NBSIR 87－3618

Computer Software for the Computation of the Scattered Field and the Optical Microscope Image of Line Objects Patterned in Thick Layers

D．Nyyssonen

CD Metrology，Inc．
Germantown，MD 20874

December 1987

Prepared for：
U．S．DEPARTMENT OF COMMERCE
National Bureau of Standards
Alatinal Engineering Laboratory
$100 \quad$ Ir Manufacturing Engin
．U56 uurg，MD 20899
87－3618

$198:$| IVELCAMED |
| :---: |

C． 2

COMPUTER SOFTWARE FOR THE COMPUTATION OF THE SCATTERED FIELD AND THE OPTICAL MICROSCOPE IMAGE OF LINE OBJECTS PATTERNED IN THICK LAYERS

D. Nyyssonen

CD Metrology, Inc.
Germantown, MD 20874

December 1987

Prepared for:
U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
National Engineering Laboratory
Center for Manufacturing Engineering
Precision Engineering Division
Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director
Abstract 1
Introduction 1
Software Structure 3
Implementation and Testing 5
Accuracy 6
Acknowledgments 7
References 7
Table 9
Appendix I 10
Appendix II 30
Appendix III 52

Computer Software for the Computation of
the Scattered Field and the Optical Microscope Image of Line Objects Patterned in Thick Layers

Diana Nyyssonen
CD Metrology, Inc.
Germantown, MD 20874

ABSTRACT: This report contains computer software for calculating optical microscope images of line objects patterned in thick layers ($>\lambda / 4$ thick). The algorithms used are based on a monochromatic, waveguide model which can predict the images of line objects with arbitrary edge geometry including multilayer structures with sloped, curved, asymmetric, and undercut edges. Along with the computer software listing, the mathematics of the model, a short description of its structure and use, and test cases for help in implementation are given.

KEY WORDS: computer software; diffraction; dimensional metrology; linewidth; microscopy; optical imaging; optical metrology.

INTRODUCTION

The computer software described in this report was written in conjunction with the NBS project to develop fundamentally accurate optical measurement techniques for the width of micrometer and submicrometer lines patterned on integrated circuit wafers. Accurate and precise measurement techniques for linewidth are needed to improve yield, to ensure that lithographic and critical dimension (CD) measurement systems meet specification, to establish control of fabrication processes, and as input to device modeling and simulation programs.

In the course of research and development of the NBS laser linewidth measurement system [1], it was found that the microscope
image profiles for lines patterned in thick layers ($>\lambda / 4$ thick) were not properly predicted by the scalar theory conventionally used to calculate images of line objects [2, 3]. Scalar imaging theory assumes that the object is planar (thin compared to the wavelength of the illumination) and can be represented by a complex transmittance or reflectance function. The scalar model does not take into account the multiple reflections or standing waves that may occur within the patterned layer or the edge effects that occur in thick layers.

A new model was developed by Nyyssonen [4, 5] based on a waveguide approach which characterizes the patterned layer by its complex dielectric constant and calculates the waveguide modes supported by the line structure. First, the mode expansion of the electromagnetic fields within the patterned layer is found and then the appropriate boundary conditions are used to calculate the scattered field.

Nyyssonen's model assumes that the line structure is patterned in a nonmagnetic layer which can be characterized by its complex index of refraction which is taken to be constant with depth within the layer. Thus, this model can be used to represent homogeneous line structures with vertical edge walls. The spatial function representing the variation in the dielectric constant (square of the complex index of refraction) in the layer is expanded in a Fourier series. This series is substituted into the wave equation and the eigenvalue solutions to this equation which represent the waveguide modes are found. Assuming a single incident plane wave normal to the surface, the boundary value problem at the layer interfaces is solved to determine the Fourier coefficients in the expansions for the transmitted and reflected fields. This method allows the use of conventional scalar imaging theory to compute the image when no polarization effects are present. In such a case, the E - and H-field components are equivalent and either may be used in the scalar imaging equations.

To include the effects of partial coherence in the imaging system, it is possible to integrate over a finite illumination cone angle as long as the variation of the scattered field coefficients is negligible for the cone angle used. Hence, for layers approximately a few micrometers or less thick, finite coherence may be included.

This report covers the extension of this model by Kirk and Nyyssonen [6] to line structures of arbitrary edge geometry whose index of refraction may vary with depth in the layer. This line structure is approximated by subdividing it into a set of sublayers, each consisting of a line object with vertical edges and having a constant index of refraction over its small interval of depth. Each sublayer is treated in the same way as the single layer of Nyyssonen's earlier model. The waveguide modes and solution for the electromagnetic fields are found for each sublayer. There are now $n+1$ boundary value equations where n is the number of sublayers. These equations when solved allow for the substitution of a single "equivalent" planar scattering layer for the multilayer structure. Thereafter, the solution for the transmitted and reflected field components and image are found in the same manner as for the single layer case. This model therefore allows for the modeling of line structures which contain different materials, have curved edges, asymmetry, and unpatterned (or patterned) sublayers. The mathematical details of the model are given in the expanded version of ref. [6] reproduced in Appendix III. A list of definitions of symbols used in the software and Appendix III is given in the attached table.

Software Structure

As input to the software, the line structure may be characterized either by giving the index of refraction, thickness, and edge locations for the individual sublayers, or by a single refractive index, total thickness, and the polynomial coefficients used to
describe the edge geometry (See Appendix III.) In the latter case, the number of layers used to approximate this structure in the calculations must be designated. A good rule of thumb to use in determining the number of layers is to divide the change in linewidth (between the top and bottom interfaces) by $0.1 \mu \mathrm{~m}$ and use a value larger than this. For most cases of interest in integrated circuit processing, 9 layers are sufficient. The program arrays, as written, allow up to 20 layers. The program calculates both the scattered field and the microscope image for TE-mode illumination. That is, the direction of polarization (i.e. E-field) is assumed to be parallel to the length of the line structure.

