.+%zmg(e'ngfje-T'szjT))'(I-R+gQ )(cozU.+120) D% fe-1'D’ £, 1))

1 1
5 1 PN ' o [ )
+(m2U«+EZm§(eD2fe -'D* £, 1)) ———Q(l 'Dgl —ey(yy Y D’g(y’y)'y'e)
J
1

1 T2 T [} N 2 [ P
+———(I'D’gl —e'y(yy ) ' D’gly'y ) 'v'e)’
4Q'Q

1 1
- Z'z @ 1'D’f,dfeDf)"' Dfw?(R - g%)mzma)fm])f)"zn f IwZZ

1

+(—— ! Qo)2U) 1'D*gD f'oDf) ' Df'o? (R - g%)aﬂnfa)fm])f)-‘n gl

QQ
~ LNy 1 QQ' 1
—Z'zmg I’szj(Df'con)‘lDf'coz(R—@)me(e’sze -'p*f,1)
6—1622 T'D? £, 0 1'oDf)  Dg'(I'D°gT —ey(r'y ' D gly'y I'v'e) (E-32)

Second-Order Correct Constrained Parameter Estimates for
Prediction Intervals

Again, a Lagrange multiplier formulation is used to obtain the required constrained
regression estimates, this time 0 and HNP ,of 0, and 0; . As will be shown, the solution can be
put into the same form as the solution for 0 for confidence intervals. Similarly, the required
functions of 6 and 9 have the same forms as the functions of © for confidence intervals.

The constramed regression estimates 6 =0+ | +§ and 0 = 0 +I are obtained by
minimizing S,(0,6,) subject to the constraint that g(y0)+v = Y ,»where v=Y,-6,. This
can be formulated as before as the Lagrange multiplier problem

L(8,6,,2)=S5,(0,0,)+24(Y, — g(y0) - v)
= (Y - f(y0)) W(Y —£(v0)) +2(Y - f(v0)y W, (¥, -0,) + W, (¥, -6,)’
+24(6, - g(v9)) (E-33)

To solve the problem (E-33) is minimized using (3-30), (4-9), (5-63)- (5 -65), (5-73), (C-16), (E-
5), and (E-6), keeping terms up through second order in U., U, , e, 8, —8,,, or their product.

y4 > ’
Definitions I = 9 -0, and ¢, = 9 -6 , allow the result with respect to 0 to be expressed as

oL T n T o ~
& = 25 EDFW,, - £,0)-2E W (Y, ~3,) - 24 D

<=2 E(Df+ D' LW, (Y, - £,(08.)-Df, (T -('y ) 'v'e) - Df ;@

1~' 7.1 [/ [N ol ] T = >y T
— TD T4 —ey(r'y ) D7 f,(yy )Y e) = 22 (DS + D’ W (0. = (8, ~8,) + (6, =6,))
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~24(Dg’'-D’gl)

~-235D/W, U, + %e’Di, f,e=Df, (1 -(yyy'v'e)-Df,q —%T'D2 0
-255D (W, U., - Df, (T -(r'y Y'Y 'e) - 25D/ W, U, +¢(D}g

Y'Y D’ gy Y'Y Ve T, +¢,) 25D f1W, (U, -1, +e,) ~24.(Dg'-Dgl)
=0

or

r 1 r T ! - r ~ 1~' T
lZ%:Df,- w,U., +5e ngfje—ij(I (YY) 'y e)—ijq—;l D’f,1)
T T oy X1 ap? r * 1 ’
+§§D2f,-| w,U., -Df,(1 -(Yy )y ©)+IDfW,U, e (Dzg
~10Y ) D’g( 'y Y)e~1T, +¢,) + D’ fTW, (U, - T, +¢,) +A (Dg' - D’gl)
=0 (E-34)
The result with respect is 8, is

oL "t 3
‘6‘9“="2§ ¥, = £, W, =20, (Y, - 6,)+ 24
P

1 ’ T N1 ~ 1, T
z—2§(U.j+5eD;f,e—Df,(l -(yy) 'y e)—ijq—EI D’ f HW,,
* 1 ’ PR RN T
_2W,,(U,,+5e(D2g—Y(w)lD2g(w)‘7)e—l,,+e,,)+2/1
=0

or

1 r T e, 1.7 ~ lN: T
?(U*j +5eDf,fje—ij(l -y 'y e)—ijq—El D’f,DHW,,
* 1 ’ 7.,y roN1,.,r T
WU, +-€D,g—v(x'y) D'glyy) 'y e~ 1, +e,) -2
-0 (E-35)
Finally, the result with respect to A is

oL . ~ = 5 oo 9
5 =26, ~8(10)=26,-6,+6,-2(8)+g(r0)-2(r9)

T T !, - ! ~ INI T 1 ! 1/ - ! - 14
~2(,-e,-Dg(l -(yy)'y e)—ng—zl D’gl +5e¥(77)‘D2g(w)‘7 €)
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=0

where 9;— 2(y0,)=0, or
T o1 ~ 1~: T I3 S e T
Dg(I -(y'y)'y e)+ng+5(l D’gl-ey(yy)' D’g(y'y)'v'e)-1,+e, =0 (E-36)

Equations (E-34), (E-35), and (E-36) can be written as two matrix equations having the
form of (E-8) and (E-9). First, D, and D2 are defined as derivative operators augmented to
include @, in addition to © (that is, operators with respect to 6, ). Next, the following
augmented matrices and vectors are defined:

Y, = Y E-37
a ~— Yp ( = )
f,(v0,6,)= r(ge)] (E-38)
14
0, = 0 E-39
<o, (E-39)
h(y8, 6,)=g(v0) +v=g(y0)+Y, -0, (E-40)
1= ! (E-41)
I
=] o e} (E-42)
| Ip"ep
~ _[4 )
q, = o (E-43)
U, = U. E-44
*a — U; ( - )
W, = wow, E-45
W, W, (E-45)

D,f, =[Df, 0] for £, = f, D, f,=[01] for £, =9, (E-46)
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0

D f, 0
' 0 0

Df = /
afa} I: 0 0

D ’
o]

D =|:D2g 0]

]forfq.:fj Dﬁfajz[

0 0

=[y(y7)™" 0]

E,=€Dfe;j=12,...n  E,=eDig—v(yy) "' D’g(y’y)"y)e;j = n+l

0
] for f, =6,

Finally, use of (E-37)-(E-51), transforms (E-34)-(E-36) to the two equations

' 1 ! T
ZZDafai Wzy'(U*aj +_Eaj -Dafajl‘ D fajqa—_l thlfaj la)

+22D§fm J (U =D, f, L) +AD K +D2AT,) =

wherei,j=1,2,...,nt+1, and
D,h1,+ D, hq, +%T;D§h7a——;- ¢'G,D2hG e =0

which are of the form of (E-8) and (E-9), respectively.

0

(E-47)

(E-48)

(E-49)

(E-50)

(E-51)

(E-52)

(E-53)

Because (E-52) and (E-53) are of the form of (E-8) and (E-9), the solutions for ta and

q, are of the forms of (E-14) and (E-28), or

~ 1 Q.Q’ 1
I*a = (Daft;waDafa)—IDaf;sz (Ra —#)WZU

Q, a *a
aQa

and

! F
4, =(DLW,D£,)" (D1 W2 (R, - 2eQayw:p,

a a

~D2Al, W2U,a (,%.Eaj—T 21\,
QQ Q. )+ ZWG(Ey =~ 1D fy 1)~

a a

—¢'G,D2hG'e))

where

QaQa

f.(Df,W,D f)"(ZD;f,

— D, K (I'Dg,T,

(E-54)

IW2

1 a al a

(E-55)
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Df 0

D f, =[ ] (E-56)
0 1
1 1

R, =W2D f (D, fW.D f)"'D fW?2 (E-57)
1

Q,=W2D f,(D /WD f)'D,# (E-58)

7, -a,-R, + 2wy, (E-59)

and W,> and W, signify row i and column /, respectively, of W,'*. Matrix I, is the identity
matrix of order n+1.

Third-Order Correct Constrained Sum of Squares Estimate for
Prediction Intervals

In conformance with (E-37) and (E-38) an augmented constrained residual can be defined

as

Y - £(vy0 Y - £(v0, —£(v0

{ (ZG)H (10 )Hf(yeg g(ye)} (E-60)
Y, -6, YP—HP gp_gp

or

Y, -£,(40,6,) =Y, -f,(18.,0,)+£,(6,,6,) —£,(10,6,) (E-61)

Because the forms of (E-14), (E-28), and Y —f (75) are the same as the forms of (E-54), (E-55),
and Y, —f,(y0,6,), respectively, the augmented sum of squares estimate can be written in the
form of (E-32), or

S.(0,6,)=(Y, -£,(v6,6,)) W, (Y, -£,(¥8.,6,))
. s lswar _Tn £ T Q.Q, >
z(waZU,a+5§w,3,(Eaj—l,;D§ ajla))'(I,,—Ra+Q Q )(WZU,a+ z 2(E,

~TD2f, 1) +(W2U,, +~ 2W2 2(E,—1D2f, 1))

< (I'D2h1,-¢'G D2hGe)

1
+ —

4Q.Q,

(AID2AT,-¢'G ,DhG e)’
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1

1 1 ’ 1 ~ 1
~Z,TWZID2 £, (D,fW,D,1,)"D,f,W (R, —%)wznafa (D,£W,D,1,)" £D21, TW2Z,
J i

1 - 1 ’ 1 ~
QL W2U., " TDUH(D, £/ W,D,£,)"' D,£: W2 (R, - 2% yw2D £ (D,'W,D,1, )" DA,
QaQa QaQa
—~ 1. 1 Q.Q’ 1 — —~
~Z WIS, (WD) DLW R, - 2 Tm W B, - TDis,T)
J 'Q, 7
1
+ Q,IQ Z,swW2ID2f, (D f.W.D £)"'D #(I'D,-e'G, DA G e) (E-62)
a a J
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Appendix F — Derivation of Statistical Distributions Used to
Define Confidence Regions, Confidence Intervals, and
Prediction Intervals

Distributions for Confidence Regions and Confidence Intervals

Forms of sum of squares functions for perturbation analysis. Procedures generalized
from Johansen (1983, p. 183-184) are used here to derive an approximate probability density
function (pdf) for a ratio involving the sum of squared errors objective function S(0). Let the
ratio be a scalar multiple of (S(0) —S(0))/S(0), where 0 is either the spatial average set 0, or
the set © produced by the constrained regression. The functions, S(8) and S(0) are given by
(B-17) and (E-32), respectively. Equation (B-17) is repeated here in expanded form as

n 1 1 1 !
S®)~ U.o*(I-R)o’U. +Ulo?(I-R)Zo(e'D} f,e—I'D’ £
J
1 1
1 G ' 2 LY r
+Z§(e D;f,e -I'D* fho2 (- R)‘];m}-(e D} fe—1'D*f))

1
-ZoZID’ f,(Df'oDf) D’ flo’Z

1
-2 02ZI'D’ f,(Df'oDf) ' Df'S @, (e'D% f,e —I'D* £ 1) (F-1)
i J

where the identity (I- R)o'’Df(y'y) ' y'e = 0 was used to allow the first two terms to be
written in terms of U, rather than U. Equation (E-32) is given in expanded form as

1 1 1 1
A ) QQ, 2 ) QQ' 2 a2 T2 s 7T
SO)~ Vo (I-R+=)0?U. +U.0?(J-R+—")s (D’ fe— ID*f1
(0) @’ ( Q,Q)co @?( +Q,Q)§co, (e'Dyfe i
+lz(e'D2fe—T'D2fT)m.%(1—R+~9Q—')>:m]5.(e'1)2f.e-7'1)2f.7)
47 BJi ! ! QQ’7 J BJ 7
1 1
2 1 2t T Ty T T [} 0o\~ G U
+(©U. +130} €D} fe- D11, T) 6%(' D¢l —ey(r'y) " D’g(r'n)"' v'e)

1 ~ ~
+— : (erZ l_er,y( [/ -1D2 ( [ reZ
igol D& YY) Dg(rv) " r'e

L L rod o1
~Z'302VD’ f,(Df'oDf) ' Df'o? (R - —g—%)mznf(nmm)-‘z D’ fleZ
7 i

—

1 1 1

1.2 " [} — ) QQ' 2 [} -1n2 .7
+(—=Q'0’U.)’ I'D’g(Df'oDf) "' Df'e? (R - ——)o>Df (Df oDf) ' D’g|
QQ QQ

1 1 ] 1 ~ ~
~Z'3021D’ f,(Df'oDf) ' Df'o? (R -——g%)z ol (€D fe—I'D*f,1)
j J

[



160 A Theory for Modeling Ground-Water Flow in Heterogeneous Media

1
¥ Q}Q Z'502TD’ f,(Df'oDf) " Dg'(FD’ gl —e'y(v'y) ' D’ g(ry) ' v'e) (F-2)
J

The function S(0,) can be approximated using (3-30) and (4-9) as
$(0.) = (Y -1(y0,)) o(Y -£(v8.)) = b ¥ - £,(v0. ), (¥; - £,(v8.))
=IZ(e + D, A=) Y)e +%e'(ngf,- Y0 YDA Y Iw, (g

1 = r l 14 /, - !, - !
+D, f,A=v(D Y+~ DS, =¥ YD/ YA M) V)e)
1
=UloU. +Ulo? Lo (D5, 10N YD £y " 1)e)
1 l ! [} I ’, - 14 r l ’
+L 0] D7, -y YD Ly() 1)) Toi (€D} /,
YN YD YY) Y )e) (F-3)
Equations (F-1)-(F-3) need to be put into forms that will allow perturbation analysis.
This is accomplished as follows. First, errors U and U, are assumed to be much larger in
magnitude than errors D ,fe, all of which are small. This permits dropping terms of higher than

third order in e, higher than fourth order in U or U, , and higher than a total of third order when
products of e and U or U, are involved. From (4-9)

U=U, +Df(y'y)'y'e (F-4)
so that, from (4-5),

1= (Df'oDf) ' DfoU, +(yy) 'ye
=L +(yy)"'ye (F-5)
where I, = (DfoDf) 'DfoU,. Next (F-5) is used to substitute for | in (F-1), and all fourth-

order terms involving e and products of e and U, are dropped to give

1 1 1 1
5(0)~ Vo2 (I-R)o?U, + U’ A -R)z o (D} fe-I'D’ £
7
1

1 1 1 1
+ —i—zI:DZ flLo?d-R)zalD’fl, —Le?Z.ID’ f,(Df'oDf) "' 2D’ fLo?Z.
i J i i

1
+202ZLD’ £, (DfoDf) ' Df Lo LD £ (F-6)
i J

where Z, = (1-R)o'?U, . Similarly from (E-14)
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1 ' 1
1 = (Df'oDf) ' Df'o? (R - Q,(—)—)cin* +(y')y'e
QQ
=T+ 've (F-7)

where T, = (Df'oDf) "' Df'o"*(R - QQ'/Q'Q)o"?U,. Use of (F-7) to substitute for T in (F-2)
in which fourth order terms in e, and in products of e and U, , are dropped produces

S(8) ~ Ule? (I - R+gQ JoIU. + Ul (I - R+g%)2m @D3fe-TDfT)

%sz’ﬁTm?(l—mgQ 502 IDY 14+ Vo ZQQ (I'D?gT —ey(yy) " De(y'y) " ve)

Q

gh)’

1 ~ ~ X Q ~
""“Z Lsz;lt(‘)? ks
2 Q'Q

1

1 1 ! 1
-Z'3s 0D’ f (DfoDf) ' Df'o? (R —g—%)mzl)f(l)f'ml)f)"z1)2 fiLlo2Z

7 .

