
NBS

PUBLICATIONS
u.o. L/epanment
of Commerce

National Bureau
of Standards

Computer Science
and Technology

NAT'L INST OF STAND & TECH

AlllQb T7fll4b

NBS Special Publication 500-122

Guide on
Logical Database Design

he National Bureau of Standards' was established by an act of Congress on March 3, 1901. Them he

JH Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and
government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Center for Materials

Science.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement; • Basic Standards^

coordinates the system with measurement systems of other nations and • Radiation Research

furnishes essential services leading to accurate and uniform physical and • Chemical Physics

chemical measurement throughout the Nation's scientific community, in- • Analytical Chemistry

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology
Computer Systems

Engineering

The Center for Materials Science

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Center consists of the following Divisions:

Inorganic Materials

Fracture and Deformation^
Polymers
Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Some divisions within the center are located at Boulder, CO 80303.

^Located at Boulder, CO, with some elements at Gaithersburg, MD.

WATIOWAL n'm^rj
OF STAfJDAiiLG

Computer Science
and Technology

NBS Special Publication 500-122
> • ••

Guide on
Logical Database Design

Elizabeth N. Fong
Margaret W. Henderson
David K. Jefferson

Joan M. Sullivan

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards

Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued February 1985

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility withm the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 85-600500

National Bureau of Standards Special Publication 500-122

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-122, 115 pages (Feb. 1985)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1985

For sale by the SuDerinlendeni ot Documents, U S. Government Printing Ottice, Washington, DC 20402

TABLE OF CONTENTS

Page

1. INTRODUCTION 2

1.1 What Is Logical Database Design? 2

1.1.1 LDD's Relation to Other Life Cycle Phases . 2

1.1.2 Characteristics of LDD 6

1.2 An Ideal Logical Database Design Methodology . 8

1.2.1 LDD Practices 8

1.2.2 Data Dictionary System 9

1.3 Intended Audience for this Guide 10

1.4 Purpose of this Guide 10

1.5 Assumptions 11

1.6 Scope of this Guide 11

1.7 Structure of this Guide 12

2. THE FRAMEWORK THAT SUPPORTS LDD 14

2.1 The Role of LDD in the Life Cycle 14

2.1.1 Needs Analysis 15
2.1.2 Requirements Analysis 16
2.1.3 Logical Database Design 17
2.1.4 Physical Database Design 18

2.2 Detailed Framework for LDD 19

2.2.1 LDD Information Requirements 19
2.2.2 LDD Phases 20
2.2.3 Strategies for LDD Development 23

2.2.4 Summary of LDD Features 25

3. PROJECT ORGANIZATION 26

3.1 Functional Roles Needed for LDD 26

3.2 Training Required for LDD 28

3.3 Project Planning and Management Requirements . 29

-iii-

4. LOCAL INFORMATION -FLOW MODELING 30

4.1 Information Used to Develop the LIM 31

4.2 Functions of the LIM 34

4.3 Procedure for Developing the LIM 34

4.3.1 Review Need for Analysis 36
4.3.2 Determine Subsystems 37
4.3.3 Plan Development of the LIM 39

4.3.4 Develop LIM 40

4.3.5 Develop Workload With Respect to LIMs 44

5. GLOBAL IN FORMAT ION-FLOW MODELING 47

5.1 Information Used to Develop the GIM 48

5.2 Functions of the GIM 49

5.3 Procedure for Developing the GIM 49

5.3.1 Verify the LIMs 51
5.3.2 Consolidate LIMs 52
5.3.3 Refine Boundary of Automated Information

System (AIS) 54
5.3.4 Produce GIM 57

6. CONCEPTUAL SCHEMA DESIGN 58

6.1 Information Used to Develop the CS 59

6.2 Functions of the CS 59

6.3 Procedure for Developing the CS 60

6.3.1 List Entities and Identifiers 62
6.3.2 Generate Relationships among Entities 64
6.3.3 Add Connectivity to Relationships 69
6.3.4 Add Attributes to Entities 72
6.3.5 Develop Additional Data Characteristics ... 74
6.3.6 Normalize the Collection 75

7. EXTERNAL SCHEMA MODELING 77

7.1 Information Used to Develop the ES 77

7.2 Functions of the ES 77

7.3 Procedure for Developing the ES 78

-iv-

7.3.1 Extract an ES from the CS 80

7.3.2 Develop Workload With Respect to ESs 82
7.3.3 Add Local Constraints to the ES 84

8. CONCLUSIONS 8 5

9. ACKNOWLEDGMENTS 8 6

10. REFERENCES AND SELECTED READINGS 87

-V-

LIST OF FIGURES

FIGURES DESCRIPTION PAGE

1 - Information Systems Life Cycle 5

2 - Diagram of the Four LDD Phases 22

3 - Local Information-Flow Modeling (LIM) Procedure 35

4 - Example of a LIM 41

5 - Global Information-Flow Modeling (GIM) Procedure 50

6 - Example of a GIM , 56

7 - Conceptual Schema (CS) Design Procedure 61

8 - Example of an E-R Diagram 66

9 - Alternate Notation for an E-R Diagram 67

10 - Replacing a Relationship with an Entity 68

11 - Example of an E-R Diagram with Connectivity 71

12 - Example of an E-R-A Diagram 73

13 - External Schema (ES) Modeling Procedure 79

- vi -

LIST OF ABBREVIATIONS

AA Application Administrator
AIS Automated Information System
BSP Business Systems Planning
CS Conceptual Schema
DA Data Administrator
DBA Database Administrator
DBMS Database Management System
DD Data Dictionary
DDA Data Dictionary Administrator
DDS Data Dictionary System
EKNF Elementary Key Normal Form
E-R Entity-Relationship
E-R-A Ent i ty-Relat ionship-A tt r ibute
ES External Schema
GIM Global Information-flow Model
IRDS Information Resource Dictionary System
LDD Logical Database Design
LIM Local Information-flow Model
PERT Program Evaluation and Review Technique
QA Quality Assurance

- vi i -

Guide on Logical Database Design

Eli zabeth
Margaret W.

David K.
Joan M.

N. Fong
Henderson

Jefferson
Sullivan

This report discusses an iterative methodolo-
gy for Logical Database Design. The inethodology
includes four phases: Local Information-flow
Modeling, Global Information-flow Modeling, Con-
ceptual Schema Design, and External Schema Model-
ing. These phases are intended to make maximum
use of available information and user expertise,
including the use of a previous Needs Analysis,
and to prepare a firm foundation for physical da-
tabase design and system implementation. The
methodology recommends analysis fran different
points of view—organization, function, and
event— in order to ensure that the logical data-
base design accurately reflects the requirements
of the entire population of future users. The
methodology also recommends computer support from
a data dictionary system, in order to conveniently
and accurately handle the volume and complexity of
design documentation and analysis. The report
places the methodology in the context of the com-
plete system life cycle. An appendix of illustra-
tions shows examples of how the four phases of the
methodology can be implemented.

Key words: data dictionary system; data dictionary
system standard; data management; data model; da-
tabase design; database management system, DBMS;
Entity-Relationship-Attribute Model; Information
Resource Dictionary System, IRDS ; logical database
design.

-1-

1. INTRODUCTION

1.1 What Is Logical Database Design?

Logical Database Design (LDD) is the process of deter-
mining the fundamental data structure needed to support an
organization/ s information resource. LDD provides a struc-
ture that determines the way that data is collected, stored,
and protected from undesired access. Since data collection,
storage, and protection are costly, and since restructuring
data generally requires expensive revisions to programs, it
is important that the LDD be of high quality. This guide
describes procedures that lead to the development of a high
quality LDD.

A high quality LDD will be: (1) internally consistent,
to reduce the chances of contradictory results from the in-
formation system; (2) complete, to ensure that known infor-
mation requirements can be satisfied and known constraints
can be enforced; and (3) robust, to allow adaptation of the
data structure in response to foreseeable changes in the in-
formation requirements. To fulfill these considerations, a
good LDD should be independent of any particular applica-
tion, so that all applications can be satisfied, and in-
dependent of any particular hardware or software environ-
ment, so that the data structure can be supported in any en-
vironment. A good LDD will ensure that modularity, effi-
ciency, consistency, and integrity are supported in the data
structure underlying the databases of the information sys-
tem .

1.1.1 LDD^s Relation to Other Life Cycle Phases.

LDD is closely related to the life cycle phases of
Needs Analysis, Requirements Analysis, and Physical Database
Design. Needs analysis and requirements analysis provide
the information requirements needed to perform LDD. LDD
produces data models and schemas for use in physical data-
base design. The Physical Database Design phase receives
the data structures prepared during LDD and adapts them to
the specific hardware and software environment to form the
internal schema of each database.

-2-

Figure 1 shows LDD's place in the life cycle and dep-
icts the functional and data activities that can be per-
formed in parallel. LDD can be performed in parallel to the
phases of Requirements Analysis, Systems Specification, and
Systems Design. The synchronized performance of these
phases will assist in providing the information needed for a
good LDD and will result in speeding the systems development
process

.

By taking a brief overview of the development of an in-
formation system, we can see how LDD is used. The life cy-
cle of an information system should consist of the following
phases

:

1. Needs Analysis

Also known as Enterprise Analysis, this phase is con-
ducted before other work on the systems development
project begins. Its purpose is to establish the con-
text and boundaries of the systems development ef-
fort, and provide the focus, scope, priorities, and
initial requirements for the target system.

2. Requirements Analysis

The results of the Needs Analysis are carried further
in this phase, which provides both the functional and
the data requirements for the system under develop-
ment. Requirements analysis is performed in parallel
to the LDD and Systems Specification phases. Proto-
typing may be performed during this phase to refine
requi rements

.

3. Systems Specification

During this phase, the functional information provid-
ed by requirements analysis is used to produce
specifications for: input and output reports that are
both external and internal to the system; the func-
tions, processes, and procedures of operational sub-
systems; and decision support capabilities.

4. Logical Database Design

This phase is performed concurrently with the phases
of Requirements Analysis, Systems Specification, and
Systems Design. During this phase, the data require-
ments provided by the Needs Analysis and Requirements
Analysis phases are used to perform the following
iterative data modeling and design activities:

-3-

A. Local and Global Information-flow Modeling

The following are defined: data flows throughout
the system; information models for each applica-
tion (i.e., local) and for the entire system
(i.e., global); and, data classifications, re-
quirements, and sources for the subsystems in-
cluding those for decision support. The LDD
data modeling activities correspond to the func-
tional specification activities of to the Sys-
tems Specification phase.

B. Conceptual and External Schemas

The following are defined: data structures for
system-wide (i.e., conceptual) and application-
oriented (i.e., external) views of the system;
user views of the databases including those pro-
viding decision support capabilities; and logi-
cal database schema designs and constraints.
LDD schema design activities correspond to the
functional design activities of the Systems
Design phase.

5. Systems Design

This phase delineates: the functional control flows
using the data flows from LDD; high level and de-
tailed system architectures; the software structure
design; and the module external design (i.e., the
design for interfaces among modules of code)

.

6. Physical Database Design

This phase produces physical data flows and the de-
tailed internal schema for the specific hardware,
software, and database implementations to be used, in
order to balance maximum data storage efficiency,
data retrieval performance, and data update perfor-
mance. Physical database design is performed in
parallel to the Implementation phase.

7. Implementation

This phase produces: logic definition for programs;
module design; internal data definitions; coding;
testing and debugging; acceptance testing; and
conversion from the old system to the new one.

-4-

INFORMATION SYSTEMS LIFE CYCLE

FUNCTIONAL

ACTIVITIES

DATA

ACTIVITIES.

Needs Analysis

Systems Specification Requirements
Analysis

i

Operation

and Maintenance

LOGICAL DATABASE DESIGN!

Local and Global

Information Modeling

f

Conceptual and External

Schema Design

Physical Database

Design

FIGURE 1

-5-

8, Operation and Maintenance

During this phase the information system performs to
serve the users^ information needs and to collect
data about the system's ongoing operation. Program-
mers and analysts continue to debug the system and
modify it to support changing users' needs. Database
designers continue to maintain database effectiveness
and efficiency during system modifications and data
changes. When modifications to the system are no
longer adequate to support user needs, the current
system should evolve to a new target system and the
cycle will begin again.

As this description of the information system's life
cycle shows, LDD plays a major role in development. LDD
greatly enhances the performance of the Quality Assurance
(QA) process, which would be ongoing from the Systems
Specification and LDD phases through the Operation and
Maintenance phase. Because LDD emphasizes the iterative ap-
proach, QA will have many opportunities to check the results
of one iteration against the results of other iterations.
Since LDD is performed in parallel to the Requirements
Analysis, Systems Specification, and Systems Design phases,
QA will be able to compare both the interim and final
results of concurrent phases to resolve any difficulties
sooner than through the traditional approach. The automated
Data Dictionary System (DDS) , described in Section 1.2.2,
should be used during Requirements Analysis and LDD to pro-
vide immediate, shared access to data requirements and data-
base designs, and to support the QA process.

1.1.2 Characteristics of LDD.

The potential benefits of LDD to the development life
cycle can only be gained, however, through a good quality
LDD. For LDD to perform its role well, the results of the
logical design process must have certain characteristics. A
LDD should be:

o Independent of the hardware and software environ-
ment, so that the design can be implemented in a
variety of environments and so the design will
remain relevant even if the hardware and software
selected to support the information system eventual-
ly change.

o Independent of the implementation data model or the
Database Management System (DBMS) in use, so that

-6-

the design will apply to any present or future data
model or data inanagement system, which would not
necessarily be a DBMS.

o Comprehensive in representing present and future ap-
plications so that all known, anticipated, and prob-
able needs can be included or considered in the
design, to avoid costly system alterations in the
future

.

o Able to satisfy the information requirements of the
entire organization, encompassing all possible ap-
plications rather than being limited to one or two;
this way the information system will have the capa-
city to be an organizational resource, not just the
resource of one department or application area.

A good LDD should also fulfill a set of precise techni-
cal goals to provide a firm foundation for:

o Maintainability and reusability, achieved through
the use of modularity in the database design.

o Robustness, allowing both the design and the system
to be adaptable to hardware and software changes.

o Security, controlled through compar tmentalization in
the database design which will limit specified types
of data access to designated personnel or organiza-
tional units.

o Update and storage efficiency, achieved through con-
trolled redundancy that limits the number of places
where the same data will be stored.

o Retrieval efficiency, so that data can be organized
to be readily accessible by system users.

o Consistency and integrity, achieved through several
measures including data integrity constraints and
controlled redundancy.

If done correctly, logical database design for a com-
plex information system is a massive undertaking. The
short-term cost of LDD is great, but the long-term benefits
of better information and greater flexibility provide sub-
stantial savings over the system's life cycle.

-7-

1.2 An Ideal Logical Database Design Methodology

A methodology is an organized system of practices and
procedures applied to a branch of knowledge to assist in the
pursuit of that knowledge, which in this case is database
design. In other words, a LDD methodology is a planned ap-
proach to database design that assists in database develop-
ment in support of an information system.

1.2.1 LDD Practices.

This guide describes a methodology that includes the
preferred practices and procedures characterizing the
development of a good quality LDD and a successful informa-
tion system. Although normalization is often considered the
primary activity of LDD, normalization is only one of many
procedures performed in LDD. Normalization is a valuable
but limited tool in that it only considers functional data
dependencies. Other procedures should be used in conjunc-
tion with normalization for a coherent database design. An
ideal LDD methodology should be supported by:

1. A LDD guide, such as the one provided in this docu-
ment, that describes clearly defined steps for
analysts and designers to follow in order to produce
a good LDD.

2. Analytical methods, such as the ones described in
this guide, to assist in the detection of redundan-
cies, incompleteness, and possible errors in the con-
ceptual and functional data modeling. Some of these
methods include: (a) a hierarchical, iterative ap-
proach to organizational or functional concept
development; (b) differentiation of various points of
view in information development, such as organiza-
tional components, higher and lower level functions,
and event, control, and decision structures; and (c)

normalization procedures.

3. A series of specified checkpoints for progress re-
views by designers and management, and for informa-
tion exchange meetings with the personnel of LDD^s
parallel phases. Requirements Analysis, Systems
Specification, and Systems Design.

-8-

4. A mode of notation (i.e., graphic or symbolic) to
describe and build a detailed conceptual model of the
data and functions under study.

5. A specification language (e.g., the language used by
a Data Dictionary System) to specify information re-
quirements and the LDD design in a consistent, unam-
biguous manner

.

6. An automated tool such as a Data Dictionary System,
capable of supporting the documentation and analysis
of LDD complexity, especially for large systems
development projects. This tool should be used to
assist in: (a) describing the conceptual model; (b)

describing the data needed to support the functions
of the conceptual model; (c) performing completeness
and consistency checking of the conceptual model and
the data needed to support the functions of the con-
ceptual model [AFIF84]

.

