

NISTIR 7961

Processes Analytics Formalism for
Decision Guidance in Sustainable

Manufacturing

Alexander Brodsky
Guodong Shao
Frank Riddick

karenw
Typewritten Text

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.IR.7961

karenw
Typewritten Text

karenw
Typewritten Text

NISTIR 7961

Processes Analytics Formalism for
Decision Guidance in Sustainable

Manufacturing

Alexander Brodsky

George Mason University

Guodong Shao
Frank Riddick

System Integration Division
Engineering Laboratory

November 2013

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.IR.7961

ii

TABLE OF CONTENTS

1. INTRODUCTION 1
2. The needs for SUSTAINABLE process analytics formalism 1
3. The concept of sustainable process analytics formalism 5

3.1 Context of SPAF 5
3.2 SPAF concept through a manufacturing example 6
3.3 Structures of SPAF 7
3.4 Potential users of the SPAF 12

4. Illustrative example using SPAF 13
A. SPAF model syntax 26
B. SPAF formal semantics 28
C. SPAF Query Computation 30

iii

ABSTRACT
This paper introduces NIST’s Sustainable Process Analytics Formalism (SPAF) to facilitate the use of
simulation and optimization technologies for decision support in sustainable manufacturing. SPAF allows
formal modeling of modular, extensible, and reusable process components and enables sustainability
performance prediction, what-if analysis, and decision optimization based on mathematical programming.
SPAF models describe (1) process structure and resource flow, (2) process data, (3) control variables, and
(4) computation of sustainability metrics, constraints, and objectives. This paper presents the SPAF
syntax and formal semantics, provides a sound and complete algorithm to translate SPAF models into
formal mathematical programming models, and illustrates the use of SPAF through a manufacturing
process example.

1

1. INTRODUCTION

To be successful in today's complex, rapidly changing, and highly competitive world, manufacturers must
begin using sustainable practices throughout their manufacturing operations. The United States
Department of Commerce (DOC) identifies Sustainable Manufacturing (SM) as one of its high-priority
performance goals, defining SM as the “creation of manufactured products that use processes that
minimize negative environmental impacts, conserve energy and natural resources, are safe for employees,
communities, and consumers, and are economically sound” (DOC 2010).
 Increasingly, some large companies are making efforts to make their operations and manufacturing
processes more sustainable (Fujitsu 2011, GM 2010, Rockwell Automation 2010). However, most of
these projects are customized and conducted on a piecemeal basis. The solutions are normally not easily
reusable and not easily extensible. The effect of many complex interactions is often overlooked.
Furthermore, most of the small and medium-sized enterprises (SMEs) lack the capability to manage
energy and material efficiency in a systematic, quantitative, and optimal manner required to meet their
sustainability goals. To address these challenges, a standard formal methodology is needed to model,
exchange, and reuse manufacturing process knowledge for effective sustainability performance analysis.
 This is the focus of this paper. A Sustainable Process Analytics Formalism (SPAF) has been developed
at the National Institute of Standards and Technology (NIST) to facilitate the use of simulation and
optimization technologies for decision support in sustainable manufacturing. SPAF allows formal
modeling of modular, extensible and reusable process components and enables sustainability performance
prediction, what-if analysis and decision optimization based on mathematical programming. More
specifically, the contributions of this paper include (1) the concept of SPAF that enables formal
representation of sustainable process structure and resource flow, data, control parameters, metrics, and
constraints; (2) the syntax and formal semantics of SPAF; (3) a sound and complete algorithm to translate
SPAF models into formal mathematical programming models; and (4) a sustainable manufacturing
example that illustrates SPAF.
 The rest of this paper is organized as follows. Section 2 briefly discusses the needs for the SPAF;
section 3 introduces the context and concept of SPAF and potential users; section 4 explains the SPAF
using an example; in section 5, a summary is provided and future work are discussed. Finally, the
appendix presents the detail SPAF syntax and semantics.

2. THE NEEDS FOR SUSTAINABLE PROCESS ANALYTICS FORMALISM

Formal description and representation of sustainable processes also provides a basis for standardization.
Such standardization in turn is the foundation for system integration, process analysis, and decision
optimization, all are essential to the improvement of decision-making on factory floors (NIST 2010,
Tanzil and Beloff 2006, NRC 1999). Complex sustainability analysis requires formal simulation (e.g.,
Delmia Quest) or optimization models (e.g., A Modeling Language for Mathematical Programming
(AMPL)) (Berglund et al. 2011, AMPL 2011). Modeling and optimization have been identified as a key
enabler for improving SM in the future (SMLC 2011), but require significant modeling expertise and a
substantial development effort. SPAF eases the modeling process by providing standard description and
tools associated with it, so that the availability, use, and effectiveness of modeling and optimization
technologies can be increased. Currently, different analysis tools such as simulation, optimization, and
database query languages require different data representation and mathematical abstractions for
modeling. Thus, even for the same manufacturing process, the knowledge needs to be represented
differently multiple times, rather than just once. This makes model development, modification, and
extension very difficult. SPAF facilitates the increase of model reuse. In summary, SPAF is designed to
help companies, especially for SMEs, overcome the following major challenges: (1) lack of modeling and

http://www.1000ventures.com/business_guide/crosscuttings/new_economy_transition.html

operation research expertise and (2) duplication of modeling efforts. To satisfy manufacturers’ needs, we
have decided to include the following desirable features for SPAF:

Data manipulation and querying: SPAF supports data storage, manipulation, and querying. For
example, given a model of a specific milling machine, users may want to query the machine specification
data provided by the vendor.

What-if analysis: SPAF supports what-if analysis by computing a range of sustainability metrics
as a function of non-controllable parameters and control variables in manufacturing processes, based on
the formal representation of manufacturing processes and sustainability metrics. For example, given a
particular setup of a milling machine, users may want to compute the energy consumption for that setup.

Decision optimization: SPAF enables the formulation of optimization problems for deriving the
best option among all alternatives of the operational setting of machines, production plan, and
investment options. For example, given a model of a specific milling machine, users may want to find out
a setting of the machine that produces the required part while minimizing the energy consumption.

Unified modeling for different tasks: SPAF allows the sustainable process knowledge being
represented once, used many times, for different analyses such as data query, what-if analysis, and
decision optimization. Figure 1 shows the comparison between the current modeling approach (left hand
side of the Figure) and the unified SPAF modeling approach (right hand side of Figure 1). In current
modeling approaches, duplicated modeling efforts are needed even for the same manufacturing problem
for different kinds of analysis tasks. For example, simulation, optimization, and Life Cycle Assessment
(LCA) of a machining process have totally different abstractions and modeling methods. They are
independent of each other. However, the unified SPAF modeling approach enables modeling the
machining process using SPAF once, and the same model then can be used for data query, what-if
analysis, and decision optimization.

Built-in support for process modeling and sustainability metrics: SPAF provides modeling
capability for hierarchical composition of processes and resource flows. Representation of sustainable
metrics such as CO2 emissions, energy and material consumption, and cost are stored in a model library
for reuse.

Modular, extensible, and reusable models: SPAF enables modular model design and creation of
model libraries. Modular model design provides definitions for structuring process knowledge into
discrete, scalable, and reusable modules consisting of isolated, self-contained functional components and
linking these components through well-defined interfaces. A model library stores these model
components. Model components in a library can be used as building blocks to formulate new SPAF
models for different problems. For example, the users should be able to compose a machine shop model
from a number of machine and assembly model components in the library.

Ease of use: SPAF makes process analysis modeling more intuitive and straightforward for
domain users such as manufacturing engineers or decision makers. Composing a bigger model using
existing model components in a library should be an easy process. No extensive programming,
mathematics, operation research, and optimization knowledge is required. The task could be simply drag-
and-drops if a graphical user interface is developed.

Figure 1 Current modeling approach and the unified SPAF modeling approach

To better understand the SPAF requirements, a variety of modeling languages and formalisms, listed in
Table 1, have been analyzed from the perspective of the desirable features and functionalities discussed
above. These languages and formalism are selected because of their suitability for at least one of the
features discussed above. They include:

• Process description languages such as Process Specification Language (PSL) (ISO 2004), Business
Process Model and Notation (BPMN) (OMG, 2010), and Systems Modeling Language (SysML)
(OMG, 2012).

• Database query languages such as Structured Query Language (SQL) (ISO 2011) and Extensible
Markup Language (XML) Query (XQuery).

• Simulation languages such as SIMAN – a general-purpose SIMulation ANalysis program for
modeling combined discrete-continuous systems (Pegden et al. 1995) and Object-Oriented (OO)
languages.

• Optimization languages such as AMPL (AMPL, 2011), The General Algebraic Modeling System
(GAMS) (GAMS, 2010), and Optimization Programming Language (OPL) (IBM, 2012).

• Non-deterministic optimization semantics for corresponding formalism, which is used for CoJava
(Brodsky & Nash, 2005) and Decision Guidance Query Language (DGQL) (Brodsky & Wang, 2008).

Process description languages are designed for process description and modeling with a modular,
extensible, and reusable approach and can be easy to use via a graphical user interface. The SysML
parametric models support mathematical expression for (e.g., performance constraints) the system being
designed and provide a foundation for what-if analysis. However, they do not support direct data
manipulation and querying, optimization, and unified modeling of different tasks.