1 ' % 22 [} -1 [} % QQ 2 -1
+(=—Q'0?U.)’ D¢ (DfoDf) 'Df'w? (R - <)o ’Df (Df'©Df) "D,

Q'Q Q'Q
- I 1 QQ’ 1, -

+Z's 0D’ f,(DfoDf) "' Dfo? (R- =) @?L'D* £, L.

7 QQ’7

1
+ 31622 o2l.D’f,(Df'oDf) ' Dg'l'D’gl, (F-8)
J

Approximate characteristic function for sum of squares ratio. The statistical
distributions are derived using characteristic functions, which are Fourier transforms of pdf’s
(Papoulis, 1965, p. 153). They are used to simplify the derivations, and readers not familiar with
their use should read Papoulis (1965, p. 153-162, 213-214, 244-245) for an excellent discussion.

The joint characteristic function for the distribution of the ratio (S(0)—S(8))/S(0) is

w(s,1) = E(exp{is(S(8) — S(0)) +itS(0)}) (F-9)
where i =+/~1 and s and ¢ are Fourier transform variables analogous to o, and @, of Papoulis

(1965, p. 213). Equation (F-9) can be expanded for evaluation by writing S(0) - S(6) and
$(0) in the form of chi-squared (y?) distributed variables plus deviations, or

S(©)-S(8)) = 0,(U.) +(S(8) - S(8) - 0, (U.))
=0, (U.)+ D, (F-10)

and

S(0) = 0, (U.) +(S(0) - 0,(U.))
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=0,(U.)+D, (F-11)
where
1 1
0, (U.)=U.V,’MV, ?U, (F-12)
1 1
0,(U)=U.V.2(A-H)V, U, (F-13)

M =H when 6 =0,

' - F-14
M =E—l-)—when9=9 ( )
PP

H=V.2Df(Df'V,'Df)"' DIV, 2 (F-15)
P =V, :Df(Df'V,'Df) "' Dg’ (F-16)
D, =8(8)~S(0)-0,(U.) (F-17)
D, =S8@®)-0,(U.) (F-18)

Note using (4-10) that V,"*U, ~ N(0,Ic). Then, because I - H is symmetric and
idempotent (Cooley and Naff, 1990, p. 165) with a rank of n—p, Q,(U.)/ o’ hasa y?
distribution with n— p degrees of freedom (Theorem 4.4.1, Graybill, 1976, p. 134), or

0,U)/ ol ~ x*(n-p) (F-19)

Similarly, because M is symmetric and idempotent with a rank of p, = p when M =H and
with a rank of p, =1 when M =PP'/P'P,

0 (U)ol ~ 2% (p) (F-20)

Use of (F-10) and (F-11) in (F-9) allows an approximate characteristic function to be
expressed as a product of the joint characteristic function for Q,(U,) and Q,(U,) and a
correction factor. To start the evaluation, w(s,?) is expanded and approximated to get

w(s,t) = E(exp{is(Q,(U.) + D)) +it(Q,(U.) + D,)})
= E(exp{is(Q,(U.)+it(Q,(U.)}exp{isD, +itD,})
~ E(exp{isQ,(U.) +itQ,(U.)}(1 +isD, + itD,)) (F-21)
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Evaluation of approximate characteristic function. To evaluate (F-21), V,/>U, needs
to be written in terms of statistically independent variables that also appear in Q,(U.) and
0,(U.). This is accomplished by writing V,"*U, as

_1 1 1 1
V.2U, =MV, 2U, + (H-M)V. 2U, + (I1- H)V. 2U,
=W+T+Z (F-22)

where W =MV, 2U,, T=H-M)V,"2U,, and, in the following development only,
Z=(1-H)V,"*U,. It can be verified readily that HM = MH = M, from which it can be seen
that Cov(W,T) = Cov(W,Z) = Cov(T,Z) =0. Hence, W, T, and Z are uncorrelated, so that,
because they are also normally distributed, they are statistically independent (Theorem 3.5.1,
Graybill, 1976, p. 105). Functions Q,(U,) and Q,(U,) can be expressed in terms of W and Z
as

0,(U.)=WW=|W (F-23)
0,(U)=ZZ=|Z] (F-24)

Use of (F-6) in (F-18) shows that D, can be written as a sum of second- and fourth-order
polynomial functions of V,"/2U, and a third-order polynomial function of e, U, , and U. Also,
from (F-22), the sum of second- and fourth-order polynomial functions of V,"?U, can be
written as a sum of second- and fourth-order polynomial functions of T, W, and Z. Thus, the
kth term in this sum can be expressed in the factored form

Coe(T,W,Z) = [T |W|™|Z)™ C,i (T/

T, W/|W|,Z/|Z)) (F-25)

where 2&, 24, and 2v are powers to be determined, and &, 4, and v are integers. With use of
(F-25) the kth term in (F-21) is

E(exp{isQ, (U.) +itQ, (U.)}itC,, (T, W,Z))

= itE(exp{isQ, (U.) +itQ, (U [W|™ |Z|" C, (T /[T, W /|W|, Z/|Z))

= itE(exp{isQ, (U.) +itQ, (U |W|™|2)* ) E(C,, (T /|T|, W /|W|, Z/|Z])) (F-26)

where the fact was used that [T, W}, |Z}, T/|T
(Johansen, 1983, p. 183). Now, using (F-25),

,W/|W

, and Z/|Z| are all mutually independent

BC (T, W,2) = BT (WP ) ECC (T

T}, W/|W|,Z/|Z})) (F-27)

Solution of (F-27) for E(C,,(T/
yields

T|, W/|WJ|,Z/|Z))) and substitution of the result into (F-26)
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itE(exp{isQ, (U.) +itQ, (U.)}Cy (T, W, Z))
= itE(exp{isQ, (U.) +itQ, (U I W™ |Z)** ) E(C,, (T, W, Z))/ E(T|* |[W|™|Z|*) (F-28)

A similar development of each term C,, (T, W,Z) in D, in (F-21) can be used to get

isE(exp{isQ, (U.) +itQ, (U.)}C, (T, W, Z)) |
= isE(exp{isQ, (U.) +itQ, (U I [W[**|Z)**)E(C,, (T, W, Z))/ E(T*|W[*|2]*)  (F-29)

The third-order term in D, can be expressed as C, (e,€) because U, and U are both
linear functions of e and €. Then use of this term in (F-21) and expansion of the exponential in a
Taylor series produces

itE(exp{isQ, (U.) +itQ,(U.)}C, (e,£))
=itE(1+isQ,(U.) +itQ,(U.) + %(z’sQ1 (U.)+itQ,(U.))* + %(isQ1 (U +itQ,(UL))
+-+)C, (,€)) (F-30)

Each power of isQ, (U.) +itQ,(U,) yields an overall even function of e and € because each
term of the series is a sum of terms involving forms ¢;'¢ f’ , where a+b is even. Each term in
C, (e,€) involves the form €& jd , where c+d=3. Therefore, the sums of powers for the products
of terms in the series and C, (e,&) is 0+3=3, 2+3=5, 4+3=7, 6+3=9, ---, which are all odd. This
implies that either e, or &, in each product of terms always has an odd power, so that its
expected value is zero. Hence, the value of (F-30) is zero. An analogous analysis applies for the
third-order terms in D, so that the third-order terms do not contribute to the final expression.
Characteristic functions for Q,(U,)and Q, (U.), which have statistical distributions

given by (F-19) and (F-20), are (Johansen, 1983, p. 183)

8, (s) = E(exptisQ,(U.)}) = (1 -2is?) " (F-31)
and
b, (1) = E(expfitQ,(U.)}) = - 2ito?) 2" " (F-32)

Equations (F-31) and (F-32) are manipulated to give expressions used to simplify (F-28) and
(F-29). Taking successive derivatives of ¢, (s) yields the general term

d/‘
ds*

gs‘;% () == E(exp{isQ, (U.)}) = E(G{W])™ exp{is|W|'})
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y 1 L
= ;i” (1_21SO'3) 2p1 =p](p1 +2)...(pl +2(ﬂ_1))ajyip(l_2isa§) 2(171 2u)

= (2 +2) (P + 2p - D)0 i, 1,(5) (F-33)

At 5=0, (F-33) becomes

E@W)™ = pi(p, +2)-+(p, +2(u - D)o "i* (F-34)
Combination of (F-33) and (F-34), then cancellation of i, reveals that

E(W[™ exp{is|W['}) = E(W[™),,.,,,(5) (F-35)

A similar analysis of ¢,

n-p

(t) shows that
E(Z[” exp{iflZ]'}) = E(Z[* )4, 00 (®) (F-36)

Next, combination of (F-35) and (F-36), in which |W|2 and |Z|2 are statistically independent,
gives

E(W[*|Z)"” exp{is|W|* +ir]Z]"})

= E(W|™ exp{is|W|' WE(Z)” exp{ir|Z|’})

= E(W™ |2 )8,,.24 (Y- prn (O (F-37)

Finally, substitution of (F-37) into (F-28) and (F-29) yields the expressions

itE(exp{isQ, (U.) +itQ, (U.)}C,, (T, W, Z))
=P, 124 ()P pizo (D E(Cy (T, W, Z)) (F-38)

and

isE(exp{isQ, (U.) +itQ, (U.)}C,, (T, W, Z))
= 156,112, (Wp-prao (VE(Cye (T, W, Z)) (F-39)

By definition, 2 and 2v are the powers on |W| and IZ‘ that are factored out of
Cy(T,W,Z) and C,,(T,W,Z). (See (F-25), for example.) Examination of (F-3) (omitting the
fourth-order term in e), (F-6), and (F-8) shows that possible values of 2u and 2v for second-
order terms are (2u, 2v) = (0, 0), (2, 0), (0, 2) , and possible values for fourth-order terms are
(2u, 2v)=(0,0), (2, 0), (0, 2), (4, 0), (2, 2), (0, 4). Expected values are evaluated further on in
this section and in appendix G where the second-order terms are shown to be functions of crf, ,



166 A Theory for Modeling Ground-Water Flow in Heterogeneous Media

whereas the fourth-order terms are functions of o. Thus, the sums over C,,(T,W,Z) for each
combination (2, 2v) are defined as

Y105 = E(ZCy (T, W,2))
Y205 = E(3C, (T, W,Z))
Y30, = E(2Cy(T,W,Z))
V40, = EEC(T,W.Z)
750¢ = E(CCy (T, W,2))
Y0, = EECy(T,W,Z)
7,08 = E(2C, (T, W,Z))
750) = E(ZCy (T, W,Z))
YO s = E(ZC,(T,W,Z))

for
for
for
for
for
for
for
for

for

0,0))
2.0
©,2)
0,0)
2,0)
©,2)
,0)
@2

vV

(F-40)

0,4

where the sums over k involve only the indicated powers. Similarly the sums over C,,(T,W,Z)
for each combination (24, 2v) are defined as

7105 = E(ZCy(T,W,Z))
7105 = E(3C,, (T, W,Z))
7305 = E(ZCy (T, W,2))
740, = EGCu(T,W,2))
7ol = E(ZCy (T, W,Z2))
Peot = E(SCy (T, W,2))
7,008 = E(SCy (T, W,Z)
7ot = E(ZCyy (T, W, )
PoOt = E(§ C, (T,W,Z))

for
for
for
for
for
for
for
for

for

©,0)]

2,0
©,2)
0,0
2,0
0,2)
4.0
@,2)

0,4

F (F-41)

where, again, sums involve only the indicated powers. With (F-31), (F-32), and (F-38)-(F-41),

(F-21) can be expressed as

W(s.0) =@, ()., () +isg, ()8,_,OVy,04 +isd, ., ()B,_, (1)7,0
+ is¢p, ()P, s (t)yso'/zs + is¢p, (S)¢n—p(t)74o-: + is¢p,+2 (S)¢n—p(t)}’50':



Appendix F 167

+i5@,, (9,2 (VY607 + 15, o), , (7,0, + 8@y, 12 ()2 (D750

+ 5@y, () pes (VY50 +it, (), (7105 + ity 12 (), (07,05

+it, ()y-per (N30 +it@,, ()8,-, (V7,0 +itd, (), (V750

+it, (-2 (D760, + 18y, 4 (), (7,07 + ity 2, pr (D50

+ ity () pes (D750 (F-42)

Equation (F-42) must now be put into an approximate form to derive the distributions of
S(0)- S(é)) and S(0) separately, which can be done only if S(0)—S (é) and S(0) are
approximately statistically independent. Statistical independence is indicated if y(s,f) can be
written as the product of a characteristic function in terms of s and a characteristic function in
terms of # (Papoulis, 1965, p. 213-214). Approximate statistical independence is shown and the
forms of the two distributions are developed as follows. From (F-31) or (F-32) note that for
r=porr=n—pand w=s or w=¢

¢, (w) = (1-2iwc})g,.,(W) (F-43)
and, by approximating (1-2iwo’)™" through first order (which is all that is required),
by (W) = (14 2iwe )¢, (w) (F-44)

Now, substitution of (F-43) and (F-44) into (F-42) keeping terms through orders 0',230'5 and o}
yields

w(s,t)~ ¢pl(s)¢ —p(t)+is¢pl+2(s)¢n-p(t)((}/] +7, +73)O'/29 (W + Vs V6tV +7s +79)O':)
+it¢pl(s)¢n—p+2(t)((}l}l +7, +7?3)0'/29 + (P + Vs +Ve+ 7.+ 75 +799)0':)

% (8, () + 50, ()70 + 710 @, () +it i, ()T, 05 +7,5,)) (F-45)
where

Yw=N+72+7; (F-46)
Yi=VatVs+Ve+V, Vst (F-47)
Yw=t1+V2+7; (F-48)
Vi=Fa+Vs+Vs+V1+7Vs 7y (F-49)

Terms involving y, and y, in (F-42) require shifting characteristic functions from
Prpra(D) to @, (1) and from @, ,(s) to @, (5), respectively. Because of these large shifts, the
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forms of the terms dropped should be obtained to be sure that accuracy is not appreciably less
than for the other terms. Use of (F-43) shows that

is¢pl (S)¢n-—p+4 (t)yQ O-: - is¢p1+2 (S)¢n—p (t)79 G:
= i8¢, 1 ()P, pes (1 = 2isc} —(1-2it5}) ys07;

where

1-2iso? —(1-2ito? )’
=1-2iso’ —1+4itc? —4i’Fc’ = 2i(2t - s5)o? - 4i’t’c!
~ 2i(2 —5)o?

so that
is¢p] (s)¢n—p+4 (t)}’g()':. ~ is¢pl +2 (S)¢n~p (t)}/QO-: + 212S(2t - S)¢pl +2 (S)¢n—p+4 (t)}/90-: (F_SO)
Similarly

it 4 (Y, (V7,07 =it (),_p0a 07,07,
= it ()4, )1 = 2ita; ~(1-2is0;)")7,0,

where

1-2ito? ~(1-2isc?)
=1-2ito} —1+4iso? —4i’s’c! =2i(2s—t)o? —4i*s*c?
~2i(2s—t)o?’

so that

itdy, 14 (), (1710, = i1, ()0, 2 (0)7107 + 20125 =, o () p1> (7,0 (F-51)
Terms dropped from (F-50) and (F-51) are of accuracy similar to the other terms dropped to
obtain (F-45).