The scattered field is given in terms of the Fourier coefficients of the resulting far field diffraction pattern. In the test cases shown, 45 coefficients are given corresponding to ± 22 diffracted orders at diffraction angles corresponding to $n \lambda / P$ where n is the order number, λ the wavelength, and P the period. The line structure is assumed to be repeated at a period P for convenience in calculating the Fourier series coefficients. An isolated line image is calculated by taking P large enough so that there is no influence from adjacent edges. Near resonances, this is not always possible due to time or storage limits on array sizes. The largest period used has been $12 \mu \mathrm{~m}$ corresponding to a 90×90 complex matrix for the boundary condition equations.

The microscopic image is calculated using conventional scalar imaging theory with the complex Fourier coefficients of the scattered field substituted for those of the planar object traditionally used. The software, as written, assumes a 1-D imaging system with a finite illumination cone angle. The Fourier coefficients of the scattered field are assumed to be constant over this angle. The calculations are accurate for a 2-D system as long as the condenser numerical aperture (N.A.) is much smaller
than that of the imaging objective. Hence, the calculations will accurately predict the image waveforms for the NBS laser system which has an objective N.A. of 0.85 or 0.95 and an illumination aperture $1 / 5$ that of the objective at a wavelength of 514 nm .

The software also allows the calculation of the image for varying focus positions. Best focus is the top surface of the patterned layer. For all other focus positions, a quadratic phase factor is introduced (just as in scalar image theory).

The input for focus position is given as the number of wavelengths of defocus m where m is a dimensionless quantity. The relationship between the displacement of the measurement plane from the Gaussian focal plane, z, is given by

$$
z=\frac{2}{\tan ^{2} \theta} m
$$

where λ is the wavelength and $\tan \theta$ is substituted for N.A. (=sinө) for the high numerical apertures conventionally used for linewidth measurement.

Implementation and Testing

This software (See Appendix I) is written in ANSI FORTRAN 77 consisting of a main program and 9 modules. The software is portable except for the complex matrix subroutines used for calculation of the eigenvectors and eigenvalues and matrix inversions. The software requires highly accurate routines because of the cascading of matrix multiplications and inversions. Those used at NBS on the Cyber 855^{*} are from the NAG library* [7]. If these

[^0]routines are unavailable, the user may substitute others as noted in the software. However, several test conditions should be met. A symmetric line object should produce symmetric Fourier coefficients to at least six significant figures. Also, a single-layer, thick line object with complex index of refraction should produce the same image structure as for a single layer when divided into 20 sublayers (or the maximum number of sublayers to be used). Repeatability to three or four significant figures in the image is sufficient to ensure this. If the matrix routines are inaccurate, the errors will increase as the number of layers is increased. Test cases are given in Appendix II. These six test cases are designed to test different portions of the software. Successful execution of one test case does not guarantee accuracy for the others.

All of the data calculated are output to files for use with available graphics. Plotting routines are not included here because they tend to be system dependent and user requirements may vary.

Accuracy.

Testing of this software poses a challenging problem in that the only cases for which answers are known do not fully test the algorithms. For example, in comparing this model with scalar theory, agreement can be expected only in the limit as the thickness of the patterned layer approaches zero. Test case \#2 for a patterned $0.09 \mu m$ thick chromium layer is one such case which has been shown to agree with scalar theory. (See ref. 5.) Comparison has also been done for patterned thin layers of silicon dioxide showing excellent agreement. (See ref. 4.) In addition, it is required that the ratio of reflectivities of the patterned layer and substrate (or sublayers) away from the edges agrees with the values calculated from the Fresnel equations. (See ref. 8.) Otherwise, calculations can at this time only be compared with experimental measurements. This has been done for some cases
[6, 9]. However, although the agreement is good in most cases, the accuracy is suspect near resonances (where the line dimensions of width and/or thickness are equal to an integer multiple of the wavelength) and for small line dimensions. In both cases, the energy in the high spatial frequencies increases and errors in the eigenvalues and eigenvectors are expected to increase due to truncation errors.

Acknowledgments

A number of people have contributed to this software development. The original software was written for the Univac 1108 computer* by Chris Kirk while a research associate at NBS. The author wishes to especially thank Ruth Varner, NBS, for her assistance in converting this software for use on the Cyber 855.* The present software has been modified by the author to work for patterned metal layers. Other modifications to simplify its use and provide additional documentation have also been made.

References

1. D. Nyyssonen, "Calibration of Optical Systems for Linewidth Measurements on Wafers," Opt. Eng. 21, 882-887 (1982).
2. L. C. Martin, The Theory of the Microscope, (Blackie, London, 1966), Chapters V and VIII.
3. E. C. Kintner, "Method for the Calculation of Partially Coherent Imagery," Appl. Opt. 17, 2747-2753 (1978).
4. D. Nyyssonen, "Theory of Optical Edge Detection and Imaging of Thick Layers," J. Opt. Soc. Am. 72, 1425-1436 (1982).

[^1]5. D. Nyyssonen, "Optical Linewidth Measurement on Patterned Metal Layers," Proc. SPIE Vol. 480, Integrated Circuit Metrology II, 65-70 (1984).
6. D. Nyyssonen and C. Kirk, "Modeling the Optical Microscope Images of Thick Layers for the Purpose of Linewidth Measurement," Proc. SPIE Vol. 538, Optical Microlithography IV, 179-187 (1985).
7. These routines are available from: Numerical Algorithms Group (NAG) Ltd., 7 Banbury Road, Oxford, Oxfordshire OX2 6NN, England.
8. D. Nyyssonen, "Narrow-Angle Laser Scanning Microscope System for Linewidth Measurement on Wafers," NBSIR (to be published).
9. C. Kirk, "A Study of the Instrumental Errors in Linewidth and Registration Measurements Made with an Optical Microscope," Presented at the SPIE 1987 Santa Clara Symposium on Microlithography, Vol. 775, Integrated Circuit Metrology, Inspection and Process Control.

