NISTIR 7364

Database Tools for Modeling Emissions and Control of Air Pollutants from Consumer Products, Cooking, and **Combustion**

Cynthia Howard-Reed **Brian Polidoro**

NISTIR 7364

Database Tools for Modeling Emissions and Control of Air Pollutants from Consumer Products, Cooking, and Combustion

Cynthia Howard-Reed Building and Fire Research Laboratory, NIST

Brian Polidoro Building and Fire Research Laboratory, NIST

November 2006

U.S. Department of Commerce Carlos M. Gutierrez, *Secretary*

Technology Administration Robert Cresanti, *Undersecretary of Commerce for Technology*

National Institute of Standards and Technology William A. Jeffrey, *Director*

ABSTRACT

In order to estimate building contaminant concentrations and associated occupant exposures, indoor air quality (IAQ) model users require data related to source strengths and other contaminant transport mechanisms (e.g. sinks, filters). Much of this information exists in the literature; however, it is not readily accessible, thereby requiring users to expend significant efforts in searching for this information. To support the modeling process, the National Institute of Standards and Technology (NIST) has created a series of model input databases for use in its multizone IAQ and ventilation model CONTAM. As part of this effort, a standard data entry format was developed, as well as a computer program to search the database for specific records and build a CONTAM input library. These databases and tools can serve as a basis for building an extensive collection of model input parameters, assessing the quality and completeness of existing data sets, and allow for identification of significant data gaps.

Keywords: database, indoor air quality, transport model, volatile organic compounds, particles, exposure

Table of Contents

1. INTRODUCTION	1
2. INDOOR AIR QUALITY MODELS AND INPUTS	2
3. MODEL INPUT DATA SOURCES	7
4. MODEL INPUT DATABASE STRUCTURES AND TOOLS	9
5. DISCUSSION	16
6. ACKNOWLEDGEMENTS	18
7. DISCLAIMER	18
8. REFERENCES.	19
APPENDICES	
A. Data Entry Forms	25
B. ContamLink 2.4 User Manual	48

INTRODUCTION

Indoor air quality (IAQ) models can be used to predict airflows, contaminant concentrations and building occupant exposures in a given indoor environment. In order to generate such results, however, IAQ models require the user to provide a wide range of input data including envelope leakage information, weather, ventilation system characteristics, contaminant source emission rates, sink removal rates, occupant schedules, and air cleaner removal rates. Many of the required model inputs are available in the literature; however, these data have generally not been compiled in a readily accessible source, thereby requiring users to search for model input parameters. To facilitate the IAQ modeling process and allow for assessment of the data quality and completeness, there is a need for well-designed databases of measured contaminant modeling data.

In response to this need, the National Institute of Standards and Technology (NIST) created several searchable databases for model input data. These databases may be used to organize volatile organic compound (VOC) emission rates from building materials, particle and inorganic gas emission rates from combustion sources, particle deposition rates, VOC sorption rates, and particle filtration. This process involved collecting representative data from the literature, designing a database format to standardize data entry, entering example data into the database, validating data entry, and developing a computer program to search the database for specific records to use in the multizone IAQ and ventilation model, CONTAM. The resulting databases and tools provide standardization that is needed for consistency and reliability in reporting, accessing, and manipulating IAQ model input data.

INDOOR AIR QUALITY MODELS AND INPUTS

Although the model input databases compiled as part of this effort can be used in any IAQ model, this report will focus on their use in NIST's airflow and pollutant transport model CONTAM (Walton and Dols, 2005). The CONTAM software and manual may be downloaded from the following website: http://www.bfrl.nist.gov/IAQanalysis/. In summary, CONTAM is a multizone model that treats a building as a system of interconnected, well-mixed zones between which airflow and pollutants are transported. This macroscopic approach is implemented by constructing a network of elements describing the flow paths (heating, ventilating, and air conditioning (HVAC) ducts, doors, windows, cracks, etc.) between the zones of a building. The network nodes represent the zones and duct segments, which are modeled with a single pressure, temperature, and pollutant concentration. CONTAM has a graphical interface that allows users to draw a building's zones and add airflow paths, ventilation systems, contaminant sources and sinks, and building occupants.

The program first calculates airflow rates between zones by solving for the pressure in each zone based on a mass balance of air. After calculating the airflow between zones and ambient, zonal pollutant concentrations are calculated by applying mass balance equations to the zones, which may also contain pollutant sources or sinks. The following mass balance may be used to describe contaminant transport in a multizone building:

$$\frac{dm_{\alpha,i}}{dt} = -R_{\alpha,i}C_{\alpha,i} - \sum_{j} F_{i,j}C_{\alpha,i} + \sum_{j} F_{j,i} (1 - \eta_{\alpha,j,i})C_{\alpha,j} + m_{i} \sum_{\beta} k_{\alpha,\beta}C_{\beta,i} + G_{\alpha,i}$$
(1)

where:

 $m_{\alpha,i}$ = mass of contaminant α in zone i (kg)

 $R_{\alpha,i}$ = removal coefficient for contaminant α in zone i (kg/s)

 $C_{\alpha,i}$ = concentration mass fraction of contaminant α in zone i (kg/kg)

 $F_{i,j}$ = rate of airflow from zone i to zone j (kg/s)

 $F_{i,i}$ = rate of airflow from zone j to zone i (kg/s)

 $\eta_{\alpha,j,i}$ = filter efficiency in the path from zone j to zone i (kg/kg)

 $C_{\alpha,j}$ = concentration mass fraction of contaminant α in zone j (kg/kg)

 m_i = mass of air in zone i (kg)

 $k_{\alpha,\beta}$ = kinetic reaction coefficient in zone i between species α and β (1/s)

 $C_{\beta,i}$ = concentration mass fraction of contaminant β in zone i (kg/kg)

 $G_{\alpha i}$ = generation rate of contaminant α in zone i (kg/kg)

The user must supply data regarding airflow paths, contaminant source emission rates, contaminant removal rates, chemical reaction coefficients, filter efficiencies and occupant schedules. In a previous effort, NIST created a library of airflow leakage elements, wind pressure coefficients, and ventilation system schedules to aid the user when adding airflow path information (Persily and Ivy, 2001). The project described in this report focused on creating databases for the model input parameters needed to model exposure to air pollutants from consumer products, cooking, and combustion. These parameters include source emission rates $(G_{\alpha,i})$, contaminant sinks and deposition rates $(R_{\alpha,i})$, and particle filter efficiencies $(\eta_{\alpha,i,i})$.

Source Models

The generation rate of indoor contaminants has been described with several different source models. A summary of the source models currently available in CONTAM is provided in Table 1. It should be noted that there are additional source models available in the literature.

Table 1. Source models used to characterize source emission rates in CONTAM.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Source Model Name	Equation	Example Uses
Pressure Driven Model G^*AP^n Contaminated soil gas $AP = pressure difference n = pressure exponent Cutoff Concentration Model G\left(1 - \frac{C}{C_{cut}}\right) Sources within a confined space (e.g., mothballs in a closet) Decaying Source Model G_0 = pressure exponent Decaying Source Model G_0 = pressure exponent Boundary Layer Diffusion d_0 = pressure exponent Boundary Layer Diffusion d_0 = pressure exponent d_0 = pressure exponent Boundary Layer Diffusion d_0 = pressure exponent d_0 = pressure exponent Boundary Layer Diffusion d_0 = pressure exponent d_0 = pressure exponent d_0 = pressure exponent Boundary Layer Diffusion d_0 = pressure exponent d_0 = pressure exponent d_0 = pressure exponent Burst Source Model d_0 = pressure exponent Fixed mass transfer coefficient over sink d_0 = pressure exponent d_0 = pressure exponent d_0 = pressure exponent Reversible sinks d_0 = pressure exponent d_0 = pressure exponent Reversible sinks d_0 = pressure exponent d_0 = pressure exponent d_0 = pressure exponent Reversible sinks d_0 = pressure exponent $	Constant Coefficient Model		
Pressure Driven Model $G^*\Delta P^n$ ΔP = pressure difference n = pressure exponent AP = pre		G = generation rate	,
Cutoff Concentration Model $G\left(1-\frac{C}{C_{\text{cut}}}\right) \qquad \qquad \text{Sources within a confined space} \\ C = \text{current concentration} \\ C = \text{current concentration} \\ C_{\text{cut}} = \text{cutoff concentration at which} \\ \text{emission ceases} \\ \\ Decaying Source Model G_0 \exp(-t/t_c) \\ G_0 = \text{initial generation rate} \\ t = \text{time since start of emission} \\ t_c = \text{time constant} \\ \\ \text{Model} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Pressure Driven Model		Contaminated soil gas
Cutoff Concentration Model $G\left(1-\frac{C}{C_{\text{cut}}}\right)$ Sources within a confined space (e.g., mothballs in a closet) $C = \text{cutrent concentration}$ $C = \text{cutoff concentration}$ Wet VOC sources (e.g., paint) Decaying Source Model $G_0 \exp(-t/t_c)$ Wet VOC sources (e.g., paint) $G_0 = \text{initial generation rate}$ $t = \text{time constant}$ Boundary Layer Diffusion Model $hdA\left(C_i - \frac{C_s}{k}\right)$ Reversible sinks $h = \text{film mass transfer coefficient over sink defilm density of air A = \text{surface area} Reversible sinks C_i = \text{concentration in air} C_i = \text{concentration in air} C_i = \text{concentration in air} C_i = \text{concentration at surface of material kepartition coefficient} Occupant activities (e.g., spraying an air freshener, changing kitty litter) Power Law Model If t < t_p, then t = t_p "Dry" materials emissions C_i = t_p^{-b} Else C_i = t_p^{-b} Sources within a colosted (e.g., mothballs in a closet) $		*	
$G \left[1 - \frac{C}{C_{cut}} \right] \qquad (e.g., mothballs in a closet)$ $C = \text{current concentration} \\ C_{cut} = \text{cutoff concentration at which} \\ \text{emission ceases}$ $G_0 = \text{initial generation rate} \\ t = \text{time since start of emission} \\ t_e = \text{time constant}$ $\text{Boundary Layer Diffusion} \\ \text{Model}$ $\text{hdA} \left(C_i - \frac{C_s}{k} \right) \\ \text{h = film mass transfer coefficient over sink} \\ \text{d = film density of air} \\ \text{A = surface area} \\ C_i = \text{concentration in air} \\ C_s = \text{concentration at surface of material} \\ \text{k = partition coefficient}}$ $\text{Burst Source Model}$ $\text{Fixed mass added to zone instantaneously}$ $\text{Occupant activities } (e.g., \text{spraying an air freshener, changing kitty litter)}}$ Power Law Model $\text{If } t < t_p, \text{ then} \\ S(t) = at_p^{-b} \\ \text{Else}$ $S(t) = at^{-b} \\ t = \text{time}$ $a \text{ h. } t = \text{empirical coefficients}$		n = pressure exponent	
$C = \text{current concentration} \\ C_{\text{cut}} = \text{cutoff concentration at which} \\ emission ceases \\ \\ Decaying Source Model \\ G_0 \exp(-t/t_c) \\ G_0 = \text{initial generation rate} \\ t = \text{time since start of emission} \\ t_c = \text{time constant} \\ \\ \text{Boundary Layer Diffusion} \\ \text{Model} \\ \\ h_0 = \text{film mass transfer coefficient over sink} \\ d = \text{film mass transfer coefficient over sink} \\ d = \text{film density of air} \\ A = \text{surface area} \\ C_i = \text{concentration in air} \\ C_s = \text{concentration at surface of material} \\ k = \text{partition coefficient} \\ \\ \text{Burst Source Model} \\ \text{Fixed mass added to zone instantaneously} \\ \text{Source Law Model} \\ \text{If } t < t_p, \text{ then} \\ S(t) = at_p^{-b} \\ \text{Else} \\ S(t) = at^{-b} \\ t = \text{ time} \\ a, b, t = \text{ empirical coefficients} \\ \\ \text{Source Model} \\ \text{Wet VOC sources } (e.g., paint) \\ \text{Reversible sinks} \\ \text{Reversible sinks} \\ \text{Reversible sinks} \\ \text{Occupant activities } (e.g., paint) \\ \text{Occupant activities } (e.g., pain$	Cutoff Concentration Model	$G\left(1 - \frac{C}{C_{\text{cut}}}\right)$	
		C = current concentration	
Decaying Source Model $G_0 = \text{initial generation rate} \\ G_0 = \text{initial generation rate} \\ t = \text{time since start of emission} \\ t_c = \text{time constant} \\ \text{Model} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			
$G_0 = \text{initial generation rate} \\ t = \text{time since start of emission} \\ t_c = \text{time constant} \\ \\ \text{Boundary Layer Diffusion} \\ \text{Model} \\ \\ hdA \left(C_i - \frac{C_s}{k} \right) \\ h = \text{film mass transfer coefficient over sink} \\ d = \text{film density of air} \\ A = \text{surface area} \\ C_i = \text{concentration in air} \\ C_s = \text{concentration at surface of material} \\ k = \text{partition coefficient} \\ \\ \text{Fixed mass added to zone instantaneously} \\ \\ \text{Power Law Model} \\ \\ \text{If } t < t_p, \text{ then} \\ S(t) = at_p^{-b} \\ \\ \text{Else} \\ S(t) = at^{-b} \\ t = \text{time} \\ a \text{ b. } t = \text{empirical coefficients} \\ \\ \text{Reversible sinks} \\ \\ \text{Reversible sinks} \\ \\ \text{Reversible sinks} \\ \\ \text{Occupant activities} (e.g., spraying an air freshener, changing kitty litter)} \\ \text{Power Law Model} \\ \text{If } t < t_p, \text{ then} \\ S(t) = at^{-b} \\ \text{t = time} \\ a \text{ b. } t = \text{empirical coefficients} \\ \\ \text{The sum of the sinks} \\ \\ \text{Reversible sinks} \\ \\ \text{Occupant activities} (e.g., spraying an air freshener, changing kitty litter)} \\ \text{Power Law Model} \\ \text{The sum of the sinks} \\ \text{Reversible sinks} \\ \\ Reversibl$			
$G_0 = \text{initial generation rate} \\ t = \text{time since start of emission} \\ t_c = \text{time constant} \\ \\ \text{Boundary Layer Diffusion} \\ \text{Model} \\ \\ hdA \left(C_i - \frac{C_s}{k} \right) \\ h = \text{film mass transfer coefficient over sink} \\ d = \text{film density of air} \\ A = \text{surface area} \\ C_i = \text{concentration in air} \\ C_s = \text{concentration at surface of material} \\ k = \text{partition coefficient} \\ \\ \text{Fixed mass added to zone instantaneously} \\ \\ \text{Power Law Model} \\ \\ \text{If } t < t_p, \text{ then} \\ S(t) = at_p^{-b} \\ \\ \text{Else} \\ S(t) = at^{-b} \\ t = \text{time} \\ a \text{ b. } t = \text{empirical coefficients} \\ \\ \text{Reversible sinks} \\ \\ \text{Reversible sinks} \\ \\ \text{Reversible sinks} \\ \\ \text{Occupant activities} (e.g., spraying an air freshener, changing kitty litter)} \\ \text{Power Law Model} \\ \text{If } t < t_p, \text{ then} \\ S(t) = at^{-b} \\ \text{t = time} \\ a \text{ b. } t = \text{empirical coefficients} \\ \\ \text{The sum of the sinks} \\ \\ \text{Reversible sinks} \\ \\ \text{Occupant activities} (e.g., spraying an air freshener, changing kitty litter)} \\ \text{Power Law Model} \\ \text{The sum of the sinks} \\ \text{Reversible sinks} \\ \\ Reversibl$	Decaying Source Model	$G_0 \exp(-t/t_c)$	Wet VOC sources (e.g., paint)
Boundary Layer Diffusion Model		G_0 = initial generation rate	, , ,
Boundary Layer Diffusion Model		t = time since start of emission	
Model		t_c = time constant	
d = film density of air A = surface area C_i = concentration in air C_s = concentration at surface of material k = partition coefficient Burst Source Model Fixed mass added to zone instantaneously Occupant activities (e.g., spraying an air freshener, changing kitty litter) Power Law Model If t < t _p , then $S(t) = at_p^{-b}$ Else $S(t) = at^{-b}$ t = time a b. t = empirical coefficients		$hdA\left(C_i - \frac{C_s}{k}\right)$	Reversible sinks
$A = \text{surface area} \\ C_i = \text{concentration in air} \\ C_s = \text{concentration at surface of material} \\ k = \text{partition coefficient}$ Burst Source Model Fixed mass added to zone instantaneously		h = film mass transfer coefficient over sink	
$C_{i} = \text{concentration in air}$ $C_{s} = \text{concentration at surface of material}$ $k = \text{partition coefficient}$ Burst Source Model Fixed mass added to zone instantaneously Occupant activities (e.g., spraying an air freshener, changing kitty litter) Power Law Model If $t < t_{p}$, then $S(t) = at_{p}^{-b}$ Else $S(t) = at^{-b}$ $t = \text{time}$ a b. $t_{p} = \text{empirical coefficients}$		d = film density of air	
$C_{s} = \text{concentration at surface of material } \\ k = \text{partition coefficient}$ Burst Source Model Fixed mass added to zone instantaneously Occupant activities (e.g., spraying an air freshener, changing kitty litter) Power Law Model If $t < t_{p}$, then $S(t) = at_{p}^{-b}$ Else $S(t) = at^{-b}$ $t = \text{time}$ a b. $t_{p} = \text{empirical coefficients}$			
Burst Source Model Fixed mass added to zone instantaneously Fixed mass added to zone instantaneously Occupant activities (e.g., spraying an air freshener, changing kitty litter) Power Law Model If $t < t_p$, then $S(t) = at_p^{-b}$ Else $S(t) = at^{-b}$ $t = time$ a b. $t = empirical coefficients$			
Burst Source Model Fixed mass added to zone instantaneously Occupant activities (e.g., spraying an air freshener, changing kitty litter) Power Law Model If $t < t_p$, then $S(t) = at_p^{-b}$ Else $S(t) = at^{-b}$ $t = time$ a b. $t = empirical coefficients$			
Power Law Model If $t < t_p$, then $S(t) = at_p^{-b}$ Else $S(t) = at^{-b}$ $t = time$ a b. $t = empirical coefficients$ Spraying an air freshener, changing kitty litter) "Dry" materials emissions			
Power Law Model If $t < t_p$, then $S(t) = at_p^{-b}$ Else $S(t) = at^{-b}$ $t = time$ a b. $t = empirical coefficients$	Burst Source Model	Fixed mass added to zone instantaneously	spraying an air freshener,
$S(t) = at_p^{-b}$ Else $S(t) = at^{-b}$ $t = time$ a b. t. = empirical coefficients			
Else $S(t) = at^{-b}$ $t = time$ a b t = empirical coefficients	Power Law Model	If $t < t_p$, then	"Dry" materials emissions
$S(t) = at^{-b}$ $t = time$ a b t = empirical coefficients		$S(t) = at_p^{-b}$	
t = time a b t = empirical coefficients		Else	
a b t = empirical coefficients		$S(t) = at^{-b}$	
Peak Model $S(t) = a \exp \left\{ -0.5 \left[\frac{\ln \left(\frac{t}{t_p} \right)}{b} \right]^2 \right\}$ "Wet" material emissions a, b, t _p = empirical coefficients			
Peak Model $S(t) = a \exp \left\{ -0.5 \left[\frac{\ln \left(\frac{t}{t_p} \right)}{b} \right]^2 \right\}$ a, b, t_p = empirical coefficients "Wet" material emissions		$a, b, t_p = $ empirical coefficients	
$a, b, t_p = \text{empirical coefficients}$	Peak Model	$S(t) = a \exp \left\{ -0.5 \left[\frac{\ln \left(\frac{t}{t_p} \right)}{b} \right]^2 \right\}$	"Wet" material emissions
a, b, t_p = empirical coefficients			
		$a, b, t_p = $ empirical coefficients	