The terms in (F-45) can be put into standard forms for y? distributions by noting the
following.

1
8, (SU+ (7,02 /0% +7,62)1 p)) = (1= 2is(1+ (1,05 | 52 +y,52)/ p)o?) 2

1 1
=(1-2iso? = 2is(y, 0% +7,6%)/ p) 2" =(1-2isc? —¢) 2"
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1 1
~(1-2isc?) 2"y %(l ~2iso’ ~ 8)53? £
=4, () +isg, .,(5)r,0p +7,07) (F-52)
where & =2is(y,0; +7,0.)/ p,, and

P)

1
A A . A A (=
b,.,(1(+(7,05/ 07 +7,0,) (n— p))) = (1=-2it(1+ 7,0/ &, +7,6,) (n=p))o;) *

Ln-p)

? —(1-2ito? —¢) ?

1
= (1-2ito; - 2it(y,05 +7,0.) (n— p)) 3

1
) d . —(n-p)
+ = (1-2ito? —¢),2, ¢

=@, () +it4, ,.,(NF,05 +7,0;) (F-53)

1
. a(n-p
~(1-2ito}) ?

where ¢ =2il(y,,0; +7,0,)/(n— p). With (F-52) and (F-53), (F-45) becomes
w(s,0)~ ¢, (s(+ 1,05/ 0; +7,6.) D), 0L+ (7,05 /0] +7,5.)(n=p))) (F-54)

Approximate statistical distributions. By definition (Papoulis, 1965, p. 154)
#, (cw) = (1-2iwea?)™"'? is the characteristic function for the pdf for a ca ° (r) random
variable, where ¢ is some constant. Therefore, from (F-54) and to the order of accuracy of
approximations used, S(8)—S (é) and S(0) are independently distributed as

S®)-S®) ~ 22 (p )Xol +(,0i+7,6)/ p) (F-55)
S®@) ~ 1’ (n—- p)o? + (7,05 + 7,6 /(n- p)) (F-56)

Also, by definition (Graybill, 1976, p. 66) (¥*(p,)/ p,)/(x*(n— p)/(n— p)) has an F(p,,n—- p)
distribution with p, and n— p degrees of freedom, so that

0'52 +(}’w0'/29 +710':)/P1
ol +(,04+7,0.)(n-p)

(5©)-S@©)/ p,
$(0) /(- p)

(F-57)

~ F(p,,n—p)

If desired, the correction factor can be approximated to the order of accuracy used in the
derivations as

ol +(,0op+7,00)/ p,
ol +(F,05 +7,00)(n- p)

~1+(y,0,/cl+y,62) p, -, 0502 +7,62)(n-p) (F-58)

~(1+(y,0; /0l +y,6)) p)1~ 0,/ 0] +7,0.)/(n-p))
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Evaluation of correction factor. From (F-6), (F-10)-(F-18) and the definitions of the
7:»i=1,9, given by (F-41) note that (n— p) times the denominator of the correction factor in
(F-57) is

(n—-p)ol+7,05+7,0}
1 Bl 1 1 1 1
= E(U.V.2(I-H)V, ?U,)+ E(U\e’ I -R)o2U, - UV, 2(I1-H)V, 2U.)
1

+E(S®)-Ule’I-R)o?U,)
= E(S(6)) (F-59)

where E(U.V,"?(I-H)V,"’U,)=(n- p)o?,
E(U.0"*(I-R)o"U, - ULV, (I - HV."U,)= 7,0, and
E(S()-U.0"*(d-R)0"*U,) =7,5". The component correction factor 7.0, is given by

A | Lo 1
7,05 =E(U.V,? (V202 (I-R)02V2 -1+ H)V. 2U,)

o1
=(r(I-R)o?V.0?)-n+ p)o;

1 1 1 1
=r(I-R)e’V.0’ -(I-R)o’e 'e?)o?

I

1
=tr(I-R)o* (V. -0 )o?)o? (F-60)
To make (F-60) solely a function of model error, @™ is expressed as the sum of V, and a

matrix V, o fg /o, where V, depends only on model error. If'V is defined by
V=D, fA-y(y7)"¥)V,A~y(¥'y)"'Y)D,f’, then use of (3-33) in (F-60) gives

1

1

7w0 =tr(-R)e?(V-V,)o*)o; (F-61)
The component correction factor 7,o! is expressed by using (F-6) to yield

1 1 1 1 1
7,00~ ZE(Z D’ flo2d- R)meliszjl.) - E(Co?Z.I.D* f,(DfoDf) ' D’ fl.o2Z.)

i J i i

1

+ E(Z0?ZLD’ f,(Df'oDf) "' Df'S o LD L) (F-62)
i J

Evaluation of the expected values in (F-62) is deferred to appendix G.
The numerator of the correction factor times p, evaluates in the same way as the
denominator. That is, for M=H and p, =

2 2 4
po—g +},wo'ﬂ +7IO-£
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_1 1 1 1 I 1
= E(U.V,2HV, U,)+ E(U.oU, - U.02(I-R)o?U, -U.V, 2HV, 2U,)
1 1
+E(S(0,)-S0)-UlaU, +U.e*(I-R)n2U,)
= E(S(8,) - S(8)) (F-63)

where E(U.V,"?HV;"?U,) = po?,
E(U.0U, -U.0"*(I1-R)e"’U, -U.V,"’HV,"*U,) =y,0;,
and £(S(0.) - S(0)- U.oU, + U,e"*(I-R)"*U,)=y,02. Then
LA B | 11 L
7.0 =E(U.V,2(V20’Re?V? -H)V, 2U,)
[N |
= (r(Re?V.0?)- p)o;
1

1 1
=tr(Ro?(V, —o)o?)o’

1 1
=r(Ro2(V-V,)o?)o; (F-64)
Finally, expression of y,o using (F-3) (through third-order terms) and (F-6) shows that

4 A4
Y0, =—Y,0, (F-65)
For M=PP'/P'P and p, =1

o, + ncrfg +7,0,

= E(U, V_5 PP
PP

1 1 '
V. 2U )+ E(Uie? (I - R+QQ )sz . 2(I R)u)2U ~ULV. 2QV 2U,)
Q'Q P'P

QQ’ 1 'l 1

+E(S®)-S©®)-U.o2(I-R +-@)m2U. +Ulo2(I1-R)0?U,)

= E(S(6)-S(8)) (F-66)

where E(U.V,"?PP'/P'PV;’U,)=0],

E(U.0"*(I-R+QQ'/Q'Q)e"’U. - U.e"*(I- R)o'*U, - UV, "*PP'/P'PV,*U.)
= 7,02, and E(S(®)-5@)- Ul (1-R +QQ'/Q'Q)o"U.

+U.e'?(I-R)0"*U,) =y,0!. Asbefore

11 '
7w0'ﬂ =E(U.V, 2(V2 QQ ®?V? — PP —)V. 2U )
Q'Q PP
r 1 1
—(tr( o2V.0?)-1)o?

QQ
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—tr(g% (V. —0"o?)o?
QQQ(D V-V )conaﬂ F-67)

and, from (F-8),

¢ T o QQ'\ . T T
7,0, *~EELDf Lo?I-R+=)5o?l'DY,L)
4 5 QQ’J

1o ge > Qo e = 1 e
-—EZ I'D*f L.o? 'D%eL)+———E(LDgl)’
2 QQ sQQ ¢
1 1
- E(Z's 02 1.D’f, (Df oDf) "' Df o2 (R - gQ )mZDf(Df me)-‘z Df, l,mZZ)
J
+E(—— 1 Qm2U) D3 (Dmef)‘lDfm2(R QQ' )mZDf(Dmef)-‘D 1)
QQ Q'Q
- 1 1 QQ’ L ~
+ E(Z'z o2 'D*f, (Df'oDf)™ Df’o)2 (R- @)z co}. 'D’f, L)
J
+Q—1Q~E(Z'Zm2 I.D’f,(Df'oDf) ' Dg'l! D% L) - 7,0 (F-68)

Evaluation of the expected values in (F-68) is deferred to appendix G.

Distribution for Prediction Intervals

Forms of sum of squares functions for perturbation analysis. The same procedures as
used to derive the distribution for confidence intervals are used to derive the distribution for
prediction intervals. The distribution, correction factors, and the variables composing these
results will be shown to have the same forms as those for confidence intervals. The function
S, (6, ONP) given by (E-62) is repeated here in expanded form as

’ 1
S.(8,6,)~U. w2(1 -R, +Q Q, )WZU +U, w2(1 -R, +gg )z 2(E, - ;Df,fajla
1 Q.Q, ~ ~
—S(E; - ID, 7.1, w I,-R, w2 E,-\D.f,\,
+4i( Sl YWa (I, +QaQa)2 ( Sl

aj ‘a

+(W2U,, +— zw (E, -TDLf,] ))QQQ (I'D2hT —e'G ,D2hG'e)

L (UDT, - ¢'G, DG e)’

a
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1 r 1 1
’ I’ - "\ 2 QaQa 9 ’ = Tw27
- Z z Wai aszaj (D f, WaDafa) 1l)afa“]zz (Ra - _7—_)“7112 Dafa (DafaWaDafa) : zi:Dczzfai lawa2iZa

a a

1
P TDHDEW,DL) DAW R, - 22 )WID £, (D, W,D,£,)" DT,
Q@ Q Q.0

aa
1

1
—Z'zW2 T'D2 1, (D,£;W,D,£,)" D, {;W2(R, - gQ YSW2(E, -IDif,T)
QIQ ZW2I’D2 2 £, (DLW, D £,)"' D, H(IDA],-¢'G D2hG e) (F-69)
Jj

The perturbation analysis uses (E-41) and (E-42) in the form

T,=T,+ [(7'7 ) Yre} (F-70)
e

p

then uses (F-70) for Ta in (F-69) and drops fourth-order terms involving e or e, to get

1 1
S,(6,0,)~U,W2d, -R, gg )W2U +U, w2(1 ~R, +gg )=W2(E, -IDf,T,)
1 | Q aQ,a lN a a
2 2 _ axXa 21’ 2 i 2 a _af 2 ’
+12 T DAL, Ra+——Q;Qa)‘j;Wajl,aDaﬁ,jLa+U W, o a(l;Djzl ¢G,D2HGe)
1
-1sTp; mlawﬁb?—é—“al)zhl*a‘*l (. pT.,)’

*q" "ai™a

1 1 1
—Z s W2TLD2 £, (D,fW,D £, D,f W2 (R, - gQ YWZD,£,(D,£:W,D,1,) £ D21, T, W27
J i

a a

1 1
+ Q,IQ QW2 U.)* 1. D2h(D /W, D £,)"'D /W2 (R, — Q Q. )W2D £f.(D f'W.D f)'Dxl,
) Q Q axXa y
! -1 ' a '
+Z zw2| 'D2f,(DLW,DL£)'D LW2(R, - )z | DL f L,
1
+ Z;§Wa§ 1. D2 Sy D £ W, D £)'D K LD, (F-71)

a a

A function analogous to S (é) , but applying for prediction intervals, also is needed. To
obtain this function, A is set to zero in (E-33) so that minimization of the resulting formulation
is simply minimization of S, (0, 8,). The result of this minimization is just (E-52) with 4 =0,
which is of the form of (B-4), the equation set from the regression solution. That is,

z:z:l)af'al ay(U*aj +— E Dafa} g a ajqa ll sza )
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+EED; fla Wy (Uey =D, fols) =0 (F-72)
iy
where
R ]
| =1, J{(”) Y ‘1 (F-73)
eP

After solving (F-72) for |, and q, in the same way as (B-4) was solved for | and q, the results
in appendix B can be used to obtain an augmented sum of squares of the form of (F-1). Finally,
substitution of (F-73) for I, in this augmented sum of squares yields a result of the form of (F-6):

1 1 1

1
S,0,6,)~U,,W2(, -R,)W2U,, + U, W2(, -R,)SW2(E,-I,D’f,1,)
J

1 1
+35 L,D2 1WA, ~R)Z W, LD/, L,
i J
1

1 1
-Z W2Z.L,D;f.(D, WD L)% D; £, .W2 Z.,

1
+IW2Z, 1. . D.f.O LWD £)'Df 5 w,I.,D.f L., (F-74)
i J

where Z., =, -R,)W!?U,, .
Approximate characteristic function for sum of squares ratio. The joint characteristic
function for 5,(0,6,)-S,(0,6,) and §,(8,6,) is

Wa(s,1) = E(explis(S,(8,6,) - 5,(8,6,)) +itS,(6,6,)}) (F-75)

Equation (F-75) can be written in terms of y* distributed variables and deviations from them as
before so that

S,(0,6,)-5,6,6,)=0,(U.,)+ D, (F-76)
S,0.8,)=0,,(U.,)+ D, (F-77)
dpp -1
Q]a (U*a ) = I'Il*a‘l"a2 _a—"i‘]*a2 U*a (F_78)
P.P,
1 1
0,,(U.)=U, V.20, -H,)V.2U.,, (F-79)

where V,, =Var(U.,),
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1

P, =V.2Df,(D . V.Df,)"'D,H (F-80)
1 1

H,=V.2D f,(D fV.'D f)'Df'V.2 (F-81)

D, =5,(0,6,)-5,06,6,)-0,(U.,) (F-82)

D,, =S,,6,)-0,.(U.,) (F-83)

Then, because U,, has a normal distribution with variance matrix V.,o?,

1

V.2U., ~ N(0,I,0?2) (F-84)

Finally, the properties of P, and H, allow concluding that

0. (U)o, ~2* (M) (F-85)