Table: Definition of Symbols Used in Software

Math	Software
Symbol	Label

Free space wavelength in microns	λ	WAVE
Total layer thickness	T	TL
The number of layers	N	NS
Period of the grating	P	PER
RI of the air layer	\hat{n}_{0}	CRI (0)
RI of the substrate	\hat{n}_{s}	CRI(21)
RI of the n-th layer	$\hat{\eta}_{n}$	CRI (N)
Width polynomial coefficients	X_{j}	W (J)
Starting points for lst, 2nd, and $3 r d$ order	z_{j}	PO(J)
The X position offset for each layer	--	XP(J)
The z locations of the layer interfaces	z_{n}	2P (N)
Spatial frequency of the grating	1/P	SPAFRE
```Free space wavenumber (in units of \mum```	$\mathrm{k}_{0}$	RKO
Fourier coefficients of dielectric constant	$E_{q, n}$	EQ ( I )
Eigenvalue matrix	$\mathrm{D}_{\mathrm{i}, \mathrm{j}}$	$D(I, J)$
Eigenvalues of the layers	$a_{m, n}$	VAL (M)
Eigenvectors of the layers	$B_{j, m, n}$	VEC
Boundary equation matrices	,$D_{j, m}^{21}$	RM(L, M)

(A) coefficients
$A_{m, 1}, A_{m, 1}^{\prime} \quad A V(M)$
Fourier coefficients of the pseudoobject
$E_{j}^{R}$
FC(J)
$1-D$ image of the line
ELEC(I)

## Appendix I <br> Computer Software Listing (THKIMAG)

## PROGRAM THKIMAG


#### Abstract

THE ORIGINAL VERSION OF THIS PROGRAM WAS WRITTEN BY CHRIS KIRK, WHILE AN EMPLOYEE OF VICKERS INSTRUMENTS, (HAXBY ROAD, YORK, NORTH YORKSHIRE,ENGLAND) WHILE A RESEARCH ASSOCIATE AT THE NATIONAL BUREAU OF STANDARDS, GAITHERSBURG, MARYLAND, USA. SEPTEMBER 1984.


THE CURRENT VERSION HAS BEEN MODIFIED BY D. NYYSSONEN TO WORK FOR METAL LAYERS. JUNE 1986

THIS PROGRAM COMPUTES THE OPTICAL IMAGE OF LINE OBJECTS WITH ARBITRARY EDGE GEOMETRY, PATTERNED IN THICK LAYERS INCLUDING MULTILAYER STRUCTURES WITH SLORING, CURVED, AND UNDERCUT EDGES, AS WELI AS ASYMMETRIC OBJECTS.
SEE REFERENCE: "MODELING OF THE OPTICAL IMAGING OF LINES PATTERNED IN THICK LAYERS WITH VARIABLE EDGE GEOMETRY," BY D. NYYSSONEN AND C. P. KIRK
ALL EQUATION NUMBERS GIVEN REFER TO THIS MANUSCRIPT FOR QUESTIONS CONCERNING THIS PROGRAM CONTACT:
R. D. LARRABEE, PRECISION ENGINEERING DIVISION, NATIONAL BUREAU OF STANDARDS OR D. NYYSSONEN, CD METROLOGY, INC.

SYSTEM DEPENDENT FEATURES.

ALTHOUGH THIS SOFTWARE HAS BEEN WRITTEN IN FORTRAN 77 IN ORDER TO ALIOW FOR EASY PORTABILITY, THERE ARE A NUMBER OF FEATURES WHICH MAY BE SYSTEM DEPENDENT.

1. A FORTRAN 77 COMPILER IS REQUIRED.
2. THE SYSTEM MUST SUPPORT CERTAIN NAG LIBRARY ROUTINES.

A NOTE CONCERNING THE NAG LIBRARY.

THIS PROGRAM USES THE FOLIOWING NAG ROUTINES.
F02AKF F04ADF
THESE ARE SINGLE PRECISION VERSIONS OF LIBRARY ROUTINES FOR THE CYBER WHICH MAY NOT BE SUPPORTED ON ALL MACHINES.

THESE ROUTINES ARE AVAILABLE FROM: OXFORD, OXFORDSHIRE. OX2 6NN. ENGLAND.