As shown in Table 1, each model is applicable to specific types of sources. For example, an exponential model better describes VOC emissions from a "wet" source than a constant source model. The modeler chooses which source model to apply; however, use of the different source models requires knowledge of the specific coefficients. The constant coefficient, first-order decay, power law and peak models in Table 1 are empirically-based. Thus, the user must find the model coefficients that are linked to specific experimental tests. The mass transfer approach (boundary layer diffusion model) is physically-based, thus its coefficients may be estimated using contaminant and material properties. However, the mass transfer values must still be determined.

To determine the empirical model coefficients or to validate the physical models, source emission rates have been experimentally measured for hundreds of consumer products and combustion appliances. Source emissions testing is typically completed in controlled laboratory chambers ranging in size from approximately 3.5 x 10⁻⁵ m³ (field and laboratory emission cells) to larger than 10 m³ (room size) (ASTM 1997). While there are currently no standard emission rate test methods for consumer products and combustion appliances, researchers typically report test facility characteristics, test conditions, and product/appliance characteristics.

Deposition Models

Deposition is a significant removal mechanism of particles indoors and needs to be accounted for when modeling particle transport. The rate of deposition depends on several factors including characteristics of the particle (e.g., size and charge), room surfaces, and airflow (Nazaroff et~al. 1993). Deposition of particles is typically reported in the literature in terms of a deposition velocity (v_d) or a deposition rate (k_d). The deposition velocity sink model is:

$$R_{\alpha}(t) = \nu_{d} A_{s} \rho_{air}(t) C_{\alpha}(t) \tag{2}$$

where:

 $R_{\alpha}(t)$ = removal rate at time t (kg/s) v_d = deposition velocity (m/s) A_s = deposition surface area (m²) $\rho_{\alpha ij}(t)$ = density of air in the source zone at the

 $ρ_{air}(t)$ = density of air in the source zone at time t (kg/m³) $C_α(t)$ = concentration of contaminant α at time t (kg/kg)

To use this model, the user must enter the deposition surface area and particle deposition velocity. Often it is difficult to estimate the deposition surface area, so it is lumped into a parameter known as the deposition rate, which is defined as:

$$k_d = \frac{\nu_d A_s}{V_z} \tag{3}$$

where:

 V_z = zone volume (m³)

Using the deposition rate parameter, the deposition sink model may be expressed as:

$$R_{\alpha}(t) = k_{d}V_{z}\rho_{air}(t)C_{\alpha}(t) \tag{4}$$

To use the deposition rate model, the user must provide a deposition rate.

Researchers have measured deposition velocities and deposition rates in several different test facilities, ranging from small chambers to real buildings. Common test parameters reported by researchers include the types of furnishings, air mixing mechanisms, air change rate, and particle characteristics. As with source emission rates, no standard test method yet exists for measuring particle deposition rates.

Sorption Model

Indoor contaminant calculations use sorption models to account for the transfer of gaseous contaminants between the air phase and the material phase. The rate of adsorption depends on characteristics of the adsorbent material, the adsorbing chemical, and the boundary layer that separates them. There are several sorption models available: CONTAM currently uses the boundary layer diffusion controlled (BLDC) reversible sink/source model. The BLDC model has been documented elsewhere (Axley, 1990). In summary, it accounts for the adsorption and desorption transport of chemicals between room air and room materials. The equation used to describe this transport is:

$$S = hdA \left(C_i - \frac{C_s}{k} \right) \tag{5}$$

where:

h = film mass transfer coefficient over the sink (m/s)

d = film density of air (kg/m³)

A = surface area of the adsorbent (m^2)

 C_i = concentration in air (kg/kg)

 C_s = concentration in the adsorbent (kg/kg)

k = Henry adsorption constant or the partition coefficient (kg/kg)

To use the BLDC model in CONTAM, the user must provide the film mass transfer coefficient, film density of air, surface mass of adsorbent, and the partition coefficient. The first three parameters are based on physical constants and characteristics of the zone being modeled. The partition coefficient is chemical/material specific with limited values available for several indoor air chemical species and building materials in the literature (Zhang et al 2001).

Filter Model

CONTAM currently includes three filter models: constant removal efficiency, simple particle, and simple gaseous. The constant removal efficiency model describes the loss of particles or gases through a filter. As presented in Equation 6, the removal of contaminants through a filter is written as:

Filter removal =
$$F(1-\eta)C$$
 (6)

where:

F = airflow rate through the filter (kg/s)

 η = single pass removal efficiency of filter (-)

C = contaminant removed by filter (kg/kg)

CONTAM also includes a particle filter element that allows the user to enter filter removal efficiencies as a function of particle size to create a filter performance curve for a single filter. The user is required to enter the filter data from which CONTAM generates a curve using a cubic spline fit. Another option is to choose an existing filter performance curve based on ASHRAE 52.2's Minimum Efficiency Reporting Value (MERV) System (ASHRAE 1999). Based on this evaluation system, Kowalski and Bahnfleth (2002) created several sets of filter performance curves using MERV test results. These filter performance curves have already been compiled into a CONTAM library. Users can therefore either enter their own filter curve data or choose an existing MERV curve to use in a CONTAM simulation.

CONTAM also has an air cleaner element for gaseous contaminants, which uses a removal efficiency for a given contaminant loading. As the mass of contaminant sorbed to the air cleaner media increases, the associated contaminant removal efficiency decreases. Again, CONTAM can generate a filter curve using a cubic spline fit based on user provided data. It is also possible to set a breakthrough efficiency for each contaminant.

MODEL INPUT DATA SOURCES

The model input data considered in this report include emission rates from consumer products, building materials, cooking and combustion appliances, particle deposition rates, chemical sorption rates, and particle filter removal. For each category, several key references were identified from which to build the database structures. It should be noted that the data sources identified for this project are not intended to be all-inclusive, but, rather, representative of the literature and to serve as examples for populating the databases in the future. A user may append any of the model input databases with his or her own data.

VOC Emission Rates from Consumer Products and Building Materials

There is a great deal of VOC source emission rate data available in the literature and other sources. Although there is not a comprehensive database available, there are several abridged versions that can provide the foundation for a sound database design. Based on completeness and accessibility, the NRC material emission database (Zhang *et al.* 1999) and the U.S. Environmental Protection Agency (EPA) database (U.S. EPA 1999) served as the sources of emission rate data for this project.

The NRC database is a material emission database assembled by the National Research Council of Canada (NRC). The NRC database was developed in Access and includes VOC emission rate data from tests conducted in their Indoor Environment Program laboratory chambers. This database currently contains over 2300 emission rates representing 152 contaminants and 69 different materials. Each record includes approximately 80 data fields including product manufacturer information, emissions testing conditions, chemical information, emission factors, emission profiles, and comments. NRC has also provided access to this emission rate data through its indoor air quality model IA-QUEST (http://irc.nrc-cnrc.gc.ca/ie/iaq/iaquest_e.html) (Sander *et al.* 2005). Since the NRC database represents a collection of data from a single testing facility and it is being managed by NRC, it was considered complete and exists on its own. However, its design was used to build a second database of emission rates from the published literature described below.

In order to provide a user interactive database of VOC source emission rates, a second VOC source database was created to add emission rates from the published literature and other sources. A collection of peer-reviewed source emission rates was compiled by the Indoor Environment Management Branch of the U.S. Environmental Protection Agency (EPA) (U.S. EPA 1999). The data were stored in an Excel spreadsheet that included approximately 8500 emission rate records from 72 references reviewed through May 1999. Records represent 78 types of materials in 17 source categories. Each record contains about 70 data fields including information regarding emission source classification, emission testing conditions, chemical information and analytical methods, emission factors, emission modeling parameters if available, and comments. For this NIST project, only the data published in first degree references (e.g., peer-reviewed journal articles as opposed to conference proceedings) were used. This data subset resulted in over 800 VOC emission rates from 16 references (Brown 1999a; Brown 1999b; Kelly et al. 1999; Lundgren et al. 1999; Horn et al., 1998; Chang et al. 1997; Van der Wal et al. 1997; Schaeffer et al. 1996: Nagda et al., 1995: Chang and Guo 1994: Hodgson et al. 1993: Chang and Guo 1992; Hawkins et al. 1992; Colombo et al. 1990; Schlitt and Knoppel 1989; Wallace et al. 1987).

Cooking and Combustion Appliance Emission Rates

Unlike VOC emission rates, there is not an existing database of combustion appliance emission rates. Thus, a literature review was conducted to identify research papers with combustion related emission rates. As a result of this search, data from 21 references are included representing emissions from gas range tops (He *et al.* 2004; Wallace *et al.* 2004; Borazzo *et al.* 1987; Moschandreas *et al.* 1987; Billick *et al.* 1984; Caceres *et al.* 1983; Traynor *et al.* 1982; Yamanaka *et al.* 1979), gas ovens (He *et al.* 2004; Borazzo *et al.* 1987; Traynor *et al.* 1982), gas space heaters (Apte and Traynor 1986; Billick 1985; Traynor *et al.* 1985; Billick *et al.* 1984; Caceres *et al.* 1983; Girman *et al.* 1982; Yamanaka *et al.* 1979), kerosene space heaters (Tamura 1987; Traynor *et al.* 1987a; Apte and Traynor 1986; Porter 1984; Caceres *et al.* 1983; Girman *et al.* 1982; Yamanaka *et al.* 1979), wood stoves (McDonald *et al.* 2000; Nabinger *et al.* 1995; McCrillis and Burnet 1990; Traynor *et al.* 1987b; Knight *et al.* 1986), wood-burning fireplaces (McDonald *et al.* 2000), and candles (Fine *et al.* 1999).

Particle Deposition Rates

Although not compiled in a database, a literature review of particle deposition rates was recently published by Lai (2002). This review included 15 key indoor particle deposition references (Lai et al. 2002; Thatcher et al. 2002; Abadie et al. 2001; Cheng 1997; Fogh et al. 1997; Nomura et al. 1997; Morawska and Jamriska 1996; Byrne et al. 1995; Xu et al. 1994; Chen et al. 1992; Van Dingenen et al. 1989; Okuyama et al. 1986; Offermann et al. 1985; Crump et al. 1983; Harrison 1979). Lai's review includes graphs of deposition rate as a function of particle size as well as information regarding the experimental test conditions including test chamber dimensions, mixing mechanism, chamber type, and chamber surface textures. The published results from other deposition studies that have been completed at NIST (Howard-Reed et al. 2003; Emmerich and Nabinger 2001) and Lawrence Berkeley Laboratory (Thatcher and Layton 1995) are also included in the deposition data set.

Partition Coefficients

Another literature review was recently completed to compile data related to material sinks (Zhang 2001). In this review, several sink model inputs are provided including partition coefficients that are used in CONTAM's BLDC model. These partition coefficients are primarily from a single reference (Bodalal 1999) that was used to build a partition coefficient model input database. Of all the model input databases constructed for this project, this one has the least amount of available data, indicating an important research need.

Particle Filter Removal Efficiencies

As discussed earlier, Kowalski and Bahnfleth (2002) have created a series of filtration performance curves based on ASHRAE 52.2's Minimum Efficiency Reporting Value (MERV) System. These curves have recently been compiled in a CONTAM library and do not require a separate database.

