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ABSTRACT 
This paper introduces NIST’s Sustainable Process Analytics Formalism (SPAF) to facilitate the use of 
simulation and optimization technologies for decision support in sustainable manufacturing. SPAF allows 
formal modeling of modular, extensible, and reusable process components and enables sustainability 
performance prediction, what-if analysis, and decision optimization based on mathematical programming. 
SPAF models describe (1) process structure and resource flow, (2) process data, (3) control variables, and 
(4) computation of sustainability metrics, constraints, and objectives. This paper presents the SPAF 
syntax and formal semantics, provides a sound and complete algorithm to translate SPAF models into 
formal mathematical programming models, and illustrates the use of SPAF through a manufacturing 
process example. 
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1. INTRODUCTION 

To be successful in today's complex, rapidly changing, and highly competitive world, manufacturers must 
begin using sustainable practices throughout their manufacturing operations. The United States 
Department of Commerce (DOC) identifies Sustainable Manufacturing (SM) as one of its high-priority 
performance goals, defining SM as the “creation of manufactured products that use processes that 
minimize negative environmental impacts, conserve energy and natural resources, are safe for employees, 
communities, and consumers, and are economically sound” (DOC 2010).  
 Increasingly, some large companies are making efforts to make their operations and manufacturing 
processes more sustainable (Fujitsu 2011, GM 2010, Rockwell Automation 2010). However, most of 
these projects are customized and conducted on a piecemeal basis. The solutions are normally not easily 
reusable and not easily extensible. The effect of many complex interactions is often overlooked. 
Furthermore, most of the small and medium-sized enterprises (SMEs) lack the capability to manage 
energy and material efficiency in a systematic, quantitative, and optimal manner required to meet their 
sustainability goals. To address these challenges, a standard formal methodology is needed to model, 
exchange, and reuse manufacturing process knowledge for effective sustainability performance analysis.  
 This is the focus of this paper. A Sustainable Process Analytics Formalism (SPAF) has been developed 
at the National Institute of Standards and Technology (NIST) to facilitate the use of simulation and 
optimization technologies for decision support in sustainable manufacturing. SPAF allows formal 
modeling of modular, extensible and reusable process components and enables sustainability performance 
prediction, what-if analysis and decision optimization based on mathematical programming. More 
specifically, the contributions of this paper include (1) the concept of SPAF that enables formal 
representation of sustainable process structure and resource flow, data, control parameters, metrics, and 
constraints; (2) the syntax and formal semantics of SPAF; (3) a sound and complete algorithm to translate 
SPAF models into formal mathematical programming models; and (4) a sustainable manufacturing 
example that illustrates SPAF. 
 The rest of this paper is organized as follows. Section 2 briefly discusses the needs for the SPAF; 
section 3 introduces the context and concept of SPAF and potential users; section 4 explains the SPAF 
using an example; in section 5, a summary is provided and future work are discussed. Finally, the 
appendix presents the detail SPAF syntax and semantics. 
 

2. THE NEEDS FOR SUSTAINABLE PROCESS ANALYTICS FORMALISM  

Formal description and representation of sustainable processes also provides a basis for standardization. 
Such standardization in turn is the foundation for system integration, process analysis, and decision 
optimization, all are essential to the improvement of decision-making on factory floors (NIST 2010, 
Tanzil and Beloff 2006, NRC 1999). Complex sustainability analysis requires formal simulation (e.g., 
Delmia Quest) or optimization models (e.g., A Modeling Language for Mathematical Programming 
(AMPL)) (Berglund et al. 2011, AMPL 2011). Modeling and optimization have been identified as a key 
enabler for improving SM in the future (SMLC 2011), but require significant modeling expertise and a 
substantial development effort. SPAF eases the modeling process by providing standard description and 
tools associated with it, so that the availability, use, and effectiveness of modeling and optimization 
technologies can be increased. Currently, different analysis tools such as simulation, optimization, and 
database query languages require different data representation and mathematical abstractions for 
modeling. Thus, even for the same manufacturing process, the knowledge needs to be represented 
differently multiple times, rather than just once. This makes model development, modification, and 
extension very difficult. SPAF facilitates the increase of model reuse. In summary, SPAF is designed to 
help companies, especially for SMEs, overcome the following major challenges: (1) lack of modeling and 

http://www.1000ventures.com/business_guide/crosscuttings/new_economy_transition.html


 
 

operation research expertise and (2) duplication of modeling efforts. To satisfy manufacturers’ needs, we 
have decided to include the following desirable features for SPAF: 

Data manipulation and querying: SPAF supports data storage, manipulation, and querying. For 
example, given a model of a specific milling machine, users may want to query the machine specification 
data provided by the vendor. 

What-if analysis: SPAF supports what-if analysis by computing a range of sustainability metrics 
as a function of non-controllable parameters and control variables in manufacturing processes, based on 
the formal representation of manufacturing processes and sustainability metrics. For example, given a 
particular setup of a milling machine, users may want to compute the energy consumption for that setup. 

Decision optimization: SPAF enables the formulation of optimization problems for deriving the 
best option among all alternatives of the operational setting of machines, production plan, and   
investment options. For example, given a model of a specific milling machine, users may want to find out 
a setting of the machine that produces the required part while minimizing the energy consumption. 

Unified modeling for different tasks: SPAF allows the sustainable process knowledge being 
represented once, used many times, for different analyses such as data query, what-if analysis, and 
decision optimization. Figure 1 shows the comparison between the current modeling approach (left hand 
side of the Figure) and the unified SPAF modeling approach (right hand side of Figure 1). In current 
modeling approaches, duplicated modeling efforts are needed even for the same manufacturing problem 
for different kinds of analysis tasks. For example, simulation, optimization, and Life Cycle Assessment 
(LCA) of a machining process have totally different abstractions and modeling methods. They are 
independent of each other. However, the unified SPAF modeling approach enables modeling the 
machining process using SPAF once, and the same model then can be used for data query, what-if 
analysis, and decision optimization.  

Built-in support for process modeling and sustainability metrics: SPAF provides modeling 
capability for hierarchical composition of processes and resource flows. Representation of sustainable 
metrics such as CO2 emissions, energy and material consumption, and cost are stored in a model library 
for reuse. 

Modular, extensible, and reusable models: SPAF enables modular model design and creation of 
model libraries. Modular model design provides definitions for structuring process knowledge into 
discrete, scalable, and reusable modules consisting of isolated, self-contained functional components and 
linking these components through well-defined interfaces. A model library stores these model 
components. Model components in a library can be used as building blocks to formulate new SPAF 
models for different problems.  For example, the users should be able to compose a machine shop model 
from a number of machine and assembly model components in the library. 

Ease of use: SPAF makes process analysis modeling more intuitive and straightforward for 
domain users such as manufacturing engineers or decision makers. Composing a bigger model using 
existing model components in a library should be an easy process. No extensive programming, 
mathematics, operation research, and optimization knowledge is required. The task could be simply drag-
and-drops if a graphical user interface is developed.  

 



 
 

 
Figure 1 Current modeling approach and the unified SPAF modeling approach 

 

To better understand the SPAF requirements, a variety of modeling languages and formalisms, listed in 
Table 1, have been analyzed from the perspective of the desirable features and functionalities discussed 
above. These languages and formalism are selected because of their suitability for at least one of the 
features discussed above. They include: 

• Process description languages such as Process Specification Language (PSL) (ISO 2004), Business 
Process Model and Notation (BPMN) (OMG, 2010), and Systems Modeling Language (SysML) 
(OMG, 2012).  

• Database query languages such as Structured Query Language (SQL) (ISO 2011) and Extensible 
Markup Language (XML) Query (XQuery). 

• Simulation languages such as SIMAN – a general-purpose SIMulation ANalysis program for 
modeling combined discrete-continuous systems (Pegden et al. 1995) and Object-Oriented (OO) 
languages. 

• Optimization languages such as AMPL (AMPL, 2011), The General Algebraic Modeling System 
(GAMS) (GAMS, 2010), and Optimization Programming Language (OPL)  (IBM, 2012). 

• Non-deterministic optimization semantics for corresponding formalism, which is used for CoJava 
(Brodsky & Nash, 2005) and Decision Guidance Query Language (DGQL) (Brodsky & Wang, 2008). 

 

Process description languages are designed for process description and modeling with a modular, 
extensible, and reusable approach and can be easy to use via a graphical user interface. The SysML 
parametric models support mathematical expression for (e.g., performance constraints) the system being 
designed and provide a foundation for what-if analysis. However, they do not support direct data 
manipulation and querying, optimization, and unified modeling of different tasks. 