1.2.2 Data Dictionary System.

A Data Dictionary System (DDS) is a computer software
system used to record, store, protect, and analyze descrip-
tions of an organization's information resources, including
data and programs. It provides analysts, designers, and
managers with convenient, controlled access to the summary
and detailed descriptions needed to plan, design, implement,
operate, and modify their information systems. The DDS also
provides end-users with the data descriptions that they need
to formulate ad hoc queries. Equally important, it provides
a common language, or framework, for establishing and en-
forcing standards and controls throughout an organization.

The data dictionary (DD) is the data that is organized
and managed by the Data Dictionary System. The DD is a

resource that will be of great value long after a logical
database design is completed. The data dictionary can pro-
vide support for information about all aspects of system
development to be stored, updated, and accessed throughout
the system's life cycle.

The term Information Resource Dictionary System (IRDS)
is beginning to replace the term Data Dictionary System due
to recognition of the flexibility and power of the software
[ANSI84, FIPS80, KONI84] . This paper uses the terms Data
Dictionary System (DDS) and data dictionary (DD) to conform
to the current practice of software vendors.

-9-

1.3 Intended Audience for this Guide

This guide is intended primarily to provide information
and guidance to: Data Administrators (DAs) and Database Ad-
ministrators (DBAs) in leading their LDD projects; Applica-
tions Administrators (AAs) and application specialists in
the types of data and data validation that LDD will require;
and, end-users and systems analysts in how they can best
contribute to the LDD project to maximize its benefits.

1.4 Purpose of this Guide

This guide provides a coherent plan of action that will
allow management and database designers to direct and per-
form the database design successfully. The LDD plan offered
here is sufficiently general to be compatible with existing
tools and techniques in use for database design. By defin-
ing a methodology that provides a more stable view of the
relationships among data items, this guide can be used to
increase the effectiveness of an inform.ation system over its
life cycle.

When the LDD approach described here is used, particu-
larly if used with the assistance of a Data Dictionary Sys-
tem, an increase in clear communication can result among the
end-users, systems analysts, designers, and the applications
programmers who will actually code and implement the system.
By providing a detailed and unambiguous description of the
system^s information requirements in relation to the users^
perspectives, LDD offers a bridge between the end-users and
the physical database designers and applications program-
mers.

This guide describes a methodology to be used in optim-
izing the flexibility and integrity of an information sys-
tem. Flexibility will be ensured through the identification
of the least changing characteristics of the system, which
give a stable foundation upon which to build the information
system. Data integrity will be optimized through the cen-
tralized control, completeness, and consistency that a qual-
ity LDD will provide. The information system that results
from these LDD procedures will perform better over the
system's life cycle because it will address current and
probable future needs more completely and will allow re-
quirements changes to be incorporated more effectively.

-10-

1.5 Assumptions

Several assumptions have been made in the preparation
of this guide about the types of information systems in
which LDD will be used. Because LDD is a non-trivial pro-
cess to be undertaken when a need for it exists, it is as-
sumed that:

o The information system''s databases will be sizable
and complex to support multiple applications, may
have no single dominant application, and will prob-
ably contain tens or hundreds of data collections and
relationships, and thousands of data elements. DBMS
support is not assumed, although it is usually desir-
able.

o The information system and its databases are intended
for use over a long period of time so that the bene-
fits to the life cycle costs will justify the invest-
ment of time, money, and effort in LDD.

o The data requirements of the information system will
be significant and include the use of ad hoc queries
where the precision of the database structure will
prove important.

1.6 Scope of this Guide

This guide is limited in scope to the LDD phase. The
interaction of LDD with the immediately preceding and subse-
quent life cycle phases is mentioned, since these determine
LDD^s information resources and products. Because LDD works
from the results of the preceding Needs Analysis and con-
current Requirements Analysis phases, and prepares a founda-
tion for the subsequent Physical Database Design phase,
these phases will be described briefly.

-11-

1.7 Structure of this Guide

Chapter 2 addresses the relationship between LDD and
the phases of Needs Analysis, Requirements Analysis, and
Physical Database Design. The major phases of the LDD ap-
proach are further discussed along with the types of
analysis strategies that will be needed to accompany LDD.
Figure 2, in Section 2.2.2, illustrates the interaction of
the four phases of the LDD methodology to assist the reader
in visualizing the LDD process.

In Chapter 3, the organizational aspects of the LDD
project are described, including the key roles in LDD
development, the training required for the personnel in
these roles, and the part played by management in planning
for and monitoring the LDD process.

The following chapters, 4 through 7, define the four
phases of the LDD approach in detail. Chapters 4 through 7

are identically structured so that each chapter has three
sections: (1) the first section of each phase discusses the
information used by that phase, (2) the second section
discusses the general functions of that phase, and (3) the
third section discusses the procedure for accomplishing that
phase. The third section of each phase includes a diagram
of the steps within that phase, followed by a subsection on
each step. Each step is followed by a summary chart.

Chapter 4 discusses Local Information- flow Modeling and
describes three modes of analysis corresponding to the tar-
get system's (1) organizational components, (2) functions,
and (3) the events to which the target information system
will respond. These three analysis modes are examined in
relation to data flow and data structure design techniques.

Chapter 5 addresses Global Information-flow Modeling
and emphasizes the need to balance the perspectives of data
flow and data structure in the development of a design that
will favor both equally. The Conceptual Schema Design is
described in Chapter 6 in relation to the use of Entity-
Relationship-Attribute (E-R-A) data modeling diagrams and
normalization techniques. Chapter 7 defines External Schema
Modeling (i.e., subschema modeling) as it reflects the data
structure and data flow from the end-user's perspective in
the development of workload specifications for physical da-
tabase design.

-12-

A glossary of acronyms used in this guide is included
at the beginning of the document for reference. An appendix
of examples has been included at the end of the document to
illustrate the types of graphics that will be used and
analysis that will occur during the four phases of LDD.

-13-

2. THE FRAMEWORK THAT SUPPORTS LDD

LDD plays an important part in the life cycle of the
information system. This chapter describes: (1) the rela-
tionship between the database design and the functioning of
the information system; (2) the interactions between LDD and
the Needs Analysis, Requirements Analysis, and Physical Da-
tabase Design phases; (3) the information requirements need-
ed to perform LDD; (4) the phases within LDD; and (5) stra-
tegies for LDD development and their impact.

2.1 The Role of LDD in the Life Cycle
j

J

LDD defines the data structure that supports the data-
|bases of an information system. The database system and the

information system are inextricably linked, but they are
different. ;

•I

An information system is one or more multi-purpose com- i

puter systems that may be supported by a network through
j

which many types of users, perhaps in different locations,]

update, query, and provide data to the system in order to
j

have current information available on a variety of topics.
|

Decision support capabilities may be incorporated in the in-
(|

formation system's structure to assist end-users in the
decision-making process.

i

A database is a component of an information system and
j

may contain a variety of general and detailed information
j

that is made available to the information system's end-users n

through queries. The information system's ability to
respond to user's queries is directly related to logical da- i

tabase design.
|

The design of the information system's databases will
]

determine the ways in which the information system will i

function. If the information system will be required to
|

answer ad hoc queries, the data structures within the data-
]

bases should be modeled to provide maximum flexibility in
j

data accessibility and retrieval. If the system will be re-
jquired to respond quickly to certain predefined queries,

then the structural modeling should be constructed to sup- •

port rapid retrieval performance, which will generally re-
quire indexes or redundant data. If the time and expense
needed to update the data in the system are of paramount im-
portance, then ease in locating and changing data values

-14-

should be stressed in the database design. If the storage
cost of large databases is a primary consideration, then the
minimization of physical redundancy should be emphasized in
the database design.

Usually a combination of such requirements exist for an
information system, with conflicting implications for the
design of the underlying databases. These requirements and
their implications for the databases that support the infor-
mation system are defined during the LDD phase, and their
conflicts are resolved during the Physical Database Design
ph as e

.

The structure of the logical design of the database
plays a crucial role in determining the capabilities and
performance of an information system. A good physical data-
base design cannot be developed without adequate prepara-
tion. A good logical database design prepares the ground-
work for a quality physical database design and a successful
system implementation.

The phases of Needs Analysis, Requirements Analysis,
Logical Database Design, and Physical Database Design are
closely linked. The ability to perform the subsequent
phases is determined by the performance of the previous and
parallel phases. Each of these phases must be performed
well for the resulting database to represent the desired
system accurately. These phases are described below.

2.1.1 Needs Analysis.

As we have seen in Chapter 1, a Needs Analysis
describes the primary needs a new information system should
fulfill. Without this formal expression of the
organization's perception of its needs, the analysts and
designers will have to work from their own assumptions of

the information system's purposes. Their assumptions could
unknowingly conflict with the organization's vaguely
described or unstated purposes. The resulting lack of clar-
ity in direction would be costly.

A specific Needs Analysis methodology should be adopted
and used by an organization previous to undertaking any ex-
tensive systems development project. The use of a well-
defined methodology assures that most, if not all, of the
important questions about the purpose of the proposed system
will have been asked and answered at the end of the Needs
Analysis phase. One of the most familiar and extensively
used Needs Analysis methodologies available at this time is

IBM's Business Systems Planning (BSP) approach [MART82].

-15-

In the Needs Analysis methodology adopted, the follow-
ing minimum set of questions should be posed:

1. What organizational problems require a solution that
the target information system could effect?

2. What new or improved information is needed to perform
what types of functions?

3. What are the boundaries and interfaces of the target
system?

4. What possible improvements in information availabili-
ty could be expected from the target information sys-
tem? The following are goals of many system develop-
ment projects:

o Greater accuracy of information,
o Improved timeliness,
o Better end-user interfaces,
o Improved privacy and security,
o Rapid access to distant information centers

by information sources and end-users.

Once a Needs Analysis methodology has been adopted and
these types of questions have been answered in detail, the
purposes and plans for the systems development project can
be made available to the systems development personnel. If
the Needs Analysis has been performed well and a comprehen-
sive methodology has been used, sufficient information has
probably been collected for LDD to begin. Close coordina-
tion with the Requirements Analysis phase is needed for LDD
to continue.

2.1.2 Requirements Analysis.

The requirements analysis effort will verify and sup-
plement the results of the Needs Analysis phase. Since LDD
and Systems Specification are directly supported by the con-
current Requirements Analysis phase, it is critical that the
procedures and performance of requirements analysis be
planned carefully to coordinate with these other phases.

The Requirements Analysis phase will involve two types
of analysis: (1) analysis of the types of data and data
flows needed within the organization; and (2) analysis of
the functions performed within the organization which will

-16-

require the use of this data. The purpose of requirements
analysis is to provide data requirements to support the LDD
phase, and functional requirements to support the Systems
Specification phase.

Requirements analysts verify which functions and sub-
systems will remain external to the system, and require in-
terfaces. By defining the information products of external
subsystems or systems that are inputs to the target system,
and by defining the information products of the target sys-
tem that are used by external subsystems or systems, the
analysts can designate the high level input/output transfor-
mations of information that must take place within the tar-
get system. The specific functions and subfunctions per-
formed within the target system are logically organized and
described. Further, the analysts define the known con-
straints on accuracy, timeliness, and other performance re-
quirements, which will be further defined in LDD. Once gen-
eral requirements have been described, further refinements
of the requirements are developed. Prototyping may be used
in conjunction with the LDD and Systems Specification phases
to refine and model requirements.

As requirements are defined, the information may be
stored in the form of a data dictionary to be manipulated by
a Data Dictionary System. The use of a DDS will provide au-
tomated support for the storage, analysis and querying of
data, for the definition and presentation of technical and
management reports, and for the simultaneous access of re-
quirements information for use in concurrent phases. Re-
quirements information stored in a data dictionary can be
supplemented with information from LDD and other phases, and
can be maintained for on-line use throughout the system^s
life cycle.

2.1.3 Logical Database Design.

The LDD designers decide which data must be stored and
maintained to support the functions and subfunctions of the
target system. By abstracting from the functions to the
data structures, the designer defines the data objects to be
modeled and decides which properties and constraints are
relevant in modeling these objects. The Conceptual Schema
is the primary product of LDD.

The Entity-Relationship-Attribute modeling technique
has been chosen to define the LDD data structure (see
Chapter 6) . Organizations that prefer other equivalent data
modeling techniques may easily adapt this LDD methodology to
those techniques.

-17-

An important consideration for LDD is to ensure that
all information required from the LDD phase is developed and
provided to the Physical Database Design phase at the ap-
propriate time. This information required from LDD includes
the volume of data, the priority and frequency of the logi-
cal access paths to be implemented in the physical database,
and constraints on performance, integrity, security, and
pr ivacy

.

2.1.4 Physical Database Desig n.

The first step of the Physical Database Design phase is
to select the appropriate data model (e.g., relational, net-
work, or hierarchical) and the data management system to
support it. This selection may, unfortunately, be dictated
by the software that the organization is currently using, or
by the availability of software for hardware that has al-
ready been procured. Preferably, the data model and the
data management system will be selected to match the re-
quirements defined by the LDD Conceptual Schema and the
workload. A useful reference in the selection process is
[GALLS 4]

.

The second step, once the selection has been made, is
to translate the Entity-Relationship-Attribute model from
the Conceptual Schema into the selected data model. This
translation is a rather simple matter for the relational
model: entities become tables, relationships are implemented
by means of foreign keys, and attributes become columns.
The network model translation is not much more difficult:
entities become records, relationships become sets or re-
peating groups, attributes become data items, and attributes
are omitted from a member record if they are in the owner.
The hierarchical model is difficult: entities become
records, attributes become data items, but relationships may
become either true hierarchical relationships or logical
children. These translations are discussed in detail in
[CHEN82] and papers referenced therein.

The next step is to develop a detailed physical data
structure, including the development of indexes and other
access paths, detailed record structures (perhaps combining
the logical records to reduce physical accesses), loading
factors, and so on. Detailed methodologies are discussed in
[CARLS 0, CARLS 1, MARC7 8].

-18-

2.2 Detailed Framework for LDD

The information requirements needed for the performance
of LDD are described in Section 2.2.1. Although LDD has
previously been presented as a single phase within the in-
formation system life cycle, in Section 2.2.2 LDD will now
be subdivided into four simpler phases to be performed
iteratively. Strategies for analysis and the information
requirements of these phases will be described in detail in
Section 2.2.3.

2.2.1 LDD Information Requirements.

In addition to information obtained from Needs
Analysis, LDD designers will need other information to be
collected and analyzed during the Requirements Analysis
phase, conducted in parallel to LDD and Systems Specifica-
tion. The following information must be available to LDD
designers:

o Predefined constraints on the system, such as the use
of existing hardware or software, the need to convert
an existing system, and the scope of the projected
information system.

o Project constraints, such as the amount of time, mo-
ney and personnel allocated by the organization for
the development project.

o Processing requirements, such as the type of func-
tions that the information system will be expected to
perform, and the general application areas that it
will be expected to support.

o Organizational, functional and data subsets, such as

departments, types of actions, and types of informa-
tion that the target system will be expected to sup-
ply or support.

o Performance requirements, such as maximum retrieval
and update times.

o Capacity requirements, such as the number of data ob-
jects within the target system, and storage restric-
tions if the limitations of existing hardware are ap-
plicable.

-19-

o Data integrity requirements, such as the control
needed over redundant data, and the need for automat-
ed integrity checks during data input and update, in-
cluding edit and validation rules.

o Security and privacy requirements, such as the need
for encryption for some types of data, or the limita-
tion of access for certain types of data to specific
personnel

.

o Reliability and maintainability requirements that de-
fine the need for the continuous functioning of the
system

.

o Distributed processing and data requirements, such as
the need for network connections among databases in
multiple locations, or the need for shared or repli-
cated data in multiple locations.

2.2.2 LDP Phases.

As we have seen from Chapter 1, LDD generally involves
information modeling and database design that are largely
hardware and software independent. LDD focuses attention on
the subsystems that generate the information comprising the
target system. Throughout the phases of LDD, each subsystem
is examined and described in terms of: (1) the organization-
al components, (2) the application areas or functions, and
(3) the events, which occur within or affect that subsystem.
The number and type of these subsystems to be analyzed dur-
ing each phase of LDD will depend on the type of analysis
strategy selected, as described in Section 2.2.3.

LDD consists of four distinct phases during which all
the subsystems within the system, the data flows, data
structures, and user views of the databases are described.
These phases are performed iteratively and in sequence until
the LDD is completed. The phases of LDD are the subject of
this paper and are described more fully beginning at Chapter
4. In brief, the four phases of LDD are:

1. Local Information-flow Modeling

During this phase, data flows are modeled for indivi-
dual subsystems within the target system, including
each organizational component, function, and event.
Subsystems are modeled one at a time. A data flow is

-20-

the information that is exchanged, or "flows," within
and between subsystems. Data is defined at a general
rather than specific level, in terms of general for-
mats or packages (e.g., all the data contained within
a particular type of report). The products of this
phase are Local Information-flow Models (LIMs)

.

2. Global Information-flow Modeling

During this phase, individual data flows are combined
and global data flows are modeled for collections of
individual subsystems (i.e., organizational com-
ponents, applications, or events) viewed as a whole.
Data will continue to be viewed at the format or
package level. The products of this phase are Global
Information-flow Models (GIMs) .