MODEL INPUT DATABASE STRUCTURES AND TOOLS

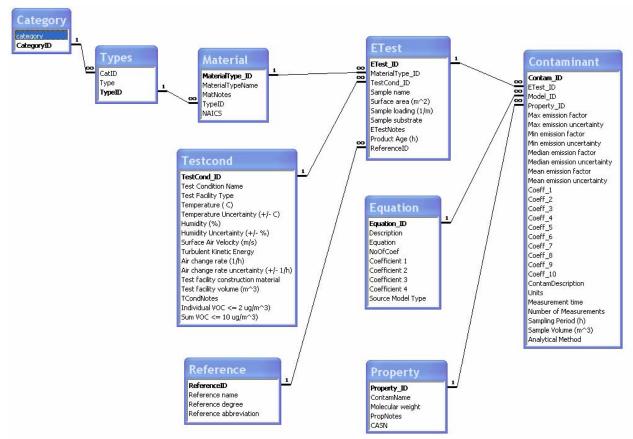
The primary function of a database is to store a collection of information in a readily accessible format. A well-designed database should also allow for the assessment of data quality, trends in the observations, and data gaps. For this project, Access, a relational database management system (RDBMS), is used to create multiple searchable database structures for the compilation of IAQ model input data. The databases for this project are designed to expedite data entry by using tables of data fields that are linked by one-to-many relationships. To further aid data entry, forms were created to add data to the database tables. In most cases, the database fields for each type of model input are based on parameters reported in the published literature. To date, each model input database includes example entries from key references. The standard data format for the database also allows users to populate the databases with their own input data to build a model input library for CONTAM. Since a particle filtration database already exists in CONTAM, a separate database structure is not needed.

VOC Source Emission Rate Database

The format of the VOC source emission rate database is based on fields from both the NRC and EPA databases as well as parameters from several emission testing guides (ASTM 1997, 2001; European Guidelines 1991; and Matthews 1987). A summary of the test conditions recommended in these guides is provided in Table 2.

The resulting standard format includes the following nine tables: emission rate category (CATEGORY), type of material within category (TYPE), literature reference (REFERENCE), material properties (MATERIAL), contaminant properties (PROPERTY), environmental test conditions (TESTCOND), material test conditions (ETEST), source model equation (EQUATION), contaminant emission rate factors (CONTAMINANT). Each table contains information specific to that entity that is given in Figure 1. For example, the equation table provides a description of the equation, the equation itself, the number of required coefficients, and the corresponding source model type in CONTAM. The tables are linked to one another using a "one-to-many" relationship system (see Figure 1). For example, a single emission rate test can yield results for many different contaminants and a single reference can provide results for several different tests, etc.

Table 2. Summary of source emission rate testing conditions guidelines.


Parameter	ASTM Full-Scale	ASTM Small-Scale	European	Matthews ^d
	Chambers ^a	Chambers ^b < 5 m ³	Guideline ^c	
Small-scale	not applicable	$< 5 \text{ m}^3$	$\leq 1 \text{ m}^3$	$\leq 1 \text{ m}^3$
chamber volume				
Large-scale	room size	not applicable	$> 10 \text{ m}^3$	> 15 m ³
chamber volume				
Acceptable mixing	tracer decay test,	tracer decay test w/	tracer decay test,	difference between
criteria	compare measured	mixing level > 80 %	compare measured	concentration
	decay to theoretical		decay to theoretical	measurements in
	decay curve		decay curve	several locations
				should be within
				normal uncertainty
Clean air	inlet conc. $< 2 \mu g/m^3$	inlet conc. $< 2 \mu g/m^3$	filtered/treated inlet	not specified
generation system	for single VOC,	for single VOC,	air	
	$< 10 \mu \text{g/m}^3 \Sigma \text{VOCs}$	$< 10 \mu g/m^3 \Sigma VOCs$		
Surface air velocity	mean: 0 to 0.25 m/s	typical indoor values	> 0.1 m/s	0.2 to 0.4 m/s
Turbulence kinetic	$0 - 0.01 \text{ (m/s)}^2$	not specified	not specified	not specified
energy		-	_	_
Temperature	23 °C ± 0.5 °C	not specified	23 °C ± 0.5 °C	$23 ^{\circ}\text{C} \pm 0.5 ^{\circ}\text{C} \text{ (std)}$
				18 °C to 35 °C (typ)
Relative humidity	50 % ± 5 % RH	not specified	45 % ± 5 % RH	50 % ± 5 % RH (std)
•		1		20 % to 80 % (typ)
Total air change	0.5 h ⁻¹	not specified	0.5 h ⁻¹ and/or 1.0 h ⁻¹	not specified
rate		1		1
Chamber pressure	0 Pa to 250 Pa above	not specified	not specified	not specified
•	ambient	1	1	1
Product	preconditioning for	seal product edges,	seal product edges,	size < 25 % of the
preparation	48 h	use realistic	use realistic	transverse area of
• •		substrates for liquid	substrates for liquid	small-scale chamber,
		applications,	applications,	product edges
		preconditioning of	preconditioning of	coated, product
		product	product	preconditioning
	record of product	record of product	record of product	record of
Product history	age, storage	age, treatment,	age, treatment,	conditioning period
	conditions, handling,	storage conditions,	storage conditions,	
	transport	handling, transport	handling, transport	
Miscellaneous	chamber background	chamber background	chamber background	blanks collected in
	samples, duplicate	samples, routine	samples, internal	chamber, total mass
	samples (no fewer	calibration, internal	standard, duplicate	recover tests
	than 15 % of	standard, duplicate	samples, routine	
	samples), routine	samples	maintenance/	
	calibrations		calibrations	

a: ASTM 1997

b: ASTM 2001

c: European Communities 1991

d: Matthews 1987

Figure 1. Relationships for tables in VOC source emissions database.

Based on the parameters in the tables in Figure 1, data entry forms were created (see Appendix A for description of form contents and example forms with data entered). As shown in Figure 1, certain parameters are assigned specific units to allow for number entries that could be used as search criteria. For example, the user could search for all records with experimental temperatures greater than 20 °C. This feature is discussed in more detail in a later section. A complete description of each data entry field is provided in Appendix A.

The NRC database was originally in Access with the 15 tables shown in Figure 2. NRC of Canada maintains this database, but has made the data contents available to CONTAM users. As a result, a link was created to transfer data to CONTAM but does not allow modification to the original NRC database structure.

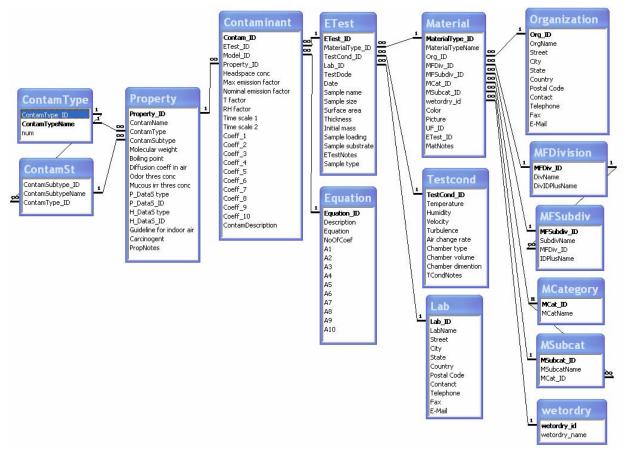


Figure 2. NRC database structure

Cooking and Combustion Appliance Database

The cooking and combustion appliance database consists of the following nine tables linked by one-to-many relationships (see Figure 3): combustion source category (CATEGORY), combustion source type (TYPE), reference (REFERENCE), test facility specifications (FACILITY SPECS), test appliance specifications (APPLIANCE SPECS), test conditions (TEST CONDITIONS), source emission rates (EMISSION FACTORS), contaminant information (CONTAMINANT PROPERTY), and source model (EQUATION). Due to the wide range of types of combustion appliances, numerous experimental parameters were added to the test conditions table. Thus, not all data fields will be applicable to all sources. A description of data entry forms and representative forms are available in Appendix A.

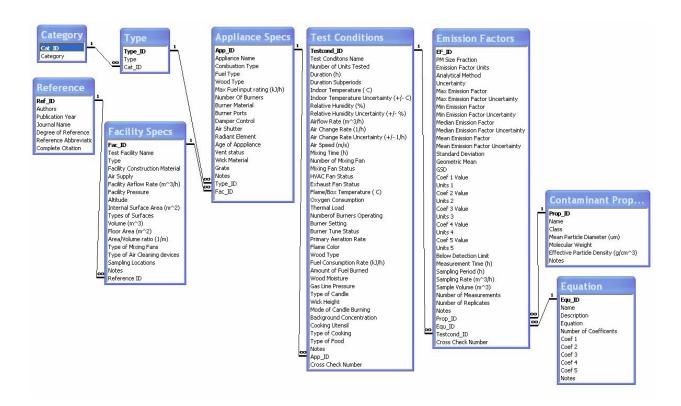


Figure 3. Cooking and Combustion Appliance Database Structure.

Particle Deposition Database

The deposition rate database is organized such that there are many deposition rates (DEPOSITION PARAMETERS) per test condition (TEST CONDITIONS) and particle characteristic (PARTICLE); many test conditions per test facility (TEST FACILITY), and many test facilities per reference (REFERENCE) (see Figure 4). Particles are distinguished by their mean or median diameter as measured by a specific type of analytical instrument. For example, the diameters of particles sized by an optical particle counter are given as equivalent light scattering (ELS) diameters, whereas the diameters of particles sized by an aerodynamic particle sizer were given as mass median aerodynamic diameters (MMAD). For a specific example, see the data entry forms in Appendix A.

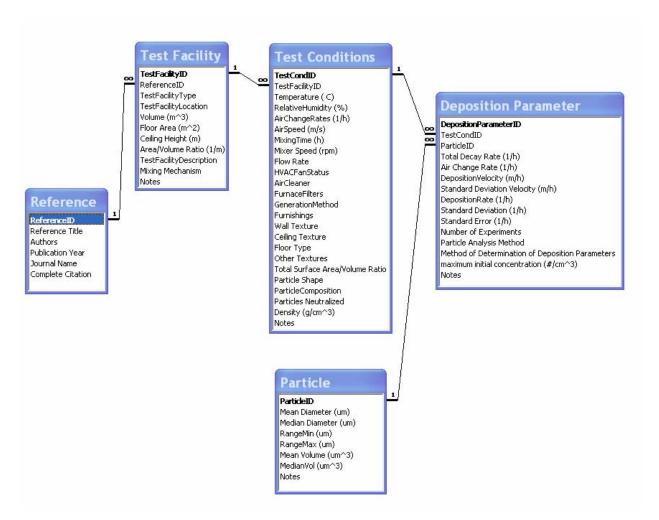


Figure 4. Particle Deposition Database Structure.

Partition Coefficient Database

The partition coefficient database consists of seven tables linked by one to many relationships. For every chemical (CHEMICAL), sorptive material (MATERIAL), and experimental test condition (TEST CONDITIONS), there can be multiple partition coefficients (PARTITION COEFFICIENTS). Each reference (REFERENCE) could include multiple test facilities (TEST FACILITY) and multiple test conditions. Each material is grouped by type (MATERIAL TYPE). Again there is only limited partition coefficient data available in the literature from which to build a database. As this data set grows, the database structure may need to be expanded. Currently available data entry forms are available in Appendix A.

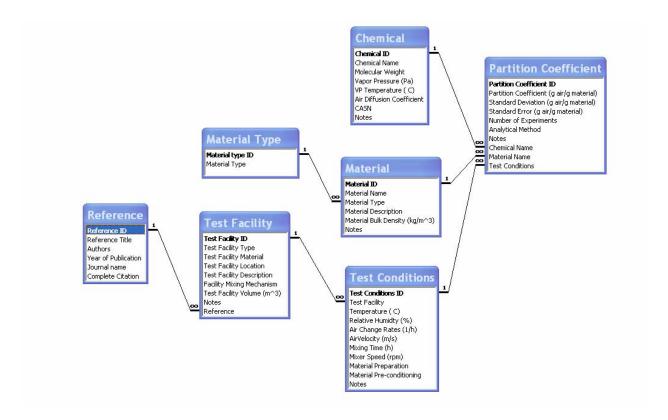
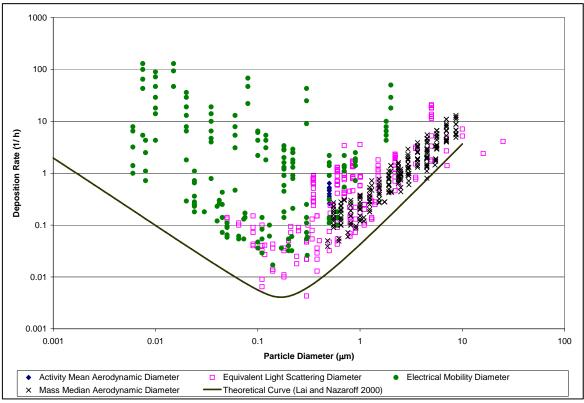


Figure 5. Partition Coefficient Database Structure.


CONTAM Data Link Manager

To aid the user in navigating the model input databases, the ContamLink 2.4 program was developed with the capabilities of browsing, searching, and selecting data for use in CONTAM. A complete description of ContamLink 2.4 and its user manual can be found in Appendix B. To download ContamLink 2.4, go to the CONTAM software page at: http://bfrl.nist.gov/IAQanalysis/software/index.htm.

DISCUSSION

Lessons Learned

Creation of accessible IAO model input databases will undoubtedly make it easier for modelers to set up contaminant model scenarios. However, the convenience of such databases may also be a cause for concern. In particular, there is the potential for the data to be misinterpreted and misused, or the inclusion of poor quality data. While these are valid concerns, open access to all data is required for the verification and understanding of reported results. At this point, IAQ model input data should be considered "immature" and in need of being assessed. As such, the IAQ community could greatly benefit from model input databases that are readily accessible for assessments of data quality, trends, and gaps, as well as for convenient use in IAQ models. For example, a graph of the deposition rate data collected for the particle deposition database shows specific variations in deposition rates as a function of size (see Figure 6). In addition, by separating the data by analytical method, one can see that there is guite a bit more scatter in the deposition rates measured with a condensation nucleus counter (electrical mobility diameter) compared to an aerodynamic particle sizer (mass median aerodynamic diameter). Also, for particles of the same measured diameter, the deposition rates measured with optical particle counters (equivalent light scattering diameter) correlate well with those measured using a mass based instrument. One study reported activity mean aerodynamic diameters for submicron particles measured with a low-pressure impactor. Finally, the addition of a theoretical curve predicting deposition rates as a function of particle size shows most experimental data to follow the shape of that predictive curve but to be greater in magnitude, especially particles less than 0.1 um in size.

Figure 6. Particle deposition rates included in database (18 references) plotted as a function of particle size.

Another observation made during the course of this project is the lack of consistent format for reporting model input data in the literature. This lack of consistency adds time to data compilation efforts and increases the likelihood of missing data entries and misinterpreting data. One possible solution would be to create a set of standardized specifications for reporting data, perhaps through standards development organization (SDOs) such as the American National Standards Institute (ANSI), ASTM International, or International Standards Organization (ISO). Although the current databases contain a rather long list of required fields, only a subset of these values would need to be required. The required reporting variables could be based on the database search parameters (see Table 3) or other agreed upon criteria.

Future Directions

Based on the lessons learned for this project, several potential future directions were identified. For example, another approach for compiling the data would be to use MatML, an Extensible Markup Language (XML) developed to manage and exchange materials information on the Web (www.matml.org). Currently, most data on the Web are contained in documents using the hypertext markup language (HTML). HTML was developed simply to format the display of information/data on web pages, and it does not provide a description of the data themselves. As a result, it is not easy to automate the processing of data contained in HTML documents, thereby limiting their accessibility for use by software. To address this problem, XML was developed to portray data in a structure that is meaningful to both humans and computers. MatML is a customized markup language developed specifically for materials property data.

Recently, NIST completed a demonstration project to apply MatML to VOC source emission rate data (Begley and Howard-Reed 2005). Since MatML was designed to address any materials property data, it is well-suited for application to contaminant source emission rate databases. Thus, MatML would enable the IAQ community to use relevant tags for data management and exchange via the Web that could be accessed by any IAQ computer model. The challenge to this approach is convincing the IAQ community to adopt MatML for distributing data via the web. Using MatML requires learning the language and there is a need for more user-friendly editors.