```
PARAMETER (NLAY=20, NLAY1=21)
PARAMETER(NLIM=-22, IIM=22, KIIM=45, MLIM=90)
REAL PI,RKO,WAVE,SPAFRE,WI(NLAY),ZP(0:NLAY),NS,XP(NLAY),TRA(2)
COMPLEX D(NLIM:LIM,NLIM:IIM),RM(MLIM,MLIM),T(MLIM,MLIM)
,RN(KIIM,MLIM),AV(MLIM),FC(NLIM:LIM),CRI(0:NLAYI),QO,VAL(KIIM)
PI = 4.0*ATAN(1.0)
OPEN (UNIT=9,FILE='PARFIL')
OPEN (UNIT=10,FILE='FCOFDC')
OPEN (UNIT=11,FILE='DMATRX')
OPEN (UNIT=12,FILE='EIGVAL')
OPEN (UNIT=13,FILE='EIGVEC')
OPEN (UNIT=14,FILE='BOUNEQ')
OPEN (UNIT=15,FILE='BEMATX')
OPEN (UNIT=16,FILE='FCOFPO')
OPEN (UNIT=17,FILE='IMAGE')
```

SUMMARY OF THE INPUT/OUTPUT STRUCTURE.

INPUT		INPUT DATA FILE.
PARFIL	UNIT9	PARAMETER FIIE CREATED.
FCOFDC	UNIT10	FOURIER COEFFICIENTS OF
		DIELECTRIC CONSTANT CALCULATED FOR FIRST LAYER.
DMATRX	UNIT11	EIGENVALUE MATRIX D OF THE 1ST LAYER.
EIGVAL	UNIT12	EIGENVALUES OF THE LAYERS.
EIGVEC	UNIT13	EIGENVECTORS OF THE LAYERS.
BOUNEQ	UNIT14	BOUNDARY EQUATION MATRICES.
BEMATX	UNIT15	(A) COEFFICIENTS.
FCOFPO	UNIT16	FOURIER COEFFICIENTS OF
		THE PSEUDO-OBJECT.
IMAGE	UNIT17	1-D IMAGE OF THE LINE.

SET UP THE PARAMETERS FOR THE SECTIONED LINE.

INPUT
WAVE = FREE SPACE WAVELENGTH IN MICRONS.
NS $=$ THE NUMBER OF LAYERS.
PER = THE PERIOD.
$\operatorname{CRI}(0)=R I$ OF THE AIR LAYER.


CRI(21) $=$ RI OF THE SUBSTRATE.
ID = DEFINE LINE: PARAMETRICALLY(0)
$=\quad: \quad$ LAYER BY LAYER(1).
W(I) = WIDTH POLYNOMIAL COEFFICIENTS. I=ORDER PO(I) = STARTING POINTS FOR 1ST, 2ND AND 3RD ORDER. CRI(1) = REFRACTIVE INDEX OF PATTERNED LAYER.
TL = LAYER THICKNESS.
TRA(1) $=$ PHOTOMULTIPLIER SLIT WIDTH.
TRA $(2)=$ TELEVISION CAMERA GAUSSIAN WIDTH PARAMETER.
LSKIP = 0: GENERATE A NEW FOURIER SERIES FOR
THE PSEUDO OBJECT.
1: USE PREVIOUSLY GENERATED FOURIER SERIES.
-1: GENERATE THE IMAGE.
DF = DEFOCUS IN WAVES WHERE DF IS A DIMENSIONLESS QUANTITY.
IF DEFOCUS IS KNOWN IN TERMS OF DISPLACEMENT OF THE MEASUREMENT PLANE FROM THE FOCAL PLANE DZ, IT MUST BE CONVERTED TO WAVES USING THE RELATIONSHIP: $\mathrm{DZ}=(2 *$ WAVE $/(\operatorname{TAN}(\operatorname{ANGLE})) * * 2) * D F$
WHERE ANGLE IS THE SAME AS DEFINED BY N.A. = SIN(ANGLE) INPUT IF ID $=1$.

WI(N) = THE WIDTH OF THE LINES IN THE NTH LAYER.
$2 P(N)=$ THE 2 LOCATIONS OF THE LAYER INTERFACES.
CRI $(N)=$ RI OF EACH LAYER.
$\mathrm{XP}(\mathrm{N})=\mathrm{THE} \mathrm{X}$ POSITION OFFSET FOR EACH LAYER.
COMPUTATION
SPAFRE = SPATIAL FREQUENCY OF THE GRATING (1/PERIOD).
COMPUTATIONS IF ID $=0$.
$\operatorname{CRI}(N)=R I$ OF EACH LAYER.
WI(N) = THE WIDTHS OF THE LINES IN EACH LAYER.
$\mathrm{ZP}(\mathrm{N})=\mathrm{THE} 2$ LOCATIONS OF THE LAYER INTERFACES. THE TOP SURFACE IS ASSUMED TO BE $\mathrm{Z}=0$.
$\mathrm{XP}(\mathrm{N})=\mathrm{THE} \mathrm{X}$ POSITION OFFSET FOR EACH LAYER (FOR ASYMMETRIC CROSS-SECTIONS).

COMPUTATION
RKO = FREE SPACE WAVENUMBER (IN UNITS OF 1/UM).
CALL LINE(PI,WAVE,RKO,CRI,2P,WI,NS,SPAFRE,
TRA, XP, DF,LSKIP)
NOTE: CALCULATIONS ARE FOR LINE OBJECT, SPACES ARE CALCULATED BY TAKING LINEWIDTH = PERIOD MINUS DESIRED SPACE WIDTH.

IF LSKIP $=1$ THEN GO STRAIGHT TO THE IMAGE SUBROUTINE.

FIND THE EIGENVALUES AND EIGENVECTORS FOR EACH LAYER.
D IS THE EIGENVALUE MATRIX FOR EACH LAYER. THE EIGENVALUES AND EIGENVECTORS ARE FOUND FOR EACH LAYER AND THEN STORED ON DISK, STARTING WITH THE TOP LAYER.

THE DIFFRACTION SERIES IS TRUNCATED FOR DIFFRACTION ANGLES WHICH EXCEED 90 DEGREES IN AIR. THIS IS SET BY THE VARIABLE 'LIM'. LIM AND ITS RELATED VARIABLES ARE SET IN THE PARAMETER STATEMENTS.
$L=(R E F R A C T I V E$ INDEX OF AIR)*(PERIOD)/(WAVELENGTH) NLIM $=-L, \operatorname{LIM}=L, K L I M=2 L+1, M L I M=2(2 L+1)$

```
DO 10 N=1,NS
```

CALL SETUPD(PI,WI(N),CRI,D,SPAFRE,N,XP(N),WAVE,QO,EQ2)
CALL EIGD(D,N,QO,RKO,WAVE,SPAFRE,EQ2)
CONTINUE

SET UP THE MATRIX ELEMENTS FOR THE FIRST INTERFACE BOUNDARY CONDITIONS.

THE ARRAY RM CONTAINS THE UPPER MATRIX ELEMENTS (SEE EQ. 21).
CALI SETRM(RM,RKO,WAVE,SPAFRE,CRI(O))

SET UP THE PRODUCT MATRICES FOR THE N-LAYERS INTERFACES

SET THE MATRIX T TO THE IDENTITY MATRIX.
THE T MATRIX IS MODIFIED BY ALL THE INTERMEDIATE INTERFACES. STARTING WITH THE IDENTITY MATRIX, THE T MATRIX IS PASSED
TO THE SUBROUTINE FOR EACH INTERFACE AND RETURNED AFTER MODIFICATION.

