NATIONAL BUREAU OF STANDARDS REPORT

NBS Project

3011－6000002

Moverabor 1952
NBS Report
332

COMBINING TOLERANCES

by
監。P。这票

U．S．DEPARTMENT
 0 F
 COMMERCE
 NATIONAL BUREAU OF STANDARDS

Approved for public release by the Director of the National Institute of Standards and Technology（NIST） on October 9， 2015
ion，reprinting，or re－ ted unless permission in al Bureau of Standards，

FOREHORD

This report wias prepared in the St tistical Engineara ing Iaboratory (Section 11.3. National Bureau of Stundariss) in response to a request from Mro Robert Somoif of the Projector Fuze Development Secion (Section 13.6 , Natlonal อureau of stardurds)
J. He Curtiss

Chiers Nationd mppleded Mathomatics Laborotories

```
A0Y*astin
weting D{rector
N:tionel Buxeaul of Stundards
```


COMBINING TOLERANCES

by

E.PoKing

Statoment of the Problers

Knowing the tolerance limits on the various component parts of an olectrical circuit, we wish to detormine tolerance imits on the performance of this circuit. liore precisely. knowing the means and standard deviations of the distributions of the components, how can we obtain IImits which include a corstain percent of the distribution of porformance? In view of the particular applications to bo made; we malio the ROIlown ing assumptions:
2. Performance is a linear frunction of the components.
2. Whe components are selectod at random from their respective distiributions.

Summaxy

The statements that can be made about the expoctod variac bility in performance depend on the amount of information avallo able concerming the distribution of performance. The appropsiate statoments are explained, accosilug as the form of this distrio bution is (1) unspecified, (2) unimodal and symmetric, and (3) sormal.

An amportant approximation is given when the numbor of components is large.

2

$$
0,3,21=: 92=9
$$

$\rightarrow+3,0 n+1$

 vigent s. imm wo

Statfstioul Fieasoning

 speeify the sunctionsl pelation ad

$$
P=a_{1} c_{1}+a_{2} c_{2}
$$

Whene ky and a_{2} are knom constantse let the lmona means (nomithem vistues) or C_{2} and C_{2} bo M_{2} asd M, mespectively, and their nturdurd devintions σ_{1} and o_{2}, iespectivelyo The newn porfommane. Fos is then given by

$$
F_{0}=A_{1} M_{1}+a_{2}^{H_{2}}
$$

and the stemdend aeviation of perionmance, qp, by

$$
\sigma_{p}=\sqrt{22} a_{10}^{2}+3_{2}^{2} 2
$$

the latter melation only holding when G_{1} and G_{2} are selected at ranciom from thoin pospoctive distributions.
moning P_{0} and o_{p}, we nom zshah to lmow what percent of powivimuricos will full within fixed limitso The sharpnese of the wesulte deponds on how much additionel knowedero we jossens concerring the performance dsatributiono

Quse 1: Perrommanee Miatributjon Unspecinfed

In this case we kor onty Po and opo Using a form of tho "mohebycheff Incuusility" (1), re can muke the following 3tabemont。

Por any given constant K_{2} at least 100 (2w-2 percext of the poriemmance distribution is included in the intierve

गुण cxample, when $\mathrm{K}=3$, we mow that the interval of 3 standard deviutions on efther side of the moan haclucien mit Mecst $102\left(1-\frac{1}{2^{2}}\right)$ percent, or 88.9 pertent of the diotributionn Cass 2: Ebotommance Distriturtion Unimodel and Symmetries

IUAs cuse would ariso, for baumple: if both componentis
 buthona Uging the "Gauss Inequality" (2) the shamper states
 parfomance distmibukion is incluted in the interyal Po if on

Then $K=3$, wo can now sey that the irtorvet of 3 seanciome Aviabions on either side of the meun includes more than 95 poscent of the distribution。

Case 3: Performance Distribution Normal

This case only arises when both com:lonents are drawn at random from normal distributions. we can now make exact statements based on the Table of the formal Integral (3)。 Denoting the normal frequency function by $f(x)$ we have the fraction of the performance distribution included in the interval $P_{0}+K O_{p}$ is

$$
\int_{\infty}^{K} f(x) d x=1=2 \int_{K}^{\infty} f(x) d x
$$

The latter integral is tabulated in (2) as ar function of K.
Wen $N=3$, we li ad that the Interval of 3 standard a tied tons on ether side of the mean includes 99.7 percent af the distribution.

Although the above outline deals exclusively with two components, the game argument applies to any finite number.

Bor example, if

$$
P=a_{1} c_{1} \Leftrightarrow a_{2} c_{2}+a_{3} c_{3}
$$

we have

$$
\begin{aligned}
& P_{0} \approx a_{1} M_{1} \Leftrightarrow a_{2} M_{2}+a_{3} M_{3} \\
& a_{p}=\sqrt{a_{1}^{2} \sigma_{1}} \& a_{2}^{2} \sigma_{2}^{2} \& a_{3}^{2} a_{3}^{2}
\end{aligned}
$$

the rest following exactly as before

(

 $02+1+2+1+2$ 0
 $+1+1+1=20-1+20$

a miocoio it Lay ow ferte a

1
路

位 phond

Approximstion inen the Number of Compononts is Laree

As the number of componerts (each solectod at rindom) increases, the distribution of performames aporoaches a nommal Uistuibution o under ceneral condit. ons vequaciless of the bype of af siribution of the componentis. Whus ve can use case 3 Whove to give on approximate anjucrs the Iarjos the numbor of compsnonts the better the approrimation A rouch rorling rule is to lise Case 3 when there are four or mope compononte,