3. Conceptual Schema Design

During this phase, the data within the data flows,
defined in the previous phases, is abstracted from
the packages in which it resides, and defined in
terms of its functional use. The data is described
in terms of: (a) entities, the basic data components;
(b) relationships, the ways in which entities are as-
sociated with each other or share characteristics;
and (c) attributes, the data that describes the data
entities. Entity-Relationship-Attribute (E-R-A) di-
agrams may be used as an analysis method. The E-R-A
abstraction provides the basis for a conceptual data
structure. The products of this phase are Conceptual
Schemas (CSs) .

4. External Schema Modeling

During this phase, the conceptual schema is adapted
to conform to the needs of the application areas
within the information system. By modeling the data
from the user's perspective, the designer is able to
verify the Conceptual Schema and derive a structured
user'*s view of the data. The products of this phase
are External Schemas (ESs) and are also known as
subschemas

.

Figure 2 depicts the iterative relationship of the four
>D phases. The vertical line through the center indicates
division between the phases on the left that are oriented

-21-

DIAGRAM OF THE FOUR LDD PHASES

FROM
NEEDS ANALYSIS

AND
REQUIREMENTS ANALYSIS

Specific Application General Interest

Process—oriented

Data Flow

Data Structure

(shared^ static)

LOCAL INFORHATIOH

FLOU nOOEL

COMBINE'
GLOBAL INFORMATION

FLOW HODEL

TO
PHYSICAL DATABASE DESIGN

(INTERNAL SCHEMA)

FIGURE 2

-22-

toward a specific application (e.g., toward one organiza-
tional component, function, or event), and those phases on
the right that are oriented toward organizing these specific
applications into areas of general interest.

The horizontal line across the diagram indicates a
division between the upper phases that are oriented toward
the performance of functions and the dynamic data flow among
these functions, and the lower phases that are oriented to-
ward relatively static, shared data structures.

At the top of the diagram. Needs Analysis and Require-
ments Analysis indicates that these phases provide informa-
tion to LDD. The results of Needs Analysis may be suffi-
cient to begin the initial iterations of the LIM and GIM
phases, particularly if the Business Systems Planning (BSP)
methodology has been used. Subsequent iterations will re-
quire further information from the Requirements Analysis
phase.

The diagram in Figure 2 should be read clockwise, be-
ginning at Local Information- flow Modeling (LIM) , where data
flows are modeled. In Global Information-flow Modeling
(GIM), the individual data flows from LIM are combined into
global data flows. These are abstracted to the underlying
shared entities, relationships and attributes in the Concep-
tual Schema (CS) . Parts of the CS are then extracted to
form each External Schema (ES) , which is a particular user's
view of the shared data. At this point, each ES is then
compared with the appropriate, previously developed LIM, to
ensure that the data required by the LIM has been included
in the ES view. When errors are detected in this comparis-
on, the ES, and possibly the CS , will require modification.
The workload data that was originally developed for the LIM
is translated into operations on data in the ES. Finally,
the workload data and the CS are passed on to the next life
cycle phase. Physical Database Design, for the development
of the internal schema.

2.2.3 Strategies for LDD Development.

Several analysis strategies are possible in approaching
LDD. The choice of the strategy will depend on the type of
system to be developed and the definition of the data that
will need to be integrated in its design. The scope of the
data can be described as horizontal and the level of detail
as vertical. The system can be viewed horizontally in the
breadth of functions that the information system will sup-
port. If the system will provide many functions to many

-2 3-

departments or locations, then the system and its data will
have a broad, horizontal scope. If the system performs few
functions but performs them in great detail, then the system
and its data will have a depth of detail. A large system
will generally include both a breadth of scope and a depth
of detail. Three possible strategies for approaching the
logical design phases are described, with their ramifica-
tions for system development success. Refer to Figure 2 in
following the sequence of LDD procedures for the following
strategies. The three strategies for approaching LDD are:

1. Breadth First.

In this strategy, a large number of Local
Information-flow Models (LIMs) will be developed at
first, but in limited detail. The LIMs will then be
consolidated into one Global I nformat ion- f low Model
(GIM) with a broad scope but limited detail. One or
more Conceptual Schemas (CSs) will be developed with
broad scope but limited detail. The External Schemas
(ESs) extracted from the CS will provide quality con-
trol and structure for the next iteration of LIM.
The LDD phases will be repeated for the various sub-
systems, adding greater detail for each LIM, until
the data element level is reached. This strategy is
analogous to top-down system design.

Impac t; This strategy is appropriate for the develop-
ment of very large, very complex information systems,
where a great depth and breadth of data must be in-
tegrated through the development process.

2. Depth First

.

In this strategy, a small number of LIMs will be
developed through iterations of the LDD phases to the
data element level. The LIMs will be consolidated
into a GIM having depth of detail but a limited hor-
izontal scope. A small number of ESs will be
developed, again with depth of detail but limited
scope. Further iterations of the entire process are
developed until the desired horizontal scope is at-
tai ned

.

Impact: This strategy is inappropriate for the
development of an information system that requires
the integration of design components of considerable
scope and many levels of detail. The use of this
strategy may result in the need to redesign the sys-
tem to effect integration. This strategy is

-24-

appropriate only for the development of throw- away or
expendable training or prototype projects, such as a
prototype system used to verify a development con-
cept, or an experimental system used to train person-
nel in other systems development concepts or in Data
Dictionary System use.

3. Critical Factors First.

In this strategy, a large number of LIMs are
developed, including details for the critical aspects
of the target system (e.g., critical functional re-
quirements, critical performance characteristics,
proof of concept, etc.). The LIMs will be consoli-
dated into a GIM with broad scope but uneven detail.
One or more CSs will be developed with the same broad
scope but uneven levels of detail. The process will
be repeated with increasing levels of detail for each
LIM, with subsystems analyzed in order of priority,
until the data element level is reached. The criti-
cal subsystems will be processed through the LDD cy-
cle first, and the non-critical subsystems will fol-
low later

.

Impac t; This strategy is appropriate for the develop-
ment of a very large system if the critical factors
of the target system can be identified and accepted.
It is also appropriate for prototype development and
for evolutionary development, where some functions
will be implemented first and other functions will
follow.

2.2.4 Summary of LDD Features .

The four phases of LDD use a variety of symbologies to
assist in analysis. These include the use of bubble di-
agrams in the analysis of data flows, Entity-Relationship-
Attribute (E-R-A) diagrams in CS development, normalization
analyses where applicable, and Data Dictionary System (DDS)

contents and automated analysis reports throughout LDD.

The outputs of LDD's phases are: Local Information-flow
Models (LIMs) and Global Information-flow Models (GIMs) that
model data flows for the organizational components, func-
tions, and events; Conceptual Schemas (CSs) that provide an
E-R-A model, or another type of data model, for use by pro-
grammers and designers; and External Schemas (ESs) that
present an application-oriented user view for use within the
organization as a representation of the data to be included
in the target system.

-25-

3. PROJECT ORGANIZATION

For LDD to be performed successfully, plans should be
made to support the information requirements of LDD and to
incorporate LDD roles into the organization. In this
chapter, LDD functional roles, training, and project plan-
ning needs are described.

3.1 Functional Roles Needed for LDD

The following functional roles are described in terms
of the development of LDD. A role may be performed by many
people, or one person may perform several roles, depending
on the complexity of the database. Some LDD roles may over-
lap with roles to be performed in Requirements Analysis and
other phases. The roles required for LDD are the following:

o Application Administrators (AAs) who will work with
designers and analysts to define and validate the
data and functions. One or more AAs may be needed
according to the size of the system and the complexi-
ty of the application areas. AAs will work with a
number of application specialists,

o Application Specialists who are knowledgeable about
the application data being modeled, or about the ap-
plication functions that use the data, or about both.
The application specialists will assist the designers
and analysts in preparing an accurate LDD.

o Data Administrator (DA) who will facilitate the LDD
and systems development process by ensuring con-
sistency in data definition, and overseeing the data
management, data integrity, and data security func-
tions performed in LDD development. The DA will con-
tinue to perform this role in regulating these facets
of the information system once it is completed, and
so will also use the LDD once it is developed. The
DA may have a sizable staff, depending on the com-
plexity of the data resource and the time available
to perform LDD and other tasks. The DA staff may in-
clude the Database Administrator and the Data Dic-
tionary Administrator. The DA staff will work close-
ly with the AAs.

-26-

Database Administrator (DBA) who will control the da-
tabase and the DBMS, facilitate the LDD and systems
development process, assist in data maintenance, and
use the LDD as it is developed. The DBA is concerned
primarily with technical aspects of the database, in
contrast to the DA, who is more concerned with infor-
mation pxDlicy and interacts with management and
users. The DBA will continue in this role once the
information system is operational. The DBA may have
a small staff to support this function. This func-
tion will continue throughout the life cycle of the
target system.

Data Dictionary Administrator (DDA) who will oversee
the operation of the Data Dictionary System (DDS)

,

and assist in the data maintenance process for LDD.
The DDA may be supported by a staff, including a Li-
brarian and possibly data entry personnel. Data en-
try may also be performed directly by designers and
analysts in the course of their work. The DDA func-
tion should continue throughout the life cycle of the
target system, to continue to maintain documentation
about the system.

Data Dictionary Librarian who will maintain the data
in the data dictionary (DD) , and support the LDD and
systems development effort.

Database Designers/Analysts who will develop the in-
formation requirements, logical database diagrams,
models and schemas. They will be expert in database
design, familiar with the DDS, and become familiar
with the application areas. They will perform the
functions that are the focus of this report. Data-
base designers will be needed throughout the life cy-
cle of the information system, to maintain high per-
formance and efficiency as the database changes
through time.

Project Managers who will direct the LDD and systems
development projects. They will be familiar with the
application areas, computer systems, systems develop-
ment practices, and become familiar with LDD pro-
cedures .

End-users of the DDS and the information system under
development who will access and update information in
the databases, and who will generate reports and de-
cisions from this information. End-users will in-
clude personnel from all organizational levels and
will perform the following roles:

-27-

Data Entry and Update

Data Retrieval

- Data Analysis

Data Management and Control

- Project Management

- Upper Management

3.2 Training Required for LDD

The personnel involved in the LDD phase of development,
particularly AAs and Application Specialists, will require
training so that they will be able to work with database
designers as a team. Some personnel will already be
knowledgeable in these areas, but many will need to be
trained. Project management should arrange to have LDD per-
sonnel trained in:

o The purpose and general procedures of LDD.

o The points of view to be represented within the sys-
tem (i.e., organizational components, functions, and
events) .

o Use of the symbology, such as how to construct and
interpret E-R-A and bubble diagrams.

o Use of the Data Dictionary System or other automated
tool

.

End-users who review the LDD may require any of three
levels of training in the use of the Data Dictionary System,
depending on the extent of each end-user's responsibility:

o Reading knowledge of LDD reports that are generated
via the DDS , to be able to recognize when the report
indicates a modeling error.

-28-

o Interpretive capability to understand LDD reports
generated via the DDS , to be able to recognize what
is wrong in a report that indicates a modeling error.

o Expert knowledge of the DDS procedures and an under-
standing of the products of LDD, to be able to
correct errors in modeling detected in DDS reports.

3.3 Project Planning and Management Requirements

The systems development Project Manager and the LDD
Manager should plan for and control the systems development
project so that a high quality LDD results. In addition to
the activities of traditional management roles, managers in
these positions must determine that several procedures have
been adopted before the project begins.

The Project Manager must be sure that good methodolo-
gies have been selected or developed for the Needs Analysis,
Requirements Analysis, LDD, and other phases. In addition,
it is necessary to determine that these methodologies are
coordinated according to a schedule so that the results of
previous and parallel phases are available for use by other
phases. The schedule should also include various types of
training for personnel working on parallel phases. Further,
the Project Manager must decide on a strategy for LDD
development that will support the breadth of scope and depth
of detail to be encountered in analyzing the target system.

The Logical Database Design Manager will fill a similar
role for the LDD phase. The LDD Manager will: (1) select a
good LDD methodology and analysis strategy suitable to the
type of system under development; (2) coordinate LDD train-
ing with the managers for parallel phases; (3) coordinate
LDD activities with the Requirements Analysis Manager, so
that information will be available for LDD to conform to ap-
propriate schedules; (4) define checkpoints to review the
progress of the LDD work; (5) determine the types and
characteristics of the DDS documentation and analysis re-
ports to be generated to support the LDD phases; and (6)

manage the synthesis and integration of information from
many sources within the organization to support LDD.

-29-

4. LOCAL IN FORMAT ION -FLOW MODELING

A Local Information-flow Model (LIM) is a description
of the movement of data collections such as reports, forms,
memos, messages, transactions, and files to, from, and
within a particular focal point. The focal point may be an
organizational component (e.g., the personnel department), a
function or application (e.g., payroll processing), or an
event (e.g., a milestone in the budget cycle). The first
iteration of this phase will produce a single LIM summariz-
ing the inputs and outputs of the entire organization served
by the database being designed. During subsequent itera-
tions multiple LIMs will be produced, each describing a part
of the next higher-level LIM. The level of detail may be
very high (e.g., very general types of data going into or
out of an entire organization), intermediate (e.g., reports
and other data going into, out of, or processed within an
office), or very low (e.g., transformation of an employee
number into an employee name) , depending on the number of
iterations through the four phases of logical database
design.

There are two reasons for choosing this approach:

1. Complexity is controlled at every stage of the itera-
tion by restricting the scope of each LIM. Inter-
views with users can concentrate on the most critical
aspects of the user^s organization, function, or
event, with the assurance that a higher-level context
has already been developed and that details can be
filled in later. The interviewer need not be
overwhelmed with trying to understand everything all
at once. Note that a top-down approach is
advisable— starting from data elements and working up
is more likely to end in a disastrous lack of direc-
tion and an abundance of confusion.

2. The different aspects—organization, function, and
event— represent the fact that organizational struc-
tures are important, but they do not give a complete
model of information processing. Functions and
responsibilities are shared by sequential or simul-
taneous access to and transformation of data. All
aspects may be required to give a true picture of da-
tabase requirements. Note that manual functions
should be analyzed if there is a significant chance
that they will be automated during the life of the
d at abas e

.

-30-

The general objective is for a LIM to represent whatev-
er an application specialist knows about his or her job and
organization. The LIM does not represent details about how
information is captured or derived before it reaches the ap-
plication specialist or how it is used or processed after it
leaves her or him.

The emphasis of the LIM should be on business functions
and events— that is, data, operations, and products that are
basic to achieving organizational objectives— rather than on
any particular technology for implementing those functions.
One reason for this particular emphasis is the fact that
technology changes much more rapidly than the business func-
tions (the need for payroll is constant, but the policies
and technologies implementing it are changeable). A data-
base should be relatively stable and retain its value over a
long period of time— the time and cost of data collection
and organization are too great to permit the database to be
considered anything less than a major capital investment.
Another reason for the emphasis on business functions is
that these are familiar and well-understood by the data
users, who are the people responsible for achieving organi-
zational objectives. The abstract concepts of data model-
ing, introduced in the phase concerned with the development
of the Conceptual Schema, are generally not meaningful to
the user unless there is some familiar context of business
functions. One way of viewing the LIM is that it is a means
for relating the abstract External Schema (a part of the
Conceptual Schema) to a concrete business context.

4.1 Information Used to Develop the LIM

Information that is relevant to the development of the
LIM may be obtained through examination of documents or
through interviews, or, preferably, through interviews based
on thorough preparation via documents. The following infor-
mation is generally needed:

1. The nature, objectives, structure, and scope of the
subsystem must all be analyzed to ensure compatible
LIMs. Both the present and the future should be con-
sidered. Non-routine operations, or operations that
are performed infrequently, may be particularly
important— for example, end-of-year accounting opera-
tions may have unique but critical requirements. In-
teractions with customers, vendors, and other parts

-31-

of the external environment may be very important.

2. Existing automated systems and other available
hardware, software, and data resources should be stu-
died to determine how they interact with the subsys-
tem being studied; the emphasis should be on the
queries, reports, and transactions that are actually
relevant rather than on what is currently produced.
It is important to maintain continuity with the
present while still ensuring sufficient flexibility
for long term growth of the information resource.
Existing systems may already have replaced certain
functions and as such should themselves be "inter-
viewed." This can be difficult since existing systems
may be poorly structured and documented. However,
existing systems have already solved problems — what
are those problems? Existing systems may be enforc-
ing policies that the people are no longer aware of— what are those policies? Existing systems may
also be creating data that everyone takes for granted— how are existing systems combining files, applying
algorithms, etc.?

3. The subsystem's perspective on decisions must be
analyzed. The position titles and descriptions held
by decision-makers, the business models that they
use, the information that they require, and the rela-
tionships that they have with other decision-makers
must all be analyzed. Senior management views (stra-
tegic planning) , middle management views (control and
tactical policy), and applications views (operations)
are all required to give balance to the total collec-
tion of LIMs. Historical and "what if" data are par-
ticularly important in analyzing the data flow of
higher-level decision makers.

