
National Bureau

of Standards

Computer Science
and Technology

NBS Special Publication 500-93

Software Validation,

Verification, and Testing

uBLiwTioNs Technique and Tool
Reference Guide

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act ot Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary discipHnes required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Manufacturing

Engineering — Building Technology — Fire Research — Chemical Engineering^

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

'Some divisions within the center are located at Boulder, CO 80303.

Computer Science
and Technology

NBS Special Publication 500-93

Software Validation,
^

Verification, and Testing c :

Technique and Tool
Reference Guide

Patricia B. Powell, Editor

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards

Washington. DC 20234

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrlge, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued September 1982

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 82-600589

National Bureau of Standards Special Publication 500-93

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-93, 138 pages (Sept. 1982)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1982

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
Price $6.00

(Add 25 percent for other than U.S. mailing)

Page iii

TABLE OF CONTENTS

Page
ABSTRACT and KEYWORDS v

ACKNOWLEDGEMENTS V

PREFACE vi

Section 1

1 . 1 Introduction 1

Section 2

2.1 A Suggested Methodology for the Selection of V,V&T
Techniques and Tools 1

2.2 Selection Aids 2

Section 3

3.1 Selection Matrices and Keyword Tables 2

Section 4

4.1 Introduction to Technique and Tool Descriptions 11

4.2 Algorithm analysis 12
4.3 Analytic modeling of syst«n designs 18

4.4 Assertion generation 24
4.5 Assertion processing 31
4.6 Cause-effect graphing 35
4.7 Code auditor 38
4.8 Comparator 41

4.9 Control structure analyzer 43
4.10 Cross-reference generator 46
4.11 Data flow analyzer 50
4.12 Execution time estimator/analyzer 53
4.13 Formal reviews 55
4.14 Formal verification 60

4.15 Global round off analysis of algebraic processes 64
4.16 Inspections 68
4.17 Interactive test aids 73
4.18 Interface checker 76
4.19 Mutation analysis 79
4.20 Peer review 84
4.21 Physical units checking 93
4.22 Regression testing 96
4.23 Requirements analyzer 98
4.24 Requirements tracing 101

4.25 Software monitor 104
4.26 Specification-based functional testing 107

4.27 Symbolic execution 111

4.28 Test coverage analysis 115

4.29 Test data generators 118

4.30 Test support facilities 121

Page iv

Page
4.31 Walkthroughs 124

Glossary 129

LIST OF TABLES AND FIGURES

Table 3.1-1 Requirements Specification Selection Matrix 3
Table 3.1-2 Design Specification Selection Matrix 4
Table 3.1-3 Code Selection Matrix 5
Table 3.1-4 Alphabetized Keywords with Associated Techniques

or Tool 6

Table 3.1-5 Alphabetized Techniques and Tools with Keywords 8

Table 4,1-1 Technique and Tool Description Entries 11

Table 4.3.6-1 Resource Requirenents for Optimization Example 20
Table 4.3.6-2 Resource Requirements for Revised Optimization

Example 21

Figure 4.2.6-1 QUICKSORT 15

Figure 4.2.6-2 MERGESORT and QUICKSORT Comparison 16

Figure 4.3.6-1 Resource Requirements for Optimization Example 20
Figure 4.3.6-2 Revised Optimization Example 22
Figure 4.4.6-1 Sort Specification 25
Figure 4.4.6-2 Sort Routine with Assertions 26
Figure 4.4.6-3 Sort Routine with an Intermediate Assertion 26
Figure 4.5.6-1 Source Program with Untranslated Assertion 30
Figure 4.5.6-2 Source Program with Translated Assertions 31

Figure 4.6.6-1 Boolean Graph 35
Figure 4.6.6-2 Decision Table 36
Figure 4.6.6-3 Test Cases 36
Figure 4.9.6-1 MIS Flow Chart 44
Figure 4.9.6-2 Goto Violation 45
Figure 4.10.6-1 Sample Cross-Reference Examples 47
Figure 4.15.6-1 Triangular Matrix Inversion 65

Figure 4.19.6-1 Subroutine Count 80

Figure 4.20.5-1 A Program Structure 87
Figure 4.23.6-1 Requirements Specification Stat«nents 100

Figure 4.27.6-1 Symbolic Execution Example 112

Page V

ABSTRACT

Thirty techniques and tools for validation, vertif ication, and testing
(V,V&T) are described. Each description includes the basic features of the

technique or tool, the input, the output, an example, an assessment of the

effectiveness and usability, applicability, an estimate of the learning time

and training, an estimate of needed resources, and references.

Keywords: automated software tools; dynamic analysis; formal analysis;
software testing; software verification; static analysis; test coverage;
validation; V,V&T techniques; V,V&T tools.

ACKNOWLEDGMENTS

This report was funded by the National Bureau of Standards' Institute for

Computer Sciences and Technology under U.S. Department of Commerce Contract
NB79SBCA0102 . The contributors to the report, as submitted by Boeing Com-

puter Services Co., were Randy L. Merilatt, Mark K. Smith, and Leonard L.

Tripp, assisted by Alan R. Bennett, John R. Brown, Susan C. Chew, Linda S.

Hammond, William E. Howden, Leon J. Osterweil, and Richard N. Taylor. Con-
sultation was provided by Leon G. Stuck! . The views and conclusions ex-
pressed are those of the authors and do not necessarily represent the offi-
cial policies of the Department of Commerce or the United States Government.

Page vi

PREFACE

The following document was originally included as part of a document titled
"Computer Software Validation and Verification: A General Guideline". The
chapter on techniques and tools was extracted to be published as a reference
manual; explanatory material was added at the beginning; reviewers' comments
were incorporated into the final document. Ihe document, being prepared under
contract to the Institute for Computer Sciences and Technology, is in the
public danain and is, therefore, not subject to copyright. Acknowledgement
and thanks are appropriate for the following reviewers who donated their time
and energy to critiquing the document:

John B. Bowen
Martha A. Branstad
Lorraine M. Duvall
Carolyn Gannon
Herbert Hecht
Raymond C. Houghton, Jr.

Sukhamay Kundu
Melba Hye-Knudsen
Frank LaMonica
David Markham
Gerald Peterson
Ed Senn
Harlan K. Seyfer
Jim Skiles
Marilyn J. Stewart
Al Sorkowitz
Susan J. Voight
Natalie C. Yopconka
Saul Zaveler

CcMnents pertaining to the technical content are solicited and should be

directed to:

Systems and Software Technology Division
Room B266 Bldg. 225
National Bureau of Standards
Washington, D.C. 20234

Page 1

1 , 1 Introduction

The Institute for Computer Sciences and Technology (ICST) carries out the
following responsibilities under P.L. 89-306 (Brooks Act) to improve the
Federal Government's management and use of ADP;

o develops Federal automatic data processing standards;

o provides agencies with scientific and technological advisory services
relating to ADP;

o undertakes necessary research in computer sciences and technology.

In partial fulfillment of Brooks Act responsibilities, ICST issues Special
Publications (S.P.). This document is a reference guide for techniques and
tools which may be used in conjunction with a validation, verification, and
testing (V,V&T) methology.

The document consists of three sections:

o A suggested methodology for the selection of V,V&T techniques and tools.

o Summary matrices by development phase usage, a table of techniques and tools
with associated keywords, and an alphabetized table of keywords with
associated techniques and tools.

o Description of 30 V,V&T techniques and tools.

This document can be used independently as a reference or can be used in

conjunction with "Guidelines on Planning for Software Validation,
Verification, and Testing" (to be published as a FIPS PUB in 1982).

A glossary, included as Appendix A, defines terminology used in this docunent.

2.1 A Suggested Methodology for the Selection of V,V&T Techniques and Tools

The FIPS PUB "Guidelines on Planning for Software Validation, Verification,

and Testing" (to be published) explains the role of V,V&T in software
developnent, stressing an integrated approach. V,V&T planning by identifying
goals, determining factors which influence the V,V&T activity, selecting V,V&T
techniques and tools, and developing a detailed V,V&T plan are explained in
detail. This document is particularily helpful in the selection of techniques
and tools.

Selecting techniques and tools begins with the determination of a goal - a

specific, measurable outcome. For example, 90 percent statanent execution is

a goal. Once a goal is determined, the selection matrices (section 3) are
utilized to see if a technique or tool is applicable to the selected goal.

For the example above, statement coverage is checked during code execution.

Referencing the code selection matrix, one finds statement coverage. Next,

the alphabetized keyword table (section 3) is searched for the appropriate

keyword(s). For the example, the tool for statement coverage is found to be

Page 2

test coverage analyzers. The last step is to reference the technique and tool
descriptions (section 4) and confirm that the technique or tool does
accOTiplish the desired goal. For the example under test coverage analyzers,
the statement "Completeness is measured in terms of the branches, statements
or other elenentary constructs which are used during the execution of the
program over the tests", confirms that a statement coverage analyzer measures
the completeness of statement execution.

2.2 Selection Aids

Tables 3.1-1 i 3. 1-2, and 3.1-3 separate techniques and tools into the broadly
defined software developnent phases: requirenents, design, and code.

The purpose of a selection matrix is to suggest possible techniques or tools
for a goal in a development phase. The goal is stated (directly or
indirectly) in terms of the form or content of a development product
(requirements, design, code). The matrices list Y,V&T techniques and tools
applicable to analyzing the form or content of a product. Specifically,
manual and autonated static analysis techniques and tools aid in analyzing the
form of each of the three products. Dynamic and formal techniques and tools
aid in analyzing the sanantic content of each of the products.

Table 3.1-4 lists, alphabetically, the keywords and the associated technique
or tool. It may be used to identify characteristics of the technique or tool

fran one of the three matrices in Tables 3.1-1 > 3.1-2 or 3.1-3.

Table 3.1-5 lists each technique or tool described in section 4 with

applicable keywords. It may also be used to identify the characteristics of a

technique or tool.

The reader with sufficient knowledge may skip Tables 3.1-1 through 3.1-5 and
go directly to the technique and tools section.

3.1 Selected Matrices and Keyword Tables

The pages that follow contain three selection matrices:
Table 3.1-1 - Requirement Specifications
Table 3.1-2 - Design Specifications
Table 3.1-3 - Code

and
Table 3.1-4 - V,V&T Techniques and Tool Keywords
Table 3.1-5 - V,V&T Techniques and Tool with Keywords

Page 3

ANALYSIS TYPE AUTOMATED TOOLS MANUAL TECHNIQUES REVIEWS

Static Requirenents
tracing aids
(Note 1)

Cross-reference
Data flow analyzer

Requirements
tracing aids
(Notes U2)

Inspections
- Selected manual
application of
techniques listed
in column one
(Note 3)

Inspections
Peer review
Formal reviews

Dynamic

Formal

Requirements
analysis
Cause-effect
graphing

Assertion generation
Data flow analyzer

Assertion generation

Assertion generation
(Note 4)

Specification-based
functional testing
(Note 5)

Cause-effect graphing
(Note 5)

Walkthroughs

Formal verification
(Note 6)

Walkthroughs
Formal reviews

NOTES
1) The requirements indexing and cross-referencing schanes are established and

documented as part of the requirements specification.

2) Requirements tracing may be performed through a totally manual process.

3) Certain techniques may be manually applied to small applications or on

selected portions of a given specification. This requires planning and

and preparation. The larger the amount of information being analyzed,

the greater the probability of error.
4) Assertion generation is performed either for later analysis using an

assertion processing tool, or for manual analysis as an adjunct to testing.

5) This is a test data generation technique/tool.

6) Axiomatic specification is necessary to support analysis.

TABLE 3.1-1

SELECTION MATRIX I REQUIREMENT SPECIFICATION

Page M

ANALYSIS TYPE AUTOMATED TOOLS MANUAL TECHNIQUES REVIEWS

Static

Dynamic

Formal

Requironents
tracing aids

Cross-reference
Data flow analyzer

Cause-effect
graphing

Analytic modeling of

software designs
(Note 6)

Global roundoff
analysis of
algebraic processes
(Note 5)

Formal verification
(Note 8)

Requironents
tracing (Note 1)

Inspections
- Selected manual
application of
techniques listed in

column one
(Note 2)

Assertion generation
(Note 3)

Specification-based
functional testing
(Note 4)

Cause-effect graphing
(Note 4)

Walkthroughs

Algorithm analysis
Formal verification

(Notes 7&8)

Inspections
Peer review
Formal reviews

Walkthroughs
Formal reviews

NOTES

1) Requirements tracing may be performed through a totally manual process.

2) Certain techniques may be manually applied to small applications or on

selected portions of a given specification. This requires planning and
preparation, the larger the amount of information being analyzed,
the greater the probability of error.

3) Assertion generation is performed either for later analysis using an
assertion processing tool, or for manual analysis as an adjunct to testing.

4) This is a test data generation technique/tool.

5) Analyzes an algebraic algorithm, independent of a given level of
specification and therefore is applicable to a design or code level
specification.

6) Requires the manual development of a model, which is then run.

7) Axicmatic specification is necessary to support analysis.
8) Formal verification is a primarily manual exercise though supporting tools

have been developed.

TABLE 3.1-2
SELECTION MATRIX II DESIGN SPECIFICATIONS

Page 5

ANALYSIS TYPE AUTOMATED TOOLS r^NUAL TECHNIQUES REVIEWS

Static Requirements
tracing

Cross-reference
Data flow analyzer
Control structure
analyzer

Interface checker
Physical units
checking
Code auditor
Comparator
Test data generator

Requirements Inspections
tracing aids (Note 1) Peer review

Inspections Formal reviews
- Selected manual
application of
techniques listed in
column one
(Note 2)

Dynamic Assertion processing
Test data generators
Test support
facilities

Test coverage

Assertion generation
(Note 3)

Regression testing
(Note 6)

Walkthroughs

Walkthroughs
Formal reviews

analysis
Mutation analysis
(Note 4)

Interactive test aids
Execution time
estimator/analyzer(Note 5)

Software monitor(Note 5)

Statement coverage
Symbolic evaluation

NOTES
1) Requirements tracing may be performed through a totally manual process.

2) Certain techniques may be manually applied to small applications or on

selected portions of a given specification. This requires planning and
and preparation. The larger the amount of information being analyzed,
the greater the probability of error.

3) Assertion generation is performed either for later analysis using an
assertion processing tool, or for manual analysis as an adjunct to testing.

4) The objective of mutation analysis is to help assess the sufficiency of the
test data.

5) Assist in testing the satisfaction of performance related requirements.
6) Testing after modification of tested software, i.e., retesting.

7) Formal verification is a primarily manual exercise though supporting tools
have been developed.

Formal Formal verification
(Note 7)

Formal verification
(Note 7)

TABLE 3.1-3
SELECTION MATRIX III CODE

Page 6

Keywords

accuracy analysis
algorithm efficiency
amount of space (memory, disk, etc.) used
amount of work (CPU operations) done
assertion violations
bottlenecks

boundary test cases

branch and path identification
branch testing
call graph
check list
code reading
canpleteness of test data
computational upper bound, how fast
consistency in computations
correspondence between actual and formal
parameters
data characteristics
dynamic testing of assertions
environment simulation
evaluation along program paths
execution monitoring
execution sampling
execution support
expected inputs, outputs, and
intermediate results

expected versus actual results
file (or other event) sequence errors
formal specifications
functional interrelationships
global information flow
go/no go decisions
hierarchical interrelationships of modules
information flow consistency
inspections
inter-module structure
loop invariants
manual simulation
module invocation
numerical stability

Technicue/Tool

algorithm analysis
algorithm analysis
algorithm analysis
algorithm analysis
assertion processing
analytic modeling of
software designs
specification-based functional
testing

control structure analyzer
test coverage analyzers
control structure analyzer
inspections
peer review
mutation analysis
algorithm analysis
physical units testing
interface checker

assertion generation
assertion processing
test support facilities
symbolic execution
software monitors
software monitors
test support facilities
assertion generation

comparator
data flow analyzer
assertion generation
requirements analyzer
interface checker
formal reviews
control structure analyzer
requirements analyzer
peer review
cross-reference generators
assertion generation
walkthroughs
control structure analyzer
global roundoff analysis of
algebraic processes

TABLE 3.1-4
V,V&T TECHNIQUE AND TOOL KEYWORDS

Keywords

path testing
performance analysis
physical units
portability analyzer
program execution characteristics

proof of correctness
regression testing
requirenents indexing
requirements specification analysis
requirements to design correlation
requirements walkthrough
retesting after changes
round-robin reviews
rounding error propagation

selective program execution
standards checker
statonent coverage
statement testing
status reviews
system performance prediction

technical review
test case preparation (definition and
specification)

test data generation

test harness
testing thoroughness
type checking
uninitialized variables
unused variables
variable references
variable snapshots/tracing
verification of algebraic computation
walkthroughs

Page 7

Technique/Tool

test coverage analyzers
requirements analyzer
assertion generation
code auditor
execution time estimator/
analyzer
software monitors
formal verification
cOTiparator

requiranents tracing
cause-effect graphing
requirenents tracing
requirements analyzer
regression testing
peer reviews
global roundoff analysis of
algebraic processes
interactive test aids
code auditor
test coverage analyzers
test coverage analyzers
formal reviews
analytic modeling of
software designs

peer review
test data generators

mutation analysis
specification-based functional
testing

test support facilities
test coverage analyzers
interface checker
data flow analyzer
data flow analyzer
cross-reference generators
interactive test aids
symbolic execution
peer reviews

TABLE 3.1-M (Continued)

V,V&T TECHNIQUE AND TOOL KEYWORDS

Page 8

Technigve/ToQl

Algorithm Analysis

Analytic Modeling of
Software Designs

Assertion Generation

Assertion Processing

Cause-Effect Graphing

Code Auditor

Comparator

Control Structure Analyzer

Cross-Reference Generators

Data Flow Analyzer

Execution Time Estimator/Analyzer

Formal Reviews

Keywords

algorithm efficiency
amount of work (CPU operations) done
cOTiputational upper bound, how fast
amount of space (memory, disk, etc.) used
accuracy analysis

system performance prediction
bottlenecks

formal specifications
data characteristics
physical units
loop invariants
expected inputs,
outputs and intermediate results

assertion violations
dynamic testing of assertions

test case design using formal specification

requirements specification analysis

standards checker
portability analyzer

regression testing

expected versus actual results

call graph
hierarchical interrelationships of
modules
module invocation
branch and path identification

inter-module structure
variable references

uninitialized variables
unused variables
file (or other event) sequence errors

program execution characteristics

go/no go decisions
status reviews

Formal Verification proof of correctness

TABLE 3.1-5
V,V&T TECHNIQUE/TOOL WITH KEYWORDS

Page 9

Technique/Tool Keywords

Global Roundoff Analysis of
Algebraic Processes

Inspections

Interactive Test Aids

Interface Checker

Mutation Analysis

Peer Review

Physical Units Testing

Regression Testing

Requirements Analyzer

Requirements Tracing

Software Monitors

Specification-based Functional
Testing

Symbolic Execution

Test Support Facilities

numerical stability
rounding error propagation

check list

selective program execution
variable snapshots/tracing

correspondence between actual and formal
parameters
type checking
global information flow

test data generation
completeness of test data

technical review
code reading
round-robin reviews
walkthroughs
inspections

consistency in canputations

retesting after changes

functional interrelationships
information flow consistency
performance analysis
requirements walkthrough

requirements indexing
requirements to design correlation

execution sampling
execution monitoring
program execution characteristics

test data generation
boundary test cases

evaluation along program paths
verification of algebraic computation

test harness
execution support
environment simulation

TABLE 3.1-5 (Continued)

V,V&T TECHNIQUE/TOOL WITH KEYWORDS

Page 10

Technique/Tool

Test Coverage Analyzers

Test Data Generators

Walkthroughs

Keywords

branch testing
statement testing
statonent coverage
path testing
testing thouroughness

test case preparation (definition
and specification)

manual simulation

TABLE 3.1-5 (Continued)
V,V&T TECHNIQUEyTOOL WITH KEYWORDS

Page 11

4.1 INTRODUCTION TO TECHNIQUE AND TOOL DESCRIPTIONS

Each technique and tool description is alphabetically presented in a standard
format. The following table describes the entries for each where "n" is the
section number.

M.n.1. Name

This is the accepted title, or when an appropriate one does not exist, an
invented title.

4.n.2. Basic Features
A short description of the technique or tool.

4.n.3. Information Input
A description of the input required for use.

4.n.4. Information Output
A description of the results of the technique or the output of the tool.

4.n.5. Outline of Method
A brief list of the actions that a user is expected to perform.

4.n.6. Example
An example to illustrate the inputs, outputs, and the method.

4,n.7. Effectiveness
A brief assessment of the effectiveness and usability, including underlying
assumptions and difficulties that can be expected in practice.

4.n.8. Applicability
An indication of the situation in which the technique is likely to be useful.

4.n.9. Learning
An estimate of the learning time and training needed to use the technique or

tool successfully.

4,n.10. Cost
An estimate of the resources needed.

4.n.11, References
Sources of additional information.

TABLE 4.1-1

TECHNIQUE AND TOOL DESCRIPTION ENTRIES

Page 12

4.2.1. Name. Algorithm Analysis.

4.2.2. Basic features. Two phases of algorithm analysis can be
distinguished: "a priori analysis" and "a posteriori testing." In a priori
analysis a function (of some relevant parameters) is devised which bounds the
algorithm's use of time and space to canpute an acceptable solution. The
analysis assumes a model of computation such as: a Turing machine, RAM
(random access machine), general purpose machine, etc. Two general kinds of
problems are usually treated: (1) analysis of a particular algorithm; and

(2) analysis of a class of algorithms. In a posteriori testing actual
statistics are collected about the algorithm's consumption of time and space
while it is executing.

4.2.3. Information input.

a. Specification of algorithm

b. Program representing the algorithm

4.2.4. Information output.

a. A priori analysis

Confidence of algorithms' validity
Upper and lower ccanputational bounds
Prediction of space usage
Assessment of optimality

b. A posteriori testing
Performance profile

4.2.5. Outline of method.

a. A priori analysis

Algorithms are analyzed with the intention of improving th«n, if possible, and
for choosing among several available for a problem. The following criteria
may be used:

Correctness
Amount of work done
Amount of space used
Simplicity
Optimality
Accuracy analysis

Correctness . There are three major steps involved in establishing the
correctness of an algorithm.

(1) Understand that an algorithm is correct if, when given a valid input,

it computes for a finite amount of time and produces the right answer.

Page 13

(2) Verify that the mathematical properties of the method and/or formulas
used by the algorithm are correct.

(3) Verify by mathematical argument that the instructions of the algorithm
do produce the right answer and do terminate.

Amount of work done . A priori analysis ignores all of the factors which
are machine or programming language dependent and concentrates on
determining the order of magnitude of the frequency of execution of
statonents. For denoting the upper bound on an algorithm, the 0-notation
is used. The following notational symbols are used in the following
description: **=exponentiation; []=subscription.

Definition, f(n) = 0(g(n)) if and only if there exist two positive
constants C and n[o] such that f(nKC g(n) for all n2n[o].

The most common canputing times for algorithms are: 0(1)<0(log
n)<0(n)<0(nlog n)<0(n«*2)<0(n«*3) and 0(2**n), 0(1) means that the number
of executions of basic operations is fixed and hence the total time is
bounded by a constant. The first six orders of magnitude are bounded by a

polyncxnial. However, there is no integer such that n**m bounds 2**n. An
algorithm whose computing time has this property is said to require
exponential time. There are notations for lower bounds and asymptotic
bounds (see reference (4) for details). The term "complexity" is the
formal term for the amount of work done, measured by sane complexity (or

cost) measure.

In general the amount of work done by an algorithm depends on the size of

input. In sane cases, the number of operations may depend on the
particular input. Some examples of size are:

matrices
3. Solve a system of linear equations The number of equations and

solution vectors

To handle the situation of the input affecting the performance of an

algorithm, two approaches (average and worst-case analysis) are used. The
average approach assumes a distribution of inputs and then calculates the

number of operations performed for each type of input in the distribution
and then computes a weighted average. The worst-case approach calculates
the maximum number of basic operations performed on any input of a fixed
size.

Amount of Space Used . The number of memory cells used by a program, like

the number of seconds required to execute a program, depends on the
particular implementation. However, some conclusions about space usage
can be made by examining the algorithm. A program will require storage

space for the instructions, the constants, and variables used by the

Problem
1 . Find X in a list of names

Size of input
The number of names in the
list
The dimensions of the2. Multiply two matrices

Page 14

program, and the input data. It may also use some work space for
manipulating the data and storing information needed to carry out its
computations. The input data itself may be representable in several
forms, some which require more space than others. If the input data has
one natural form - for example, an array of numbers or a matrix - then we
analyze the extra space used aside fran the program and the input. If the
amount of extra space is constant with respect to the input size, the
algorithm is said to work "in place".

Simplicity . It is often, though not always, the case that the simplest
and most straightforward way of solving a problem is not the most
efficient. Yet simplicity in an algorithm is a desirable feature. It may
make verifying the correctness of the algorithm easier, and it makes
writing, debugging and modifying a program for the algorithm easier. The
time needed to produce a debugged program should be considered when
choosing an algorithm, but, if the program is to be used very often, its
efficiency will probably be the determining factor in the choice.

Qptimalitv . Two tasks must be carried out to determine how much work is

necessary and sufficient to solve a problem.

(1) Devise what seems to be an efficient algorithm; call it A. Analyze A
and find a function such that, for inputs of size n, A does at most g(n)
basic operations.

(2) For sane function f, prove a theorem that for any algorithm in the

class under consideration there is some input of size n for which the
algorithm must perform at least f(n) basic operations.

If the functions g and f are equal, then the algorithm A is optimal.

Accuracy analysis . The canputational stability of an algorithm is

verified by determining that the integrity of round off accuracy is

maintained. It is done manually at the requirements or specification
level.

b. A Posteriori Testing

Once an algorithm has been analyzed, the next step is usually the confirmation
of the analysis. The confirmation process consists first of devising a

program for the algorithm on a particular computer. After the program is

operational, the next step is producing a "performance profile"; that is,

determining the precise amounts of time and storage the program will consume.
To determine time consumption, the computer clock is used. Several data sets
of varying size are executed and a performance profile is developed and
compared with the predicted curve.

A second way to use the computer's timing capability is to take two programs
which perform the same task whose orders of magnitude are identical and
compare them as they process data. The resulting times will show which, if
either, program is faster. Changes to a program which do not alter the order
of magnitude but which purport to speed up the program also can be tested in

Page 15

this way.

4.2.6. Example. QUICKSORT is a recursive sorting algorithm (5). Roughly
speaking, it rearranges the keys and splits the file into two subsections, or
subfiles, such that all keys in the first section are smaller than all keys in
the second section. Then QUICKSORT sorts the two subfiles recursively (i.e.,
by the same method), with the result that the entire file is sorted.

Let A be the array of keys and let m and n be the indices of the first and
last entries, respectively, in the subfile which QUICKSORT is currently
sorting. Initially, m = 1 and n = k. The PARTITION algorithm chooses a key K
from the subfile and rearranges the entries, finding an integer j such that
for mli<j, A(iKK; A(j) r K; and for j<i^n, A(i)2K. K is then in its
correct position and is ignored in the subsequent sorting.

QUICKSORT can be described by the following recursive algorithm:

QUICKSORT (A,m,n)

If m<n then PARTITION (A,m,n,i,j)
QUICKSORT (A,m,j)
QUICKSORT (A,i,n)
end

Figure 4.2.6-1 QUICKSORT

The PARTITION routine may choose as K any key in the file between A(m) and
A(n); for simplicity, let K = A(m). An efficient partitioning algorithm uses
two pointers, i and j, initialized to m and n+1, respectively, and begins by
copying K elsewhere so that the position A(i) is available for sane other
entry. The location A(i) is filled by decrementing j until A(jKK, and then
copying A(j) into A(i). Now A(j) is filled by increnenting i until A(i)2K,
and then copying A(i) into A(j). This procedure continues until the values of
i and j meet; then K is put in the last place. Observe that PARTITION
ccxnpares each key except the original in A(m) to K, so it does n-m
comparisons. See (5) for further details.

Worst Case Analysis . If when PARTITION is executed A(m) is the largest key in

the current subfile (that is, A(m)2A(i) for rali<n), then PARTITION will move
it to the bottom to position A(n) and partition the file into one section with
n-m entries (all but the bottom one) and one section with no entries. All
tJiat has been acccxnplished is moving the maximum entry to the bottom.