Il Luotpativo Examoie

Let his consider a eircuit rnose performance can be exw phessed in terms of tho four copacitons G_{2}, G_{3}, and G_{4} by the equation

$$
P=C_{1} * C_{2} * C_{3}+C_{4}
$$

$$
\text { (Th this case } a_{1}=a_{2}=a_{3} \approx \underline{u}_{4} \approx 1 \text {) }
$$

Suppose that the capation origiralIy hea capacitances Ghat followod a normal distribution with monn (mominal) valuo
 Tias iciocned and all caperitore boyona \% 15 perient of the nomina value welc memoved. If four capacitone ame nom aram at fundon and the circuit constructed, whit toleipance inmits can be obtained on porforinance?

060

Notice that the distribution of components in this case is a "truncated normal" distrimutlon。 the pean is

$$
\text { Mex } 9.80 \quad 0
$$

To find its standard deviation, we note that tho point of
 2BO. This is $\frac{21}{14}$ or 2.93 times the at. dey of the original mary an distribution. In torus of this factor, the desired at leva 13

$$
\int_{-102}^{10} \pi^{2}=(\pi) 2 \pi=0702
$$

The Table of tho Nomad Theocrel gives

$$
\int_{0.09}^{1.03} \mathrm{f}(x) \mathrm{dx} \cdot 0146
$$

Therefore

$$
\begin{aligned}
0 & =\frac{2708}{946}(14) \\
& =12.1
\end{aligned}
$$

It follows that the mean and stindara deviation of periomance are

$$
\begin{aligned}
P_{0} & =4(180) \\
& =720 \\
\sigma_{p} & =\sqrt[4]{4(12.1)^{2}} \\
& =24.2
\end{aligned}
$$

Fith no additional information, would have (following Case 1):

The interval P_{0} \& $3.1 \mathrm{a}_{\mathrm{p}}$ incluces at least 90 porcent of the distribution of performance.
The interval $P_{0} \$ 4.5 \sigma_{p}$ incluces at least 95 percent of the distribution of performance.

Converting these to pereontage statoments (noting that
o_{p} is 304 percent of p_{0}):
At least 90 percent of the distribution falls within 10,5 pore cont of the nominal performance.

At leust 95 percent of the distribution falis within 1503 perm Drent of the nominal performance.

If we kner: only that the performance distribution was unimodal and symmetric we would have (following case 2): The interval $P_{0}+2.1 o_{p}$ includes ut least 90 percent of the distribution.

The interval $p_{0} * 3 \sigma_{p}$ includes ut least 90 percent of the distribution。

$$
\begin{aligned}
& \langle(x) \geq y-2+1 \\
& \text { y } \quad \mathrm{I}=
\end{aligned}
$$

 0
0

$$
1 \text { P }
$$

$0 \approx$
ft 1 and 90 mercent of the distribut on tulis fritinin por pose cont of the tominal porfommance:

 T2tonTolo

90 parcont of the distribution falls withix 5.6 poreent of the rom? la? performance.
95 warcont of the distribution fille inthin 6.7 percent of the romirul porformanee。

99 psocont of the distribution fails :ithin 8 ce pereent of the nominci poryormance.

竟
Getzg this arproximations. the percent of tha distronution 1Dcivdea is in erros by ioss than 1of percent when thone ase four comporiontse For more details. see (5)

$-1+2$
~ insanel lina

- $-\operatorname{mon}-1-1-=$

$1-2-1-2$
. $-1+2$
1

4. 81

$$
|=-1|-10 \operatorname{inc} x+\frac{1}{2}=1
$$

*

 n-u-u

Thus although the capacitances vary up to 15 percent of their nominal value, virtually all performances fall within 8.8 percent of the nominal performance.

If no screening had been done, we would have

$$
\begin{aligned}
& 9=280 \\
& \sigma=2.4
\end{aligned}
$$

In this case, the mean and st. dev, of performance are

$$
\begin{gathered}
P_{0}=720 \\
s_{p}=14(14)^{2} \\
=28
\end{gathered}
$$

Since the distribution performance is exactly normals we can make the following precise statements:

90 percent of the distribution falls within 6.4 percent of the nominal performance.

95 percent of the distribution falls within 7.6 percent of the nominal performance.

99 percent of the distribution fulls within 10 percent of the nominal performance 。

 $2-1+2+2+2$

$$
\begin{aligned}
& 4+4+ \\
& 4
\end{aligned}
$$

$$
\alpha=
$$

$4+2+20-2$
 $-1+2-1-0-1=$

$$
x=\pi \infty 1=1=1,0
$$

$$
20
$$

Bibl20crsphy

(1) So So Hiks, Mathematical Statistics, Princeton University Press. $\mathrm{P}=30$.
(2) Ho Crame̊r, Mathomatical Methods of Statistics, Princeton University Press relation (15.7.3) po 1830
(3) Bisenhart, Hastay, and rallis, Techniques of Statisticas Analysis, MeGrawoltill. Table io5, po 3I.
(4) \therefore Pearson, Tables for Statistioians and Biometpicians

(5) Binnbaun and Andrews, "On Suras of Symmetrically Truncated Nomal Pandon Variables", Annals of Mathometion Stetistics,

$$
-4 b=812 L
$$