Database query languages are specifically designed for data manipulation and querying. They are 
relatively easy to use, SQL-like skills are sufficient for problem modeling. However, they only allow 
some limited what-if analysis and optimization for what can be expressed. There is no unified modeling 
of different tasks. These languages do not have built-in process and sustainability metrics modeling, they 
are not easily reusable.  

http://en.wikipedia.org/wiki/Nondeterministic_algorithm


 
 

Simulation languages are excellent for what-if analysis. Some simulation tools support process modeling 
and have user-friendly graphical user interfaces. A few of them even started to support sustainability 
modeling, e.g., Witness (Waller, 2012). In most cases, simulation languages support modular, extensible, 
and reusable modeling. However, they are not the appropriate tools for data querying and optimization. 
Optimization by simulation approach is time-consuming and the results may not be as accurate as those 
derived by using optimization tools. There is no unified modeling capability for different tasks discussed 
above. Basic simulation modeling of processes requires object-oriented programming skills that most 
manufacturing or process engineers do not have.  

Optimization languages are designed for optimization modeling. Some optimization languages such as 
OPL provide basic support for data manipulation and querying. However, they are not designed for what-
if analysis and do not provide unified modeling capability. There is no built-in support for process and 
sustainability modeling. Current optimization modeling languages are not developed for reuse and 
modular model construction. Mathematical and optimization modeling skills are required to use them.   

Optimization semantics for OO programming and database query languages are developed to 
provide features such as data manipulation and querying, what-if analysis, optimization, and unified 
modeling of these different tasks. However, there is no built-in support for process and sustainability 
metrics modeling, even though it potentially can be built on top of CoJava (Brodsky and Nash, 2005), 
which requires Java programming skills. On the other hand, DGQL (Brodsky and Wang, 2008) is 
relatively easy to use, just like SQL.  
 

SPAF is designed to allow data querying, what-if analysis, optimization, and unified modeling of these 
different tasks. SPAF provides built-in support for process and sustainability metrics modeling with a 
components’ library. SPAF also supports modularity, extensibility, reusability, and ease of use especially, 
with a graphical interface. However, the modeling effort will be similar to OPL for new process model 
components if there is no model library. 
 
 Table 1 A comparison table of SPAF and other languages 

 

            Model 
         Languages 
 
Features       

Process 
Description 
Languages 
(PSL, 
BPMN, 
SysML) 

Database 
Query 
Languages 
(SQL, 
XQuery) 

Simulation 
Languages 
(SIMAN, OO 
languages) 

Optimization 
Modeling Languages 
(e.g., AMPL, GAMS, 
OPL) 

Optimization 
Semantics for 
OO and Query 
Lang’s (CoJava, 
DGQL) 

Design goal for 
SPAF 

Data 
manipulation 
and querying 

Not 
directly 

Yes Require 
modeling and 
programming 

AMPL and GAMS are 
not designed for 

query processing; 
OPL has some built-

in support 

Yes Yes 

What-if 
analysis 

Process 
structure 
and flow 
etc, not 
analytics 

Limited (only 
what can be 
expressed as 
DB queries) 

Yes No Yes Yes 

Optimization No Limited and 
not efficient 

Limited and 
not efficient 

Yes Yes Yes 

Unified 
modeling for 
different tasks 

No No No No Yes Yes 

Built-in support Can be Can be Can be built on No Can be Yes with a 



 
 

for process 
modeling and 
sustainability 
metrics 

extended extended  top extended components 
library 

 

Modular, 
extensible, and 
reusable  

Yes Does not 
support OO 
extensibility 

Yes Difficult to reuse 
models  

CoJava - Yes; 
DGQL – just like 

SQL 

Yes with a 
components 

library 
 

Ease of use (by 
manufacturing 
and business 
users) 

Can be 
easy via 

graphical 
interface 

Relatively 
easy (SQL 

skills) 

Programming 
skills to model 

analytics; 
Many allow 
high-level 

composition 
functionality 

Math/optimization 
modeling skills 

CoJava 
(programming 

skills); 
DGQL (SQL 

skills) 

Easy for 
composite 

process, esp. if a 
graphical 

interface is 
added; similar 

to OPL for 
atomic process 

models  
  

3. THE CONCEPT OF SUSTAINABLE PROCESS ANALYTICS FORMALISM  

3.1 Context of SPAF 

To explain the context of SPAF, a five-stage SM improvement methodology is depicted in Figure 2. This 
methodology is based on the ideas of the Six Sigma DMAIC (Define, Measure, Analyze, Improve, and 
Control) methodology (Chieh, 2010). The methodology proceeds through the following stages:  
• Stage 1 - High-Level Assessment: Each factory assesses its sustainability level and status, defines 

high-level sustainability goals, and identifies areas for improvement regarding its organizational 
sustainability performance (for both its processes and facilities).  

• Stage 2 - Problem Identification and Data Collection: To address areas of improvement identified in 
Stage 1, more specific case scenarios need to be defined. Modeling objectives, constraints, metrics, 
and control variables related to each case scenario need to be identified. Relevant data, both 
manufacturing process- and sustainability- related information, need to be measured, collected, 
and/or estimated. In reality, process- and sustainability- related data are not always available and 
when they are, they may exist in various forms, and would typically not yet be formalized.  

• Stage 3 - Formal Process Modeling and Data Representation: To prepare for formal analysis and 
optimization modeling, case scenarios defined in Stage 2 need to be formally described, data 
collected need to be formally represented, and inputs and controls need to be modeled in a way so 
that the values of decision variables could be instantiated.  

• Stage 4 - Decision Guidance through What-if Analysis and Decision Optimization: The formal 
process modeling and data representation completed in Stage 3 need to be translated into models that 
can be solved by commercial off-the-shelf (COTS) tools. Different tasks such as data querying, 
what-if analysis, and decision optimization will be performed for evaluation and analysis purposes. 
The analyses provide actionable recommendations to decision makers for improvement 
implementation.  

• Stage 5 - Implementation/Execution: Decision makers can implement and execute the actionable 
recommendations derived from Stage 4 for sustainability improvement. Occasionally, the evaluation 
in the previous stage may determine that the goals cannot be achieved using the identified alternative 
and hence this implementation stage may involve abandoning the now determined-to-be flawed 
improvement plan. In either case, upon completion of Stage 5, users can continue to the next 
iteration of the continuous improvement cycle.  

 



 
 

The SPAF supports this methodology at stages 3 and 4 in Figure 2. Note that the formal process modeling 
and data representation is done uniformly and only once for both what-if analysis and decision 
optimization as shown in the right hand side of Figure 1. The SPAF models enable decision makers to ask 
questions in the form of queries that provide computation and optimization solutions as actionable 
recommendations. SPAF queries include: 

1. Process data queries that resemble typical database queries and can be asked directly against the 
explicit data. 

2. What-if analysis queries to compute certain metrics for different scenarios based on available input 
information. 

3. Decision optimization queries to find the best one (minimum or maximum as required) out of all 
alternatives that satisfy the constraints by using decision variables. 

 

 
 

Figure 2 A model-based SM improvement methodology with SPAF 
 

3.2 SPAF concept through a manufacturing example  

The detailed SPAF syntax and formal semantics will be presented as an appendix. In this subsection, the 
concept of SPAF modeling is illustrated using an example of a manufacturing process. Assuming we have 
decided to analyze and optimize sustainability performance for a manufacturing process and collected 
data for the study. We need to first describe formally the process using SPAF and then solve the problem. 
The manufacturing process, depicted in Figure 3, has five sub-processes, three machining processes and 
two assembly processes. The composite process (large rectangle), the sub-processes (small rectangles), 
flows (lines), and flow aggregators (triangles) are depicted. Two parts, Part 1 and Part 2, provide input for 



 
 

the three machining processes. The machining processes produce three intermediate components, Comp 
1, Comp 2, and Comp 3. The components produced by the machines, A to C, flow to the assembly 
processes to be assembled into final products, Product 1 and Product 2. In this example, metrics that can 
be used to describe the composite process are cost and CO2 emissions. In this example, three specific 
kinds of questions decision makers pose may include: 

1. Process data questions, e.g., what is the maximum capacity of Machine A? How many of Product 2 
needs to be produced over a scheduled week? 

2. What-if analysis questions, e.g., what are the total cost, energy consumption, and CO2 emissions for a 
scheduled weekly production under a particular production plan? 

3. Decision optimization questions, e.g., how should production plans  be set for the machines, the 
assembly stations, and the flow distributions among them so that the scheduled weekly production 
can be met within the weekly CO2 cap and at a minimal cost? 
 

To answer these questions, the process structure, flow, sub-process relationships, and associated data need 
to be clearly understood; and the objective, metrics, constraints, and control variables need to be 
identified. The models can be expressed with identified data and variables and metrics computation 
expressions. Optimization models can be formulated with constraints and objectives. The detail SPAF 
modeling will be discussed in Section 4. 