Database query languages are specifically designed for data manipulation and querying. They are
relatively easy to use, SQL-like skills are sufficient for problem modeling. However, they only allow
some limited what-if analysis and optimization for what can be expressed. There is no unified modeling
of different tasks. These languages do not have built-in process and sustainability metrics modeling, they
are not easily reusable.

http://en.wikipedia.org/wiki/Nondeterministic_algorithm

Simulation languages are excellent for what-if analysis. Some simulation tools support process modeling
and have user-friendly graphical user interfaces. A few of them even started to support sustainability
modeling, e.g., Witness (Waller, 2012). In most cases, simulation languages support modular, extensible,
and reusable modeling. However, they are not the appropriate tools for data querying and optimization.
Optimization by simulation approach is time-consuming and the results may not be as accurate as those
derived by using optimization tools. There is no unified modeling capability for different tasks discussed
above. Basic simulation modeling of processes requires object-oriented programming skills that most
manufacturing or process engineers do not have.

Optimization languages are designed for optimization modeling. Some optimization languages such as
OPL provide basic support for data manipulation and querying. However, they are not designed for what-
if analysis and do not provide unified modeling capability. There is no built-in support for process and
sustainability modeling. Current optimization modeling languages are not developed for reuse and
modular model construction. Mathematical and optimization modeling skills are required to use them.

Optimization semantics for OO programming and database query languages are developed to
provide features such as data manipulation and querying, what-if analysis, optimization, and unified
modeling of these different tasks. However, there is no built-in support for process and sustainability
metrics modeling, even though it potentially can be built on top of CoJava (Brodsky and Nash, 2005),
which requires Java programming skills. On the other hand, DGQL (Brodsky and Wang, 2008) is
relatively easy to use, just like SQL.

SPAF is designed to allow data querying, what-if analysis, optimization, and unified modeling of these
different tasks. SPAF provides built-in support for process and sustainability metrics modeling with a
components’ library. SPAF also supports modularity, extensibility, reusability, and ease of use especially,
with a graphical interface. However, the modeling effort will be similar to OPL for new process model
components if there is no model library.

 Table 1 A comparison table of SPAF and other languages

 Model
 Languages

Features

Process
Description
Languages
(PSL,
BPMN,
SysML)

Database
Query
Languages
(SQL,
XQuery)

Simulation
Languages
(SIMAN, OO
languages)

Optimization
Modeling Languages
(e.g., AMPL, GAMS,
OPL)

Optimization
Semantics for
OO and Query
Lang’s (CoJava,
DGQL)

Design goal for
SPAF

Data
manipulation
and querying

Not
directly

Yes Require
modeling and
programming

AMPL and GAMS are
not designed for

query processing;
OPL has some built-

in support

Yes Yes

What-if
analysis

Process
structure
and flow
etc, not
analytics

Limited (only
what can be
expressed as
DB queries)

Yes No Yes Yes

Optimization No Limited and
not efficient

Limited and
not efficient

Yes Yes Yes

Unified
modeling for
different tasks

No No No No Yes Yes

Built-in support Can be Can be Can be built on No Can be Yes with a

for process
modeling and
sustainability
metrics

extended extended top extended components
library

Modular,
extensible, and
reusable

Yes Does not
support OO
extensibility

Yes Difficult to reuse
models

CoJava - Yes;
DGQL – just like

SQL

Yes with a
components

library

Ease of use (by
manufacturing
and business
users)

Can be
easy via

graphical
interface

Relatively
easy (SQL

skills)

Programming
skills to model

analytics;
Many allow
high-level

composition
functionality

Math/optimization
modeling skills

CoJava
(programming

skills);
DGQL (SQL

skills)

Easy for
composite

process, esp. if a
graphical

interface is
added; similar

to OPL for
atomic process

models

3. THE CONCEPT OF SUSTAINABLE PROCESS ANALYTICS FORMALISM

3.1 Context of SPAF

To explain the context of SPAF, a five-stage SM improvement methodology is depicted in Figure 2. This
methodology is based on the ideas of the Six Sigma DMAIC (Define, Measure, Analyze, Improve, and
Control) methodology (Chieh, 2010). The methodology proceeds through the following stages:
• Stage 1 - High-Level Assessment: Each factory assesses its sustainability level and status, defines

high-level sustainability goals, and identifies areas for improvement regarding its organizational
sustainability performance (for both its processes and facilities).

• Stage 2 - Problem Identification and Data Collection: To address areas of improvement identified in
Stage 1, more specific case scenarios need to be defined. Modeling objectives, constraints, metrics,
and control variables related to each case scenario need to be identified. Relevant data, both
manufacturing process- and sustainability- related information, need to be measured, collected,
and/or estimated. In reality, process- and sustainability- related data are not always available and
when they are, they may exist in various forms, and would typically not yet be formalized.

• Stage 3 - Formal Process Modeling and Data Representation: To prepare for formal analysis and
optimization modeling, case scenarios defined in Stage 2 need to be formally described, data
collected need to be formally represented, and inputs and controls need to be modeled in a way so
that the values of decision variables could be instantiated.

• Stage 4 - Decision Guidance through What-if Analysis and Decision Optimization: The formal
process modeling and data representation completed in Stage 3 need to be translated into models that
can be solved by commercial off-the-shelf (COTS) tools. Different tasks such as data querying,
what-if analysis, and decision optimization will be performed for evaluation and analysis purposes.
The analyses provide actionable recommendations to decision makers for improvement
implementation.

• Stage 5 - Implementation/Execution: Decision makers can implement and execute the actionable
recommendations derived from Stage 4 for sustainability improvement. Occasionally, the evaluation
in the previous stage may determine that the goals cannot be achieved using the identified alternative
and hence this implementation stage may involve abandoning the now determined-to-be flawed
improvement plan. In either case, upon completion of Stage 5, users can continue to the next
iteration of the continuous improvement cycle.

The SPAF supports this methodology at stages 3 and 4 in Figure 2. Note that the formal process modeling
and data representation is done uniformly and only once for both what-if analysis and decision
optimization as shown in the right hand side of Figure 1. The SPAF models enable decision makers to ask
questions in the form of queries that provide computation and optimization solutions as actionable
recommendations. SPAF queries include:

1. Process data queries that resemble typical database queries and can be asked directly against the
explicit data.

2. What-if analysis queries to compute certain metrics for different scenarios based on available input
information.

3. Decision optimization queries to find the best one (minimum or maximum as required) out of all
alternatives that satisfy the constraints by using decision variables.

Figure 2 A model-based SM improvement methodology with SPAF

3.2 SPAF concept through a manufacturing example

The detailed SPAF syntax and formal semantics will be presented as an appendix. In this subsection, the
concept of SPAF modeling is illustrated using an example of a manufacturing process. Assuming we have
decided to analyze and optimize sustainability performance for a manufacturing process and collected
data for the study. We need to first describe formally the process using SPAF and then solve the problem.
The manufacturing process, depicted in Figure 3, has five sub-processes, three machining processes and
two assembly processes. The composite process (large rectangle), the sub-processes (small rectangles),
flows (lines), and flow aggregators (triangles) are depicted. Two parts, Part 1 and Part 2, provide input for

the three machining processes. The machining processes produce three intermediate components, Comp
1, Comp 2, and Comp 3. The components produced by the machines, A to C, flow to the assembly
processes to be assembled into final products, Product 1 and Product 2. In this example, metrics that can
be used to describe the composite process are cost and CO2 emissions. In this example, three specific
kinds of questions decision makers pose may include:

1. Process data questions, e.g., what is the maximum capacity of Machine A? How many of Product 2
needs to be produced over a scheduled week?

2. What-if analysis questions, e.g., what are the total cost, energy consumption, and CO2 emissions for a
scheduled weekly production under a particular production plan?

3. Decision optimization questions, e.g., how should production plans be set for the machines, the
assembly stations, and the flow distributions among them so that the scheduled weekly production
can be met within the weekly CO2 cap and at a minimal cost?

To answer these questions, the process structure, flow, sub-process relationships, and associated data need
to be clearly understood; and the objective, metrics, constraints, and control variables need to be
identified. The models can be expressed with identified data and variables and metrics computation
expressions. Optimization models can be formulated with constraints and objectives. The detail SPAF
modeling will be discussed in Section 4.

Figure 3 An example: a two-product-manufacturing process for SPAF modeling

3.3 Structures of SPAF

The goals of SPAF development are as follows. On the one hand, SPAF needs to be sufficiently expressive
for the SM key performance indicators such as energy and material consumption, emission, and cost in
industrial scenarios. On the other hand, the formalism needs to be simple for ease of use, which means
that high-level abstraction needs to be used. Relevant industry-accepted languages, standards, and tools
should be used. The SPAF models are human and machine readable, ready for database storage, translator
development, and exchange among modelers/users/systems.

 The SPAF includes two major parts: (1) Generic analytics language – represents generic analytics
knowledge and (2) Process description and sustainability metrics model templates - supports sustainable
process modeling and sustainability metrics computation.

 Figure 4 presents a class diagram for the generic part of the SPAF to describe the structure of the
components and their relationships. The components are explained as follows:

• An analytical statement may be assignments, constraints, or decision variable declarations.
• An analytical sequence is a sequence of analytical statements. SPAF analytical sequences can be an

explicit, implicit, constraints, alternatives, or optimization analytical sequence to satisfy the different
modeling needs.
• Explicit analytical sequence provides all the required process structure and data in the form of

assignment statements that assign a data value to each variable in the sequence.
• Implicit analytical sequence extends an explicit analytical sequence with assignment statements

that assign an expression (which computes a value from previously defined variables) to a new
variable.