Similarly, if the smallest entry in the file is in position A(m), PARTITION

will simply separate it from the rest of the list, leaving n-m items still to

be sorted. Thus if the input is arranged so that each time PARTITION is

executed, A(m) is the largest (or the smallest) entry in the section being

sorted, then let p = n-m+1 , the number of keys in the unsorted section, then
the number of comparisons done is

k

£ (P-1)= k(k-1).
p=2 2

Page 16

Average Behavior Analysis . If a sorting algorithm removes at most one
inversion fron the permutation of the keys after each comparison, then it must
do at least (n**2-n)/4 comparisons on the average. QUICKSORT, however, does
not have this restriction. "Ihe PARTITION algorithm can move keys across a
large section of the entire file, eliminating up to n-2 inversions at one
time. QUICKSORT deserves its name because of its average behavior.

Consider a situation in which QUICKSORT works quite well. Suppose that each
time PARTITION is executed, it splits the file into two roughly equal
subfiles. To simplify the computation, assume that n = 2**p -1 for some p.
The number of comparisons done by QUICKSORT on a file with n entries under
these assumptions is described by the recurrence relation

R(p) = (2**p)-2+2R(p-l)
R(l) = 0

The first two terms in R(p), (2**p)-2, are n-1 , the number of canparisons done
by PARTITION the first time. The second term is the number of comparisons
done by QUICKSORT to sort the two subfiles, each of which has (n-1)/2, or
(2**(p-1)) -1, entries. Expand the recurrence relation to get

R(p) = (2«*p)-2+2R(p-1) = (2*«p)-2+2(2«»(p-1)-2)+4R(p-2)
= (2«»p)-2+(2*»p)-4+(2»*p)-8+8R(p-3)

thus

R(p) = L (2»*p)-(2*«i) = (p-1)(2*«p)- X; 2«»i
i=1 i=1

= ((p-1)2»«p)-((2»«p)-2) = log n (n+1) -n+1

Thus if A(m) were close to the median each time the file is split, the nunber
of comparisons done by QUICKSORT would be of the order (nlog n). If all
permutations of the input data are assumed equally likely, then QUICKSORT does
approximately 2nlog n comparisons.

Space Usage . At first glance it may seen that QUICKSORT is an in-place sort.

It is not. While the algorithm is working on one subfile, the beginning and
ending indices (call then the borders) of all the other subfiles yet to be
sorted must be saved on a stack, and the size of the stack depends on the
number of sublists into which the file will be split. This, of course,
depends on n. In the worst case, PARTITION may split off one entry at a time
in such a way that n pairs of borders are stored on the stack. Thus, the
amount of space used by the stack is proportional to n.

n TOGO 2000 3000 4000 5000
MERGESORT 500 1050 1650 2250 2900
QUICKSORT 400 850 1300 1800 2300

(Time is in milliseconds)

Figure 4.2.6-2 MERGESORT and QUICKSORT Comparison

Page 17

Testing . The results of comparing QUICKSORT and MERGESORT are reported in

reference (4) and are summarized in figure 4.2.6-2.

4.2.7. Effectiveness. Algorithm analysis has become an important part of

computer science. The only issue that limits its effectiveness is that a

particular analysis depends on a particular model of computation. If the
assumptions of the model are inappropriate then the analysis suffers.

4.2.8. Applicability. An analysis of an algorithm can be limited by the

current state of the art and the ingenuity of the analyst.

4.2.9. Learning. Algorithm analysis requires significant training in

matJiematics and computer science. Generally, it will be done by a specialist.

4.2.10. Costs. The cost to analyze an algorithm is dependent on the
complexity of the algorithm and the amount of understanding about algorithms
of the same class.

4.2.11. References.

(1) BENTLY, J.L., "An Introduction to Algorithm Design", Computer j Feb.

1979.

(2) WEIDE, B. , "A Survey of Analysis Techniques for Discrete
Algorithms^" Computing SurvevS jVol. 9, No. 4, Dec. 1977.

(3) AHO, A.V., HOPCROFT, J.E., and ULLMAN, J.D., "The Design and

Analysis of Computer Algorithms," Addison-Wesley, Reading, Mass., 1974.

(4) HOROWITZ, E. , and SAHNI, S. , "Fundamentals of Computer

Algorithms," Computer Science Press, Potomac, Maryland, 1978.

(5) HOARE, C.A.R., "Partition (Algorithm 63) and QUICKSORT (Algorithm
64)", Communications of the ACM, Vol. 4, No. 7, pp. 321 , July 1961.

(6) HOARE, C. A. R
.

, "QUICKSORT"

,

Computer Journal,Vol.5,No.1 ,1963.

Page 18

4.3.1. Name. Analytic Modeling of Syston Designs.

4.3.2. Basic features. The purpose is to provide performance evaluation and
capacity planning information on a system design. The process follows the top
down approach to design through hierarchical levels of resolution. It can be
applied at early design stages when functional modules are relatively large
and where knowledge of their execution behavior may be imprecise. As the
design proceeds and the modules are further resolved, the estimates of their
behavior and execution resource characterization become more precise. The
approach is predicated on two representational bases: on extended execution
graph models of programs and systems and on extended queueing network models
of computer system hardware resources and workloads.

4.3.3. Information input. The information which is needed for this technique
consists of functional design and performance specifications as follows:

a. Identification of the functional conponents of the software design
to be modeled.

b. Identification of the execution characteristics (primarily,
execution time estimate) of each functional canponent.

c. An execution flow graph which gives the definition of the order of
execution of the various functional conponents.

d. Execution environment specifications which can include information
such as operating system overhead and the workload on the system that could
potentially impact the particular software under development.

e. Syston execution scenarios which provide the definitions of the
external inputs to the model needed for each simulation of the model.

f. Performance goals for the total syston and conponents (an example
is an upper bound for the mean and variance of the response time for a

specified execution environment and scenario)

.

4.3.4. Information output. Output from the technique will consist of the
following:

a. A lower bound on the performance of the system.

b. A comparison of the performance goals with the performance
results.

c. Identification of the functional conponents which had the greatest
effect on syst«n performance.

4.3.5. Outline of method. Much of the effort in using this technique comes
in the preparation of the necessary input information. Once this has been
done, it is generally submitted to a conputer which performs the simulation of
the execution of the model and reports the results, which are then analyzed
and the model revised as necessary. The specific steps in the technique are

Page 19

as follows:

a. The structure of the software design is characterized in terms of
its functional components. In that software designs are generally
hierarchical in structure, a model may be modified to represent the system at
different levels of detail, each being analyzed at different stages in the
process.

b. The order of execution of the components is determined and the
execution graph is constructed.

c. Resource requirements (e.g. , hardware or operating system
resources) of the functional ccxnponents are identified and a possible
environment is studied with the specific resource workloads being determined.
These workloads consist of the average wait and usage times for the resources
controlled by the environment and used by the software (such as average disk
access time)

.

d. The workloads are then mapped into the model (as represented by

the execution graph) based upon the identified environment resource
requironents of the individual functional components.

e. Next, the system execution scenarios are constructed. The
external inputs comprising each scenario may be formulated, for example, in
terms of the number of disk accesses required to find a needed data it«n
within a particular component.

f . Upon completion of the above steps, the model is driven, producing
system and component performance results. (The "driving" of the model is
usually done using a system simulation tool such as GPSS, General Purpose
Systems Simulator, on a coded specification of the model.)

g. The performance results are now compared with the performance
goals of the syston. If the goals are not met, performance critical
components are then analyzed in order to determine where improvements can be
made. The design is modified and the technique repeated. This process
continues until the performance is acceptable or until it can be determined
that the goals are unreasonable.

4.3.6. Example. Finite element analysis is a technique for determining
characteristics such as deflections and stresses in a structure (i.e.,
building, airplane, etc.) otherwise too complex for closed form mathonatical
analysis. The structure is broken into a network of simple elements (beams,

shells, or cubes depending on the geometry of the structure), each of which
has stress and deflection characteristics defined by classical theory.

Determining the behavior of the entire structure then becomes a task of

solving the resulting set of simultaneous equations for all elements.

The example developed below is a portion of a systan which does a finite

element analysis. Consider the software execution graph in Figure 4.3.6-1.

Only the top level of the processing is illustrated here. The CPU time and

Page 20

I/O requironents for each canponent are shown in Table 4.3.6-1

FIND
BEAM DEF

SORT ON
BEAM NUMBER

FOR PROBLEM NUM.

2600 QUALIFY

I

I

I

<(

It-

4/S

N-26O0

RETR
BEAM

IEVE
DET

FIND
NODE LOC

-<D

RETRIEVE
NODE UK

1/5

SEOT DATA

FOR PROBLEM NUM. A
(NODE 1 V NODE 2)

2 QUALIFI

Figure 4.3.6-1 Optimization Example (reference (1))

Function Disk Accesses CPU Time(ms)
Find beam definition 7 111

Sort on beam number 72 32,644
Retrieve beam definition 72 88,832
Find node locations 21 3,018,726
Retrieve node locations 36 177,016
Send data 0 2,600

Total 208 3,319,929 ras.

TABLE 4.3.6-1 RESOURCE REQUIREMENTS FOR OPTIMIZATION EXAMPLE

Page 21

The elapsed time to complete an I/O operation is assumed to be 30 ms. Other

specifications are unimportant in this example.

The average response time for this scenario is 3326 seconds (55.4 minutes).

This is clearly unacceptable for an interactive transaction. The bottleneck
analysis indicates that the CPU is the critical resource since it has a higher
ratio to the elapsed time than the I/O ratio. Furthermore, the "find node

location" component is the critical component.

The processing details of this collapsed model are not shown; however, close

examination of the details indicates that a "find" data base command is

invoked for each of the three search keys, and then takes the intersection of

the records that qualify. Also, it is found that the result of the "find" for
the problem number search key is invariant throughout the loop and need not be

repeated. A knowledge of the nature of the problem leads to the observation
that most of the time (85%) the "find" on the node 1 key. yields the same

result as the "find" on the node £ key from the previous pass through the

loop, and need not be repeated. The results of this analysis indicate changes

which optimize the process.

These optimizations are reflected in the execution graph in Figure 4.3.6-2.

This graph is more complex; however, the total processing requirements are

reduced, as shown in Table 4.3.6-2.

The response time has been reduced by 3023 seconds, a substantial savings!

The response time (303 seconds) is still unacceptable for most on-line
applications. Another optimization, storing the "beam def" data in beam

nunber sequence, precludes the sort. The resulting response time is 269

seconds. This optimization process continues until a resulting response time

of 82 seconds is obtained.

Function Disk Accesses CPU Time(ms)

Find beam definition 7 111

Sort beam number 72 32,644
Find node location 4 1,075
Retrieve beam definition 72 88,832
Find node location:
B-tree I/O 17 102

Find 2 nodes ~ 44,000
Retrieve 2 nodes ~ 27,200
Find 1 node ~ 26,000
Retrieve 1 node — 71,800
Record I/O 36 216

Send data 0 2,600

Total 208 297,580 ms.

TABLE 4.3.6-2 RESOURCE REQUIREMENTS FOR REVISED OPTIMIZATION EXAMPLE

Page 22

The performance is still only marginally acceptable, but it is a dramatic
improvement over the original design. Hie bottlenecks are detected and
corrected prior to actual coding and, therefore, the modifications require
minimal effort.

BEAM Dtr

SORT ON

BEAM KUMBER

nm
NODE LOC

FOR PR05LIH KUM.

2600 QUALm

FOR PROBLm NUM.

1500 QUALITY

4)

-<D
1/5

se:-d oata

f

RETRIEVE
BEAM DEF

22/26

riwD
NODE LOC

\

INTERSECT
ON PROBLEM

RTTT-IEVE

NODE LOC

N-2600

4/26
FIND NODE LOC

FOR NODE 1

1 QUALITIES

FOR (NODE 1 V

NODE 2)

2 QUALIFT

INTERSECT
ON PROBLEM

r--<2)

RETRIEVE
NODE LOC

Figure 4.3.6-2 Revised Optimization Example (reference (1))

4.3.7. Effectiveness. The accuracy of the performance prediction is only as

good as the quality of the performance specifications. The quality of the
specifications usually improves during the design process. A simplified

Page 23

approach is used to analyze queueing network models. This results in

approximation of the relationships between contending resources. Several
compensating features are used to offset the approximations used.

4.3.8. Applicability. The technique is generally applicable to
nondistributed systems.

4.3.9. Learning. The user of this approach needs to be familiar with the

intricacies of the modeling techniques used.

4.3.10. Costs. The preparation, analysis, and solution of the model costs
approximately 5% to 15% of the total design costs.

4.3.11. References.

(1) SMITH, C.U., "The Prediction and Evaluation of the Performance of
Software From Extended Design Specification", Ph.D. Dissertation, University
of Texas at Austin, August I98O.

(2) SMITH, C.U., and BRCWNE, J.C. , "Performance Specifications and
Analysis of Software Designs"

,

Proceedings of the Conference on Simulation,
Measurement, and Modeling of Computer Systems , Boulder, CO.

,
August 1979.

Pago 24

4.4.1. Name. Assertion Generation

4.4.2. Basic features. Assertion generation is not so much a verification
technique itself as it is foundational to a variety of other techniques.
Assertion generation is the process of capturing the intended functional
properties of a program in a special notation (called the assertion language)
for insertion into the various levels of program specification, including the
program source code. Other verification techniques utilize the embedded
assertions in the process of canparing the actual functional properties of the
program with the intended properties.

4.4.3. Information input, A specification of the desired functional
properties of the program is the input required for assertion generation. For
individual modules, this breaks down, at a minimum, to a specification of the
conditions which are "assumed" true on a module entry and a specification of
the conditions desired on module exit. If the specifications from which the
assertions are to be derived include algorithmic detail, the specifications
will indicate conditions which are to hold at intermediate points within the
module as well. Additionally, assertions can state data characteristics, e.g.

loop invariants, physical units or a variable, as input onlyCcan not be set).

4.4.4. Information output. The assertions which are created from the
functional or algorithmic specifications are expressed in a notation called
the assertion language. This notation ccanmonly includes higher level
expressive constructs that are found, for example, in the programming
language. An example of such a construct is a set. Most ccxnmonly, the
assertion language is equivalent in expressive power to the first order
predicate calculus. Thus, expressions such as "forall i in. set S, A[i]
A[i+1]" or "there exists x such that f(x) = 0" are possible. The assertions
which are generated, expressing the functional properties of the program, can
then be used as input to a dynamic assertion processor, a formal verification
tool, walkthroughs, specification simulators, and inspections, among other V&V
techniques.

4.4.5. Outline of method. Assertion generation proceeds hand-in-hand with
the hierarchical elaboration of program functions. When, during development,
a function is identified as being needed, it is usually first specified by
what input it is expected to take and what the characteristics of the output
are (outputs are often in terms of the input quantities). For such a function
it is possible to generate input and output assertions without any knowledge
of how the function performs its task. The input assertion expresses the
requirements on the data the function is to use during its processing. The
output assertion expresses what is to be true on function termination.

Later, as the function is elaborated, the designer or coder will identify the
necessary steps to be taken in order to accomplish what is required of the
function. After each step it can be said that a "part" of the task has been
accomplished. That part is necessary for the proper operation of the next
step, and so on, until the entire function has been realized. The character
of each part can be captured by an assertion in the same way as the
description of the entire function. The output assertion for one step
represents (at least part of) the input assertion for the following step.

Page 25

Such assertions are called intermediate assertions.

Each assertion, input, output, and intermediate is expressed using the

assertion language and is placed into the specification of the function being
implonented at the appropriate points. Thus, the program source text will
include in it all the assertions developed during the requirements, design,
and coding phases.

Seme programming languages include facilities for expressing assertions in the

source code but most do not. In such cases it is customary to include the
assertions within comments, for indeed they are documentation expressing the
desired functional characteristics of the program. Subsequent V&V tools, such
as dynamic assertion processors, are constructed to utilize these special
comments during their processing. Dynamic assertion processors are able to
check the validity of the source assertions during program execution. Thus a

method for dynamically verifying that the program is behaving according to its
intended specification is possible.

For programs which contain loops (which is just about all programs) , it is

often important to formulate assertions which are always true at specific
points within the loops. Such assertions are termed invariant or inductive
assertions.

4.4.6. Example. Since assertion generation is so closely entwined with
program development only a brief example is presented here. For more thorough
examples see references (1-5).

During program development the requirement arises for sorting the elements of

an array or table. In order to support flexible processing in the rest of the
system, the array is declared with a large, fixed length. However, only a

portion of the array has elements in it. The number of elements currently in

the array, when passed to the sort routine, is contained in the first element
of the array. The array is always to be sorted in ascending order. The
sorted array is returned to the calling program through the same formal

parameter.

The first specification of the sort routine may appear as:

SUBROUTINE SORT (A, DIM)

C
C

C

C
C

c

A is the array to be sorted
DIM is the dimension of A

sort array

RETURN
END

Figure 4.4.6-1 Sort Specification

Page 26

The characteristics of the subroutine may be partially captured by the
following assertions. Notationally, v="or" and &="and".

ASSERT INPUT (0<A(1)<DIM) , (DIM^2)

ASSERT OUTPUT (A(1)=0 v A(1)=1 & true) v

(A(1)>1 & FORALL I IN [2 . . A(1)] A(I) A(I+1))

The input assertion notes the required characteristics of A(l) and DIM. The
output assertion indicates that if there were 0 or 1 elements in the array,
the array is sorted by default. If there are at least 2 elenents in the
array, then the array is in ascending order.

The next level of the program may have the following appearance. An
intermediate assertion is now shown.

SUBROUTINE SORT (A, DIM)

C
C A is the array to be sorted
C DIM is the dimension of A
C

ASSERT INPUT (01A(1) DIM), (DIM>2)
IF (A(1) .LE. 1) GOTO 100
ASSERT (2^A(1)1DIM)

C

C Sort non-trivial array
C

100 ASSERT OUTPUT (A(1)=0 v A(1)=1 & true) v

(A(1)>1 & FORALL I IN [2 . . A(1)3 A(I)<A(I+1))
RETURN
END

Figure 4.4.6-2 Sort Routine with Assertions

Suppose a straight selection sort algorithm is chosen for the non-trivial case
(i.e., find the smallest element and place it in A(2), find the next smallest
and place it in A(3), and so forth, where the original contents of A(I) is
exchanged with the element that belongs in the Ith position in the sorted
array) . An appropriate intermediate assertion is included within the sorting
loop.

C PERFORM STRAIGHT SELECTION SORT
DO 50 J = 2, A(1)

C
C find smallest element in A(J) . . A(A(1)+2)
C let that element be A(K)
C exchange A(J) and A(K)
C

ASSERT (21J<A(1))
(FORALL I IN [2 . . A(1)] A(I)1A(I+1))

50 CONTINUE

Figure 4.4.6-3 Sort Routine with an Intermediate Assertion

Page 27

A significant issue which we have not dealt with yet is asserting, on

termination, that the sorted array is a permutation of the original array. In
other words, we wish to assert that in the process of sorting, no elements
were lost. To do this at the highest level, our first attempt at the program
requires advanced assertion language facilities. The interested reader is

referred to references (1) and (5).

4.4.7. Effectiveness. Assertion generation, particularly when used in

conjunction with allied techniques like dynamic assertion processing or
functional testing, can be extronely effective in aiding V&V. Such
effectiveness is only possible, however, when the assertions are used to
capture the important functional properties of the program. Assertions such
as the following are of no use at all:

1 = 0

1 = 1+1
ASSERT I>0

Capturing the important properties can be a difficult process and is prone to

error. Such effort is well rewarded, though, by increased understanding of
the problen to be solved. Indeed, assertion generation is effective because
the assertions are to be parallel to the program specifications. This
parallelism enables the detection of errors, but effort is required.

A cost-effective procedure, therefore, is to develop intermediate assertions

only for particularly important parts of the computation. Input assertions
should always be onployed, and output assertions whenever possible.

4.4.8. Applicability. The technique is generally applicable, in all

development phases and for all programming languages.

4.4.9. Learning. Training and experience in writing assertions is the key to

their effective use. Thoughtful consideration of the material contained in

the references should enable a programmer to begin with useful assertions.

Experience will sharpen the ability, especially if a dynamic assertion
processor or other allied technique is also used.

4.4.10. Costs. Assertion generation is generally a manual techrtique, i.e.,

no machine resources are required. Effective use requires thoughtful problem
and solution consideration, but no more than is normally required in

professional task performance. Tools do exist that use symbolic execution to

automatically generate loop invariant assertions. The cost then becomes that
of symbolic execution.

4.4.11. References.

(1) TAYLOR, R.N., "Assertions in Programming Languages" SIGPLAN

Notices , Vol. 15, 1, January 1980, pp. 105-114.

(2) MANNA, Z; WALDING, R. , "The Logic of Computer Programming"

lEEE-TSE, SE-4
, 3, May 1978, pp. 199-229 (especially pages 199-204).

Page 28

(3) HOARE, C.A.R., "Proof of a Program: FIND" CACM,V. 14, 1,

January 1971, pp. 39-45.

(4) HETZEL, W. D. ed., "Program TEST Methods", 1973, Articles on
pages 7-10, 17-28, 57-72.

(5) CHOW, T. S., "A Generalized Assertion Language", Proceedings of
the Second International Conference on Software Engineering , San Francisco

^

California, pp. 392-399.

(6) STUCKI, L. G. , and FOSHEE, G. L. , "New Assertion Concepts for
Self-Metric Software", Proceedings of the 1Q75 Conference on. Reliable
Software , DP. 59-71.

Page 29

4.5.1. Name. Assertion Processing.

4.5.2. Basic Features. Assertion processing is the process whereby the
program's assertions (containing user specified assertions as described in the
previous section) are checked during program execution. As such, the
techniques serve as a bridge between the more formal program correctness proof
approaches and the more common "black box" testing approaches.

4.5.3. Information Input. Information input to this technique consists of a

progran which contains the assertions to be processed. The program can be
written in any language but may be restricted to a particular language if an
automatic tool is used to perform the dynamic assertion processing. Moreover,
if a tool is used, the format for specifying the assertions will be that
defined by the particular tool. Generally, assertions are specified as
comments in the source program.

4.5.4. Information Output. Output from a dynamic assertion process normally
consists of a list of the assertion checks which were performed and a list of
exception conditions with trace information for determining the nature and
location of the violations.

4.5.5. Outline of Method. The assertions are generated by the developer as

described in the "Assertion Generation" technique in the previous section.
The assertions are then translated into host language program statanents which
actually perform the assertion checking at program execution time. The
translation can be done manually or through the use of an automated dynamic
assertion processor.

The translation process is shown in the following illustration. An assertion
of the form:

(» ASSERT condition*)

is translated into:

IF NOT (condition) THEN

Process assertion violation;

The processing of the assertion violation will, minimally, keep track of the

total number of violations for each assertion, print a message indicating that

a violation of the assertion has occurred, and print the values of the

variables referenced in the assertion. In addition, the location, i.e.

statenent number, and the number of times the assertion is checked may be kept

and printed when a violation occurs.

Sufficient information should be reported upon violation of an assertion to

assist the programmer of the specific nature of the error.

An automated dynamic assertion processor can be of great assistance by

alleviating for the programmer the burden of hand generating the source code

necessary to perform the assertion checking. Not only will this save time but

Page 30

it will also perform the translation more reliably.

Specifying assertions within comments is a valuable form of documentation and

also ensures that the source prc^ram is kept free of non-portable, tool

specific directives.

It is important to note that dynamic assertion processing for non-real time

programs must not alter the functional behavior of a program. Use of a good
autonated tool will ensure this. Execution time, however, will be increased;
the amount of which will depend on the number of assertions which are
processed. It is important to note that dynamic assertion processing can
alter the functional behavior of a program by altering the execution timing.

In order to effectively utilize assertion processing, test data should be

generated which will cause the execution of each assertion.

4.5.6. Example. The program segment in Figure 4.5.6-1 is taken from a Pascal

program which calls on routine 'sort' to sort array 'A', consisting of 'N'

integer elonents, in ascending order. The assertion following the call to
sort asserts that the elements are indeed in ascending order upon return from
the sort procedure. The numbers to the left are the line numbers fran the
original source.

12 Ml
13 N : integer;
14 A : array [1..MAXN] of integer;

26 begin

56 sort (N,A);

57 (* assert forall i in [1 . .N-1] :A[i]<= A[i+1] »);

Figure 4.5.6-1 Source Program with Untranslated Assertion

The program segment in Figure 4.5.6-2 is that which results after all of the

assertions have been translated into Pascal. Note that a rather large number
of statements were used to implement the assertion. This is due to the rather
involved checking required to implement an "assert forall . . .". Simpler
assertions will require fewer statements. The spec could be reduced through
the use of a common assertion violation procedure.

Page 31

12 lac
13 N : integer;

14 A : array [1..MAXN] of integer;
15 AssertVioCount : array [1.. NumofAsserts] jQf integer;
16 AssertXqtCount : array [1.. NumofAsserts] q£. integer;
17 assert : boolean;

29 begin

77 sort (N,A);

78 (» assert forall : in [1..N-1] : A[i] =A[i+1] »);

79 AssertXqtCount[3] := AssertXqtCount[3]+1

;

80 assert : = true;

81 i := 1 ;

82 while(i<= N) and (assert) dfi(* check assertion *)

83 if A[i]>A[I+1] then
84 assert := false
85 else
86 i := i + 1

;

87 if not assert then begin C* assertion violation *)

88 AssertVioCount[3] := AssertVioCount[3] = 1;

89 Writeln ('violation of assertion 3 at statement 57 ');

90 Writeln ('on execution:', AssertXqtCount[3])

;

91 Writeln ('arrayA = ' , A)

92 end (* assertion violation *);

Figure 4.5.6-2 Source Program with Translated Assertions

During the testing the following values of A were used in successive
executions of the sort routine.

execution array A

1 0 3 12 27 53 171 201 251 390 501

2 0 12 3 53 27 201 171 390 251 501

3 501 390 251 201 171 53 27 12 3 0

4 0000000000
5 0 0 0 100 100 100 999 999 999 1000

The resulting execution produced the following assertion violation:

Page 32

violation of assertion 3 at statement 57 on execution: 3
array A = 3 12 27 53 171 201 251 340 501 0

This was the only violation which occurred.

Subsequent analysis of the sort procedure indicated that the error was due to
an "add-by-one" error on a loop limit.

4.5.7. Effectiveness. The effectiveness of dynamic assertion processing will
depend upon the quality of the assertions included in the program being
analyzed. Moreover, if the translation is being done by hand, the amount of
time required to translate, coupled with the unreliability associated with the
process will reduce its effectiveness. Nevertheless, the technique can be of
significant value in revealing the presence of program errors.

4.5.8. Applicability. The technique is generally applicable.

4.5.9. Learning. A functional understanding of assertions is all that is

necessary in order to manually use this technique. If a tool is used, then an
hour or so should be sufficient to learn the specification syntax for
asssertions acceptable to that tool. Of course, the generation of useful
assertions (see "Assertion Generation" writeup) is necessary in order for this
technique to be truly valuable.

4.5.10. Costs. The costs associated with this technique are almost entirely

comprised of the amount of time required to translate the assertions into
source code. If done manually, this could amount to significant cost. If

done automatically, the cost will be on the order of compilation (Assertion
Processors are usually implemented as source language preprocessors). If a

tool is not available, it may well be worth the cost to develop one in-house.

4.5.11. References.

(1) STUCKI, L. G. , and FOSHEE, G. L., "New Assertion Concepts for

Self-Metric Software"
,
Proceedings , IQT'S Conference on Reliable

Software
, pp. tSQ-Tl.

(2) ANDREWS, D. M. ,
"Using Executable Assertions for Testing",13ill ^nnyai

Asilomar Conference on Circuits, Systems, and Devices , Nov. 1979.

Page 33

4.6.1. Name. Cause-Effect Graphing.

4.6.2. Basic features. Cause-effect graphing is a test case design
methodology. It is used to select in a systematic manner a set of test cases
which have a high probability of detecting errors that exist in a program.
This technique explores the inputs and combinations of input conditions of a

program in developing test cases. It is totally unconcerned with the internal
behavior or structure of a program. In addition, for each test case derived,
the technique identifies the expected outputs. The inputs and outputs of the
program are determined through analysis of the requirement specifications.
These specifications are then translated into a Boolean logic network or
graph. The network is used to derive test cases for the software under
analysis.