4. Real-world rules and policies should be studied.
Geographic location requirements are particularly im-
portant (e.g., there is little point in designing a
highly integrated central database if the policy is
to maintain local control of data) . Policies on data
retention and archiving may also be important (e.g.,
archiving may constitute a major information subsys-
tem) , Security, privacy, integrity, and error han-
dling policies (including policies and procedures for
recovery from both data processing and organizational
mistakes) may have major effects on the data struc-
tures (for example, classified and unclassified data
may have to be stored separately)

.

-32-

5. A catalog of reports and forms needed for routine
tasks is clearly relevant to the LIM. Collections of
reports and forms are relevant to high-level LIMs,
individual reports and forms are relevant to
intermediate-level LIMs, and parts of reports and
forms are relevant to low-level LIMs. The timeliness
and quality of the reports and forms should be
recorded. Reports that have outlived their useful-
ness are irrelevant to LDD.

6. Collections of informal data are also very important.
This data can include files or folders of memos and
letters (e.g.. Freedom of Information Act requests,
and customer complaints in writing), notes on tele-
phone conversations (e.g., payroll inquiries), and
databases on personal computers.

7. Formal reference data collections such as FIPS codes,
ZIP codes, pay scale tables, and address or telephone
directories are relevant.

8. "Log" books or lists may be used to assign unique
numbers, organize office functions, record signifi-
cant events, or otherwise coordinate activities.

9. Other regular sources of information, such as tele-
phone contacts, should be carefully studied, since
these may be very relevant to getting the job done.

10. Information from the higher-level GIM and the
higher-level LIM which is being subdivided provide
context for developing more detailed LIMs in succes-
sive iterations of the LDD cycle. Once LDD has be-
gun, the examination of this information will be the
first step in providing a LIM.

11. Quantitative information on volume of data and fre-
quency of processing for all of the above. This in-
formation will be used to help develop an estimate of
the database workload.

Since each LIM is a refinement of the previous itera-
tion of the design cycle, the LIM is constrained by the pre-
vious higher-level LIM and External Schema. If deeper
analysis uncovers an error at the higher level, then that
higher-level should be corrected before proceeding further.
Otherwise, other lower-level LIMs, based on the erroneous
LIM and External Schema, may contain errors or be incon-
sistent with each other.

-33-

4.2 Functions of the LIM

The primary function of the LIM is to serve as part of
the Global I nf ormation- f low Model (GIM) . Other functions of
the LIM are:

1. The LIM provides a guide for the development of
further details. Each iteration is based on a decom-
position of a previously developed LIM, unless the
focus is switched from an organizational component to
a function or event, in which case the new LIMs are
based on combinations of previously developed LIMs.

2. The LIM may be used as a guide to planning the
development of a new application program or system,
modifying an old application program or system, or
modifying the organizational structure. In each
case, the LIM is analyzed to see whether the flow of
data is efficient and effective; changes are suggest-
ed if unused reports are being produced, if similar
functions are being performed unnecessarily, if func-
tions that should be performed by a computer system
are being performed manually, or if the data flow can
be reduced by combining organizational components
that sequentially process the same data.

3. The LIM is also used to collect information concern-
ing the database workload. This information is even-
tually used to optimize and evaluate the physical da-
tabase design.

4.3 Procedure for Developing the LIM

Figure 3 shows the five sequential steps in the
development of the LIM. The steps are described in the fol-
lowing paragraphs.

-3 4-

LOCAL INFOilMATION-FLOW MODELING [LIM) PROCEDURE

STEP 4. 3.

1

STEP 4.3.2

STEP 4.3.3

STEP 4.3.4

STEP 4,3.5

REVIEW NEEDS

I

I
PLAN DEVELOPMENT OF THE LIMs

i
DEVELOP LIMs

I
DEVELOP WORKLOAD WITH

RESPECT TO LIMs

FIGURE 3

-35-

4.3.1 Review Need for Analysis.

The primary function of this step is to determine
whether the organizational component, function, or event
under consideration should be subdivided for further
analysis, or whether it has already been analyzed suffi-
ciently .

The first iteration of the logical database design
methodology will begin with a preliminary determination of
boundaries— that is, which organizational components, func-
tions, and events require interaction with the proposed da-
tabase. Next, it is necessary to determine the best method
for subdividing the design problem--by organizational com-
ponents, by functions, or by events. Generally, the first
few subdivisions will be along organizational boundaries.
These boundaries are usually well-defined, familiar, and
non-threatening to the application specialists. They serve
very well in identifying broad classes of data, major func-
tions and events, and data. flows.

Organizational decomposition may be insufficient, how-
ever, for the detailed development of data structures which
are shared among different organizational components. Later
iterations should concentrate on subdividing the functions
and events that have been identified during the study of or-
ganizational subdivisions; such functions and events must
provide data to the database and use data from it, so are
directly relevant to the structure of the database.

Since functions and events frequently cross organiza-
tional boundaries, their analysis may suggest the need for
reorganization to eliminate duplicate or unnecessary jobs,
and will almost certainly require cooperation among applica-
tion specialists from different organizational components.
Consequently, such analysis is very delicate and should not
be attempted too early in the LDD process.

Eventually it will be determined that there is no need
to subdivide any more functions or events; the logical data-
base design process is then "complete," although maintenance
of the LIMs and other products must continue indefinitely.

-36-

step £.2«2i Review Need for Analysis

Function: To determine whether more detail is
re qui red

Output: Determination of whether to subdivide a
subsystem

Team Members: User - AA, DA
Developer - AA, DA

Tools: Use DD to report on previous work

Guidelines: Decision involves both technical and
management issues

4.3.2 Determine Subsystems.

Once a decision has been made to subdivide an organiza-
tional component, function, or event, the next step is to
determine the appropriate subdivisions. Two situations may
be distinguished:

1. The subdivision involves a further refinement of an
organizational component, function, or event. This
is the normal case in business systems analysis, so
various methodologies from business systems planning,
organizational analysis, and software engineering may
be applied. Either function-oriented methodologies
[DEMA78, GANE79, MYER78, ROSS77] or data-oriented
methodologies [JACK83, ORRK82] may be used as meas-
ures of the relative merit of different decomposi-
tions .

2. The subdivision involves a switch from one type of
analysis to another. For example, the previous
iteration of subdivision was based on organizational
components, but this iteration is to be based on
functions. In this case, the primary activity is
composition, rather than decomposition— the various
aspects of a function that appear in different organ-
izational components must first be joined together to
form a coherent statement of the whole function, and

-37-

i

then functional decomposition can proceed at later
iterations. Clearly, it is extremely important that
data flow has been carefully documented during previ-
ous iterations; data flow is the primary clue to the
common basis for different organizational perspec-
tives on a single function. The effect of a Data Dic-
tionary System is to allow the DA to combine an or-
ganizational hierarchy, a functional hierarchy, and
an event hierarchy into a consistent network which
can be supported by the database structure.

In either case, the result will be a list of well-
defined subsystems—organizational components, functions, or
events— of the LIM being analyzed. The subsequent steps
will determine how each subsystem interacts with the data
flowing into or out of that LIM, and the data flowing from
or to the other subsystems.

Step 4^.2*2 Determine Subsystems

Function: Determination of how to subdivide a
subsystem

Output: List of lower- level subsystems

Team Members: User - AA, DA
Developer - AA, DA

Symbology: Organization charts, data-flow or
event diagrams

Tools: Use DD to represent organizational
components, functions, or events

Guidelines: Care is required — poorly chosen
subsystems will have overly complex
interfaces

-38-

i

4.3.3 Plan Developinent of the LIM.

This step involves the development of a detailed plan
for this iteration of the analysis. The plan may include
priorities, so that decomposition will consider critical
factors first. Two strategies are possible:

1. Each step in the subdivision spawns a set of indepen-
dent plans. Detailed work may proceed in parallel,
given a sufficiently large staff, with the results
coordinated primarily through the data dictionary.
The advantage of this approach is that planning is
minimized. The disadvantage is that quality control
of the data dictionary becomes extremely critical
during and after execution of the plan. Synonyms and
homonyms for functions and data must be detected and
resolved quickly or different analysis paths will
unknowingly overlap, resulting in confusion and du-
plication of effort. The philosophy of this strategy
is to move quickly and solve problems later (possibly
during the development of the GIM)

.

2. Each step in the subdivision involves the development
of a single, coordinated plan. Detailed work is
coordinated in advance, so that problems of synonyms,
homonyms, and duplicated effort are minimized. The
advantage of this approach is that overall control of
the effort is maintained. The obvious disadvantage
is that this approach requires extremely knowledge-
able DA and AA staff to formulate, monitor, and con-
trol the execution of the plan. Also, more work must
be done serially rather than in parallel.

In either case, it is necessary to develop a detailed
project management plan, with milestones, time and cost es-
timates, and assignments for application specialists as well
as for AA and DA personnel.

-39-

step 4.3.3 Plan Development of the LIM

Function: Develop project management plan for
this subsystem

Output

:

Milestones, time and cost estimates

Team Members: User - AA, DA
Developer - AA, DA, Managers

Symbology: Project management charts

Tools: Use DD to represent project management
data and boundaries

Guidelines: Assignments must be very specific

4.3.4 Develop LIM.

Various system analysis and design methodologies may be
used in conjunction with a data dictionary to document the
data flows that are developed. Either function-oriented
methodologies [DEMA78, GANE79, MYER78, ROSS77] or data-
oriented methodologies [JACK83, ORRK82] are suitable.
Whereas previous steps have involved consultation with
management, this step and the following are best accom-
plished by short interviews (no more than two hours per
iteration) with application specialists. Reference material
and the LIM developed during the previous iteration are used
to prepare for the interview and to verify the analyst's in-
terpretation of the application specialist's statements.
All materials may be made available to the application spe-
cialists in advance of the interview. (Note that discrepan-
cies revealed during an interview should prompt further
questions rather than challenges— the interview should not
be threatening.) Graphical simplicity is very desirable, so
that untrained users can judge the correctness of the LIMs
that are relevant to them.

Useful types of diagrams include the following:

-4 0-

1. An organization chart can be used to show the
hierarchical relationships among organizational LIMs.

2. A "bubble" diagram with an organizational focal point
connected to other organizations by data flows can be
used to represent an organizational LIM, as in the
following:

EXAMPLE OF A LOCAL IN FORMAT ION-FLOW MODEL

/ ^\

External \
Organization

|

\
\

Data to

V

/
/

Data from

/ \
/Organizational\

Component l<-

Being
|

\ Modeled /
\ /

Data from / \
/ Second \

I
Organizational

I
Component

\
\ /

/

Shared Documents

V

/ \
/ Third \
Organizational

Componen t

\
\ /

/

Figure 4

-41-

3. A functional hierarchy can be used to show the

hierarchical relationships among the functional LIMs.

4. A data-flow diagram [DEMA78, GANE79, MYER78] or ac-
tion diagram [ROSS77] can be used to show inputs,
outputs, subf unctions , and data flows among the sub-
functions of a functional LIM. (Note that this type
of diagram shows two levels of the LIM hierarchy.)

5. A Gantt chart can be used to show the temporal rela-
tionships among events.

6. A PERT chart can be used to show the relationships,
especially time dependencies, among functions and
events.

7. A state-vector diagram [JACK83] or a decision table
can be used to show additional details of functions
and events.

The data dictionary is used to record detailed informa-
tion that would only confuse a diagram; automated analysis
of program code, job control language, and audit trails may
provide much of the detail. The selectivity of data dic-
tionary queries and reports helps to make the details
comprehensible. Diagrams should be produced automatically
from the data dictionary. Also, graphic input could be a

means of populating the data dictionary when this capability
becomes automated in the future.

A special but important example of data flow is storage
and retrieval of information by an organizational component,
function, or event; the storage medium is treated like
another organizational component, function, or event.

Data flow is used to determine the formal consistency
and completeness of the analysis— for example, whether each
data flow has a source and a sink (either may be some inter-
nal storage medium) . The use of a data dictionary is ex-
tremely important in this situation to ensure that all of
the various aspects of the function are considered. The
views of all users who interact with a function must be re-
flected in that function.

The description of data flows should generally include
one level of decomposition. For example, if the data flows
in a top-level functional analysis are collections of re-
ports, then each data description in the data dictionary
should include a list of the component reports. At a lower

-42-

level, if the data flows are reports, then their descrip-
tions should include subdivisions of the reports— selected
columns, or rows between subtotals, or the subtotals them-
selves, for example. At a very detailed level, the data
descriptions would be data elements.

Information which is useful in understanding the rela-
tive importanfce of the functions and in planning the next
iteration of this phase includes the following:

1. Staff time, in work-years or other convenient unit,
expended on performing the function.

2. The number of staff personnel performing the func-
tion.

3. The number of locations where the function is per-
formed .

4. Whether there is a single step that consumes 80% or
more of the time spent on the function.

Step 4.3.4 Develop LIMs

Function: Provide guidance to the development
of the GIM and CS

Output: LIMs

Team Members : User - AA, DA
Developer - AA, DBA

Symbology: Use bubbles to represent organizational
components, events, functions, or
external interfaces. Use lines to
represent data flows.

Tools: Use DD to represent subsystems
and interfaces

Guidelines: Graphical simplicity is desirable
Use selectivity of DD reports
Should be easy for users to understand
and critique

-43-

4.3.5 Develop Workload With Respect to LIMs.

The primary function of this step is to develop a prel-
iminary description of the workload: the frequency, se-
quence, and selectivity with which functions use or produce
data, and the volume of stored data [JEFF82, SUST84] . The
workload will be used during the development of the External
Schemas to determine whether the Conceptual Schema can sup-
port the LIM, and what paths must be taken through the Con-
ceptual Schema to obtain the data required by the LIM. It
will also be used to determine whether certain functions
should be automated. The workload must be used during the
development of the Internal Schema (physical database
design) to determine appropriate physical record structures,
record placement in areas, access methods, loading factors,
indexes, and other parameters. Accordingly, this step must
be performed during the most detailed iteration of function-
al analysis; it may be performed at earlier steps to provide
additional quality control for the LIMs and Conceptual Sche-
ma.

At this phase, the workload is described in terms of
data collections that may be very different from the logical
records that will eventually constitute the final Conceptual
Schema. In particular, the level at this phase may be very
high (e.g., data objects like "employee," "project," and
"part" rather than data elements like " employee- fi rst-name ,

"

"est imated-proj ect-cost ,
" and "part-quanti ty-in-warehouse"

)

and the grouping of data may be quite arbitrary (e.g., "em-
ployee" may include data about skills, projects, and organi-
zations associated with the employee) . Eventually these
data objects will be restructured to form a database, so it
is important to be able to map this preliminary workload
into appropriate paths through that database.

The information to be collected and stored in the data
dictionary should include the following:

1. The volume (number of instances) of each data collec-
tion (e.g., the number of employees, projects, and
par ts) .

2. The priority of the function (e.g., "an airline
reservation must be confirmed within 20 seconds" and
"a marketing analysis on advance reservations must be
available within 2 hours of a request").

-44-

3. The frequency of execution of the function.

4. The sequence with which data collections are accessed
by the function, and the source of the data from in-
put or database (e.g., start with "employee," then
access "project," then access "project-manager" to
determine who "manages" a given employee).

5. The parts of each data collection that are used to
decide whether a given instance of that data collec-
tion is relevant (e.g., "employee-name" identifies
the required "employee" data).

6. For each of the parts of data collection, the number
of relevant instances (e.g., "1").

7. For each relevant data collection accessed by the
function, the parts that are needed for retrieval by
the function (e.g., "employee-project" is the only
retrieved part of the "employee" data) . If applica-
ble, the preferred order is desirable (e.g., the
"employee-project" data is to be sorted by "project-
number") .

8. The parts of each relevant data collection that are
needed for update by the function (e.g., "employee-
hours" is the only updated part of the "employee"
data)

.

9. At each point where the function branches, the frac-
tion of the time each branch is taken (e.g., 90% of
the time "employee-project" will be non-null, so
"project" will be accessed, and 10% of the time it
will be null so the path will terminate).

-45-

step £.5^.2 Develop Workload with Respect to LIMs

Function: Develop preliminary specifications for
physical design

Output: LIMs with volume, frequency,
sequence, and selectivity

Team Members: User - AA, DBA
Developer - AA, DBA and Analysts

Symbology: LIM diagrams

Tools: Use DD to store workload information
to be used for physical design

Guidelines: Keep the scope limited to a single
appl icat ion

-46-

5. GLOBAL IN FORMAT ION-FLOW MODELING

A Global Inf ormat ion- flow Model (GIM) is basically an
interconnected collection of all of the Local Information-
flow Models (LIMs) . Its structure is quite complex: it com-
bines up to three hierarchies of LIMs (a hierarchy based on
organizational components, another based on functions, and
possibly another based on events); these must be intercon-
nected in terms of data flow, which itself may be a complex
network of data objects, as well as other interrelationships
such as organizational authority and responsibility. A Data
Dictionary System (DDS) is strongly recommended to manage
the GIM. In an extremely complex situation, where even a
DDS is unable to present the mass of information in a mean-
ingful way, multiple GIMs may be developed, each represent-
ing a major subsystem loosely connected to the other GIMs.
Note, in particular, that the GIM, like the LIM, must gen-
erally represent both automated and manual data, and both
current and planned functions.