Another need is to compile data related to occupant exposure. Occupant exposure assessments are an application that would benefit from the interaction between IAQ models and model input databases. Exposure assessment is based on contaminant air concentrations in a given set of locations and the duration of occupant exposure to those contaminants in those locations. CONTAM has the capability to predict occupant exposure using predicted contaminant concentrations and a user provided occupancy schedule. To date, there are no standard exposure scenarios available to conduct a representative exposure assessment. However, exposure related survey data has been collected such as the National Human Activity Pattern Survey (NHAPS) (Tsang and Klepeis 1996). The NHAPS dataset contains 24 hour activity data for 9386 randomly selected respondents. Based on these data, it would be possible to build representative exposure scenarios that would include daily activities as well as length of stay in a specific room location.

ACKNOWLEDGEMENTS

This work was sponsored under an Interagency Agreement with the U.S. Department of Housing and Urban Development, Office of Healthy Homes and Lead Hazards Control. The authors greatly appreciated the efforts of several people in helping to gather data for constructing the model input databases, including Jennifer Thomasen, Niren Nagda, Lisa Kim, and Ivette Morazzani. We would also like to thank the National Research Council of Canada and Gene Tucker (formerly of the U.S. Environmental Protection Agency) for use of their respective source emission rate databases.

DISCLAIMER

In an effort to enhance the scientific study of indoor air quality, published model input data are accessible on this site. However, care must be taken when using these data as they are intended for research use. Users of these data assume sole responsibility for determining the appropriateness of their use in any particular application and for any conclusions drawn from results of their use. NIST used its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.

Certain trade names and company products are mentioned in the text to specify adequately the products and equipment used in the test and those needed to use this software. In no case does such identification imply endorsement by the National Institute of Standards and Technology of these products and equipment, nor does it imply that the products are necessarily the best available for the purpose.

REFERENCES

Abadie, M., Limam, K., Allard, F. (2001). Indoor particle pollution: Effect of wall textures on particle deposition. *Building and Environment*, 36: 821-827.

Apte, M.G., Traynor, G.W. (1986). Comparison of Pollutant Emission Rates from Unvented Kerosene and Gas Space Heaters. *Proceedings IAQ '86: Managing Indoor Air for Health and Energy Conservation*, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, p. 405.

ASHRAE (1999). *ASHRAE Standard 52.2 – 1999*. American Society of Heating Refrigeration and Air Conditioning Engineers, Atlanta, GA.

ASTM (2001). Standard Practice for Full-Scale Chamber Determination of Volatile Organic Emissions from Indoor Materials/Products. D 6670-01. American Society for Testing and Materials.

ASTM (1997). Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions from Indoor Materials/Products. D 5116-97. American Society for Testing and Materials.

Axley, J.W. (1990). Adsorption Modeling for Macroscopic Contaminant Dispersal Analysis. NIST-GCR-90-573, National Institute of Standards and Technology, Gaithersburg, MD.

Begley, E., Howard-Reed, C. (2005). The Application of MatML to Contaminant Emissions Data. *ASTM Standardization News*, October, pp. 52 – 59.

Billick, I. H. (1985). Indoor Air Quality Research Related to Unvented Space Convective Heaters. *ASHRAE Transactions*, 91(2B): 251-260.

Billick, I., Johnson, D., Moschandreas, D., Relwani, S. (1984). An Investigation of Operational Factors that Influence Emission Rates from Gas Appliances. *3rd International Conference on Indoor Air Quality and Climate*, Stockholm, pp. 181 - 187.

Bodalal, A., Zhang, J.S., Plett, E.G. (1999). Method for Measuring Internal Diffusion and Equilibrium Partition Coefficients of Volatile Organic Compounds for Building Materials. *Building and Environment*, 35(2): 101 – 110.

Borazzo, J. E., Osborn, J.F., Fortmann, R.C., Keefer, R.L., Davidson, C.L. (1987). Modeling and Monitoring of CO, NO and NO₂ in a Modern Townhouse. *Atmospheric Environment*, 21 (2): 299-311.

Brown, S.K. (1999a). Assessment of Pollutant Emissions from Dry-Process Photocopiers. *Indoor Air*, 9: 259-267

Brown, S.K. (1999b). Chamber Assessment of Formaldehyde and VOC Emissions from Wood-Based Panels. *Indoor Air*, 9: 209-215.

Byrne, M. A., Goddard, A.J.H., Lange, C., Roed, J. (1995). Stable Tracer Aerosol Deposition Measurements in a Test Chamber. *J. Aerosol Sci.*, 26: 645-653.

Caceres, T., Soto, H., Lissi, E., Cisternas, R. (1983). Indoor House Pollution: Appliance Emissions and Indoor Ambient Concentrations. *Atmospheric Environment*, 17(5): 1009-1013.

Chang, J.C.S, Guo, Z. (1994). Modeling of Alkane Emissions from a Wood Stain. *Indoor Air*, 4:35-39.

Chang, J., Guo, Z. (1992). Characterization of organic emissions from a wood finishing product-wood stain. *Indoor Air*, 2(3): 146-153.

Chang, J.C.S., Tichenor, B.A., Guo, Z., Krebs, K.A. (1997). Substrate effects on VOC emissions from a latex paint. *Indoor Air*, 7: 241-247.

Chen, B.T., Yeh, H.C., Cheng, Y.S. (1992). Evaluation of an Environmental Reaction Chamber. *Aerosol Sci. Technology*, 17: 9-24.

Cheng, Y.S. (1997). Wall Deposition of Radon Progeny and Particles in a Spherical Chamber. *Aerosol Sci. and Technology*, 27: 131-146.

Colombo, A., De Bortoli, M., Pecchio, E., Schauenburg, H., Schlitt, H., Vissers, H. (1990). Chamber Testing of Organic Emission from Building and Furnishing Materials. *The Science of the Total Environment*, 91:237-249.

Crump, J. G., Flagan, R.C., Seinfeld, J.H. (1983). Particle Wall Loss Rates in Vessels. *Aerosol Sci. Technol.*, 2: 303 – 309.

Emmerich, S.J., Nabinger, S.J. (2001). Measurement and Simulation of the IAQ Impact of Particle Air Cleaners in a Single-Zone Building. *HVAC&R Research*, 7(3): 223 - 244.

European Communities. (1991). European Concerted Action Indoor Air Quality & Its Impact on Man (EUR 13593), Guideline for the Characterization of Volatile Organic Compounds Emitted from Indoor Materials and Products Using Small Test Chambers. Report No. 8. COST Project 613. Luxembourg: Office for Publications of the European Communities.

Fine, P.M., Cass, G.R., Simoneit, B.R.T. (1999). Characterization of Fine Particle Emissions from Burning Church Candles. *Environmental Science & Technology*, 33(14): 2352-2362.

Fogh, C. I., Byrne, M.A., Roed, J., Goddard, A.J.H. (1997). Size Specific Indoor Aerosol Deposition Measurements and Derived I/O Concentrations Rations. *Atmospheric Environment*, 31: 2193-2203.

Girman, J. R., Apte, M.G., Traynor, G.W., Allen, J.R., Hollowell, C.D. (1982). Pollutant Emission Rates from Indoor Combustion Appliances and Sidestream Cigarette Smoke. *Environment International*, 8: 213-221.

Harrison, A.W (1979). Quiescent Boundary Layer Thickness in Aerosol Enclosures under Convective Stirring Conditions, *J. Colloid Interface Sci.*, 69: 563-570.

Hawkins, N.C., Luedtke, A.E., Mitchell, C.R., LoMenzo, J.A., Black, M.S. (1992). Effects of Selected Process Parameters on Emission Rates Volatile Organic Chemicals from Carpet. *J. Am. Ind. Hyg. Assoc.*, 53(5): 275-282.

He, C., Morawska, L., Hitchins, J. Gilbert, D. (2004). Contributions from Indoor Sources to Particle Numbers and Mass Concentrations in Residential Houses. *Atmospheric Environment*, 38: 3405-3415.

Hodgson, A.T., Wooley, J.D., Daisey, J.M. (1993). Emissions of Volatile Organic Compounds from New Carpets Measured in a Large-Scale Environmental Chamber. *J. Air Waste Manage*. *Assoc.*, 43: 316-324.

Horn, W., Ullrich, D., Seifert, B. (1998). VOC Emissions from Cork Products for Indoor Use. *Indoor Air*, 8: 39-46.

Howard-Reed, C., Wallace, L.A., Emmerich, S.J. (2003). Effect of Ventilation Systems and Air Filters on Decay Rates of Particles Produced by Indoor Sources in an Occupied Townhouse. *Atmospheric Environment*, 37: 5295-5306.

Kelly, T.J., Myers, J.D., Holdren, M.W. (1999). Testing of Household Products and Materials for Emission of Toluene Diisocyanate. *Indoor Air*, 9: 117-124.

Klepeis, N.E., Tsang, A.M., Behar, J.V. (1996). Analysis of the NHAPS Respondents from a Standpoint of Exposure Assessment. U.S. Environmental Protection Agency Final Report EPA/600/R-96/074, Washington D.C.

Knight, C.V., Humphreys, M.P., Pinnix, J.C. (1986). Indoor Air Quality Related to Wood Heaters. *Proceedings IAQ* '86, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, pp. 430-447.

Kowalski, W.J., Bahnfleth, W.P. (2002). MERV Filter Models for Aerobiological Applications. *Air Media*, Summer:13-17.

Lai, A.C.K., Byrne, M.A., Goddard, A.J.H. (2002). Experimental Studies of the Effect of Rough Surfaces and Air Speed on Aerosol Deposition in a Test Chamber. *Aerosol Science and Technology*, 36: 973 – 982.

Lai, A.C.K., and Nazaroff, W.W. (2000). Modeling Indoor Particle Deposition from Turbulent Flow onto Smooth Surfaces. *J. Aerosol Sci.*, 31(4): 463 – 476.

Lundgren, B., Jonsson B., Ek-Olausson, B. (1999). Materials Emission of Chemicals - PVC Flooring Materials. *Indoor Air*, 9: 202-208.

Matthews, T.G. (1987). Environmental Chamber Test Methodology for Characterizing Organic Vapors from Solid Emission Sources. *Atmospheric Environment*, 21(2): 321 – 329.

McCrillis, R.C., Burnet, P.G. (1990). Effects of Burnrate, Wood Species, Altitude, and Stove Type on Woodstove Emissions. *Toxicology and Public Health*, 6(5): 95-102.

McDonald, J.D., Zielinska, B., Fujita, E.M, Sagebiel, J.C., Chow, J.C., Watson, J.G. (2000). Fine Particles and Gaseous Emission Rates from Residential Wood Combustion. *Environ. Sci. Technol.* 34: 2080-2091.

Morawska, L., and Jamriska, M. (1996). Deposition of Radon Progeny on Indoor Surfaces, *J. Aerosol Sci.*, 27(2): 305 – 312.

Moschandreas, D.J., Relwani, S.M., Billick, I.H., Bacriss, R.A. (1987). Emission Rates from Range-Top Burners--Assessment of Measurement Methods. *Atmospheric Environment*, 21(2): 285-289.

Nabinger, S.J., Persily, A.K., Sharpless, K.S., Wise, S.A. (1995). Measurements of Indoor Pollutant Emissions form EPA Phase II Wood Stoves. *NISTIR 5575*, National Institute of Standards and Technology, Gaithersburg, MD.

Nagda, N.L., Koontz, M.D., Kennedy, P.W. (1995). Small-Chamber and Research-House Testing of Tile Adhesive Emissions. *Indoor Air*, 5: 189-195.

Nazaroff, W.W., Gadgil, A.J., Weschler, C.J. (1993). Critique of the Use of Deposition Velocity in Modeling Indoor Air Quality. *STP 1205*, *American Society for Testing and Materials*, Philadelphia, PA.

Nomura, Y., Hopke, P.K., Fitzgerald, B., Mesbah, B. (1997). Deposition of Particles in a Chamber as a Function of Ventilation Rate, *Aerosol Sci. Technol.*, 27: 62-72.

Offermann, F.J., Sextro, R.G., Fisk, W.J., Grimsrud, D.T., Nazaroff, W.W., Nero, A.V., Revzan, K.L., Yater, J. (1985). Control of Respirable Particles in Indoor Air with Portable Air Cleaners. *Atmospheric Environment*, 19(11): 1761 - 1771.

Okuyama, K., Kousaka, Y., Yamamoto, S., Hosokawa, T. (1986). Particle Loss of Aerosols with Particle Diameters between 6 and 2000 nm in Stirred Tank. *J. Colloid Interface Sci.*, 110(1): 214-223.

Porter, W. K. (1984). Pollutant Emissions from Kerosene Heaters and Unvented Gas Space Heaters. *3rd International Conference on Indoor Air Quality and Climate*, Stockholm.

Sander, D., Won, D., Magee, R.J. (2005). *IA-QUEST Version 1.0 User's Guide*. National Research Council Canada.

Schaeffer, V.H., Bhooshan, B., Chen, S.B., Sonenthal, J.S., Hodgson, A.T. (1996). Characterization of Volatile Organic Chemical Emissions from Carpet Cushions. *Journal of the Air & Waste Management Association*, 46: 813-820

Schlitt, H., Knoppel, H. (1989). Carbonyl Compounds in Mainstream and Sidestream Cigarette Smoke. *Present and Future of Indoor Air Quality*, pp. 197-206.

Tamura, G.T. (1987). Measurement of Combustion Products from Kerosene Heaters in a Two-Story House. *ASHRAE Transactions*, 93(1): 173-184.

Thatcher, T. L., Lai, A.C.K., Moreno-Jackson, R., Sextro, R.G., Nazaroff, W.W. (2002). Effects of Room Furnishings and Air Speed on Particle Deposition Rates Indoors," *Atmospheric Environment*, 36: 1811 - 1819.

Thatcher, T.L., Layton, D.W. (1995). Deposition, Resuspension, and Penetration of Particles within a Residence. *Atmospheric Environment*, 29(3): 1487-1497.

Traynor, G.W., Anthon, D.W., Hollowell, C.D. (1982). Technique for Determining Pollutant Emissions from a Gas-Fired Range. *Atmospheric Environment*, 16(12): 2979 - 2987.

Traynor, G. W., Apte, M.G., Carruthers, A.R., Dillworth, J.F., Grimsrud, D.T., Gundel, L.A. (1987a). Indoor Air Pollution and Inter-Room Pollutant Transport Due to Unvented Kerosene-Fired Space Heaters. *Environmental International*, 13: 159-166.

Traynor, G. W., Apte, M.G., Carruthers, A.R., Dillworth, J.F., Grimsrud, D.T., Thompson, W.T. (1987b). Indoor Air Pollution Due to Emissions from Wood-Burning Stoves. *Environmental Science & Technology*, 21(7): 691-697.

Traynor, G. W., Girman, J.R., Apte, M.G., Dillworth, J.F., White, P.D. (1985). Indoor Air Pollution Due to Emissions from Unvented Gas Fired Space Heaters. *Journal of the Air Pollution Control Association*, 35 (3): 231-237.

Tsang, A.M., Klepeis, N.E. (1996). Descriptive Statistics Tables from a Detailed Analysis of the National Human Activity Pattern Survey (NHAPS) Data. U.S. Environmental Protection Agency Final Report EPA/600/R-96/148, Washington D.C.

U.S. EPA (1999). Sources of Indoor Air Emissions. U.S. Environmental Protection Agency.

Van Der Wal, J. F., Hoogeveen, A.W., Wouda, P. (1997). The Influence of Temperature on the Emission of Volatile Organic Compounds from PVC Flooring, Carpet, and Paint. *Indoor Air*, 7:215-221.