4.6.3. Information input. The information that is required as input to carry
out this technique is a natural language specification of the program that is
to be tested. The specification should include all expected inputs and
combinations of expected inputs to the program, as well as expected outputs.

4.6.4. Information output. The information output by the process of
cause-effect graphing consists of the following:

a. An identification of incanplete or inconsistent statements in the

requirement specifications.

b. A set of input conditions on the software (causes).

c. A set of output conditions on the software (effects).

d. A Boolean graph that links the input conditions to the output

conditions.

e. A limited entry decision table that determines which input

conditions will result in each identified output condition.

f . A set of test cases.

g. The expected program results for each derived test case.

The above outputs represent the result of performing the various steps

recommended in cause-effect graphing.

4.6.5. CXjtline of method. A cause-effect graph is a formal language

translated frcxn a natural language specification. The graph itself is

represented as a combinatorial logic network. The process of creating a

cause-effect graph to derive test cases is described briefly below.

a. Identify all requirements of the systan and divide them into

separate identifiable entities.

Page 34

b. Carefully analyze the requironents to identify all the causes and
effects in the specification. A cause is a distinct input condition; an
effect is an output condition or syston transformation (an effect that an
input has on the state of the program or system)

.

c. Assign each cause and effect a unique number.

d. Analyze the semantic content of the specification and transform it
into a Boolean graph linking the causes and effects; this is the cause-effect
graph.

0 Represent each cause and effect by a node identified by its unique
number.

o List all the cause nodes vertically on the left side of a sheet of paper;
list the effect nodes on the right side.

o Interconnect the cause and effect nodes by analyzing the semantic
content of the specification. Each cause and effect can be in one of
two states: true or false. Using Boolean logic, set the possible states
of the causes and determine under what conditions each effect will
be present.

o Annotate the graph with constraints describing combinations of
causes and/or effects that are impossible because of syntactical or
environmental constraints.

e. By methodically tracing state conditions in the graph, convert the
graph into a limited entry decision table as follows. For each effect, trace
back through the graph to find all combinations of causes that will set the
effect to be true. Each such conbination is represented as a column in the
decision table. The state of all other effects should also be determined for
each such combination. Each column in the table represents a test case.

f . Convert the columns in the decision table into test cases.

This technique to create test cases has not yet been totally automated.

However, conversion of the graph to the decision table, the most difficult
aspect of the technique, is an algorithmic process which could be automated by
a computer program.

4.6.6. Example. A database management system requires that each file in the

database have its name listed in a master index which identifies the location
of each file. The index is divided into ten sections. A small syston is
being developed which will allow the user to interactively enter a canmand to
display any section of the index at his terminal. Cause-effect graphing is
used to develop a set of test cases for the system.

a. The specification for this system is as follows:

To display one of the ten possible index sections, a ccmmand must be entered
consisting of a letter and a digit. The first character entered must be a D

(for display) or an L (for list) and it must be in column 1. The second

Page 35

character entered must be a digit (0-9) in column 2. If this command occurs,
the index section identified by the digit is displayed on the terminal. If
the first character is incorrect, error message A is printed. If the second
character is incorrect, error message B is printed. The error messages are:

A: INVALID COMMAND
B: INVALID INDEX NUMBER

b. The causes and effects have been identified as follows. Each has
been assigned a unique number.

Causes
1 . Character in column 1 is D.

2. Character in column 1 is L.

3. Character in column 2 is a digit.

Effects
50. Index section is displayed.
51. Error message A is displayed.
52. Error message B is displayed.

c. Figure 4.6.6-1, a Boolean graph, is constructed through analysis
of the semantic content of the specification.

Figure 4.6.6-1 Boolean Graph

Node 20 is an intermediate node representing the Boolean state of node 1 or
node 2. The state of node 50 is true if the state of nodes 20 and 3 are both
true. The state of node 20 is true if the state of node 1 or node 2 is true.
The state of node 51 is true if the state of node 20 is not true. The state
of node 52 is true if the state of node 3 is not true.

Nodes 1 and 2 are also annotated with a constraint that states that causes 1

and 2 cannot be true simultaneously (the Exclusive constraint).

d. The graph is converted into a decision table, figure 4.6.6-2. For

each test case, the bottom of the table indicates which effect will be present
(indicated by a 1). For each effect, all combinations of causes that will
result in the presence of the effect is represented by the entries in the

columns of the table. Blanks in the table mean that the state of the cause is

Page 36

irrelevant.

Causes

Tes

1 2

e

3 4

1 1 0 0

2 0 1 0

3

Effects

1 1 0

50 1 1 0 0

51 0 0 1 0

52 0 0 0 1

Figure 4.6.6-2 Decision Table

e. Each colunn in the decision table is converting into test cases,

figure U.6.6-3.

Test Case // Inputs Expected Results
1 D5 Index section 5 is displayed
2 U\ Index section 4 is displayed
3 B2 INVALID COMMAND
4 DA INVALID INDEX NUMBER

Figure 4.6.6-3 Test Cases

4.6.7. Effectiveness. Cause-effect graphing is a technique used to produce a

useful set of test cases. It also has the added capability of pointing out
incompleteness and ambiguities in the requirement specification. However,
this technique does not produce all the useful test cases that can be
identified. It also does not adequately explore boundary conditions.

4.6.8. Applicability. Cause-effect graphing can be applied to generate test
cases in any type of computing application where the specification is clearly
stated and combinations of input conditions can be identified. Manual
application of this technique is a somewhat tedious, long, and moderately
ccwiplex process. However, the technique could be applied to selected modules
where ccxnplex conditional logic must be tested.

Page 37

4.6.9. Learning. Cause-effect graphing is a mathematically-based technique
that requires some knowledge of Boolean logic. The requirement specification
of the syston must also be clearly understood in order to successfully carry
out the process.

4.6.10. Costs. Manual application of this technique will be highly labor

intensive.

4.6.11. References.

(1) ELMENDORF, W.R., "Cause-Effect Graphs in Functional Testing," IBM
Systems Development Division, TR-00.2487

f
Poughkeepsie, New York, 1973.

(2) MYERS, GLENFORD, "The Art of Software Testing,"
Wiley-Interscience, New York, 1975.

(3) MYERS, GLENFORD, "Software Reliability: Principles and

Practices," Wiley-Interscience, New York, 1976.

Page 38

4.7.1. Name. Code Auditor.

4.7.2. Basic features. A code auditor is a computer program which is used to
examine source code and automatically determines whether prescribed
programming standards and practices have been followed.

4.7.3. Information input. The information input to a code auditor is the
source code to be analyzed and the commands necessary for the code auditor's
operation.

4.7.4. Information output. The information that is output by a code auditor
is a determination of whether the code being analyzed adheres to prescribed
programming standards. If errors exist, information is generated detailing
which standards have been violated and where the violations occur. This
information can appear as error messages included with a source listing or as
a separate report. Other diagnostic informsition, such as a cross-reference
listing, may also be output as an aid in making the needed corrections.

4.7.5. Outline of method. Code auditors are fully automated tools which
provide an objective, reliable means of verifying that a program complies with
a specified set of coding standards. Seme common programming conventions that
code auditors can check for are given below.

o Correct syntax - Do all program statements conform to the specifications of

the language definition?

o Portability - Is the code written so that it can easily operate on

different computer configurations?

o Use of structured programming constructs - Does the code make proper use

of a specified set of coding constructs such as IF-THEN-ELSE or DO-WHILE?

o Size - Is the length of any program unit not more than a specified number
of statements?

o Commentary - Is each program unit appropriately documented; e.g., is each
unit preceded by a block of comments which indicates the function of the
unit and the function of each variable used?

o Naming conventions - Do the names of all variables, routines, and other
symbolic entities follow prescribed naming conventions?

o Statement labeling - Does the numeric labeling of statements follow an
ascending sequence throughout each program unit?

o Statement ordering - Dp all statonents appear in a prescribed order; e.g.,
in a Fortran program, do all FORMAT statenents appear at the end and DATA
statements before the first executable statement of a routine?

o Statement format - Do all statements follow a prescribed set of formatting
rules which improve program clarity; e.g., are all DO-WHILE loops
appropriately indented?

Page 39

As demonstrated by this list, code auditors vary in sophistication according
to their function. Each auditor, however, requires some form of syntax
analysis to be performed. Code must be parsed by the auditor and given an
internal representation suitable for analysis. Because this type of
processing is found in many static analysis tools, many code auditors are part
of a more general tool having many capabilities. For example, a compiler is a

form of code auditor that checks for adherence to the specifications of a

language definition. PFORT, a tool used to check Fortran programs for
adherence to a portable subset of American National Standard Institute (ANSI)
Fortran 66, also has the capability of generating a cross-reference listing.

Code auditors are useful to programmers as a means of self-checking their
routines prior to turnover for integration testing. These tools are also of
value to software product assurance personnel during integration testing,
prior to formal validation testing, and again prior to customer delivery.

4.7.6. Example.

a. Application. A flight control program is to be coded entirely in

PFORT, a portable subset of ANSI Fortran 66. The program is to be delivered
to a military government agency, which will install the software on various
computer installations. In addition, the customer requires that each routine
in the program be clearly documented in a prescribed format. All internal
program canments are to be later canpiled as a separate source of
documentation for the program.

b. Error. A named common block occurs in several routines in the

program. In one routine, the definition of a variable in that block has been
omitted because the variable is not referenced in that routine. This is,

however, a violation of a rule defined in PFORT, which requires that the total
length of a named canmon block agree in all occurrences of that block.

c. Error discovery. A code auditor which checks Fortran for

adherence to PFORT detects this error immediately. The programmer of this

routine is informed that the routine is to be appropriately modified and that
any confusion over the use of the variable is to be clarified in the block of

canments that describe the function of each defined variable in the routine.

A code auditor that checks for the presence of appropriate canments in each
routine is used to verify that the use of the variable is appropriately
documented. At the end of code construction, all such internal program
documentation will be collated and summarized by another code auditor which
processes machine readable documentation imbedded in source code.

4.7.7. Effectiveness. Code auditors are very effective tools in certifying

that software routines have been coded in accordance with prescribed
standards. They are much more reliable than manually performed code audits

and are highly cost effective as they are less time consuning than manual
audits.

4.7.8. Applicability. Code auditors can be generally applied to any type of

source code. However, each specific tool will be language dependent (i.e.,

will operate correctly only for specified source languages), and will only

Page 40

accept input that appears in a prescribed format.

4.7.9. Learning. No special training is required to use code auditors. As
code auditors may be used by a wide variety of people (programmers, managers,
quality assurance personnel, customers), ease in their use is an important
attribute. In order to use code auditors effectively, however, some learning
is required to gain familiarity with the standards upon which the auditor is
based.

4.7.10. Costs. Code auditors are generally very inexpensive to use as their
overhead is usually no more than the cost of a compilation.

4.7.11. References.

(1) BRCWN, J.R. and FISCHER, K. , "A Graph Theoretic Approach to the
Verification of Program Structures," Proceedings of the ^rd International
Conference on Software Engineering , Mav 1978.

(2) RYDER, B.C., and HALL, A.D. , "The PFORT Verifier," Computing
Science Technical Report #12, Bell Laboratories, Murry Hill, New Jersey, March

1975.

(3) FISCHER, K.F. , "User's Manual for Code Auditor, Code Optimizer
Advisor, Unit Consistency Analyses," TRW Systons Group, Redondo Beach,

California, July 1974.

(4) HOPKINS, T.R., "PBASIC- A Verifier for BASIC," Software Practice

and Experience , Vol 10, pp. 175-181, 1980.

Page Ul

4.8.1. Name. Comparators.

4.8.2. Basic features. A comparator is a computer program used to compare
two versions of source data to establish that the two versions are identical
or to specifically identify where any differences in the versions occur.

4.8.3. Information input. Input to comparators consists of two versions of
source data to be compared and those commands necessary for the comparator to
operate. The source data may "be:

a. Source programs
b. Sets of program test cases or test results
c. Databases
d. Arbitrary data files

Many ccxnparators provide various user options, such as whether blank lines are
to be included in compare processing, to control comparison operation.

4.8.4. Information output. The output from a comparator is a listing of ttie

differences, if any, between the two versions of input. Various report
writing options are usually supplied by the comparator to designate the
desired format of the output, e.g., whether each difference found should be
preceded by line numbers. Many general comparator utility programs installed
in large text-editing systems can also create a file of text-editor directives
that can be used to convert one input file into the other.

4.8.5. Outline of method. Comparators are fully automated tools which serve
to eliminate the tedious, time-consuming task of performing large nimbers of
ccxnparisons. They are most useful during program development and maintenance.
During program development, they provide a means of ensuring that only the
intended portions of a program are changed when modifications are to be made
to the latest version. When regression testing must be performed following
software corrections or updates, ccxnparators provide an efficient means of
canparing current test cases and test results with past ones.

Comparators are widely available and are often provided as general utilities
in operating systons. Other comparators may be more specialized and require
input files to be of a prescribed format in order for the tool to operate
correctly

.

Comparators are invaluable tools in assisting configuration management and

change control as the software takes different forms during development.

4.8.6. Example.

a. Application. A large command and control flight software system

is being developed. During system testing, the generation of many different
databases is required as a source of input data for each associated test case.

Strict control of the databases, including identification of their

similarities and differences, must constantly be maintained in order to

properly verifV test results.

Page 42

b. Error. A bug in the software causes the execution of Test Case 3
to generate test results which are totally inconpatible with the results of
Test Case 1 , though the input in both test cases is almost identical

.

c. Error discovery. A ccxnparator was used to compare the databases
used in Test Case 1 and 3. The location of specific differences in the two
files determined exactly which input data should be examined more closely and
when traced through the program the error was found.

4.8.7. Effectiveness. Comparators are most effective during software testing
and maintenance when periodic modifications to the software are anticipated.
Their overall effectiveness is dependent upon the quality of their use.

4.8.8. Applicability. Ihis method is generally applicable,

4.8.9. Learning, A minimal amount of effort is required to learn how to use
ccwnparators effectively. The tool's user documentation should provide
sufficient information for its proper utilization.

4.8.10. Costs. Comparators are generally inexpensive to use. Their cost is

similar to that of performing two passes of read operations on one file.

4.8.11. References,

(1) , HETZEL, William, "Program Test Methods", Prentice-Hall, Inc.,

1973.

(2) . DEC IAS/RSX-11 "Utilities Procedure Manual", Digital Equipment

Corporation
, 1978.

Page 43

M.9.1. Name. Control Structure Analyzer.

4.9.2. Basic features. Application of an autonated structure analyzer to

either code or design allows detection of some types of improper subprogram
usage and violation of control flow standards. It also identifies control
branches and paths used by test coverage analyzers. A structure analyzer is

also useful in providing required input to data flow analyzers and is related
in principle to code auditors.

4.9.3. Information input. Two input itms are required by a structure
analyzer. The first is the text of the program or design to be analyzed.
Typically the text is to be provided to the analyzer in an intermediate form,

i.e., after scanning and parsing, but not as object code. Often structure
analyzers are incorporated within canpilers.

The second input item is a specification of the control flow standards to be

checked. These standards are often completely implicit in that they may be
part of the rules for programming in the given language or design notation.
An example of such a rule is that subprograms may not be called recursively in

FORTRAN. Individual projects may, however, establish additional rules for
internal use. Many such rules, for instance limiting the number of lines
allowed in a subprogram, can be checked by a code auditor. Others, however,
can require a slightly more sophisticated analysis and are therefore performed
by a structural analyzer. Two examples in this category are "All control
structures must be well nested" and "Backward jumps out of control structures
are not allowed."

Typically this second input item is not directly supplied to a structure
analyzer, but is incorporated directly in the tool's construction. Therefore,
substantial inflexibility is canmon.

4.9.4. Information output. Error reports and a program call graph are the

most common output items of a structure analyzer. Error reports indicate
violations of the standards that were input to the tool. Call graphs indicate
the structure of the graph with respect to the use of subprograms; associated
with each subprogram is information indicating all routines which call the
subprogram and all routines which are called by it. The presence of cycles in

the graph (A calls B calls A) indicate possible recursion. Routines which are
never called are evident, as well as attempts to call nonexistent routines.

In checking adherence to control flow standards, the structure analyzer may
also output a flow graph for each program unit. The flow graph represents the
structure of the program with each control path in the program represented by

an edge in the graph. Additionally, structurally "dead" code within each
module is detectable.

The flow graph and the call graph are items required as input by data flow

analyzers, and it is ccmmon for the two analysis capabilities to be combined
in a single automated tool.

Page M4

4.9.5. Outline of method. Since structure analysis is an automated static
analysis technique, little user action is required. Aside from providing the
input information, the user is only required to peruse the output reports and
determine if program changes are required. Sane simple manifestations of the
tool may not provide detailed analysis reports; therefore, more
responsibility is placed on the user to examine, for example, the call graph
for the presence of cycles.

4.9.6. Example.

a. An online management information system program, figure 4.9.6-1,
calls a routine MAX to report the largest stock transaction of the day for a

given issue. If MAX does not have the necessary information already
available, RINPUT is called to read the required data. Since RINPUT reads
many transactions for many issues, a sort routine is utilized to aid in
organizing the information before returning it to the calling routine. Due to

a keypunch error the sort routine calls routine MAX (instead of the proper
routine MAXI) to aid in the sorting process. This error will show up as a

cycle in the call graph and will be reported through use of a structure
analyzer.

I MIS !

!<

! MAX !

!

! RINPUT!

!

! SORT !

! >

Figure 4.9.6-1 MIS Flow Chart

b. As part of the programming standards formulated for a project, the
following rule is adopted:

"All jumps from within a "control structure must be to locations
after the end of the structure."

Figure 4.9.6-2, a segment of Pascal code, contains a violation of this rule
which would be reported by a suitably constructed structure analyzer.

Page M5

100 : X: = 100;

while X>70 do

begin

if Z = 5 then goto 100;

Figure 4.9.6-2 Goto Violation

4.9.7. Effectiveness. The technique is canpletely reliable for detecting
violations of the standards specified as input. The standards, however, only
cover a small range of programming standards and possible error situations.
Thus, the technique is useful only in verifying very coarse program
properties. The technique's prime utility, therefore, is in the early stages
of debugging a design or code specification.

4.9.8. Applicability. The technique is generally applicable and may be

applied in design and coding phases. Particular applicability is indicated in
systems involving large numbers of subprograms and/or canplex program control
flow.

4.9.9. Learning. Minimal training is required for use of the technique. See
"Outline of Method."

4.9.10. Cost. Little human cost is involved as there is no significant time
spent in preparing the input or interpreting the output. For an average
program, canputer resources are small ;the processing required can be done
very efficiently and only a single run is required for analysis. For large or
ccwiplex programs, the cost can be quite high. A plotter, which produces the
most readable structure diagrams, drives the cost up.

4.9.11. References.

(1) FAIRLEY, Richard E. , "Tutorial: Static Analysis and Dynamic

Testing of Computer Software," Computer , Vol. 11, No. 4, pp. 14-23, April,

1978.

(2) HCWDEN,W.E. , "Reliability of the Path Analysis Testing Strategy",

IEEE Transactions on Software Engineering , vol. SE-2,no. 3,1976.

Page 46

4.10.1. Name: Cross-Reference Generators

4.10.2. Basic features. Cross-reference generators produce lists of data
names and labels showing all of the places they are used in a program.

4.10.3. Information input. Input to cross-reference generators consists of a

computer program in either source or object format.

4.10.4. Information output. Output fran a cross-reference generator is an
alphabetized list of variable names, procedure names and statonent labels
showing the locations in the program where they are defined and referenced.
Other information, which is sometimes included, is data type, attributes, and
usage information.

4.10.5. Outline of Method. Cross-reference generators provide useful
information which can aid both program developnent and maintenance. They aid
program development by helping identify errors such as misspelled identifiers
and improperly typed variables. Program maintenance is aided by helping to
locate, by variable or statement label, those portions which may be affected
by a program change (e.g., a variable name needs to be changed).

Cross-reference generators are widely available and are usually provided with
program source text analyzers such as compilers, standards checkers and data
flow analyzers.

Cross-reference listings should be checked in detail after a program change
has been made to check for misspelled identifiers and incorrect usage, etc.

4.10.6. Example.

a. Application. A communication network controller manages the
control of a network of high-speed conmunication lines connecting a large
number of CRT terminals to an airline reservation system computer.

b. Error. A variable used to store message addresses is assigned an
address which erroneously points to a location storing highly critical queue
control information. A subsequent call to the device handler causes data to
be read into the critical storage area causing a system crash.

c. Error discovery. A quick study of software's cross-reference
listing showed all the locations where the offending variable was used, one of
which clearly showed that the error was due to improper use of a pointer
variable.

Figure 4.10.6-1 shows a sample program listing and corresponding
cross-reference list. The program is a utility routine used by a large
aerodynamic analysis program. The tool which generated the report is called
PFORT (2) which performs various FORTRAN source analyses. The list shows for
each identifier its type (e.g., integer or real), usage (e.g., variable or

function), attributes (e.g., argument, whether the variable has been set,

scalar or array) and the line numbers where it is referenced.

PFORT VERIFIER 3/15/75 VERSION

C
C DRIVER PROGRAM TO TEST EUCLIDEAN NORM FUNCTION
C

1
1

p I OTiTCAf FRR

D COMMON/ F R ROR/ F R R

u 1 RFADfR 10") T

FORMATS 12 IR")c; 10

c END OF DATA CHECK
6 IF(I.GT.IOO) STOP

7 READ(5,10) (X(J), J=1,I)

8 ERR=. FALSE.

9 ANS=ENORM(I, X)

10 IF (.NOT. ERR) GOTO 2

11 WRITE (6,20)
FORMAT (15H BAD VALUE OF N)12 20

13 GOTO 1

14 2 WRITE (6,30) ANS
15 30 FORMAT (6H NORM=,E15.7)
16 GOTO 1

17 END

PROGRAM UNIT *MAIN

NAME TYPE USE ATTRIBUTES REFERENCES

ANS R V SS 9 14

ENORM R FN 9
ERR EL V c ss 2 3 8

I I V ss 4 6 7
J I V ss 7
X EI V SA1 1 7 9

10 4 5 7
1 4 13 16

20 11 12

2 10 14

30 14 15

COMMON BLOCKS
ERROR ERR

Figure 4.10.6-1 Sample Cross-Reference Examples

Page 48

Key to Figure 4.10.6-1

Type Km.
column 1

:

Use Key
columns 1 , 2:

E explicitly typed FA arithmetic-statonent
function argument
function name
external (function or subroutine)

column 2: FN
E

I

R

D
C

L
H

DOUBLE PRECISION

INTEGER
REAL

COMPLEX
LOGICAL
HOLLERITH

GT
IF
SF
SN
V

assigned goto variable
intrinsic function
arithmetic statement function
subroutine name
variable

Attribute Key

column 1

:

C in COMMON

column 2:

E in an EQUIVALENCE statement

column 3:

A dummy argument

column 4:

S value set by program unit

column 5, 6:

S scalar
An array with n dimensions

Figure 4.10.6-1 Sample Cross-Reference Examples (Continued)

4.10.7. Effectiveness. Cross-reference generators are most effective during
the software maintenance phase to help determine where software errors are
occurring, as seen in the previous example. Cross-reference generators are
tools whose utility can often be taken for granted or even considered
bothersome (e.g., "it produces too much paper"). Its lack of availability,
however, will painfully demonstrate how necessary this seemingly basic
capability is. Nevertheless, its true effectiveness is totally dependent upon
the quality of its use.

4.10.8. Applicability. TTiis method is generally applicable.

Page M9

4.10.9. Learning. Minimal effort is required to learn hew to effectively
utilize cross reference generators.

4.10.10. Costs. Cross-reference programs are widely available, usually as a

function provided by a larger system (e.g., a compiler) and add only an
incremental amount to the total cost.

4.10.11. References.

(1) RYDER, B.G. and HALL A.D., "The PFORT Verifier," Computing

Science Technical Report ^ No.12fBell Labs^ March, 1975.

Page 50

4.11.1. Name. Data Flow Analyzers.

4.11.2. Basic features. Data flow analyzers are tools which can determine
the presence or absence of data flow errors; that is, errors that are
represented as particular sequences of events in a program's execution. The
following description is limited to sequential analyzers although efforts are
under way to include synchronous and concurrent events.

4.11.3. Information input. Data flow analysis algorithms operate on
annotated graph structures which represent the program events and the order in
which they can occur. Specifically, two types of graph structures are
required: a set of annotated flowgraphs and a program invocation (or call)
graph. There must be one flowgraph for each procedure. A flowgraph is a

digraph whose nodes represent the execution units (usually statements) of the
procedures, and whose edges are used to indicate the progression of execution
units. Each node is annotated with indications of which program events
occurred as a consequence of its execution. The program invocation (call)
graph is also a digraph whose purpose is to indicate which procedures can
invoke which others. Its nodes represent the procedures of the program and
its edges represent the invocation relation.

4.11.4. Information output. The output of data flow analysis is a report on

the presence of any specified event sequences in the program. If any such
sequences are present, then the identity of each sequence is specified and a

sample path along which the illegal sequence can occur is used. The absence
of any diagnostic message concerning the presence of a particular event
sequence is a reliable indicator of the absence of that sequence.

4.11.5. Outline of method. Data flow analyzers rely basically upon
algorithms from program optimization to determine whether any two particular
specified events can occur in sequence. Taking as input a flowgraph annotated
with all events of interest, these algorithms focus upon two events and
determine: 1) whether there exists some program path along which the two
occur in sequence, and 2) whether on all program paths the two must occur in
sequence. If one wishes to determine illegal event sequences of length three
or more, these basic algorithms can be applied in succession.

A major difficulty arises in the analysis of programs having more than one
procedure, because the procedure flowgraphs often cannot be completely
annotated prior to data flow analysis. Flowgraph nodes representing procedure
invocations must be left either partially or completely unannotated until the
flowgraphs of the procedures which they represent have been analyzed. Hence,
the order of analysis of the program's procedures is critical. This order is

determined by a postorder traversal of the invocation graph in which the
bottom level procedures are visited first, then those which invoke than, and
so forth until the main level procedure is reached. For each procedure, the
data flow analysis algorithms must determine the events which can possibly
occur both first and last and then make this information available for
annotation of all nodes representing invocations of this procedure. Only in
this way can it be assured that any possible illegal event sequence will be

determined.

Page 51

4.11.6. Example. The standard example of the application of data flow
analysis is to the discovery of references to uninitialized program variables.
In this case, the program events of interest are the definition of a variable,
the reference to a variable, and the omission of a definition of a variable.
Hence, all procedure flowgraphs are annotated to indicate which specific
variables are defined, referenced, and undefined at which nodes. Data flow
analysis algorithms are then applied to determine whether the definition
omission event can be followed by the reference event for any specific
variable without any intervening definition event for that variable. If so, a

message is produced indicating the possibility of a reference to an
uninitialized variable and a sample program path along which this will occur.
A different algorithm is also used to determine if a specific variable
definition omission must, along all paths, be followed by reference without
intervening definition. For invoked procedures, these algorithms are also
used to identify which parameters and global variables are sonetimes used and
always used as inputs and outputs. This information is used to annotate all

nodes representing the invocation of this procedure, to enable analysis of
these higher level procedures.

Data flow analysis might also be applied to the detection of illegal sequences
of file operations in programs written in languages such as COBOL. Here the
operations of interest would be opening, closing, defining (i.e., writing),
and referencing (i.e., reading) a file. Errors whose presence or absence
could be determined would include: attonpting to use an unopened file,

attempting to use a closed file, and reading an empty file.

4.11.7. Effectiveness. As noted, this technique is capable of determining
the absence of event sequence errors from a program, or their presence in a

program. When an event sequence error is detected, it is always detected
along some specific path. Because these techniques do not study the
executability of paths, the error may be detected on an unexecutable path and
hence give rise to a spurious message. Another difficulty is that this
technique is unreliable in distinguishing individual elements of an array.
Hence, arrays are usually treated as if they were simple variables. As a

consequence, illegal sequences of operations on specific array elements may be
overlooked.

4.11.8. Applicability. Data flow analyzers can be applied to any annotated

graph. Therefore, the availability of this technique is only limited and
restricted by the availability of the (considerable) tools and techniques
needed to construct such flowgraphs and call graphs.

4.11.9. Learning. This technique requires only a familiarity with and

understanding of the output messages. No input data or user interaction is
required.