• Constraint analytical sequence extends implicit analytical sequence with constraint expressions
in terms of previously defined variables.

• Alternative analytical sequence extends a constraint analytical sequence with declaration of
variables that do not have an assigned value. Intuitively, an alternative sequence defines a set of
feasible computations, corresponding to all possible assignment of values into the declared
variables that satisfy the constraints.

• Optimization analytical sequence is an alternatives analytical sequence with the added
optimization directive “minimize” or “maximize.” Intuitively, it states the optimization problem
of finding an instantiation of values into declared variables that satisfy all the constraint
statements, and minimizes/maximizes the indicated objective.

• An analytical model is an (non-optimization) analytical sequence with the added model name and a
possible parameter Id.

• A model package is a set of analytical models. Intuitively, it serves as a reusable repository of
analytical knowledge, which could be used for different applications.

• An analytical query is a pair of an analytical sequence and a model package that includes all models
that are referred to, directly or indirectly, from the process model.

Analytical sequence

Analytical statement

Assignment statement Constraint statement Variable declaration statement

1
1..*

Model package Analytical model

1 1..*

Include statement

Analytical query
10..* has

Implicit analytical sequence

Explicit analytical sequence

Optimization analytical sequence

Alternatives analytical sequence

Constraint analytical sequence

Optimization statement

0..*

1

has

1

1

has

Figure 4 SPAF class diagram – generic analytics language

Figure 5 shows a hierarchical diagram for the process description and sustainability metrics model
templates part of the SPAF. For the purpose of formal process representation, four different SPAF model
components have been defined. These model components include context, flow, flow aggregator, and
process. Context describes data that are globally accessible by all model components; context model
includes context ID and associated data attributes. Flow describes entities that physically flow into and
out of a process. Flow aggregator aggregates multiple sources of the same type of flows and distributes
the outputs as inputs to the other processes. The sum of all inputs of an aggregator must equal the sum of
its outputs. A process can be a composite process or a sub-process. The attributes of each component are
shown in Figure 6. The process description and sustainability metrics model templates part includes
syntax of the SPAF analytical models such as process model, flow model, flow aggregator model, and
context model. These analytical models must adhere to a more specialized structure. Figure 5 and Figure 6
are connected through the analytical model.

 A process model may be a generic process model or a specific process model. A generic process
model can be stored in a model library and reused for developing specific process models. Flow and flow
aggregator models may be those for discrete flows, continuous flows, or batch flows. Sustainability
metric aggregator models are specifically designed for sustainability metric aggregation for
environmental indicators such as energy, emission, material, and waste and economic indicators such as
investment, revenue, cost, and return on investment (ROI).

Figure 5 A hierarchical diagram for the process description and sustainability metrics model
templates

Figure 6 SPAF process description model components

SPAF libraries collect model components of both generic and specific models. Metrics model components
can also be stored in a library. Figure 7 shows examples of generic model components in a SPAF library,
e.g., process model components such as “baseSeqTransform” and “baseProcessComposer”, and flow and

flow aggregator models for discrete and continuous flows, and metrics models for environmental and
economic indicators. Figure 8 lists examples of specific model components in the library; these models
were developed for the two-product-manufacturing example. It includes specific process models for
“machine A,” “machine B,” “machine C,” “assembly A,” “assembly B,” and composite model
“twoProdManuf” for the overall process. The model components in the SPAF library provide reusable
building blocks and can be used as templates for a family of manufacturing processes; each model or
template can be reused with some adjustment for different cases within the family. New models can be
added to the SPAF library. Moreover, the existing models within the library can be executed with new
data so that different companies that have the same problems could use the models by inputting their data
to seek company-specific decision guidance. Using model components in the library, modelers can create
SPAF models and queries for their operations more effectively and efficiently.

Figure 7 SPAF component library: example of generic models

generic models

process models

baseSeqTransform

baseProcessComposer

flow and aggregator
models

itemSequence

flowSequence

item

flow

metric
models

costSequence

energySequence

wasteSequence

emissionSequence
context models

timeSequence

Figure 8 SPAF component library: examples of specific models

3.4 Potential users of the SPAF

Most people within the factory floor do not have the expertise to formulate and solve optimization
problems using Mathematical Programming (MP) or Constraint Programming (CP). The SPAF makes
process analysis modeling more intuitive and straight forward for domain users such as manufacturing
engineers. Figure 9 shows a high-level use-case model for a typical implementation of a decision
guidance management system using SPAF. There are three types of potential users, each with different
roles in using and/or maintaining the system.

• SPAF analyst: The analyst is a primary user of the system. S/he may be an engineer who is in charge
of defining case scenarios, setting up analysis model objectives together with decision makers, and
identifying sustainability metrics, constraints, and controls. S/he will collect data from the factory
floor and represent process structure, flow, and metrics using SPAF.

• Decision maker: The decision maker is the end user of the system. S/he identifies the SM
objectives/goals and provides model requirements. The decision maker will query the knowledge
base, ask what-if analysis questions, and/or make optimization requests with applied constraints and
control data for a specific problem. S/he may also compose SPAF models simply using model
components in the SPAF library.

• SPAF knowledge-base administrator: The knowledge-base administrator serves as a system
administrator who is responsible for updating system data, creating reusable knowledge artifacts,
helping the analyst develop new applications, maintaining the SPAF model library,
modifying/improving the system design, and maintaining/enhancing the system.

specific models

machineA

machineB

machineC

assemblyA

assemblyB

twoProdManuf

Figure 9 Use case for implementation of decision guidance management system using the SPAF

4. ILLUSTRATIVE EXAMPLE USING SPAF

In this section, the two-product-manufacturing example introduced in Section 3.2 is modeled using SPAF
and discussed in details. Figure 10 to Figure 20 show the detailed SPAF process models and possible
queries. First, assuming the SPAF model, twoProductsManuf (), is developed and all data are provided, a
what-if analysis query requires only four statements (Figure 10). The first two statements include the data
models for product demand data indicating quantities for each final product (i.e., Product 1 and Product 2)
and production plan data that describes the numbers of components should be produced by each
machining or assembly process. The third statement includes the SPAF model for the two-product-
manufcturing process and finally a constratint statement that indicates the total amount of CO2 generated
by this manufacturing scenario should be less than or equal to 50 metric tons. Since all data required for
the query are available, the query is actually a deterministic computational model that calculates the total
cost within the limit of total CO2 less than 50 metric tons. The query provides answers for both total cost
and total CO2.

include data productDemand();

include data productionPlanData();

include process twoProductsManuf ();

twoProductsManuf.totalCO2 ≤ 50;

 Figure 10 A what-if analysis query for the two-product-manufacturing process

http://www.google.com/search?hl=en&tbo=d&biw=896&bih=843&spell=1&q=deterministic+computational+model&sa=X&ei=ie79UKCnPOXG0QHtr4DgAw&ved=0CCwQBSgA

In a case where the production plan data are not provided, an optimal production plan with minimal total
cost needs to be determined, given the same CO2 limitation as a constraint. The same SPAF model,
twoProductsManuf (), is used as shown in Figure 11, but the production plan data (as shown in Figure 10)
is not provided and an optimizaiton statement is added to “minimize” the total cost. There are still only
four lines of code; however, since the production plan data are unknown, all data previously provided
explicitly in the production plan data model become decision variables that need to be instantiated to
satisfy all the constraints. Now it is no longer a deterministic computational model. It actually describes a
set of non-deterministic computational paths, each corresponding to an instantiation of set of values for
the decision variables. Some of the non-deterministic computation paths are “feasible,” i.e., they satisfy
all of the constraints (the total CO2 constraints as well as the internal constraints) while others are not
feasible. The semantics of the optimizaion query in Figure 11 is to find a non-deterministic optimizaiton
path that leads to the minimal total cost among all feasible computation paths. The query results inlcude
not only both total cost and total CO2 but also the optimal production plan configuation (i.e., the optimal
number of components being produced by each machining or assembly process).

include data productDemand();

include process twoProductsManuf ();

twoProductsManuf.totalCO2 ≤ 50;

Minimize twoProductsManuf.totalCost;

Figure 11 Optimization query for the two-product-manufacturing process

As stated above and shown in Figure 10 and Figure 11, the same SPAF model, twoProductsManuf (), can
be used for different kind of queries, such as what-if analysis (in Figure 10) and decision optimization (in
figure 11). These query examples demonstrate that SPAF provides a unified modeling capability. The
queries against SPAF models are simple and straightforward.