0,.(U.,)/a; ~ x*(n-p) (F-86)
Approximate statistical distributions. The derivation to find the distributions of

S,(0,6,)-5,(6.6,), S,(8,0,), and their ratio is completely analogous to the derivation used
to find S(0)-.S(0), S(0), and their ratio. The results are

S,(0,8,)-5,6,6,) ~ 2’07 +7,,0% + 7,00 (F-87)
S,(8,6,) ~ 22 (n=p)O2 +(F 0L + 7,0 ) (n— p)) (F-88)
5,(0,0,)-5,,0 2 A+ YaC o+ V1O

( h p? 8,6,) ~ F(l,n- p)— O'i 72 O'f 7;1 £ (F-89)

S,(8,8,)/(n- p) 0; + (7405 +71,0;)(n—p)
where

O'j +},wao-; +7/Iao-:

0-1;2' +(7’}wao-§ +);Iao':*)/(n_p)
z1+}/wa0-/2} +}’Iao-: —(};wao-f? +};Iao-:l)/(n_p) (F'go)

Evaluation of correction factor. The factors y,,, 7,,» 7., and ¥, in the correction
factor (F-90) are analogousto y,, 7,,7,,and ¥,, and they evaluate in an analogous manner.
Thus,
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i l l 1 1 _1
Gy = E(UV.2(VAW2(A, -R,)W2VZ -1, +H,)V.2U.,)
1
=tr((I, -ROWZ(V,, - W, 1)W,f Yo,
1 1

=r((I, -R)W2(V, -V, YW2)o (F-91)

where V,_, is analogousto V_,

V C
v,=| ., J (F-92)
[Cep vV

ep

and V,, =D g —y(y) ' Y)V,A-7(¥'y)"'y)D 58" . Next, (F-74) is used to get

1 1
};Iao.:‘ = E(Sa(99 ap)_ U:awj (I - )Wa2U’a)
1

ZE(ZI' D2]21'*awazl _Ra)zwzl'p fajl*a

—

1

-E@wgz 1D, (DLW, D 1) 5D f,1. W2Z., )

*q'Vai

1

+E(EW2Z. I, D2 £,(D WD £)"'D, f'zw I.D.f1..) (F-93)

Evaluation of y o} gives

> Q,Q’ . PP

Va0 s = E(UL,V. 2(V2W2 “wzvz “a_ayy, 2U,a)

Q0. PP,
Q.Q! STy 2
WiV, - WyW?
(Q Q ( a ) a )GE
_ Q'IQ w2 (F-94)

and use of (F-71) yields

70! = E(S,®.8,)-5,6.6,)- U, W2 g g“ W2U.,)

LT, DT W21, -R, +g g 5 W2 D27, 1)

a a

1

S O RS 1 1 Tr 2L T 2
——E(ZI'sza,IW§i,—“l’DahI*a)+— —— E(L.,DAL,)

Q.Q, " 4Q.Q,
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1 1 ' 1 - l~

—EE,sW2TLD2 £, (D, £;W,D,L,) "D I W2 (R, - %g—“—)wz D,f,(D,f,W,D,L,) 5D £, T.W2Z,)

J a a i

1 - 1 Q Q' 1 —~
+ E((— QW2 U,)"T, D2H(D £/ W,D,£,)"D £/ W2 (R, - 2QeyW2D £, (D, W,D.£,)" D T,)
Q.0 Q0.
- ~ 1 Q Q' . _

+ E(Z; Z Waj I"athlfaj (Daf;waDafa )—1 Daf;‘va2 (Ra - ‘6,_0Qi)2 Wag I',aD¢21f¢1j l*a)

J aa J

1

t oo FZEWILDLf, (DLW, DL) D i LDCAL)- 710! (F-95)

Evaluation of the expected values in (F-93) and (F-95) is deferred to appendix G.

Further Analysis of Distributions and Correction Factors

Distribution of S(0) . The distributions of S(0), S(0)— S(6), and their ratio can be
analyzed under somewhat less restrictive conditions than those required for the perturbation
analyses. For S(0) this is accomplished as follows. First, from (F-56) and (F-59), as an
approximation,

NG

— ~ %X (n- F-96
Es@yn-p P (99)

If (F-96) were a good approximation, then the mean and variance of the left-hand side of (F-96)
would nearly equal the mean and variance expected for a y*(n— p) random variable, n— p and
2(n— p), respectively. It is apparent that the means match exactly.

The variance of the variable in (F-96) is

Va,( (n —p)§(é)J _ (n=p)"Var(5@) (F-97)
E(S®)) (E(S )’

If model and system types of intrinsic nonlinearity are significant, it is difficult to compute the
variance of S() without using the Taylor series and perturbation expansions. Hence, these
types of intrinsic nonlinearity are assumed to be negligible, which is the same as considering
only the effect of @' # Q on the variance. First, the residual vector Y —f (yé) is expressed in
terms of ¢, noting that the model in terms of ¢ is linear in the absence of model intrinsic
nonlinearity. That is,

Y —£(y0) = Y — £ (y0(4))
=Y - £(y0($.)) - (£ (yO()) — £ (¥0($.)))
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=Y -£(y0(9.)) - D,f ($—¢.)
=Y - £(y8(4.)) - D,£(D,foD )" D, f'o(Y — £(18(9.)))
=Y - £(y8(¢.)) - DI (3’ Df'oDI ) ' I'Df'o(Y - (y0($.)))

-1 1
=0 2I-R)o? (Y -1(19.)) (F-98)
where (f) and ¢, are equal to ¢(é) and ¢(0,), respectively, and J) was obtained by linear least
squares using the linear model f(y8(¢)). Thus, when model intrinsic nonlinearity is negligible

S(0) ~ (Y —£(¥8,)) 0 (I - R)o? (Y —£(19.)) (F-99)
Next, error vector Y —f(y0,) is written using (3-5) and (4-9) to get

Y-f(y0,)=U, +(Y-U, -f(y6,))
=U. + (& +f(B)-e-D,f A~ y(v"y) " v)e —£(16.))
=U. +1(B)-£,(B) - 1(y6.) +£,(v8,)

=U, +d (F-100)
where

f,(B) = f(y0)+ D ,fe (F-101)
£,(0.) =£(10) + D, fy(y'y) 'y'e (F-102)

d=f()-1f,(B)-1(v0,) +1,(y0,)
~ %[e'(ngfi 1) YD L) v )e (F-103)

If both model and system types of intrinsic nonlinearity are negligible, the variance of (F-
99) can be evaluated in terms of U, using (F-100). This was previously done using (4-38), which
results from the Taylor series and perturbation expansions. It is done here without using these
expansions by showing that the term (I - R)o'/?d directly reflects model and system types of
intrinsic nonlinearity, as follows. The increment ¢, —$ in best transformation set ¢ can be
written in terms of the 0 setas J (0, - 0+ y.), where, given values of ¢,, $,0.,0,and J, v, is
uniquely defined. Next, a linear-model approximation p(y. ) of f(y0,) is written using ¢ as

p(y.) =f(y0) + D,£(9. —¢)

= £(y0) + DEJ (¢, — )
=f(y0) +Df(0, -0 +y.)
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=f£,(y0.) + Dfy. (F-104)
and an analogous linear-model approximation of f(B) is written using o as

P.(y,)=f(y8)+D, f(a-a)
=£(y8) + D ,4fJ ,(a — @)
=£(y0) + D ,f(B— 10 +C)
~f(y0) + D fB - 10 +7y,)

=£(y6) + D ,f(B - 70) + Dfy,
=1,(B) + Dfy, (F-105)

where, given valuesof o, @, B, yé ,and J 4,  is uniquely defined. The approximation
€ =~ yy, is analogous to the approximation (C-27), appendix C. The best fit of

p(v)=p,.(v¥,)—p(y.) to f(B)—f(y0,) is obtained by minimizing, with respect to y =y, —y.,
the objective function

S(y) = {(B) - 1(v0.) - p(v)) o(f(B) - £(v6.) — p(¥)) (F-106)
The result is

y = (Df'eDf) ' Df'od (F-107)
Thus,

f(B)-1(v0.) - p(y) =d - Dfy

1 1

=0 2(I-R)o2d (F-108)

If p(y) fits £(B) — £(y0,) closely, then the linear model p(y) =f£,(B) —f,(y0.) + Dfy is almost
exact, indicating negligible intrinsic nonlinearity of f(B) (system intrinsic nonlinearity) and
f(y0,) (model intrinsic nonlinearity). In this case (F-108) is nearly 0. From the preceding
analysis, if model and system types of intrinsic nonlinearity are negligible, (F-99) written using
(F-100) 1s approximated as

1 1 1 1 1 1
SO ~U,02(I-R)o?U, +2U.02(I-R)o2d+d'o?(I-R)n2d
1 1

~Ul.o?(I1-R)o?U, (F-109)

which is the same relation found using the perturbation analysis.
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Next, the variance of S (é) as given by (F-109) is evaluated. The variance of the form
U.AU,, where A is symmetric, is

Var(U,AU,) = E(U,AU,)* — (E(U.AU,)) (F-110)
in which

E(U.AU.) = tr(A Var(U.)) (F-111)
E(U.AU.)* =tr* (A Var(U.)) + 2tr(A Var(U.)A Var(U.,)) (F-112)

where the result of appendix A was employed. Hence,

Var(U.AU,) = 2tr(A Var(U,)A Var(U,)) (F-113)

Application of (F-113) to (F-109) using the definitions of V. and Q implicit in (3-21)
produces

1 [ 1
Var(S@®)) ~ 2tr(0’ - R)02 V.0 I -R)o?V. )5

1 1 1

1
<2tr(0?(I-R)02Qae? (I -R)o2Q)o? (F-114)
By definition
Ac;lol =Q-0 (F-115)

where A is analogous to V-V, in (F-61), and so depends only on model error. Then (F-114)
becomes

L
Var(S(0)) ~ 2tr(1-R)o} +4tr(I -R)o’Aw?)o ;07
o 1o
+2r(I-R)o?Ao? (I-R)o?Aw?)oy,
1 1

=2(n- p)o; +4tr(I1-R)0?A0?)o ;0]

&
1 1 1 1

+2tr(I-R)o2 A0’ (I- R)o? Ae?)o) (F-116)

Similarly,

1 1

(E(S(0))* = r* (I - R)0’Qoe? o’
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1
=(n-p+ir(I-R)o’A0?)o; /0l) o}
1 1

=(n-p)’o! +2n- pyr(I-R)e’Ae?)oro? +r(I-R)e2Ae?)o; (F-117)

so that

E(S(8)
1o 1o 1o
N (n—p)*Q2n- p)o; +4r(1-R)e*Av*)c;0] +2r(I - R)e’ Ao’ (I -R)o?Aw?)o),
I [
(n-p)’ o, +2(n- p)r(I-R)e2Ae?)o ;0] +1ir* (I-R)o’Ao?)o;,
1 1 1 1 1 1

(n-p)o? +2r((1-R)o?Aw?)oic? + (I - R)o’Ao? I -R)o?Ao?)o )
~2(n-p) — T 18

(n- p)o. +2r(I-R)e’Ae?)o)o? +ir’ (I - R Ae?)o; [(n- p)

Thus, through the second terms in the numerator and denominator,
Var((n - p)S(0)/ E(S(0))) = 2(n— p), which is the correct value for the variance.
It is instructive to evaluate the last terms in the numerator and denominator using
approximation (5-22) (with b=1 for simplicity):
1 1 1 1
r(I-R)®2A62(1-R)d?Ad)o

i 1 1 1 1 1

= (tr(I-R)@2 Qo> -R)d>Q %) - 2 (I - R)®2Qd?) + r(I - R))o?
~c*(n-p)o! (F-119)

and

Lo
r*(I-R)®>Ad*)o; [(n— p)
1 1

= (tr(1-R)®2Qd2) —tr(I-R))’ ! /(n— p)
~c’*(n- p)o! (F-120)

Therefore, if the approximation is accurate and ® = @, the last two terms also are approximately
equal.
To relate ¢ to relative sizes of model and observation errors, use is made of
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(1= 8,)E(S,B) - £,(Y0Nf, (B - £,(10.))
V02 +E(f,(B) - £,(¥0.)*) (V,,0 + E(f,(B) - f,(¥6.))*)?

o1
D2AR? = (F-121)

Thus, if (V;)"* o, is only twice (E(f,(B) - f,(y9.))*)"?, then, even if correlations among the
model errors are very large, an off-diagonal element of (F-121) is roughly only

1/(2° +DY*(2% +1)V?) = 0.2, so that ¢® ~ (0.2)> = 0.04. The last two terms in the numerator
and denominator of (F-118) are not only approximately equal, in the present example their
magnitudes are only about 4 percent of the magnitudes of the first terms.

The preceding analysis does not assume either model or observation errors to be small in
magnitude. Thus, in general, the mean of (n— p)S(é)/E(S(é)) equals the mean ofa y*(n- p)
random variable, and, if ® is set equal to @, the variance of (n— p)S(é)/ E (S(é)) canbe a
good approximation of the variance of a y*(n— p) random variable if both model and system
types of intrinsic nonlinearity are negligible.

Distribution of S(6,)— S(é). From (F-63) and (F-55) in which p, = p and 6=0,, as
an approximation,

S0.)-5®)
E(S(0.)-S©))/ p

*(p) (F-122)

As before, if (F-122) were a good approximation, then the mean and variance of the left-hand
side would nearly equal the mean and variance, p and 2p, of a y*(p) random variable. It is
apparent that the means are the same.

The variance of the variable in (F-122) is

Var| PO©)=5@)) | _ p’Var(S®.)-S®) (F-123)
E(S®,)-S®)) (E(S@®,)-S5®))

As before, both model and system types of intrinsic nonlinearity are assumed to be negligible, so
that use of (F-99), (F-100), and (F-109) yields

5(8.)-S(®) ~ (Y -£(¥8.))o(Y - £(18.)) - (Y - £(y8.)) 0> (I - R)o (Y ~ £(0.))
1 1
~ (U, +d)e(U, +d)-U.e?(I-R)o?U,

=U.0’Re?U., +2U.0d +d'od (F-124)

The last two terms are negligible only if total system nonlinearity (nonlinearity in f(B) ) is
negligible. Hence, use of (F-103) produces
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1 1
Var(S(0,)-S(0)) = Var(U.0*Ro?U, +2U.0d + d'od)
1 1
~ Var(U,02Ro?U.,) + 2Cov(U.oU,,d'od)
+4Var (U od) + Var(d'od) (F-125)

in which
1 1 1 1 1 1
Var(U.0’Re?U.) = 2tr(@’Ro*V.0’Re?V,)o !