 
Figure 3 An example: a two-product-manufacturing process for SPAF modeling  

3.3 Structures of SPAF 

The goals of SPAF development are as follows. On the one hand, SPAF needs to be sufficiently expressive 
for the SM key performance indicators such as energy and material consumption, emission, and cost in 
industrial scenarios. On the other hand, the formalism needs to be simple for ease of use, which means 
that high-level abstraction needs to be used. Relevant industry-accepted languages, standards, and tools 
should be used. The SPAF models are human and machine readable, ready for database storage, translator 
development, and exchange among modelers/users/systems.  



 
 

 The SPAF includes two major parts: (1) Generic analytics language – represents generic analytics 
knowledge and (2) Process description and sustainability metrics model templates - supports sustainable 
process modeling and sustainability metrics computation.  

 Figure 4 presents a class diagram for the generic part of the SPAF to describe the structure of the 
components and their relationships. The components are explained as follows: 

• An analytical statement may be assignments, constraints, or decision variable declarations.  
• An analytical sequence is a sequence of analytical statements. SPAF analytical sequences can be an 

explicit, implicit, constraints, alternatives, or optimization analytical sequence to satisfy the different 
modeling needs.  
• Explicit analytical sequence provides all the required process structure and data in the form of 

assignment statements that assign a data value to each variable in the sequence.  
• Implicit analytical sequence extends an explicit analytical sequence with assignment statements 

that assign an expression (which computes a value from previously defined variables) to a new 
variable.  

• Constraint analytical sequence extends implicit analytical sequence with constraint expressions 
in terms of previously defined variables.   

• Alternative analytical sequence extends a constraint analytical sequence with declaration of 
variables that do not have an assigned value. Intuitively, an alternative sequence defines a set of 
feasible computations, corresponding to all possible assignment of values into the declared 
variables that satisfy the constraints.  

• Optimization analytical sequence is an alternatives analytical sequence with the added 
optimization directive “minimize” or “maximize.” Intuitively, it states the optimization problem 
of finding an instantiation of values into declared variables that satisfy all the constraint 
statements, and minimizes/maximizes the indicated objective.  

• An analytical model is an (non-optimization) analytical sequence with the added model name and a 
possible parameter Id.  

• A model package is a set of analytical models. Intuitively, it serves as a reusable repository of 
analytical knowledge, which could be used for different applications. 

• An analytical query is a pair of an analytical sequence and a model package that includes all models 
that are referred to, directly or indirectly, from the process model.  
 



 
 

Analytical sequence

Analytical statement

Assignment statement Constraint statement Variable declaration statement

1
1..*

Model package Analytical model

1 1..*

Include statement

Analytical query
10..* has

Implicit analytical sequence

Explicit analytical sequence

Optimization analytical sequence

Alternatives analytical sequence

Constraint analytical sequence

Optimization statement

0..*

1

has

1

1

has

 

Figure 4 SPAF class diagram – generic analytics language  

 

Figure 5 shows a hierarchical diagram for the process description and sustainability metrics model 
templates part of the SPAF. For the purpose of formal process representation, four different SPAF model 
components have been defined. These model components include context, flow, flow aggregator, and 
process. Context describes data that are globally accessible by all model components; context model 
includes context ID and associated data attributes. Flow describes entities that physically flow into and 
out of a process. Flow aggregator aggregates multiple sources of the same type of flows and distributes 
the outputs as inputs to the other processes. The sum of all inputs of an aggregator must equal the sum of 
its outputs. A process can be a composite process or a sub-process. The attributes of each component are 
shown in Figure 6. The process description and sustainability metrics model templates part includes 
syntax of the SPAF analytical models such as process model, flow model, flow aggregator model, and 
context model. These analytical models must adhere to a more specialized structure. Figure 5 and Figure 6 
are connected through the analytical model.  

 A process model may be a generic process model or a specific process model. A generic process 
model can be stored in a model library and reused for developing specific process models. Flow and flow 
aggregator models may be those for discrete flows, continuous flows, or batch flows. Sustainability 
metric aggregator models are specifically designed for sustainability metric aggregation for 
environmental indicators such as energy, emission, material, and waste and economic indicators such as 
investment, revenue, cost, and return on investment (ROI). 

 



 
 

 
Figure 5 A hierarchical diagram for the process description and sustainability metrics model 
templates 

 

 

 
Figure 6 SPAF process description model components  

 

SPAF libraries collect model components of both generic and specific models. Metrics model components 
can also be stored in a library. Figure 7 shows examples of generic model components in a SPAF library, 
e.g., process model components such as “baseSeqTransform” and “baseProcessComposer”, and flow and 



 
 

flow aggregator models for discrete and continuous flows, and metrics models for environmental and 
economic indicators. Figure 8 lists examples of specific model components in the library; these models 
were developed for the two-product-manufacturing example. It includes specific process models for 
“machine A,” “machine B,” “machine C,” “assembly A,” “assembly B,” and composite model 
“twoProdManuf” for the overall process. The model components in the SPAF library provide reusable 
building blocks and can be used as templates for a family of manufacturing processes; each model or 
template can be reused with some adjustment for different cases within the family. New models can be 
added to the SPAF library. Moreover, the existing models within the library can be executed with new 
data so that different companies that have the same problems could use the models by inputting their data 
to seek company-specific decision guidance. Using model components in the library, modelers can create 
SPAF models and queries for their operations more effectively and efficiently.  

 

 
Figure 7 SPAF component library: example of generic models 

 

generic models 

process models 

baseSeqTransform 

baseProcessComposer 

flow and aggregator 
models 

itemSequence  

flowSequence 

item 

flow 

metric 
models 

costSequence 

energySequence 

wasteSequence 

emissionSequence 
context models 

timeSequence  



 
 

 
Figure 8 SPAF component library: examples of specific models 

3.4 Potential users of the SPAF 

Most people within the factory floor do not have the expertise to formulate and solve optimization 
problems using Mathematical Programming (MP) or Constraint Programming (CP). The SPAF makes 
process analysis modeling more intuitive and straight forward for domain users such as manufacturing 
engineers. Figure 9 shows a high-level use-case model for a typical implementation of a decision 
guidance management system using SPAF. There are three types of potential users, each with different 
roles in using and/or maintaining the system.  

• SPAF analyst: The analyst is a primary user of the system. S/he may be an engineer who is in charge 
of defining case scenarios, setting up analysis model objectives together with decision makers, and 
identifying sustainability metrics, constraints, and controls. S/he will collect data from the factory 
floor and represent process structure, flow, and metrics using SPAF.    

• Decision maker: The decision maker is the end user of the system. S/he identifies the SM 
objectives/goals and provides model requirements. The decision maker will query the knowledge 
base, ask what-if analysis questions, and/or make optimization requests with applied constraints and 
control data for a specific problem. S/he may also compose SPAF models simply using model 
components in the SPAF library. 

• SPAF knowledge-base administrator: The knowledge-base administrator serves as a system 
administrator who is responsible for updating system data, creating reusable knowledge artifacts, 
helping the analyst develop new applications, maintaining the SPAF model library, 
modifying/improving the system design, and maintaining/enhancing the system.  

 

specific models 

machineA 

machineB 

machineC 

assemblyA 

assemblyB 

twoProdManuf 



 
 

 
Figure 9 Use case for implementation of decision guidance management system using the SPAF 

 

4. ILLUSTRATIVE EXAMPLE USING SPAF 

In this section, the two-product-manufacturing example introduced in Section 3.2 is modeled using SPAF 
and discussed in details. Figure 10 to Figure 20 show the detailed SPAF process models and possible 
queries. First, assuming the SPAF model, twoProductsManuf (), is developed and all data are provided, a 
what-if analysis query requires only four statements (Figure 10). The first two statements include the data 
models for product demand data indicating quantities for each final product (i.e., Product 1 and Product 2) 
and production plan data that describes the numbers of components should be produced by each 
machining or assembly process. The third statement includes the SPAF model for the two-product-
manufcturing process and finally a constratint statement that indicates the total amount of CO2 generated 
by this manufacturing scenario should be less than or equal to 50 metric tons. Since all data required for 
the query are available, the query is actually a deterministic computational model that calculates the total 
cost within the limit of total CO2 less than 50 metric tons. The query provides answers for both total cost 
and total CO2.   