```
DO 40 L=1,MLIM
 DO 30 M=1,MLIM
 IF(L.EQ.M) THEN
 T(L,M) = CMPLX(1.0,0.0)
 ELSE
 T(L,M) = CMPLX(0.0,0.0)
```

END IF
CONTINUE CONTINUE
IF(NS.GT.1) THEN
DO $50 \mathrm{~N}=1, \mathrm{NS}-1$
CALL SETPQN(N,ZP(N),T)
CONTINUE
END IF

SET UP THE MATRIX ELEMENTS FOR THE LAST INTERFACE BOUNDARY CONDITIONS.

THE ARRAY RN CONTAINS THE LAST INTERFACE MATRIX ELEMENTS.

CALI SETRN(RN,NS,2P(NS),VAL)
SOLVE THE MATRIX EQUATION FOR THE (A) COEFFICIENTS. (EQ. 21)
THE VECTOR AV IS RETURNED CONTAINING THE (A) COEFFICIENTS.
CALI SETAM(RM,T,RN,RKO,AV,VAL,NS,WAVE,SPAFRE,CRI(21))
SET UP THE FOURIER COEFFICIENTS.

THE FOURIER COEFFICIENTS ARE RETURNED IN VECTOR FC. T IS USED AS A WORKSPACE.

CALL FCOEFF (AV,FC,T)
CONTINUE
IF LSKIP $=-1$ THEN SKIP THE IMAGE ROUTINE.
IF (LSKIP.EQ.-1) GOTO 60
COMPUTE THE IMAGE FROM THE FOURIER COEFFICIENTS.

CALL IMAGE(FC,PI,SPAFRE,TRA,DF,LSKIP,WAVE)
CONTINUE STOP
END
SUBROUTINE LINE(PI,WAVE,RKO, CRI, $2 P$,WI,NS, SPAFRE,
TRA, XP, DF, LSKIP)
COMPLEX CRI (0:21)
REAL PI,RKO,WAVE,SPAFRE,W(0:3),WI(20),PER,PO(3),
$2,2 P(0: 20), N S, T L, X P(20), T R A(2)$
SET THE ARRAYS TO ZERO.
DO $210 \mathrm{I}=0,20$
$2 P(I)=0.0$
$\operatorname{CRI}(I)=\operatorname{CMPLX}(0.0,0.0)$
IF(I.GT.0) THEN
$W I(I)=0.0$
$X P(I)=0.0$
END IF
CONTINUE

READ IN THE WAVELENGTH, THE PERIOD, THE NUMBER OF LAYERS
READ*,WAVE,PER,NS
SPAFRE $=1.0 / P E R$
READ IN THE RI'S OF THE AIR LAYER AND THE SUBSTRATE.
ID DETERMINES WHETHER THE LINE IS DEFINED BY PARAMETERS
OR LAYER BY LAYER.
READ*, CRI (0), CRI(21),ID
READ IN THE WIDTH POLYNOMIAL COEFFICIENTS.
READ*, W(0),W(1),W(2),W(3)
READ IN THE 2 POSITION STARTING POINTS FOR THE 1ST,2ND AND 3RD ORDERS.

READ*, PO(1), PO (2), PO(3)
READ IN THE REFRACTIVE INDEX OF THE PATTERNED LAYER AND THE LAYER THICKNESS.

READ*, CRI (1),TL
READ IN THE PHOTOMULTIPLIER SLIT WIDTH AND THE VIDEO CAMERA WIDTH PARAMETER.

301
302 303 304
READ*, TRA (1), TRA (2)
IF(TRA(1).GT.0.01) THEN
TRA(2) $=0.0$
END IF

THE CAMERA WIDTH PARAMETER TRA(2) IS SET TO ZERO WHENEVER THERE IS A FINITE SLIT WIDTH TRA(1).

READ IN THE SKIP PARAMETER (TO SKIP IMAGE CALCULATIONS)
AND THE AMOUNT OF DEFOCUS IN NUMBER OF WAVES.

READ*, LSKIP, DF
IF(ID.EQ.O) THEN
SET UP THE LINE DEFINED PARAMETRICALLY.
DO 220 I=1,NS
$\operatorname{CRI}(I)=C R I(1)$
$2=T L *(I-0.5) / N S$
$W I(I)=W(3) *(Z-P O(3)) * * 3+W(2) *(Z-P O(2)) * * 2$
$W I(I)=W I(I)+W(1) *(Z-P O(1))+W(0)$
$2 P(I)=T L * I / N S$
CONTINUE
ELSE IF(ID.EQ.1) THEN
SET UP THE LINE LAYER BY LAYER.
READ IN THE WIDTH, INTERFACE POSITION RI, AND X OFFSET OF EACH LAYER

DO $230 \mathrm{I}=1$,NS
READ*,WI(I), $2 P(I), C R I(I), X P(I)$
CONTINUE
END IF
CALCULATE THE WAVE NUMBER.
RKO $=2.0 * P I / W A V E$
SEND PARAMETERS TO A FILE.
WRITE(9,*) 'RUN PARAMETERS.'
WRITE(9,*) 'WAVELENGTH = ',WAVE
WRITE(9,*) 'NUMBER OF LAYERS=',NS
WRITE(9,*) 'WAVE NUMBER =', RKO
WRITE(9,*) 'AIR LAYER =', CRI(0)
WRITE(9,*) 'SUBSTRATE =', CRI(21)