1 1 1 1

< 217‘((1)5R(D5Q0)5R0)EQ)0': (F-126)

Equations (F-125) and (F-126) combine to give

1 1 1 1

Var(5(0,) - $(0)) ~ 2tr(@*Ro’Qo’Re’Q)c* +r (F-127)

where r signifies the terms left out, which from (G-7) have a leading value of order no lower
than o}o. If model and system types of intrinsic nonlinearity are negligible, these terms result
from total system nonlinearity, which would be expected to increase the variance, and from using
Q in place of V., which would decrease the variance. Remainder r represents the deviation of
Y —f(y0.) from a zero-mean, normally distributed random variable, because, if Y —f(y0.) has
a mean of zero and is normally distributed, use of the first line of (F-124) to compute the
variance shows that » =0.

Substitution of (F-115) into (F-127) yields

1 1
Var(S(6,)-S(0)) ~2po’ + 4tr(Re?2Awn? )O'f,of
1 1 1 1

+2tr(Ro*Ao’Ro?Aw?)o) +7 (F-128)

Similarly, substitution of (F-115) into (E(S(0,)— S((A))))2 as evaluated using the first line of
(F-124) produces

1 1
(E(S(8.)-S5(0)))* ~tr’ (R Qw?)o?
r 1
=(p+r(Ro*Ae?)o;/0l) o)
1 1 1 1

= p’ol +2ptr(Re2A0?)os0? +1r’ (Ro2Aw? ) (F-129)

Thus,
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Va{ P(S®.)- S(e})))
E(S(0,)-S(9))
1o O T
P’(2po! +4r(Re’*Ae? )00’ +2ir(Ro’* A0’ Ro?Aw? o, +7)
~ 1 1 1 1
p'o) +2prr(Ro*Aw?)o;o; +1r’ (Ro?An? oy
1 1 1 1 1 1
ol +2r(Ro2 Aw?)o2o? +tr(Ro2Aw?Ro2Aw? )ot +r/2
o pPoe 2 1) AL ( s )% (F-130)
po! +2tr(Re?Aw?)os0? +ir’ (Ro?Aw?)oy / p

Again, through the second terms in the numerator and denominator,
Var(p(S(0.)~ S(0))/ E(S(0.) - S(0))) = 2 p, which is the correct value for the variance.

The third terms in the numerator and denominator can be evaluated using approximation
(5-21) to get

1 1 1 1
r(RO2AD?RO>AD* )0y
1 1 1 1 1

1 SR AS 5 L - A
= (r(RD2Q6RH’QD?) - 2tr(ROQD?) + tr(R))o !
~c*((n-p) +n*(p-1)oi/p (F-131)

and

1 1
r’* (RO2A®?)oy / p
1 1 .
= (r(RO2Q®2)-tr(R))Y ot / p
~c’(n-p)ollp (F-132)

The term represented by (F-131) is equal to or larger than the term represented by (F-132), with
equality occurring only for p = 1.

As before, the preceding analysis does not assume small model or observation errors.
Thus, the mean of p(S(0,) - S(é))/ E(S(0.)-S(6)) equals the mean ofa y’°(p) random
variable. However, the variance of p(S(0,)—S(0))/E(S(0,)-S (6)) could be larger than the
variance of a y”(p) random variable, even if o is set equal to @. The r terms would probably
increase in magnitude as 'Y —f(y0,) becomes progressively more non-normal.

Redefinition of component correction factors. Based on the perturbation analysis,
E(S (é)) and E(S(0,)-S (é)) are expressed in terms of sums of correction factors in (F-59) and
(F-63), respectively. The present analysis yields S(é) and S(0,)- S(é) in the absence of
model intrinsic nonlinearity as (F-99) and the first line of (F-124), respectively. These latter
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equations indicate that the component correction factors might be more accurate for practical use
if they are redefined in terms of Q rather than V, as follows.

7,05 = E(Y -£(10,))0*>(1-R)o? (Y - £(y8,)) - (n - p)o’

= (r(d -R)0?Qw?)-n+ p)o’ (F-133)

710t = E(S®) (Y —£(18.)) 0> (I- R)o? (Y —£(18,)))

= E(S0)) - r(I- )02 Qo? )o? (F-134)

7.0y = E(Y —£(10.))©*Ro? (Y - £(10.)) - po’
1 1

= (tr(Ro2Qw?) - p)o? (F-135)

7,0} = E(S(®.,)-S®) - (Y -1(8.)) 0’ R’ (Y -£(18,)))

= E(S(O,) -50))-tr(Re’Qa? o’ (F-136)

Redefined factors y Vo o, and y,0; 5 both measure only the influence of @™ # Q on the
dlstnbutlons of S(O) and S(0,)- S(O) In addition (F-99) and (F-124) show that both y,o
and y,o! are zero in the absence of model intrinsic nonlinearity, so both measure model
intrinsic nonlinearity. Because E(S(0,)) = tr(0"’Qao" 2)0} , 7,00 =—7,008, as also was found
from the perturbatlon analy31s Fmally, as before, E(S (9)) (n— p)O‘ + 7,05 5tV ,o} and
E(S@®,)- S(O)) pol+ ywcﬂ +y,0}. Thus, the redefinitions do not change any critical
properties of the correction factors.

Distribution of S (0)—S(6). The last approximate y distribution to be examined is
obtained using (F-55) and (F-66) with p, =1 and 6 =19 :

S®)-5©)
E(S(8) - S(8))

2(1) (F-137)

For (F-137) to be a good approximation, the mean and variance of the lefti-hand side should be
approximately 1 and 2, respectively. The mean is correct.
The variance of the left-hand side of (F-137) is

Var( S©)-5@®) ): Var(S(®) - S(8)) F-138)
E(S(0)-5(0))) (E(S(®)-S(0)))°
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The model combined intrinsic nonlinearity is considered to be negligible so that S (0) can be
obtained from the constrained regression using linear functions f(y0(¢)) and g(y0(¢)) written
as

f(v6(9)) = £(y0.) + D £(¢ - ¢.) (F-139)
and
g(y9(9)) = g(v0.)+D,g(¢—¢.) (F-140)

Solution of the Lagrange multiplier problem for the constrained regression estimates ¢ is
obtained by substituting (F-139) and (F-140) into (E-7), then minimizing L(¢,A ) in the same
manner as used to obtain | —(y'y)'y'e in (E-10)-(E-14). The result is

1
¢-9¢. =(D,f'oD,f)"' D fo? (R - gQ )co2 (Y —£(y6.)) (F-141)

from which

Y -£(y0) = Y - £(y6($))
= Y - £(y8(9.)) - F(Y0($)) - £(v0(4.)))
=Y -£(y0($.)) - D,£(¢ - ¢.)

1 ’ 1
=Y-f(y0.)-D,f (D, f’mD¢f)‘1 D,f'o2(R —%%)mi(v —-£(y0.))

= m—% (I-R+ gQ )(o (Y -£(y0.)) (F-142)
Therefore,

S ~ (Y ~1(10.)Y? (A -R+ g%)m (Y -£(19.)) (F-143)
and

S@)-5@) = (v 1670, )y0? 2L 07 (Y —£(39.))

Q'Q
Q" ; QQ' , QQ'
=Ulo? ==0’U, +2U.e’ 2d+da) (F-144)
Q'Q QQ QQ”
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Terms expressing model and system types of intrinsic nonlinearity cancel in (F-144), but the two
terms containing d do not express either model or system combined intrinsic nonlinearity. Thus,
these terms cannot be neglected, even when model and system types of combined intrinsic
nonlinearity are small.

Evaluation of the variance of (F-144) and subsequently (F-138) is completely analogous
to the evaluation given by (F-125)-(F-130) if ©">(QQ’'/Q'Q)»'’? is substituted for either
®'"’Ro'? or @, as appropriate. The result is

Va( S@®)-S®) ]
E(S(8)-S(8))
N 2r(QQ'0? Aw? /Q’?)a%ai + tr(QQ'm;Am;QQ'o:;Ac?% NQ'Q))ay +r/2
o, +2r(QQw*Ae*/Q'Q)o;0! +1*(QQw*Aw? /Q'Q)a;
ol + (2Q'm;Am%Q/Q'Q)a§GZ + Q07 A0 QIQ'Q) oy +r/2
i

1 1 1
o! +(2Q'0*A0’Q/Q'Q)5} 0’ +(Q02A02Q/Q'Q) o}

=2 (F-145)

This time, the variance is correct, that is, Var((S(0)- S(0))/ E(S(0)- S (é))) =2, through all

terms except /2. As before, the /2 terms would be expected to increase in magnitude as

Y - f(y0,) becomes progressively more non-normal. Although the /2 terms are not equal to

the »/2 terms defined previously, they have the same lowest possible leading order of & 0';
Redefinition of component correction factors. As before, the component correction

factors for S(0)- S(é) are probably more accurate for practical use if they are redefined in

terms of Q rather than V, as follows.

7202 = E(Y ~£(19.))'0 g%m (Y —£(18.)) - o~

1

=(Q02Qw2Q/Q'Q-1)s’ (F-146)

y 0% = E(S8) - S8) - (Y —£(18.))'0? g% o7 (Y —£(0.))

1 1

= E(S(0)-5(6))-Q02Q02Q/Q'Qs? (F-147)

Factor 7,0 /2, measures only the influence of ®™' # Q on the distribution of S 0)- S(é) , and
factor y,o!, which is zero for zero model combined intrinsic nonlinearity, measures the
influence of model combined intrinsic nonlinearity on the distribution of S (6) -8 (6) . Ascanbe
seen, E(S(0)-S©®) =0 +7,05 +7,0!
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Distribution of ratio. The final analysis is of the ratio
((S(8) - S(8))/ p,) /(S(®) /(n— p)). This ratio has an F(p,, n— p) distribution if the two
component random variables are y? -distributed and independent. If y*(n— p) and y*(p,)are
independent, then by the chi-square summation theorem (Miller and Kahn, 1962, p. 463) the sum
1 (n=p)+ 1 ( p)isa y*(n— p+ p,) random variable. Thus, the mean and variance of the
sum of (n— p)S(6)/E(S(8)) and p,(S(0) - S())/ E(S(0) - S(6)) may be checked to see if they
have approximate values of n— p+ p, and 2(n— p+ p,), as expected. The mean is

(F-148)

E( (n=p)S®) , p,(5©)-5@)

E(S@®)) E(S(e)—S(é))J SrTPTh

which is as expected.
The variance is

Va{ (n=p)S®) , p,(S®) - S(f»)]
EGS®)  ES®)-50))

= Va{(”_‘MJ + 2COV((n - p)§(6) R (S(8) - S@))]
E(S(9)) ES®) ~ ES©)-S0)

+ Var[p (50) = $ (?))J (F-149)
E(S(0)-S(0))

If the covariance term is nearly zero, the variance is equal to 2(n— p + p,) + error terms. The
error terms already have been analyzed. The covariance term is analyzed in the same manner as

used for the variance of S(6) and S(0)— S(). First,

Cov[ (n=-p)S®) p, (S(e)—S@))J

E(S®) ~ E(S®)-5©))

_ (1= p)p,Cov(S(©), 5©) - 5©)) (E-150)
E(S@)E(S(©)-S(®))

Then, use of a derivation like the one used in (F-110)-(F-113) shows that for symmetric matrices
A and B,

Cov(U,AU,, U.BU,) = 2tr(AVar(U.)BVar(U,)) (F-151)

For 8 =0, and negligible model and system types of intrinsic nonlinearity, (F-109),
(F-115), (F-124), and (F-151) yield

s 1 1 1

Cov(5(0), $(0.) - S(8)) ~ Cov(U’0*(I - R)o?U., U0 ’Ra?U, +2U.0d +d'od)
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1 1 11 1 1
=2tr(@*(I-R)o2V.0’Rn?V,)s! + Con(U.e? (1-R)w?U,, d'od)
! r 1 !
=2tr(I-R)o2Qe’Ro’Qe?)o)! +r
1 1 1 1

=2r(I-R)02A0’Re2A0? Yo +7 (F-152)

where 7 signifies the remaining terms. Approximation (5-21) gives

[ S |
r(I-R)D2Ad*RO>Ad? )0
1 1
~tr(1-c)I-R)R®?Ad? )0}
=0 (F-153)

For 0=0, negligible model combined intrinsic nonlinearity, and negligible model and system
types of intrinsic nonlinearity, a development similar to (F-152) yields

Cov(S(), S(8) - S(©)) ~ Cov(U'0?(d - R)e?U., V.0’ g%a) U.
QQ 2d+dc)2 : QQ' 2d)
Q'Q
1

r 1 QQ’ 1 1
=2tr((I- R)o2Qw? @ngmz Yo ! +r

+2UL@?

, QQ'

=2r((I - R)mZAm2 00 zAcoZ)O'ﬂ +r (F-154)

Now, approximation (5-21) results in

RULTUEE LT
tr(d-R)d?Ad? o @2Ad?)op ~ 0 (F-155)
Thus, from (5-21), (F-109), (F-150), and (F-155), when ® = ® the covariance term is
approximately given by

(-ppr pr_ (F-156)
E(SO)ES®)-5(0)) (1-c)E(S©®)-SO)0;

where, for the expected Value in the denominator, E(S(8.)-S ©) = po? +r(Rd2 A& Ho
and E(S(0)-S(0)) =’ +(Q'd"’Ad"°Q/Q’ Q)aﬂ Unless 7 is significant, the covariance
term can be small, so that, if ® = ®, the sum of (n— p)S(G)/ E (S(O)) and
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(SO -S (é))/ E(S(6)- S(é)) can have a mean and variance approximately the same as the
mean and variance ofa y”(n— p + p,) random variable.

The analysis for prediction intervals using augmented variables is analogous to the
preceding analysis given by (F-96)-(F-121) and (F-137)-(F-156). However, as suggested by the
discussion leading to (5-97), the approximations are more accurate than the approximations in
the preceding analysis. The development is not repeated here.