 

include data productDemand(); 

include data productionPlanData(); 

include process twoProductsManuf (); 

twoProductsManuf.totalCO2 ≤ 50; 

 Figure 10 A what-if analysis query for the two-product-manufacturing process 

http://www.google.com/search?hl=en&tbo=d&biw=896&bih=843&spell=1&q=deterministic+computational+model&sa=X&ei=ie79UKCnPOXG0QHtr4DgAw&ved=0CCwQBSgA


 
 

 

In a case where the production plan data are not provided, an optimal production plan with minimal total 
cost needs to be determined, given the same CO2 limitation as a constraint.  The same SPAF model, 
twoProductsManuf (), is used as shown in Figure 11, but the production plan data (as shown in Figure 10) 
is not provided and an optimizaiton statement is added to “minimize” the total cost. There are still only 
four lines of code; however, since the production plan data are unknown, all data previously provided 
explicitly in the production plan data model become decision variables that need to be instantiated to 
satisfy all the constraints. Now it is no longer a deterministic computational model. It actually describes a 
set of non-deterministic computational paths, each corresponding to an instantiation of set of values for 
the decision variables. Some of the non-deterministic computation paths are “feasible,” i.e., they satisfy 
all of the constraints (the total CO2 constraints as well as the internal constraints) while others are not 
feasible. The semantics of the optimizaion query in Figure 11 is to find a non-deterministic optimizaiton 
path that leads to the minimal total cost among all feasible computation paths. The query results inlcude 
not only both total cost and total CO2 but also the optimal production plan configuation (i.e., the optimal 
number of components being produced by each machining or assembly process).  

 

include data productDemand(); 

include process twoProductsManuf (); 

twoProductsManuf.totalCO2 ≤ 50; 

Minimize twoProductsManuf.totalCost; 

Figure 11 Optimization query for the two-product-manufacturing process    

As stated above and shown in Figure 10 and Figure 11, the same SPAF model, twoProductsManuf (), can 
be used for different kind of queries, such as what-if analysis (in Figure 10) and decision optimization (in 
figure 11). These query examples demonstrate that SPAF provides a unified modeling capability. The 
queries against SPAF models are simple and straightforward.  

Figure 12 shows the model for the “context” component, its model name is “timeSequence.” 
“timeSequence” is declared as a set of string “day,” which is a tuple consisting of three fields “day, 
month, and year” of type integer. The three dots “…” expresses the missing data that need to be 
instantiated as a constant, or an expression before the data is used. 

 

context timeSequence() {   
tuple day { 
    int day; 
    int month; 
    int year; 
 }; 
{day} timeSequence = ...;  

} 

Figure 12 Context model for the two-product-manufacturing example 

Figure 13 shows the model for the “flow” component, the model name is “itemSequence.” The 
“Id”parameter of “itemSequence” will be replaced by the value of a parameter in an include statement. 
An include statement calls another model. It is similar to a subroutine call. The context model 
itemSequence () is included using a include statement. A one-dimensional array “Id.qty” is an integer 

http://www.google.com/search?hl=en&tbo=d&biw=896&bih=843&spell=1&q=deterministic+computational+model&sa=X&ei=ie79UKCnPOXG0QHtr4DgAw&ved=0CCwQBSgA


 
 

array. “Id.qty” is indexed by the finite set of tuples defined by the “timeSequence” variable from the 
context model. The elements of the array represent quantities of the flow in that day.  

 
flow itemSequence (Id) { 
string Id.matchName = …; 
include context timeSequence(); 
int  Id.qty[timeSequence]; 
forall (d in timeSequence)   Id.qty[d] > 0 ; 
} 

 

Figure 13 Flow model for the two-product-manufacturing example 

 

Figure 14 shows a model for the “flow aggregator” component, its model name is “itemSeqAggr.” As 
described earlier, “Id” is a parameter whose value will be provided by an include statement. In the first 
statement of this model, the context model itemSequence () is included. Next, a variable “Id.flowType” is 
declared as a string “itemSequence.” “Id.inputFlows” and “Id.outputFlows” are declared as a set of strings 
and will be instantiated separately. “Id.flows,” the union of “Id.inputFlows” and “Id.outputFlows,” is also 
a set of strings. For every flow in “Id.flows,” its quantity for the day in “timeSequence” is an integer. The 
forall statement defines a constraint for each day in “timeSequence,” it indicates that the total number of 
the “inputFlows” for a day must equal the total number of the “outputFlows.”        

  

 

 

flow aggregator  itemSeqAggr (Id) { 

include context timeSequence(); 

string Id.flowType = “itemSequence”; 

{string}  Id.inputFlows = ...;   

{string} Id.outputFlows = ...; 

{string} Id.flows = Id.inputFlows union Id.outputFlows 

for (i in Id.flows) int i.qty[timeSequence]; 

forall (d in timeSequence)  

            sum (i in Id.inputFlows) i.qty[d]  

          == sum (o in Id.outputFlows) o.qty[d]; 

} 

Figure 14 Flow aggregator model for the two-product-manufacturing example 

 

Figure 15 shows a model of a generic atomic process, which is an end process in which there is no sub-
process, e.g., Machine A. The model name is “baseSeqTransform.” Id is provided when it is called. For 
every output flow, the flow model is being included with a parameter of the flow name. Two arrays of 



 
 

floats are declared for both “Id.costPerUnit” and “Id.CO2PerUnit”; their index set is the set of output 
flows for this atomic process. A two-dimensional array of integer “Id.inputPerOutput” represents the 
number of input flows required for each output flow. For each production day, the cost of the atomic 
process is computed as the unit cost of each output flow times the number of output flows produced in 
that day; the CO2 emission is computed as the unit CO2 emission from each output flow times the number 
of output flows produced in that day. A constraint is that the total number of input flows needed in that 
day must equal the number of output flows produced in the same day times the number of input flows 
required for each output flow.  

 Once the generic atomic process model component is developed, it can be saved and reused for 
generating specific atomic process model components. 

 

process baseSeqTransform(Id) { 

include context timeSequence(); 

string Id.name = …; 

{string} Id.inputFlows = …; 

{string} Id.outputFlows = …; 

for (i in Id.outputFlows) include flow itemSequence(i); 

float Id.costPerUnit[Id.outputFlows] = ...; 

float Id.CO2PerUnit[Id.outputFlows] = ...; 

int Id.inputPerOutput[Id.outputFlows][Id.inputFlows] = …; 

float Id.cost[d in timeSequence] =  

           sum(r in outputFlows) Id.costPerUnit[r] * r.qty[d]; 

float Id.CO2[d in timeSequence] =  

           sum(r in outputFlows) Id.CO2PerUnit[r] * r.qty[d]; 

for (i in Id.inputFlows) { i.qty[d in timeSequence] =  

    sum (o in Id.outputFlows) Id.inputPerOutput[o][i] * o.qty[d]; 

include flow itemSequence(i); 

 } 

} 

 

Figure 15 An atomic process model for the two-product-manufacturing example   

Figure 16 shows a specific atomic process model for Machine A. Model name is “machine.” It starts with 
the instantiation of the declarations. “Id.name” is given as “machine.” “Id.inputFlows” is a set of two 
strings, “part1toMaA” and “part2toMaA.” Input flows of “part1toMaA” and “part2toMaA” are given 
names “part1” and “part2” respectively. “Id.outputFlows” is a set of two strings “comp1fromMaA” and 
“comp2fromMaA.” Output flows, “comp1fromMaA” and “comp2fromMaA,” are given names of “comp1” 
and “comp2” respectively. Two float type arrays for “Id.costPerUnit” and “Id.CO2 PerUnit” are both 
given in a pair (index, value) of elements as [“comp1fromMaA”: 35.0, "comp2fromMaA": 65.0] and 
["comp1fromMaA": 0.05, "comp2fromMaA": 0.02] respectively. The two-dimensional array 



 
 

“Id.inputPerOutput” is instantiated as a pair of ["comp1fromMaA": ["part1toMaA": 1,"part2toMaA": 1], 
"comp2fromMaA": ["part1toMaA": 1,"part2toMaA": 3]] The last step is to include the generic model 
“baseSeqTransform." “machineA” is the parameter. 