Figure 12 shows the model for the “context” component, its model name is “timeSequence.”
“timeSequence” is declared as a set of string “day,” which is a tuple consisting of three fields “day,
month, and year” of type integer. The three dots “…” expresses the missing data that need to be
instantiated as a constant, or an expression before the data is used.

context timeSequence() {
tuple day {
 int day;
 int month;
 int year;
 };
{day} timeSequence = ...;

}

Figure 12 Context model for the two-product-manufacturing example

Figure 13 shows the model for the “flow” component, the model name is “itemSequence.” The
“Id”parameter of “itemSequence” will be replaced by the value of a parameter in an include statement.
An include statement calls another model. It is similar to a subroutine call. The context model
itemSequence () is included using a include statement. A one-dimensional array “Id.qty” is an integer

http://www.google.com/search?hl=en&tbo=d&biw=896&bih=843&spell=1&q=deterministic+computational+model&sa=X&ei=ie79UKCnPOXG0QHtr4DgAw&ved=0CCwQBSgA

array. “Id.qty” is indexed by the finite set of tuples defined by the “timeSequence” variable from the
context model. The elements of the array represent quantities of the flow in that day.

flow itemSequence (Id) {
string Id.matchName = …;
include context timeSequence();
int Id.qty[timeSequence];
forall (d in timeSequence) Id.qty[d] > 0 ;
}

Figure 13 Flow model for the two-product-manufacturing example

Figure 14 shows a model for the “flow aggregator” component, its model name is “itemSeqAggr.” As
described earlier, “Id” is a parameter whose value will be provided by an include statement. In the first
statement of this model, the context model itemSequence () is included. Next, a variable “Id.flowType” is
declared as a string “itemSequence.” “Id.inputFlows” and “Id.outputFlows” are declared as a set of strings
and will be instantiated separately. “Id.flows,” the union of “Id.inputFlows” and “Id.outputFlows,” is also
a set of strings. For every flow in “Id.flows,” its quantity for the day in “timeSequence” is an integer. The
forall statement defines a constraint for each day in “timeSequence,” it indicates that the total number of
the “inputFlows” for a day must equal the total number of the “outputFlows.”

flow aggregator itemSeqAggr (Id) {

include context timeSequence();

string Id.flowType = “itemSequence”;

{string} Id.inputFlows = ...;

{string} Id.outputFlows = ...;

{string} Id.flows = Id.inputFlows union Id.outputFlows

for (i in Id.flows) int i.qty[timeSequence];

forall (d in timeSequence)

 sum (i in Id.inputFlows) i.qty[d]

 == sum (o in Id.outputFlows) o.qty[d];

}

Figure 14 Flow aggregator model for the two-product-manufacturing example

Figure 15 shows a model of a generic atomic process, which is an end process in which there is no sub-
process, e.g., Machine A. The model name is “baseSeqTransform.” Id is provided when it is called. For
every output flow, the flow model is being included with a parameter of the flow name. Two arrays of

floats are declared for both “Id.costPerUnit” and “Id.CO2PerUnit”; their index set is the set of output
flows for this atomic process. A two-dimensional array of integer “Id.inputPerOutput” represents the
number of input flows required for each output flow. For each production day, the cost of the atomic
process is computed as the unit cost of each output flow times the number of output flows produced in
that day; the CO2 emission is computed as the unit CO2 emission from each output flow times the number
of output flows produced in that day. A constraint is that the total number of input flows needed in that
day must equal the number of output flows produced in the same day times the number of input flows
required for each output flow.

 Once the generic atomic process model component is developed, it can be saved and reused for
generating specific atomic process model components.

process baseSeqTransform(Id) {

include context timeSequence();

string Id.name = …;

{string} Id.inputFlows = …;

{string} Id.outputFlows = …;

for (i in Id.outputFlows) include flow itemSequence(i);

float Id.costPerUnit[Id.outputFlows] = ...;

float Id.CO2PerUnit[Id.outputFlows] = ...;

int Id.inputPerOutput[Id.outputFlows][Id.inputFlows] = …;

float Id.cost[d in timeSequence] =

 sum(r in outputFlows) Id.costPerUnit[r] * r.qty[d];

float Id.CO2[d in timeSequence] =

 sum(r in outputFlows) Id.CO2PerUnit[r] * r.qty[d];

for (i in Id.inputFlows) { i.qty[d in timeSequence] =

 sum (o in Id.outputFlows) Id.inputPerOutput[o][i] * o.qty[d];

include flow itemSequence(i);

 }

}

Figure 15 An atomic process model for the two-product-manufacturing example

Figure 16 shows a specific atomic process model for Machine A. Model name is “machine.” It starts with
the instantiation of the declarations. “Id.name” is given as “machine.” “Id.inputFlows” is a set of two
strings, “part1toMaA” and “part2toMaA.” Input flows of “part1toMaA” and “part2toMaA” are given
names “part1” and “part2” respectively. “Id.outputFlows” is a set of two strings “comp1fromMaA” and
“comp2fromMaA.” Output flows, “comp1fromMaA” and “comp2fromMaA,” are given names of “comp1”
and “comp2” respectively. Two float type arrays for “Id.costPerUnit” and “Id.CO2 PerUnit” are both
given in a pair (index, value) of elements as [“comp1fromMaA”: 35.0, "comp2fromMaA": 65.0] and
["comp1fromMaA": 0.05, "comp2fromMaA": 0.02] respectively. The two-dimensional array

“Id.inputPerOutput” is instantiated as a pair of ["comp1fromMaA": ["part1toMaA": 1,"part2toMaA": 1],
"comp2fromMaA": ["part1toMaA": 1,"part2toMaA": 3]] The last step is to include the generic model
“baseSeqTransform." “machineA” is the parameter.

Other atomic processes in the two-product-manufacturing example including Machine B,
Machine C, Assembly A, and Assembly B are similar to the process model of Machine A.

process machineA () {

string Id = "machineA";

{string} Id.inputFlows = {"part1toMaA","part2toMaA"};

string part1toMaA.name = "part1";

string part2toMaA.name = "part2";

{string} Id.outputFlows = {"comp1fromMaA","comp2fromMaA};

string comp1fromMaA.name = "comp1";

string comp2fromMaA.name = "comp2";

float Id.costPerUnit [Id.outputFlows] = ["comp1fromMaA": 35.0,

 "comp2fromMaA": 65.0];

float Id.CO2PerUnit [Id.outputFlows] = ["comp1fromMaA": 0.05,

 "comp2fromMaA": 0.02];
 int Id.inputPerOutput [Id.outputFlows][Id.inputFlows] =

 ["comp1fromMaA": ["part1toMaA": 1,"part2toMaA": 1],

 "comp2fromMaA": ["part1toMaA": 1,"part2toMaA": 3]]

include process baseSeqTranform (“machineA”);

}

Figure 16 Atomic process model for Machine A

Depicted in Figure 17 is a generic process composer model, which includes all flow models and all sub-
processes models, and formulates the flow aggregator models automatically instead of being given
explicitly. Again, three dots indicate that the input and output flows, and sub-processes need to be
instantiated before this generic model is called. For every flow, the model needs to be included and its
model name, “matchName,” and aggregator name need to be defined before this generic model is called.
“flowsToAggregators,” a set of strings, are the union of input flows to the composite process and output
flows from all sub-processes. “flowsFromAggregators,” another set of strings, are the union of all input
flows to all sub-processes. All aggregator flow names are in the set of strings that include all
“matchName” of the flows. For every flow “matchName,” if the name of input flow is in the
“flowsToAggregators” and the name of the output flow is in the “flowsFromAggregators,” then include
the flow aggregator model with the flow’s “matchName” as a parameter.

process processComposer(id) {

{string} Id.inputFlows = …;

{string} Id.outputFlows = …;

{string} Id.subProcesses = …;

{string} Id.flows = Id.inputFlows union Id.outputFlows;

for (f in Id.flows) {

 string f.model = ...;

 include flow f.model(f);

 string f.matchName = ...;

 string f.aggrModel = ...;

};

for (p in Id.subProcesses) {

 string p.model = ...;

 include process p.model(p);

}

{string} Id.flowsToAggregators =

 Id.inputFlows union union(p in Id.subProcesses) p.outputFlows;

{string} Id.flowsFromAggregators =

 Id.outputFlows union union(p in Id.subProcesses) p.inputFlows;

{string} Id.allFlows =

 Id.flowsToAggregators union Id.flowsFromAggregators;

{string} Id.matchNames =

 distinct({f.matchName | f in Id.allFlows});

for (n in Id.matchNames) {string Id.n.aggrModel =

 first({f.aggrModel |f in Id.allFlows : f.matchName == n});

{string} Id.n.inputFlows = {

 f | f in Id.flowsToAggregators : f.matchName == n};

{string} Id.n.outputFlows = {

 f | f in Id.flowsFromAggregators : f.matchName == n};

include flow aggregator Id.n.aggrModel(Id.n);

};

Figure 17 Generic composite process model

Figure 18 shows the metrics aggregator models that compute daily total cost and CO2. The daily total cost
and CO2 are the sum of cost and CO2 for all sub-processes.

metric aggregator costSequence(Id) {

include context timeSequence ();

{string} Id.subProcesses = ...;

float Id.cost[t in timeSequence] =

 sum(p in Id.subProcesses) p.cost[t];

}

metric aggregator CO2Sequence(Id) {

include context timeSequence ();

{string} Id.subProcesses = ...;

float Id.CO2[t in timeSequence] =

 sum(p in Id.subProcesses) p.CO2[t];

}

Figure 18 Metric aggregator model

Figure 19 shows the composite process model. Model Id is “twoProductsManuf.” It includes the context
model itemSequence (). “Id.inputFlows” is given as a set of two strings {“part1in”, “part2in”}.
“Id.outputFlows” is given as a set of two strings of {“product1”, “product2”}. “matchNames” are also
given. “Id.subProcessess” is instantiated as a set of five strings of {“machine,” “machineB”, “machine,”
“assembly,” “assemblyB”}. The generic process model processComposer is called to include all atomic
sub-processes models defined previously. Float type of data for extra facility cost and CO2 per day
($1 750 and 0.3 metric tons) are provided. The metric aggregator models, costSequence (Id) and
CO2Sequence(Id), are included. Total cost for each day is the extra facility cost plus daily cost for all sub-
processes. Total CO2 for each day is the extra facility CO2 plus total sub-processes CO2.