An alternative noncentral chi-square approximation. As a final note, the last two terms
of both (F-124) and (F-144) are nonzero because d is nonzero. This also causes E(Y —f(y60,))
to be nonzero, as can be seen from (F-103) and (3-31). If d were approximated as a nearly
normal random variable, then for V =Var(Y —£(y60,))

1

(Y —£(¥8,))'V 2HV 2(Y -£(y8,)) ~ x*(p, p) (F-157)

where H is computed using V instead of V, and y°(p, p) is a noncentral > random variable
having p degrees of freedom and noncentrality parameter p (Graybill, 1976, p. 125). Parameter
p is defined by

_1 1
p= %E(d)’V ZHV 2E(d) (F-158)
Now

1 1

E(Y-£(y0,))'V 2HV 2(Y -(y6.))
=(p+2p)o’ (F-159)

so that, as an approximation,

5(0.) - S(8)

" ~22(p,p) (F-160)
E(S@.)-S@)(p+2p) © D7

for which, as in (F-63), correction factors are defined from
E(S®.)-S®) =(p+2p)c} +7,05+7,0! (F-161)

as 7,05 = E(Y—£(y0,))'(0"*Ro"?> - VZHV 2 )(Y - £(70,)) and

7,08 = E(S(0,) - S(0) - (Y -£(10.,)) 0"’ Ra"* (Y —£(10.))), the latter of which is the same as
(6-14). A similar approach also could be used for S(6)- S(é) . Both distributions could be
analyzed using the procedures used to analyze (F-122) and (F-137). The ratios of the
approximate noncentral y> random variables, such as (F-160), to the approximate central y*
random variable given by (F-96) lead to noncentral F distributions to define confidence regions
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and intervals (Graybill, 1976, p. 128). Experiments indicate that this approach does not improve
accuracy compared to the approach followed for the two examples considered in section 7. Also,
it is doubtful that the noncentrality parameters could be estimated using the information usually
available. For these reasons the analyses are not pursued further in this report.
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Appendix G — Evaluation of Component Correction Factors
for Model Intrinsic Nonlinearity

Component Correction Factor Pertaining to Confidence Regions

Component correction factor 7,0 is given by (F-62), appendix F, as

1 1 1 l
7,08 ~ i—E(Z SID*fLe?d-R)ol.D’f1.) - E( S0?Z.1.D* f,(Df oDf) "' D’ f,L.03Z.)
i g ik
1

+E(Z T02Z.1.D” f,(Df oDf) " Df'o I'D*£,1.) (G-1)
i
Equation (G-1) is evaluated term-by-term using the result of appendix A. For the first term

1 1
EC 2 LD’ fl.o?d-R)o2l.D’f,L.)
i
] 1
z §m3(I—R)m§ E(LD’£1)ID’f1.)
1 1 1 1 1 1

> So?(I-R)o? E(U.V,2V2oDf (Df'oDf) " D f,(Df'oDf) ' Df V2V, 2U,)
i

1]

i 1 1 1
«(U.V., 2V oDf(Df'oDf) "' D’ f, (Df'@Df) ' Df 0V, V, 2U.)
1 1 i

1
=¥ S0 (I-R)o? (V2 oDf (Df'oDf) "' D’ £, (Df oDf) " Df oV, )
i J

1 1

1 1 1 LI
o r(V2oDf (Df oDf) ' D’ £, (Df @Df) ' DfoV? )o! +23 Lo? I -R)o? tr(V: oDf (Df oDf)™
i

1
« D’ £,(Df'oDf) "' Df oV, oDf (Df ©Df) " D £, (Df @Df) ' Df @V )5}
1 1 1 ll
=XX0(I-R)e?r(A)r(A)o!+23X o I-R)e’tr(A,A)c!
I j i J
1 1 1 1
=CI-R)eltr(A,)TA-R)elr(A))o! +232 (I-R)oYI-R)o? (A, A)o,
j J J ot
1 1

1 1 1 1
= z(I-R),a?tr(A) sA-R),021r(A,))o! +255tr((I-R), ®2A, (I-R), 02 Ao
i J i j £

1 1 1 1 1

1 1 1 I 1 1
=3tr’(C,0?V, 02 )o! +251r(C, 0V, 02C,0?V, 0? )o! (G-2)

where temporary variable A, is defined implicitly, and
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11 1

C,=(I-R),5 o20’Df(Df'oDf)” D’f, (Df oDf) " Df 0 (G-3)
J

For the second term

1

E(ZZmZZ I'D? £, (Df'oDf) ' D’ f,l.0Z
1 1

=X E(Z.0*0}Z.)(1.D’ f,(Df'@Df) " D’ £,1.)

J
1 1 1 1 1 1 1 1

Z E(U.V,2V202 (1 - R)mka(I R)o?V2V,2U,)

J
11 t o1
o (ULV. 2V2me(Df'me)'lD2 £, (Df'oDf)™' D’ £, (Df'oDf) "' Df'0V.2 V. 2U.)
1 1 1 1 1 1

=XX tr(V2m2(1 R)o? 0} (I- R)o? V.2 )ir(V2oDf (DfoDf) "' D’ f, (Df'@Df)' D? £, (Df'oDf)™

J
1 1 1 1 1

1 11 11 1
e Df'oV2)o! +23 ¥ (V20 (I- R)o? o} (I - R)e*V, oDf (Df'oDf) ' D* £, (Df o Df) ™
Jj k

1
« D’ £, (Df'oDf) 'Df0oV?)c!
1 1 1 1 1 1

1 1 1 1 1 1

+2% §co2 (I-R)o?V, 0’B,B,0’V, 0’ -R)e’o; (G-4)
-
where
1 1
’ 12 ’ -1 ’
B, = 0o’Df (Df oDf) D"/, (Df'oDf) Df o? (G-5)
For the third term

1
E(z z o? Z.I.D’f (Df'oDf) ' Df'w I.D*£1.)

=13 E(LD’f(Df'oDf)" Df'o, mZZ)(I'DZfI

i

Lol L1 Lo
z > E(ULV. 2V} oDf(Df'oDf) ' D’ £,(Df'oDf) ' Df '@ o?02e?(I-R)o?V2V,2U.)

1 1 1 1

«(U.V. 2V oDf (Df oDf) ' D’ f, (Df'oDf) ' Df @V 2V, 2U.)
1 1 1 1 1 1

= >3 1r(B,02 0} (I- R) 02 V.02 )ir(B,0’ V.0 )o!
iJ
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L1 1] L
+222r(V? 0°B,0’ 0} 1 -R)0?V,0°B,0?V?)o,
i
1 L | 1o
=2> 0}(I-R)0’V.0’B,0}r(B,0’V, 0?)o;
ij

1 1 1 1 1 1

+2 ZZ co2 a- R)oo2V sz o2V, sz, (G-6)

_] 6‘

Matrix V, can be replaced with Q, as can be deduced using (3-23), (3-33), (5-8) and the
fact that

EQY, - £;,(Y0NY; - f,(¥6.))
=EX, - f,B+ (B - £.(0.0T, - f,B)+ f,B) - f,(¥8.))
= E(g;8,) + E(f;(B) - f:(¥0.))XS;(B) - £,(¥6.))

to yield

Q=V, +0(c} /0?) (G-7)

where O(o, /7)) signifies terms of order o7 /2. Use of (G-7) shows that replacement of
®'’V.0'"? with ©”°Qe"? in (G-2), (G-4), and (G-6) involves dropping terms of order o307,
which are of higher order than kept in the perturbation analysis.

Component Correction Factor Pertaining to Individual Confidence
Intervals

Component correction factor y,o7 is given by (F-68), appendix F, as

4~
Vi, =

LEE 21D o ?(I—R+QQ)m2|D2f|
4 i QQ

1 tmart 5 Q
-—EG D Lo ——1'D%I ——E 1.D%].
SEG LD Lo, 20 )+ QQ ( )?

1
—E(s3 Z'mf_.T.’szj(Df’me)"‘Df'coE(R - g%)mEDf(Dmef)-W fl.e2Z)
Jj i

1

1 , 1 _
+E ((E}EQ'mER )’ 1'D’g(Df'oDf) ' Df 02 (R - %26)”2 Df(Df'wDf) ' D’%gl.)

1 1 , 1~ N
+E(XY Z'o? 1.D*%(Df'oDf) ' Df'w? (R — %%) o? L'D’f, L)
J

1
+61,6E(2 Z'o?I'D’f,(Df'oDf) ' Dg’'l. D’gL) - 7,0 (G-8)
J
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Equation (G-8) is evaluated term-by-term using the result of appendix A as was done for (G-1).
For the first term

2 QQ'
E D Lo?(I-R+——— 2ID |
(ZZ_f’m( 000 Y,

] QQ' A TN T
= ,2 I—R - sz l.,D ,‘lt LD jlt
230} @-R+ Z )0l EADY,T)IDY,T)

1 1 ] 1 1

1 r 1 i 1 1
-ssed-R +%26)m} E(U.V.2V2 @? (R——g%—)mz Df (Df ©Df) ' D? £, (Df'oDf) "' Df '
i

(11 RSS! 1 !
‘(R—ng)coz V2V, 20, )(ULV. 2V —g% 2 Df (Df'oDf) "' D’ f, (Df'oDf) ' Df'w?

*(R- gQ )(o2 V2V 2U,)

=>To 2(1 R+gQ Jo? (A, )r(A ) ol +2zzm2(1 R+g%)m 2tr(A A )0
=(z(1- R+@—)m2 tr(A,)) (- R+%)m2 (Ao}

QQ
QQ’

QQ’
+2¥ (I -R+
J e(( QQ

QQ
Q% m2 tr(A)E( - R+8—Q)m r(A)o?

)u)z)(l R+ )(o r(A; Ao}

= 22(I-R
[

QQ’ QQ’
2222 I-R AI R+——— tA
+ tr(( +QQ ( +QQ)co )a'

1 1 1 1 1

= z_rrz(ﬁ,miv. 0?)o! +23tr(C,0?V, ©C,0?V,0? )0} (G-9)

where temporary variable A, is defined implicitly, and

QQ’ 3 QQ’ - -1
C, =(1-R+== * DE(Df'D) D/, (Df'wDf)"Df 'w? G-10
( +QQ)Z 7 R- QQ)w (Df'oDf)” D" f, (DfoDf) " Df'o?(R - Q )( )

For the second term

1
~ ~ = Q ~_ g,
E(Z I:D%f;— I.(D,Z ‘T‘ IiD g I:)
i QQ
1

_s 02 - E(D1)(ID%l)

i Q'
—20)2(1 R+QQ) Q (A,)tr(A)O' +2Zm2(I R+QQ Q

QQ’QQ QQ g AN
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Q QQ’

20 Q Q)m2 tr(A,)ir(A)o +22®(I R+ 00 )a)2 (A, Ao
> 20

)a) r(A, )ﬁ—zr(A)a +222(I R+QQ ),m2 Q r(A,A)o;

QQ Q'Q QQ QQ

1 1 1 1 1 1 1

=21r(C,0?V, 0*)r(F,02V,02)o! + 251r(C,0?V, 0°F, a)ZV,oﬁ Yo! (G-11)

where temporary variables A and A, are defined implicitly,

{

0 «
==& G-12
Q'Q 12

.

and

A=R- Q' )m2 Df (Df oDf) ™" D’ g (Df'oDf) 'Df'® 2(R—@) (G-13)

QQ QQ
For the third term

1 m? 9 Y 9 ,9 4
——E(I'D%,)? = A)=tr(A)o? +2 =LA
Q0 (I'D’gl.)” ZQQtr( ) Q'r( Jo; + Ztr(QQ Q0 )o,

1 1 1 1 1

=>tr’ (F,0?V, 0?)o’ +2zrr(17",.co5v, o’F,0?V,0?)c? (G-14)

For the fourth term
. b 1 QQ’ L ~ L
E(Z 2 Z'0? I,D’f,(Df'oDf) "' Df'w? (R ——Q'—Q)mZDf(Df’me)“ D’fl.0?Z)
J i

1

Lo 1 ;o1 -
> 2 E@ 020?Z) 1D¥(DfoDf) ' Dfo? (R - %)co Df (Df'oDf) ' D £1.)
J i

RO A U L1 :
=3 TEUV.2 V2 (I- Q,Q jmf(I—R+$)mZV3V,2U,)(U:V.2V.2m2(R QQ)
o Q'Q Q'Q Q'Q
1 1 ;o1 1
Df(Df'oDf)"' D’ f, (Df'oDf) " Df o2 (R — %%)wzl)f (Df'oDf)” D* f,(Df'oDf) " Df'w?

]
.(r-2© )m2V2V 2U,)
Q'Q
1 QQ’ ! . 1 1

=§;zr(v.2m2(1—R+QQ)m2m2(1 R+gQ)m2V2)tr( B0V, 0?)0

1

[ =

11 1 LU
+2§§tr(V‘2m2(I—R+g%)(o (02(1 R+g%)m2V ®’B,B,0’V?)o,



1
=YXrYo?([-R+
Ji

where

QQ'’

B, -
=R Q'Q

For the fifth term

1 ~ 1 . 3
E((f1 Qb2 U.)’ |:D2g(thDf)"thoz(R_%%) ©?Df(DfoDf) "' D’gT.)

QQ

1 1

1
(QQ)?
2 1 1
-|-_.__
(Q'Q)’
(Q'Q)’

For the sixth term

1

1
E(gz 2 I'DY(Df'oDf) ' Dfo? (R -
J

11
=2 T tr(B,02 0 -R+==
i

r1 1
+2y T r(Vio? B,

i
1
=YY o?d-R+ QU
i j Q

1
+2X X of(I-R+
i j

For the seventh term

QQ’
Q'Q

1
+2¥Y0?(I-R+ QQ
ji Q'

1

QQ’
Q'Q
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)(onmz(I R+QQ
Q'Q

1

1 1 1

1 1 1 1

Qw2V,0? Qtr(A m2 V,m2 Yo +———

1

11 S O B |
tr(Vio?QQon2V2)ir(A’e?V.02)o !

r(V20?QQo?V.02A’0? V2)o!