Other atomic processes in the two-product-manufacturing example including Machine B, 
Machine C, Assembly A, and Assembly B are similar to the process model of Machine A. 

process machineA () { 

string Id = "machineA"; 

{string} Id.inputFlows = {"part1toMaA","part2toMaA"}; 

string part1toMaA.name = "part1";  

string part2toMaA.name = "part2"; 

{string} Id.outputFlows = {"comp1fromMaA","comp2fromMaA}; 

string comp1fromMaA.name = "comp1"; 

string comp2fromMaA.name = "comp2"; 

float Id.costPerUnit [Id.outputFlows] = ["comp1fromMaA": 35.0,  

      "comp2fromMaA": 65.0]; 

float Id.CO2PerUnit [Id.outputFlows] = ["comp1fromMaA": 0.05,  

            "comp2fromMaA": 0.02]; 
      int Id.inputPerOutput [Id.outputFlows][Id.inputFlows] =  

   ["comp1fromMaA": ["part1toMaA": 1,"part2toMaA": 1],      

   "comp2fromMaA": ["part1toMaA": 1,"part2toMaA": 3]] 

include process baseSeqTranform (“machineA”); 

} 

Figure 16 Atomic process model for Machine A   

Depicted in Figure 17 is a generic process composer model, which includes all flow models and all sub-
processes models, and formulates the flow aggregator models automatically instead of being given 
explicitly. Again, three dots indicate that the input and output flows, and sub-processes need to be 
instantiated before this generic model is called. For every flow, the model needs to be included and its 
model name, “matchName,” and aggregator name need to be defined before this generic model is called. 
“flowsToAggregators,” a set of strings, are the union of input flows to the composite process and output 
flows from all sub-processes. “flowsFromAggregators,” another set of strings, are the union of all input 
flows to all sub-processes. All aggregator flow names are in the set of strings that include all 
“matchName” of the flows. For every flow “matchName,” if the name of input flow is in the 
“flowsToAggregators” and the name of the output flow is in the “flowsFromAggregators,” then include 
the flow aggregator model with the flow’s “matchName” as a parameter.  

 

process   processComposer(id) { 

{string} Id.inputFlows = …; 

{string} Id.outputFlows = …; 



 
 

{string} Id.subProcesses = …; 

{string}  Id.flows = Id.inputFlows union Id.outputFlows; 

for (f in Id.flows) {   

 string f.model = ...;   

 include flow f.model(f);   

 string f.matchName = ...;   

 string f.aggrModel = ...; 

}; 

for (p in Id.subProcesses) {  

 string p.model = ...;    

 include process p.model(p);  

} 

{string} Id.flowsToAggregators =  

   Id.inputFlows union union(p in Id.subProcesses) p.outputFlows; 

{string} Id.flowsFromAggregators =  

   Id.outputFlows union union(p in Id.subProcesses) p.inputFlows; 

{string} Id.allFlows =  

             Id.flowsToAggregators union Id.flowsFromAggregators; 

{string} Id.matchNames =  

             distinct({f.matchName | f in Id.allFlows}); 

for (n in Id.matchNames) {string Id.n.aggrModel =  

      first({f.aggrModel |f in Id.allFlows : f.matchName == n}); 

{string} Id.n.inputFlows = { 

          f | f in Id.flowsToAggregators : f.matchName == n}; 

{string} Id.n.outputFlows = { 

         f | f in Id.flowsFromAggregators : f.matchName == n}; 

include flow aggregator Id.n.aggrModel(Id.n); 

}; 

Figure 17 Generic composite process model 

Figure 18 shows the metrics aggregator models that compute daily total cost and CO2. The daily total cost 
and CO2 are the sum of cost and CO2 for all sub-processes.  

 

metric aggregator costSequence(Id) { 

include context timeSequence (); 



 
 

{string} Id.subProcesses = ...; 

float Id.cost[t in timeSequence] =  

                  sum(p in Id.subProcesses) p.cost[t]; 

} 

 

metric aggregator CO2Sequence(Id) { 

include context timeSequence (); 

{string} Id.subProcesses = ...; 

float Id.CO2[t in timeSequence] =  

                sum(p in Id.subProcesses) p.CO2[t]; 

} 

Figure 18 Metric aggregator model 

Figure 19 shows the composite process model. Model Id is “twoProductsManuf.” It includes the context 
model itemSequence (). “Id.inputFlows” is given as a set of two strings {“part1in”, “part2in”}. 
“Id.outputFlows” is given as a set of two strings of {“product1”, “product2”}. “matchNames” are also 
given. “Id.subProcessess” is instantiated as a set of five strings of {“machine,” “machineB”, “machine,” 
“assembly,”  “assemblyB”}. The generic process model processComposer is called to include all atomic 
sub-processes models defined previously. Float type of data for extra facility cost and CO2 per day 
($1 750 and 0.3 metric tons) are provided. The metric aggregator models, costSequence (Id) and 
CO2Sequence(Id), are included. Total cost for each day is the extra facility cost plus daily cost for all sub-
processes. Total CO2 for each day is the extra facility CO2 plus total sub-processes CO2.  

An alternative modeling method is to explicitly instantiate all flows and flow aggregators, e.g., 
inputs and outputs of Part1, Part2, Comp1, Comp2, and Comp3 are all specified as sets of strings. Then 
every flow aggregator is included with its name as a parameter.  

 

process   twoProductsManuf () { 

string Id = “twoProductsManuf”; 

include context timeSequence(); 

{string} Id.inputFlows = {“part1in”, “part2in”}; 

{string} Id.outputFlows = {“product1”, “product2”}; 

string part1in.matchName = "part1"; 

string part2in.matchName = "part2"; 

string product1.matchName = "product1"; 

string product2.matchName = "product2"; 

{string} Id.flows = Id.inputFlows union Id.outputFlows; 

for (f in Id.flows) f.model = "itemSequence"; 

{string} Id.subProcessess = { 



 
 

    "machineA", "machineB", "machineC","assemblyA", “assemblyB"}; 

for (p in Id.subProcesses) p.model = p; 

include process processComposer(Id); 

float Id.extraCostSequence[t in timeSequence] = 1750.0; 

float Id.extraCO2Sequence[t in timeSequence]= 0.3; 

 

include   metric aggregator costSequence(Id); 

include   metric aggregator CO2Sequence(Id); 

float Id.totalCost =  

    sum(t in timeSequence)(Id.cost[t] + Id.extraCostSequence[t]); 

float Id.totalCO2 =  

    sum(t in timeSequence)(Id.cost[t] + Id.extraCO2Sequence[t]); 

} 

Figure 19 Composite process model for the two-product-manufacturing process  

 

After we explained all the SPAF model components for the example, we need to examine the data 
required by the queries in Figure 10 and Figure 11. A context data sequence is shown in Figure 20. Its 
product demand data model is listed in Figure 21, in which the quantities of the two products are given 
for each production day. For example, [<4, 9, 2012>: 6] in the first line means demand for Product 1 on 
September 4th, 2012 is 6.  

 

{day} timeSequence = {  

<4, 9, 2012>, <5, 9, 2012>,  

<6, 9, 2012>, <7, 9, 2012>, <8, 9, 2012>, 

}  

Figure 20 A context data sequence for the two-product-manufacturing process  

 

int product1.qty [timeSequence] = [<4, 9, 2012>: 6, <5, 9, 2012>: 8, <6, 9, 
2012>: 5, <7, 9, 2012>: 7, <8, 9, 2012>: 4]; 

int product2.qty [timeSequence] = [<4, 9, 2012>: 5, <5, 9, 2012>: 6, <6, 9, 
2012>: 3, <7, 9, 2012>: 4, <8, 9, 2012>: 5]; 

Figure 21 Product demand data model for product 1 and product 2   

 

A what-if scenario for the example is described as follows: if the process engineer uses a predefined 
production plan, i.e., all the data such as numbers of part 1 and part 2, numbers of components flows into 



 
 

and out of Machine A, Machine B, Machine C, and number of components flows into Assembly A, and 
Assembly B each day are fixed. This means that all the data needed in the SPAF model are explicitly 
provided and can be used to computer metrics using formulas. The four lines of what-if query (as shown 
in Figure 10) can be expanded as in Figure 22 while the constraint keeps the same as before. 

{day} timeSequence = { <5, 11, 2012>, <6, 11, 2012>, <7, 11, 2012>, <8, 11, 
2012>, <9, 11, 2012>, } 

int product1.qty [timeSequence] = [6, 8, 5, 7, 4]; 

int product2.qty [timeSequence] = [5, 6, 3, 4, 5]; 

// data for fixed production plan 

int part1.qty [timeSequence] = [ 98, 128, 73, 107, 56]; 

int part2.qty [timeSequence] = [127, 166, 96, 139, 221]; 

int part1ToMaA.qty [timeSequence] = [0, 0, 4, 0, 0]; 

int part2ToMaA.qty [timeSequence] = [0, 0, 0, 0, 0]; 

int part1ToMaB.qty [timeSequence] = [98, 128, 69, 107, 56]; 

int part2ToMaB.qty [timeSequence] = [127, 166, 96, 139, 61]; 

int part2ToMaC.qty [timeSequence] = [0, 0, 0, 0, 160]; 

int comp1FromMaA.qty [timeSequence] = [0, 0, 0, 0, 0]; 

int comp2FromMaA.qty [timeSequencetimeSequence] = [0, 0, 4, 0, 0]; 

int comp1FromMaB.qty [timeSequence] = [30, 40, 25, 35, 20]; 

int comp2FromMaB.qty [timeSequence] = [23, 30, 14, 25, 17]; 

int comp3FromMaB.qty [timeSequence] = [22, 28, 16, 22, 2]; 

int comp1FromMaC.qty [timeSequence] = [0, 0, 0, 0, 0]; 

int comp3FromMaC.qty [timeSequence] = [0, 0, 0, 0, 16]; 

int comp1ToAsA.qty [timeSequence] = [30, 40, 25, 35, 20]; 

int comp2ToAsA.qty [timeSequence] = [18, 24, 15, 21, 12]; 

int comp3ToAsA.qty [timeSequence] = [12, 16, 10, 14, 8]; 

int comp2ToAsB.qty [timeSequence] = [5, 6, 3, 4, 5]; 

int comp3ToAsB.qty [timeSequence] = [10, 12, 6, 8, 10]; 

include process twoProductsManuf (); 

twoProductsManuf.totalCO2 ≤ 50; 

Figure 22 What-if query for the two-product-manufacturing example  

 
This is a deterministic computational model, however, since there is a constraint statement in the query 
and there are also other data integrity constraints within the models, the answers have to satisfy all the 
constraints. The results of the what-if scenario are: the total cost is $30 000 with a total of 35.11 metric 
tons of CO2. Note that changes in any input data will result in a different set of solutions.  