4.11.10. Costs. This technique requires computer time, but the algorithms

employed are highly efficient, generally executing in time which is linearly
proportional to program size. Experience has shown that the construction of

the necessary graphs can be a considerable cost factor, however. Potential

users are warned that prototype tools exploiting this technique have proven

quite costly to operate.

Page 52

As noted above, no human input or interaction is required, resulting in only
the relatively low human cost for interpretation of results.

4.11.11. References.

(1) OSTERWEIL, L.J. and FOSDICK, L.D. , "DAVE- A Validation, Error

Detection, and Documentation System for Fortran Programs," Software- Practice
and Experience , 6 y pp. 473-486, September 1976.

(2) FOSDICK, L.D., and OSTERWEIL, L.J., "Data Flow Analysis in
Software Reliability," ACM Computing Surveys , 8, pp. 305-330, September 1976.

(3) HUANG, J.C. , "Detection of Data Flow Anomaly Through Program
Instrumentation", IEEE Transactions on Software Engineering , Vol. SE-5,No. 3,
May 1979.

Page 53

4.12.1. Name. Execution Time Estimators/Analyzers.

M.12.2. Basic features. Execution time estimators/analyzers are tools which
provide information about the execution characteristics of a program. They
can be considered as validation tools in that they can be used to validate
performance requirements and are part of the programming phase of the
lifecycle.

4.12.3. Information input. -The programs which are to have their execution
performance monitored are, essentially, the input needed by the tool.
Depending on the sophistication of the particular tool being used, the
programs may be processed by a processor which automatically inserts probes to
measure performance or probes may need to be manually inserted. The probes
usually consist of calls to a monitor which records execution information such
as CPU and I/O time, and statement execution counts.

4.12.4. Information outputs. The output produced by execution time
estimators/analyzers are reports which show either by statement and/or module
the execution time distribution characteristics. For example, a tool will
provide information showing per module the number of entries to the module,
cumulative execution time, mean execution time per entry and the percent
execution time of the module with respect to the total program execution time.

4.12.5. Outline of method. Execution time estimators and execution time
analyzers both perform similar functions but in different ways. Execution
time estimators (1) function much in the same way as test coverage analyzers.
A source program is instrumented with probes which collect statenent execution
counts when executed. Associated with each stat^ent is a machine dependent
estimate of the time required to execute the statement. The execution time
estimate is multiplied by the statement execution count to give an estimate of
the total time spent executing the stat«nent. This is done for all statements
in a program. Reports showing execution time breakdowns by statement, module,
statanent type, etc. can be produced.

Execution time analyzers are not usually as sophisticated as execution time
estimators. Probes to measure the actual execution time of modules or program
segments are inserted (usually by hand) into the source program. When the

program has completed its execution, but just before it terminates, a routine
is called which prints a report showing the execution characteristics of the
monitored portions of the program.

The value of the tool lies primarily in its use as a performance requirements

validation tool. In order to be used to formally validate performance
requirements, however, it is necessary for the performance requirements to
have been clearly stated and associated with specific functional requirements.

Moreover, the syston should have been designed so that the functional

requirements can be traced to specific system modules.

Assuming that the above conditions are met, the tool could be used in the

following way. The program to be analyzed would be monitored by the execution

time estimator/analyzer during testing. Ihe execution times for the modules

corresponding to specific functional requironents would be compared with the

Page 54

performance requirement for ttiat function. Those modules which fail to
satisfy their performance requirements would be studied in more detail for
possible efficiency improvements. The tool results can also help to identify
execution time critical sections of code. Once the necessary optimitions have
been made, the program should be again tested using the tool to validate the
performance requirements.

4.12.6. Example.

a. Application. A particular module in a real time, embedded
canputer system is required to perform its function within a specific time
period. If not, a critical time dependent activity cannot be performed,
resulting in the loss of the entire system.

b. Error. The module in question contained an error which involved
performing unnecessary comparisons during a table look-up function although
the proper table entry was always found.

c. Error detection. The problem was discovered during systan testing
using an execution time analyzer which clearly indicated that the offending
module was not able to meet its performance requirements. The specific error
was discovered on further examination of the module.

4.12.7. Effectiveness. The use of execution time estimators/analyzers (as

well as test coverage analyzers) has uncovered an interesting property of many
programs. The majority of the execution time spent by a program is spent
executing a very anall percentage of the code. Knowledge gained of where this
execution time critical code is located through the use of an execution time
estimator/analyzer can be extremely helpful in optimizing a program in order
to satisfy performance requirements and/or reduce costs.

4.12.8. Applicability. Execution time estimators/analyzers can be used in

any application.

4.12.9. Learning. The learning required is simply that which is necessary to

execute the tool.

4.12.10. Costs. The tool is autonated and therefore does involve seme cost.

The amount will depend on the tool's sophistication, but generally will not be
excessive.

4.12.11. References.

(1) "PPE Users Guide", Boole and Babbage, No. U-D503-0.

(2) "Poseidon MK 88 Fire Control System Computer Program Verification
and Validation Techniques Study", Vol. Ill, Ultrasystems, Inc., 500 Newport
Center Dr., Newport Beach, CA, Nov. 1973.

Page 55

4.13.1. Name. Formal Reviews,

4.13.2. Basic features. Formal reviews constitute a series of reviews of a

system, usually conducted at major milestones in the system development
lifecycle. They are used to improve development visibility and product
quality and provide the basic means of communication between the project team,
company management, and user representatives. They must provide judgmental
decisions made by a team of blue ribbon specialists with a proven knowledge of
current system operations. Formal reviews are most often implemented for
medium to large size developnent projects, although small projects often
employ a less rigorous form of the technique.

The most common types of formal reviews are held at the completion of the
Requirements, Preliminary Design, Detailed (Critical) Design, Coding, and
Installation phases. Whereas names of these reviews may vary by ccxnpany, scxne

generally recognized names are: Requirements Review, Preliminary Design
Review (PDR), Critical Design Review (CDR), Code Construction Review, and
Acceptance Test Review.

4.13.3. Information input. The input to a particular formal review will vary
slightly depending on the stage of the lifecycle just completed. In general,
each formal review will require that sane sort of review package be assembled
and then distributed at a review meeting. This package ccmmonly contains a

summary of the requirements which are the basis for the product being
reviewed. These and other common inputs to formal reviews fall into three
main categories, described below.

a. Project documents. These are documents produced by the

development team to describe the system. The specific documents required are
dependent upon the lifecycle phase just completed. For example: a review
conducted at the conclusion of the requirements phase would necessitate
availability of Functional Specifications or System/Subsystem Specifications.

b. Backup documentation. This type of input is documentation which

is not usually contractually required, yet preparation of which is necessary
to support systans development or otherwise record project progress. Specific
types of backup documentation vary by the phase for which the review is

performed. Rough drafts of user and maintenance manuals are examples of
backup documentation examined during a design review to plan for continuation
of the project. Program listings are an example of backup documentation
utilized during a code construction review.

A

c. Other inputs. All other inputs are primarily used to clarify or

expand upon the project documents and backup documents. They may include
viewfoils and slides prepared by project management for the formal review
meeting, the minutes of the previous phase review meeting, or preliminary
evaluations of the project documents under review.

4.13.4. Information output. The information output associated with a formal

review generally falls into the following categories.

Pagfe 56

a. Manag«nent reports. These are written reports from the project
manager to upper management describing the results of the review, problems
revealed, proposed solutions, and any upper management assistance required.

b. Outside reviewer reports. These are written reports to the
project manager from participants of the review who have not worked on the
project. These reports provide outside reviewers an opportunity to express
their appraisal of the project status and the likelihood of meeting project
objectives. It also allows them to make suggestions for correcting any
deficiencies noted.

c. Action items. This is a list of all required post-review action
items to be ccmpleted before a review can be satisfactorily closed out. With
each item is an indication of whether customer or contractor action is
required for resolution.

d. Review minutes. This is a written record of the review meeting
proceedings which are recorded by a designee of the leader of the review team.
The minutes of the review are distributed to each review team member after the
c<xnpletion of the review meeting.

e. Decision to authorize next phase. A decision must be reached at
any formal review to authorize initiation of the next lifecycle phase.

f. Understanding of project status. At the conclusion of any formal

review there should be a common understanding of project status among the
project personnel present at the review.

4.13.5. Outline of method.

a. Participants. The participants in a formal review are often

selected from the following group of people:

o Project manager
o Project technical lead
o Other project team members - analysts, designers, programmers
o Client
o User representative(s)
o Line management of project manager
o Outside reviewers - quality assurance personnel, experienced people on

other projects
o Functional support personnel - finance, technology personnel
o Subcontractor management, if applicable
o Others - configuration management representative, maintenance

representative

b. The process. Formal reviews should be scheduled and organized by
project management. Each review must be scheduled at a meaningful point
during system development. The review effectively serves as the phase
milestone for any particular phase.

Page 57

There are five basic steps involved in every formal review.

1. Preparation. All documentation that serves as source material for
the review must be prepared prior to the meeting. These materials may be
distributed to each participant before the meeting in order to allow
sufficient time to review and make appraisals of the materials. The location
and time of the meeting must be established, participants must be identified,
and an agenda planned.

2. Overview presentation. At the review meeting, all applicable
Product and Backup Documentation is distributed and a high-level summary of
the product is presented. Objectives are also given.

3. Detailed presentation. A detailed description of the project
status and progress achieved during the review period is presented. Problems
are identified and openly discussed by the team members.

4. Summary. A summary of the results of the review is given. A
decision about the status of the product is made and a list of new action
items is constructed and responsibility for completion of each item is

assigned.

5. Follow-up. The canpletion of all action items is verified. All
reports are completed and distributed.

4,13.6. Example. By contract agreement, two weeks prior to completion of the
requirements document, the producer of a program receives notification from
his client that a requironents review meeting is desired. The client notifies
a preselected chairperson to conduct the meeting. For participants the
chairperson has selected the project manager, project technical lead, a member
of the requirements definition team, and a member of the requironents analysis
team. The client also has indicated that he would like to include the
following people in the review: a representative from the user shop, a

reviewer frcrn an independent computing organization, and a representative from
his own organization.

The chairperson informs all review participants of the date, time, and

location of the review. Ten days prior to the meeting, the chairperson
distributes all documents produced by the requironents definition and analysis
teams (requirements document, preliminary plans, other review material) to

each participant. In preparation of the meeting, each reviewer critically
inspects the documents. The user representative is puzzled over the inclusion
of a requirement concerning the use of a proposed database. The reviewer from
the outside computing organization notes that the version of the operating
system to be used in developing the system is very outdated. A representative
of the client organization has a question concerning the use of a

subcontractor in one phase of the project. Each reviewer submits his comments
to the chairperson before the scheduled review meeting. The chairperson
receives the comments and directs each to the appropriate requironents team
m«nber to allow proper time for responses to be prepared.

Page 58

The requirements review meeting begins with a brief introduction by the
chairperson. All participants are introduced, review materials are listed,
and the procedure for conducting the review is presented. A presentation is
then given summarizing the problem that led to the requirements and the
procedure that was used to define these requirements. At this time, the user
representative inquires about the requirement concerning the use of a

particular database as stated in the requirements document. The project
technical lead responds to this question. The user representative accepts
this response, which is so noted by the recorder in the official minutes of
the meeting.

The meeting continues with an analysis of the requiranents and a description
of the contractor's planned approach for developing a solution to the problem.
At this time, the questions fran the client representative and the outside
computing organization are discussed. The project manager responds to
questions concerning the use of a subcontractor on the project. Certain
suggestions have been made which require the approval of the subcontractor.
These suggestions are placed on the action list. The technical lead
acknowledges the problems that the independent computing organization has
pointed out. He notes that certain system vendors must be contacted to
resolve the problem. This item is also placed on the action list, A general
discussion among all review team members follows.

At the end of the review, the chairperson seeks a decision from the reviewers
about the acceptability of the requirements document. They agree to give
their approval, providing that the suggestions noted on the action list are
thoroughly investigated. All participants agree to this decision and the
meeting is adjourned.

The chairperson distributes a copy of the minutes of the meeting, including
action items, to all participants. The project manager informs the
subcontractor of the suggestions made at the meeting. The subcontractor
subsequently agrees with the suggestions. The project technical leader
contacts the system vendor from which the current operating system was
purchased and learns that the latest version can be easily installed before it
is needed for this project. He notifies the project manager of this, vAio

subsequently approves its purchase. The requirements document is

appropriately revised to reflect the completion of these action it«ns. The
chairperson, verifies that all action items have been completed. The project
manager submits a Management Report to management, summarizing the review.

4.13.7. Effectiveness. Since the cost to correct an error increases rapidly
as the development process progresses, detection of errors by the use of
formal reviews is an attractive prospect.

Some of the qualitative benefits attributable to the use of formal reviews are
given below:

o Highly visible systems development
o Early detection of design and analysis errors
o More reliable estimating and scheduling
o Increased product reliability, maintainability

Page 59

o Increased education and experience of all individuals involved in the
process

o Increased adherence to standards
o Increased user satisfaction

Little data is available which identifies the quantitative benefits
attributable to the use of formal reviews.

Experience with this technique indicates that it is most effective on large
projects. The costs involved in performing formal reviews on small projects,
however, may be sufficiently large enough to consider lessening the formality
of the reviews or even eliminating or canbining some of them.

4.13.8. Applicability. Formal reviews are applicable to large or small
projects following all development phases and are not limited by project type
or complexity.

4.13.9. Learning. This technique does not require any special training.

However, the success or failure of a formal review is dependent on the people
who attend. They must be intelligent, skilled, knowledgeable in a specific
problem area, and be able to interact effectively with other team members.
The experience and expertise of the individual responsible for directing the

review is also critical to the success of the effort.

4.13.10. Costs. The method requires no special tools or equipment. The main
cost involved is that of human resources. If formal reviews are conducted in
accordance with the resource guidelines expressed in most references, the cost
of reviews for average programs are not high. However, the cost of reviewing
major programs can be significant. Most references suggest that formal review
meetings should not require more than 1 to 2 hours. Preparation time can
amount to as little as 1/2 hour and should not require longer than 1/2 day per

review.

4.13.11. References.

(1) FREEDMAN, D.P., and WEINBERG, G.M., "Ethno - Technical Review

Handbook", 1977 Ethnotech,Inc.

.

(2) WEINBERG, G.M.
,
"Programming as a Social Activity," The Psychology

of Computer Programming ^ Van Nostrand^ Reinhold, 1971.

(3) MYERS, G., "Reliable Software Through Composite Design",

Petrocelli/Charter, 1975.

(4) SHNEIDERMAN, BEN, "Software Psychology - Human Factors in Computer

and Information Systems", Winthrop Publishing, 1980.

(5) GLASS, R., "Software Reliability Guidebook", Prentice-Hall,

Englewood Cliffs, N.J., 1979.

Page 60

4.14.1. Name. Formal Verification.

4.14.2. Basic features. The purpose of formal verification is to apply the
formality and rigor of mathematics to the task of proving the consistency
between an algorithmic solution and a rigorous, complete specification of the
intent of the solution,

4.14.3. Information input. The two inputs which are required are the
solution specification and the intent specification. The solution
specification is in algorithmic form, often but not always, executable code.

The intent specification is descriptive in form, invariably consisting of
assertions, usually expressed in Predicate Calculus.

Additional inputs may be required depending upon the rigor and specific
mechanisms to be anployed in the consistency proof. For example, the
semantics of the language used to express the solution specification are
required and must be supplied to a degree of rigor consistent with the rigor
of the proof being attempted. Similarly, simplification rules and rules of
inference may be required as input if the proof process is to be completely
rigorous.

4.14.4. Information output. The proof process may terminate with a

successfully ccxnpleted proof of consistency, or a demonstration of
inconsistency, or it may terminate inconclusively. In the former two cases,
the proofs thonselves and the proven conclusion are the outputs. In the
latter case, any fragmentary chains of successfully proven reasoning are the
only meaningful output. Their significance is, as expected, highly variable.

4.14.5. Outline of method. The usual method used in carrying out formal
verification is Floyd's Method of Inductive Assertions or a variant thereof.
This method entails the partitioning of the solution specification into
algorithmically straightline fragments by means of strategically placed
assertions. This partitioning reduces the proof of consistency to the proof
of a set of smaller, generally much more manageable lemmas.

Floyd's Method dictates that the intent of the solution specification be
captured by two assertions. The first assertion is the input assertion which
describes the assumptions about the input. The second assertion is the output
assertion which describes the transformation of the input, which is intended
to be the result of the execution, of the specified solution. In addition,
intermediate assertions must be fashioned and placed within the body of the
solution specification in such a way that every loop in the solution
specification contains at least one intermediate assertion. Each such
intermediate assertion must express completely the transformations which are
intended to occur or are occurring at the point of placement of the assertion.

The purpose of placing the assertions as just described is to assure that
every possible program execution is decOTiposable into a sequence of
straightline algorithmic specifications, each of which is bounded on either
end by an assertion. If it is known that each terminating assertion is

necessarily implied by executing the specified algorithm under the conditions
of the initial assertion, then, by induction, it can be shown that the entire

Page 61

execution behaves as specified by the input/output assertions, and hence as
intended. For the user to be assured of this, Floyd's Method directs that a
set of lemmas be proven. This set consists of one lemma for each pair of
assertions which is separated by a straightline algorithmic specification and
no other intervening assertion. For such an assertion pair, the lemma states
that, under the assumed conditions of the initial assertion, execution of the
algorithm specified by the intervening code necessarily implied the conditions
of the terminating assertion. Proving all such lemmas establishes what is
known as "partial correctness." Partial correctness establishes that whenever
the specified solution process terminates, it has behaved as intended. In
addition, total correctness is established by proving that the specified
solution process must always terminate. This is clearly an undecidable
question, being equivalent to the Halting Problem, and hence its resolution is

invariably approached through the application of heuristics.

In the above procedure, the pivotal capability is clearly the ability to prove
the various specified lemmas. This can be done to varying degrees of rigor,
resulting in proofs of corresponding varied degrees of reliability and
trustworthiness. For the greatest degree of trustworthiness, solution
specification, intent specification, and rules of reasoning must all be
specified with complete rigor and precision. The principal difficulty here
lies in specifying the solution with complete rigor and precision. This
entails specifying the semantics of the specification language, and the
functioning of any actual execution environment with complete rigor and
precision. Such complete details are often difficult or impossible to adduce.
They are, moreover, when available, generally quite voluminous, tJiereby

occasioning the need to prove lemmas which are long and intricate.

4.14.6. Example. As an example of what is entailed in a rigorous formal

verification activity, consider the specification of a bubble sort procedure.
(The details of this can be found in Reference 3 for this technique.) The
intent of the bubble sort must first be captured by an input/output assertion
pair. Next, observing that the bubble solution algorithm contains two nested
loops, leads to the conclusion that two additional intermediate assertions
might be fashioned, or perhaps one particularly well placed assertion might
suffice. In the former case, up to eight lemmas would then need to be
established; one corresponding to each of the (possible two) paths from the
initial to each intermediate assertion, one corresponding to each of the two
paths fran an intermediate assertion back to itself, one for each of the

(possibly two) paths from one intermediate assertion to the other, and finally
one for each of the (possibly two) paths from intermediate to terminating
assertion. Each leama would have to be established through rigorous

mathematical logic (see Reference 3). Finally, a proof of necessary

termination would need to be fashioned (see Reference 3).

4.14.7. Effectiveness. The effectiveness of formal verification has been

attacked on several grounds. First and most fundamentally, formal

verification can only establish consistency between intent and solution

specification. Hence, inconsistency can indicate error in either or both.

The same can be said for most other verification techniques, however. What
makes this particularly damaging for formal verification is that complete

rigor and detail in the intent specification are important, and this

Page 62

requirement for great detail invites error.

The amount of detail also occasions the need for large, complex lemmas.
These, especially vrfien proven using complex, detailed rules of inference,
produce very large, intricate proofs which are highly prone to error.

Finally, formal verification of actual programs is further conplicated by the
necessity to express rigorously the execution behavior of the actual computing
environment for the program. As a consequence of this, the execution
environment is generally modeled incompletely and imperfectly, thereby
restricting the validity of the proofs in ways which are difficult to
determine.

Despite these difficulties, a correctly proven set of lemmas establishing
consistency between a ccmplete specification and a solution specification
whose semantics are accurately known and expressed conveys the greatest
assurances of correctness obtainable. This ideal of assurance seans best
attainable by applying automated theorem provers to design specifications,
rather than code.

4.14.8. Applicability. Formal verification is a technique which can be
applied to determine the consistency between any algorithmic solution
specification and any intent specification. As elaborated upon earlier,
however, the trustworthiness of the results is highly variable depending
primarily upon the rigor with which the specifications are expressed and the
proofs are carried out. Formal verification is best employed on critical code
where errors have severe consequences.

4.14.9. Learning. As noted, the essence of this technique is mathematical.
Thus, the more mathanatical sophistication and expertise which practitioners
possess, the better. In particular, a considerable amount of mathematical
training and expertise is necessary for the results of applying this technique
to be significantly reliable and trustworthy.

4.14.10. Costs. This technique, when seriously applied, must be expected to
consume very significant amounts of the time and effort of highly trained
mathanatically proficient personnel. Hence, considerable human-labor expense
must be expected.

As noted earlier, human effectiveness can be considerably improved through the
use of automated tools such as theorem provers. It is important to observe,
however, that such tools can be prodigious consumers of computer resources.
Hence, their operational costs are also quite large.

4.14.11. References.

(1) FLOYD, R.W., "Assigning Meanings to Programs," in Mathematical
Aspects of Computer Science

, 19, SCHWARTZ, J.T. (ed.), American Mathanatical
Society, Providence, R.I., pp. 19-32, 196?.

Page 63

(2) ELSPAS, B. , et al., "An Assessment of Techniques for Proving
Program Correctness, " Computing Surveys

, 4, pp. 97-1^7, June, 1972.

(3) GOOD, D.I., LONDON, R.L., and BLEDSOE, W.W., "An Interactive
Program Verification System," Proceedings 1975 International Conference on
Reliable Software , IEEE Catalog 75CH0940-7CSR, pp. 482-492.

(4) HOARE, C.A.R., "An Axiomatic Basis for Computer Programming,"
CACM

, 12, October 1969, pp. 576-583.

Page 64

4.15.1. Name. Global Roundoff Analysis of Algebraic Processes

4.15.2. Basic features. The technique involves the use of computer software
to locate numerical instabilities in algorithms consisting of algebraic
processes. Global roundoff analysis is the determination of how rounding
error propagates in a given numerical method for m^ny or all permissible sets
of data. This technique has two areas of application: Case I - to decide
whether an algorithm is as accurate as can be expected given the fundamental
limitation of finite precision arithmetic; and Case II - to decide which of
two competing algorithms is "more stable," i.e., less susceptible to rounding
errors.

4.15.3. Information input.

a. Case I - Analysis of a single algorithm
(i) algorithm described in a simple programming language
(ii) data set for algorithm
(iii) choice and type of rounding error measures
(iv) stopping value for maximizer

b. Case II - Comparison of two algorithms
(i) each algorithm described in a simple programming language
(ii) data set for algorithms
(iii) choice of rounding error measure and mode of comparison
(iv) stopping value for maximizer

4.15.4. Information output.

a. Case I - Analysis of a single algorithm
(i) output computed for the initial data set
(ii) list of values found by the maximizer
(iii) final set of data
(iv) if instability diagnosed, then all arithmetic operations at the

final set of data are listed

b. Case II - Comparison of two algorithms
(i) output computed for the initial algorithms
(ii) list of values found by the maximizer
(iii) final set of data

4.15.5. Outline of method. For an algorithm and a data set,d , then:

(a) A function w(d), called a Wilkinson number, has been defined which
measures the effects of rounding errors. Large values for w is the sign of an
unstable algorithm.

(b) Wilkinson number has been shown to be a "smooth" function of dl,

i.e. as the original data set values are altered in small increments, the
values of w are correspondingly altered in small increments.

Page 65

(c) An approximation to Wilkinson numbers has been develof)ed which is

straight forward to compute.

(d) The representation of the algorithm is analyzed.

(e) Using the initial data set as a starting point, the global
analysis program uses numerical maximization techniques to modify the data set
The search i^s directed toward finding a data set with a disastrously large
value of w(d).

4.15.6. Example. Triangular Matrix Inversion (4). The better matrix
inversion algorithms are known from experience to almost invariably produce
satisfactory results. However, the question remains whether there is a

guarantee that the results are always good. The question can be reformulated
as: Is the traditional back substitution algorithm for inverting an upper
triangular matrix numerically stable in the sense that there is a modest
bound, depending on the matrix size, for w? To apply the technique, the

algorithm is represented as a program in figure 4.15.6-1. Note that the
statement "TEST (N=4)" indicates that the search for numerical stability will
be conducted in the domain of 4x4 matrices. An approximation to w, W[^,will be
calculated.

TEST (N=4)

C COMPUTE S = (T INVERSE), WHERE T IS A NONSINGULAR, UPPER
C TRIANGULAR MATRIX.

DIMENSION (S(N,N),T(N,N))
C INPUT T.

FOR J = 1 to N BY 1

FOR I = J to 1 BY -1

INPUT (T(I,J))
END (I)

END(J)
C
C COMPUTE S.

FOR K = 1 TO N BY 1

S(K,K) = 1.0/T(K,K)
FOR I = K-1 TO 1 BY -1

S(I,K) = -SUMMATI0N(T(I,J)»S(J,K),J=I+1 TO K)/T(I,I)

END (I)

END(K)

C
C OUTPUT S.

FOR J=1 TO N BY 1

FOR I=J TO 1 BY -1

OUTPUT(S(I,J))
END(I)

END(J)
STOP

Figure 4.15.6-1 Triangular Matrix Inversion

Page 66

The compiler portion of the package checks the program for errors, then
translates them into a form suitable for analysis.

The initial data set for the search for numerical instability was:

The roundoff analysis program was told to seek a value of W in excess of
10,000. The maximizer located the following matrix:

-0.001 5.096 5.101

oo « / 3.737 3.740

0.0006

with W^(T^)>1 0,000 in 6 seconds CPU time on a IBM 370/168.

The fact that Wi^ can be large for data like T se«ns implicit in known results,
e.g., (6), verifying the ill behavior of triangular matrices with diagonal
entries approaching zero.

4.15.7. Effectiveness. Failure of the maximizer to find large values of w
does not guarantee that none exist (2). Thus, the technique tends to be
optimistic; unstable methods may appear stable. However, experience
indicates that this method is surprisingly reliable. At least, the failure of
the maximizer to find large values of w can be interpreted as providing
evidence for stability equivalent to a large amount of practical experience
with low order matrices.

4.15.8. Applicability. The technique is intended for noniterative methods
fran numerical linear algebra.

4.15.9. Learning. Most algorithms should be able to be analyzed in 2 to 8

hours of training and preparation assuming the software is available,

4.15.10. Costs. The performance of the technique is related to the
performance of the algorithm being checked.

4.15.11. References.

(1) MILLER, W. , "Software for Roundoff Analysis", ACM Transactions fin

Mathematical Software , 1 .2. June 1975. 108-128.

Page 67

(2) MILLER, W. ,
"Computer Search for Numerical Instability", Journal

of the ACM, October 1975, 512-521.

(3) MILLER, W. , "Roundoff Analysis by Direct Comparison of Two
Algorithms", SIAM Journal of Numerical Analysis , 1976, 382-392.

(4) MILLER, W. and SPOONER, D. , "Software for Roundoff Analysis, II",

ACM Transactions on Mathematical Software4 , M , 1 Q78 , 369-387.

(5) MILLER, W. and SPOONER, D., "Algorithm 532 Software for Roundoff
Analysis 2 ", 1C£1 Transactions gn Mathematical Software

, 4,4,1978, 388-390.

(6) ANDERSON, A. and KARASALO, I., "On Computing Bounds for the Least
Singular Value of a Triangular Matrix",BII, 1975, 1-4.

Page 68

4.16.1. Name. Inspection

4.16.2. Basic features. Informal reviews constitute a thorough inspection
mechanism used to detect errors in system components and documentation.
Several inspections are generally conducted for each item as it progresses
through the lifecycle. The most ccxnmonly recognized inspections are conducted
during the design and programming stages and are referred to as design
inspections and code inspections. However, the inspection concept may be
applied to any functionally complete part of a system during any or all phases
of the lifecycle and are typified by utilization of checklists and summary
reports. Another unique feature of an inspection is the use of data from past
inspections to stimulate future detection of categories of errors.