An alternative modeling method is to explicitly instantiate all flows and flow aggregators, e.g.,
inputs and outputs of Part1, Part2, Comp1, Comp2, and Comp3 are all specified as sets of strings. Then
every flow aggregator is included with its name as a parameter.

process twoProductsManuf () {

string Id = “twoProductsManuf”;

include context timeSequence();

{string} Id.inputFlows = {“part1in”, “part2in”};

{string} Id.outputFlows = {“product1”, “product2”};

string part1in.matchName = "part1";

string part2in.matchName = "part2";

string product1.matchName = "product1";

string product2.matchName = "product2";

{string} Id.flows = Id.inputFlows union Id.outputFlows;

for (f in Id.flows) f.model = "itemSequence";

{string} Id.subProcessess = {

 "machineA", "machineB", "machineC","assemblyA", “assemblyB"};

for (p in Id.subProcesses) p.model = p;

include process processComposer(Id);

float Id.extraCostSequence[t in timeSequence] = 1750.0;

float Id.extraCO2Sequence[t in timeSequence]= 0.3;

include metric aggregator costSequence(Id);

include metric aggregator CO2Sequence(Id);

float Id.totalCost =

 sum(t in timeSequence)(Id.cost[t] + Id.extraCostSequence[t]);

float Id.totalCO2 =

 sum(t in timeSequence)(Id.cost[t] + Id.extraCO2Sequence[t]);

}

Figure 19 Composite process model for the two-product-manufacturing process

After we explained all the SPAF model components for the example, we need to examine the data
required by the queries in Figure 10 and Figure 11. A context data sequence is shown in Figure 20. Its
product demand data model is listed in Figure 21, in which the quantities of the two products are given
for each production day. For example, [<4, 9, 2012>: 6] in the first line means demand for Product 1 on
September 4th, 2012 is 6.

{day} timeSequence = {

<4, 9, 2012>, <5, 9, 2012>,

<6, 9, 2012>, <7, 9, 2012>, <8, 9, 2012>,

}

Figure 20 A context data sequence for the two-product-manufacturing process

int product1.qty [timeSequence] = [<4, 9, 2012>: 6, <5, 9, 2012>: 8, <6, 9,
2012>: 5, <7, 9, 2012>: 7, <8, 9, 2012>: 4];

int product2.qty [timeSequence] = [<4, 9, 2012>: 5, <5, 9, 2012>: 6, <6, 9,
2012>: 3, <7, 9, 2012>: 4, <8, 9, 2012>: 5];

Figure 21 Product demand data model for product 1 and product 2

A what-if scenario for the example is described as follows: if the process engineer uses a predefined
production plan, i.e., all the data such as numbers of part 1 and part 2, numbers of components flows into

and out of Machine A, Machine B, Machine C, and number of components flows into Assembly A, and
Assembly B each day are fixed. This means that all the data needed in the SPAF model are explicitly
provided and can be used to computer metrics using formulas. The four lines of what-if query (as shown
in Figure 10) can be expanded as in Figure 22 while the constraint keeps the same as before.

{day} timeSequence = { <5, 11, 2012>, <6, 11, 2012>, <7, 11, 2012>, <8, 11,
2012>, <9, 11, 2012>, }

int product1.qty [timeSequence] = [6, 8, 5, 7, 4];

int product2.qty [timeSequence] = [5, 6, 3, 4, 5];

// data for fixed production plan

int part1.qty [timeSequence] = [98, 128, 73, 107, 56];

int part2.qty [timeSequence] = [127, 166, 96, 139, 221];

int part1ToMaA.qty [timeSequence] = [0, 0, 4, 0, 0];

int part2ToMaA.qty [timeSequence] = [0, 0, 0, 0, 0];

int part1ToMaB.qty [timeSequence] = [98, 128, 69, 107, 56];

int part2ToMaB.qty [timeSequence] = [127, 166, 96, 139, 61];

int part2ToMaC.qty [timeSequence] = [0, 0, 0, 0, 160];

int comp1FromMaA.qty [timeSequence] = [0, 0, 0, 0, 0];

int comp2FromMaA.qty [timeSequencetimeSequence] = [0, 0, 4, 0, 0];

int comp1FromMaB.qty [timeSequence] = [30, 40, 25, 35, 20];

int comp2FromMaB.qty [timeSequence] = [23, 30, 14, 25, 17];

int comp3FromMaB.qty [timeSequence] = [22, 28, 16, 22, 2];

int comp1FromMaC.qty [timeSequence] = [0, 0, 0, 0, 0];

int comp3FromMaC.qty [timeSequence] = [0, 0, 0, 0, 16];

int comp1ToAsA.qty [timeSequence] = [30, 40, 25, 35, 20];

int comp2ToAsA.qty [timeSequence] = [18, 24, 15, 21, 12];

int comp3ToAsA.qty [timeSequence] = [12, 16, 10, 14, 8];

int comp2ToAsB.qty [timeSequence] = [5, 6, 3, 4, 5];

int comp3ToAsB.qty [timeSequence] = [10, 12, 6, 8, 10];

include process twoProductsManuf ();

twoProductsManuf.totalCO2 ≤ 50;

Figure 22 What-if query for the two-product-manufacturing example

This is a deterministic computational model, however, since there is a constraint statement in the query
and there are also other data integrity constraints within the models, the answers have to satisfy all the
constraints. The results of the what-if scenario are: the total cost is $30 000 with a total of 35.11 metric
tons of CO2. Note that changes in any input data will result in a different set of solutions.

For the optimization query listed in Figure 11, input data such as weekly production schedule and
customers’ demand for Product 1 and Product 2 are provided. The sustainability goal is to determine an
optimal production plan that minimizes the total cost within a CO2 bound of 50 metric tons. The
optimization model performs multiple non-deterministic computations, each instantiates decision
variables (quantities of flows in each configuration) using values that satisfy all the constraints. Among
those sets of configurations that satisfy all the constraints, the system will automatically find a
configuration (i.e., a production plan) that minimizes the total cost. Figure 23 shows the optimization
result screen of an implementation using IBM ILOG CPLEX. The optimal production plan for the
scheduled five days is derived. The optimization results show that the minimal total cost is $28 023 with
total 36.72 metric tons of CO2. The results also indicate that due to the higher operation cost of the
Machine B, it is not recommended to use Machine B to produce any of the components, i.e., Comp1,
Comp2, and Comp3. Note that changes in any of the input data and constraints will also affect the values
of decision variables and decision expressions.

Figure 23 Optimal solution screen of two-product-manufacturing example

5. CONCLUSION AND FUTURE WORK

This paper proposed a NIST-developed Sustainable Process Analytics Formalism that allows
manufacturers to: (1) formally represent sustainable process structure, flow, process data, control
variables, and process analytical model of sustainability metrics and constraints for quantitative
sustainability analysis; and (2) analyze and make decisions on improvement alternatives with modeling
and optimization tools. The formalism provides platform-independent process-knowledge description and
supports what-if analysis and decision optimization for decision makers. The use of the SPAF formalism
is illustrated through a two-product manufacturing process example. The SPAF syntax, formal semantics,
and query computation algorithm are presented in the appendix.
 The formalism will be deployed to industry through case studies and contributions to standard
development efforts. When implemented for real manufacturing applications, the formalism will help
manufacturers quantify their sustainability efforts for improvement of energy and material efficiency,
lower emissions, and save cost.
 Future work includes (1) examining diverse manufacturing processes to identify extra process
analytical needs; (2) supporting taxonomies, and metrics from unit manufacturing, assembly processes,
and production planning; (3) supporting smart manufacturing by enhancing the SPAF; (4) developing
translators that automatically translate SPAF to formal optimization/simulation models, which can then be
solved by commercial optimization tools; (5) developing graphical representation of SPAF based on
modeling language such as UML, SysML, or BPMN; (6) performing industrial case studies to evaluate
and validate the formalism and the capabilities; and (7) standardizing the SPAF.

DISCLAIMER

No approval or endorsement of any commercial product by the National Institute of Standards and
Technology is intended or implied. Certain commercial software systems are identified in this paper to
facilitate understanding. Such identification does not imply that these software systems are necessarily the
best available for the purpose.

REFERENCES

AMPL. (2011). “A Modeling Language for Mathematical Programming.” Available via
<http://www.ampl.com/> [accessed Jan. 2012].

Berglund, J. K., Michaloski, J. L., Leong, S. K., Shao, G., Riddick, F. H., Arinez, J., et al. (2011). Energy
Efficiency Analysis for a Casting Production System. Proceedings of the 2011 Winter Simulation
Conference, (pp. 1060-1071).

Brodsky, A., and Nash, H. (2005). CoJava: a unified language for simulation and optimization. The
Conference on Object Oriented Programming Systems Languages and Applications, (pp. 194 -
195).

Brodsky, A., and Wang, S. X. (2008). Decision-Guidance Management System (DGMS): Seamless
Integration of Data Acquisition, Leaning, Prediction, and Optimization. The 41st Annual Hawaii
International Conference on System Sciences (HICSS 2008), (pp. 71–81). Hawaii.