The major task involved in developing the GIM is simply
adding the new details represented by each new LIM. The new
LIMs must be verified for consistency with higher-level
LIMs, names must be reconciled with existing names, and the
different perspectives (organization, function, and event)
must be interrelated. These are basically responsibilities
of the DA with assistance from the AAs in detecting and
resolving potential problems in performance, cost, reliabil-
ity, security, and the like. The DA should not require
direct access to the users.

The GIM may be represented in various forms according
to the methodology chosen. A diagram may consist of ovals
or rectangles representing the subsystems, and labelled
lines representing the data flows. This is a simple
source-sink model which is very useful for communicating
with users. Other representations of the GIM include many
different types of matrices showing the interactions of or-
ganizational components, functions, events, and data objects
with each other [MART82i. A data dictionary is recommended
for the primary means of representation, from which diagrams
and matrices can be produced selectively and automatically.
Also, the data dictionary is quite suitable for representing
details that would be very confusing in a diagram or matrix,
such as the Local Information-flow Models (LIMs) and their
relationships with the GIM, the relationships between names
in the GIM and in the LIMs, and details of database work-
load .

-47-

Some methodologies dispense with the GIM [NAVA8 2] and
begin the design of the Conceptual Schema with a small
number of applications, then add more applications, continu-
ally integrating the new applications with the old Conceptu-
al Schema. This has the advantage of facilitating quick
development of a prototype, but has the disadvantage of pos-
sible major revisions of the Conceptual Schema [JEFF82].
The safer procedure is to develop a GIM with careful control
of detail, so that the level of effort is reasonable yet the
GIM provides sufficient detail to guide the development of a

relatively stable Conceptual Schema. This procedure is also
likely to uncover important new interrelationships among
LIMs, such as unexpected interrelationships among organiza-
tional components, and dependencies within them.

Note the similarity of the Local Information-flow Model
and Global Information-flow Model development to Business
Systems planning (BSP) [MART82], which is also based on data
flow. The primary difference, which is extremely important,
is that each iteration of the Local Information-flow Model
and Global Information-flow Model is followed by the
development of the Conceptual Schema and External Schemas in
the procedures described in this paper. This cyclical and
iterative approach balances the data flow perspective with
the data structure perspective, so that neither will be em-
phasized at the expense of the other. BSP, however, em-
phasizes the data flow perspective almost to the exclusion
of the data structure perspective; high level data objects
are identified, but their relationships and detailed struc-
tures must be developed by another methodology.

5.1 Information Used to Develop the GIM

Information that is relevant to the development of the
GIM is obtained primarily from the previous iteration of the
GIM and the newly developed LIMs. Other types of informa-
tion are similar to those used to develop the LIM, except
that they are at a higher organizational level.

1. The nature, objectives, and scope of the organization
must be analyzed to ensure a compatible GIM.

2. The organizational perspective on decisions must be
d eterm ined

.

-48-

3.

4.

5.

Organizational rules and policies must be

Reports and forms must be examined.

Available resources must be determined.

a nalyzed

.

5.2 Functions of the GIM

The primary function of the GIM is to guide the
development of the Conceptual Schema. Other functions of
the GIM are:

1. The GIM provides context for the development of the
next iteration of the LIMs.

2. The GIM, like the LIMs, may assist in management
planning to increase efficiency; the GIM provides a
wider perspective on reducing data flow through
changes in functions and organizational structures.

3. The GIM may also be used to design the interfaces
among separate, loosely connected Conceptual Schemas,
as may be appropriate among several large systems or
a distributed database system.

5.3 Procedure for Developing the GIM

Figure 5 shows the four sequential steps in the
development of the GIM. The steps are described in the fol-
lowing paragraphs.

-49-

GLOBAL INFORMATION-FLOW MODELING [GIM) PROCEDURE

STEP 5.3. 1

STEP 5.3.2

STEP 5.3.3

STEP 5.3.4

VERIFY THE LIMs

CONSOLIDATE Lins

I
REFINE BOUNDARY OF AUTOMATED

INFORMATION SYSTEMS

I
PRODUCE GIM

FIGURE 5

-50"

5.3.1 Verify the LIMs.

The LIMs are organized into a hierachy of organization-
al components, a separate but interrelated hierarchy of
functions, and, possibly^ a separate but interrelated hiera-
chy of events. The function of this step is to verify that
each new LIM is consistent with the objectives and con-
straints of the next higher level LIM in its hierarchy. Any
inconsistencies require modification of either the lower-
level LIM or the higher-level LIM. In the latter case,
modifications may propagate all the way up the hierarchy and
possibly affect the other hierarchies as well: such modifi-
cations may also propagate to the GIM, Conceptual Schema,
and External Schemas. The following are the major con-
sider at ions

:

1. The data flow of a LIM must be consistent with that
of its higher-level LIM. Each data object at the
lower level should either appear at the higher level,
or be a part of a higher-level data object, or have
both source and sink within the lower-level LIMs.
For example, assume that the higher level is a

department, and the lower level consists of the
branches within it. Data received by one branch from
an outside source must be traceable to a departmental
data source, but data sent to another branch might
not appear at the departmental level.

2. Similarly, the data flow of the higher-level LIM must
not be greater than the data flow of the LIMs that
comprise it.

3. More generally, the scope of a lower-level LIM must
be 'consistent with the scope of the higher-level LIM,
where scope includes such non-data considerations as

timing, resources, general objectives, and interrela-
tionships with other hierarchies. For example, the
branch should not have more time to perform a task
than is available to the department, and should not
perform functions that are not assigned to the
d epar tment

.

4. Similarly, the scope of the higher-level LIM must not
be greater than the scope of the LIMs that comprise
it.

-51-

5. If workloads have been developed, the workload of a

LIM must be consistent with that of its higher-level
LIM. Data volumes should be consistent. Each path
through the lower-level data must either be entirely
contained within the lower-level LIM or must be
traceable to a path in the higher-level data. Prior-
ity, frequency, timing dependencies, and numbers of
instances should be consistent.

6. Similarly, all of the paths in the higher-level LIM
must appear in the lower-level LIM.

Step 5.3.1 Verify the LIMs

Function: To verify that each new LIM is

consistent with the objectives and
constraints of the next higher level

Output: LIMs organized in a hierarchy of
organizational components, functions,
or events

Team Members

Symbology:

Tools:

User - AA, DA
Developer - AA, DA

LIM diagram

Use DD to change entries and determine
effects of change

Guidelines: Verify LIMs from top down

5.3.2 Consolidate LIMs.

The function of this step is to resolve synonyms that
arise when different subsystems use different names for the
same data flow and homonyms that arise when different sub-
systems use the same name for different data flows. Once
detected, synonyms and homonyms are relatively easy to
resolve. One of the synonyms is chosen for the GIM name,
while the others are retained in the data dictionary as al-
ternate names for the appropriate LIMs. For example,
"part#" could be the preferred, global name, while "part-

-5 2-

number" could be used within the context of a particular
function, and be represented in the data dictionary as an
alternate name. Only one object can be assigned the homonym
for its GIM name; each of the other objects is assigned a
new, unique name, and the homonym is assigned as an alter-
nate name. For example, if "price" refers to both retail
and wholesale price, then "price" could be used globally to
refer to retail price, or locally within a particular func-
tion to refer to wholesale price; "wholesale-price" could be
used to refer to wholesale price globally. Alternatively,
"retail-price" and "wholesale-price" could be used globally,
and "price" only locally.

Detection of synonyms is largely a manual process, but
there are some clues that can be provided by the DDS or oth-
er computerized tool:

1. The primary means for detecting possible synonyms is
data flow analysis, which can be performed by the
DDS— for example, the DDS may be able to produce
groups of data objects that have identical sources
and sinks, which would indicate that the group
members could be the same data object with different
names in different subsystems.

2. Name analyses, such as keyword in context, are useful
for suggesting possible synonyms.

3. Data element analysis may also help in suggesting
possible synonyms by identifying data elements that
have similar characteristics, such as their COBOL
pictures or legal values.

Detection of homonyms should be primarily a process
performed by the DDS— the DDS should reject any attempt to
add conflicting characteristics to any data object. Situa-
tions in which two distinct objects have the same names and
all other characteristics must be detected manually; howev-
er, if each object has a meaningful textual description, it
is relatively simple to compare descriptions to determine
whether they should be combined, or should be given separate
names. Homonyms that are not resolved at this step may be
resolved at a later step or later iteration of this step
when more characteristics are known and therefore there is
more likelihood of a conflict being detected by the DDS.
Resolution at this step is a convenience but not a necessi-
ty.

-53-

step 5.3.2 Consolidate LIMs

Function: Resolution of synonyms and honomyms

Output

:

One uniform model

Team Member s

:

User - DA
Developer - DA

Symbology: Bubbles and lines

Tool s: Use DD to store alternate names
Use name analyses such as keyword in
context to detect synonyms

Guidelines: Standardize names in GIM
Use local synonyms whenever appropriate
in LIMs

5.3.3 Refine Boundary of Automated Information System (AIS).

The function of this step is to refine the boundary of
the automated information system that is being designed.
This may reduce the scope of the logical database design and
therefore reduce the effort expended in subsequent phases.
Note that the final boundary will generally be three dimen-
sional: organizational components, functions, and events.
They must all be included in or excluded from the logical
database design.

The criteria for drawing the boundary are primarily
based on upper management goals as applied by the DA with
possible technical advice from the DBA.

The boundary may be represented on a data flow diagram
by a line, in a subsystem/data matrix by highlighting sub-
systems within the boundary or omitting subsystems outside
the boundary, and in the data dictionary by a keyword or by
relationships between a specific system and the subsystems
within the boundary.

-54-

step 5^.3^.2 Refine Boundary of Automated I nformat io n
System (AIS)

Function: Reduce scope and refine the boundaries
of the AIS

Output: Models of the AIS

Team Members: User - DA and upper level managers
Developer - DA and DBA

Symbology: Bubbles and lines

Tools: Use DD to represent specific system and
subsystems within the boundary

Guidelines: Criteria for refining boundary are
based on upper management goals

-55-

EXAMPLE OF A GLOBAL IN FORMAT ION -F LOW MODEL

/ \
/Organizational\

Component
Providing Data

\ to AIS /
\ /

Bound a r y-

/ \
/Organizational\

Component |<-

Dependent
|

\ on AIS /
\ /

/ \
/Organizational\

Component |<-

Interacting
|

\ with AIS /
\ /

/ \
/Organi zational\

"1 Component
I

Independent
\ of AIS /
\ /

/ \
/Organizationa 1\

Component !

Interacting I

\ with AIS /
\ /

Automated
Information

System
(AIS)

/ \
/Organizational\

Component
Interacting

\ with AIS /
\ /

Figure 6

-5 6-

5.3.4 Produce GIM.

The function of this step is to provide additional
quality assurance and documentation for the GIM. Use of a

data dictionary is recommended. Details of how the data
dictionary represents the GIM, what quality assurance re-
ports are provided, and what documentation is to be produced
must be determined by each organization to suit its own
capabil ities

.

Step 5.3.4 Produce GIM

Function: Provide final review and documentation
for the GIM

Output

:

Specification of components of GIM

Team Members: User - DA and DBA
Developer - DA and DBA

Symbology: Bubbles and lines

Tools: Use DD for corrections

Guidel ines: Quality assurance must be provided
by application experts

-57-

6. CONCEPTUAL SCHEMA DESIGN

A Conceptual Schema (CS) is a description of the logi-
cal (hardware- and sof tware- independent) structure of the
data required by an organization. The phases concerned with
development of the Local Information-flow Models (LIMs) and
Global Information-flow Model (GIM) concentrated on the in-
teractions between data and organizations, functions, or
events; the structure and meaning of the data were not
analyzed beyond the relatively simple resolution of synonyms
and homonyms. This phase concentrates on the deep explora-
tion of structure and meaning in terms of three important
concepts: entity, relationship, and attribute. These con-
cepts correspond very closely to the natural language con-
structs of noun, verb, and adjective. The following para-
graphs, which define these concepts and provide brief exam-
ples, may be omitted by readers familiar with the Entity-
Relationship-Attribute Model [CHEN80, CHEN81, CHEN82].

1. An entity is a type of real-world object or concept.
For example, "employee," "project," and "position
description" may be entities of interest to an organ-
ization. Note that only "employee" is a physical
object— "project" and "position description" are both
concepts. To appreciate the difference, consider
that a "position description" may be recorded on a

piece of paper. If the paper is copied or reproduced
electronically in a database, the medium is changed,
but the concept— the position description— is still
the same. Therefore, the entity of interest is the
message, not the medium.

2. A relationship is a type of association or correspon-
dence among entities. For example, "works on" may be
a relationship between "employee" and "project." An
instance of a relationship is a fact or assertion

—

e.g., the phrase ^"12345" "works on" "design"' could
express the fact that the "employee" identified by
the "employee number" "12345" is associated with the
"project" entity identified by the "project-name"
"design" through the relationship "works on." This
example involves two entities and two instances of
entities. A relationship may involve only one enti-
ty. For example, """design" "precedes" "implementa-
tion"** is a relationship involving two instances of
the entity "life-cycle phase." A relationship may
also involve more than two entities— e.g., '"12345"

-58-

"works on" "design" "using" "Entity-Relationship-
Attribute Approach"' is an instance of a relationship
("works on" "using") among three entities ("em-
ployee," "project," and "technique").

3. An attribute is a property or characteristic which
describes an entity or relationship. For example,
the "employee" entity may have attributes such as
"birth date," "marital status," and "annual salary,"
while the "works on" relationship may have attributes
such as "hours per week," or "hours to date." Every
entity must have an attribute or collection of attri-
butes that distinguishes among entity instances
(e.g., an "employee number" identifies a particular
"employee"). A relationship may be without attri-
butes, since each instance is identified by the enti-
ties that it associates (e.g., the relationship in-
stance '"design" "precedes" "implementation"' is
uniquely identified by "design" and "implementation,"
in that order) .

6.1 Information Used to Develop the CS

Most of the information that is relevant to the
development of the CS is provided indirectly by the GIM.
Entities are the subjects of the data flows that were iden-
tified by the GIM, but they are generally not the data flows
themselves. For example, a personnel report is not an enti-
ty unless there is system for tracking the production or
distribution of the report, in which case each instance of
the report might be identified by a control number. The
subjects of the personnel report, e.g., "employee" and "pro-
ject," would be entities.

6.2 Functions of the CS

The primary function of the CS is to provide a single
logical structure for the database. Other functions in-
clude :

1. The CS provides input to the External Schema Design
Phase.

2. The CS provides guidance in the choice of a data
model (e.g., either a hierarchical, network, or rela-
tional data model may most easily represent the CS) .

3. The CS provides guidance in the choice of a DBMS
(e.g., a DBMS that easily represents the CS)

.

4. The CS provides guidance in the development and
evaluation of the physical database design (the CS
provides the definition of the logical data structure
that the physical database must support).

The output of this phase may include the following:

1. For each entity of fundamental interest to the organ-
ization, its name, identifier (key), other attri-
butes, synonyms, textual description, and relation-
ships with other entities.

2. Entity-Relationship-Attribute diagrams [CHEN82].

3. Security, privacy, and integrity constraints.

4. Normalized relations [BEER79, BERN76, ZANI82].

6.3 Procedure for Developing the CS

Figure 7 shows the six steps in the development of the
CS . The last step may reveal redundancies that will suggest
repeating some or all of the preceding steps. The steps are
described in the following paragraphs.

-60-

CONCEPTUAL SCHEMA (CS) DESIGN PROCEDURE

Step b. 3.

1

Step 6.3.2

Step 5.3.3

Step 5.3.4

Step 6.3.5

Step 6.3.6

LIST ENTITIES AND

IDENTIFIERS

I
GENERATE RELATIONSHIPS

AMONG ENTITIES

I
ADD CONNECTIVITY TO

RELATIONSHIPS

I
ADD ATTRIBUTES TO

ENTITIES

I
DEVELOP ADDITIONAL

DATA CHARACTERISTICS

I
NORMALIZE THE COLLECTION

OF ENTITIES

FIGURE 7

-61-

6.3.1 List Entities and Identifiers.

The primary function of this step is to develop a list
of entities that must be represented in the CS . Because of
the inherent complexity of the real world that the CS
models, this is considerably more difficult than one might
assume. Some reasonable guidelines are presented below and
discussed in the following paragraphs.

1. A data flow may suggest one or more entities.

2. An entity must have a meaningful name and descrip-
tion.

3. An entity must have an identifier.

In general, entities are the subjects of the GIM data
flows; an entry in a report or form is usually an attribute
which can identify or describe an entity. For example, an
assignment matrix could have "project#" as the column head-
ing, "employee-number" as the row title, and an "X" or blank
as an indicator of assignment. The matrix itself is not an
entity in most cases, but the "project#" and "employee-
number" identify entities.