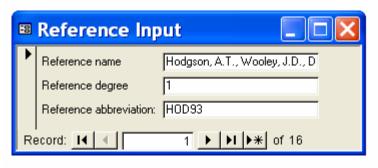
Van Dingenen, R.V., Raes, F., Vanmarcke, H. (1989). Molecule and Aerosol Particle Wall Losses in Smog Chambers Made of Glass. *J. Aerosol Sci.*, 20(1): 113 - 122.

Wallace, L.A., Emmerich, S.J., Howard-Reed, C. (2004). Source Strengths of Ultrafine and Fine Particles Due to Cooking with a Gas Stove. *Environmental Science & Technology*, 38(8): 2304 - 2311.

Wallace, L.A., Pellizzari, E., Leaderer, B., Zelon, H, Sheldon, L. (1987). Emissions of Volatile Organic Compounds from Building Materials and Consumer Products. *Atmospheric Environment*, 21(2): 385-393.

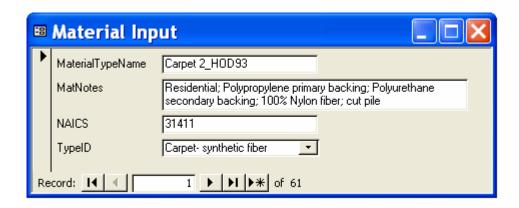
Walton, G.N., Dols, W.S. (2005). CONTAM 2.4 User Guide and Program Documentation. *NISTIR 7251*, National Institute of Standards and Technology.

Xu, M., Nemotollahi, M., Sextro, R.G., Gadgil, A.J., Nazaroff, W.W. (1994). Deposition of Tobacco Smoke Particles in a Low Ventilation Room. *Aerosol Sci. Technol.*, 20: 194-206.


Yamanaka, S., Hirose, H., Takada, S. (1979). Nitrogen Oxides Emissions from Domestic Kerosene-fired and Gas-fired Appliances. *Atmospheric Environment*, 13(3): 407–412.

Zhang, J.S., Chen, Q., and Zhang, J. (2001). *Modeling VOC Sorption of Building Materials and Its Impact on Indoor Air Quality, ASHRAE RP-1097*, American Society of Heating Refrigeration and Air Conditioning Engineers, Atlanta, GA.

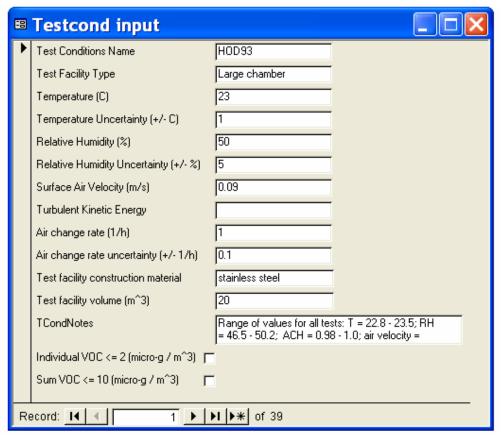
Zhang, J.S., Shaw, C.Y., Sander, D., Zhu, J.P., Huang, Y. (1999). *MEDB-IAQ: A Material Emission Database and Single-Zone IAQ Simulation Program – A Tool for Building Designers, Engineers and Managers*. National Research Council Canada.


APPENDIX A – DATA ENTRY FORMS

EPA VOC Source Emission Rate Database Entry Forms

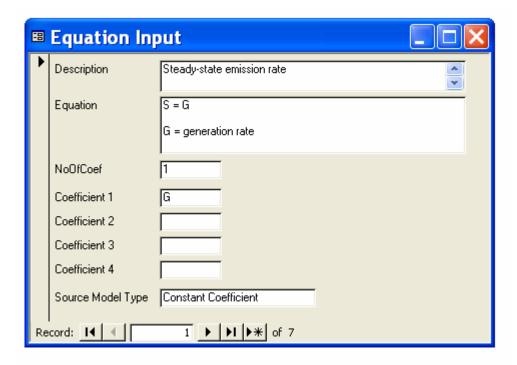
Table Name: Reference

Data Field	Field Description	Data Type	Units
Reference name	Complete citation for reference	Text	
Reference degree	Reflects peer review status of reference. For example, a 1 st degree reference indicates journal level review, 2 nd degree reference indicates conference level review, and 3 rd degree reference indicates internal review.	Number	
Reference	Consists of the first three letters of the first author's last	Text	
abbreviation	name and abbreviated year of publication.		

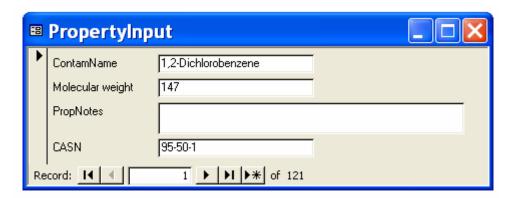

Table Name: Material

Data Field	Field Description	Data Type	Units
MaterialTypeName	Internal reference descriptor with Reference	Text	
	abbreviation		
MatNotes	Relevant information describing material	Text	
NAICS	North American Industry Classification System number	Text	
TypeID	Link to material type	Number	

===	Test Input	
•	Sample name:	Carpet 2_H0D93
	Surface area (m^2)	8.76
	Sample loading (m^2/m^3)	0.44
	Sample substrate	
	ETestNotes	At least two measurements; product age is 2 weeks after manufacture + sample time
	Product Age at start of test (h)	336
	Material Type	Carpet 2_HOD_
	Reference Abreviation	HOD93
	TestCond_ID:	2
Re	cord: 1	▶ ▶ ▶ * of 108


Table Name: ETest

Data Field	Field Description	Data Type	Units
Sample name	Internal reference descriptor with Ref. abbreviation	Text	
Surface area	Product surface area exposed in test facility	Number	m^2
Sample loading	Product surface area to test facility volume ratio	Number	m^2/m^3
Sample substrate	Composition of material on which test product is applied	Text	
ETestNotes	Clarifying and additional information regarding sample	Text	
Product Age at start of test	Age of sample at star of test	Number	h
Material Type	Link to material type name	Number	
Reference Abbreviation	Link to reference abbreviation	Number	
TestCond_ID	Link to test conditions number	Number	


Table Name: Testcond

Data Field	Field Description	Data Type	Units
Test Conditions Name	Same as reference abbreviation	Text	
Test Facility Type	Description of test facility	Text	
Temperature	Temperature of test facility air	Number	° C
Temperature Uncertainty	Uncertainty of temperature measurement	Number	± ° C
Relative Humidity	Relative Humidity of test facility air	Number	%
Relative Humidity Uncertainty	Uncertainty of relative humidity measurement	Number	± %
Surface Air Velocity	Air velocity in test facility near sample surface	Number	m/s
Turbulent Kinetic Energy	Turbulent kinetic energy of test facility air	Number	
Air change rate	Air change rate of test facility	Number	1/ h
Air change rate	Uncertainty of air change rate measurement	Number	$\pm 1/h$
uncertainty			
Test facility construction	Material covering test facility walls, ceiling and	Text	
material	floor		
Test facility volume	Volume of air in test facility	Number	m^3
TCondNotes	Clarifying and additional information regarding test conditions	Text	
Individual VOCs ≤ 2 µg/m ³	Is concentration of each VOC measured in background air of test facility less than or equal to 2 µg/m ³ ?	Yes/No	
Sum VOCs ≤ 10 μg/m ³	Is concentration of all VOCs measured in background air of test facility less than or equal to 10 µg/m ³ ?	Yes/No	

Table Name: Equation

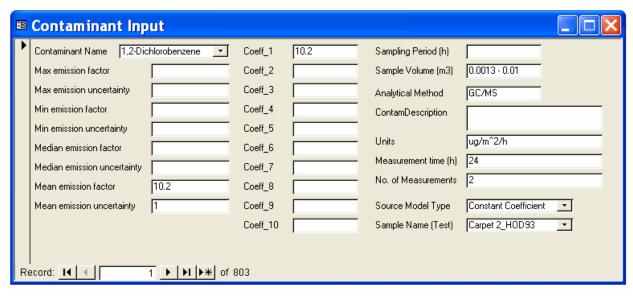
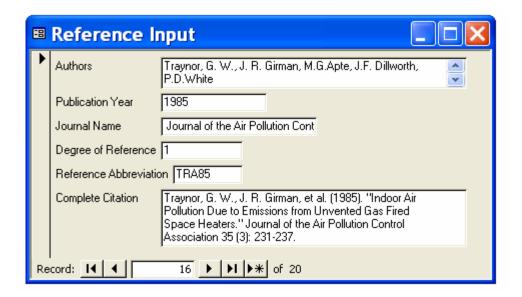
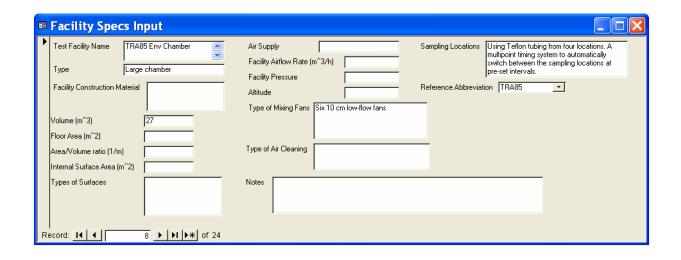

Data Field	Field Description	Data Type	Units
Description	Description of emissions model	Text	
Equation	Model equations with definition of coefficients	Text	
NoOfCoef	Number of model coefficients	Number	
Coefficient 1	Parameter defined as model coefficient 1	Text	
Coefficient 2	Parameter defined as model coefficient 2	Text	
Coefficient 3	Parameter defined as model coefficient 3	Text	
Coefficient 4	Parameter defined as model coefficient 4	Text	
Source Model Type	CONTAM Name of source model	Text	

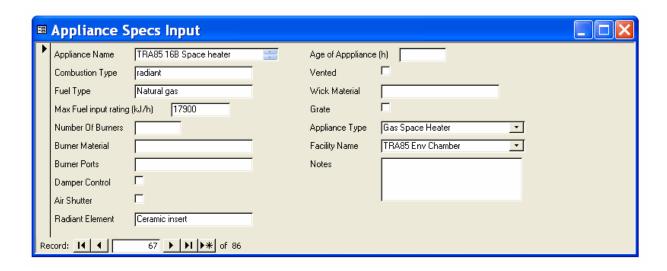
Table Name: Property

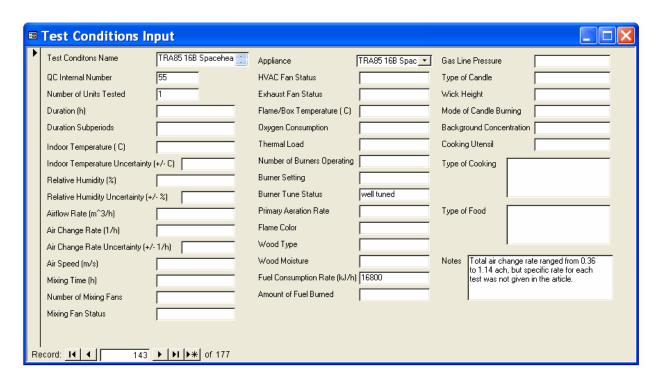
Tubic I tuinet I I oper	-J		
Data Field	Field Description	Data Type	Units
ContamName	Name of contaminant	Text	
Molecular weight	Molecular weight of contaminant	Number	
PropNotes	Clarifying or additional information regarding the	Text	
	contaminant		
CASN	Chemical Abstract Service Number	Text	


28

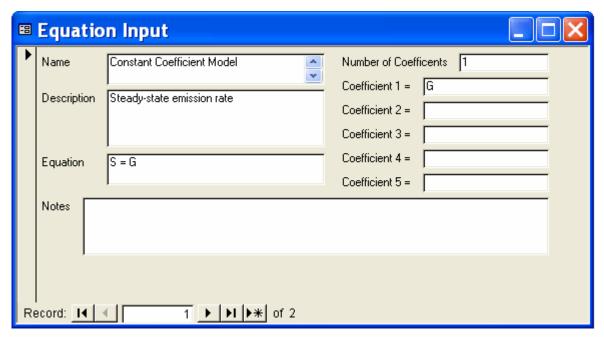

Table Name: Contaminant

Data Field	Field Description	Data Type	Units
Contaminant Name	Link to contaminant name	Text	
Max emission factor	Maximum emission rate for sample period	Number	
Max emission	Uncertainty of maximum emission rate	Number	
uncertainty	measurement		
Min emission factor	Minimum emission rate for sample period	Number	
Min emission	Uncertainty of minimum emission rate	Number	
uncertainty	measurement		
Median emission	Median emission rate for given sample time	Number	
factor Median emission	II	Number	
uncertainty	Uncertainty of median emission rate measurement	Number	
Mean emission factor	Mean emission rate for given sample time	Number	
Mean emission	Uncertainty of mean emission rate	Number	
uncertainty	measurement		
Coeff_1	Value of model coefficient 1	Number	
Coeff_2	Value of model coefficient 2	Number	
Coeff_3	Value of model coefficient 3	Number	
Coeff_4	Value of model coefficient 4	Number	
Coeff_5 - Coeff_10	Value of model coefficients $5 - 10$, if	Number	
	necessary		
Sampling Period	The length of time sample was collected	Text	h
Sample Volume	Volume of sample collected	Text	m^3
Analytical Method	Detector used to measure concentration	Text	
Contam Description	Clarifying or additional information	Text	
	regarding emission rate data		
Units	Units of coefficients listed in order	Text	
Measurement time	Time sample was collected	Text	h
No. of Measurements	Number of samples included in reported	Text	
	emission factor		
Source Model Type	Link to source model	Number	
Sample Name (Test)	Link to test conditions	Number	

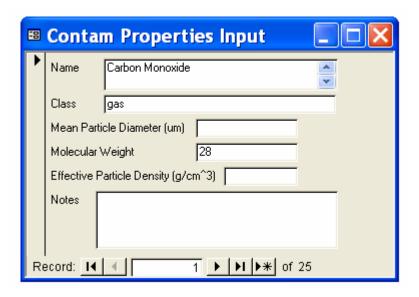

Combustion Source Emission Rate Data Entry Forms


Data Field	Field Description	Data Type	Units
Authors	Authors of reference	Text	
Publication Year	Year reference was published	Text	
Journal Name	Title of journal or other document where reference	Text	
	was published		
Degree of Reference	Reflects peer review status of reference. For example,	Number	
	a 1 st degree reference indicates journal level review,		
	2 nd degree reference indicates conference level		
	review, and 3 rd degree reference indicates internal		
	review.		
Reference	Consists of the first three letters of the first author's	Text	
Abbreviation	last name and abbreviated year of publication.		
Complete citation	Complete citation for reference	Text	

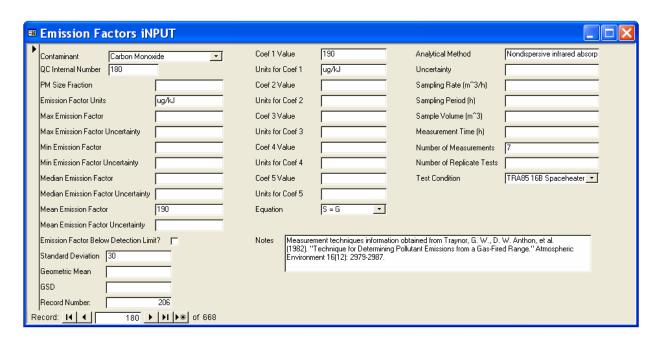
Data Field	Field Description	Data Type	Units
Test Facility Name	Reference Abbreviation with internal descriptor of test facility	Text	
Type	Type of test facility	Text	
Facility Construction Material	Material covering test facility walls, ceiling and floor	Text	
Volume	Volume of air in test facility	Number	m^3
Floor Area	Surface area of test facility floor	Number	m^2
Area/Volume ratio	Surface area of test facility to volume of test facility ratio	Number	m^2/m^3
Internal Surface Area	Surface area of test facility walls, ceiling and floor	Number	m ²
Type of Surfaces	Description of surfaces in test facility, in addition to walls, ceiling and floor	Text	
Air Supply	Source of air added to test facility	Text	
Facility Airflow Rate	Airflow rate measured in test facility	Number	m ³ /h
Facility Pressure	Air pressure measured in test facility	Text	
Altitude	Altitude of test facility	Text	
Type of Mixing Fans	Description of mixing fans in test facility	Text	
Type of Air Cleaning	Description of filtration/air cleaning devices used in test facility	Text	
Notes	Clarifying or additional information regarding test facility	Text	
Sampling Locations	Description of sample locations in test facility	Text	
Reference Abbreviation	Link to reference abbreviation	Number	