Chieh, C. (2010). Six Sigma Basics: DMAIC Like Normal Problem Solving. Available via <
http://www.isixsigma.com/new-to-six-sigma/dmaic/six-sigma-basics-dmaic-normal-problem-
solving/> [accessed August. 15, 2013].

CPLEX. (2011). Available via <http://en.wikipedia.org/wiki/CPLEX> [accessed August. 2013].

DOC. (2010). Sustainable Manufacturing Initiative and Public-private Dialogue. Available via
<http://www.trade.gov/competitiveness/sustainablemanufacturing/index.asp> [accessed Jan. 15,
2012].Fujitsu. (2011). Fujitsu Offers Energy-Saving Green Infrastructure Solution. Available via
<http://www.fujitsu.com/global/news/pr/archives/month/2007/20071210-02.html> [accessed March
2012].

GAMS. (2010). An Introduction to General Algebraic Modeling System (GAMS). Available via
<http://www.gams.com/> [accessed July 2013].

GM. (2010). Innovation: Environment. Available via
<http://www.gm.com/corporate/responsibility/environment/facilities/index.jsp> [accessed August
2012].

Feng, S. C. and Joung, C. B. (2009). An Overview of a Proposed Measurement Infrastructure for
Sustainable Manufacturing. Proceedings of the 7th Global Conference on Sustainable Manufacturing.

IBM. (2012). Introducing IBM ILOG CPLEX Optimization Studio V12.2. Available via
<http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/index.jsp?topic=%2Filog.odms.ide.help%2FC
ontent%2FOptimization%2FDocumentation%2FOPL_Studio%2F_pubskel%2Fglobals%2Feclips
e_and_xplatform%2Fps_opl307.html>. [accessed August 2013].

ISO 18629-1:2004. (2004). Industrial Automation Systems and Integration – Process Specification
Language – Part 1: Overview and Basic Principles. Available via
<http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35431> [Access
Sept. 2013].

ISO/IEC 9075-1:2011. (2011). Information technology – Database languages – SQL – Part 1: Framework
(SQL/Framework). Available via
<http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681> [Access
Sept. 2013].NIST. (2010). Metrics, Standards, and Infrastructure for Sustainable Manufacturing
workshop. Gaithersburg, MD: Available via
<http://www.mel.nist.gov/msid/conferences/Agenda_SMW.htm > [access August 2013].

NIST SM. (2012). Sustainable Manufacturing Program. Available via
<http://www.nist.gov/el/msid/lifecycle/sustainable_mfg.cfm> [accessed Sept. 2013].

National Research Council. 1999. Industrial Environmental Performance Metrics: Challenges and
Opportunities. Washington, DC: The National Academies Press.

OECD. (2013). Sustainable Manufacturing Toolkit Prototype. Available via <
http://www.oecd.org/innovation/green/toolkit/48661768.pdf [accessed Sept. 2013].

OMG. (2010). Business Process Model and Notation (BPMN). Available via
<http://bpmnhandbook.com/01_specs/BPMN_20_spec.pdf> [accessed Sept. 2013].

OMG. (2012). OMG Systems Modeling Language. Available via <http://www.omgsysml.org/>
[accessed Sept. 2013].

OPL. (2012).
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/index.jsp?topic=%2Filog.odms.ide.help%2FConten
t%2FOptimization%2FDocumentation%2FOPL_Studio%2F_pubskel%2Fglobals%2Feclipse_and_xp
latform%2Fps_opl307.html. [accessed Sept. 2013].

Paju, M., Heilala, J., Hentula, M., Heikkila, A., Johansson, B., Leong, S., and Lyons K. (2010).
Framework and Indicators for a Sustainable Manufacturing Mapping Methodology. Proceedings of
2010 Winter Simulation Conference.

Pegden, C, Sadowski, R, Shannon, R. (1995). Introduction to Simulation Using SIMAN. McGraw-Hill,
Inc. New York, NY. Pineda-Henson, R., Culaba, A. B. (2002). Developing an Expert System
for GP Implementation. Proceedings of the 2nd World Conference on Green Productivity.
Available via http://www.apo-
tokyo.org/gp/manila_conf02/resource_papers/narrative/henson_experta4.pdf [accessed August,
2013].

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/index.jsp?topic=%2Filog.odms.ide.help%2FContent%2FOptimization%2FDocumentation%2FOPL_Studio%2F_pubskel%2Fglobals%2Feclipse_and_xplatform%2Fps_opl307.html
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/index.jsp?topic=%2Filog.odms.ide.help%2FContent%2FOptimization%2FDocumentation%2FOPL_Studio%2F_pubskel%2Fglobals%2Feclipse_and_xplatform%2Fps_opl307.html
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/index.jsp?topic=%2Filog.odms.ide.help%2FContent%2FOptimization%2FDocumentation%2FOPL_Studio%2F_pubskel%2Fglobals%2Feclipse_and_xplatform%2Fps_opl307.html
http://www.apo-tokyo.org/gp/manila_conf02/resource_papers/narrative/henson_experta4.pdf
http://www.apo-tokyo.org/gp/manila_conf02/resource_papers/narrative/henson_experta4.pdf

Rockwell Automation. (2010). Taking Energy Management to a Higher Level. Available via <
http://www.managingautomation.com/maonline/research/download/view/Taking_Energy_Manageme
nt_to_a_Higher_Level_27756351>. [accessed August 2013].

Shao, G., Kibira, D., Brodsky, A., & Egge, N. (2011). Decision Support for Sustainable Manufacturing
using Decision Guidance Query Language. The International Journal of Sustainable
Engineering,Volume 4, Issue 3 , 251-265.

SMLC. 2011. Implementing 21st Century Smart Manufacturing. https://smart-process-
manufacturing.ucla.edu/about/news/Smart%20Manufacturing%206_24_11.pdf. [accessed August
2013].

Tamer G. (2011). "Methodological study on technology integration for sustainable manufacturing in the
surface finishing industry." ETD Collection for Wayne State University. Paper AAI3469974.
http://digitalcommons.wayne.edu/dissertations/AAI3469974

Tanzil, T. and Beloff, B. (2006). “Assessing impacts: Overview on sustainability indicators and metrics,”
Environmental Quality Management, Volume 15, Issue 4, pp. 41-56.

Waller, A. (2012). Witness Simulation Software. Proceedings of the 2012 Winter Simulation Conference.

http://www.managingautomation.com/maonline/research/download/view/Taking_Energy_Management_to_a_Higher_Level_27756351
http://www.managingautomation.com/maonline/research/download/view/Taking_Energy_Management_to_a_Higher_Level_27756351
https://smart-process-manufacturing.ucla.edu/about/news/Smart%20Manufacturing%206_24_11.pdf
https://smart-process-manufacturing.ucla.edu/about/news/Smart%20Manufacturing%206_24_11.pdf

Appendix: Sustainable Process Analytics Formalism Syntax and Formal Semantics

A. SPAF model syntax

SPAF adopts concepts and ideas from other languages and is based on the OPL data model and the basic
OPL syntax of arithmetic and query expressions with minor modifications and extensions. The basic OPL
data model, modeling concept, data type, and data structure are listed in (IBM, 2012).

 Analytical sequence, Aseq, is a sequence (s1, ..., sn) of analytical statements, si,,

1 ≤ i ≤ n, in one of the forms:

1. Ti xi = ai
2. Ti xi = ei
3. Ti xi
4. Ti xi = …
5. Ci
6. include Mi (J) or include Mi ()
7. min xi , max xi , or sat
where:

• The statements min xi , max xi , or sat are only allowed as the last statement sn
• Ti is a type
• xi is a variable name, which may include a prefix identifier, e.g., Id.x.
• ai is a constant of type Ti
• ei is an expression returning type Ti
• “…” is a keyword in “Ti xi = …” to indicate that xi is to be instantiated with a constant before

using it later in the sequence
• Ci is a constraint
• Mi is a unique name of an analytical model
• J in Mi (J) is a string identifier

The first four forms are declaration statements, within which the first two forms are assignment
statements. Ci is a constraint statement, include Mi is an include statement, and min xi, max xi, or sat are
optimization statements, i.e., minimization, maximization, and satisfiability. If the last statement sn of the
analytical sequence (s1, ..., sn) is min xi, max xi, or sat, then the (s1, ..., sn) is an optimization analytical
sequence; otherwise, we say that it is a non-optimization analytical sequence.

 An analytical model is an expression of the form

M(Id) { Aseq } or M() { Aseq }

where M is a unique name of the model, Id is an optional parameter, and Aseq is a non-optimization
analytical sequence.

 Let P be a set of analytical models. We say that P is closed under reference (or closed) with
respect to an analytical sequence A (or model M) if the following holds: If an A has a statement of the
form include M’(J), then P must contain an analytical model M’. We say that P is closed under reference
(or closed) if for every model M in P, P is closed with respect to M.

An analytical query is a pair (A, P), where A is an analytical sequence and P is a model package
closed with respect to A.

Let (A, P) be an analytical query. The flattened sequence of A, denoted flat (A, P), is an analytical
sequence that results from A by recursively replacing each include M() with the analytical sequence of

the model M (), and replacing each include M(J) statement with the analytical sequence of the model
M(Id) in P, in which every appearance of Id is replaced with J.