An entity should have a meaningful name consisting of a
noun or noun phrase. If there is no obvious choice for the
name of a proposed entity, then it is likely that it is not
an entity. In addition, the entity must have an extended
description that addresses topics such as the lifetime of an
entity instance (e.g., is a "dependent" removed from the da-
tabase when an "employee" resigns?) and criteria for inclu-
sion (e.g., does "employee" include both hourly and salaried
personnel?). For additional guidance, refer to [ATRE80,
CHEN82, CURT82, KAHN79 , ROUSBl, SHEP76, SMIT78, SUST83,
TEOR8 2]

.

An entity must have one or more identifiers (or keys).
Each identifier is an attribute or combination of attributes
which distinguishes among entity instances. For example,
"employee-number," " pr oj ect-name, " and "PD#" could be the
identifiers of "employee," "project," and "position descrip-
tion." The identifier of an entity may be composed of iden-
tifiers of other entities. For example, the identifier of
"assignment" could be composed of the combination of the at-
tributes "employee-number" and "proj ect-name. " Note that
neither single attribute would uniquely identify a

-6 2-

particular "assignment." Note also that "assignment" could
equally well be identified by "SS#" and "project#," or even
by a unique "assignment-number"— the important fact at this
point is that an identifier can be found, so that "assign-
ment" is a legitimate entity.

Analysis of the preceding example demonstrates that
care must be exercised in finding an identifier and defining
an entity:

o If the "employee" is released from the "project," is

a record of the "assignment" retained?

o If so, how can such an assignment be distinguished
from a current assignment?

o If the "employee" is returned to the "project," is
the "assignment" still the same?

This analysis may indicate that the "employee-number"
and "pr oj ect-name" cannot constitute the identifier. Anoth-
er attribute, such as " assignment-st ar ti ng-date-and- time ,

"

may be needed for uniqueness. Another possibility is the
"assignment-number;" the rules for handling multiple assign-
ments could then be represented by the algorithm for deter-
mining the "assignment-number." For example, if the first
"assignment-number" is 1, and each succeeding "assignment-
number" is increased by 1, then multiple assignments of a

given "employee" to a given "assignment" can always be dis-
tinguished .

Entities may be determined "top-down" by abstracting
from the data flows and the GIM, or "bottom-up" by syn-
thesizing from identifiers and their attributes [SHEP76].
The latter approach is greatly simplified by the use of a

computer-based normalization program, as described in step
6.3.6. However, "top-down" is recommended because it forces
the developer to concentrate on the semantic characteristics
of the data; normalization can then be used to confirm the
d esign

.

-6 3-

step 6.3.1 List entities and identifiers

Function: Abstract data flows to determine
enti ties

Output: List of entities with descriptions
and identifier

Team Members: User - DA and DBA
Developer - DA and DBA

Symbol ogy: Text

Tool s: Use DD to enter entities and identifier

Guidel ines: Be careful in defining an entity
and finding the identifier for it
Determine entities top-down

6.3.2 Generate Relationships among Entities.

The primary function of this step is to examine indivi-
dual entities to see whether they can be subdivided into
simpler, related entities, and to examine collections of en-
tities to see whether they are related components of a more
complex entity. A general guideline is to look at entities
that share components. For example, "employee" and "assign-
ment" share " employee- number ;

" obviously, there is a rela-
tionship between them. The data dictionary can be of great
help in comparing entity structures.

The following are examples of common types of relation-
ships fSUST83]:

1. Membership— a collection of similar secondary enti-
ties constitute another, primary, entity. The fiscal
years in a five-year plan, the quarters in a fiscal
year, or the cities in a state are examples of
membership relationships. The relationship between
the secondary and primary can be expressed by "in,"
"of," or "is a member of." The identifier of the
primary may be required to identify each secondary;
for example, a city name may be ambiguous unless the
state is identified. The primary entity would

64-

include properties common to all the secondary enti-
ties, while the secondary entities would have unique
properties

.

2. Aggregation— a collection of dissimilar secondary en-
tities describes another, primary, entity. Generally
all primary entities are related to similar collec-
tions of secondary entities. For example, each "em-
ployee" is described by the aggregation of "address,"
"salary-history," "education," etc., which are them-
selves entities. The relationship between the secon-
dary and primary can be expressed by the phrase "is a
property of" or "is a part of." The existence of a

secondary entity is usually dependent on the ex-
istence of the primary entity.

3. Generalization— each of a collection of similar
secondary entities can be considered to represent a

special case of another, primary, entity. Different
primary entities may be related to different types of
secondary entities. For example, "salaried-employee"
and "hourly-employee" are each roles of the primary
entity "employee." The relationship between the
secondary and primary can be expressed by the phrases
"is a" or "is a type of." The existence of each
secondary entity may be dependent on the existence of
the primary entity; for example, every "salaried-
employee" or "hourly-employee" must also be an "em-
ployee." The primary entity would include properties
common to all the secondary entities, while the
secondary entities would have unique properties.

These relationships correspond to the programming con-
structs of iteration (looping through the members of a col-
lection) , sequence (manipulating one after another of the
aggregated properties), and selection (determining whether a

particular role is played by the entity) . All of these re-
lationships can be developed bottom-up (from a given collec-
tion of secondary entities to the primary), to produce a

simplified high-level structure, or top-down (from a primary
to a collection of secondaries), to add more detail.

Another type of relationship which is occasionally use-
ful is the following:

-65-

4. Precedence— the existence of one entity in the data-
base must precede the existence of another entity in
the database. For example, a " pr oposed-budget" must
precede an "approved-budget;" once an "approved-
budget" has been entered, however, its existence is
independent of the "pr oposed-budget .

"

Other, more specialized relationships are discussed in
[SUST83]

.

Diagrams are recommended as a convenient way of commun-
icating with the application specialists. Examples are
given below.

EXAMPLE OF AN ENTITY-RELATIONSHIP DIAGRAM

El

Relationship name

v
v

E2

Figure 8

This example states that entity "El" has a relationship
with another entity "E2." The single and double arrows in-
dicate that an instance of "El" may be associated with many
instances of "E2," while each instance of "E2" is associatedwith one instance of "El."

-66-

ALTERNATE NOTATION FOR AN ENTITY-RELATIONSHIP DIAGRAM

El

/ \
/ \

/ Rel \
\Naine /
\ /

E2

Figure 9

The alternate notation is somewhat more cumbersome but
it does have the advantage of emphasizing the importance of
relationships, and is readily extended to include relation-
ships among more than two entities and relationships with
attributes

.

In general, the simplicity of labeled lines is pre-
ferred. A relationship among more than two entities should
usually be transformed into an entity which has simple rela-
tionships with those entities. For example.

-6 7-

REPLACING A RELATIONSHIP WITH AN ENTITY

rl
V
V

r 3

V

Figure 10

The complex relationship R has been replaced by an en-
tity; the diamond within the rectangle indicates that R may
be an entity on one diagram and a relationship on a less de-
tailed diagram. New relationships, rl, r2, and r3 must be
added unless they are obvious. The fact that an "employee"
uses a particular "skill" on a particular "project" would be
represented by such a diagram; El, E2 , and E3 would
represent "employee," "skill," and "project," while R could
be a relationship or an entity identified by the "employee,"
"skill," and "project" identifiers.

-68-

step 6.3.2 Generate relationships among entities

Function: Revise entities

Output: Entities and relationships

Team Members: User - DA and DBA
Developer - DA and DBA

Symbol ogy: Entity-Relationship diagrams

Tools: Add relationships to DD

Guidelines: Look for common types of
relationships

6.3.3 Add Connectivity to Relationships.

The primary function of this step is to suggest new en-
tities or ways in which entities can be combined. A secon-
dary function is to provide quantitative data useful to phy-
sical database design.

Connectivity describes a relationship between two
entities— how many instances of one entity are associated
with how many instances of the other entity. For example,
if an "employee" can have only one "manager," but a
"manager" can manage many employees, then the relationship
"manages" is "1 to many." If a reasonably good number can be
given for the "many," that may assist in physical database
design. However, the most important situations for logical
database design are the following:

o Most relationships will have connectivity "1 to many"
or "many to 1."

o If the connectivity is "1 to 1," then the two enti-
ties should be combined, provided that the result can
be given a meaningful name and description. For ex-
ample, if a "project" always has exactly one
"manager," and a "manager" always has exactly one
"project," then the two entities can be combined.

-69-

(Note the use of the vad rd "always." In the real world
it is likely that there will be periods of transition
when a "manager" has no "project," or more than one
"project," or a "project" has no "manager." In reali-
ty, then, the connectivity might be "0,1 to 0,1,2,"
and the entities should not be combined.)

o If the connectivity is "1 to 0,1" then this often in-
dicates generalization. For example, the relation-
ship between "employee" and "salaried-employee" is "1

to 0,1," since the "employee" could be an "hourly-
employee." The "salaried-employee" entity cannot ex-
ist unless the "employee" entity exists.

o If the connectivity is "many to many" (or numbers in-
dicating a similar situation) , then the relationship
should be replaced by an entity. For example, if
there is a "many to many" relationship between "em-
ployee" and "manager" (i.e., matrix management), then
a new entity, such as "assignment of employee to
manager" should be created, and the "many to many"
relationship replaced by two "1 to many" relation-
ships. This leads to more entities but simplifies
relationships and also simplifies the mapping of the
logical database design into a conventional data
model.

An example of a diagram with connectivity is shown
be 1 ow

.

-7 0-

EXAMPLE OF AN ENTITY-RELATIONSHIP DIAGRAM WITH CONNECTIVITY

El

" 1

V
V many

E2

Figure 11

Step 6^. 2*2 connectivity to relationsh ips

Function: Determine connectivity and provide
quantitative data to physical
database design

Output: Annotated relationships

Team Members: User - DA and DBA
Developer - DA and DBA

Symbology: Extended E-R diagrams

Tools: Add connectivity information to DD

Guidelines: Eliminate 1 to 1 and many to many
relationships

-71-

6.3.4 Add Attributes to Entities.

The primary function of this step is to add detail to

the entity descriptions in the data dictionary and diagrams.
Two strategies are possible:

1. If there is a collection of known attributes (e.g.,
data elements) , then this step can be performed
"bottom-up." Each attribute is assigned to an entity
(or entities) which identifies a unique instance of
that attribute. If no entity is appropriate, one is
created, relationships are developed, and so on.

2. This step can be performed "top-down" by examining
each entity to determine appropriate descriptors.
This procedure is recommended during high-level
iterations, when attributes are data collections
rather than data elements.

The attributes are represented in the data dictionary by be-
ing "contained in" an entity [FIPS80] , and in the diagrams
by some notation such as that in the following example,
where "Al" is the attribute:

-7 2-

EXAMPLE OF AN ENTITY-RELATIONSHIP-ATTRIBUTE DIAGRAM

El
/ \
Al

I

\ /

V 0,1

E2

Figure 12

The relationship S could be an agreed-upon symbol to
indicate that E2 is a subtype of the entity El.

Another function of this step is to simplify the CS by
eliminating unnecessary entities. The rule for doing this
is very simple:

o If an entity is single-valued in every relationship
with other entities, then it can be eliminated by
moving its attributes (including the identifier) into
those entities.

For example, suppose that "hourly-pay-scale" is an en-
tity with the attribute and identifier "dollar-amount," and
its only relationships are "many to 1" from "salaried-
employee" and "hourly-employee" to "hourly-pay-scale." Then
"dollar-amount" should be assigned to "salaried-employee"
and "hourly-employee," and "hourly-pay-scale" should be el-
iminated. The justification is simple: "dollar-amount" is

single-valued in every relationship, so it acts like a

descriptor— i.e., an attribute.

-73-

step 6.3.4 Add attributes to entities

Function: Add attributes to the entity
descr ipt ions

Output

:

E-R-A diagrams

Team Members: User - DA and DBA
Developer - DA and DBA

Symbology: E-R-A diagrams

Tools: Add attributes to DD

Guidelines: Simplify by eliminating unnecessary
en ti ties

6.3.5 Develop Additional Data Characteristics.

The function of this step is to add additional con-
straints, such as security and integrity, to the entity and
relationship descriptions in the data dictionary. These
constraints are important but are not easily represented on
a diagram; the recommendation is to keep the diagrams simple
by representing these constraints only in the data diction-
ary.

-7 4-

step 6.3.5^ Develop additional data characteristics

Function: Add security, integrity, and other
constrai nts

Output

:

E-R-A diagrams and updated DD
with detailed description of data

Team Members: User - DA and DBA
Developer - DA and DBA

Symbology: E-R-A diagrams

Tools: Add constraints to DD

Guidelines: Keep the diagrams simple

6 .3.6 Normalize the Collection .

The primary function of this step is to ensure that the
collection of entities is optimal in the following sense:

1. Each non-key attribute is identified only by the sim-
plest possible identifiers. For example, "supplier-
address" should not be in a "supplier-part" entity
(identified by the combination of "supplier-name" and
"part-number") if "supplier-address" is uniquely
identified by "supplier-name" alone.

2. Redundant non-key attributes are eliminated. For ex-
ample, if the "branch" entity contains "division#"
and "department!," and the "division" entity (identi-
fied by "division!") also contains "department!,"
then "department!" can be eliminated from "branch."
The "department!" can be determined from the unique
"division" entity identified in the "branch," so
"department!" is redundant in "branch."

3. Entities with the same identifier are combined.

4. Entities with equivalent identifiers (identifiers
that identify each other) are combined.

-75-

The first two conditions, plus the condition that attributes
are single-valued (which was required in step 6.3.4), are
sufficient to ensure that the entities are in Third Normal
Form [BERN76]. The third and fourth conditions ensure that
the entities are in the more rigorous Elementary Key Normal
Form (EKNF) [ZANI82], which minimizes the total number of
entities. A computer algorithm to obtain EKNF is described
in [BEER79 , BERN76]; the proofs of correctness and minimali-
ty are complex, but the algorithm itself is quite simple.

Commercially available programs perform various levels
of normalization [MART77]. A good program should interface
to a data dictionary to obtain identifiers and the attri-
butes that they identify, and should provide EKNF as well as
various reports, traces, and diagrams. The objective of the
preceding steps of this phase is to do such a good job of
identifier analysis that the normalization program will pro-
duce exactly the entities that are input to it. Experience
indicates that discrepancies between the input and output
entities are often caused by more serious and subtle errors
than those found by the normalization program; the program
exposes errors, but its "corrections" are sometimes diffi-
cult to understand, and should not be accepted without
thorough analysis. A normalization program should definite-
ly not be used as a substitute for careful thought.

Step 6^.2*^ Normalize the collection of entities

Function: Remove redundancies and detect errors

Output: Normalized entities

Team Members: User - System analyst and DBA
Developer - DA and DBA

Tools: Normalization program

Guidelines: Careful manual analysis as well as use
of the automated tools

-76-

7. EXTERNAL SCHEMA MODELING

An External Schema (ES) is a subschema (part) of a Con-
ceptual Schema (CS) that is relevant to a Local
Information- flow Model (LIM) . A LIM, in turn, represents
the information requirements of a user, group of users, ap-
plication program, or application system. An ES includes
all entities, relationships, and attributes needed by the
LIM. Local names are possible— for example, the Conceptual
Schema may have an entity called "employee-number" which is
"emp-no" in the personnel ES. An ES reflects the way infor-
mation is used by an individual task or decision.

7.1 Information Used to Develop the ES

The primary sources of information needed to develop an
ES are the CS and the relevant LIM as represented in the
data dictionary. If the LIM is inadequate in scope or de-
tail, then it should be expanded using additional informa-
tion from the sources listed in section 4.1.

7.2 Functions of the ES

The primary function of an ES is to help users and pro-
grammers interact with the database by presenting a simpli-
fied view of the database in terms which are familiar to
them. An ES has the following secondary functions:

1. Detailed iterations of the ES provide one of the in-
puts to physical database design— they describe the
workload, originally developed in terms of LIMs, in
terms of the CS.

2. An ES is a piece of the CS which can be assigned
privacy and security locks during physical database
design and implementation phases.

3. An ES provides quality control of the CS— if the ES
cannot be constructed from the CS , then the CS is in-
complete. Also, if there are portions of the CS
which are not required by any ES, then those portions

-77-

are unnecessary or are information sources that are
not being utilized by any LIMs. During the early
iterations of the logical database design process the
ESs will be useful only for comparing high-level
descriptions of very general categories of data
(e.g., data needed for the support of management de-
cisions) , since the relevant LIMs will be based on an
organizational perspective and will not have much de-
tail. In addition, the LIMs may not indicate what
information is to be in the database and what is to
be provided by some other source. During later
iterations, the ESs will provide a much more accurate
means for ensuring CS quality.

7.3 Procedure for Developing the ES

Figure 13 shows the three sequential steps in the
development of the ES. The steps are described in the fol-
lowing paragraphs.

-7 8-

EXTERNAL SCHEMA [ES] MODELING PROCEDURE

step 7.3.