4.16.3. Information input. The input required for each inspection falls into
three main categories: relevant project documents, backup documentation, and
inspection checklists.

a. Project documents. These are documents produced by the
developraent team to describe the system. The specific documents required are
dependent upon the lifecycle phase currently in progress. For example: an
inspection conducted during the design phase would necessitate availability of
Functional Specifications or Syston/Subsystem Specifications.

b. Backup documentation. This type of input is documentation which
is not usually contractually required, yet preparation of which is necessary
to support systems development or otherwise record project progress. Specific
types of backup documentation vary by the phase in which the inspection is
conducted. Data dictionaries and cross-reference tables are examples of
backup documentation utilized during a design inspection. Program listings
are an example of code inspection backup documentation.

c. Checklists. Each member of the inspection team uses a checklist
for review preparation and during the course of the inspection itself. The
checklist content may vary based upon the particular application being
inspected and is updated from feedback of other recent inspections. For
example, a checklist to be employed during a code inspection of a COBOL
program component would contain items like:

0 Are specialized printer controls used to enhance component readability
(e.g., use of EJECT or SKIP commands)?

o Does each procedure have only one exit and entry?
o Are IF-THEN-ELSE statements indented in a logical fashion?
o Are file, record and data names representative of the information they

contain and do they conform to established naming conventions?
0 Are comments explicit ^nd accurate?

etc.

Page 69

4.16.4. Information output. The information output associated with an
inspection is either related to inspection planning and scheduling or
inspection results.

a. Inspection schedule memo. The memo is produced upon notification
from management that an inspection should be forthcaning. The memo defines
the roles and responsibilities of each inspection team member, estimated time
required for each inspection task, and a summary of the status of the item
being reviewed (including any previous inspections conducted).

b. Probl^ Definition Sheet/Error Description Summary. This form is

used to record information about each detected error. It describes the
location, nature, and classification of the errors.

c. Summary Report. A Surranary Report is used to document correction
of all errors reported during an inspection. Data recorded on the report is
tabulated and becomes part of cumulative error statistics which can be used to
improve the development and inspection processes.

d. Management Reports. These reports are the means by which
management is informed about the types of errors being detected and the amount
of resources being expended to correct them. The information from these
reports highlights frequent sources of errors, providing input to management
for future updates to the inspection checklist.

4.16.5. Outline of method.

a. Roles and Responsibilities. The group of people responsible for
the inspection results are usually called an inspection team and are given
responsibilities based upon their contribution to the item being inspected.
The leader of the group is responsible for all process planning, moderating,
reporting, and follow-up activities. The designer implementer (person
responsible for building the item) and the tester of the item being inspected
are also m^ibers of the inspection team. Management does not normally
participate in an inspection.

b. The Process. There are five basic steps involved in every

inspection: planning, preparation, inspection meeting, rework and follow-up.
The first inspection for a particular it«n contains another step: overview
presentation. These steps are summarized below.

While these steps should not vary functionally for inspections conducted at

different development phases, the responsibilities of the individuals on the

inspection team will necessarily vary slightly. This occurs because the

primary responsibility for the item shifts as the lifecycle progresses. For

example, during a design inspection, the designer is the focal point.

However, during a code inspection or document inspection, the implementation
is the focal point.

1. Planning. Set up inspection schedule and assemble inspection team.

2. Overview Presentation (conducted only for the first inspection of the

item during the development process). Distribute applicable Product

Page 70

and Backup Documentation and present a high level summary of the item
to be inspected,

3. Preparation. Team members read and review documentation and list any
questions.

4. Inspection Meeting. Conduct detailed description of the item, noting all
errors detected. Use checklists to ensure inspection completeness and
Problon Definition Report to summarize errors.

5. Rework. Estimate time to correct errors and implement the corrections,
6. Follow-up. Verify that all errors have been corrected using Probl«n

Definition Sheet as a checklist. Complete Summary and Managanent
Reports.

4.16.6. Example. The following is an example of a design inspection of a

software ccmponent or item which defines the roles and responsibilities of the
inspection team members. Upon decision of managonent to conduct a design
inspection, the selected leader initiates process planning by identifying team
manbers and their roles and responsibilities. If this is the first inspection
for this it&n (i.e., there has been no requirenents inspection), the leader
next schedules an overview presentation. The project and backup documentation
(i.e.. Functions Specification, system flow charts, etc.) are distributed and
the item designer leads the team through a high level description of the item.

After the presentation each team member reads and reviews the distributed
documentation and lists any questions. This list of prepared questions is
often given to the leader and/or designer prior to the inspection meeting.

At the designer inspection meeting the implanenter leads the team through a

detailed description of the design of the item being inspected. Backup
documentation facilitates the description and clarifies points which may be
brought up. The checklist is used by each team manber to help identify errors
and enforce standards. The problem definition sheet is prepared by the team
leader at the end of the inspection. The item design will either be approved
as-is, approved with modifications, or rejected. In the last two cases, the
problan definition sheet is given to the designer and the correction process
begins.

At the start of this rework process an estimate is made by the leader and

designer specifying time required for correction. Ihis estimate is entered on
the Problem Definition Sheet and is provided to management. Management can
then make a judgment as to whetJier their project schedule will be affected.
Necessary changes to the itan are made and the itan is either reinspected or
sulxnitted to follow-up procedures.

During follow-up, the Problem Definition Sheet is used as a checklist for the
leader and designer to verify that all errors have been analyzed and
corrected. The reader then fills out the Summary and Management Reports and
submits them to management.

4.16.7. Effectiveness. Since the cost to correct an error increases rapidly
as the development process progresses, detection of errors by early use of
inspections is an attractive prospect.

Page 71

Studies have been carried out which indicate that inspections are an effective
method of increasing product quality (reliability, usability and
maintainability). Experience with the technique indicates that it is
effective on projects of all sizes. The best results are generally achieved
when the inspection leader is experienced in the inspection process.

Some of the best quantitative results of the use of inspections have come from
IBM, which has been studying the use of the technique for a number of years.
One study, detailing and comparing the benefits of inspections and structured
walkthroughs, indicated 23% higher programmer productivity with inspections
than with walkthroughs. No data was available documenting the amount of
increased programmer productivity attributable to inspections alone. The
study also reported 38% fewer errors in the running code than if solely
applying walkthroughs as an error detection mechanism.

The qualitative benefits attributable to the use of inspections are
substantative. The following list is illustrative of scxne of these positive
effects:

o Programs which are less complex
o Subprograms which are written in a consistent style, complying with

established standards
0 Highly visible systems development
o More reliable estimating and scheduling
o Increased education and experience of all individuals involved in the

inspection process
o Increased user satisfaction
o Improved documentation
o Less dependence on key personnel for critical skills

4.16.8. Applicability. While the most canmonly used inspections are for

design and code, the technique is not limited to these phases and can be
applied during all phases, for most types of applications (i.e., business,
scientific, etc.) on large or small projects.

4.16.9. Learning. The experience of the inspection leader is essential to

the success of the effort. A correct attitude about the process is essential

to all involved, including the appropriate managers. Many excellent texts

about inspections (and other types of reviews) are in existence which should
supply the required level of detail as well as discuss some team psychology

issues pertinent to inspection conduct.

4.16.10. Costs. The method requires no special tools or equipment. The main

cost involved is that of human resources. If inspections are conducted in

accordance with the resource guidelines expressed in most references, the

costs of inspections are negligible compared with the expected returns. It

should be kept in mind that follow-up inspections to correct previously
detected errors can increase the original cost estimation. Most references

suggest that inspection meetings should last no longer than 2 hours, and can

reasonably be kept to 15 minutes. Preparation time can amount to as little as

1/2 hour and should not require longer than 1/2 day per inspection.

Page 72

4.16.11. References.

(1) "Code Reading: Structured Walkthroughs and Inspections", IBM,

IPTO Support Group, World Trade Center, Postbus 60, Zoetenmeer, Netherlands,
March 1976.

(2) FAGEN, M.E., "Design and Code Inspections to reduce errors in

Program Development", IBM Systems Journal , No. 3,1976.

(3) FREEDMAN, D.P. and WEINBERG, G.M., "Ethno - Technical Review
Handbook", Ethnotech, Inc., 1977.

(4) "Systematic Software Development and Maintenance (SSDM)", BCS
Document #101 55, February 1977.

Page 73

4.17.1. Name. Interactive Test Aids.

4.17.2. Basic features. Interactive test aids, debuggers, are tools used to
control and/or analyze the dynamics of a program during execution. The
capabilities provided by these tools are used to assist in identifying and
isolating program errors. These capabilities allow the user to:

o suspend program execution at any point to examine program status,

o interactively dump the values of selected variables and memory locations,
0 modify the computation state of an executing program,
o trace the control flow of an executing program.

4.17.3. Information input. Interactive test aids require as input the source

code that is to be executed and the commands that indicate which testing
operations are to be performed by the tool during execution. Included in the

commands are indications of which program statements are to be affected by the
tool's operation. Commands can be inserted in the source code and/or entered
interactively by the user during program execution at preselected break
points.

4.17.4. Information output. The information output by an interactive test
aid is a display of requested information during the execution of a program.
This information may include the contents of selected storage cells at
specific execution points or a display of control flow during execution.

4.17.5. Outline of method. The functions performed by an interactive test
aid are determined by the commands input to it. Some common commands are
described below.

BREAK: Suspend program execution when a particular statement is

executed or a particular variable is altered.

DUMP: Display the contents of specific storage cells, e.g., variables,

internal registers, other memory locations.

TRACE: Display control flow during program execution through printed

traces of:

0 statonent executions (using statement labels or line
numbers)

,

0 subroutine calls, or

o alterations of a specified variable.

SET: Set the value of a specified variable.

CONTENTS: Display the contents of certain variables at the execution of a

specific statement.

SAVE: Save the present state of execution.

RESTORE: Restore execution to a previously SAVEd state.

CALL: Invoke a subroutine.

Page 74

EXECUTE: Resume program execution at a BREAK point.

EXIT: Terminate processing.

These commands allow complete user control over the computation state of an
executing program. It allows the tester to inspect or change the value of any
variable at any point during execution.

The capabilities of special interactive testing aids can also be found in many
implementations of interpreters and ccxnpilers for such languages as BASIC,
FORTRAN, COBOL, and PL/ I.

M.I 7. 6. Example. A critical section of code within a routine is to be
tested. The code computes the values of three variables, X, Y, and Z, which
later serve as inputs to other routines. To ensure that the values assigned
to X, Y, and Z have been correctly computed in this section of code, an
interactive testing aid is used to test the code.

Two BREAK commands are initially inserted into the code. A BREAK command is

inserted immediately before the first statement and immediately after the last
statement of the section of code being tested. To display the value of X, Y,

and Z, a CONTENTS command is placed before the second BREAK command. The
program containing the above mentioned code is executed. When the first BREAK
cOTimand is encountered, execution is halted and a prompt is issued to the user
requesting that a ccxnmand be entered. A SAVE command is typed by the user in

order to save the present state of execution. Then SET command is entered to
set the values of two variables, A and B, which are used to canpute the values
of X, Y, and Z. The EXECUTE command is chen issued to resume program
execution.

At the end of execution of the relevant section of code the preinserted
CONTENTS ccxranand displays the computed values of X, Y, and Z. The second
BREAK coiwnand allows time for these values to be examined and gives the user
the opportunity to enter new commands. At this time, a RESTORE command is

entered that will restore the computation state to the state that was
previously saved by the SAVE command. For this example, the computation state
returns to that which followed the first BREAK command, allowing the code
under analysis to be tested with different input values. Different values for
A and B are entered and the contents of X, Y, and Z are observed as before.
This process is repeated several times using carefully selected values for A
and B and the corresponding values of X, Y, and Z are closely examined each
time. If results of several computations look suspicious, their input and
output values are noted and the code is more thoroughly examined. The program
is finally terminated by entering the EXIT command at one of the two possible
break points.

4.17.7. Effectiveness. To be an effective testing tool, an interactive test

aid should be used with a disciplined strategy to guide the testing process.
The tools can be easily misused if no testing methodology is combined with
their use.

Page 75

4.17.8. Applicability. Interactive test aids can be applied to any type of

source code. Most existing tools, however, are language dependent (i.e., will
operate correctly only for specified languages).

4.17.9. Learning. A minimal amount of learning is required to use these
tools. It is comparable to the learning required in using a text editor.
However, if the tool is to be used most efficiently, some learning is required
in utilizing the tool with an effective testing strategy.

4.17.10. Costs. Programs executing under an interactive test aid will
require more computing resources (e.g., execution time, memory for diagnostic
tables) than if executed under normal operation. The cost is dependent on the
implementation of the tool. For example, those based on interpretive
execution will involve costs different from those driven by monitor calls.

4.17.11. References.

(1) MYERS, Glenford, "The Art of Software Testing,"
Wiley-Interscience, New York, 1975.

(2) "Sperry Univac Series 1100 FORTRAN (ASCII) Programmer Reference,"
Sperry Rand Corporation, 1979.

(3) TAYLOR, R.N., MERILATT, R.L., and OSTERWEIL, L.J., "Integrated

Testing and Verification System for Research Flight Software - Design
Document," NASA CR 159095, July 31, 1979.

Page 76

4.18.1. Name: Interface Checker.

4.18.2. Basic features. Interface checkers analyze the consistency and
completeness of the information and control flow between components, modules
or procedures of a system.

4.18.3. Information input. Information needed by interface checkers consists
of either:

a. a formal representation of systan requirements or
b. a formal representation of system design or
c. a program coded in a high-level language.

4.18.4. Information output. Module interface inconsistencies and errors are
revealed. The information can be provided as error messages included with a
source listing or as a separate report.

4.18.5. Outline of method. Interface checkers are fully automated tools
which analyze a computer processable form of a software syst«n requirements
specification, design specification or code. The method for each of the three
representations — requirements, design, and code — will be illustrated below
by examining the interface checking capabilities of three existing tools.

PSL/PSA (Problem Statement Language/Problem Statement Analyzer) (1) is an
automated requirements specification tool. Basically, PSL/PSA describes
system requironents as a system of inputs, processes and outputs. Both
information and control flow are represented within PSL. Interface checking
performed by PSA consists of ensuring that all data items are used and
generated by some process and that all processes use data. Incomplete
requiranents specification are, therefore, easily detected.

The Design Assertion Consistency Checker (DACC) (2) is a tool which analyzes
module interfaces based on a design which contains information describing, for
each module, the nature of the inputs and outputs. This information is

specified using assertions to indicate the number and order of inputs, data
types, units (e.g., feet or radians), acceptable ranges, and so on. DACC
checks module calls against the assertions in the called module for
consistency. This produces a consistency report indicating which assertions
have been violated.

PFORT (3) is a static analysis tool which is primarily used for checking
Fortran programs for adherence to a portable subset of the Fortran language
but it also performs subprogram interface checking. PFORT matches actual with
dummy arguments and checks for unsafe references, such as constraints being
passed as arguments.

Interface checking capabilities can also be included within a particular
language's compiler as well. For example, Ada (4) provides a parameter
passing mechanism whereby parameters are identified to be input or output or

input/output. Moreover, data type and constraints (e.g., range and precision)
must match between the actual arguments and the formal parameters (in

non-generic subprograms)

.

Page 77

In summary, interface checking tools will generally check for:

o modules which are used but not defined,
o modules which are defined but not used,
o incorrect number of arguments,
o data type mismatches between actual and formal parameters,
o data constraint mismatches between actual and formal parameters,
o data usage anomalies.

4.18.6. Example.

a. Application. A statistical analysis package written in Fortran
utilizes a file access system to retrieve records containing data used in the
analysis.

b. Error. The primary record retrieval subroutine is always passed a

statement number in the calling program which is to receive control in case an
abnormal file processing error occurs. This is the last argument in the
argument list of the subroutine call. One program, however, fails to supply
tJie needed argument. The compiler is not able to detect the error. Moreover,
the particular Fortran implementation is such that no execution time error
occurs until a return to the unspecified statement number is attempted, at
which time the system crashes.

c. Error discovery. This error can easily be detected by using an

interface checker at either the design (e.g., DACC) or coding phase (e.g.,

PFORT) of the software development activity. Both DACC and PFORT can detect
incorrect numbers of arguments.

4.18.7. Effectiveness. Interface checkers are very effective at detecting a

class of errors which can be difficult to isolate if left to testing. They

are generally more cost effective if provided as a capability within another
tool such as a compiler, data flow analyzer or a requirements/design
specification tool.

4.18.8. Applicability. Ihe method is generally applicable.

4.18.9. Learning. Ihe use of interface checkers requires only a very minimal

learning effort.

4.18.10. Costs. Interface checkers are quite inexpensive to use, usually

much less than the cost of a canpilation.

4.18.11. References.

(1) TEICHRCW, D. and HERSHEY III, E.A. , "PSL/PSA: A Computer-Aided

Technique for Structured Documentation and Analysis of Information Processing

Systems", IEEE Transactions on Software Engineering
,
SE-3, 1977(41-48).

(2) BOEHM, B., McCLEAN, R. and URFRIG, D. , "Some Experience with

Automated Aides to the Design of Large-scale Reliable Software", XEEE
Transactions on Software Engineering ^ SE-1 , 1975 (125-133).

Page 78

(3) RYDER, B.G. and HALL, A.D., "The PFORT Verifier", Computing
Science Technical leEQnt#12, Bell Labs, March 1975.

(4) "Preliminary Ada Reference Manual", SIGPLAN Notices , Vol. 14, No.

6, part A, (June, 1979).

Page 79

4.19.1. Name. Mutation analysis.

4.19.2. Basic features. Mutation analysis is a technique for detecting
errors in a program and for determining the thoroughness with which the
program has been tested. It entails studying the behavior of a large
collection of programs which have been systematically derived from the
original program.

4.19.3. Information inputs. The basic input required by mutation analysis is

the original source program and a collection of test data sets on which the
program operates correctly, and which the user considers to adequately and
thoroughly test the program.

4.19.4. Information outputs. The ultimate output of mutation analysis is a

collection of test data sets and good assurance that the collection is in fact
adequate to thoroughly test the program. It is important to understand that
the mutation analysis process may very well have arrived at this final state
only after having exposed program errors and inadequacies in the original test
data set collection. Hence, it is not unreasonable to consider errors
detected, new program understanding, and additional test data sets to also be
information outputs of the mutation analysis process.

4.19.5. Outline of method. The essential approach taken in the mutation
analysis of a program is to produce from the program a large set of versions,
each derived fron a trivial transformation of the original, and to subject
each version to testing by the given collection of test data sets. Because of
the nature of the transformations, it is expected that the derived versions
will be essentially different programs from the original. Thus, the testing
regimen should demonstrate that each is in fact different. Failure to to so
invites suspicion that the collection of test data sets is inadequate. This
usually leads to greater understanding of the program and either the detection
of errors or an improved collection of test data sets, or both.

A central feature of mutation analysis is the mechanism for creating the

program mutations — the derived versions of the original program. The set of
mutations which is generated and tested is the set of all programs which
differ from the original only in a small number (generally 1 or 2) of textual

details, such as a change in an operator, variable or constant. Research

appears to indicate that larger numbers of changes contribute little or no

additional diagnostic power.

The basis for this procedure is the "Ccxnpetent Programmer" assumptions which

state that program errors are not random phenomena, but rather result from

lapses of human memory or concentration. Thus, an erroneous program should be

expected to differ from the correct one only in a small number of details.

Hence, if the original program is incorrect, then the set of all programs

created by making a small number of the small textual changes just described

should include the correct program. A thorough collection of test data sets

would reveal behavioral differences between the original, incorrect program

and the derived correct one.

Page 80

Hence, mutation analysis entails determining whether each mutant behaves
differently from the original. If so, the mutant is considered incorrect. If
not, the mutant must be studied carefully. It is entirely possible that the
mutant is in fact functionally equivalent to the original program. If so, its
identical behavior is clearly benign. If not, the mutant is highly
significant, as it certainly indicates an inadequacy in the collection of test
data sets. It may, furthermore, indicate an error in the original program
which previously went undetected because of inadequate testing. Ffcjtation

analysis facilitates the detection of such errors by automatically raising the
probability of each such error and then d^nanding justification for concluding
that each has not in fact been committed. Most mutations quickly manifest
different behavior under exposure to any reasonable test data set collection,
and thereby dononstrate the absence of ttie error corresponding to the mutation
by which they were created. This forces detailed attention on those mutants
which behave identically to the original and thus forces attention on any
actual errors.

If all mutations of the original program reveal different execution behavior,

then the program is considered to be adequately tested and correct within the
limits of the "Ccxnpetent Programmer" assumption.

4.19.6. Example. Consider the Fortran program, figure 4.19.6-1, which counts
the number of negative and non-negative numbers in array A:

SUBROUTINE COUNT (A, NEC, NONNBG)

DIMENSION A(5)
NEG=0
NONNEG=0
DO 10 1=1,5

IF (A(I).GT.O) N0NNEG=N0NNEG+1
IF (A(I).LT.O) NEG=NEG+1

and the collection of test data sets produced by initializing A in turn to:

10 CONTINUE
RETURN
END

Figure 4.19.6-1 Subroutine Count

I II III

1

-2

3
-4

5

1

2

3
4

5

-1

-2
-3
-4

-5

Mutants might be produced based upon the following alterations:
a. Change an occurrence of any variable to any other variable, e.g.,

Page 81

A to I

NONNEG to NEG
I to NEjG

b. Change an occurrence of a constant to another constant which is close in
value:
e.g.,
1 to 0
0 to 1

0 to -1

1 to 2

c. Change an occurrence of an operator to another operator:
e.g.
NEG*+ 1 to NEG * 1

NEG + 1 to NEG - 1

ACD.GT.O to ACD.GE.O
ACD.LT.O to ACD.NE.O

Thus, the set of all "single alteration" mutants would consist of all programs
containing exactly one of the above changes. The set of all "double
alteration" mutants would consist of all programs containing a pair of the
above changes.

Clearly many such mutations are radically different and would quickly manifest
obviously different behavior. For example, in changing variable I to A (or

vice versa) the program is rendered uncompilable by most compilers. Similarly
changing "NEG=0" to "NEG=1" causes a different outcome for test case I.

Significantly, changing ACDGT.O to ACD.GE.O or ACD.LT.O to ACD.LE.O
produces no difference in run-time behavior on any of the three test data
sets. This rivets attention on these mutants, and subsequently on the issue
of how to count zero entries. One rapidly realizes that the collection of
test data sets was inadequate in that it did not include any zero input
values. Had it included one, it would h^ve indicated that:

IF CACD.GT.O) N0NNEG=N0NNEG+1 should have been
IF CACD.GE.O) N0NNEG=N0NNEG+1

.

Thus, mutation analysis has pointed out both this error and this weakness in

the collection of test data sets. After changing the program and collection,
all mutants will behave differently strongly raising our confidence in the
correctness of the program.

4.19.7. Effectiveness. Mutation analysis can be an effective technique for

detecting errors, but it must be understood that it requires combiriing an

insightful human with good automated tools. Even then it must be understood

that it is a reliable technique for demonstrating the absence only if all

possible mutation errors Ci.e. , those involving alteration, interchanging, or

Page 82

omission of operators, variables, etc.) are examined.

The need for good tools is easily understood when one realizes that any

program has an enormous number of mutations, each of which must be generated,
exercised by the test data sets, and evaluated. On the surface, this would
appear to entail thousands of edit runs, ccmpilations and executions. Clever
tools have been built, however, which operate off a special internal
representation of the original program. This representation is readily and
efficiently transformed into the various mutations, and also serves as the
basis for very rapid simulation of the mutants' executions, thereby avoiding
the need for ccmpilation and loading of each mutant.

This tool set still does not bypass the need for humans, however. Humans must
still carry out the job of scrutinizing mutants which behave identically to
the original program in order to determine whether the mutant is equivalent or
whether the collection of test data sets is inadequate.

At the end of a successful mutation analysis, many errors may have been
uncovered, and the collection of test data sets has certainly been made very
thorough. Whether the absence of errors has been established, however, must
be considered relative to the "Conpetent Programmer" assumption. Under this
assumption, clearly all errors of mutation are detectable by mutation
analysis; thus, the absence of diagnostic messages or findings indicates the
absence of these errors. Mutation analysis cannot, however, assure the
absence of errors which cannot be modeled as mutations.

4.19.8. Applicability. Mutation analysis is apparently applicable to any

algorithmic solution specification. As previously indicated, it can only be
considered effective when supported by a body of sophisticated tools. Tools
enabling analysis of Fortran and COBOL source text exist. There is,

furthermore, no reason why tools for other coding languages, as well as

algorithmic design languages, could not be built.

4.19.9. Learning. This technique requires the potential mutation analyst to
become familiar with the philosophy and goals of this novel approach. In
addition it appears that the more familiar the analyst is with the subject
algorithmic solution specifications, the more effective the analyst will be.

This is because the analyst may well have to analyze a collection of test data
sets to determine how to augment it, and may have to analyze two programs to

determine whether they are equivalent.

4.19.10. Costs. In view of the previous discussion, it is important to

recognize that significant amounts of human analyst time are likely to be
necessary to do mutation analysis. The ccmputer time required is not likely
to be excessive if the sophisticated tools described earlier are available.
The interested reader is urged to consult the following references for
explanation of this.

4,19.11. References.

Page 83

(1) DEMILLO, R.A.
,
LIFTON, R.J. and SAYWARD, F.G.

,
"Program Mutation:

A New Approach to Program Testing", Infotech State-of-the-Art Report on
Software Testing

, V.2, INFOTECH/SRA, 1979, PP. 107-127.

(2) LIPTON, R.J. and SAYWARD, F.G., "The Status of Research on

Program Mutation", Digest of the Workshop on Software Testing and Test
Documentation ,. Fort Lauderdale, Fla. 1978, pp. 355-373.

Page 84

4.20.1. Name. Peer Review

4.20.2. Basic Features. A peer review is a process by which project
personnel perform a detailed study and evaluation of code, documentation, or
specification. The term peer review refers to product evaluations which are
conducted by individuals of equal rank, responsibility, or of similar
experience and skill. There are a number of review techniques which fall into
the overall category of a peer review. Code reading, round-robin reviews,
walkthroughs and inspections are examples of peer reviews which differ in

formality, participant roles and responsibilities, output produced and input
required.

4.20.3. Information input. The input to a particular peer review will vary

slightly depending on which form of peer review is being conducted. In

general, each of the forms of peer review require that some sort of review
package is assanbled and distributed. This package canmonly contains a

suiranary of the requirement(s) which are the basis for the product being
reviewed. Other common inputs are differentiated by the stage of the
lifecycle currently in process. For example, input to a peer review during
the coding phase would consist of program listings, design specifications,
programming standards and a summary of results from the design peer review
previously held on the same product. Common input to particular forms of peer
review are described below. (A suiranary of the methodology for each of tiiese

reviews appears in Section 5.)

a. Code-Reading Review.

0 Component requirements
o Design specifications
o Program listings
o Programming standards

b. Round-Robin Reviews,

0 Component requirorients
o Design or code specifications
o Program listings (if during coding phase)

c. Walkthrough.

o Ccxnponent requirements
o Design or code specifications
o Program listings (if coding phase walkthrough)
o Product standards
o Back-up documentation (i.e., flowcharts, HIPO charts,

data dictionaries, etc.)
o Question list (derived by participants prior to review)

d. Inspections.

0 Component requirements
o Design or code specifications

Page 85

o Program listings (if during coding phase)
o Product standards
o Back-up documentation
o Checklist (containing descriptions of particular features

to be evaluated)

4.20.4. Information output. The output from a peer review varies by form of
review. One output common to each form of a peer review is a decision or
consensus about the product under review. This is usually in the form of a

group approval of the product as is, an approval with recommended
modifications, or a rejection (and rescheduled review date).

Specific output from peer reviews described in Section 5 are as follows:

a. Code Reading Review and Round-Robin Review.

o Informal documentation of detected problons
o Recanmendation to accept or reject reviewed product
o Discrepancy List

b. Walkthrough.

o Action List (formal documentation of problens)
0 Walkthrough Form (containing review summary and group decision)

c. Inspection.

o Inspection Schedule and Memo (defining individual roles,

responsibilities, agenda and schedule)
o Problem Definition Set
o Summary report (documenting error correction status and

related statistics on the errors)
o Management report (describing errors, problems and component

status)

4.20.5. Outline of method. The peer review methodology and participant
responsibilities vary by form of review. Summaries of these mettiodologies are
provided in the later part of this section. However, there are a few features
ccmmon to each methodology.