We say that an analytical query (A, P) has a conflict, if one of the following holds in

flat (A, P) = (S1,…, Si ,…, Sj,…, Sn):

• Sj is a declaration statement of the form Ti xi = ai or Ti xi = ei and Si is any declaration statement
• Si and Sj are two declaration statements such that xi = xj and Ti ≠ Tj (i.e., the same variable is

declared twice with conflicting types)
Given a flat (S1,…, Si ,…, Sn) analytical sequence A (i.e., without include statement), we say that variable
xi is data-instantiated if:

• There is a statement Si of the form Ti xi = ai , where ai is a constant or, recursively
• There is a statement Si of the form Ti xi = ei, such that all variables y in ei are instantiated in the

prefix sequence (S1,…,Si-1)
We say that a flat analytical sequence A is data instantiated if every variable x in a declaration statement
is instantiated.

We say that an analytical query (A, P) is well-formed if:

• It does not have a conflict, and
• For every constraint statement Ci and expression ei in the declaration statement of the form Ti xi = ei

or min xi, max xi, or sat in flat (A, P), the following holds: it only contains variables that have been
declared in a declaration statement earlier in the sequence.

• If A is a non-optimization sequence, then, flat (A, P) must be data instantiated.
• If A is an optimization sequence, then for every statement Si in flat (A, P) = (s1, ..., sn) of the form Ti

xi = …, xi must be instantiated in (S1,…,Si-1) (i.e., earlier in the sequence).
From now on, only well-formed analytical queries are considered.

As discussed earlier, a SPAF model is an analytical model M (Id) if it is one of the following
forms:

• Process model
• Context model
• Flow model
• Flow aggregator model
• Sustainability metric aggregator model
A SPAF process model with identifier Id, denoted PM (Id), is an analytical sequence that contains
statements of the following forms:

string Id.processType = type_flow_string,

{string} Id.inputFlow = inputFlowExpr,

 {string} Id.outputFlow = outputFlowExpr,

 {string} Id.subProcess = subProcessExpr,

 {string} Id.flowAggregator = flowAggrExpr,

and

 include M (I), for every I in Id.inputFlow, Id.outputFlow, Id.subProcess, or Id.flowAggregator,
where:

• Id is used as a prefix for all variables on the left hand side of the declaration statements, except for
variables that appear on the left hand side of assignments into variables defined in the included

models, i.e., SPAF models M (Id’), where Id’ is in Id.inputFlow, Id.outputFlow, Id.subProcess, and
Id.flowAggregator (those are “visible” to the process model)

• type_process_string is a string
• inputFlowExpr, outputFlowExpr are analytical expressions of the type {string} (i.e., return a set of

strings)
• subProcessIdsExpr, flowAggrIdsExpr are analytical expressions of type {string}
• M (I) denotes a method that returns a SPAF model with identifier I
A SPAF context model CM (), is an analytical model.

A SPAF flow model with identifier Id, denoted FM (Id), is an analytical model that contains
statements of all of the following forms:

string Id.flowType = type_flow_string,

where:

• Id is used as a prefix for all variables on the left hand side of the assignment statements
• type_flow_string is a string

A SPAF flow aggregator model with identifier Id, denoted FAM (Id), is an analytical sequence that
contains all of the followings forms:

string Id.flowType = type_flow_string,

{string} Id.flows_to_aggr = inputFlowExpr,

{string} Id.flows_from_aggr = outputFlowExpr,

where:

• Id is used as a prefix for all variables on the left hand side of the assignment statements
• type_flow_string is a string
• inputFlowExpr, outputFlowExpr are analytical expressions of the type {string} (i.e., return a set

of strings)
An SPAF process package is a model package P. We say that it is well-formed if:

• P is closed under references
• P satisfies the following scoping rules:

• Process model M (Id) can use variables prefixed with identifiers form Id.inputFlow,
Id.outputFlow, Id.flowAggregator, or itself, i.e., Id.

• A model M (Id) in P can use variables from the context model in P.
• Flow Aggregator Model M (Id) can use variables that are prefixed with identifiers of flow models

that are referenced in it, or itself, i.e., Id.
• For every process model M in P, A(M) is a well-formed analytical sequence
Note that a well-formed SPAF process package P provides a modular description of a (flat) and well-
formed analytical sequence. Thus, it is naturally extendable and its components are reusable.

B. SPAF formal semantics

We say that an analytical sequence A is explicit if all of its analytical statements are of the form

Ti xi = ai

where ai is a constant, i.e., it is an assignment of a constant to a variable. Intuitively, the symbolic
expression of an explicit analytical sequence represents the corresponding data. Note that an explicit
analytical sequence is flat. Formally, the semantics of an explicit analytical sequence (s1, ..., sn), denoted
Sem ((s1, ..., sn)), is itself, i.e., its symbolic expression.

We say that an analytical sequence A is implicit if all of its analytical statements are of the form

Ti xi = ei

 Note that this includes the case when the expression ei is a constant ai. Formally, the semantics of a well-
formed implicit analytical sequence

(T1 x1 = e1, … , Tn xn = en)

is the explicit analytical sequence

(T1 x1 = a1, … , Tn xn = an)

in which each ai, 1 ≤ i ≤ n, is a constant of type Ti that is computed by expression ei, when each variable
xj, 1 ≤ j ≤ i-1, is replaced by the constant aj.

The semantics of (s1, ..., sn) is denoted Sem ((s1, ..., sn)). Obviously, an explicit analytical sequence
is a particular case of implicit, in which case, explicit and implicit semantics coincide.

We say that an analytical sequence A = (s1, ..., sn) is a constraint analytical sequence if all of its
statements are of the form

(Ti xi = ei) or Ci

where ei is an expression of type Ti and Ci is a constraint. Formally, the semantics of a well-formed
constraint analytical sequence (s1, ..., sn), denoted Sem ((s1, ..., sn)), is defined as follows:

• Consider an implicit analytical sequence (si1
,..., sik

), which is a sub-sequence of (s1,..., sn) that

contains all statements si’ of the form Ti xi = ei, and its semantics (Ti1
 xi1

= ai1
,..., Tik

 xik
= aik

)
(which is an explicit analytical sequence), and

• Consider a sequence (C j1
, ..., C jm

), which is a sub-sequence of (s1, ..., sn) that contains all the

constraint statements
• If there exists 1 ≤ i ≤ m, such that C ji

evaluates to FALSE after every variable xi in it is replaced

with the constant ai, then Sem ((s1, ..., sn)) is defined as INVALID. Otherwise, Sem ((s1, ..., sn)) is
defined as the explicit analytical sequence (Ti1

 xi1
= ai1

,..., Tik
 xik

= aik
).

We say that an analytical sequence A = (s1, ..., sn) is an alternative analytical sequence, if each si, 1 ≤ i ≤
n, is of the form

(Ti xi), (Ti xi = ai), (Ti xi = ei), or Ci

where ai is a constant of type Ti, and ei is an expression of type Ti, and Ci is a constraint. Note that an
alternative analytical sequence may have repetition of declaration statements for the same variable x.
Consider the analytical sequence (s1, ..., sn) resulting from A by removing, for every variable x, all
declarations except for its first appearance in A. Formally, the semantics of a well-formed alternatives
analytical sequence (s1, ..., sn), denoted Sem ((s1, ..., sn)), is defined as follows:

Consider all non-instantiated variables xi1
, ..., xik

in (s1, ..., sn). Sem ((s1, ..., sn)) is the set

{ E(ai1
,..., aik

) | ai1
in D(Ti1

),..., aik
in D(Tik

) /\ E(ai1
,..., aik

) ≠ INVALID }

where:

• D (Ti1
),...,D (Tik

) are the domains of types Ti1
,..., Tik

, respectively, and

• E(ai1
, ..., aik

) denotes Sem ((s1,..., sn) [xi1
/ ai1

,..., xik
/ aik

]), where (s1, ..., sn) [xi1
/ ai1

,..., xik
/ aik

]
denotes the constraint analytical sequence (s1’, ..., sn’) that results from (s1, ..., sn) by replacing each
statement of the form (Ti j

 xi j
), 1 ≤ j ≤ k, with the statement Ti j

 xi j
= ai j

.

We say that an analytical sequence A= (s1,..., sn, sn+1) is a flat optimization sequence if (s1,..., sn) is an
alternative sequence, and s (n+1) is of the form:

min xi, max xi, or sat.

where xi, 1 ≤ i ≤ n, is one of the variables in the left hand sides of assignments in

(s1, ..., sn). Assuming without loss generality that, for every variable x in A, there is a single declaration of
x (if this is not the case, all declarations of x except for its first appearance are removed.) Formally, the
semantics of an optimization analytical sequence (s1,..., sn, s(n+1)), denoted Sem ((s1,..., sn, s(n+1))), is
defined as follows:

If Sem (s1, …, sn) = ∅ then we say that Sem ((s1,..., sn, s(n+1))) is INFEASIBLE. Otherwise, consider
an explicit analytical sequence E in Sem ((s1,..., sn)) such that:

• If s (n+1) is min xi, then for all E’ in Sem ((s1, …, sn), ai ≤ ai’, where ai and ai’, are the analytical model
constants in the assignments Ti xi = ai of E, and Ti xi = ai’ of E’.

• If s (n+1) is max xi, then for all E’ in Sem ((s1, ..., sn), ai ≥ ai’, where ai and ai’, are the analytical model
constants in the assignments Ti xi = ai of E, and Ti xi = ai’ of E’.