 
 

For the optimization query listed in Figure 11, input data such as weekly production schedule and 
customers’ demand for Product 1 and Product 2 are provided. The sustainability goal is to determine an 
optimal production plan that minimizes the total cost within a CO2 bound of 50 metric tons. The 
optimization model performs multiple non-deterministic computations, each instantiates decision 
variables (quantities of flows in each configuration) using values that satisfy all the constraints. Among 
those sets of configurations that satisfy all the constraints, the system will automatically find a 
configuration (i.e., a production plan) that minimizes the total cost. Figure 23 shows the optimization 
result screen of an implementation using IBM ILOG CPLEX. The optimal production plan for the 
scheduled five days is derived. The optimization results show that the minimal total cost is $28 023 with 
total 36.72 metric tons of CO2. The results also indicate that due to the higher operation cost of the 
Machine B, it is not recommended to use Machine B to produce any of the components, i.e., Comp1, 
Comp2, and Comp3. Note that changes in any of the input data and constraints will also affect the values 
of decision variables and decision expressions.  

 

 
Figure 23 Optimal solution screen of two-product-manufacturing example 



 
 

 

5. CONCLUSION AND FUTURE WORK 

This paper proposed a NIST-developed Sustainable Process Analytics Formalism that allows 
manufacturers to: (1) formally represent sustainable process structure, flow, process data, control 
variables, and process analytical model of sustainability metrics and constraints for quantitative 
sustainability analysis; and (2) analyze and make decisions on improvement alternatives with modeling 
and optimization tools. The formalism provides platform-independent process-knowledge description and 
supports what-if analysis and decision optimization for decision makers. The use of the SPAF formalism 
is illustrated through a two-product manufacturing process example. The SPAF syntax, formal semantics, 
and query computation algorithm are presented in the appendix.  
 The formalism will be deployed to industry through case studies and contributions to standard 
development efforts. When implemented for real manufacturing applications, the formalism will help 
manufacturers quantify their sustainability efforts for improvement of energy and material efficiency, 
lower emissions, and save cost.  
 Future work includes (1) examining diverse manufacturing processes to identify extra process 
analytical needs; (2) supporting taxonomies, and metrics from unit manufacturing, assembly processes, 
and production planning; (3) supporting smart manufacturing by enhancing the SPAF;  (4) developing 
translators that automatically translate SPAF to formal optimization/simulation models, which can then be 
solved by commercial optimization tools; (5) developing graphical representation of SPAF based on 
modeling language such as UML, SysML, or BPMN; (6) performing industrial case studies to evaluate 
and validate the formalism and the capabilities; and (7) standardizing the SPAF.    

 

DISCLAIMER  

No approval or endorsement of any commercial product by the National Institute of Standards and 
Technology is intended or implied. Certain commercial software systems are identified in this paper to 
facilitate understanding. Such identification does not imply that these software systems are necessarily the 
best available for the purpose.  
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Appendix: Sustainable Process Analytics Formalism Syntax and Formal Semantics 

A. SPAF model syntax 

SPAF adopts concepts and ideas from other languages and is based on the OPL data model and the basic 
OPL syntax of arithmetic and query expressions with minor modifications and extensions. The basic OPL 
data model, modeling concept, data type, and data structure are listed in (IBM, 2012).   

 Analytical sequence, Aseq, is a sequence (s1, ..., sn) of analytical statements, si,,   

1 ≤ i ≤  n, in one of the forms: 

1. Ti   xi =  ai 
2. Ti   xi =  ei 
3. Ti   xi  
4. Ti   xi = … 
5. Ci 
6. include Mi (J) or include Mi ( ) 
7. min xi , max xi , or sat  
where: 

• The statements min xi , max xi , or sat  are only allowed as the last statement sn 
• Ti  is a type 
• xi  is a variable name, which may include a prefix identifier, e.g., Id.x. 
• ai  is a constant of type Ti 
• ei  is an expression returning type Ti 
•  “…” is a keyword in “Ti   xi   = …” to indicate that xi is to be instantiated with a constant before 

using it later in the sequence  
• Ci is a constraint 
• Mi  is a unique name of an analytical model 
• J in  Mi (J) is a string identifier 

The first four forms are declaration statements, within which the first two forms are assignment 
statements. Ci  is a constraint statement, include Mi is an include statement, and min xi, max xi, or sat are 
optimization statements, i.e., minimization, maximization, and satisfiability. If the last statement sn of the 
analytical sequence (s1, ..., sn) is min xi, max xi, or sat, then the (s1, ..., sn) is an optimization analytical 
sequence; otherwise, we say that it is a non-optimization analytical sequence. 

        An analytical model is an expression of the form  

M(Id) { Aseq }  or  M( ) {  Aseq  } 

where M is a unique name of the model, Id is an optional parameter, and Aseq is a non-optimization 
analytical sequence. 

 Let P be a set of analytical models. We say that P is closed under reference (or closed) with 
respect to an analytical sequence A (or model M) if the following holds: If an A has a statement of the 
form include M’(J), then P must contain an analytical model M’. We say that P is closed under reference 
(or closed) if for every model M in P, P is closed with respect to M. 

An analytical query is a pair (A, P), where A is an analytical sequence and P is a model package 
closed with respect to A.  

Let (A, P) be an analytical query. The flattened sequence of A, denoted flat (A, P), is an analytical 
sequence that results from A by recursively replacing each include M( ) with the analytical sequence of 



 
 

the model M ( ), and replacing each include M(J) statement with the analytical sequence of the model 
M(Id) in P, in which every appearance of Id is replaced with J.  

We say that an analytical query (A, P) has a conflict, if one of the following holds in  

flat (A, P) = (S1,…, Si ,…, Sj,…, Sn): 

• Sj is a declaration statement of the form Ti  xi =  ai  or Ti   xi =  ei  and Si is any declaration statement 
• Si and Sj are two declaration statements such that  xi =  xj  and Ti  ≠ Tj  (i.e., the same variable is 

declared twice with conflicting types)  
Given a flat (S1,…, Si ,…, Sn) analytical sequence A (i.e., without include statement), we say that variable 
xi is data-instantiated if: 

• There is a statement Si of the form Ti   xi =  ai ,  where ai is a constant or, recursively 
• There is a statement Si of the form Ti   xi =  ei,  such that all variables y in ei are instantiated in the 

prefix sequence (S1,…,Si-1 ) 
We say that a flat analytical sequence A is data instantiated if every variable x in a declaration statement 
is instantiated.  

We say that an analytical query (A, P) is well-formed if: 

• It does not have a conflict, and  
• For every constraint statement Ci and expression ei in the declaration statement of the form Ti  xi = ei 

or min xi, max xi, or sat in flat (A, P), the following holds: it only contains variables that have been 
declared in a declaration statement earlier in the sequence. 

• If A is a non-optimization sequence, then, flat (A, P) must be data instantiated. 
• If A is an optimization sequence, then for every statement Si in flat (A, P) = (s1, ..., sn) of the form  Ti   

xi   = …,  xi must be instantiated in (S1,…,Si-1 ) (i.e., earlier in the sequence). 
From now on, only well-formed analytical queries are considered. 