Q Q)

T E( 1D (Df'oDf) "' Df'o> (R - g—QQ)

QQ’ :

QQ 2|1D2 l
Q) j AN

1

1

Q)o)zv mZB BoV.o2(I-R+==

1
-Q0’V,02A’0?V.02Qo;

1

1

QQ'’
QQ

)mz Df (Df'oDf)” D’ £, (Df oDf) " Df ‘o 2(R-

)(DZV(:) )tr(B o?V,0?)s’

Q'Q

1

1

) a)2V sz 0’V, o

1

1 1

1 1
2 2
B.oj

1

Q)0)2V mZB 0)2 tr(B o2V, mz)cr

4
S

1

1
®? 0)2(1 R+gQ )sz o’B mZVz)a

1
24
~olo,

QY

Q'Q

1

1
o; 202 Z)( I!szj )

1

)

)a) tr(B B, 02V, a)z)a

1

1

197

(G-15)

(G-16)

(G-17)

(G-18)
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— E(z Z'mz /D%, (Df oDf)'Dg’ T:Dgl.)
J

QQ
QQ f(Df(on)"DgoﬂZ)(l Dgl.)
QIQ ) ;(R— g%)B Qo 2(1 R+ g%)sz )U'o 2Aco%U.)
=—d%lz_tr (R- g%)B Qcoz(l R+ g%)sz m;)zr(Acoil’-V 0o’
+-Q—,6§tr (R- g%)B sza R+ gQ )co2V m;Am;V a);)a
QQ ,%(I R+ g%)mZV m;(R gQ )B, Qtr(AmZV mZ)a
+6%zm (I-R+ g%)sz m;Ao);V m;(R— Q,Q)B,.Qa: (G-19)

Component Correction Factors Pertaining to Individual Prediction
Intervals

Evaluations using a general weight matrix. Component correction factor 7,0 is
given by (F-93), appendix F, as '

};Ia : “%E(Z‘:Z "*athzj(;:I*awazl (Ia - W2|' pzfajl’a

1 1

~ECT W2Z.1., D, £,(D,5W,D,L,) ' D’ £, WiZ.,)

*a“a a’ " ak
1

+E(ET W2Z. 1., D2 £,(D,f.W,D £,)" D /W, I.D3£,1.,) (G-20)

*aa

Equation (G-20) is analogous to (G-1) and evaluates analogously. Hence, for the first term

EGZ |'mD§fa|taW£ I, -R )WZ"P faleo)

1 1 1 1 1

=Ztr2(CmW2V W2) o! +25tr(C,W2 V,.W2 C,W2V,W2)o! (G-21)

*q'"a *a''a

where

1 1

C,=,-R,),sW2W2D £ (D WD f,)"'D.f, (DL, W,Df)"'DLW : (G-22)
J

aa "a
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For the second term
1 1
E (Z% W2Z.[I. D, f£D LW, £)'D; £, 1.,.WELZ.,,)

1 1 1 1 1

1
=23 W3, (I, -R,)W2 V., W2 (I, ~R,) W3ir(B, B, W}V, W2 )o!
J

aj - ak
1 1 1 1 1 1
+ 22% ng (Ia - Ra )“Ia2 ‘I*a“la2 BajBak\‘,a2 ‘I*a“’a2 (Ia - Ra)wai'o-g (G-23)
J
where
1 1
’ - 2 ' -1 '

B, =W?Df,(Df,W,Df,) 1Dafaj(DafaWaDafa) D f/W2 (G-24)
For the third term

1
E(z z W%zi Z*J'*a Dzzlfa‘i (DafcylwaDafa )_1 Da ft’zwaj I”‘aDt21 jsjl‘a )
tJ

1 1 1 1 i

1
=r> W2, -R,)W2 V, W?B,W2ir(B, W2V, W2)o!
ij

1 1 1 1 1

1 1 1 1 1 1
+253 W2,(I, -R,)W2 V, W2 B, W2V, W2B,W2o! (G-25)
i

aj~ e

Evaluations using a known, block diagonal weight matrix. Equations (G-21)-(G-25)
can be expressed in terms of w, by using (5-89), (5-94), and definitions (E-46), (E-47), and (E-
56), appendix E. When making the multiplications, the explicit sums on i, j, k, or £ that involve
augmented vectors and matrices extend over n+1 terms and the »+1th slice is D2f.,...=0,
which follows from the definition given by (E-46). Also, W.? =[®!?, 0] fori=1,2,...,n and
W,/> =[0, w, ] for i =n+1. Equation (G-22) becomes

1 1 1

C,={,-R,),202,02D,f, M, 0,D.1,)" D:f,D.fo,D,[,)"D,fo
J

a~a’a a~a—a a~a—a

C, 0 ]
=[0 o] (G-26)

so that for (G-21) written in terms of ®,

1 1

E(?% I"ﬂDift;il‘awgi(Ia _Ra)m§'|' szajl*a)

aj " *aa

1 1 1 1 1 1

=31} (C,02V.0?)o! +23(C,0? V,0?C,0? V, 00! (G-27)
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which is the same as (G-2). Equation (G-24) becomes

a~aa

B, 0 ]
= {0 0} (G-28)

1 1
B, =D f,®.f,0,D,f)"D; f,(D,f,0,D.,)"D.f; 0

which gives, for (G-23) written using ®,,,

1 1

ECT @3Z., V.. D, (D f,0,D,£)"D; f,1.,0%Z.,)

1 1 1 1 1

1 — —_— — —_— —
Z_% o; I-R)o? V,0?(I-R)o?r(B,B,0>V.0?)o;
J

1 1 1 1 1

1
+25% 0} (I-R)o’ V.0’ B B,0*V,02(I1-R)e?s! (G-29)
jk

Equation (G-29) is the same as (G-4). Finally, use of (G-28) yields (G-25) written using o, as

a“aa a” aa " *a aJag

1
E(ZZ m%iZ‘aI,*athifai(D f’(ﬂ Dafa)_lD f'(!) I’ D2 ‘fa“lta)
i J
1 1 1 1 b 1
=2X0?(I-R)o?V.0? Bo2r(B,0? V.0?)o!
J

1 1 1 1 1 1

+23% o} I-R)o? V.0 B,0? V.02 B,o? ¢ (G-30)
ij

which is (G-6).

Equations (G-26)-(G-30) lead to the conclusion that 7,0 = 7,07. That is, the
component correction factor for model intrinsic nonlinearity for prediction intervals is the same
as the component correction factor for model intrinsic nonlinearity for confidence regions and
confidence intervals.

Evaluations using a general weight matrix. Component correction factor y,o! is given
by (F-95), which is

1 ’ 1
1 T T w2 QaQa 2T T
}/Iao-j & ZE(ZI:§ I*a Difai l"‘a\"gi (Ia - Ra + ’ )ch I‘a Dczzfaj I’a)
1 ~’2~1Qa~’ 21T 11 T2 T \2
_EE(Z Ita Dafai I*a‘vgzi ’ l“a Dah I*a) +— ’ E( l‘aDah l‘a)
i 4

a a a a
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1 1
- B3 Z,W3T,D2/, (DA, W,D.L,) DLW (R, - gg Q@ wipy ¢ (D,6W,D.1,)" D2£, LW3Z,)

a a

1 1 -
B Q'W2 U,)"T" D2H(D /W, D.£,)" D, W2 (R, — 22 Q.Qywip £ (D.£'W,D.f,)" DI,
aNa 1. 1 Q.Q 1. o ~
+ E(ZZ Z; Wazt L,aDzzzf;zZ (D f’Wa])afa )’1 Daf(;waz (Ra - ﬁ)W$ l*’aDczifc‘zj I‘a)
tJ a¥a
+ Q,lQ E(Z_Z'WZI D:f, (D £, W,D £,) D K ID2AT)-7,0 (G-31)
aNa J

Equation (G-31) is analogous to (G-8) and evaluates analogously. Thus, for the first term

E(zzl' D2 £, L.W ,,,(1 _R, + Q. Q, )wg 1, D2f,1.,)
Q.Q.
. 1 1 . ! 1,1 1
= 3r*(C, W2V., W2)o! +25r(C,, W2V.,W2C,, W2V, W2)o'! (G-32)

where

o~ Q Q Q Q ' -2 ’ -1
C,=d,-R, 4 R,- D DLW, Df,) D,f, D fW,Df,
( + Q0. )2 ( Q0. a( ) D, fo( )
_Q.Q,
D f W2 R, =2 G-33
( Q. Qa) (G-33)

For second term

BT, D2 £, 1) ‘”Q(’)Q i D24 T,,)

a“a
axa
1 1 1 1 1 1 1 1

= 3tr(C, W2V., W2 )ir(F, W2V, W2)o?! +251r(C,, W2V, W2F, W2V, W2)o? (G-34)

where

b

(G-35)

ai T

=)
i~
S

in which
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’ 1 1 '
A, =R, -2Q)w: p g D,1W,D,1,)" DIKD,EW,D,L,) " D1 W? (R, - 22
Q.. Q.Q.
For the third term

1 1 1 1 1 1

E(;, ;ALY =30 (B, W2V, W2)o! + 25 (F, W2V, W2E, W2V, W2)o! (G-37)

Q.0Q,
For the fourth term
5 waT yp QaQ
E(ZZ Z;Wa? I"aDczzfaj(Daf;waDafa)_lDafc;waz (Ra Q Q )WZD (l)afa"va])afa)—1 szazl w021 a
J1 a a
1 1
2 L0 50 Q. Q. 4
=YY W2 (I -R +#W2V,,W2I -R, O \W2(B. B w2V w2
%? al( a a Q;Qa) a a ( +QaQa) ( aj " ai )O-g
1 b 1 1
+255 WL, -R, +%%)W3 V., W2B,B, W2V, W2(1, - R, +g g")w; ot (G38)
J! a a
where
1 2
B,=(R, - Q.Q; )w2 D f,(D,f;W,D )" D2f, (D f;W,D.f,)'D /W2 (R,— ——Qi’ Q")
Q.Q, Q.Q,
(G-39)
For the fifth term
1 ’
E((Q,lQ 'w2 U.,)*1., D?h(D £W,D £,)" D /W2 (R, - g g )W2D f,(D,f'W.D ) ' D*l)
al ‘ 1 ] — 1 1 2 ! al l - 1
———— QW VW2 Qtr(AIW2 V. W) +—— QW2 V. W? A’W?2 V, W Q ol
(Q Q.)’ (Q,Q,)°

(G-40)

For the sixth term

L 1 ~
B3 ZIWT DL (DLWDL) DL Wi R, - 22 WITLD7, L)
4 a

1 1

1 1. ~ - =
)W(12 V‘a Wa2 ai waﬁtr(Baj W"z V'awaz ) O':

> Q.Q,
Z I,-R,
EWal. R4 00,

| —
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Q Qr 1 1 1 1 1
+2zz W2 A, - X W2V, W2B, W2V, W2B, W2o! (G-41)
Q..
Finally, for the seventh term
56 EC ZIWETLD2/, (D EW,D 1, D W T, 0ehT,)
1 Q.Q. Q.Q. Y WAV Wit
- ZW2 d,-R,+ ")W2 .aWZ(R —a=a\B Q,tr(A,W2V,,W2)o,
Qa QaQ QaQa
1, 1 1
2 (1 -R, + 2 )w2vaw3Aaw3V,aW3(Ra Q.Q, <a¥ayB (G-42)
Q. Q.Q, Q.Q,

Evaluation when the prediction error predominates and the weight matrix is block
diagonal. The following evaluation of the terms in (G-31) for the case where a);] >>Q'Q
yields an important result. First, from (5-92),

Q L o -
Q.Q, = { -;} Q-w,]= Q? Qa, (G-43)
—_ a)p _ a);EQ' w;
and
Q.Q,=QQ+w, (G-44)

Second, use of (5-94) and @,' >> Q'Q produces

— 1 -
r-— Qo,’ R 0
’ ’ -1 ’ ~1
aXa a)szr 1— w;l 0 0
| QQ+w, QQ+w,' |

Third, when making multiplications 1) the n-+ith slice of D2f, is a matrix of zeros and 2)
W,/? =[@}?, 0] fori=1,2,....nand W,> =[0, »}*] fori=n+1. Finally, application of the
above ideas to (G-32)-(G-42) shows from (G-31) that when a);,‘ >>Q'Q

}’Iao': zJ;IO': —}7102?
=0 (G-46)
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Appendix H — Prediction Interval for Linearized Models

Extreme values of (5-101) using linear models (5-104) and (5-105) are obtained in this
appendix. Specific forms of (5-104) and (5-105) needed are

£(y0) ~ f(y0) + Df(6 — 0) (H-1)
and
f(y0) ~ £(y0) + Df(0 - 6) (H-2)

so that, by subtraction,

f(y0) ~ (y0) + DE(O - 6) (H-3)
Similarly,
2(y0) ~ g(y0) + Dg(8 - 6) (H-4)

Extreme values of (5-101) are obtained by taking derivatives with respect to 0, v, and A to get:
for ©

% ~Dg' +21 Dfo(Y — f(10) - Df (0 —8)) = 0

or

Df'oDf(6 - 0) =71 Dg’ + Df'a(Y — f(y0))
=1Dg’ (H-5)

where 1 = 1/(24) and the second term on the right-hand side is zero because it is the gradient
for the least squares solution. For v

a—Lzl—Z/'La)pl):O
ov

or
w,0=1 (H-6)

Finally, for 4
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g—i =d? -8(0)-w,0* +S(6) =0

or
d? =S(8)-S(0) + w,d> (H-7)

where

S®
4z = an=p) H3)

Solution of (H-5)-(H-7) for 0 and 1 yields equations from which Y, , is obtained. First,
(H-3) and (H-5) are used to obtain

S(8)-S5(8) ~ (Y - £(y0) - D (® - )y’ (Y — £ (1) - DE(B - 6)) — S()

= S(0) - 2(8 - 6)' Df ‘o (Y — £(y0)) + (0 — 6)' Df'wDF (0 - 6) - S(6)

= (0 -0)Df'oDf (0 - 6)

= 12Dg(Df'oDf) ' Dg’

=1’Q'Q (H-9)

Then substitution of (H-6) and (H-9) into (H-7) gives

d}=1’QQ+w,(1’w})

=1’QQ+a;) (H-10)
from which

1
—_ dZ 2
Y . T— H-11
A i{Q'Q+w;l} (7 )

Next, (H-11) in (H-5) are used to arrive at

. 2 2

6-6=1= d—“_l (Df'oDf) " Dg’ (H-12)
QQ+w,

Finally, (H-12) is premultiplied by Dg and o is added to get

Dg(8-0)+=g(y0)-g(¥0)+D
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d2 2 d2 2
=H ——*——| Dg(Df'oDf)'Dg'+| —=— | o'
QQ+w, QQ+w,
1
=+d,(QQ+;')’
or

¥, = g(0)£d,(QQ+aw;)? (H-13)
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Appendix | — Analysis of Equations (6-2) and (6-19)

Equations (6-2) and (6-19) are analyzed in this appendix to show 1) that certain terms in
these equations are zero when model intrinsic nonlinearity and model combined intrinsic
nonlinearity are zero and 2) that these equations correspond to perturbation equations derived in
appendices B and E. Equations (6-2) and (6-19) also are used together with perturbation
expansions and the assumption that ©"*V,0"? ~ ©"2Qe"? ~1 to evaluate component
correction factors 7 o and y o .

Analysis of (6-2)

Form for small model intrinsic nonlinearity. To show that the second term on the right-
hand side of (6-2) is zero when model intrinsic nonlinearity is zero, an analysis analogous to the
one used to obtain (F-108), appendix F, is used. First, the linear-model approximation of f(y0,)
in (F-104) is

p(v.) =£,(y0.) + Dfy. (-1
Next, an analogous linear-model approximation of f (y@) is

p(§) = £(y0) + D £($ - §)
= f,(y0) + DIy (I-2)

Now, the best fit of p(y) =p(y.)-p(¥) to £(y0,)—f (yé) is obtained by minimizing with
respect to y =y, —\ the objective function

S(w) = (£(¥8.) — £(v8) — p(w)) ©(f(¥0.) — £(18) - p(y)) (I-3)
to obtain
y = (Df'oDf) ' Df o(f(y8.) - f,(18.) — £(y0) + £, (v0)) (I-4)

The residual vector for this problem is

£(y0.) — £(v0) — p(y) = £(v8.) — £, (y0.) — £(y0) + £, (v8) - Dfy

=0 2(I-R)o? (f(y6.) — £, (18.) - £(y0) + £, (v0)) (1-5)
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If p(y) fits £(10.) —f(y0) exactly, then the linear model p(y) = £, (v0.,) —f, (y0) + Dfy is
exact, indicating no model intrinsic nonlinearity. In this case (I-5), which is the second term on
the right-hand side of (6-2), equals 0.