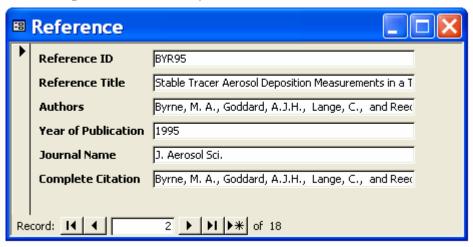
Data Field	Field Description	Data Type	Units
Appliance Name	Reference abbreviation and internal appliance	Text	
	descriptor		
Combustion Type	Combustion mechanism	Text	
Fuel Type	Fuel used in appliance	Text	
Max Fuel input	Maximum fuel input rating for appliance	Number	kJ/h
rating			
Number of Burners	Number of burners operated during test	Number	
Burner Material	Material of burners used in test	Text	
Burner Ports	Type of burner port in appliance	Text	
Damper Control	Does the appliance have damper control?	Yes/No	
Air Shutter	Does the appliance have an air shutter?	Yes/No	
Radiant Element	Type of radiant element	Text	
Age of Appliance	Appliance age at time of test	Number	h
Vented	Is the appliance vented?	Yes/No	
Wick Material	Type of candle wick	Text	
Grate	Does the appliance have a grate?	Yes/No	
Appliance Type	Link to appliance type	Number	
Facility Name	Link to facility name	Number	
Notes	Clarifying or additional information regarding	Text	
	appliance specifications		

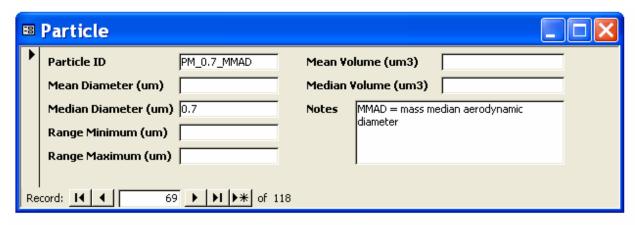


Data Field	Field Description	Data Type	Units
Test Conditions Name	Reference ID and internal descriptor	Text	
QC Internal Number	Internal record keeping number for quality	Number	
	assurance checks		
Number of Units Tested	Number of appliances tested for given emission	Number	
	factor		
Duration	Length of experiment	Text	h
Duration Subperiods	Any distinction of experiment time periods	Text	
Indoor Temperature	Temperature of room air in test facility	Number	° C
Indoor Temperature	Uncertainty of temperature measurement	Number	± ° C
Uncertainty			
Relative Humidity	Relative humidity of test facility	Number	%
Relative Humidity	Uncertainty of relative humidity measurement	Number	± %
Uncertainty			
Airflow Rate	Flow rate of air through test facility	Number	m^3/h
Air Change Rate	Volumetric air change rate of test facility	Number	1/h
Air Change Rate	Uncertainty of air change rate measurement	Number	± 1/h
Uncertainty			
Air Speed	Velocity of air near surface of test appliance	Number	m/s
Mixing Time	Period of mixing prior to first sample	Number	h
Number of Mixing Fans	Number of mixing fans in test facility	Number	
Mixing Fan Status	Description of mixing fan use during the test	Text	
Appliance	Link to appliance name	Number	
HVAC Fan Status	Description of facility HVAC use during the test	Text	
Exhaust Fan Status	Description of facility exhaust fan use during the	Text	
	test		
Flame/Box Temperature	Temperature of heated chamber (e.g., fire box,	Number	° C
	oven, etc.)		

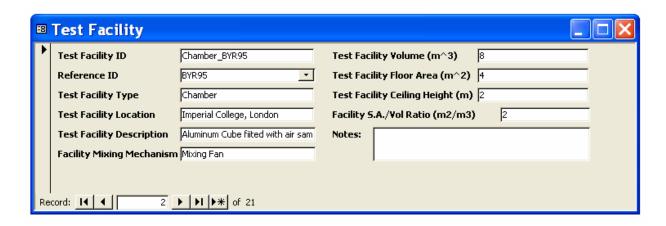

Oxygen Consumption	Appliance oxygen consumption rate	Text	
Thermal Load	Thermal load of appliance	Number	
Number of Burners	Number of burners on during the test	Number	
Operating			
Burner Setting	Level of burner setting according to appliance	Text	
	(e.g., low, medium, high)		
Burner Tune Status	How well-tuned are the appliance burners	Text	
Primary Aeration Rate	Allowance of primary air to appliance	Text	
Flame Color	Color of appliance flame	Text	
Wood Type	Type of wood burned	Text	
Wood Moisture	Moisture content of wood burned	Text	
Fuel Consumption Rate	Rate of fuel consumption for appliance	Number	kJ/h
Amount of Fuel Burned	Mass of fuel burned for test	Text	
Gas Line Pressure	Pressure of gas in input line	Text	
Type of Candle	Type of candle burned for test	Text	
Wick Height	Height of candle wick	Text	
Mode of Candle Burning	Description of candle burn (e.g, sooting, etc.)	Text	
Background	Room air concentration in test facility prior to test	Text	
Concentration			
Cooking Utensil	Type of utensil used in cooking test	Text	
Type of Cooking	Description of cooking style for test	Text	
Type of Food	Description of food cooked during test	Text	
Notes	Clarifying or additional information regarding	Text	
	test conditions		

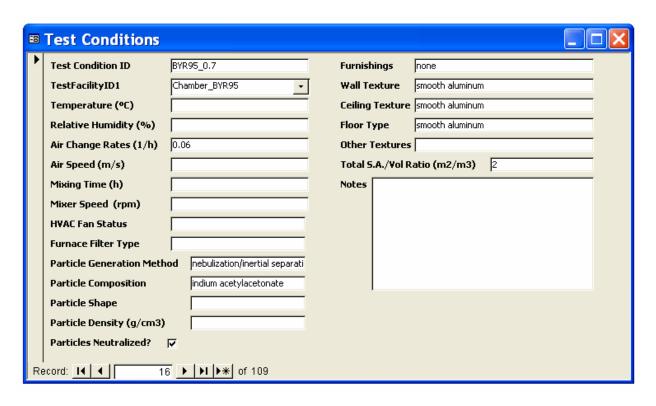
Data Field	Field Description	Data Type	Units
Name	CONTAM name of source model	Text	
Description	Description of emissions model		
Equation	Model equations with definition of coefficients	Text	
Notes	Clarifying or additional information regarding source	Text	
	model equations		
Number of	Number of model coefficients	Number	
Coefficients			
Coefficient 1	Parameter defined as model coefficient 1	Text	
Coefficient 2	Parameter defined as model coefficient 2	Text	
Coefficient 3	Parameter defined as model coefficient 3	Text	
Coefficient 4	Parameter defined as model coefficient 4	Text	
Coefficient 5	Parameter defined as model coefficient 5	Text	

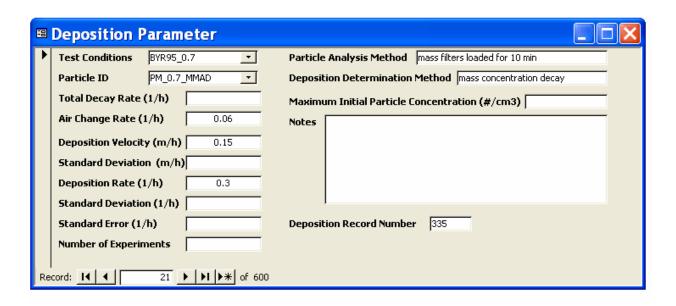

Data Field	Field Description	Data Type	Units
Name	Name of contaminant	Text	
Class	Physical state of contaminant	Text	
Mean Particle	Mean diameter of particle measured	Number	μm
Diameter			•
Molecular Weight	Molecular weight of contaminant	Text	
Effective Particle	Effective density of particle	Number	g/cm ³
Density			
Notes	Clarifying or additional information regarding	Text	
	contaminant properties		


Data Field	Field Description	Data Type	Units
Contaminant	Link to contaminant ID	Number	
QC Internal Number	Internal record keeping number for quality	Number	
	assurance checks		
PM Size Fraction	Range of particle diameters for given emission	Text	
	factor		
Emission Factor Units	Units of reported emission factors	Text	
Max Emission Factor	Maximum emission rate for sample period	Number	
Max Emission Factor	Uncertainty of maximum emission rate	Number	
Uncertainty	measurement		
Min Emission Factor	Minimum emission rate for sample period	Number	
Min Emission Factor	Uncertainty of minimum emission rate	Number	
Uncertainty	measurement		
Median Emission Factor	Median emission rate for sample period	Number	
Median Emission Factor	Uncertainty of minimum emission rate	Number	
Uncertainty	measurement		
Mean Emission Factor	Mean emission rate for sample period	Number	
Mean Emission Factor	Uncertainty of mean emission rate measurement	Number	
Uncertainty			
Emission Factor Below	Are the measured concentrations less than the	Yes/No	
Detection Limit?	minimum detection limit?		
Standard Deviation	Standard deviation of mean emission rate for	Number	
	sample period		
Geometric Mean	Geometric mean emission rate for sample period	Number	
GSD	Geometric standard deviation of emission rate for	Number	
	sample period		
Record Number	Database automatic record number	Autonumber	
Coef 1 Value	Value of first coefficient in model equation	Number	
Units for Coef 1	Units of first coefficient in model	Text	
Coef 2 Value	Value of second coefficient in model equation	Number	
Units for Coef 2	Units of second coefficient in model	Text	

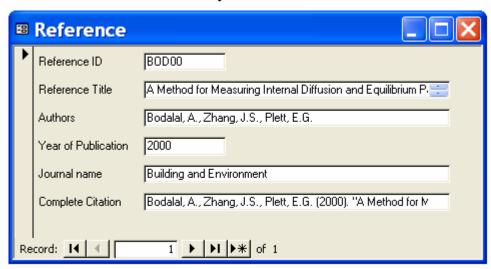
Coef 3 Value	Value of third coefficient in model equation	Number	
Units for Coef 3	Units of third coefficient in model	Text	
Coef 4 Value	Value of fourth coefficient in model equation	Number	
Units for Coef 4	Units of fourth coefficient in model	Text	
Coef 5 Value	Value of fifth coefficient in model equation	Number	
Units for Coef 5	Units of fifth coefficient in model	Text	
Equation	Link to equation ID	Number	
Notes	Clarifying or additional information regarding the emission rate measurements	Text	
Analytical Method	Instrument used to measure contaminant concentrations	Text	
Uncertainty	Uncertainty of analytical method used to measure contaminant concentrations	Text	
Sampling Rate	Volumetric airflow sample rate of instrument	Number	m ³ /h
Sampling Period	Duration of sample collection	Text	
Sample Volume	Air volume of sample collected	Number	m^3
Measurement Time	Time sample was collected	Text	
Number of	Number of samples collected for emission rate	Number	
Measurements	estimate		
Number of Replicate	Number of replicate experiments included in	Number	
Tests	emission rate estimate		
Test Condition	Link to Test Condition ID	Number	


Particle Deposition Rate Entry Forms

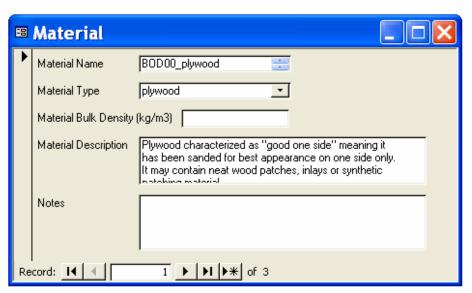

Data Field	Field Description	Data Type	Units
Reference ID	Consists of the first three letters of the first author's	Text	
	last name and abbreviated year of publication		
Reference Title	Title of reference	Text	
Authors	Authors of reference	Text	
Year of Publication	Year reference was published	Text	
Journal Name	Title of journal or other document where reference	Text	
	was published		
Complete citation	Complete citation for reference	Text	


Data Field	Field Description	Data Type	Units
Particle ID	Consists of PM_particle diameter_type of diameter	Text	
	based on analytical method		
Mean Diameter	Mean particle diameter	Number	μm
Median Diameter	Median particle diameter	Number	μm
Range Minimum	Minimum particle diameter for range of sizes	Number	μm
Range Maximum	Maximum particle diameter for range of sizes	Number	μm
Mean Volume	Mean volume of particle	Number	μ m ³
Median Volume	Median volume of particle	Number	μ m ³
Notes	Clarifying or additional information regarding the	Text	
	particle properties		

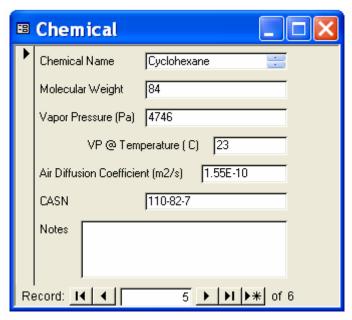
Data Field	Field Description	Data Type	Units
Test Facility ID	Test facility type and Reference ID	Text	
Reference ID	Link to Reference ID	Number	
Test Facility Type	Type of test facility	Text	
Test Facility	Geographical location of test facility	Text	
Location			
Test Facility	General description of test facility	Text	
Description			
Facility Mixing	Air mixing mechanisms in test facility	Text	
Mechanism			
Test Facility Volume	Air volume of test facility	Number	m^3
Test Facility Floor	Surface area of the test facility floor	Number	m^2
Area			
Test Facility Ceiling	Average height from floor to ceiling of test facility	Number	m
Height			
Facility S.A./Vol	Total surface area of the test facility to volume of test	Number	m^2/m^3
Ratio	facility ratio		
Notes	Clarifying or additional information related to the test	Text	
	facility		