For example, most peer reviews are not attended by management. (An exception
is made in circumstances where the project manager is also a designer, coder
or tester — usually on very small projects.) The presence of managonent tends
to inhibit participants, since they feel that they are personally being
evaluated. This would be contrary to the intent of peer reviews — that of
studying the product itself.

Another common feature is the assembly and distribution of project review

materials prior to the conduct of the peer review. This allows participants
to spend some amount of time reviewing the data to become better prepared for

the review.

Page 86

At the end of most peer reviews the group arrives at a decision about the
status of the review product. This decision is usually communicated to
management.

Most reviews are conducted in a group organization as opposed to individually
by participants or by the project team itself. While this may seem an obvious
feature, it bears some discussion. Most organizations doing software
development and/or maintenance onploy some variation of a team approach. Seme
team organizations are described below.

o Conventional Team - A senior prograiraner directs the efforts of one or
more less experienced programmers.

0 Egoless Team - Programmers who are of about equal experience share
product responsibilities,

o Chief Programmer Team - A highly qualified senior programmer leads the
efforts of other team members for which specific roles and

responsibilities have been assigned (i.e., back-up programmer, secretary,
librarian, etc.).

The group which participates in the peer review is not necessarily the same as
the team organized to manage and complete the software product. The review
group is likely to be ccmposed of a subset of the project team plus other
individuals as required by the form of review being held and the stage of the
lifecycle in process. The benefits of peer reviews are unlikely to be

attained if the group acts separately, without some designated
responsibilities. Sane roles commonly used in review groups are described
below. Ihese roles are not all employed in any one review but represent a

list.

o Group/Review leader - the individual designated by management with
planning, detecting, organizing and coordinating responsibilities.
Usually has responsibilities after the review to ensure that
recanmendations are implemented.

0 Designer - the individual responsible for the specification
of the product and a plan for its implementation,

o Implementer - the individual responsible for developing the product
according to the plan detailed by the designer,

o Tester - the individual responsible for testing the product as developed
by the implementer.

o Coordinator - the individual designated with planning, directing,
organizing and coordinating responsibilities,

o Producer - the individual whose product is under review,
o Recorder - the individual responsible for documenting the review

activities during the review,
o User Representative - the individual responsible for ensuring that the

user's requirements are addressed,
o Standards Representative - the individual responsible for ensuring that

product standards are conformed to.

o Maintenance Representative - the individual who will be responsible for
updates or corrections to the installed product,

o Others - individuals with specialized skills or responsibilities which
contribute during the peer review.

Page 8?

While the forms of peer reviews have some similarities and generally involve
designation of participant roles and responsibilities, they are different in
application. The remainder of this section will summarize the application
methods associated with the forms of peer reviews previously introduced.

a. Code Reading Review. Code reading is line-by-line study and
evaluation of program source code. It is generally performed on source code
which has been compiled and is free of syntax errors. However, some
organizations practice code reading on uncompiled source listings or hand
written code on coding sheets in order to remove syntax and logic errors prior
to code entry. Code reading is commonly practiced on top-down, structured
code and becomes cost ineffective when performed on unstructured code.

The optimum size of the code reading review team is three to four. The
producer sets up the review and is responsible for team leadership. Two or
three programmer/analysts are selected by the producer based upon their
experience, responsibilities with interfacing programs, or other specialized
skill.

The producer distributes the review input (see section 4.20.3) about two days
in advance. During the review the producer and the reviewers go through each
line of code checking for features which will make the program more readable,
usable, reliable and maintainable. Two types of code reading may be
performed: reading for understanding and reading for verification. Reading
for understanding is performed when the reader desires an overall appreciation
of how ttie program module works, its structure, what functions it performs,
and whether it follows established standards. Assuming that figure 4.20.5-1
depicts the structure of a program component, a reviewer reading for
understanding would review the modules in the the following order: 1.0, 2.0,

2.1, 2.2, 3.0, 3.1, 3.2, 3,3.

1.0

Figure 4.20.5-1 A Program Structure

In contrast to this top-to-bottom approach, reading for verification implies a

bottcm-up review of the code. The component depicted above would be perused

in the following order: 3.3,3.2,3.1,3.0,2.2, 2.1, 2.0, 1.0. In this

manner it is possible to produce a dependency list detailing parameters,

control switches, table pointers, and internal and external variables used by

ttie component. The list can then be used to ensure hierarchical consistency.

Page 88

data availability, variable initiation, etc. Reviewers point out any problems
or errors detected while reading for understanding or verification during the
review.

The team then makes an informal decision about the acceptability of the code
product and may recommend changes. The producer notes suggested modifications
and is responsible for all changes to the source code. Suggested changes are
evaluated by the producer and need not be implemented if the producer
determines that they are invalid.

There is no mechanism to ensure that change is implemented or to follow up on
the review.

b. Round-Robin Review. A round-robin review is a peer review where
each participant is given an equal and similar share of the product being
reviewed to study, present, and lead in its evaluation.

A round-robin review can be given during any phase of the product lifecycle
and is also useful for documentation review. In addition, there are
variations of the round-robin review which incorporate some of the best
features from other peer review forms but continue to use the alternating
review leader approach. For example, during a round-robin inspection, each
item on the inspection checklist is made the responsibility of alternating
participants.

The common number of people involved in this type of peer review is four to

six. The meeting is scheduled by the producer, who also distributes some high
level documentation as described in section 3. The producer will either be
the first review leader or will assign this responsibility to another
participant. The temporary leader will guide the other participants (who may
be implementers, designers, testers, users, maintenance representatives, etc.)
through the first unit of work. This unit may be a module, paragraph, line of
code, inspection item, or other unit of manageable size. All participants
(including the leader) have the opportunity to comment on the unit before the
next leader begins the evaluation of the next unit. The leaders are
responsible for noting major comments raised about their piece of work. At
the end of the review all the major comments are summarized and the group
decides whether or not to approve the product. No formal mechanism for review
follow up is used.

c. Walkthroughs. This type of peer review is more formal than the
code reading review or round-robin review. Distinct roles and
responsibilities are assigned prior to review. Prereview preparation is

greater, and a more formal approach to problem documentation is stressed.
Another key feature of this review is that it is presented by the producer.
The most common walkthroughs are those held during design and code, yet
recently they are being applied to specifications documentation and test
results.

The producer schedules the review and assembles and distributes input as

described in section 3. In most cases the producer selects the walkthrough
participants (although sometimes this is done by managonent) and notifies them

Page 89

of their roles and responsibilities. The walkthrough is usually conducted
with less than seven participants and lasts not more than 2 hours. If more
time is needed a break must be given or the product should be reduced in size.
Roles usually included in a walkthrough are producer, coordinator, recorder,
and representatives of user, maintenance and standards organizations.

The review is opened by the coordinator, yet the producer is responsible for
leading the group through the product. In the case of design and code
walkthrough, the producer simulates the operation of the component, allowing
each participant to canment based upon his area of specialization. A list of
problons is kept and at tue end of the review each participant signs the list
or other walkthrough form indicating whether the product is accepted as-is,
accepted with recommended changes, or rejected. Suggested changes are made at
the discretion of the producer. There is no formal means of follow up on the
review comments. However, if the walkthrough review is used for products as
they evolve during the lifecycle (i.e., specification, design, code and test
walkthrough), comments from past reviews can be discussed at the start of the
next review.

d. Inspections. Inspections are the most formal, canmonly used form
of peer review. The key feature of an inspection is that it is driven by the
use of checklists to facilitate error detection. These checklists are updated
as statistics indicate that certain types of error are occurring more or less
frequently than in the past. The most commonly held types of inspections are
conducted on the product design and code, although inspections may be used
during any lifecycle phase. Inspections should be short since they are often
quite intensive. This means that the product component to be reviewed must be

of small size. Specifications or design which will result in 50-100 lines of
code are normally manageable. This translates into an inspection of 15
minutes to 1 hour, although complex components may require as much as 2 hours.

In any event, inspections of more than 2 hours are generally less effective
and should be avoided. Two or three days prior to the inspection the producer
assembles input as described in section 3 and gives it to the coordinator for
distribution. Participants are expected to study and make comments on the

materials prior to the review.

The review is lead by a participant other than the producer. Generally, the

individual who will have the greatest involvement in the next phase of the

product lifecycle is designated as reader. For example, a requirements

inspection would likely be lead by a designer, a design review by an

implonenter, and so forth. The exception to this occurs for a code inspection

which is lead by the designer. The inspection is organized and coordinated by

an individual designated as the group leader or coordinator.

The reader goes through the product component, using the checklist as a means

to identify common types of errors as well as standards violations. A primary

goal of an inspection is to identify itans which can be modified to make the

ccmponent more understandable, maintainable, or usable. Participants

(identified earlier in this section) discuss any issues which they identified

in preinspection study.

Page 90

At the end of the inspection an accept/reject decision is made by the group
and the coordinator summarizes all the errors and problens detected and
provides this list to all participants. The individual whose work was under
review (designer, implementer, tester, etc.) uses the list to make revisions
to the component. When revisions are implemented, the coordinator and
producer go through a minireview using the problem list as a checklist.

The coordinator then completes Managonent and Summary Reports. The Summary
report is used to update checklists for subsequent inspections.

4,20.6. Example. The following is an example describing a code reading
review.

Three days prior to estimated canpletion of coding, the producer of a program
conponent begins preparation for a code reading review. The conponent is
composed of 90 lines of FORTRAN code and associated ccxnments. The producer
obtains copies of the source listing, and requirements and design
specifications for the component and distributes than to three peers,
notifying than of the review date and place.

Each reviewer reads the code for general understanding, reviewing a major
function and its supporting functions prior to reviewing the next major
function (see section 5).

One reviewer notes an exception to the programming standards. Another thinks

that the data names are not meaningful. The third has found several comments
which inaccurately represent the function they describe. Each reviewer makes
a note of 1±iese points as well as any comments about the structure of the
component. Next, the requirements are studied to ensure that each requirement
is addressed by the component. It appears that the requironents have all been
met.

The code reading review is led by the producer. After a brief description of
the cOTiponent and its interfaces, the producer leads the reviewers through the
code. Rather than progressing through the component from top to bottom, the
decision is made to perform code-reading from the bottom up. This form of
code-reading is used to verify the component's correctness (see section 5).

As the code is being perused, one of the reviewers is made responsible for
keeping a dependency list. As each variable is defined, referenced, or
modified, a notation is made on the list.

The verification code reading uncovers the use of a variable prior to its
definition. This error is documented on an error list by the producer. In
addition, each of the problems detected earlier during the code reading (as

performed by each individual) is discussed and documented.

At the end of the review, the error list is summarized to the group by tine

producer. Since none of the problems are major, the participants agree to
accept the code with the agreed to minor modifications. The producer tiien

uses the error/problem list for reference when making modifications to the
component.

Page 91

4.20.7. Effectiveness. Studies have been conducted which identify the
following qualitative benefits the forms of peer reviews.

o higher status visibility,
o decreased debugging time,
o early detection of design and analysis errors which would be much more

costly to correct in later development phases,
0 identification of design or code inefficiencies,
o ensuring adherence to standards,
o increased program readability,
o increased user satisfaction,
o communication of new ideas or technology,
o increased maintainability.

Little data is available which identifies the quantitative benefits
attributable to the use of a particular form of peer review. However, one
source estimates that the number of errors in production programs was reduced
by a factor of ten by utilizing walkthroughs. Another source estimates that a

project employing inspections achieved 2Z% higher programmer productivity than
with walkthroughs. No data was available indicating the amount of increased
programmer productivity attributable to the inspections alone.

4.20.8. Applicability. Peer reviews are applicable to large or small
projects during all development phases and are not limited by project type or
complexity.

4.20.9. Learning. None of the peer reviews discussed require extensive
training to implement. They do require familiarity with the concept and
methodology involved. Experience has shown that peer reviews are most
successful when the individual with responsibility for directing the review is

knowledgeable about the process and its intended results.

4.20.10. Costs. The reviews require no special tools or equipment. The main
cost involved is that of human resources. If the reviews are conducted in

accordance with 1±e resource guidelines expressed in most references, the cost
depends upon the number of reviews required. Most references suggest that
peer reviews should be no longer than 2 hours, preferrably 1/2 to 1 hour.

Preparation time can amount to as little as 1/2 hour and should not require
longer than 1/2 day per review.

4.20.11. References.

(1) "Code Reading Structured Walk-Throughs and Inspections", IBM IPTO

Support Group, World Trade Syston Center, Postbus 60, Zoetenmeer, Netherlands,
March 1976.

(2) FAGEN, M.E.
,
"Design and Code Inspections to Reduce Errors in

Program Development", IBM Systems Journal ^ No.3,1Q76.

(3) YOURDON, E. , "Structured Walkthroughs", Yourdon Inc., 1977.

Page 92

(4) FREEDMAN, D.P. and WEINBERG, G.M. , "Ethno - Technical Review
Handbook," 1977, Ethnotech, Inc.

(5) DALY, E.B.
,

"Management of Software Development", IEEE
Transactions on Software Engineering j May 1977.

(6) SHNEIDERMAN, Ben, "Software Psychology - Human Factors in Computer
and Information Systems," Winthrop Publishing, 1980.

Page 93

U.21.1. Name. Physical Units Checking.

4.21.2. Basic features. Many (scientific, engineering, and control) programs
perform computations whose results are interpreted in terms of physical units,
such as feet, meters, watts, and joules. Physical units checking enables
specification and checking of units in program computations, in a manner
similar to dimensional analysis. Operations between variables which are not
ccmmensurate, such as adding gallons and feet, are detected.

4.21.3. Information input. Units checking requires three Uiings to be

specified within a program: 1) the set of elementary units used (such as
feet, inches, acres), 2) relationships between the elementary units (such as

feet = 12 inches, acre = 43,560 square feet), and 3) the association of units
with program variables. The programming language used must support such
specifications, or the program must be preprocessed by a units checker.

4.21.4. Information output. The information output depends upon the specific
capabilities of the language processor or preprocessor. At a minimum, all

operations involving variables which are not canmensurate are detected and
reported. If variables are commensurate, but not identical (i.e., they are
the same type of quantity, such as units of length, but one requires
application of a scaler multiplier to place it in the same units as the

other), the system may insert the required multiplication into the code, or

may only report what factor must be applied by the programmer.

4.21.5. Outline of method. The specification of the input itans is the

extent of the actions required by the user. Some systems may allow the
association of a units expression with an expression within the actual
program. Thus, one may write LOTSIZE (LENGTH * WIDTH * square feet) as a

boolean expression, where the product of LENGTH and WIDTH must be in units of

square feet. The process of ensuring that LENGTH * WIDTH is in square feet is

the responsibility of the processing system.

4.21.6. Example. A short program in Pascal-like notation is shown for

computing the volume and total surface area of a right circular cylinder. The
program requires as input the radius of the circular base and the height of

the cylinder. Because of peculiarities in the usage environment of the

program, the radius is specified in inches, the height in feet; volume is

required in cubic feet, and the surface area in acres. Several errors are

present in the program, all of which would be detected by the units checker.

In the following, comments are made explaining the program, the errors it

contains, and how they would be detected. The ccxnments are keyed by line

number to the program.
Line Number Comment

2 All variables in the program which are quantities will be

expressed in terms of these basic units.

3 These are the relationships between the units known to the

units checker.
5-10 Variable radius is in units of inches, height is in units

of feet, and so forth.

Page 94

12 Input values are read into variables radius and height.

13 Lateral surface must be expressed in square feet. (RADIUS/ 12)
is in feet, and can be so verified by the checker.

15 Lateral-surface and top-surface are both expressed in square
feet, thus their sum is in square feet, also. Area is
expressed in acres, however, and the checker will issue
a message to the effect that though the two sides are
commensurate the conversion factor of 43,560 was omitted
frcxn the right side of the assignment.

16 The checker will detect that the two sides of the assignment
are not commensurate. The right side is in units of feet
quadrupled, the left is in feet cubed.

(1) program cylinder (input, output);

(2) elementary units inches, feet, acre;

(3) units relationships feet = 12 inches; acre = 43,560 feet**2;
(4) constant pi = 3.141592?
(5) var radius (inches),

(6) height (feet),

(7) volume (feet»«3),

(8) area (acre),

(9) lateral-surface (feet»*2),
(10) top-surface (feet**2): real;

(11) begin
(12) read (radius, height);

(13) lateral-surface := 2*PI*(radius/12)«height;
(14) top-surface := PI* (radius/1 2) *«2

(15) area := lateral-surface + 2* top-surface;
(16) volume := PI «((radius««3)*height)

;

(17) write (area, volume);
(18) end;

4.21.7. Effectiveness. The effectiveness of units checking is limited only
by the capabilities of the units processor.

Simple units checkers may only be able to verify that two variables are
comunsurate, but not determine if proper conversion factors have been applied.
That is, a relationship such as 12 inches = feet may not be fully used in

checking the ccmputations in a statonent, such as line 13 of the example.
There we asserted that (radius/ 12) would be interpreted as converting inches
to feet. The checker may not support this kind of analysis, however, to avoid
ambiguities with expressions such as "one-twelfth of the radius."

4.21.8. Applicability. Certain application areas, such as engineering and

scientific, often deal with physical units. In others, however, it may be
difficult to find analogies to physical units. In particular, if a program
deals only in one type of quantity, such as dollars, the technique would not
be useful.

Units checking can be performed during all stages of software development,

beginning with requirements specifications.

Page 95

4.21.9. Learning. Dimensional analysis is commonly taught in first year
college physics on statics; conversion from English to metric units is common
throughout society. Direct application of these principles in programming,
using a units checker, should require no additional training beyond
understanding the capabilities of the specific units checker and the means for
specifying units-related information.

4.21.10. Cost. If the units checking capabilities are incorporated directly
in a canpiler its usage cost should be negligible. If a preprocessor is used,

such systems are typically much slower than a compiler (perhaps operating at

1/10 compilation speed), but only a single analysis of the program is

required. The analysis is only repeated when the program is changed.

4.21.11. References.

(1) KARR, Michael and LOVEMAN III, David B. ,
"Incorporation of Units

into Programming Languages", CACM, Vol. 21, No. 5, pp. 385-391, May 1978.

Page 96

4.22.1. Name: Regression Testing

4.22.2. Basic features. Regression testing is a technique whereby spurious
errors caused by system modifications or corrections may be detected.

4.22.3. Information input. Regression testing requires that a set of systan
test cases be maintained and available throughout the entire life of the
system. The test cases should be complete enough so that all of the system's
functional capabilities are thoroughly tested. If available, acceptance tests
should be used to form the base set of tests.

In addition to the individual test cases themselves, detailed descriptions or

samples of the actual expected output produced by each test case must also be
supplied and maintained.

4.22.4. Information output. The output from regression testing is simply the

output produced by the syston from the execution of each of the individual
test cases. When the output from previous acceptance tests has been kept,

additional output from regression testing should be a ccmparison of the before
and after executions.

4.22.5. Outline of method. Regression testing is the process of retesting
the system in order to detect errors which may have been caused by program
changes. The technique requires the utilization of a set of test cases which
have been developed (ideally, using functional testing) to test all of the
system's functional capabilities. If an absolute determination of portions of
the systan which can potentially be affected by a given change can be made,
then only those portions need to be tested. Associated with each test case is

a description or sample of the correct output for that test case. When the
tests have been executed, the actual output is compared with the expected
output for correctness. As errors are detected during the actual operation of

the system which were not detected by regression testing, a test case which
could have uncovered the error should be constructed and included with the
existing test cases.

Although not required, tools can be used to aid in performing regression
testing. Automatic test harnesses can be used to assist the managing of test
cases and in controlling the test execution. File canparators can often be

useful in verifying actual output with expected output. Assertion processors
are also useful in verifying the correctness of the output for a given test.

4.22.6. Example.

a. Application. A transaction processing system contains a dynamic
data field editor which provides a variety of input/output field editing
capabilities. Each transaction is comprised of data fields as specified by a

data element dictionary entry. The input and output edit routine used by each
data field is specified by a fixed identifier contained in a data field
descriptor in the dictionary entry. When a transaction is input, each field

is edited by the appropriate input editor routine as specified in the

dictionary entry. Output editing consists of utilizing output editor routines
to format the output.

Page 97

b. Error. An input edit routine to edit numeric data fields was
modified to perform a fairly restrictive range check needed by a particular
transaction program. Current system documentation indicated that this
particular edit routine was only being used by that single transaction
program. However, the documentation was not up-to-date in that another,
highly critical, transaction program also used the routine, often with data
falling outside of the range check needed by the other program.

c. Error discovery. Regression testing would uncover the error given
that a sufficient set of functional tests were used for performing the
testing. If only the transaction program for which the modification was made
were tested, the error would not have been discovered until actual operation.

4.22.7. Effectiveness. The effectiveness of the technique depends upon the
quality of the data used for performing the regression testing. If functional
testing, i.e. tests based on the functional requirements, is used to create
the test data, the effectiveness is highly effective. The burden and expense
associated with the technique, particularly for small changes, can appear to
be prohibitive. It is, however, often quite straightforward to determine
which functions can be potentially affected by a given change. In such cases,
the extent of the testing can be reduced to a more tractable size.

4.22.8. Applicability. Ihis method is generally applicable.

4.22.9. Learning. No special training is required in order to apply the

technique. If tools are used in support of regression testing, however,
knowledge of their use will be required. Moreover, successful application of

the technique will require establishment of procedures and the management
control necessary to ensure adherence to those procedures.

4.22.10. Costs. Since testing is required as a result of systan

modifications anyway, no additional burden need result because of the method
(assuming that only the necessary functional capabilities are retested). The
use of tools, however, to support it could increase the cost but it would also
increase its effectiveness.

4.22.11. References.

(1) PANZL, David J., "Automatic Software Test Drivers," Computer
,

April 1978.

(2) FISHER, K. F.
, "A Test Case Selection Method for the Validation of

Software Maintenance Modification", IEEE COMPSAC , 1977.

(3) FISHER, K. F. ,RAJI,F. , and CHRUSCICK, A.
, "A Methodology for Re-testing

Modified Software"

,

National Telecommunications Conference , New Orleans, LA. , Nov.

1981.

Page 98

4.23.1. Name. Requirements Analyzer.

4.23.2. Basic features. The requirements for a systan will normally be
specified using some formal language which may be graphical and/or textual in
nature, A requirements analyzer can check for syntactical errors in the
requironents specifications and then produce a useful analysis of the
relationships between systan inputs, outputs, processes, and data. Logical
inconsistencies or ambiguities in the specifications can also be identified by
the requirements analyzer.

4.23.3. Information input. The form and content of the input will vary
greatly for different requirements languages. Generally, there will be
requirements regarding what the systan must produce (outputs) and what types
of inputs it must accept. There will usually be specifications describing the
types of processes or functions which the system must apply to the inputs in
order to produce the outputs. Additional requirements may concern timing and
volume of inputs, outputs, and processes as well as performance measures
regarding such things as response, time and reliability of operations. The
form of the inputs to the requirements analyzer is specified by the
requironents specification language and varies considerably for different
languages. In some cases all inputs are textual, whereas seme languages
utilize all graphical inputs from a display terminal (e.g., boxes might
represent processes and arrows between boxes might represent information
flow)

.

4.23.4. Information output. Nearly all analyzers produce error reports
showing syntactical errors or inconsistencies in the specifications. For
example, the syntax may require that the outputs from a process at one level
of system decomposition must include all outputs from a deccmposition of that
process at a more detailed level. Similarly, for each systan output there
should be a process which produces that output. Any deviations from these
rules would result in error diagnostics.

Each requirements analyzer produces a representation of the syston which
indicates static relationships among system inputs, outputs, processes, and
data. Sane analyzers also represent dynamic relationships and provide an
analysis of them. This may be a precedence relationship, e.g., process A must
execute before process B. It may also include information regarding how often
a given process must execute in order to produce the volume of output
required. Some analyzers produce a detailed representation of relationships
between different data items. This output can sonetimes be used for
developing a data base for the system. A few requirements analyzers go even
further and provide a mechanism for simulating the requir«nents using the
generated systan representation including the performance and timing
requirements.

4.23.5. Outline of method. The user must provide the requirements
specifications as input for the analyzer. The analyzer carries out the
analysis in an automated manner and provides it to the user who must then
interpret the results. Often the user can request selected types of outputs,

e.g., an alphabetical list of all the processes or a list of all the data

items of a given type. Some analyzers can be used either interactively or in

Page 99

a batch mode. Once the requirements specifications are considered acceptable,

a few analyzers provide the capability for simulating the requirements. It is
necessary that the data structure and data values generated from the

requirements specifications be used as input to the simulation, otherwise the

simulation may not truly represent the requirements.

4.23.6. Example. Suppose that a process called PROCESS B produces two files

named H2 and H3 from an input file name M2. (The purposes of the files are
irrelevant to the discussion.) Suppose also that PROCESS D accepts Files H2

and H3 as input and produces Files J3 and J6 output. In addition, PROCESS G

is a subprocess of PROCESS D and it accepts File H3 as input and produces File

J6. Then the pseudo specification statements, figure 4.23.6-1, might be used

to describe the requirements. (Note that these requirements are close to

design, but this is often the case.)

PROCESS B

USES FILE M2
PRODUCES FILES H2, H3

PROCESS D

USES FILES H2, H3

PRODUCES FILES J3, J6

PROCESS G

SUBPROCESS OF PROCESS D

USES FILE H3
PRODUCES FILE J6

Figure 4.23.6-1 Requirements Specification Statements

The requirements specifications imply a certain precedence of operations,

e.g., PROCESS D cannot execute until PROCESS B has produced files H2 and H3.

Detailed descriptions of what each process does would normally be included,

but are omitted for brevity. The requirements analyzer would probably

generate a diagnostic since the statement for PROCESS D fails to indicate that

it includes the subprocess G. A diagnostic would also be generated unless

there are other statements which specify that file M2, needed by PROCESS B, is

available as an existing file or else is produced by some other process.

Similarly, other processes must be specified which use files J3 and J6 as

input unless they are specified as files to be output from the system.

Otherwise, additional diagnostics would be generated. It can be seen that

some of the checks are similar to data flow analysis for a computer program.

Page 100

However, for large systans the analysis of requiranents becomes very complex
if requirements for timing and performance are included, and if timing and
volume analysis are to be carried out. (Volume analysis is concerned with
such things as how often various processes must execute if the system is to
accept and/or produce a specified volume of data in a single given period of
time.

)

^.23.7. Effectiveness. Some requiranents analyzers are very effective for
maintaining accurate requirements specifications. For large systans with a

large number of requirements they are essential. On the other hand, most
existing requirements analyzers are rather expensive to obtain and use, and
they may not be cost effective for development of anall systons.

4.23.8. Applicability. Requirements analyzers are applicable for use in

developing most systans. They are particularly useful for analysis of
requiroTients for large and conplex systans.

4.23.9. Learning. Most requirements analyzers require a considerable amount
of training of personnel.

4.23.10. Cost. Most requirements analyzers are expensive to obtain and use.

They generally require a large amount of storage within a computer and so can
only be used on large computers.

4.23.11. References.

(1) ALFORD, Mack W. , "A Requirements Engineering Methodology for Real-
Time Processing Requirements," IRW Software Series, TRW-SS-76-07, Systems
Engineering and Integration Division, Septanber 1976.

(2) TEICHROEW, Daniel, "A Survey of Languages for Stating Requirements
for Computer-Based Information Systems," The University of Michigan

^

Proceedings of the Fall Joint Computer Conference, 1972, pp. 1203-1224.

Page 101

4.24.1. Name. Requirements Tracing.

4.24.2. Basic features. Requirements tracing provides a means of verifying
that the software of a systan addresses each requirement of that system and
that the testing of the software produces adequate and appropriate responses
to those requirements.

4.24.3. Information input. The information needed to perform requirements
tracing consists of a set of system requirements and the software which
embodies the capability to satisfy the requirements.

4.24.4. Information output. The information output by requirements tracers
is the correspondence found between the requirements of a system and the
software that is intended to realize these requirements.

4.24.5. Outline of method. Requirements tracing generally serves two major
purposes. The first is to ensure that each specified requirement of a system
is addressed by an identifiable element of the system software. The second is
to ensure that the testing of that software produces results which are
adequate responses in satisfying each of these requirements.