For the last term on the right-hand side of (6-2),

1 1

o 2Ro? (Y —£(y0)) = Df(Df'oDf) ' Df o(Y —£(y0))
= DfJ (J'Df'oDfJ) "' I'Df (Y - £(9))

=D,f(D,f'oD,f)" D,fo(Y - f(y6($))) (1-6)

If there is no model intrinsic nonlinearity, then D ,f is not a function of ¢ so that
D f'o(Y-f (79(4)))) is the gradient vector for the least squares solution for ¢ (and, thus 6)

Wthh is 0.
Correspondance to perturbation form. The expansion of Y —f (‘y@) given by (6-2)

corresponds exactly to the perturbation form given by (B-12), appendix B. Expansion of each
term in (6-2) through second order in e and U shows this result:

o 2(I-R)o?(Y -£(y6.))

~o 2(I- R)Zco U., += e(Df,f =1 YDL £,y )e) (1-7)

o 2(I- R>m2 (f(ye )~ £,(10.) — £(y0) + £, (8))
%m '(1- R)Zm €10 YD} £ ye-ID* ) (-8)
® 2Ro? (Y -£(y9)) ~ DE(Df oDf) ' £(Df, - D* £,(§—0))o, (Y — £(v6))
~ ~-Df (Df'oDf)' s D*f,(1+q)o, (Y - £(y8) - Df (1 + q))
~ -Df(Df oDf) 'S D*flw,(U - Df(Df oDf) ' Df 0 U)

1
=-DI(DfoDf)"' 3 D’ flo?Z (1-9)
(Equation (I-9) also could have been obtained by simply substituting (B-12) into
o ’Ro"*(Y -£(y8)).) Then, substitution of (I-7)-(I-9) into (6-2) results in

1

1
A 5 Py 1 ’ ron=lor R
Y-f(y0) ~o 2(I—R)Zcoz-(Ut,- +—e(ngf,- -y YDL YY) Y )e)

1

+;m - R)Za @(r7)" 1D}/, 1) ve-ID £
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1
-Df (Df'oDf)"'s D’ flo?Z

1 1 1
=0 2(I-R)zo2U., +%(e’D; fe-I'D*f)- Df(Df’con)“Z D’ flo?Z
J

1

=0 *(I-R)ZelU, + %(e'nz f,e=VYD*£,)) - DE(Df'wDf)™ 5 D/l Z (I-10)

which is the same as (B-12).

Approximate evaluation of terms in component correction factor. Equations (I-7)-(I-9),
(G-2)-(G-6), appendix G, the assumption that ®'*V,0"? ~ ®'/’Qe'?> ~ 1, and the definitions of
pertinent variables are used to develop the three expected values on the right-hand side of (6-3)
as

1

2E(£(y0.) - £,(v0.) - £(y0) + 1, (yé))'m% (I-R)o2 (Y -£(y0.))

~ EEEY(') " YD, fy(yy) " ye—ID* fl- 2l'D2ﬁq)o>.~% a- R)%mfl.(U*,-

+ Ee’(DZf] 1 YD YA v )e)

~2E(3 I'D’ f,.qm,%Z)

~ —2E(§I’D2 f,(Df oDf)™ (§ D’f, Im%Z +%Df'§mj(e’D2 f,e-ID*f, |))m2Z)
~ 2E(3 (o,%Z,. I.D’ ﬁ(Df’con)"% D*f, Lmézg

1
+E(Z 0?Z.1D’ f,(Df'oDf) "' Df'’L 0 I.LD* £ 1)
! J
=23 tr(C)o! d-11)

E({(y8.) - £,(18.) - f(y0) + f, (y0))'»° (I—R)oﬁ (f(ve.)—fo (¥8.) — £, (v8) + £, (v9))
—E(Z €y(y'DyD; fy(y'7) ' y'e-I'D*f, l)m2 I- R)Zco €vy YDy Y
~I'D2£)1y)

~+E (zn'szLmz(I R)ZmZI'DZfI

~4>

=—3ir* (C)ol+= Ztr(C Yo (1-12)

F -y

1 1

E(Y - 1(10))0?Ro? (Y —£(y0))
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1 1
~ E(X 02ZI'D* f,(Df'oDf) " Df ' oDf (Df @Df) 'S D*f, ln2Z)
i k
1

1
~EE o?Z. IiDZf,.(Df’con)_1§ D’f, LolZ.)
=2ir(C)o! @-13)

Matrix C, is defined by (G-3).

Analysis of (6-19)

Form for small model combined intrinsic nonlinearity. To show that the second and
third terms on the right-hand side of (6-19) sum to zero when the model combined intrinsic
nonlinearity is zero, an analysis similar to the one used to obtain (I-5) is used. First, a linear-
model approximation of f (76) analogous to (I-1) is

p({) = £(y0) + D (¢ - ¢)
=1,(y0) + Dy

(1-14)
Next, the constraint is expressed using the same ideas:
g(¥0.) - g(v0) = g(18) + Dg(0. ~ 6 +y.) ~ g(16) ~Dg(0 -8 +§)
=80(10.)— g, (y0) +Dgy (I-15)

where y =y, — . Finally, a constrained best fit of p(y) = p(y.)—p({) to £(y0,)—f(y0) is
obtained by minimizing with respect to y the Lagrangian function

L(w, 2) = (£(y8.) —£(y6) - pﬁw))'w(f(zea) ~£(10) - p(w))
—24(g(¥0.) - g,(v0.) — g(¥0) + g, (v0) - Dgy) (I-16)

The same method as used to solve for T — (y'y)'y'e in (E-7)-(E-14), appendix E, produces

v= —((D“” 'g,)(; DY _ (prwpr) ' Dfa? ]«ﬁ (R(10.) ~£,(Y0.) ~£(78) +1,(10))
Dfio Df) ' Dg’ ~ ~
+ ‘”Q,é De” (g(19.) -2, (10.) -2 (40) + 2, (YO)) @17

The constrained residual vector is

£(y0.) - £(v0) - p(y) = £(y0.) — £(y0) — £, (y6.) + £, (v6)
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; Df((("“” D(;,); D _ ptis pry Dfrma},,a (F(10.)— £,(v0.) — £1D) + £, (40))

_ (DfoDf)'Dg’

(8(¥0.) —g,(0.) - g(v0) + g,(v0)))

QQ
1 QQ
-0’ @-R+Z Q)coz (8(19.) — £,(Y0.) —£(18) + £, (18)
o> Q g (E(19) = 2o(10.) - £48) + £,1B) (1-18)

If p(y) as constrained by (I-15) fits f(y0,)—f (76) exactly, then the combined linear models
f,(v0.)—f, (76) +Dfy and g,(y0.)-g, (ya) + Dgy are exact, indicating no model combined
intrinsic nonlinearity. In this case (I-18), which composes the second and third terms on the
right-hand side of (6-19), equals 0.

The last term on the right-hand side of (6-19) also is zero when there is no model
combined intrinsic nonlinearity, which is shown as follows. If there is no model combined
intrinsic nonlinearity, then the Lagrange multiplier formulation to solve for the constrained
regression estimate ¢ is given by

L(¢, 1) = (Y = £(v6(9.)) - D, £ (¢ - $.)) (Y — £(y6($.)) - D £ (¢ - ¢.))
+24(g(v8(9.)) — (v6(¢.)) - D, g(¢ - ¢.)) d-19)

The solution for ¢ takes the form

¢—¢. =(D,foD, f)"D f'm(Y—f(ve(ti». »)

~(D,foD,f)"'D,f'0? g% o2 (Y - f(79(9.))) (1-20)

from which, using the constraint D, g($ —¢.) =0, the gradient is obtained as

(D foD 1) D¢f'm<Y~f(ve(¢ ) -D, (¢ -9.))

~(D,foD,0)"D,f'o? g% ©? (Y —£(y8($.))) - (D,foD,f)' D, for L

QQ
=(D,foD,f)" D,f'o(Y —£(18(3))) - (D,fo D) D f'o? gQ o2 (Y - £(y9(9.)))

¢g($_¢~)

-(D,foD,f)" D f'o QQQ D,g(D,foD,f)"D,f'oD L0 -6.)

1
=J7(Dfo Df) "' Df'0? (R -

gQ 02 (Y ~1(18)) = 0 1-21)
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Equation (I-21) shows that the last term of (6-19) is zero when there is no model combined
intrinsic nonlinearity.

Correspondance to perturbation form. The expansion of Y —f(y0) given by (6-19)
corresponds to the perturbation expansion given by (E-29). Expansion of each term in (6-19) to
second order shows this result:

1

2 QQ’
2(I-R (Y1 0,
® *( +QQ)co( (v6.))

zm‘za—mgQ)ww €031, YD) YDA 1D ) (122)

1

0 20~ R+ Q)07 (1(10.)— £,(10.) ~ 1(48) + £,(v) - © * ~2 (e(10.) - £4(16.)

N Q'Q QQ
~- 2(Y0) + g,(Y0))
zlco_%(I—R+QQ )Zmz(ev(w) YD, £y Ty e= 1D £, T)
2 QQ’,
1y 0 )y e-TD%T) (1-23)
2° 90 »eY(Y'y g
© R- gQ o (Y - 1(49))
z—m_%(R—QQ)m;Df(Dféon)"(Z A m,gz Dgl ! Q'co%U.) (1-24)
Q'Q Q'Q

where (E-29) was used for Y —f (76) to obtain (I-24). Then substitution of (I-22)-(1-24) into (6-
19) yields

Y—f(y6)=m'5(1—R+gQ )Zaﬂ (U, += e(D 2L =Y YD L) Y )e)

1
+§m’2<I—R+g,Q)Zmz(ev(w)“v'D frtn v e
1 -2 Q o~
-0’ Q,Q(ev(w) 'YDgy(yn) e~ 1'D%g )
QY

1 B R 1 , 1
—mZ(R—QQ)mznf(Dmef) (z]) Al 2z nglQ,QQ 0?U,)

QQ

=0 2(I-R+==
QQJ

)ZmZ(U,J+ (e'Df,fe TD2f1))
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_l —1 Q NI 2.7

5@ QQ(eY(vv) YDLgy(ry) 'y e~ I'D’g 1)

- I 3 -1 2,70 l"’ 2 7 1 , 1
—m2(R——g%)m2Df(be)Df) zD fI0?Z-D glaaQ 0?U,) (1-25)

which is (E-29).

Approximate evaluation of terms in component correction factor. Finally, use of (I-22)-
(I-24), (G-9)-(G-19), the assumption that ®'’V,0'? ~ ®"/’Qw''? =1, and the definitions of
pertinent variables yields the three expected values on the right-hand side of (6-20) as

2E((f(0.) - f,(v0. >—f(vﬁ>+fo(16))'m5 —(g(Y8.) - go(10.) - &(70)

Q QQ’
(19)—)I-R : Y - f(v6.
+ 810 50 +QQ)m( (16.))
~ EC () YD Ly ™y T'D%T—2T'D%a)m?—(e'v(v'v)“w;gm'y)'lve

Do Q 0/ 0-R+ g%)m U., 42D, YD Y Dy 3D Y

~2EET'DY, am?Z)
1
~=2E(x T'sz,. (Dfo Df) ' (Df'o? (R - gQ )((02 Df(Df Df)™ > A any
1 , T T | PP
—ey(yy) "' Dg(y'y) 'y 'e))co?i)
1
~=2E(S mf,.ZT:DZf,. (Dfo Df) ' Dfw2(R - g%)mmf(nfm Df)"z D*f,1, ng)
1
+ 2E(Z @2Z 1. D’f, (Dfo Df)™ Df(o2 (R- -g—%) o?Df(Dfo DF)'D’gl, —— Q Q —Q m?U J)
1
+E(Z m%iT:DZ 7. (DfoDf) Dfo? (R — g%)z 1. D*f 1)
1

+ é&E(z o2 Z 1! D%, (Dfo Df) 'Dg'1,D%gl.)

1

=23 r(CHo? +2E(3 m*ZT'Df(Dmef)-'Dfm (R——g%)szf

« (Df'oDf)' D’ gi(—)—%aQ'm?Ut) (1-26)
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1

E(R(Y0.) ~ £,(18.) — £(18) + ,(18))' 02 — (2(¥0.) — 26(Y8.) ~ 2(18) + 2o( Y8)) L)1 - R

Q'Q
+9-,2')(m5 ((+0.) 1
~ —E(Z (y(v'y) Y'D Y@y Y e-TD, T )m2 €y yDiegy(y'y) 'y e~ 1'Dgl ) QQQ)( I
L 50 C wz(e YY) YD L)y e=TD2f 1)~ (ey(yy) YD gr(ry) "y e-1'DgTY)
Q0 ’ QQ g

1

2 QQ r Q [
~—E 1.D*fI. 2I R 2I’D 1. ——E D1, 2—ID 1,
CELD floi( +Q )Z i) (Z Lo Q0 2

1 1
+— ——E(L'ngl,)
1 QQ
=i2tr2((~3i Yo! + éz tr (CHo! ——z r(C )tr(F)o ! - tr(C,F)o?
e o2t @)ot+ 2sir (B0l =15 @€, - F)ot+ 2 i€, -F)o! 1-27)

E(Y —f(8)y0* (R - gQ o7 (Y — £(y8))

QQ’

_E(lefI (02 Z-Dgl o QQ 02U N (Dmef)"DfmZ(R Q)szf(Df' & Df)”

1

o(Zszklco,%Z nglQQQrozU)
1 I 1 - -
~ E(S oﬁ,.i’l”:l)2 1. (Dfo Df) ' Dfo? (R - %)minf(m'm Df)“}: D'/, LoZ)
-2F 2Zl 'D*f, (Dfo Df “l)fh)2 R- QQ' 2Df Dfo Df)'D’g IL 2U
o} /; (Dfw Df) ( QQ)m ( ) QQQw )

+E((&Q(NU) 1.D’g(Df6> Df) ' Dfp? (R—gQ )mznr(Dmef)“D 1)

L 1
= ztr(cf Yo — 2E(z u),?-Z I.D’f, (Dfo D) ' Df w2 (R — g%)cosz(Dfm Df)'De 1
1 1 ;
"QQ QQ
= Z'z‘r(Cf)cr‘;1 + Ztr(Ff)O':

1

L 1 rol ~ 1
-2E(X 0>Z 1D/, (Dfo Df) ' Df> (R — %)mmf(nf&o Df)'Dgl, QI—Q Qw2U.,) (I-28)
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where C /s i‘,. ,and A are defined by (G-10), (G-12), and (G-13), respectively.
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