1

EXTRACT ES FROM

CS

Step 7.3.2
DEVELOP WORKLOAD WITH

RESPECT TO ES

Step 7.3.3
ADD LOCAL CONSTRAINTS

TO ES

FIGURE 13

-79-

7.3.1 Extract an ES from the CS

.

The primary function of this step is to decide what
parts of the CS are required by a particular LIM. First,
data flows must be classified into those requiring data from
the database and those that are independent of the database
[JEFF82]. The data collection may be obtained from or
stored in a private file or other non-database location if
any of the following are true:

1. The data collection is of interest to only a single
user or application and therefore need not be shared.

2. The data collection is transitory, as in a temporary
working file, and would not exist long enough to be
relevant to other users or applications.

3. The data collection is incomplete or inconsistent, as
in a partially completed update, or consists only of
references or keys to other data, as in a file of
references to data of particular interest to decision
suppor t

.

In general, a data collection should be obtained from or
stored into the database if all of the following are true:

1. The data collection is of interest to many users or
applications and should therefore be shared.

2. The data collection is sufficiently long-lived to
have many uses.

3. The data collection represents a consistent, complete
view of the real world.

There are then two situations that can be dis-
tinguished :

-80-

o This LIM is not a part of any LIM for which an ES has
already been constructed. For example, this LIM
might be a top-level organization, function, or
event. In this case, the ES will consist of high-
level entities, relationships, and attributes from
the CS . If a Data Dictionary System (DDS) is avail-
able, it should be employed to extract only high-
level data objects. These objects will then be manu-
ally compared with the data flows of the LIM to
determine what parts of the CS are needed by the LIM.

o Alternatively, this LIM is a part of a higher-level
LIM for which an ES has already been constructed.
For example, this LIM may be a part of a function for
which there is an ES. In this case, the ES is based
on the higher-level ES. The DDS should be used to
extract the data objects relevant to the higher-level
ES, and the lower-level data objects which are con-
tained within them. The resulting collection of data
objects must then be compared with the data flows of
the LIM to verify that all data required by the LIM
is in the higher-level ES, or is a part of some data
object in the higher-level ES (the DDS can greatly
reduce the effort involved in this comparison). If
not, the higher-level ES must be extended to include
the missing data. The lower-level ES will then con-
sist of the relevant parts of the higher-level ES
plus additional entities, relationships, and attri-
butes required by the more detailed level of
analysis

.

The final result of this step is a diagram of selected
parts of the CS plus additional entries in the data diction-
ary to relate the selected data to the LIM.

-81-

step 7.3.1 Extract an ES from the CS

Function: Decompose CS based upon the
particular LIM

Output: Decomposed E-R-A diagram

Team Members: User - Programmers, analysts, and DBA
Developer - DA and DBA

Symbology: E-R-A diagrams

Tool s: Use DD to relate data to LIM

Guidelines: Verify the extracted ES with LIM

7.3.2 Develop Workload With Respect to ESs.

The primary function of this step is to translate the
workload, originally developed in terms of data flow in the
LIM, into data access and update in the ES. The preceding
step determined what parts of the database, if any, are re-
quired for each data flow, while step 4.3.5 determined the
frequency, sequence, and selectivity with which each func-
tion uses and updates data. Therefore, this step involves
two alternatives for each data collection in the LIM work-
load sequence:

o If the data collection is not database data, then
nothing need be done.

o If the data collection is database data, then an ap-
propriate access path must be determined. That is,
given the data available at that point in the se-
quence, what entities and relationships must be ac-
cessed to arrive at the required entities? If a path
cannot be found, there is an error, which must be
corrected by modifying the LIM (e.g., by revising the
workload), modifying the partially completed ES
(e.g., by changing the distribution of database and
non-database data), or modifying the CS (e.g., by ad-
ding a new relationship). If a path can be found, it
is added into the workload sequence for the ES.

-82-

The resulting database workload should be represented
in the data dictionary by a sequence of programs or modules
interacting with the database objects. Three kinds of in-
teractions with entities must be represented:

o Data use— an entity instance is accessed because
various attributes are needed for some computation,
report, or control purpose.

o Data update— an entity instance is added or modified.

o Data access— an entity instance is part of a path but
has no directly relevant attributes. The entity
might be removed from the path, with an improvement
in database performance, if the Internal Schema has
an appropriate relationship to bypass the entity.

As noted in step number 4.3.5, there are two types of in-
teractions with attributes:

o Entity retrieval— an attribute is needed to determine
whether an entity instance is needed by the function.

o Attribute selection— an attribute instance is re-
quired for a computation, report, control, or update
purpose.

There is one type of interaction with relationships:

Path component— the relationship is part of a path.

Note that the direction is important.

The paths may also be represented graphically by an overlay
on an ES or CS diagram [MART84, MCCL84, SUST84]. This pro-
vides a simple representation that can be easily understood
and verified by application specialists, but is not a sub-
stitute for the data dictionary.

-83-

step 7.3^.2^ Develop workload with resp ec

t

to ES

Function: Specifications for physical design

Output: Workload specifications

Team Members: User - Programmers, analysts, and DBA
Developer - Analysts, DA and DBA

Symbology: E-R-A diagram with path overlay

Tools: Update DD to add workload information

Guidelines: Identify access path to avoid errors

7.3.3 Add Local Constraints to the ES.

The purpose of this step is to add any unique con-
straints imposed on or by the LIM. Examples of such con-
straints include security and privacy restrictions, local
rules for edit and validation, and local integrity con-
str aints

.

Step 7.2-2 local c onstraint s to the ES

Function: Add local constraints to each ES

Output: Updated E-R-A diagrams and updated DD

Team Members: User - Programmers, analysts, and DBA
Developer - DA and DBA

Symbology: E-R-A diagrams

Tools: Update DD to add constraints

Guidelines: Identify unique constraints imposed
on or by the LIM

-84-

8. CONCLUSIONS

This report presents a Logical Database Design metho-
dology with the following characteristics:

o There are four phases: Local I nf ormat ion- f low Model-
ing, Global Information-flow Modeling, Conceptual
Schema Design, and External Schema Modeling.

o The phases are executed iteratively to control com-
plexity and to provide a means for verifying the
results of the different phases against one another.

o Analysis is performed from different points of view
(organization, function, and event) in order to en-
sure that the logical database design accurately re-
flects all reasonable information requirements of the
organi zation.

o The methodology recommends computer support from a
Data Dictionary System, in order to conveniently and
accurately handle the volume and complexity of design
documentation and analysis, and to provide ready ac-
cess to work already accomplished.

o Logical database design is integrated into the com-
plete system life cycle.

The purpose of this methodology is to assist in the
design of very large and complex information systems, where
the effects of poor logical database structures can result
in expensive, time-consuming system development efforts
whose end results are ineffective and inefficient. The
methodology emphasizes both the need for speed, so that the
design will be completed in time to be useful, and the need
for quality control, to ensure that the design is con-
sistent, complete, and satisfies the eventual users.

-8 5-

9 . AC KN0WL EDGMENTS

We wish to acknowledge the contributions of Daniel
Benigni, Joseph Collica, Mark Skall, and t.c. Ting for their
work on the outline for this report? Peter Chen, Ilchoo
Chung, and Dennis Perry for their research reported in
[CHEN82]; Nick Roussopoulos and Raymond Yeh for their
research reported in [R0US81] ; Bernard Thomson of the Navy
Program Planning Office (OP-901M), for providing an early
test of the methodology; and Harold Stout of the Command In-
formation Systems Office, Military Sealift Command, for his
support and extensive testing of the methodology. Special
thanks are due to Kang Cheng, for her excellent diagrams.

-86-

10. REFERENCES AND SELECTED READINGS

[AFIF84] Afif, A., "Automated Enterprise Modeling and Data-
base Design," Proceedings Trends and Applications
1984 t Mak ing Database Work , IEEE Computer Society
Press, 1984, pp. 247-256.

[ANSI84] American National Standards Institute (ANSI)
Technical Committee X3H4, Work ing Dra ft American
National Standard IRDS ; Part 1^ Core Standar dT
dated December 1984.

[ATRE80] Atre, S., Data Base ; Structured Techniques for
Design, Performance, and Management, John Wiley
and Sons, Inc 1980

[BEER79] Beeri, Catriel and Bernstein Philip A., "Computa-
tional Problems Related to the Design of Normal
Form Relational Schemas," ACM Transactions on Da-
tabase Systems , Vol. 4, No. 1, March 1979, pp.
30-59.

[BERN76] Bernstein, Philip A., "Synthesizing Third Normal
Form Relations from Functional Dependencies," ACM
Transactions on Database Systems , Vol. 1, No. 4,

December 1976, pp. 277-298.

[CARL80] Carlis, John V., "An investigation into the Model-
ing and Design of Large, Logically Complex,
Multi-user Databases," Ph. D. thesis submitted to

University of Minnesota, Minneapolis, Minnesota
55455, December 1980.

[CARL81] Carlis, John V. and March, Salvatore T., "A Multi-
ple Level Descriptive Model for Expressing Logical
Database Design Problems and Their Physical Solu-
tions," Working Paper Series MISRC-WP-81-10

,

University of Minnesota, Minneapolis, Minnesota
55455, March 1981.

[CERI83] Ceri, Stefano, (ed.). Methodology and Tools for
Database Desig n, North-Holland Publishing Company,
1983.

[CHEN80] Chen, P. P., (ed .) , Proceeding s of 1st Interna-
tional Conferenc e on Entity-Relationship Approach
to Systems Analysis and Desig n, North-Holland

-87-

Publishing Company^ May 1980.

[CHEN81] Chen, P. P. (ed.)^ Entity - Pvelationship Approach to
Information Modeling and Analysis , ER Institute,
P.O. Box 617, Saugus, CA 91350, October 1981.

[CHEN82] Chen, P. P., Chung, Ilchoo, and Perry, Dennis, "A
Logical Database Design Framework," NBS-GCR-82-
390, NTIS No. PB82-203316, May 1982.

[CURT82] Curtice, Robert M. and Jones, Paul E., Log ical Da-
tabase Design , Van Nostrand Reinhold Company,
1982.

[DEMA7 8] DeMarco, Tom, Structured Analysis and System
Specification, Yourdon Inc.,
Americas, New York, NY 10036

113 3 Avenue of the
19 78 .

[FIPS80] Federal Information Processing Standards (FIPS)

,

Gu ideline for Planning and Using a Data Die tionary
System , FIPS Publication 76, U.S. Department of
Commerce, National Bureau of Standards, August
1980 .

[GALL84]

[GANE79

]

[JACK83]

[JEFF8 2]

[KAHN79

]

[K0NI81]

Gallagher, L. J. and Draper, J. M., Gu ide on Data
Models in the Selection and Use of Database
Management Systems , NBS Special Publication 500-
108, National Bureau of Standards, January 1984.

Gane, Chris and S arson, Trish, Struc tured Systems
Analysis : Tools and Techniques , Prentice-Hall,
Inc., Englewood Cliffs, New Jersey 07632, 1979.

Jackson, M. A., System Development ,

International, 1983.
Prentice-Hall

Jefferson, David K., Information Systems Desig n
Methodology : Overview , DTNSRDC-8 2/04 3 , David W.
Taylor Naval Ship Research and Development Center,
Bethesda, MD 20084, NTIS No. ADA-115902, May 1982.

Kahn, B. K., "A Structured Logical Database Design
Methodology," Ph. D. thesis submitted to the
University of Michigan, Ann Arbor, Michigan 48109,
19 79 .

Konig, P. A. and Newton, J. J., Federal Require-
ments for a Federal Information Processing Stan-
dard Data Dictionary System , NBSIR 81-2 35 4, U.S.
Department of Commerce, National Bureau of Stan-
dards, September 1981.

-88-

[LUMV79]

[MACD8 2]

[MARC7 8]

[MARC84]

[MART77]

[MARr82]

[MART84]

[MCCL84]

[MYER78]

[NAVA8 2

]

Lum, V.Y., et al
Design Workshop
Conference on Very
of Electrical and Electronics
(IEEE), October 1979.

"1978 New Orleans Data Base
Report," Proc . 5th In ternati onal
Large Databases , THe Institute

Engineers, Inc.

MacDonald, I. G.
Development in a
D2S2 Methodology,"
Methodolog ies , : A Comparative Rev i

e

et al (eds.) North-Holland Publis hi ng
1982.

and Palmer, I. R. , "System
Shared Data Environment - The
in Information Systems Design

oTTe, T. W.
Company

,

March, Salvatore T., Jr., "Models of Storage
Structures and the Design of Database Records
Based Upon a User Characterization," Ph. D. thesis
submitted to Cornell University, May 1978.

March, S. T. , Ridjanovic, D. and Prietula, M., "On
the Effects of Normalization on the Quality of Re-
lational Database Designs or Being Normal is Not
Enough," Proceedings Trends and Applications 1984 :

Mak ing Database Work , IEEE Computer Society Press,
19 84, pp. 2 57-2 61.

Martin, James,
Prentice-Hall

,

1977.

DatabaseComputer
Engl ewood Cliffs

,

Org aniz ation ,

New Jersey 07632,

Martin, James, Strateg ic Data-Planning Methodolo-
gies, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey 07632, 1982.

Martin, James, "The Spring 1984 James Martin
Seminar Documentation," Volumes I, II, and III,
Technology Transfer Institute, 741 10th Street,
Santa Monica, CA 90402, 1984.

McClure, Carma L. "Structured Techniques for
Fourth Generation Languages," Technology Transfer
Institute, 741 10th Street, Santa Monica , CA
90402, 1984.

Myers, Glenford J., Composite/S true tu red
Van Nostrand Reinhold Company, 1978.

Design,

Navathe, S. B. and Gadgil, S. G., "A Methodology
for View Integration in Logical Database Design,"
in Proceedings of the Eighth International Confer-
ence on Very Large Databases , Mexico City, Sep-
tember~T98T;

-8 9-

[ORRK82] Orr, Ken and Associates, Inc.,
Systems Dev elopment Methodology,
ciates. Inc.
1982 .

Data Structured
Asso-

172 5 Gage Blvd., Topeka, KS 666 04.

[ROSS77

]

Ross, D. T. and Schoman, K. E. , Jr "Structured
Analysis for Requirements Definition," IEEE Tran-
sactions on S oftware Eng i nee ring , Vol. SE-3, No.
1, PP. 6-15, 1977.

[R0US81] Roussopoulos , N. and Yeh, R. T. , "Database Logical
Schema Design," NBS GCR 82-411, NTIS No. PB 83-
195743, 1981.

[SAKA83] Sakai, H. "Entity-Relationship Approach to Logical
Database Design," in Davis, C. G. et al (eds.)
Ent i ty-Relat ionsh ip Approach to Software Eng ineer-
ing , Nor th-Holland , 198 3.

[SHEP76] Sheppard, D. L. , "Database Methodology — Parts I

and II," Portfolios 23-01-01 and 23-01-02, Design
and Development , Database Design , Auerbach Pub-
lishers , 19 76.

[SMIT78] Smith, J. M., and Smith, D. C, "Principles of Da-
tabase Conceptual Design," NYU Symposium on Data-
base Design , May 1978.

[SOFT79] SofTech, Inc., "IDEF - Architect's Manual," Ma-
terial Supplied by Project 112 Task 2 Coalition,
Consisting of Hughes Aircraft Company and Northrop
Corporation. Manual Prepared by SofTech, Inc.,
46 0 Totten Pond Road, Waltham, MA 02154, August
1979 .

[SUND78] Sundgren, B. , "Database Design in Theory and Prac-
tice: Towards An Integrated Methodology,"
Proceeding s of 4th International Conferenc e on
Very Large Databases , The Institute of Electrical
and Electronics Engineers, Inc. (IEEE), 1978.

[SUST83] Su, Stanley Y. W., "SAM*: A Semantic Association
Model for Corporate and Scientific-Statistical Da-
tabases," Information Sc iences , Vol. 29, 198 3, PP.
151-199.

[SUST84] Su, Stanley Y. W., "Processing Requirement Model-
ing and Its Applications in Logical Database
Design," in Yao, B. S. (ed .) Princ iples of Data-

Design, Prentice-Hall, Inc., Englewood
published in 1984.

base Design , Prentice-Hall,
Cliffs, New Jersey 07632, to be

-90-

[TEOR821 Teorey, T. J., and Fry, J. P., Desig n of Database
Struc tures , Prentice-Hall, Inc., Englewood Cliffs,
N.J. 07632, 1982.

[ZANI82] Zaniolo, Carlo, "A New Normal Form for the Design
of Relational Database Schemata," ACM Tr ansae tions
on Database Systems , Vol. 7, No. 3, Septembe r

1982, PP. 489-499.

-91-

APPENDIX A

Agency Financial Management System

I

Ij

1

INTRODUCTION

A Federal agency is designing a financial management
system. None of the applications systems offered by
software vendors seem to gracefully accommodate the agency^

s

code structure and its cost accounting procedures for its
reimbursable divisions. As a matter of fact, although the
individuals on the team surveying these packages are each
expert in a particular subject area, they lack a good over-
view of what their agency's requirements are, or should be.