As discussed earlier, a SPAF model is an analytical model M (Id) if it is one of the following 
forms: 

• Process model 
• Context model 
• Flow model 
• Flow aggregator model 
• Sustainability metric aggregator model 
A SPAF process model with identifier Id, denoted PM (Id), is an analytical sequence that contains 
statements of the following forms: 

string   Id.processType = type_flow_string, 

{string}  Id.inputFlow = inputFlowExpr, 

 {string}  Id.outputFlow = outputFlowExpr, 

 {string}  Id.subProcess = subProcessExpr, 

 {string}  Id.flowAggregator = flowAggrExpr, 

and  

 include M (I), for every I in Id.inputFlow, Id.outputFlow, Id.subProcess, or  Id.flowAggregator, 
where: 

• Id is used as a prefix for all variables on the left hand side of the declaration statements, except for 
variables that appear on the left hand side of assignments into variables defined in the included 



 
 

models, i.e., SPAF models M (Id’), where Id’ is in Id.inputFlow, Id.outputFlow, Id.subProcess, and 
Id.flowAggregator (those are “visible” to the process model) 

• type_process_string is a string 
• inputFlowExpr, outputFlowExpr are analytical expressions of the type {string} (i.e., return a set of 

strings) 
• subProcessIdsExpr, flowAggrIdsExpr are analytical expressions of type {string} 
• M (I) denotes a method that returns a SPAF model with identifier I 
A SPAF context model CM ( ), is an analytical model. 

A SPAF flow model with identifier Id, denoted FM (Id), is an analytical model that contains 
statements of all of the following forms: 

string  Id.flowType = type_flow_string, 

where: 

• Id is used as a prefix for all variables on the left hand side of the assignment statements 
• type_flow_string is a string 

A SPAF flow aggregator model with identifier Id, denoted FAM (Id), is an analytical sequence that 
contains all of the followings forms: 

string   Id.flowType = type_flow_string, 

{string}  Id.flows_to_aggr = inputFlowExpr, 

{string}  Id.flows_from_aggr = outputFlowExpr, 

where: 

• Id is used as a prefix for all variables on the left hand side of the assignment statements 
• type_flow_string is a string 
• inputFlowExpr, outputFlowExpr are analytical expressions of the type {string} (i.e., return a set 

of strings) 
An SPAF process package is a model package P. We say that it is well-formed if: 

• P is closed under references 
• P satisfies the following scoping rules: 

• Process model M (Id) can use variables prefixed with identifiers form Id.inputFlow, 
Id.outputFlow, Id.flowAggregator, or itself, i.e., Id. 

• A model M (Id) in P can use variables from the context model in P. 
• Flow Aggregator Model M (Id) can use variables that are prefixed with identifiers of flow models 

that are referenced in it, or itself, i.e., Id. 
• For every process model M in P, A(M) is a well-formed analytical sequence 
Note that a well-formed SPAF process package P provides a modular description of a (flat) and well-
formed analytical sequence. Thus, it is naturally extendable and its components are reusable.  

B. SPAF formal semantics 

We say that an analytical sequence A is explicit if all of its analytical statements are of the form 

Ti    xi = ai  

where ai is a constant, i.e., it is an assignment of a constant to a variable. Intuitively, the symbolic 
expression of an explicit analytical sequence represents the corresponding data. Note that an explicit 
analytical sequence is flat. Formally, the semantics of an explicit analytical sequence (s1, ..., sn), denoted 
Sem ((s1, ..., sn)), is itself, i.e., its symbolic expression.  



 
 

We say that an analytical sequence A is implicit if all of its analytical statements are of the form 

Ti    xi = ei 

 Note that this includes the case when the expression ei is a constant ai. Formally, the semantics of a well-
formed implicit analytical sequence   

(T1   x1 = e1, … ,  Tn   xn = en)  

is the explicit analytical sequence  

(T1   x1 = a1, … ,  Tn   xn = an) 

in which each ai, 1 ≤ i ≤ n, is a constant of type Ti that is computed by expression ei, when each variable 
xj, 1 ≤ j ≤ i-1, is replaced by the constant aj. 

The semantics of (s1, ..., sn) is denoted Sem ((s1, ..., sn)). Obviously, an explicit analytical sequence 
is a particular case of implicit, in which case, explicit and implicit semantics coincide. 

We say that an analytical sequence A = (s1, ..., sn) is a constraint analytical sequence if all of its 
statements are of the form  

(Ti    xi = ei)      or       Ci 

where ei is an expression of type Ti and Ci is a constraint.  Formally, the semantics of a well-formed 
constraint analytical sequence (s1, ..., sn), denoted Sem ((s1, ..., sn)), is defined as follows: 

• Consider an implicit analytical sequence ( si1
,..., sik

), which is a sub-sequence of (s1,..., sn) that 

contains all statements si’ of the form Ti  xi = ei, and its semantics (Ti1
  xi1

= ai1
,..., Tik

  xik
= aik

)   
(which is an explicit analytical sequence), and 

• Consider a sequence (C j1
, ..., C jm

), which is a sub-sequence of (s1, ..., sn) that contains all the 

constraint statements 
• If there exists 1 ≤ i ≤ m, such that C ji

evaluates to FALSE after every variable xi in it is replaced 

with the constant ai, then Sem ((s1, ..., sn)) is defined as INVALID. Otherwise, Sem ((s1, ..., sn)) is 
defined as the explicit analytical sequence (Ti1

  xi1
= ai1

,..., Tik
  xik

= aik
). 

We say that an analytical sequence A = (s1, ..., sn) is an alternative analytical sequence, if each si, 1 ≤ i ≤ 
n, is of the form  

(Ti   xi  ),   (Ti   xi = ai),   (Ti   xi = ei),      or   Ci 

where ai is a constant of type Ti, and  ei is an expression of type Ti, and Ci is a constraint. Note that an 
alternative analytical sequence may have repetition of declaration statements for the same variable x. 
Consider the analytical sequence (s1, ..., sn) resulting from A by removing, for every variable x, all 
declarations except for its first appearance in A. Formally, the semantics of a well-formed alternatives 
analytical sequence (s1, ..., sn), denoted Sem ((s1, ..., sn)), is defined as follows: 

Consider all non-instantiated variables xi1
, ..., xik

in (s1, ..., sn).   Sem ((s1, ..., sn)) is the set 

{ E( ai1
,..., aik

)  |  ai1
in D(Ti1

),..., aik
in D(Tik

)  /\ E( ai1
,..., aik

) ≠ INVALID } 

where: 

• D (Ti1
),...,D (Tik

) are the domains of types Ti1
,..., Tik

, respectively, and 



 
 

• E( ai1
, ..., aik

) denotes Sem ((s1,..., sn) [ xi1
/ ai1

,..., xik
/ aik

]), where (s1, ..., sn) [ xi1
/ ai1

,..., xik
/ aik

] 
denotes the constraint analytical sequence (s1’, ..., sn’) that results from (s1, ..., sn) by replacing each 
statement of the form (Ti j

  xi j
), 1 ≤ j ≤ k, with the statement Ti j

 xi j
= ai j

. 

We say that an analytical sequence A= (s1,..., sn, sn+1) is a flat optimization sequence if (s1,..., sn) is an 
alternative sequence, and s (n+1) is of the form: 

min   xi,  max  xi,   or sat. 

where xi, 1 ≤ i ≤ n, is one of the variables in the left hand sides of assignments in  

(s1, ..., sn). Assuming without loss generality that, for every variable x in A, there is a single declaration of 
x (if this is not the case, all declarations of x except for its first appearance are removed.) Formally, the 
semantics of an optimization analytical sequence (s1,..., sn, s(n+1)), denoted Sem ((s1,..., sn, s(n+1))), is 
defined as follows: 

If Sem (s1, …, sn) = ∅ then we say that Sem ((s1,..., sn, s(n+1))) is INFEASIBLE. Otherwise, consider 
an explicit analytical sequence E in Sem ((s1,..., sn)) such that: 

• If s (n+1) is min xi, then for all E’ in Sem ((s1, …, sn), ai ≤ ai’, where ai and ai’, are the analytical model 
constants in the assignments Ti  xi = ai of E, and Ti  xi = ai’ of E’. 

• If s (n+1) is max xi, then for all E’ in Sem ((s1, ..., sn), ai ≥ ai’, where ai and ai’, are the analytical model 
constants in the assignments Ti  xi = ai of E, and Ti  xi = ai’ of E’. 

If E does not exist, we say that Sem ((s1,..., sn, s(n+1))) is UNBOUNDED. Otherwise,  

Sem ((s1,..., sn, s(n+1))) is E. 

Note that if s (n+1) is sat, the semantics is just an explicit analytical sequence E in Sem ((s1, ..., sn)). 
Also note that the optimization semantics (whether it is minimization, maximization, or satisfiability) are 
non-deterministic, i.e., there may be more than one explicit model that satisfies the condition in the 
definition of semantics. 