A ccaranon technique used to assist in making these assurances is the use of
test evaluation matrices. These matrices represent a visual schone of
identifying which requirements of a system have been adequately and
appropriately addressed and which have not. There are two basic forms of test
evaluation matrices. The first form identifies a mapping that exists between
the requirement specifications of a system and the modules of that system.
This matrix determines whether each requirement is realized by some module in

the syston, and, conversely, whether each module is directly associated with a

specific syston requirement. If the matrix reveals that a requirement is not
addressed by any module, then that requirement has probably been overlooked in

the software design activity. If a module does not correspond to any

requirement of the system, then that module is superfluous to the syston. In

either case, the design of the software must be further scrutinized, and the
system must be modified accordingly to effect an acceptable
requironents-design mapping.

The second form of a test evaluation matrix provides a similar mapping, except
the mapping exists between the modules of a system and the set of test cases
performed on the syst«n. This matrix determines which modules are invoked by

each test case. Used with the previous matrix, it also determines which
requironents will be demonstrated to be satisfied by the execution of a

particular test case in the test plan. During actual code development, it can

be used to determine which requirement specifications will relate to a

particular module. In this way, it is possible to have each module print out

a message during execution of a test indicating which requirement is

referenced by the execution of this module. The code module itself may also
contain comments about the applicable requirements.

If these matrices are to be used most effectively in a requirements tracing

activity, the two matrices should be used together. The second matrix is

built prior to software development. After the software has been developed

Page 102

and the test cases have been designed (based upon this matrix), it is
necessary to determine whether the execution of the test plan will actually
demonstrate satisfaction of the requirements of the software syston. By
analyzing the results of each test case, the first matrix can be constructed
to determine the relationship that exists between the requirements and
software reality.

The first matrix is mainly useful for analyzing the functional requirements of
a system. However, the second matrix is also useful in analyzing the
performance, interface, and design requirements of the systan, in addition to
the functional requirements. Both are often used in support of a more general
requironents tracing activity, that of preliminary and critical design
reviews. This is a procedure used to ensure verification of the traceability
of all the above mentioned requirements to the design of the systan. In
addition to the use of test evaluation matrices, these design reviews may
include the tracing of individual subdivisions in the software design document
back to applicable specifications made in the requirements document. This is
a constructive technique used to ensure verification of requir«nents
traceability.

4.24.6. Example.

a. Application. A new payroll system is to be tested. Among the
requirements of this syston is the specification that all anployees of age 65
or older:

1 . receive semi-retirement benefits, and

2. have their social security tax rate readjusted.

To ensure that these particular requirements are appropriately addressed in

the systen software, test evaluation matrices have been constructed and filled
out for the systan.

b. Error. An omission in the software causes the social security tax

rate of individuals of age 65 or older to remain unchanged.

c. Error discovery. The test evaluation matrices reveal that the

requirement that onployees of age 65 or older have their social security tax
rate adjusted has not been addressed by the payroll program. No module in the
system had been designed to respond to this specification. The software is

revised accordingly to accommodate this requirement, and a test evaluation
matrix is used to ensure that the added module is tested in the set of test
cases for the system.

4.24.7. Effectiveness. Requirements tracing is a highly effective technique

in discovering errors during the design and coding phases of software
development. Ihis technique has proven to be a valuable aid in verifying the
completeness, consistency, and testability of software. If a system

requirement is modified, it also provides much assistance in retesting
software by clearly indicating which modules must be rewritten and retested.

Requirements tracing can be a very effective technique in detecting errors

Page 103

early in the software development cycle which could otherwise prove to be very
expensive if discovered later.

4.24.8. Applicability. This technique is generally applicable in large or

small system testing and for all types of computing applications. However, if
the system requirements thonselves are not clearly specified and documented,
proper requirements tracing can be very difficult to accomplish in any
application.

4.24.9. Learning. Knowledge and a clear understanding of the requirements of

the systan is essential. More complex systems will result in a corresponding
increase in required learning.

4.24.10. Costs. No special tools or equipment are needed to carry out this

technique if done manually. The major cost in requirements tracing is that
associated with human labor expended. Requirements tracing is often a feature
of requirements analyzers which are expensive to obtain and use.

4.24.11. References.

(1) "THREADS: A Functional Approach to Project Control
,
"Computer

Sciences Corp . ^ El Segundo, California, 1975.

(2) HETZEL, W.C., "An Experimental Analysis of Program Verification
Methods," Ph.D. Thesis

,
University of North Carolina, 1976.

Page 104

4.25.1. Name. Software monitors.

4.25.2. Basic features. These tools monitor the execution of a program in
order to locate and identify possible areas of inefficiency in the program.
Execution data is obtained while the program executes in its normal
environment. At the end of execution, reports are generated by the monitor
summarizing the resource usage of the program.

4.25.3. Information input. Software monitors require as input the program
source code to be executed and any data necessary for the program to run.
Certain canmands must also be provided by 1±ie user in specifying the
information to be extracted by the monitor and in specifying the format of the
generated output reports. These commands may specify:

o what is to be measured (e.g., execution times, I/O usage, core usage,
paging activity, program waits),

0 the specific modules to be monitored,
o the frequency that data is to be extracted during program execution

(sampling interval),
o the titles, headings, content of each output report,
0 the units used to construct graphs,
o whether the graphs are to be displayed as plots or histograms.

4.25.4. Information output. The output of a software monitor is a set of one
or more reports describing the execution characteristics of the program.
Information that may be contained in these reports is given below.

o A summary of all the sample counts made during data extraction,

e.g., the number of samples taken where the program was executing
instructions, waiting for the completion of an I/O event, or otherwise
blocked from execution.

o A summary of the activity of each load module.
o An instruction location graph that gives the percentage of time spent

for each group of instructions partitioned in memory,
o A program timeline that traces the path of control through time.
0 A control passing summary that gives the number of times control is
passed from one module to another.

0 A wait profile showing the number of waits encountered for each
group of instructions,

o A paging activity profile that displays pages-in and pages-out for
each group of instructions.

This information is often represented in histograms and/or plotted graphs.

4.25.5. Outline of method. Software monitors typically consist of two
processing units. The first unit runs the program being monitored and
collects data concerning the execution characteristics of the program. The
second unit reads the collected data and generates reports from it.

A software monitor monitors a program by determining its status at periodic

intervals. The period between samples is usually controlled through an

elapsed interval timing facility of the operating syston. Samples are taken

Page 105

from the entire address range addressable by the executing task. Each sample
may contain an indication of the status of the program, the load module in
which the activity was detected, and the absolute location of the instruction
being executed. Small sample intervals increase sampling accuracy but result
in a corresponding increase in the overhead required by the CPU.

The statistics gathered by the data extraction unit are collected and
summarized in reports generated by tiie data analysis unit. References to
program locations in these reports will be in terms of absolute addresses.
However, in order to relate the absolute locations to source statements in the
program, the reports also provide a means to locate in a canpiler listing the
source statement that corresponds to that instruction. In this way, sources
of waits and program locations that use significant amounts of CPU time can be
identified directly in the source code; any performance improvements to the
program will occur at these identified statements.

Software monitors are similar to another tool used to monitor program
execution, test coverage analyzers. Test coverage analyzers keep track of and
report on the number of times that certain elementary program constructs in a

program have been traversed during a sequence of tests. During the monitoring
of a program, both tools count the frequency that certain events occur. After
program execution, both generate reports summarizing the data collected.
However, because these tools serve different functions, they are different in

their techniques of gathering information and in the type of information each
collects. Test coverage analyzers are used to measure the conpleteness of a

set of program tests, while software monitors measure the resource usage of a

program as a means of evaluating program efficiency. As an evaluation of

program efficiency requires consideration of execution time expenditure,

software monitors utilize a strict timing mechanism during the collection of

data. Ihis is absent in monitors such as test coverage analyzers which are

not used to evaluate program performance.

4.25.6. Example.

a. Application, A program that solves a set of simultaneous

equations is constructed. The program first generates a set of coefficients

and a right hand side for the system being solved. It then proceeds to solve

the system and output the solution,

b. Error, In the set of calculations required to solve the system, a

row of coefficients is divided by a constant and then subtracted fron another

row of coefficients. The divisions are performed within a nested DO-loop but

should be moved outside the innermost loop, as the dividend and divisors

within the loop do not change.

c. Error discovery. The performance of the program is evaluated

through the use of a software monitor. Examination of the output reveals that

the program spends almost 85% of its time in a particular address range.

Further analysis shows that 16.65% of all CPU time is used by a single

instruction. A canpiler listing of the program is used to locate the source

statement that generated this instruction, which is found to be the statement

containing the division instruction. Once the location of the inefficiency is

Page 106

discovered, it is left to the programmer to determine whether and how the code
can be optimized.

4.25.7. Effectiveness, Software monitors are valuable tools in identifying
performance problems in a program. Their overall effectiveness, however, is
dependent upon the quality of their use.

4.25.8. Applicability. Software monitors can be applied to any kind of
program in any programming language.

4.25.9. Learning. There are no special learning requirements for the use of
software monitors. In order to use the tools effectively, however, the input
parameters to the monitor must be carefully selected in determining the most
relevaiit reports to be generated. Once the areas of a program which are most
inefficient have been identified, it requires skill to modify the program to
improve its performance.

4.25.10. Costs. The largest cost in using a software monitor is that
incurred by the CPU to extract the data during execution. In one
impl orientation, extraction of data resulted in an increase of user program CPU
time by ^% to 50%. Storage requirements also increase in order to provide
memory for diagnostic tables and the necessary program modules of the tool.

4.25.11. References.

(1) "Problon Program Evaluator (PPE) User Guide," Boole and Babbage,
Inc., Sunnyvale, California, March, 1978.

(2) RAMANDORTHY, C.V. and KIM, K.H. , "Software Monitors Aiding
Systonatic Testing and Their Optional Placement," Proceedings of the First
National Conference on Software Engineering , IEEE Catalog No. 75CH0992-8C,
Sept^ber, 1975.

Page 107

4.26.1. Name. Specification-Based Functional Testing.

4.26.2. Basic features. Functional testing can be used to generate system
test data from the information in requirements and design specifications. It
is used to test both the overall functional capabilities of a system and
functions which originate during syston design.

4.26.3. Information input.

a. Data information. The technique requires the availability of
detailed requirements and design specifications and, in particular, detailed
descriptions of input data, files and data bases. Both the concrete and
algebraic abstract properties of all data must be described. Concrete
properties include type, value ranges and bounds, record structures, and
bounds on file data structure and data base dimensions. Abstract properties
include subclasses of data that correspond to different functional
capabilities in the system and subcomponents of ccmpound data items that
correspond to separate subfunctional activities in the system.

b. Function information. The requirements and design specifications
must also describe the different functions implanented in the system.

Requirements functions correspond to the overall functional capabilities of a

system or to subfunctions which are visible at the requirements stage and are
necessary to implement overall capabilities. Different overall functional
capabilities correspond to conceptually distinct classes of operations that
can be carried out using the system. Different kinds of subfunctions can also
be identified. Process descriptions in structured specifications, for
example, describe data transformations which are visible at requirements time
and which correspond to requirements subfunctions. Requirements subfunctions
also occur implicitly in data base schemata. Data base functions are used to
reference, update and create data bases and files.

The designer of a system will have to invent both general and detailed

functional constructs in order to implonent the functions in requirements
specifications. Structured design techniques are particularly useful for

identifying and documenting design functions. Designs are represented as an

abstract hierarchy of functions. The functions at the top of the hierarchy
denote the overall functional capabilities of a program or system and may

correspond to requirements functions. Functions at lower levels correspond to

the functional capabilities required to implement the higher level functions.

General design functions often correspond to modules or parts of programs

which are identified as separate functions by comments. Detailed design

functions may be invented during the programming stage of system development
and may correspond to single lines of code.

4.26.4. Information output. The output to be examined depends on the nature

of the tested function. If it is a straight input/output function, then

output values are examined. The testing of other classes of functions may

involve the examination of the state of a data base or file.

Page 108

4.26.5. Outline of method. The basic idea in functional testing is to
identify "functionally important" classes of data. Hie two most important
classes of data are extremal values and special values. Different kinds of
sets of data have different kinds of extremal values and different classes of
special values must be used to test different kinds of functions.

a. Extremal values. The simplest kinds of extremal values are
associated with elanentary data items. If a variable is constrained to take
on values which lie in the range (a,b), then the extronal values are a and b.

If a variable is constrained to take on values from a small set of discrete
values then each of those values can be thought of as an extremal case.

The construction of extremal cases for data structures (e.g., group data
items) can be more complicated. It is necessary to construct extremal values
of both the component elementary parts of the data structure as well as its
dimensions. The data structure can be treated as a single quantity. In this
case, when it takes on an extremal value all of its elements take on that
value. It is also possible to consider its components as a set of values in
which one, more, or all of the components have extremal values. The
construction of extremal values for files and data bases is similar to that
for data structures. Files with extremal dimensions contain the smallest
possible and largest possible number of records. If the records are variable
sized they contain records of the smallest and largest dimensions.

b. Special values. There appear to be two kinds of special values
that are important for data processing programs. The first is useful for
testing functional capabilities in which data is moved around from one
location to another, as in a transaction-update program. Functions of this
type should be tested over distinct sets of data (i.e., values in different
files, records, variables or data structure elonents should be different) in
order to detect the transfer of the incorrect data from the wrong source or
into the wrong destination. The second kind of special data is useful for
testing logical functional capabilities that carry out different operations on
the basis of relationships between different data items. It is important to
test functional capabilities of this type over special values such as those in
which sets of data that enter into the comparison are all the same.

Additional kinds of special values are important for scientific programs or

programs which do arithmetic calculations. They include zero, positive and
negative values "close" to zero, and large negative and positive values.

Functional testing requires that tests be constructed in which the input data
is extremal, non-extremal and special as well as tests that result in program
output that is extronal, non-extremal or special.

4.26.6. Examples.

Example 1 : Testing of requirements functions.

a. Application. A computerized dating system was built in which a

sequential file of potential dates was maintained. Each client for the

service offered would submit a completed questionnaire which was used to find

Page 109

the five most conpatible dates. Certain criteria had to be satisfied before
any potential data was selected and it is possible that no date could be found
for a client or less than five dates found.

b. Error. An error in the file processing logic causes the program
to select the last potential date in the sequential file whenever there is no
potential date for a client.

c. Error discovery. The number of dates which are found for each
client is a dimension of the output data and has extremal values 0 and 5. If
the "find-a- date" functional capability of the system is tested over data for
a client for which no date should exist then the presence of the error will be
revealed.

Example 2: Testing of detailed design functions.

a. Application. The designer of the computerized dating system in

Example 1 decided to process the file of potential dates for a client by

reading in the records in sets of 50 records each. A simple function was
designed to ccsnpute the number of record subsets.

b. Error. The number of subsets function returns the value 2 when
there are less than 50 records in the file.

c. Error discovery. The error will be discovered if the design
function is tested over the extremal case for which is should generate the
minimal output value 1 . Note that this error is not revealed (except by
chance) when the program is tested at the requiranents specifications level.
It will also not necessarily be revealed unless the code implementing the
design function is tested independently and not in combination with the rest
of the system.

4.26.7. Effectiveness. Studies have been carried out which indicate
functional testing to be highly effective. Its use depends on specific
descriptions of system input and output data and a ccmplete list of all
functional capabilities. The method is essentially manual and somewhat
informal. If a formal language could be designed for describing all input and

output data sets then a tool could be used to check the completeness of these
descriptions. Automated generation of extremal, non-extremal and special
cases might be difficult since no rigorous procedure has been developed for

this purpose.

For many errors it is necessary to consider combinations of extremal, non-

extremal and special values for "functionally related" input data variables.

In order to avoid combinatorial explosions, ccxnbinations must be restricted to

a small number of variables. Attanpts have been made to identify important

canbinations (see references) but there are no absolute rules, only

suggestions and guidelines.

4.26.8. Applicability. This method is generally applicable.

Page 110

4.26.9. Learning. It is necessary to develop some expertise with the
identification of extremal and special cases and to avoid the ccwibinatorial
explosions that may occur when combinations of extremal and special values for
different data items are considered. It is also necessary to become skilled
in the identification of specifications functions although this process is

simplified if a systematic approach is followed for the representation of
requirements and design.

4.26.10. Costs. The method requires no special tools or equipment and
contains no hidden excessive tests.

4.26.11. References.

(1) HOWDEN, William E. , "Functional Program Testing," IEEE
Transactions on Software Engineering

,
SE-7, March, 1980,

(2) HCWDEN, William E. , "Functional Testing and Design
Abstractions, "Journal of Systems and Software , Vol. 1, 307-313, 1980.

(3) MYERS, Glenford, "The Art of Software Testing,"
Wiley-Interscience. New York, 1975.

Page 111

4.27.1. Name. Symbolic execution.

4.27.2. Basic features. Symbolic execution is applied to paths through
programs. It can be used to generate expressions which describe the
cumulative effect of the computations which occur in a program path. It can
also be used to generate a system of predicates describing the subset of the
input domain which causes a specified path to be traversed. The user is
expected to verify the correctness of the output which is generated by
symbolic execution in the same way that output is verified which has been
generated by executing a program over actual values. It is used as a basis
for data flow analysis and proof of correctness.

4.27.3. Information input.

a. Source code. The method requires the availability of the program
source code.

b. Program paths. The path or paths through the program which are to

be symbolically evaluated must be specified. The paths may be specified
directly by the user or, in sane symbolic evaluation systems, selected
automatically.

c. Input values. Symbolic values must be assigned to each of the
"input" variables for the path or paths which are to be symbolically
evaluated. The user may be responsible for selecting these values or the
symbolic evaluation system which is used may select than automatically.

4.27.4. Information output.

a. Values of variables. The variables whose final symbolic values
are of interest must be specified. Symbolic execution will result in the
generation of expressions which describe the values of these variables in

terms of the dumny symbolic values assigned to input variables.

b. Syston of predicates. Each of the branch-predicates which occur

along a program path constrains the input which causes that path to be
followed. The symbolically evaluated system of predicates for a path
describes the subset of the input dcxnain that causes that path to' be followed.

4.27.5. Outline of method.

a. Symbolic execution. Symbolic values are symbols standing for sets

of values rather than actual values. The symbolic execution of a path is

carried out by symbolically executing the sequence of assignment statonents
occurring in the path. Assignment statements are symbolically executed by

symbolically evaluating the expressions on the right hand side of the

assignment. The resulting symbolic value beccxnes the new symbolic value of

the variable on the left hand side. An arithmetic or logical expression is

symbolically executed by substituting the symbolic values of the variables in

the expression for the variables.

Page 112

The branch conditions or branch predicates which occur in conditional
branching statements can be symbolically executed to form symbolic predicates.
The symbolic syston of predicates for a path can be constructed by
symbolically executing both assignment statements and branch predicates during
the symbolic execution of the path. The symbolic system of predicates
consists of the sequences of symbolic predicates that are generated by the
execution of the branch predicates.

b. Symbolic execution systems. All symbolic execution systons must
contain facilities for: selecting program paths to be symbolically executed,
symbolically executing paths, and generating the required symbolic output.

Three types of path selection techniques have been used: interactive, static

and automatic. In the interactive approach, the symbolic execution system is
constructed so that control returns to the user each time it is necessary to
make a decision as to which branch to take during the symbolic execution of a

program. In the static approach, the user specifies the paths he wants
executed in advance. In the automatic approach, the symbolic execution systan
attempts to execute all those program paths having consistent symbolic system
of predicates. A syston of predicates is consistent if it has a solution.

The details of symbolic execution algorithms in different systems are largely
technical. Symbolic execution systems may differ in other than technical
details in the types of symbolic output they generate. Some systems contain,
for example, facilities for solving systems of branch predicates. Such
systems are capable of automatically generating test data for selected program
paths (i.e., program input data which will cause the path to be followed when
the program is executed over that data).

4.27.6. Example.

a. Application. A FORTRAN program called SIN was written to compute
the sine function using the McLaurin series,

PREDICATES:

(X»«3/6).GE.E
(X»«5/120).GE.E
(X««7/5040).LT.E

OUTPUT

SIN = ?SUM - (X*«3/6) - (X««5/120)
Symbolic output for SIN

Figure 4.27.6-1 Symbolic Execution Example

b. Errors. The program contained three errors, including an

uninitialized variable, the use of the expression -1**(I/2) instead of

(-1)**(I/2), and the failure to add the last term computed in the series on to

the final computed sum.

Page 113

Different paths through SIN correspond to different numbers of iterations of
ihe loop in the program that is used to compute terms in the series. The
symbolic output in figure 4.27.6-1 was generated by symbolically evaluating
the path that involves exactly three iterations of the loop.

c. Error discovery. The errors in the program are discovered by
comparing the symbolic output with the standard formula for the McLaurin
series. The symbolic evaluator that was used to generate the output
represents the values of variables that have been uninitialized with a

question mark and the name of the variable. The error involving the
expression (-1)**(I/2) results in the generation of the same rather than
alternating signs in the series sun. The failure to use the last computed
tenri can be detected by comparing the predicates for the symbolically
evaluated path with the symbolic output value for SIN.

4.27.7. Effectiveness. Studies have been carried out which indicate that
symbolic evaluation is useful for discovering a variety of errors but that,
except in a small number of cases, it is not more effective than the combined
use of other methods such as dynamic and static analysis (1),

One of the primary uses of symbolic evaluation is in raising the confidence
level of a user in a program. Correct symbolic output expressions confirm to
the user that the code carries out the desired computations. It is especially
useful for nonprogrammer users.

4.27.8. Applicability. The method is primarily useful for programs written
in languages which involve operations that can be represented in a concise
formal way. Most of the symbolic evaluation systons that have been built are
for use with algebraic programming languages such as FORTRAN and PL-1

.

Algebraic programs involve computations that can be easily represented using
arithmetic expressions. It is difficult to generate symbolic output from
programs which involve complex operations with "wordy" representations such as

the REPLACE and MOVE CORRESPONDING operations in COBOL.

4.27.9. Learning. It takes a certain amount of practice to choose paUis and

parts of paths for symbolic evaluation. The user must avoid the selection of

long paths or parts of paths that result in the generation of expressions that

are so large that they are unreadable. If the symbolic evaluation system
being used gives the user control over the types of expression simplification
that are carried out, then he must learn to use this in a way that results in

the generation of the most revealing expressions.

4.27.10. Costs. Storage and execution time costs for symbolic evaluation

have been calculated in terms of program size, path length, number of program
variables and the cost of interpreting (rather than compiling and executing) a

program path.

The storage required for symbolically evaluating a path of length P in a

program with S statements containing N variables is estimated to be on the

order of 10(P+S+V) (2). Let CI be the cost of preprocessing a program for

interpretation, C2 the cost of interpreting a program path. Cons is the cost

of checking the consistency (i.e., solvability) of a system of symbolic

Page 114

predicates and Cond is the cost of evaluating a condition in a conditional
statonent. Cons and Cond are expressed in units of the cost of interpreting a
statement in a program. The cost (in execution time) of symbolically
executing a program path is estimated to be on the order of CI + C2 (1 + E +
Cons/10 + Cond/100) (2).

4.27.11. References.

(1) HCWDEN, William E. , "An Evaluation of the Effectiveness of
Symbolic Testing," Software—Practice s^d Experience , 8, 1978.

(2) HCWDEN, William E.
,
"Symbolic Testing — Design Techniques, Costs

and Effectiveness," ILS^ Department of Commerce , NTIS PB-268,517, Springfield,
Virginia.

(3) HCWDEN, William E. ,
"Symbolic Testing and the DISSECT Symbolic

Evaluation System," IEEE Transactions on Software Engineering
,
SE-3, 1977.

(4) KING, J.C., "Symbolic Execution and Program Testing," CACM
,

19,1976.

(5) CLARKE, L.A. , "A System to Generate Test Data and Symbolically
Execute Prograns," IEEE Transactions on Software Engineering , SE-2, 1976.

Page 115

4.28.1. Name. Test coverage analyzers.

4.28.2. Basic features. Test coverage analyzers monitor the execution of a

program during program testing in order to measure the completeness of a set
of program tests. Completeness is measured in terms of the branches,
statements or other elementary program constructs which are used during the
execution of the program over the tests.

4.28.3. Information input. Test coverage analyzers use the program source
code and a set of program tests to generate test coverage reports.
Sophisticated coverage analyzers may also involve input parameters that
describe which of several alternative coverage measures are to be used.

4.28.4. Information output. Typical output consists of a report which
describes the relevant feature of the program which has been "exercised" over
a sequence of tests. Branch coverage analyzers keep track of and report on
the number of times that each branch in a program has been traversed during a
sequence of tests (1) . A program branch is any transfer of control from one
program statement to another, either through execution of a control transfer
instruction or through normal sequential flow of control from one statanent to
the next.

Different kinds of coverage analyzers will report different kinds of

information. Analyzers which measure coverage in terms of pairs of branches,
loop iteration patterns or elementary program functions have been proposed but
branch coverage analyzers are the most widely used. In addition to coverage
information, analyzers may also record and print variable range and subroutine
call information. The minimum and maximum values assumed by each variable in

a program, the minimum and maximum number of times that loops are iterated
during the executions of a loop, and a record of each subroutine call may be
reported.

4.28.5. Outline of method.

a. Branch analyzers . Branch coverage analyzers typically consist of
two parts, a preprocessor and a postprocessor. The preprocessor inserts
"probes" into the program for which test coverage analysis is required.

The probes call subroutines or update matrices that record the execution of

the part of the program containing the probe. Theoretical studies have been
carried out to determine the minimum number of probes required to determine
which branches are executed during a program execution. The probes may also
record information for determining minimal and maximal variable values, loop
iteration counts and subroutine calls.

The information which is generated by program probes has to be processed

before test coverage reports can be generated. If a sequence of tests has
been carried out, the information from the different tests has to be merged.

The processing of the information generated by probes during program testing

is processed and reports are generated by the coverage analyzer postprocessor.

Page 116

b. Function analyzers . Function analyzers are based on the idea that
each program construct implements one or more elementary functions. Loop
constructs, for example, involve functions which determine if a loop is to be
entered, when it is to be exited, how many times it is to be iterated, the
initial value of the loop index variable (if present) and subsequent values of
the loop index. It is possible to define complete sets of tests for these
functions which will cause the function to act incorrectly on at least one
test if the function contains one of a predefined set of possible functional
errors (2). Test coverage analyzers can be built which keep track of the data
over which constructs are executed and which report on the functional
completeness of the data used in the execution of the constructs. Function
coverage analyzers can be constructed using the preprocessor probe insertion
and postprocessor report generation approach used for branch coverage
analyzers.

4.28.6. Example.

a. Application . A quicksort program was constructed which contains a
branch to a separate part of the program code that carries out an insertion
sort. The quicksort part of the code branches to the insertion sort. The
quicksort part of the code branches to the insertion sort whenever the size of
the original list to be sorted or or a section of the original list is below
sane threshold value. Insertion sorts are more effective than quicksorts for
small lists and sections of lists because of the smaller constants in their
execution time formulae.

b. Error . The correct threshold value is 11. Due to a typographical
error, the branch to the insertion sort is made whenever the length of the
original list, or the section of the list currently being processed, is less
than or equal to one.

c. Error discovery . Parts of the insertion sort code are not
executed unless the list or list section being sorted is of length greater
than one. Examination of the output from a branch coverage analyzer will
reveal that parts of the program are never executed, regardless of the program
tests which are used. This will alert and draw the attention of the
programmer to the presence of the error.

It is interesting to note that ts error is not discoverable by the examination
of test output data alone since the program will still correctly sort lists.

4.28.7. Effectiveness. Research results confirm that test coverage analyzers
are a necessary and important tool for software validation. Previously
assumed "complete" test sets for production software have been found to test
less than 50% of the branches in a program (1). The use of test coverage
analyzers reveals the inadequacy of such test sets.

Studies indicate that although test coverage of all parts of a program is

important, it is not enough to simply test all branches, or even all program
paths. A large percentage of errors are only detectable when a program is

tested over extremal cases or special values that are closely related to the
functions performed in the program. There appear to be three situations in

Page 117

which branch coverage is effective in finding errors. The first is that in
which an error in part of a program is so destructive that any test that
causes that part of the program to be executed will result in incorrect
output. The second is that in which parts of a program are never used during
any program execution, and the third that in which unexpected parts of a

program are used during some test. Other kinds of errors require additional
test selection techniques, such as functional testing.