A primary objective of the design effort is to gain an
organizational perspective of the agency's financial data.
The logical database design can then be used to develop a
system (either in-house or on contract), purchase a system
(once requirements are understood) or specify modifications
which would be needed if a system were purchased from a ven-
dor or obtained from another agency.

An important consideration in the logical database
design project is that the agency's appropriation from
Congress constitutes only 63% of the operating budget. Ad-
ditional income is provided by contracts with other govern-
ment agencies and the sale of goods and services to the pub-
lic sector. The financial management system must be able to
charge back costs to customers. Another important con-
sideration is that there is an existing payroll system which
must interface with the financial management system.

An example of a reimbursable division is Instrument Fa-
brication Division, IFD, whose income from services to other
government agencies represents 8% of the agency's budget.
IFD relies on other divisions within the agency for func-
tions such as procurement and accounting. IFD finances all
management and support services by applying a fixed-rate
surcharge to the labor base in some of its own units.

The following examples are intended to show some of the

types of documentation which are gathered or produced in a

logical database design.

These examples have been simplified so that the amount
of detail does not obscure the intent of the example. How-
ever, in some instances enough detail is left in so that the

- A.l -

reader may appreciate the sheer volume of the items of in-
formation to be gathered, analyzed and organized in logical
database design. The result is, unfortunately, an uneven
level of detail.

Even the sample system chosen, "Agency Financial
Management System," is limited in scope, showing some as-
pects of normal in-house financial management for a
service-oriented agency. Other federal agencies, whose mis-
sion is to administer or disburse government funds, would
consider this example system a minor subsystem. In general,
logical database design for financial management should con-
sider the unique mission of the agency and the extent to
which financial data can be used to support that mission.

- A. 2 -

INSTRUMENT FABRICATION DIVISION

Oi^gaiiizational Qiart

MANAGEMENT

ESTIMATES DESIGN OPERATIONS

MANUFACTURING CALIBRATIONS

MISSION

The mission of instrument Faorlcatlon Division Is to design ana manufacture nign-preclsloa

one-of-a kind instruments in support of the agency's scientific research divisions. This

service is avail^le to other government agencies as well as the public. All instruments

are manufactured on a reimbursable basis.

-A. 3-

INSTRUMENT FABRICATION DIVISION

High Level Local Information-flow Model

CUSTOMER

Plans

Orders

C<mtracts

Labor hours

distribution

Billing informrtion

Purchase order

paynent

authorization

j

ACXXXMTING

1

' Accounting reports

Estlnates

Design specifications

Status r^orts

INSTRUMENT

FABRICATION

DIVISION

Tine cards

PAYROLL

Purchase order

receiving reports

Quotes on'

naterials and

equifment

Requisition for

naterials and

equipnent

SHIPPING

AND

RECEIVING

VEMXDR PROCUREMENT

-A. 4-

INSTRUMENT FABRICATION DIVISION

Local Information-flow Model

ESTIMATES Unit

CUSTOMER

CostVtine
estlnates

Plans

Quotes on

naterials prices

ESTIMATES VENDCR

Cost/tine
estinates

Plans

Purchase order
Infornation t

Ldbor rates

MANAGEMEhJT

NOTES

Estimates are free to customers. The ESTIMATES unit is not reimtxjrsed direcUy

for services.

-A. 5-

INSTRUMENT FABRICATION DIVISION

Local Information-flow Model

OPERATIONS Unit

hWJAGEMENT

- Approved plans

' Priority list

• Design

specifications

DESIGN
• Hflterials

list

OPERATIONS

Task plans

MANUFACTURING

Project plans

Progress reports

Project/enployee hours sunnary

Tifte cards

Equipnent requisitions

naterlals purchase orders

Enployee/project tine cards

Task status

llaterials usage log

CALIBRATIONS

NOTES

OPERATIONS is responsible for coordinating the efforts of MANUFACTURING and

CALIBF^TIONS, scheduling tasks, ordering materials and equipment, reporting

material and labor spent on each project

-A. 6-

INSTRUMENT FABRICATION DIVISION

Local Information-flow Model

Function : Close Out Work Order

%'//// naterials '//M//
/A//,,: W/A

'^9^. tiork order '^/y/^//m

Notice of

conpletion

Itenized

bill

-A. 7

AGENCY FINANCIAL MANAGEMENT SYSTEM

Global Information-flow Model

PUBLIC

SECTOR

TREASURY

DEPARTMOn"

BUDGET

OFFICE

PAYROLL

OPERATIONS

Financial

reports

Schedule of

paynents

Payroll

reports/t^

Invoices

VEHDORS

Paynents

OTHER

AGQiCIES

Authorizations

Ad hoc

requests

Bills

ACCOUNTING

Purchase

orders

. Labor Hours

- Billing info

• Paynent

authorization

Accounting

reports

Status reports

REIMBURSABLE

OPERATIOKS

Accounting

r^rts

Re^iisitions

Obligations

Labor tours

Payment

outtwrization

PROCURIMElfr t
Requisitions

APPROPRIATED

TECHNICAL

OPERATICWS

Boundajiy of Autc«atic«i

-A. 8-

AGENCY FINANCIAL MANAGEMENT SYSTEM

ENTITY-RELATIONSHIP DIAGRAM
OF CONCEPTUAL SCHEMA

NOTES: Ncai-key attributes are not showi.

Vaita. dictiOTiary reports list all attriljutes.

-A. 9-

AGENCY FINANCIAL MANAGEMENT SYSTEM

EXTERNAL SCHEMA
Function : Close Out Work Order

^DIV. ID^

lOVEMEAD

pDIV. ID!#-

iCOST

DIVISICN

1 r O,*

LABOR

CATEGORY

PURCHASE

ORDER

0,m

«oescr2

0,m—

^

0,1

u.o. #^

FIXED/ i

ACTUAL'

WORK

ORDER

0.1

.0,1

CUST. ID

VORK

ORDER

TASK

PROFIT/

LOSS

TRANSFER

PROJECT

TIME

CARD

%CUST. ID

: DIV. ID#

U.OrBflL|p

NOTE : Entities, relationships and attributes not used by this functic«i are riot

shown. Coiiiplete detadls are available frc«i the data dictic«»ry.

-A. 11-

EXTERNAL SCHEMA "OVERLAY"
WORKLOAD FOR FUNCTION

"Close Out Work Order"

Biweekly Statistics for All Reimbursable Divisions

UPDATE

KEY = U.O. #

DIV.ID, CUST.ID.

EST.COST, FIXED/ACTUAL

13

HABOR CATEGORY ^

USE

KEY = OIV.IO

USE

KEY = DIV.ID

DIV OVERHEAD RATE
LABOR CODE

LABOR RATE

^ . , 0.

4

1 PROJECT TDIE CARD^,

ACCESS

KEY = U.O. »
USE

KEY = U.O. # TASK #

TASK ff
T.C. HOURS

LABOR CODE

1.5

PURCHASE ORDER
^ P.O. LIME ITB1|ri?7.^;:*T^^

ACCESS 7 USE

KEY = U.O. # KEY = P.O. #

P.O. # COST

.25 (^TE
KEY = DIV.ID U.O. #

U.O.BAL

.75

iC.I. LINE ITB1

UPDATE

KEY = CUST.IO * U.O. #

OIV.IO

U.O.BAL

LEGEND

FREgUENCY

ENTITY NflHE

SEO

entity USE. UPDATE or ACCESS

KEY = access key

List of other attributes

used by the process

1

-A. 12-

DATA DICTIONARY DISPLAY

WORKLOAD FOR FUNCTION

F1012-CLOSE-OUT-WORK-ORDER MODULE
CLASSIFICATION CATEGORY

10 DB-PROCESS
DESCRIPTION CATEGORY

10 - TRIGGERED BY RECEIPT OF CLOSE-OUT TICKET
20 - COMPUTES FINAL COST OF WORK ORDER
30 - TRANSMITS WORK ORDER BALANCE (ADVANCE PAYMENT
40 MINUS COST) TO COST ACCOUNTING AS EITHER A
50 PROFIT/LOSS (FOR FIXED-PRICE) OR CUSTOMER REFUND/
60 AMOUNT-DUE TRANSACTION (FOR ACTUAL- PR ICE)

.

RELATIONAL CATEGORY

CATALOGUE NAME

1010 F1012-WORK-ORDER
ACCESS: TYPE=UPDATES FREQ" 56

56

P1012 -WORK-ORDER MODULE
RELATIONAL CATEGORY-

CATALOGUE NAME

10 WORK -ORDER-NUMBER
ACCESS: TYPE=READS

20 DIVISION-ID
ACCESS: TYPE=READS

30 CUSTOMER- ID
ACCESS: TYPE=READS

40 W-O-ESTIMATED-COST
ACCESS: TYPE=READS

50 W-O-ACTUAL-COST
ACCESS: TYPE=<:rEATES

60 W-O-FIX ED-ACTUAL- INDICATOR
ACCESS: TYPE=READS

70 W-O- DATE-C OMPLET ED
ACCESS: TyPE=CREATES

10 10 F1012-DIVISION
ACCESS: TYPE=READS FREQ- 1

10 20 FIO 12-WORK-ORDER-TASK
ACCESS: TYPE=READS FREQ- 6

10 30 F1012-PURCHASE-ORDER
ACCESS: TYPE=READS FREQ= 1 50

1040 F 10 1 2 -PROFI T- LOSS-TRAN SF ER
ACCESS: TYPE=CREATES FREQ« .25

1041 * EXECUTE FOR FIXED-PRICE WORK ORDER
10 50 F 10 12-CUST- INVOICE-LINE- ITEM

ACCESS: TYPE=CREATES FREQ= .7 5
1051 * EXECUTE FOR ACTUAL-PRICE WORK ORDER

F1012 -WORK-ORDER-TASK MODULE
CLASSIFICATION CATEGORY

10 ACCESS-ONLY
RELATIONAL CATEGORY

CATALOGUE NAME

10 WORK-ORDER-NUMBER
ACCESS: TYPE=READS

20 TASK -NUMBER
ACCESS: TYPE=READS

1010 FIO 12-PROJBCT- TIME-CARD
ACCESS: TYPE=READS FREQ = 4

F1012-PROJECT-TIME-CARD MODULE
RELATIONAL CATEGORY

CATALOGUE NAME

10 WORK -ORDER-NUMBER
ACCESS: TYPE=READS

20 TASK-NUMBER
ACCESS: TYPE=READS

30 TIME-CARD-HOURS
ACCESS : TY PE =READS

40 DIV-LABOR-CODE
ACCESS: TYPE=READS

.25

F1012-PROFIT-LOSS-TRANSFER MODULE
RELATIONAL CATEGORY

CATALOGUE NAME

10 DIVISION-ID
ACCESS: TYPE-CREATES

20 WORK-ORDER-NUMBER
ACCESS: TYPE=<REATES

30 W-O- BALANCE
ACCESS: TYPE=<REATES

-A. 13-

INDENTED INDEXEXTERNAL SCHEMA FOR FUNCTION
F1012-CLOSE-OUT-WORK-ORDER

RELATIVE LEVEL/DATA CATALOGUE NAME ENTRY TYPE PAGE

F 10 12-CLOSE-OUT-WORK-ORDER MODULE 2

. FIO 12-WORK-ORDER MODULE 3

WORK -ORDPR—NTTMRFR FT.RMENTXJ XI Xla*l X-ii^ X 4•I
Pr.F.MPNT

CUSTOMER- ID ELEMENT 6
PT.PMPNT 7

XjXJ XiU. i XJI^ X

W-O-FIXED-ACTUAL-INDICATOR ELEMENT 9

• 9 " ^ LJt\ X Jj Wl 1 ST LJ lit X XJJL/ FT.PMPNTXjXj Xil'lX-il^ X 1 0X Vx

. . ^10 12-DIVISION MODULEX 1 XXXXW XJ XJ 11

. . . DIVISION-ID ELEMENT 12

. . . D IV-OVERHEAD-RATE ELEMENTXJ XJ I ii IXjLl X 13

. . . FIO 12-D IV-LABOR-CATEGORY MODULE 14

. . . . DIVISION-ID ELEMENT 15

. . . . D IV-LABOR-CODE ELEMENTXj XJ 1 ^1 AXJL^ Xi 16

. . . . DIV-LABOR- RATE ELEMENT 17

. . ^10 12-WORK-ORDER-TASK« • — w iJIb Am w 1 VAi A X^X VX^ XJ X \ X. X X X V MODULE 18

. . . WORK-ORDER-NUMBER• • • T V XX XVX\ X^XxXX X^ XX X V \J X X^JX^ Xx ELEMENTX-iXJ 1 M lXJJ-« ^ 19

. . . TASK -NUMBER ELEMENT 20

. . . FIO 12-PROJECT-TIME-CARD MODULE 21

. . . . WORK-ORDER-NUMBER• • • • T « ^/XXX\ \-' X XXa/ XX X^ V_/ 1. X *—t X X ELEMENT 22

. . . . TASK-NUMBER• • • % ^ X X kX 1,X i.^ XX X A IlJ*~t X X ELEMENT 23

. . . . TIME-CARD-HOURS* a • • X^LX X-J XX XXX^ XXXX W Xx^x ELEMENTXJ Jl A XJX 1 ^ 24
nTV-T.AROR-rOnF• • • • X V XJxxxJVxJLx \^\JLJl-t ELEMENT 25

FIO 12-PURCHASE-ORDER» 9 X x/ ^ A> X W XxV^ XX XXkXX^ X.^XXJ.X X.i(XX MODULEX X V,/ A^ XX ' ' ^ 26
. . . WORK-ORDER-NUMBER• • • V 1 XXX XX \ XXX XXX XJ XX XX J- X XX ELEMENT 27

PTTRCHASF-ORnPR—NTTMRFR PT.EMENT 28^ VJ

MODTTT.E1 1 L/ \J Xj XJ 29
PTIRrHASK-ORnPR—NTTMRRR• • • • IT \J £yx^ LlntJl-J xxXxLxi_jXx U 1*1 XxXj Xx ELEMENT 30

• • • • X \y XJ X 1^ xli XX i-il 1 \^ X ELEMENT* * ' ' ' «i ' 1 X_JL^ J. 31
MODTIT.R11 XX Xx \J XJ i-i 32

r>T\7T QTHN— Tn• • • JLyXVXoXVyLN XU Pr.PMPNTXjXJ Xlil'lXlil^ X 33

. , , WORK-ORDER-NUMBER ELEMENT 34

. . . W-0-BALANCE ELEMENT 35

. , FIO 12-CUST-INVO ICE-LINE-ITEM MODULE 36

. . . CUSTOMER- ID ELEMENT 37

. . . WORK-ORDER-NUMBER ELEMENT 38

. . . DIVISION-ID ELEMENT 39

. . . W-0-BALANCE ELEMENT 40

*** END OF INDEX

-A. 14-

NBS-114A (REV. 2-ec)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS/SP-500/122

2. Performing Organ. Report No 3. Publication Date

February 1985

4. TITLE AND SUBTITLE
Computer Science and Technology:

Guide on Logical Database Design

5. AUTHOR(S)

El izabeth Fong, Margaret W. Henderson, David K. Jefferson, Joan M. Sullivan

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
GAITHERSBUR6, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. Stote, ZIP)

Same as in item 6 above,

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 85-600500

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attaclied.

11. ABSTRACT (A 200-worcl or less factual summary of most si gnificant information. If riocument includes a significant

bibliography or literature survey, mention it here)

This report discusses an iterative methodology for Logical Database Desian. The
methodology includes four phases: Local Information-flow Modeling, Global

Information-flow Modeling, Conceptual Schema Design, and External Schema Modeling.
These phases are intended to make maximum use of available information and user
expertise, including the use of a previous Needs Analysis, and to prepare a firm
foundation for physical database design and system implementation. The method-
ology recommends analysis from different noints of view--organization , function,
and event--in order to ensure that the logical database design accurately reflects
the requirements of the entire population of future users. The methodology also

recommends computer support from a data dictionary system, in order to conveniently
and accurately handle the volume and complexity of design documentation and analysis

The report places the methodology in the context of the complete system life cycle.

An appendix of illustrations shows examples of how the four phases of the method-

ology can be implemented.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

data dictionary system; data dictionary system standard; data management; data model;

database design; database management system, DBMS; Entity-Relationshio-Attribute

Model; Information Resource Dictionary System, IRDS; logical database design.

13. AVAILABILITY

[j^ Unlimited

For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Wasliington, D.C.

20402.

Order From National Teclinical Information Service (NTIS). Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

115

15. Price

USCOMM-DC e043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new pubHcations to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notificalion key N-503)

'.S. GOYEMIMENT PRINTING OPPIOE : 1985 0-461-105/10198

_ Technical Publications

Periodicals

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad
range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. As a special service to subscribers each issue contains complete citations to

all recent Bureau publications in both NBS and non-NBS media. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

coof)eration with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

sp)ecial publications appropriate to this grouping such as wall charts, pocket caids, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1 127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

		Superintendent of Documents
	2022-04-16T08:48:55-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