If E does not exist, we say that Sem ((s1,..., sn, s(n+1))) is UNBOUNDED. Otherwise,

Sem ((s1,..., sn, s(n+1))) is E.

Note that if s (n+1) is sat, the semantics is just an explicit analytical sequence E in Sem ((s1, ..., sn)).
Also note that the optimization semantics (whether it is minimization, maximization, or satisfiability) are
non-deterministic, i.e., there may be more than one explicit model that satisfies the condition in the
definition of semantics.

Consider the five layers (types) of analytical sequences (1) explicit, (2) implicit, (3) constraints,
(4) alternatives, and (5) optimization. Let L (1), L (2), L (3), L (4), and L (5) denote sets of analytical
sequences that can be expressed by each layer, respectively. We claim that

L (1) L (2) L (3) {L (4)} L (5)

and that the semantics of each layer are consistent with all lower layers. That is, for any two layers i, j, 1
≤ i < j ≤ 5, i ≠ 4, j ≠ 4’, if an AM A is in L (i), then Sem (i) of A is also Sem (j) of A.

Semantics of a query (A, P) is a pair (A’, P’) constructed as follows:

• For every sequence S, either A or a sequence B in a model M (Id) {B} in P, S is replaced by S’ as
follows.
• Consider all variables x1, …, xn, declared in their order in S, then S’ is the sequence

(T1 x1 = a1 , …, Tn xn = an)

where T1 ,…, Tn are the corresponding types of x1, …, xn respectively, and ai is the constant instantiated
with xi in the semantics E of flat (A,P).

C. SPAF Query Computation

In this section, algorithms (reduction procedures) to perform SPAF analytical query computation are
introduced. Figure C.1 shows a commutative diagram for analytical query computation, in which the
upper left box indicates the query sequence A in model package P. The query sequence may have include
statements . The semantics of A is sequence A’ in package P’ as shown in the upper right box in Figure

24. Two algorithms are included in the computation – analytical query algorithm and flat optimization
sequence algorithm. Through the analytical query algorithm (refer to step (1), (6), and (5)), (A, P) can be
translated to a flat analytical sequence (middle left box). If the flat analytical sequence can be instantiated,
it is an implicit analytical sequence, otherwise, it is an optimization analytical sequence whose semantics
is a flat explicit analytical sequence (middle right box). This algorithm calls the flat optimization
sequence algorithm (refer to step (2), (3), and (4)) to translate the flat optimization sequence to a standard
optimization model such as OPL or AMPL (lower left box). By using an optimization solver, the
optimization solution (lower right box) can be derived. All variables can then be instantiated, the
sequence becomes a flat explicit analytical sequence (middle right box), which can be translate back to
(A’, P’).

Query (A, P) (A', P') =
Sem (A, P)

Flat
(optimization

sequence
(OS))

Optimization
solution

(instantiation of
constants to
variables) (I)

Explicit
analytical

sequence (flat)
(ES) = Sem

(OS)

Standard
optimization
model (e.g.,

OPL or AMPL)

1

3

4

5

2

7

6

Sem

Sem

Optimization solution

Flat optimization sequence
algorithm

Analytical query algorithm

Figure C.1 A commutative diagram for analytical query computation

Figure C.2 presents the algorithm of SPAF Query Computation. The input is an analytical query sequence
A and a model package P that is closed with respect to A. The output is (A’, P’) that is the semantics of (A,
P). The procedures of the algorithm include:

1. Construct a flat sequence S1 by replacing all the include statements in A with corresponding
analytical sequences.

2. Construct a new sequence S2 by removing all the duplicated declarations of x except for the first
declaration in S1 for every variable x declared in S1.

3. If S2 is instantiated, it must be an implicit analytical sequence. So a new explicit analytical sequence
S3 can be constructed by replacing each variable with a constant that derived from an expression.

4. If S2 is not instantiated, it must be a flat optimization query. By calling the
OptSeqAlg (S2) algorithm, it will return the semantics of S2.

Input: (A, P) is a well-formed analytical query and P is a closed form model package
closed with respect to A.

Output: (A’, P’) is the semantics of (A, P).

1. Construct S1 = flat (A, P).

2. Construct sequence S2 from S1 as follows:

For every variable x declared in S1, remove all declarations of x

except for the first declaration in S1.

3. Check if S2 is instantiated.

4. If S2 is instantiated, it must be an implicit analytical sequence of the form (T1

x1 = e1, …,Tn xn = en). In this case, construct S3 as the explicit analytical

sequence (T1 x1 = a1 ,…,Tn xn = an),in which each ai, 1≤ i ≤ n, is a constant of

type Ti that is computed by expression ei, where each variable xj, 1≤ j ≤ i-1, is

replaced by aj.

5. Otherwise, if S2 is not instantiated, it must be a flat optimization query.

Construct S3 by calling the method OptSeqAlg (S2), which returns the semantics of

S2.

6. Construct the pair (A’, P’) as follows:

For every sequence S, which is either A or a sequence B in a

model(Id){B} in P, S is replaced by S’ as follows.

Consider all variables x1, …, xn, declared in their order in S, then S’

is the sequence (T1 x1 = a1 ,…,Tn xn = an) where T1 ,… ,Tn are the

corresponding types of x1, …, xn respectively, and ai is the constant

to instantiate xi in S3.

Figure C.2 Algorithm 1: SPAF query computation

Figure C.3 presents the algorithm of Optimization Sequence Algorithm (OptSeqAlg). The input is a flat
optimization query S2 generated by the SPAF Query Computation algorithm. The output is the semantics
of S2.

1. For all variables that are instantiated in every statement, replace the expression with the computed
constant.

2. Construct decision variables that are not being instantiated.
3. Construct a set of constraints by replacing decision variables in every statement with its constant. For

any variable that is non-instantiated, a constraint is added.
4. Construct the optimization problem with objectives and constraints.

5. Solve the optimization problem using an optimization solver
6. Construct the answer sequence by removing all constraint statements and replacing all the variables

using constants computed or the optimization solutions.

Input: Flat optimization query (i.e., (s1,…,sn,sn+1) where sn+1 is of the

 form min xi , max xi (1 ≤ i ≤ n) or sat where xi is not

 instantiated on (s1, …, sn)).

Output: Semantics of (s1,…,sn,sn+1).

1. Consider all variables xi1
, ..., xim

 in (s1, ..., sn) that are instantiated. For

every statement Si j
, 1 ≤ j ≤ k, of the form

 Ti j
 xi j

= ei j
, compute ei j

, and replace ei j
with the computed constant

 ai j
, i.e., resulting in Ti j

 xi j
= ai j

2. Construct the set of decision variable V to be the set of all non-instantiated

variables xl1
, ..., xlm

 in (s1, ..., sn) ranging over the domains corresponding to

types Tl1
,…, Tlm

 respectively.

3. Construct the set of constraints C as follows:

 3.1 Initially, C = ∅.

 3.2 For every statement si, 1≤ i ≤ n of the form Ci, add to C the

 constraint resulting from Ci by replacing every instantiated

 variable xi j
with its constant ai j

from Step 1.

3.3 For every statement Si of the form Ti xi = ei , where xi is non-

instantiated, add the constraint xi == ei’, where ei’ result from

ei by replacing each decision variable xi j
in ei with its constant

ai j
from Step 1.

4. Construct the optimization problem O;

V

min xn subject to C,
V

max xn subject to C, or
V

sat C according to sn+1.

5. Solve the optimization problem O.

6. If O is infeasible, return “INFEASIBLE”, else if O is unbounded, return

“UNBOUNDED.”

7. Otherwise, construct the answer sequence from (s1, ..., sn) as follows:

 7.1 All non-declaration statements (i.e., constraints) are removed.

 7.2 Every declaration statement with type Ti and variable xi (i.e.,

 of the form Ti xi = ai or Ti xi = ei) be replaced as follows:

 7.3 if xi is instantiated, it is replaced with Ti xi = ai , where ai

 is a constant computed in Step 1.

 7.4 if xi is non-instantiated, the statement is replaced with

 Ti xi = ai, where ai is a constant instantiated into decision

 variable xi from the solution of the optimization problem O.

Figure C.3 Algorithm 2: optimization sequence algorithm (OptSeqAlg)

Algorithm correctness: We denote by All-Sem (A, P) the set of all explicit analytical sequences’ E that
are Sem (A, P).

We denote by All-Ans (A, P) the set of all explicit analytical sequences’ E that are possible
answers produced by Algorithm: SPAF query computation.

Claim: Algorithm SPAF query computation is CORRECT, i.e., it is:

1. Sound, i.e., for every well-formed analytical query (A, P),
All_Ans (A, P) ⊆ All_Sem (A, P)

2. Complete, i.e., for every well-formed analytical query (A, P),
All_Sem (A, P) ⊆ All_Ans (A, P)

	1. INTRODUCTION
	2. The needs for SUSTAINABLE process analytics formalism
	3. The concept of sustainable process analytics formalism
	3.1 Context of SPAF
	3.2 SPAF concept through a manufacturing example
	3.3 Structures of SPAF
	3.4 Potential users of the SPAF

	4. Illustrative example using SPAF
	A. SPAF model syntax
	B. SPAF formal semantics
	C. SPAF Query Computation

		Superintendent of Documents
	2022-04-05T12:41:40-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