```
WRITE(9,*) 'DEFOCUS =',DF
WRITE(9,*) 'SLIT WIDTH IN MICRONS =',TRA(1)
WRITE(9,*) 'CAMERA WIDTH PARAMETER =',TRA(2)
```

IF(LSKIP.LE.0) THEN
WRITE (9,*) 'LAYER WIDTH POSITION RI OFFSET'
DO $299 \mathrm{I}=1$,NS
WRITE(9,240) I,WI(I), 2P(I), CRI(I),XP(I)
FORMAT (1X,I2,6X,F6.3,6X,F5.3,4X,F5.3,1X,F5.3,
6X,F5.3)
CONTINUE
END IF.
RETURN
END

SUBROUTINE SETUPD(PI,W,CRI,D,SPAFRE,N,XP,WAVE,QO)
PARAMETER(NLIM=-22, LIM=22, KLIM=45, MLIM=90)
REAL PI, GOSCAF, SPAFRE,RP,W,XP,RIP,WAVE
COMPLEX D(NLIM:LIM,NLIM:LIM),EQ(NLIM:LIM),E1,CI,QO,
$\operatorname{CRI}(0: 21)$
W = LINEWIDTH OF LAYER N.
$X P=X$ OFFSET OF THE LINE IN LAYER N.

THE LAYER FOURIER COEFFICENTS FOR THE EXPANSION OF THE DIELECTRIC CONSTANT ARE STORED IN ARRAY EQ. $C I=\operatorname{CMPLX}(0.0,1.0)$

SET THE ARRAYS TO ZERO.
DO 320 I=NLIM,LIM $E Q(I)=\operatorname{CMPLX}(0.0,0.0)$ DO $310 \mathrm{~J}=\mathrm{NLIM}$, LIM
$D(I, J)=\operatorname{CMPLX}(0.0,0.0)$ CONTINUE
CONTINUE
ROUTINE TO GENERATE THE FOURIER COEFFICIENTS.
THE OFFSET XP ADDS A PHASE TERM TO THE FOURIER
COEFFICIENTS. SEE EQUATION 8 OF APPENDIX III.
$E 1=C R I(N) * * 2-C R I(0) * * 2$
$\mathrm{EQ}(0)=\operatorname{CRI}(0) * * 2+E 1 * W * S P A F R E$
DO 330 I=NLIM,LIM
IF(I.EQ.O) GO TO 330
$E Q(I)=E 1 * S I N(P I * I * S P A F R E * W) / P I / I$
$E Q(I)=E Q(I) * C E X P(2.0 * P I * C I * S P A F R E * X P * I)$
IF(N.EQ.1) THEN

401
402
403
404
405 C
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421 C
422 C
423 C
424
425
426
427
428
429 C
430 C
431 C
432 C
433 C
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449 450 C
$\operatorname{WRITE}(10, *) E Q(I), I$
END IF
CONTINUE
$Q O=E Q(0)$
ROUTINE TO CONSTRUCT THE D MATRIX. SEE APPENDIX OF
APPENDIX III.
DO 350 L=NLIM, LIM
DO $340 \mathrm{M}=\mathrm{NLIM}, \mathrm{LIM}$
IF (L.EQ.M) THEN
$D(L, M)=-($ WAVE*L*SPAFRE $) * * 2$
ELSE IF ((IABS (L-M)).GT.22)THEN
$D(I, M)=\operatorname{CMPLX}(0.0,0.0)$
ELSE
$D(I, M)=E Q(M-L)$
END IF
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE EIGD (D,N,QO,RKO)
PARAMETER(NLIM=-22, LIM=22, $K L I M=45, \operatorname{MLIM}=90$ )
COMPLEX D(KIIM,KLIM), VAL(KLIM), QO
REAL AR(KLIM,KLIM), AI(KLIM,KLIM), RR(KLIM), RI(KLIM), VR(KIIM, KLIM), VI (KIIM, KIIM) , IWORK (KLIM) , RK0

THE D MATRIX FOR THE FIRST LAYER IS WRITTEN ON TAPEI1.
THE COMPLEX D MATRIX IS SPLIT INTO TWO REAL MATRICES AND STORED IN ARRAYS AR() (REAL) AND AI() (IMAGINARY).

DO $420 \mathrm{I}=1$,KLIM
$R R(I)=0.0$
$R I(I)=0.0$
IWORK (I) $=0.0$
DO $410 \mathrm{~J}=1, \mathrm{KLIM}$
$\operatorname{VR}(I, J)=0.0$
$\operatorname{VI}(I, J)=0.0$
$\operatorname{AR}(I, J)=\operatorname{REAL}(D(I, J))$
$\operatorname{IF}(A B S(A R(I, J)) . L T .1 . E-9) \quad A R(I, J)=+0.0$
$A I(I, J)=A I M A G(D(I, J))$
$\operatorname{IF}(\operatorname{ABS}(A I(I, J)) . L T .1 . E-9) A I(I, J)=+0.0$
IF(N.EQ.1) THEN
WRITE(11,*) $D(I, J), I, J$ END IF
CONTINUE
CONTINUE

FO2AKF SOLVES FOR THE EIGENVALUES AND EIGENVECTORS. THE VECTORS ARE RETURNED IN VR AND VI AND THE EIGENVALUES ARE RETURNED IN RR AND RI.
the square roots of the eigenvalues are written on TAPE12 AND THE EIGENVECTORS ON TAPE13.

IFAIL $=0$
CALL F02AKF (AR,KLIM, AI,KLIM,KLIM,RR,RI,VR,KLIM,VI,KLIM, IWORK, IFAIL)

THE CYBER RESTRICTS PHASE ANGLES ON SQRT OF A COMPLEX NO. TO -PI/2<O<PI/2 WHICH RESULTS IN INCORRECT
phase angles. angles are corrected following CALCULATION OF CSQRT.

DO 440 I=1,KLIM
$\operatorname{VAL}(I)=\operatorname{CMPLX}(R R(I), R I(I))$
$\operatorname{VAL}(I)=-\operatorname{VAL}(I)-Q 0$
$\operatorname{VAL}(I)=\operatorname{CSQRT}(\operatorname{VAL}(I)) * R K 0$
IF(AIMAG(VAL(I)).LT.O.0) THEN $\operatorname{VAL}(I)=-\operatorname{VAL}(I)$
END IF
WRITE(12,*) VAL(I)
PRINT*,VAL(I), I
DO $430 \mathrm{~J}=1, \mathrm{KLIM}$ WRITE(13,*) VR(I,J),VI(I,J)
CONTINUE
CONTINUE
IF(IFAIL.EQ.O) THEN
PRINT*,'EIGENVALUE SUCCESS AT LAYER',N
ELSE
PRINT*,'EIGENVALUE FAILURE AT LAYER',N
END IF
RETURN
END

SUBROUTINE SETRM(RM,RKO,WAVE,SPAFRE,CRO)
PARAMETER(NLIM=-22, LIM=22, KLIM=45, MLIM=90)
COMPLEX RM(MLIM,MLIM),VEC,VECCN,VAL(KLIM),CI,RKL,V,CRO
REAL VR,VI,RKO,WAVE,SPAFRE
CRO = REFRACTIVE INDEX OF THE AIR LAYER.
the eigenvalue and eigenvectors are recovered for the FIRST LAYER FROM UNIT12 AND UNIT13.

REWIND 12
REWIND 13

501