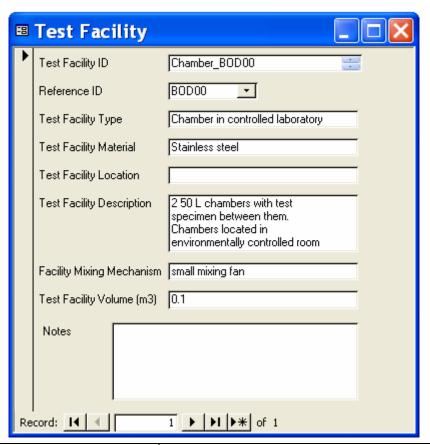


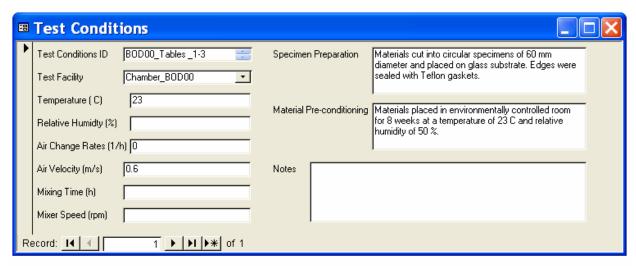
TestFacilityID1 Link to Temperature Air ten Relative Humidity Relativ Air Change Rates Range Air Speed Room Mixing Time Period deposit	nce ID and internal test condition descriptor of Test Facility ID negrature in test facility re humidity of room air in test facility of air change rates for test condition air velocity of particle mixing in test facility prior to tion measurements	Text Number Number Number Text Number Number	° C % 1/h m/s
Temperature Air ten Relative Humidity Relativ Air Change Rates Range Air Speed Room Mixing Time Period deposit	re humidity of room air in test facility of air change rates for test condition air velocity of particle mixing in test facility prior to tion measurements	Number Number Text Number	% 1/h m/s
Relative Humidity Air Change Rates Air Speed Room Mixing Time Period deposi	of air change rates for test condition air velocity of particle mixing in test facility prior to	Number Text Number	% 1/h m/s
Air Change Rates Range Air Speed Room Mixing Time Period deposi	of air change rates for test condition air velocity of particle mixing in test facility prior to tion measurements	Text Number	1/h m/s
Air Speed Room Mixing Time Period deposi	air velocity of particle mixing in test facility prior to tion measurements	Number	m/s
Mixing Time Period deposit	of particle mixing in test facility prior to tion measurements		
deposi	tion measurements	Number	1
1			h
	g fan speed	Number	rad/s
HVAC Fan Status Was H	VAC fan operating during test?	Text	
	C fan was operating, what type of filter was	Text	
presen			
Particle Generation Mecha	nism or device used to generate particles	Text	
Method			
	osition of particles	Text	
	ve density of particles	Number	g/cm ³
	he generated particles neutralized before	Yes/No	
release	-		
	l description of furnishings in test facility	Text	
	al covering test facility walls	Text	
	al covering test facility ceiling	Text	
	al covering test facility floor	Text	
Other textures Addition	onal test facility textures worth noting	Text	
Total S.A./Vol Ratio Total s	urface area of test facility to volume of test	Number	m^2/m^3
facility			
Notes Clarify	ing or additional information related to test	Text	
conditi	ons		

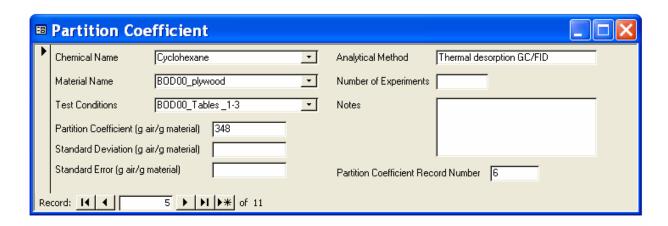


Data Field	Field Description	Data Type	Units
Test Conditions	Link to Test Condition ID	Number	
Particle ID	Link to Particle ID	Number	
Total Decay Rate	Total decay rate of particle including all loss mechanisms	Number	1/h
Air Change Rate	Air change rate of test facility for specific test	Number	1/h
Deposition Velocity	Measured deposition velocity of particle	Number	m/h
Standard Deviation	Standard deviation of measured deposition velocity	Number	m/h
Deposition Rate	Measured deposition rate of particle	Number	1/h
Standard Deviation	Standard deviation of measured deposition rate	Number	1/h
Standard Error	Standard error of measured deposition rate	Number	1/h
Number of Experiments	Number of experiments included in deposition value	Number	
Particle Analysis Method	Method to collect and analyze particle mass or concentrations for a specific particle diameter	Text	
Deposition Determination Method	Mathematical method used to determine particle deposition rate	Text	
Maximum Initial Particle Concentration	Maximum particle concentration at start of deposition experiment to indicate effect of coagulation	Number	#/cm ³
Notes	Clarifying or additional information regarding deposition values	Text	
Deposition Record Number	Internal tracking number for quality assurance checks	Autonumber	


Partition Coefficient Data Entry Forms


Data Field	Field Description	Data Type	Units
Reference ID	Consists of the first three letters of the first author's	Text	
	last name and abbreviated year of publication		
Reference Title	Title of reference	Text	
Authors	Authors of reference	Text	
Year of Publication	Year reference was published	Text	
Journal Name	Title of journal or other document where reference	Text	
	was published		
Complete citation	Complete citation for reference	Text	_


Data Field	Field Description	Data Type	Units
Material Name	Consists of Reference ID and internal material	Text	
	descriptor		
Material Type	Link to sorbent material type	Number	
Material Bulk Density	Bulk density of sorbent material	Number	kg/m ³
Material Description	Description of material used in experiment	Text	
Notes	Clarifying or additional information related to	Text	
	sorbent material		


Data Field	Field Description	Data Type	Units
Chemical Name	Name of chemical used in sorption experiment	Text	
Molecular Weight	Molecular weight of chemical	Text	
Vapor Pressure	Vapor Pressure of chemical at specific temperature	Number	Pa
VP@ Temperature	Specific temperature for vapor pressure value	Number	° C
Air Diffusion	Diffusion coefficient of chemical in air	Number	m^2/s
Coefficient			
CASN	Chemical Abstract Service Number	Text	
Notes	Clarifying or additional information regarding	Text	
	chemical used in experiment		

Data Field	Field Description	Data Type	Units
Test Facility ID	Internal test facility descriptor and Reference ID	Text	
Reference ID	Link to Reference ID	Number	
Test Facility Type	Type of test facility	Text	
Test Facility Material	Material covering test facility walls, ceiling and	Text	
	floor		
Test Facility Location	Geographical location of test facility	Text	
Test Facility	General description of test facility	Text	
Description			
Facility Mixing	Mechanism used to mix test facility room air	Text	
Mechanism			
Test Facility Volume	Volume of test facility air	Number	m^3
Notes	Clarifying or additional information related to test	Text	
	facility		

Data Field	Field Description	Data Type	Units
Test Conditions ID	Reference ID and internal descriptor of test	Text	
	conditions		
Test Facility	Link to Test Facility ID	Number	
Temperature	Temperature of test facility air	Number	° C
Relative Humidity	Relative humidity of test facility air	Number	%
Air Change Rates	Air change rate of test facility	Number	1/h
Air Velocity	Velocity of test facility air near surface of material	Number	m/s
Mixing Time	Mixing time of test facility air	Number	h
Mixer Speed	Rotational speed of test facility mixing mechanism	Number	rad/s
Specimen Preparation	General description of preparation of materials for	Text	
Material Pre-	experiment	Text	
	Any pre-experimental procedures for the material	Text	
conditioning	specimen		
Notes	Clarifying or additional information regarding test	Text	
	conditions		

Data Field	Field Description	Data Type	Units
Chemical Name	Link to Chemical ID	Number	
Material Name	Link to Material ID	Number	
Test Conditions	Link to Test Conditions ID	Number	
Partition Coefficient	Measure partition coefficient for given	Number	g air/
	chemical and material		g material
Standard Deviation	Standard deviation of partition coefficient	Number	g air/
	measurement		g material
Standard Error	Standard error of partition coefficient	Number	g air/
	measurement		g material
Analytical Method	Method used to measure chemical	Text	
	concentration		
Number of	Number of experiments included in partition	Number	
Experiments	coefficient value		
Notes	Clarifying or additional information regarding	Text	
	partition coefficient value		
Partition Coefficient	Internal tracking number for quality assurance	Text	
Record Number	checks		

APPENDIX B: ContamLink 2.4 User Manual

Introduction

ContamLink is a tool that is used to facilitate the transfer of information from contaminant emission databases to CONTAM as CONTAM source/sink elements. These databases contain experimental contaminant modeling data, including source emission rates for volatile organic compounds, inorganic gases and particles, particle deposition rates, sorption rates, and air cleaning removal.

Getting ContamLink

ContamLink can be downloaded from CONTAM's homepage (http://bfrl.nist.gov/IAQanalysis/software/index.htm). Installation instructions can be found on ContamLink's download page.

Using ContamLink

The ContamLink main window has three parts: the menubar, the sidebar and the data viewer (see Figure 1).

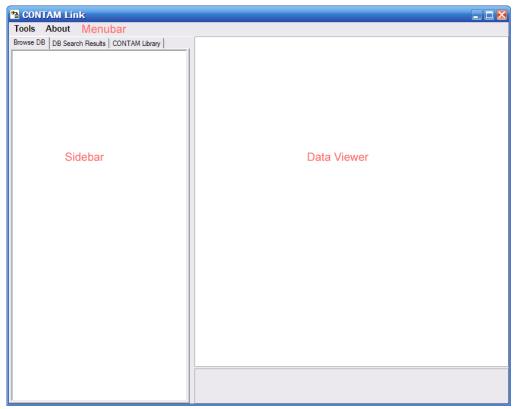
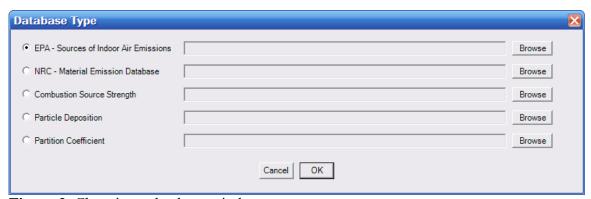


Figure 1. ContamLink main window.

Menubar

The Tools dropdown menu on the window bar includes the commands to open or search a database, create a source/sink or super source/sink, or exit the program.

Sidebar


The sidebar has three functions. The first is to browse a database's contents. This is done with a tree to show the hierarchy of the database. The second function of the sidebar is to show results of searching the database. The third function is the library manager. This library manager is similar to the one found in ContamW (Walton and Dols, 2005). Species and source/sinks that are created in ContamLink can be managed here.

Data Viewer

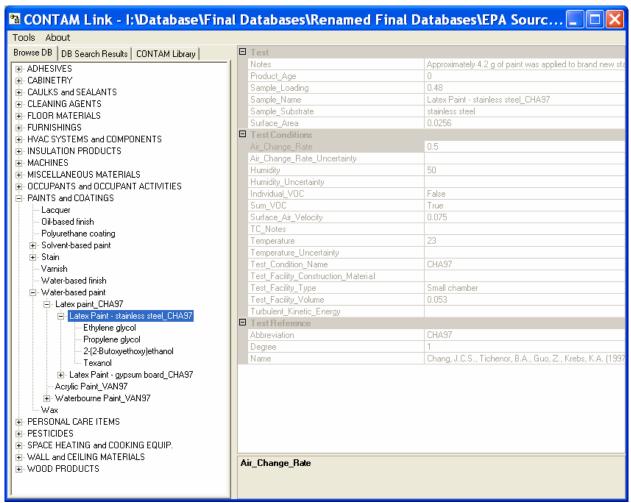
The data viewer displays information from the database. The data shown depends on what is selected when browsing or searching the database. The data viewer is not used with the library manager.

Loading a database

A database can be loaded using Tools \Rightarrow Open Database from the menu or using the Ctrl+O keyboard shortcut. The dialog shown in Figure 2 is then presented.

Figure 2. Choosing a database window.

Pick the type of database file to use on the left. Then use the corresponding browse button to pick the database file to use. Databases are available on the CONTAM homepage (http://bfrl.nist.gov/IAQanalysis/software/CONTAMLINKdatabases.htm) and the database filenames match the respective "database type". For example, the Particle Deposition filename is "Particle Deposition." After the database is successfully loaded, a dialog box will appear. Click OK to begin using the database.


Browsing a database

After a database is loaded the contents of the database can be browsed. The browse tab, on the sidebar, is used to show the hierarchy of the database. Most items in the hierarchy show information in the data viewer, which correspond to a record in a table or multiple tables that are joined together from the database. Each database has a slightly different hierarchy which is presented below:

EPA Database

The first level of the EPA VOC source database shows the categories of materials contained in the database. The next level provides the types of materials in this category (e.g., water-based

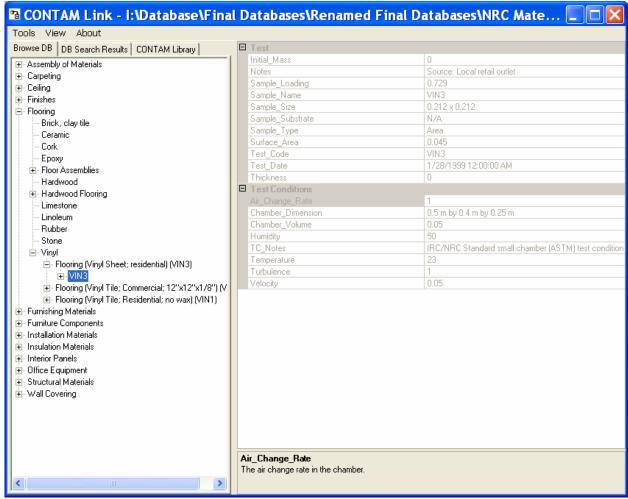

paint is a type of Paint and Coating). Below each material type are specific studies that generated emission results. Clicking on a study name shows a more detailed description of the material used in the study. The different test conditions used for a specific study are listed in the next level, with details in the data viewer window. Finally, all of the chemical compounds measured are listed. Clicking on each compound shows emission rate results and model information in the data viewer. Figure 3 shows the EPA VOC source database hierarchy with the test conditions highlighted for the data viewer window.

Figure 3. Browsing capabilities of VOC source emissions database with ContamLink and material test conditions results display.

NRC Database

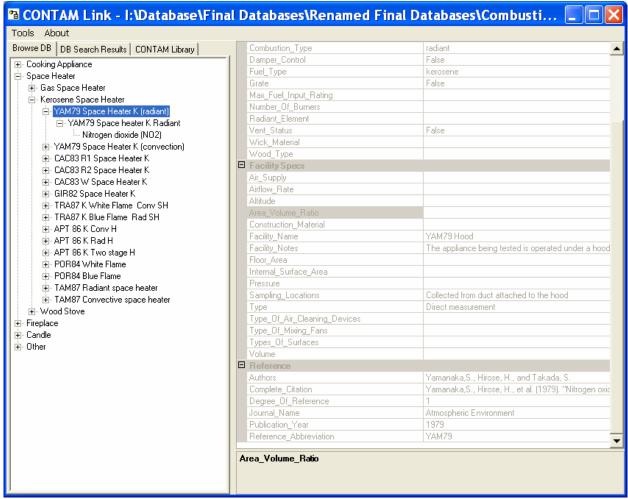

The NRC VOC Source emission database has a similar hierarchy to the EPA VOC source database (see Figure 4).

Figure 4. Browsing capabilities of NRC VOC source emissions database with ContamLink and environmental test conditions results display.

Combustion Source Strength Database

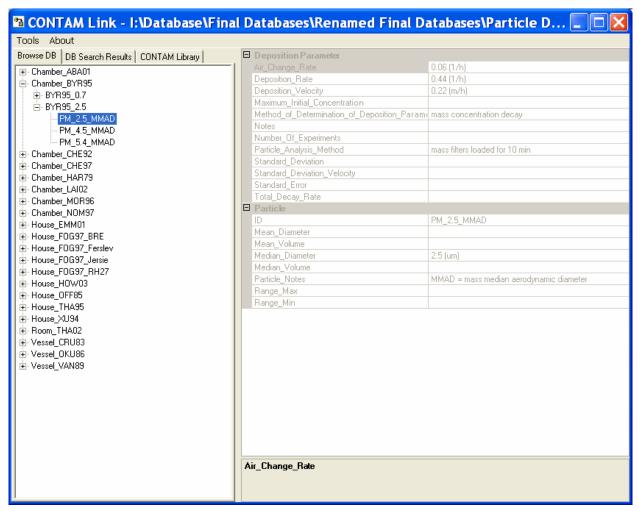

The first level of the combustion source strength database hierarchy is category of combustion appliance (see Figure 5). The next level includes the different types of appliances in each category (e.g., kerosene space heater is type of space heater). Under each appliance type is a list of specific studies, which, when highlighted, show the appliance and test facility specifications in the data viewer. The next level lists different test conditions for each study with the specific values given in the data viewer. The final level lists all contaminants measured in each study with contaminant properties, emission factors, and model information in the data viewer.

Figure 5. Browsing capabilities of Combustion Source Strength database with ContamLink and appliance and test facility specification in results display.