M.28.8. Applicability. Test coverage analysis can be applied to any kind of
program in any programming language.

4.28.9. Learning. There are no special learning requirements for the use of
test coverage analyzers. Once a set of tests has been found to be inadequate,
it requires skill to generate data that will cause the unexercised features of
the program to be used during program execution.

4.28.10. Costs. Test coverage analyzers can be inexpensive to use. The
major expense is the capital cost for the tool. It is estimated that the
construction of a test coverage tool requires a level of effort which is more
than that required for a parser but less than twice that effort. The major
part of test coverage analyzer consists of the parser that is used to

determine probe insertion points for a program.

4.28.11. References.

(1) STUCKI, Leon G. , "Automatic Generation of Self-metric Software,"
Proc. 197^ IEEE Symposium on Computer Software Reliability ,94 (1973).

(2) HOWDEN, William E. ,
"Completeness Criteria for Testing Elementary

Program Functions," University of Victoria, Dept. of Mathematics
,
DM-212-IR,

May 1980.

(3) GANNON, Carolyn, "Error Detection Using Path Testing and Static
Analysis"

,

Computer , August 1979.

Page 118

4.29.1. Name. Test data generators.

4.29.2. Basic features. Test data generators are tools which generate test
data to exercise a target program. They may generate data through analysis of
the program itself or through analysis of the expected input to the program in
its normal operating environment. Test data generators may use numerical
integrators and random number generators to create the data.

4.29.3. Information input. Test data generators require as input:
a. the program for which data is to be generated, or
b. a quantifiable description of the danain of possible inputs to

the program from which the test data generator is to produce
representative values.

4.29.4. Information output. The output produced by test data generators is a

set of data that can be used effectively to detect execution-time errors in a

program. It is generally intended that such test data cause the program to be
thoroughly exercised when executed. It is also desirable to have this input
data be representative of the actual data used in real program operation in
order to properly evaluate results obtained from program execution.

4.29.5. Outline of method. Test data generators generate test data for a

program in a systanatic, deterministic manner. There are two major methods
currently used to generate test data. Both methods can be implemented as
fully automated tools.

One method of test data generation analyzes the structure of a program and,

based upon this analysis, generates a set of test data which will drive
execution along a canprehensive set of program paths. This method attonpts to
maximize the structural coverage achieved during execution with the derived
data. Though this approach requires a detailed, rigorous structural analysis
of a program (which is often quite difficult, if not impossible), tools have
been developed which aid in the automation of this analysis. There are tools
which can analyze a program and identify certain structural elements in that
program. Data is then automatically generated that will drive execution
through each of these program elements.

If it is desirable to increase the coverage achieved by the test data, there
also exist tools which use automated program analysis to aid in accomplishing
this. After monitoring program execution with the generated data, it may be
possible to increase the current structural coverage achieved by using
automated tools which assist in determining how to alter the current set of
test data as necessary to cause different branching conditions to occur. Test
data generators that create test data based upon the amount of structural
coverage that the data will achieve are generally very sophisticated tools.
Much research and development work is currently being done in this area.

A second approach to generating test data is based upon analysis of the

possible inputs to a program under real, operational usage. This technique

requires more knowledge of the software for which input data is to be

generated than the previous technique. However, in this approach the output

generated from program execution provides more meaningful results to the user

Page 119

during testing. One such tool that utilizes this technique examines the
domain of all possible input values to a program under normal program
operation and partitions this domain into mutually exclusive subdomains. For
each subdomain there is an associated probability that a sequence of actual
input values will belong to that partition. Data is then generated by
sampling from each subdcmain with the distribution of sampling determined by
the subdomain 's associated probability. Automated tools have been built to
assist in computing these probabilities and in sampling from the appropriate
partitions.

This technique attempts to mirror the intended operation of a program by

generating test data which is representative of its operational input. This
mode of program testing can be very useful during a preliminary period of
software operational use. Using this technique, reasonably accurate
predictions can be made on the software's performance in real operation.

Other test data generators exist which use less sophisticated techniques than
those described above. Many of than generate data based upon commands given
by the user and/or from data descriptions in a program, such as in a COBOL
program's data definition section. This is mainly a COBOL oriented technique
in which the test data is intended to simulate transaction inputs in a

database managonent situation. This technique, however, can be adapted to

other environments.

4.29.6. Example. Test data is required for a new payroll program. A test

data generator is used to generate data normally contained in the payroll
records of each employee on the payroll. The data fields in these records
consists of:

0 Employee identification number
o Employee name
o Indication of hourly or salaried employee
0 Salary rate (if salaried)
0 Hourly rate (if hourly)
o Number of hours worked during last pay period
o Number of tax exanptions declared

Federal withholding tax rate
0 Social security tax rate
o Marital status

A file of records containing this information is created by the test data

generator. For each field in a record, a value with the appropriate data type

is randomly generated (e.g., alphanumeric for Employee Name, integer for

Employee Identification Number, real for Federal Withholding Tax Rate). The

file is then reformatted in an organization that is acceptable to the payroll

system as input. The generated test data will then be fed to the payroll

program to be tested.

4.29.7. Effectiveness. The overall effectiveness of automated test data

generators in use today is generally poor. Though these tools permit the

generation of more test data than any human tester could create (thereby

devising more test cases), a burden is created on the human tester to evaluate

f

Page 120

all the test results obtained fron program execution with the generated data.
Unfortunately, test data generators themselves do not have a facility by which
to verify these test results. In addition, most of the test data generators
in use today create data in a manner which is totally insensitive to the
functional peculiarities of a program. The data may often be meaningless in
content. It may focus testing upon an unimportant portion of the program and
totally ignore critical portions. A human tester, however, often has a

certain intuition about which program areas need to be more thoroughly tested
than others and so creates his test data accordingly. The overall ignorance
of test data generators in determining which data items would offer the most
potential in discovering errors is the major factor behind their current
ineffectiveness in program testing,

4.29.8. Applicability. Test data generators are generally applicable for any
system requiring input data for operation.

4.29.9. Learning. For those test data generators which only require as input
the source program for which test data is desired, very little learning is
required to use these tools. The user interface with the tool will always be
the same, and the User Manual for the tool should provide sufficient
information for its operation. For those data generators which create data
based upon the domain of expected inputs to the program, much more learning is
required. It is necessary to acquire sane knowledge about the application
environment and operational usage of the software so that representative input
data can be generated.

4.29.10. Costs. Automated test data generators are generally quite
expensive. Ihis is primarily due to the relatively infrequent use of these
tools in actual testing environments. The initial costs in building test data
generators have very rarely been offset by benefits obtained in using them.
As yet, the derived utilization of the more sophisticated tools that exist
have not justified their cost. Accordingly, test data generators are among
the most costly testing tools that exist today.

4.29.11. References.

(1) CLARKE, L.A. , "A System to Generate Test Data and Symbolically
Execute Programs," IEEE Transactions on Software Engineering

,
SE-2, Septonber,

1976.

(2) HCWDEN, W.E., "Methodology for Generation of Program Test Data,"

IEEE Transactions m Computers
,
TC-24, May, 1975.

(3) MILLER, E.F. and MELTON, R.A. , "Automated Generation of Testcase
Datasets," 1Q7S International Conference on Reliability , Los Angeles, April,

1975.

(4) NAFTALY, S.M. and COHEN, M.C., "Test Data Generators and

Debugging Syst«ns . . .", Workable Quality Control, Part I and II, Data
Processing Digest , Vol 18, 2 and 3, February and March, 1972.

Page 121

M,30.1. Name. Test support facilities.

4.30.2. Basic features. An environment simulation, or test bed, is a test
site used to test a canponent of software. This test site simulates the
environment under which the software will normally operate. A test bed
permits full control of inputs and computer characteristics, allows processing
of intermediate outputs without destroying simulated execution time, and
allows full test repeatability and diagnostics. To be effective, the
controlled circumstances of the test bed must truly represent the behavior of
the system of which the software is a part.

4.30.3. Information input. The information input to a test bed is the
software for which a testing environment is to be simulated and which will
later be installed in a real system.

4.30.4. Information output. The information output by a test bed are the
results observed through execution of the software installed in the test bed.
This information is used as a preliminary means of determining whether the
software will operate as intended in its real environment.

4.30.5. Outline of method. Test beds provide an environment in which to
monitor the operation of software prior to installation in a real system. To
be of value, this environment must realistically reflect those properties of
the system which will affect or be affected by the operation of the software.
However, the test bed should simulate only those ccxnponents in the systan
which the software requires as a minimum interface with the system. This will
permit testing to focus only on the software component for which the test bed
is built.

Test beds are built through the consideration of, and proper balance between,
three major factors:

o the amount of realism required by the test bed to properly reflect the
operation of systan properties,

o resources available to build the test bed, and
o the ability of the test bed to focus only on the software being tested.

Test beds ccme in many forms, depending on the level of testing desired. For
single module testing, a test bed may consist merely of test data and a test
driver. A test driver is a program which feeds input data to the program
module being tested, causes the module to be executed, and collects the output
generated during the program execution. If a completed, but non-final version
of software is to be tested, the test bed may also include stubs. A stub is a

dummy routine that simulates the operation of a module that is invoked within
a test. Stubs can be as simple as routines that automatically return on a

call, or they can be more complicated and return simulated results. The final

version of the software may be linked with other software subsystems in a

larger total system. The test bed for one component in the system may consist

of those system canponents which directly interface with the canponent being

tested.

Page 122

As illustrated in the above examples, test beds permit the testing of a

canponent of a system without requiring the availability of the full, complete
syston. They merely supply the inputs required by the software component to
be executed and provide a repository for outputs to be placed for analysis.
In addition, test beds may contain monitoring devices which collect and
display intermediate outputs during program execution. In this way, test beds
provide the means of observing the operation of software as a component of a
system without requiring the availability of other system components, which
may be unreliable.

4.30.6. Example. The federal government has just distributed to all American
corporations new tax rates to be imposed on the earnings of all employees
beginning at the start of next year. Due to these new tax rates. Company XYZ
has had to revise its current payroll program so that it will accommodate the
new federal regulations by January 1

.

In order to test this new program, a test bed is being constructed to simulate
the operation of the payroll system. To simulate the inputs to this system, a
test file of data containing all the information necessary for the system to
operate is created. The file consists of a record of information for each
employee in the company. Each record contains the following data:

o Employee identification number
o Employee name
o Indication of hourly or salaried employee
o Salary rate (if salaried)
o Hourly rate (if hourly)
o Number of hours worked during last pay period
o Number of tax exemptions declared
o Federal withholding tax rate
0 Social security tax rate
0 Marital status

A test driver controls the execution of the payroll program. It feeds the

above data to the program in the proper format. At the end of program
execution, the driver simulates the check-writing facility of the payroll
system in the following manner. It directs the output of the payroll program
to an output file. The output consists of a record of data for each canpany
employee. Each record contains the following information:

o Employee name
o Employee social security number
o Check date
o Total employee earnings less deductions

The test driver then dumps this information from the output file onto a

hardcopy device so that the output can be analyzed and verified for
correctness.

4.30.7. Effectiveness. The use of test beds has proven to be a highly
effective and widely used technique to test the operation of software. The
use of test drivers, in particular, is one of the most widely used testing

Page 123

techniques,

M.30,8. Applicability. This method is generally applicable, fran single
module to large system testing and for all types of computing applications.

4.30.9. Learning. In order to build an effective test bed, it is necessary
to develop a solid understanding of the software and its dynamic operation in

a syst«n. This understanding should aid in determining what parts of the test
bed deserve the most attention during its construction. In addition,
knowledge of the dynamic nature of a program in a system is required in

gathering useful intermediate outputs during program execution and in properly
examining these results.

4.30.10. Cost. The amount of realism desired in a test bed will be the

largest factor affecting cost. Building a realistic test bed may require the
purchasing of new hardware and the development of additional software in order
to properly simulate an entire system. In addition, these added resources may

be so specialized that they may seldan, if ever, be used again in other
applications. In this way, very sophisticated test beds may not prove to be
highly cost-effective.

4.30.11. References.

(1) HARTVfICK, R.D., "The Advanced Targeting Study," SAMSO-TR-71-124
,

Volume 1 , June 1971

.

(2) PANZL, D.J., "Automatic Software Test Drivers," IEEE Computer
,

April 1978.

Page 124

4.31.1. Name. Walkthroughs.

4.31.2. Basic features. Walkthroughs (WT) constitute a structured series of
peer reviews of a system canponent used to enforce standards, detect errors,
and improve development visibility and system quality. They may be conducted
during any of the lifecycle phases and may also be applied to documentation.
An identifying feature of a WT is that it is generally presented by the
creator or producer of the material being reviewed rather than an independent
or third party. In addition, because of the presenter's advance preparation
and his familiarity with the material, less preparation by other members is
required.

4.31.3. Information input.

a. Walkthrough Package. This set of materials includes all necessary
backup documentation for the WT. Examples of materials made available include
(but are not limited to) module flow charts, system flow charts, HIPO charts
(or other high-level representation schones), and module listings. Other
important materials may include sections of the Functional Specification,
SystQn/Subsystan Specification and Database Specification (as applicable)
which pertain to the component under review. Often, copies of applicable
standards are also part of the WT input.

b. Questions List. Some organizations which practice a more formal
version of a WT require reviewers to submit the component to the presenter
prior to the WT. This enables the presenter to be better prepared to respond
to the questions at the WT.

4.31.4. Information output,

a. Action List. During the WT, a list of problans and questions is

recorded. This action list is distributed to all participants and is used by
the producer (reviewee) as the basis for subsequent changes to the canponent.

b. Walkthroughs Form. During the course of the WT, this form is

completed by an individual with recording responsibilities. The form
identifies participants and their responsibilities, the agenda for the WT, the
decision of the WT (accept as-is, revise, revise and schedule another WT), and
is signed by all participants at the end of the WT.

4.31.5. Outline of method.

a. Roles and Responsibilities. The group of individuals
participating in a WT are usually referred to as reviewers. The leader of the
WT is called the coordinator. The coordinator is responsible for WT planning,

organization, and distribution of materials. The WT is called to order,

moderated, and summarized by the coordinator.

The producer (or reviewee) is that individual whose module or ccxnponent is to

be reviewed during the WT. In most cases, the producer is generally

responsible for selecting the coordinator and review team (in most situations;
sometimes management may perform this function) and providing the WT package

Page 125

materials to the coordinator. During the WT the producer initially provides a

general description of the module, then leads the reviewers through a

detailed, step-by-step description of the module. After the WT the producer
should objectively consider every item on the action list and make changes to
his product as he deems appropriate.

The reviewers are composed of individuals from varying backgrounds and fulfill
responsibilities based upon their area of specialization. Some roles which
are fulfilled are those of recorder and representatives of the user, standards
and maintenance groups. In general, these participants are responsible for
being familiar with the material being presented, submitting comments prior to
the review, and listening and contributing during the WT. At the end of the
review each must cast a vote indicating whether the module is acceptable,
needs revision, or is rejected.

Because of the organization which each is representing, some specific
responsibilities are associated with each reviewer. In addition to
contributing to the WT, the recorder must make written note of the
participants assembled and the action items which result from the review.

The user representative is often involved during early WT's of a module (i.e.,

during requiranents analysis and design). His responsibility is to ensure
that the proposed solution is usable and does, in fact, meet the needs of his
organization.

The standards representative, referred to by sane sources as a "standards
bearer," is responsible for checking that the product being reviewed adheres
to organization standards. In some cases, he may be asked to provide input to
a request to deviate from a standard.

The maintenance representative, referred to by some sources as the

"maintenance oracle," must view the product from the standpoint of the group
who will be required to maintain the product. Items which may be of prime
concern to this individual are documentation and program comments, program
functionality or modularity, naming conventions, and data decomposition.

b. The Process. Many organizations practice walk-throughs vrtiich

differ radically in formality. The process described in the following
paragraphs falls at the midpoint between these extremes. There are four basic

steps in the process.

. Scheduling. When the work item module is very near completion

(including documentation), the producer notifies managonent and selects

the WT participants. The WT date is agreed upon and facilities are
scheduled. The WT should not exceed 2 hours and is best is kept to less

than 1 hour. This implies that the work item is of manageable size.

Sources suggest the following guidelines for work package size:

o 5-10 pages of specifications for a requirements WT,

o 1-5 structure charts (or HIPO diagrams) for a preliminary cr

detailed design WT,

o 50-100 lines of code for a code or test WT.

Page 126

2. Preparation. The producer collects appropriate information for use
at the WT and gives it to the coordinator for distribution. Each
reviewer studies the materials, making a note of questions or comments.
Most sources estimate that a maximum of 1 hour preparation by reviewers
is necessary.

3. Walkthrough Meeting. After the coordinator opens the review, the
producer uses test data to simulate the operation of the component.
Each specification, design phrase, or line of code is reviewed. The
recorder documents comments or questions usng the action list. Each
reviewer signs the Walkthrough, documenting the decision of the
meeting (accept product as-is, accept with modification, or reject).
The recorder provides a copy of action list to all participants and
supplies a copy of the Walkthrough Form to management.

4. Re-Work. The producer reviews each action item, making product
changes as he feels necessary. He may decide to implonent all, part
or none of the suggested changes. No follow-up is held to ensure that
suggestions are incorporated; it is assumed that the producer is in the
best position to make implementation decisions. Major items on the
action list may be summarized at the next WT for the module.

M.31.6. Example. One week prior to completion of coding of a module of
75-100 lines, the producer notifies his line manager of the need for a WT,
Upon managonent approval the producer selects a coordinator (one of the lead
analysts from the develofxnent shop), a standards representative (from the
Quality Assurance group), a maintenance representative (from the Production
Program organization), and a user representative (from the group requesting
the system) . Three days prior to the inspection he notifies the coordinator
of the planned WT and suggested participants. At this time he gives the
coordinator copies of the program listing (including comments), a

syst«ns-level flowchart depicting how it interfaces with other modules, a data
dictionary, a set of test data items, and a section from the Functional
Specification detailing the user requiranent associated with the module.

The coordinator notifies the selected participants, receives their ccmnitment
to attend and distributes to each a copy of the materials furnished by the
producer.

Each participant reviews the materials. The standards representative finds
two instances of deviations from published standards and notifies the
coordinator (who in turn notifies the producer) . The user representative
verifies that the code addresses each designed aspect by reviewing the
proceedings of the previous design WT. He is satisfied that each requirement
has been addressed and notifies the coordinator that he finds no errors and
feels that his presence is not required for the code walkthrough. The
maintenance representative finds no immediate concerns with the code but makes
a note to inquire about the structure of the data files.

The WT begins with a brief introduction by the coordinator, who then turns the

review over to the producer. He uses the systan flowchart to give a summary
of the functions of the module and proceeds to go line-by-line through the

Page 127

code using the selected test data. Upon reaching the lines of concern to the
standards representative, a brief discussion occurs to explain the reasons for
the deviations from standard. In this instance, the reviewers are satisfied
that the deviations are justified. The recorder so notes on the action list
and the meeting proceeds. The maintenance representative points out one line
of highly complex code and suggests that it be broken up into two less complex
steps. Agreement cannot be immediately reached, so the suggestion is added to
the action list.

At the end of the module review the coordinator seeks a decision from the

reviewers about the module. They agree to give their approval, providing that
the suggested changes are made and that the producer will further investigate
the effect of breaking up the complex line of code. Each signs the

Walkthrough form and the meeting is adjourned.

The recorder distributes a copy of the action to all participants. The
producer makes the changes he feels are necessary. He runs a benchmark of the
module with the ccmplex code and again with the code broken down. Since no
significant loss of efficiency resulted, he modifies the code. The module is

now ready for unit test which may be followed by another WT.

4.31.7. Effectiveness. Studies have been conducted which identify the

following qualitative benefits of Walkthroughs:

o higher status visibility
0 decreased debugging time
0 early detection of design and analysis errors which would be much more

costly to correct in later develcxnent phases
0 identification of design or code inefficiencies
o ensuring adherence to standards
o increased program readability
0 increased user satisfaction
o communication of new ideas or technology
o increased maintainability '

Little data is available which identifies the quantitative benefits

attributable to the use of Walkthroughs. However, one source estimates that

the number of errors in production programs was reduced by a factor of ten.

4.31.8. Applicability. The Walkthrough is applicable to large or small

projects during all development phases and is not limited by project type or

ccanplexity.

4.31.9. Learning. The Walkthrough does not require special training to

iraplonent. However, experience has shown that the effectiveness of the

Walkthrough increases as the WT experience of the reviewers increases.

4.31.10. Costs. The WT requires no special tools or equipment to implement.

The direct costs are equal to the expense associated with the human resources

involved.

Page 128

4.3K11. References.

(1) "Code Reading: Structured Walkthroughs and Inspections", IBM IPTO
Support Group, World Trade Systoii Center, Postbus 60, Zoetenmeer, Netherlands,
March 1976.

(2) FAGAN, M. E.
,
"Design and Code Inspections to Reduce Errors in

Program Development", JM Systems Journal , No. 3, 1976.

(3) FREEDMAN, D. P., and WEINBERG, G. M., "Ethno - Technical Review
Handbook", Ethnotech, Inc., 1977.

(4) DALY, E. B. ,
"Management of Software Development", IEEE

Transactions m Software Engineering, May 1977.

(5) SHNEIDERMAN, Ben, "Software Psychology - Human Factors in Computer
and Information Syst«ns," Winthrop Publishing, 1980,

Page 129

GLOSSARY

BLACK BOX TESTING: see FUNCTIONAL TESTING

BOUNDARY VALUE ANALYSIS: a selection technique in which test data is chosen
to lie along "boundaries" or extremes of input domain (or output range)
classes, data structures, procedure parameters, etc. Choices often include
maximum, minimum, and trival values or parameters. This technique is often
called stress testing.

BRANCH TESTING: a test method satisfying coverage criteria that require, for
each decision point, each possible branch be executed at least once.

CAUSE-EFFECT GRAPHING: test data selection technique. The inputs and outputs
of the program are determined through analysis of the requirements. A minimal
set of inputs is chosen avoiding the testing of multiple inputs which cause
identical output.

COMPLETENESS: the property that all necessary parts of the entity in question
are included, Ccxnpleteness of a product is often used to express the fact
that all requirements have been met by the product.

CONSISTENCY: the property of logical coherency amoung constitutant parts.

Consistency may also be expressed as adherence to a given set of rules.

CORRECTNESS: the extent to which software is free fran design and coding
defects, i.e. fault free. It is also the extent to which software meets its
specified requirements and user objectives. (IEEE Software Engineering
Terminology)

DEBUGGING: the process of correcting syntactic and logical errors detected

during coding. With the primary goal of obtaining an executing piece of code,

debugging shares with testing certain techniques and strategies but differs in

its usual ad hoc application and local scope.

DESIGN BASED FUNCTIONAL TESTING: the application of test data derived through

functional analysis (see FUNCTIONAL TESTING) extended to include design
functions as well as requirement functions,

DRIVER: code which sets up an environment and calls a module for test,

DYNAMIC ANALYSIS: involves execution or simulation of a develofment phase

product. It detects errors by analyzing the response of a product to sets of

input data,

EXTREMAL TEST DATA: test data that is at the extremes, or boundaries, of the

domain of an input variable or which produces results at the boundaries of an

output domain.

FORMAL ANALYSIS: uses rigorous mathematical techniques to analyze the

algorithms of a solution. The algorithms may be analyzed for numerical

properties, efficiency, and/or correctness.

Page 130

FUNCTIONAL TESTING: application of test data derived from the specified
functional requiranents without regard to the final program structure.

INSPECTION: a manual analysis technique in which the program (requiranents,
design, or code) is examined in a very formal and disciplined manner to
discover errors.

INSTRUMENTATION: the insertion of additional code into the program in order
to collect information about program behavior during program execution,

INVALID INPUT (TEST DATA FOR INVALID INPUT DOMAIN) : test data that lies
outside the danain of the program's function.

PATH TESTING: a test method satisfying coverage criteria that each logical
path through the program be tested. Often paths through the program are
grouped into a finite set of classes; one path frcxn each class is then
tested

.

PROOF OF CORRECTNESS: the use of techniques of mathematical logic to infer
that a relation between program variables assumed true at program entry
implies that another relation between program variables holds at program exit.

REGRESSION TESTING: testing of a previously validated program which has been
modified for extension or correction.

SIMULATION: use of an executable model to represent the behavior of an

object. During testing the computational hardware, the external environment,
and even code segments may be simulated.

SPECIAL TEST DATA: test data based on input values that are likely to require
special handling by the program.

STATEMENT TESTING: a test method satisfying the criterion that each statement
in a program be executed at least once during program testing.

STATIC ANALYSIS: direct analysis of the form and structure of a product
without executing the product. It may be applied to the requirorients, design
or code.

STRESS TESTING: see BOUNDARY VALUE ANALYSIS.

STUB: special code segments that when invoked by a code segment under test
will simulate the behavior of designed and specified modules not yet
constructed.

SYMBOLIC EXECUTION: an analysis technique that derives a symbolic expression
for each program path.

TEST DATA SET : set of input elements used in the testing process.

Page 131

TEST DRIVER: a program which directs the execution of another program against
a collection of test data sets. Usually, the test driver records and
organizes the output generated as the tests are run.

TEST HARNESS: see TEST DRIVER.

TESTING: examination of the behavior of a program by executing the program on

sample data sets.

VALID INPUT (TEST DATA FOR A VALID INPUT DOMAIN) : test data that lies within
the domain of the function represented by the program.

VALIDATION: determination of the correctness of the final program or software
produced frcsn a developnent project with respect to the user needs and
requirements.

VERIFICATION: in general, the demonstration of consistency, completeness, and
correctness of the software at each stage and between each stage of the
development lifecycle.

WALKTHROUGH: a manual analysis technique in which the module author describes
the module's structure and logic to an audience of colleagues.

NOTE: Most of the definitions above are fran:

ADRION,W.R. ,BRANSTAD,M.A. ,and CHERNIAVSKY, J. C.
, "Validation, Verification,

and Testing", NBS Special Publicaiton 500-75.

NBS-LMA (REV. 2-BC)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS SP 500-93

2. 'Performing Organ. Report No, 3. Publication Date

beptembe r I))0Z

4. TITLE AND SUBTITLE
Computer Science and Technology:

Software Validation, Verification, and Testing Technique and Tool Reference Guide

5. AUTHOR(S)

Patricia B. Powell, Editor

6. PERFORMING ORG.AN I ZATION (if joint or other than NBS. see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

Boeing Computer Services Co,

Seattle, WA 98(24

7. Contract/Grant No.

NB79SBCA0102
8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

Same

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 82-600589

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most si gnificant information. If document includes a si gnificant
bibliography or literature survey, mention it here)

Thirty techniques and tools for validation, verification, and testing (V,V&T) are
described. Each description includes the basic features of the technique or tool,
the input, the output, an example, an assessment of the effectiveness and usability,
applicability, an estimate of the learning time and training, an estimate of needed
resources, and references.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

automated software tools; dynamic analysis; formal analysis; software testing;
software verification; static analysis; test coverage; validation; V,V&T techniques;
V,V&T tools.

13. AVAILABILITY

[^Unlimited

I I

For Official Distribution. Do Not Release to NTIS

1"^ Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.^ 20402.

Q[] Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO, OF
PRINTED PAGES

138

15. Price

$6.00

USCOMM-OC 6043-P80

•ft U . S . GOVERNMENT PRINTING OFFICE: 1 9 8 2-3 6 0- 9 97 / 2 2 4 4

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

1

/

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

$18; foreign $22.50. Single copy, $4.25 domestic; $5.35 foreign.

NONPERIODICALS

Monographs— Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications— include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and

bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and

studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-

piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,
systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at N BS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of-

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order ihe above NBS puhlicaiions from: Superintendent of Docu-

ments, Government Printing Office. Washington, DC 20402.

Order the following A'55 publications—FIPS and NBSIR's—from
the National Technical Information Services. Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 1 1717 (38 FR 12315, dated May 11. 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield. VA 22161,

in paper copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Washington, D C. 20234
Official Business

Penalty for Private Use $300

POSTAGE AND FEES PAID
U S DEPARTMENT OF COMMERCE

COM--215

THIRD CLASS
BULK RATE

		Superintendent of Documents
	2022-04-16T08:10:31-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