```
CI = CMPLX(0.0,-1.0)
DO 520 L=1,KLIM
 V = CMPLX((WAVE*SPAFRE*(L-LIM-1))**2,0.0)
 RKI = CSQRT(CRO**2-V)
 DO 510 M=1,KLIM
 IF(I.EQ.1) THEN
 READ(12,*) VAL(M)
 END IF
 READ(13,*) VR,VI
 VEC = CMPLX(VR,VI)
 RM(L,M) = (RKL-VAL (M)*CI/RKO)*VEC
 RM(L,M+KLIM) = (RKL+VAL(M)*CI/RKO)*VEC
 RM(L+RLIM,M) = CMPLX(0.0,0.0)
 RM(L+KLIM,M+KLIM) = CMPLX(0.0,0.0)
 CONTINUE
CONTINUE
RETURN
END
```

SUBROUTINE SETPQN(N, ZP1,T)
PARAMETER (NLIM=-22, LIM=22, KLIM=45, MLIM=90)
COMPLEX PQ(MLIM,MLIM), T(MLIM,MLIM),RIPQ(MLIM,MLIM),
VEC, VECCN, VAL (KLIM)
REAL WKSPCE(MLIM), ZP1,VR,VI
$\mathrm{ZP} 1=$ THE $Z$ LOCATION OF THE INTERFACE.
REWIND 12
REWIND 13
READ PAST THE EIGENVALUES AND EIGENVECTORS RELATING TO
THE PREVIOUS LAYERS.
IF (N.GT.1) THEN
DO $630 \quad I=1, N-1$
DO $620 \mathrm{~J}=1$, KLIM
$\operatorname{READ}(12, *) \operatorname{VAL}(J)$
DO $610 \mathrm{~K}=1$,KLIM
$\operatorname{READ}(13, *) \operatorname{VR}, V I$
CONTINUE
CONTINUE
CONTINUE
END IF
SET UP THE UPPER LAYER MATRIX.
DO $650 \quad L=1, K I I M$
DO $640 \mathrm{M}=1$, KLIM