Particle Deposition Database

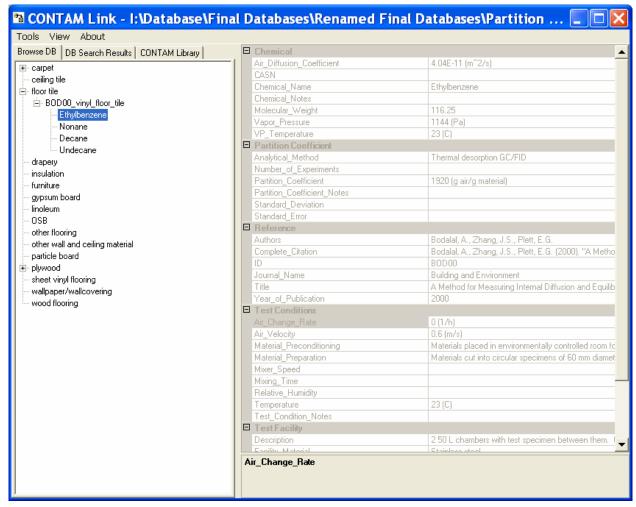

The particle deposition database is first organized according to the type of test facility used for each deposition study (see Figure 6). The next level lists each deposition study for that type of facility with reference and test facility details in the data viewer. The different test conditions for each study is provided in the next level with specific values given in the data viewer. Finally, specific particle sizes are listed with the associated deposition rates given in the data viewer.

Figure 6. Browsing capabilities of Particle Deposition database with ContamLink and particle deposition results in results display.

Partition Coefficient Database

The first level of the Partition Coefficient database hierarchy is a list of sorptive indoor materials (see Figure 7). Under each material type is a list of sorption studies which displays more information about the material in the data viewer. The next level lists the chemicals used in the sorption study with information about the tests in the data viewer.

Figure 7. Browsing capabilities of Partition Coefficient database with ContamLink and partition coefficient results in results display.

Searching a database

Searching the database makes it easier to find records in the database. Search the database by using Tools \Rightarrow Search Database from the menu or using the Ctrl+S keyboard shortcut. The dialog shown in Figure 8 is then presented.

The first step is to define the search parameters. The search parameters available vary depending on the database that is used. Table 1 lists all of the available search parameters for each database. On the dialog select a parameter, an operator and enter a value for the parameter. Then add that parameter set to the query by pressing the Add button. When using more than one parameter you also need to select if the parameters are to be used together using the AND operator. Or if the parameters are to be used separately using the OR operator.

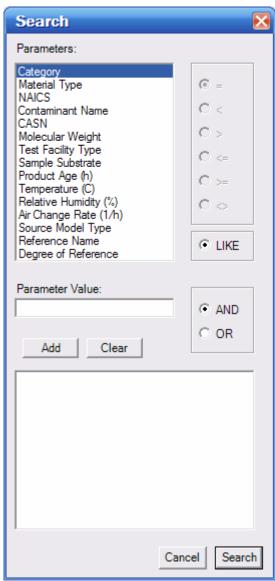


Figure 8. Searching capabilities for VOC emissions database.

Initiate the search by pressing the Search button. A message bow will give the number of records that matched the search parameters. The records can be found in the Search tab of the sidebar. The search tab shows the same hierarchy as the browse tab but only includes the records that matched the search query. The search results can also be browsed like the browse tab.

Table 1. Search Parameters for each Model Input Database

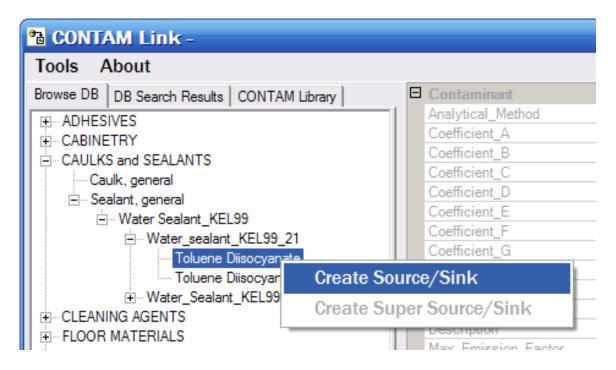
	Combustion	Particle Deposition	Partition
VOC Emission Rates	Emission Rates	Rates	Coefficients
Category	Category	Test Facility Type	Material Type
Material Type	Combustion Type	Area/Volume Ratio	Contaminant Name
NAICS	Fuel Type	(1/m)	Molecular Weight
Contaminant Name	Contaminant Name	Air Change Rate (1/h)	Vapor Pressure (Pa)
CASN	Contaminant Class	Mixing Mechanism	CASN
Molecular Weight	Molecular Weight	Particle ID	Test Facility Type
Test Facility Type	Test Facility Type	Mean Diameter (µm)	Temperature (°C)
Sample Substrate	Facility Altitude	Median Diameter (µm)	R.H. (%)
Product Age (h)	Fuel Consumption	Particle Analytical	Air Change Rate (1/h)
Temperature (°C)	Rate (kJ/h)	Method	Reference Authors
R.H. (%)	Equation Name	Generation Method	Year of Publication
Air Change Rate (1/h)	Reference Authors	Particle Composition	Degree of Reference
Source Model Type	Year of Publication	Neutralized Particles?	
Reference Authors	Degree of Reference	Reference Authors	
Year of Publication		Year of Publication	
Degree of Reference		Degree of Reference	

Library Manager

The third function of the side bar is the library manager. CONTAM libraries are external files whose purpose is to store pre-defined/user-defined simulation elements (schedules, wind pressure profiles, airflow elements, and duct elements) for use in multiple CONTAM simulations. The library manager is a way to easily create and manage these library files. ContamLink allows the user to only manage species and sources, since these are the only elements that are needed by ContamLink. Other elements like filters that can use the species in these libraries need to be defined in ContamW. Those elements will remain in the library when it is saved.

Library File

The user may either open an existing species-related library file or create a new one through ContamLink. To open an existing file press the "Browse" button and select the appropriate library file. The name of the library file opened and any description provided in the file will be displayed in the respective name and description fields. To manually create a new library file press the "New" button (see "Creating CONTAM Sources/sinks from a Database" to automatically add species and sources to library file). This will provide a clear field in the Library Elements part of the dialogue box. After adding new elements to the Element name list the list may be saved as a new CONTAM Library file.


Species and Source/Sinks

This is a list of species and source/sink elements present in the current library file. A more detailed description of the element will be displayed below the Element name list, if a description for the element is available.

There are a few options to add and remove elements from the list. A new element may be created by pressing the new button then following the appropriate steps to create a new element. Elements already in the library file may be modified by first selecting them from the list and pressing the edit button. If a species is not used by a source/sink in the library file it may be removed by selecting it from the element list and then pressing the delete button. Source/Sinks can always be deleted from a library.

Creating CONTAM sources/sinks from a database

CONTAM source/sinks are created using a wizard to define species and source/sink elements. By either searching or browsing a database, records from the database are chosen to be the basis for a CONTAM source/sink element. The lowest items in the browse tree or search tree (either contaminant names or particle sizes) correspond to a CONTAM source/sink element. Right click on one of these items and select Create Source/Sink from the context menu (see Figure 9). A wizard is started to create a source/sink. The wizard can also be started using Tools \Rightarrow Create Source/Sink from the menu or using the Ctrl+C keyboard shortcut.

Figure 9. Automatically adding a source/sink to library manager using ContamLink wizard.

Pick a species

If a species exists in the current library then you will be given the opportunity to reuse a species for the source being created. Otherwise the wizard will start with the next step. You can select to

create a new species or use an existing species. Information about the species selected from the database is shown on the left side of the window (see Figure 10).

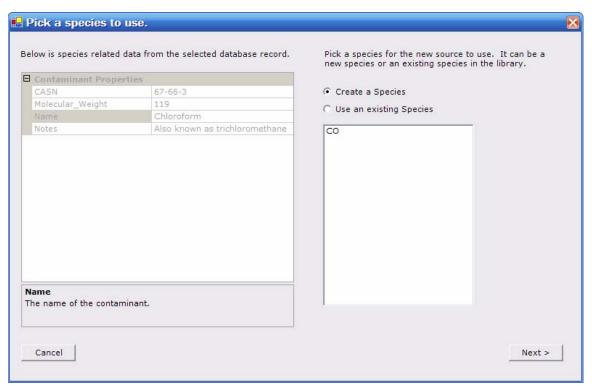


Figure 10. Selecting a species for library file.

Define a Species

If there is no existing species or an existing species was not used then you have to define a species for the source/sink to use (see Figure 11). The species being defined can be edited on the right side of the window. Information about the selected species from the database is shown on the left side of the window. The name of the species from the database is reused. Because there is a limit on the length of a species name the name may be trimmed. Also, there cannot be any spaces in the species name. The full name is put into the description. If available the molecular weight is also taken from the database.

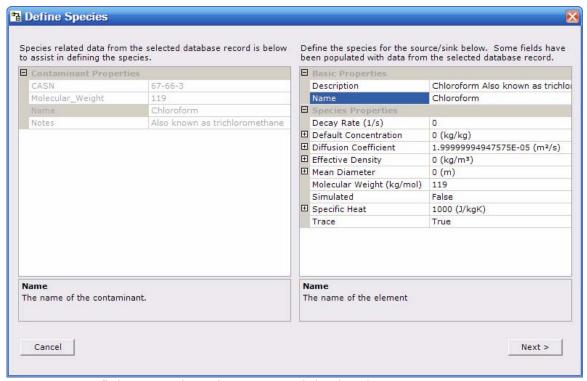


Figure 11. Defining a species using ContamLink wizard.

Picking a Source/Sink Model

Next a source/sink model must be chosen. Some model selections may be limited depending on the database being used due to what is expected to be in those databases. Information about the model from the database is shown on the left hand side of the wizard (see Figure 12).

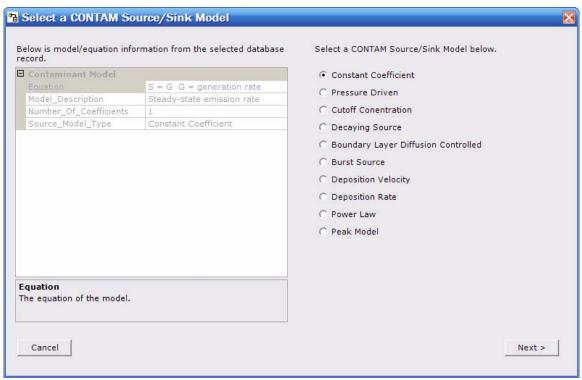


Figure 12. Selecting a CONTAM source/sink model using ContamLink wizard.

Defining the Source/Sink

When defining the source/sink some fields will be initialized with values from the database record. Some of the information from the database records is shown on the left side of the window (see Figure 13). After defining the source, the wizard is complete and the new species and source/sink will be shown in the library manager.

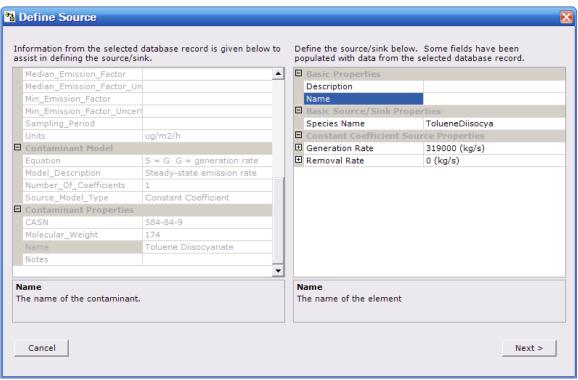


Figure 13. Defining a source/sink using ContamLink wizard.

Creating a Super Source/Sink from a database

The super element allows multiple elements of the other types to be combined into a single element. This can reduce repetitious work required to create multiple sources throughout a building by allowing multiple sources to be represented by a single icon on the SketchPad. Creating a super source/sink is similar to creating a simple source/sink, however the process is started at a different level in the Browse or Search tree (see Figure 14). To create a super source/sink you select the level that corresponds to study test conditions, which is one level above the selection point for a simple source/sink.

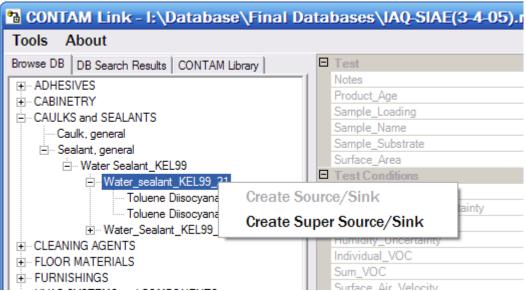


Figure 14. Creating a super source/sink using ContamLink Wizard.

Another difference when creating a super source/sink is that there is an additional step that is done first in the wizard. This step entails selecting which contaminants to include in the super source/sink (see Figure 15).

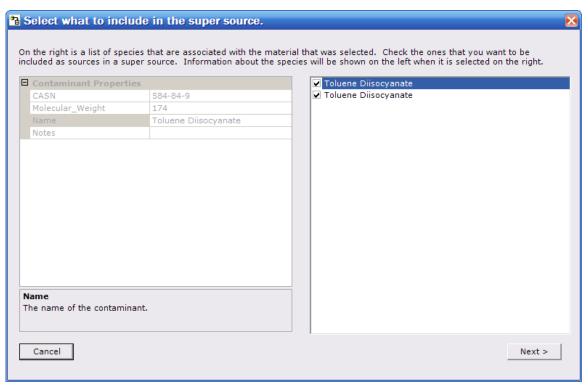


Figure 15. Selecting contaminants to include in the super source using ContamLink wizard.

Each of these contaminants will have to have a species and a simple source/sink defined. The definition of these species and source/sinks has the same procedure as defining any other simple source/sink. These simple source/sinks will then be included in the super source/sink. After the simple source/sinks are defined you define the super source.

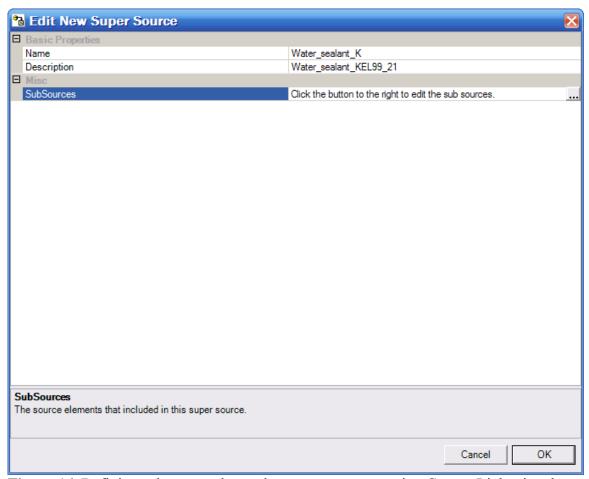


Figure 16. Defining subsources that make up super source using ContamLink wizard.

You can edit the sub source/sinks by pressing the small button by the right edge of the window, which is present in the SubSources row when it is selected. It will bring up the dialog box in Figure 17.

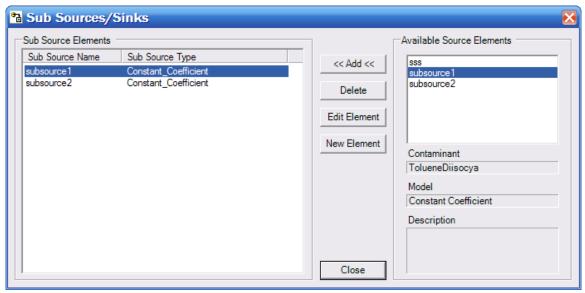


Figure 17. Defining subsources that make up super source using ContamLink wizard.

The simple source/sinks included in the super source/sink are shown on the left side of the window. On the right side of the window is a list of the available simple source/sinks that can be included in the super source/sink. One can edit the simple sources or create new simple source/sinks from this dialog. The user can also add or delete simple source/sinks to/from the super source/sink.

When finished defining the super source/sink and closing the dialog box with the OK button, the super source/sink will appear in the library manager.