Consider the five layers (types) of analytical sequences (1) explicit, (2) implicit, (3) constraints, 
(4) alternatives, and (5) optimization. Let L (1), L (2), L (3), L (4), and L (5) denote sets of analytical 
sequences that can be expressed by each layer, respectively.  We claim that  

L (1)  L (2)  L (3)  {L (4)}  L (5) 

and that the semantics of each layer are consistent with all lower layers. That is, for any two layers i, j,   1 
≤ i < j ≤ 5, i ≠ 4,  j ≠ 4’,   if an AM A is in L (i), then Sem (i) of A is also Sem (j) of A. 

Semantics of a query (A, P) is a pair (A’, P’) constructed as follows: 

• For every sequence S, either A or a sequence B in a model M (Id) {B} in P, S is replaced by S’ as 
follows. 
• Consider all variables x1, …, xn, declared in their order in S, then S’ is the sequence  

(T1   x1 = a1   , …,  Tn   xn = an) 

where  T1 ,…, Tn  are the corresponding types of x1, …, xn  respectively, and ai is the constant instantiated 
with  xi in the semantics E of flat (A,P). 

C. SPAF Query Computation    

In this section, algorithms (reduction procedures) to perform SPAF analytical query computation are 
introduced. Figure C.1 shows a commutative diagram for analytical query computation, in which the 
upper left box indicates the query sequence A in model package P. The query sequence may have include 
statements . The semantics of A is sequence A’ in package P’ as shown in the upper right box in Figure 



 
 

24. Two algorithms are included in the computation – analytical query algorithm and flat optimization 
sequence algorithm. Through the analytical query algorithm (refer to step (1), (6), and (5)), (A, P) can be 
translated to a flat analytical sequence (middle left box). If the flat analytical sequence can be instantiated, 
it is an implicit analytical sequence, otherwise, it is an optimization analytical sequence whose semantics 
is a flat explicit analytical sequence (middle right box). This algorithm calls the flat optimization 
sequence algorithm (refer to step (2), (3), and (4)) to translate the flat optimization sequence to a standard 
optimization model such as OPL or AMPL (lower left box). By using an optimization solver, the 
optimization solution (lower right box) can be derived. All variables can then be instantiated, the 
sequence becomes a flat explicit analytical sequence (middle right box), which can be translate back to 
(A’, P’).  

 

Query (A, P) (A', P') =
Sem (A, P)

Flat
(optimization

sequence
(OS))

Optimization
solution

(instantiation of
constants to
variables) (I)

Explicit
analytical

sequence (flat)
(ES) = Sem

(OS)

Standard
optimization
model (e.g.,

OPL or AMPL)

1

3

4

5

2

7

6

Sem

Sem

Optimization solution

Flat optimization sequence
algorithm

Analytical  query algorithm

 
Figure C.1 A commutative diagram for analytical query computation  

 
Figure C.2 presents the algorithm of SPAF Query Computation. The input is an analytical query sequence 
A and a model package P that is closed with respect to A. The output is (A’, P’) that is the semantics of (A, 
P). The procedures of the algorithm include: 

1. Construct a flat sequence S1 by replacing all the include statements in A with corresponding 
analytical sequences. 

2. Construct a new sequence S2 by removing all the duplicated declarations of x except for the first 
declaration in S1 for every variable x declared in S1. 

3. If S2 is instantiated, it must be an implicit analytical sequence. So a new explicit analytical sequence 
S3 can be constructed by replacing each variable with a constant that derived from an expression. 

4. If S2 is not instantiated, it must be a flat optimization query. By calling the  
OptSeqAlg (S2) algorithm, it will return the semantics of S2. 
 



 
 

Input: (A, P) is a well-formed analytical query and P is a closed form model package 
closed with respect to A. 

Output: (A’, P’) is the semantics of (A, P). 

1. Construct S1 = flat (A, P). 

2. Construct sequence S2 from S1 as follows: 

For every variable x declared in S1, remove all declarations of x  

except for the first declaration in S1. 

3. Check if S2 is instantiated. 

4. If S2 is instantiated, it must be an implicit analytical sequence of the form (T1 

x1 = e1, …,Tn xn = en). In this case, construct S3 as the explicit analytical 

sequence (T1 x1 = a1 ,…,Tn xn = an),in which each ai, 1≤ i ≤ n, is a constant of 

type Ti that is computed by expression ei, where each variable xj,  1≤ j ≤ i-1, is 

replaced by aj. 

5. Otherwise, if S2 is not instantiated, it must be a flat optimization query. 

Construct S3 by calling the method OptSeqAlg (S2), which returns the semantics of 

S2. 

6. Construct the pair (A’, P’) as follows:  

For every sequence S, which is either A or a sequence B in a  

model(Id){B} in P, S is replaced by S’ as follows. 

Consider all variables x1, …, xn, declared in their order in S, then S’  

is the sequence (T1 x1 = a1 ,…,Tn xn = an) where T1 ,… ,Tn are the  

corresponding types of x1, …, xn respectively, and ai is the constant  

to instantiate xi in S3. 

 

Figure C.2 Algorithm 1: SPAF query computation 

 
Figure C.3 presents the algorithm of Optimization Sequence Algorithm (OptSeqAlg). The input is a flat 
optimization query S2 generated by the SPAF Query Computation algorithm. The output is the semantics 
of S2. 

1. For all variables that are instantiated in every statement, replace the expression with the computed 
constant. 

2. Construct decision variables that are not being instantiated.  
3. Construct a set of constraints by replacing decision variables in every statement with its constant. For 

any variable that is non-instantiated, a constraint is added. 
4. Construct the optimization problem with objectives and constraints. 



 
 

5. Solve the optimization problem using an optimization solver  
6. Construct the answer sequence by removing all constraint statements and replacing all the variables 

using constants computed or the optimization solutions.  
 
 
Input: Flat optimization query (i.e., (s1,…,sn,sn+1) where sn+1 is of the 

       form min xi , max xi (1 ≤ i ≤ n) or sat where xi is not 

       instantiated on (s1, …, sn)). 

Output: Semantics of (s1,…,sn,sn+1). 

1. Consider all variables xi1
, ..., xim

 in (s1, ..., sn) that are instantiated. For 

every statement Si j
, 1 ≤ j ≤ k, of the form  

   Ti j
 xi j

= ei j
, compute ei j

, and replace ei j
with the computed constant  

   ai j
, i.e., resulting in Ti j

 xi j
= ai j

 

2. Construct the set of decision variable V to be the set of all non-instantiated 

variables xl1
, ..., xlm

 in (s1, ..., sn) ranging over the domains corresponding to 

types Tl1
,…, Tlm

 respectively. 

3. Construct the set of constraints C as follows: 

   3.1 Initially, C = ∅.  

   3.2 For every statement si, 1≤ i ≤ n of the form Ci, add to C the   

       constraint resulting from Ci by replacing every instantiated  

       variable xi j
with its constant ai j

from Step 1. 

3.3 For every statement Si of the form Ti xi = ei , where xi is non-  

instantiated, add the constraint xi == ei’, where ei’ result from  

ei by replacing each decision variable xi j
in ei with its constant  

ai j
from Step 1. 

4. Construct the optimization problem O; 

   
V

min xn subject to C, 
V

max xn subject to C, or 
V

sat C according to sn+1. 

5. Solve the optimization problem O.  

6. If O is infeasible, return “INFEASIBLE”, else if O is unbounded, return 

“UNBOUNDED.”  



 
 

7. Otherwise, construct the answer sequence from (s1, ..., sn) as follows: 

   7.1 All non-declaration statements (i.e., constraints) are removed. 

   7.2 Every declaration statement with type Ti and variable xi (i.e.,   

       of the form Ti  xi = ai  or Ti  xi = ei ) be replaced as follows: 

   7.3 if xi is instantiated, it is replaced with Ti xi = ai , where ai  

       is a constant computed in Step 1. 

   7.4 if xi is non-instantiated, the statement is replaced with  

       Ti  xi = ai, where ai is a constant instantiated into decision  

       variable xi from the solution of the optimization problem O.  

 

Figure C.3 Algorithm 2: optimization sequence algorithm (OptSeqAlg) 

 
Algorithm correctness: We denote by All-Sem (A, P) the set of all explicit analytical sequences’ E that 
are Sem (A, P).  

We denote by All-Ans (A, P) the set of all explicit analytical sequences’ E that are possible 
answers produced by Algorithm: SPAF query computation.  

 

Claim: Algorithm SPAF query computation is CORRECT, i.e., it is: 

1. Sound, i.e., for every well-formed analytical query (A, P),  
All_Ans (A, P) ⊆ All_Sem (A, P) 

2. Complete, i.e., for every well-formed analytical query (A, P),  
All_Sem (A, P) ⊆ All_Ans (A, P) 
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