```
 IF(L.EQ.1) THEN
 READ(12,*) VAL(M)
 END IF
 READ(13,*) VR,VI
 VEC = CMPLX(VR,VI)
 PQ(L,M) = VEC*CEXP(-VAL(M)*2P1)
 PQ(L,M+KLIM) = VEC*CEXP(VAL(M)*ZP1)
 PQ(I+KLIM,M) = VAL(M)*PQ(L,M)
 PQ(L+KLIM,M+KIIM) = -VAL(M)*PQ(L,M+KLIM)
 CONTINUE
CONTINUE
MULTIPLY THE PREVIOUS T MATRIX BY THE UPPER LAYER MATRIX.
DO 685 L=1,MLIM
 DO 680 M=1,MLIM
 RIPQ(L,M) = CMPLX(0.0,0.0)
 DO . }675\mathrm{ I=1,MLIM
 RIPQ(L,M) = RIPQ(L,M)+PQ(L,I)*T(I,M)
 CONTINUE
 CONTINUE
CONTINUE
WRITE THE MATRIX PRODUCT ONTO UNIT14.
CLEAR THE MATRICES RIPQ AND T.
REWIND . }1
DO 658 L=1,MLIM
 DO 654 M=1,MLIM
 WRITE(14,*) RIPQ(L,M)
 RIPQ(L,M) = CMPLX(0.0,0.0)
 IF(I.EQ.M) THEN
 T(L,M) = CMPLX(1.0,0.0)
 ELSE
 T(L,M) = CMPLX(0.0,0.0)
 END IF
 CONTINUE
CONTINUE
SET UP THE LOWER LAYER MATRIX.
DO 670 L=1,KLIM
 DO 660 M=1,KLIM
 IF(L.EQ.1) THEN
 READ(12,*) VAL(M)
 END IF
 READ(13,*) VR,VI
 VEC = CMPLX(VR,VI)
 PQ(L,M) = VEC*CEXP(-VAL(M)*ZP1)
 PQ(L,M+KLIM) = VEC*CEXP(VAL(M)*2P1)
```

601
602
603660

604670
605 C
606 C
607 C
608 C
609
610
611
612
613
614
615
616
617
618 C
619 C
620
621
622
623
624
625604
626608
627 C
628 C
629
630
631
632
633
634
635
636
637
638
639
640
641
642 C
643
644
645
646
647 C
648
649 C 650 C
$P Q(L+K L I M, M)=\operatorname{VAL}(M) * P Q(L, M)$
$P Q(L+K L I M, M+K L I M)=-V A L(M) * P Q(L, M+K L I M)$
CONTINUE
CONTINUE

FO4ADF INVERTS THE MATRIX PQ AND RETURNS THE INVERSE IN THE MATRIX RIPQ.

IFAIL $=0$
CALL FO4ADF(PQ,MLIM,T,MLIM,MLIM,MLIM,RIPQ,MLIM,
WKSPCE, IFAIL)
IF(IFAIL.EQ.0) THEN
PRINT*,'SUCCESSFUL MATRIX INVERSION AT INTERFACE',N
ELSE
PRINT*,'SINGULAR MATRIX AT INTERFACE',N
STOP
END IF
RECOVER THE PREVIOUS MATRIX FROM UNITI4.
REWIND 14
DO $608 \mathrm{~L}=1$, MLIM
DO 604 M=1,MLIM
$\operatorname{READ}(14, *) \mathrm{PQ}(L, M)$
CONTINUE
CONTINUE
MULTIPLY THE TWO MATRICES AND RETURN THE PRODUCT IN T.
DO $694 \mathrm{~L}=1$, MLIM
DO $694 \mathrm{M}=1$,MLIM
$T(L, M)=\operatorname{CMPLX}(0.0,0.0)$
DO 690 I=1,MLIM
$T(L, M)=T(L, M)+R I P Q(L, I) * P Q(I, M)$
CONTINUE
CONTINUE
CONIINUE
RETURN
END

SUBROUTINE SETRN(RN,NS,2S,VAL)
PARAMETER (NLIM=-22, LIM=22, KLIM=45, MLIM=90)
COMPLEX RN(KLIM,MLIM), VEC,VECCN,VAL(KLIM)
REAL VR,VI,ZS,NS
$2 S=T H E 2$ POSITION OF THE SUBSTRATE INTERFACE.
CRS = THE COMPLEX REFRACTIVE INDEX OF THE SUBSTRATE.

REWIND 12
REWIND 13
SKIP OVER THE ALPHA(M) AND B(L,M) TERMS OF THE UPPER LAYERS.

IF(NS.GT.1) THEN
DO 730 I=1,NS-1 DO $720 \mathrm{~J}=1, \mathrm{KLIM}$

READ(12,*) VAL(J)
DO $710 \mathrm{~K}=1$, KLIM READ (13,*) VR,VI
CONTINUE CONTINUE
CONTINUE
END IF
SET UP THE RN MATRIX.
DO 750 L=1, KLIM
DO $740 \mathrm{M}=1, \mathrm{KLIM}$
IF (L.EQ.1) THEN
READ (12,*) VAL(M)
END IF
$\operatorname{READ}(13, *)$ VR,VI
VEC = CMPLX(VR,VI)
$\operatorname{RN}(L, M)=\operatorname{CEXP}(-\operatorname{VAL}(M) * 2 S) * \operatorname{VEC}$
$\operatorname{RN}(L, M+K L I M)=\operatorname{CEXP}(\operatorname{VAL}(M) * 2 S) * V E C$
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE SETAM(RM,T,RN,RKO,AV,VAL,NS,WAVE, SPAFRE, CRS)
PARAMETER(NLIM=-22, LIM=22, KLIM=45, MLIM=90)
COMPLEX RM(MLIM, MLIM),T(MLIM,MLIM),RN(KLIM,MLIM),RKL,

* RV(MLIM),AV(MLIM), CI,VAL(KLIM), CRS, CRSUB, S2, S3, A1, ASUB

REAL RKO,WKSPCE(MLIM),WAVE,SPAFRE,NS
ASSEMBLE THE RM,RN AND T MATRICES INTO ONE MATRIX (RM).
THIS VERSION ALLOWS FOR THE INCLUSION OF AN UNPATTERNED
SUBLAYER (OXIDE). IF NOT WANTED, SET TSUB=0.0
TSUB IS THE THICKNESS IN UM OF THIS LAYER AND CRSUB IS THE COMPLEX INDEX OF REFRACTION.

```
TSUB = 0.0
CRSUB = CMPLX(1.46,0.0)
CI = CMPLX(0.0,-1.0)
```

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743 C
744
745 C
746 C
747
748
749
750

```
 IF(NS.EQ.1) THEN
 DO }820\mathrm{ L=1,KLIM
 V = CMPLX((WAVE*SPAERE*(L-LIM-1))**2,0.0)
 S2 = CSQRT(CRSUB**2-V)
 S3 = CSQRT(CRS**2-V)
 A1 = CEXP(CMPLX(0.0,2.0)*RK0*TSUB*S2)
 ASUB = ((S2+S3)-(S2-S3)*A1)/((S2+S3)+(S2-S3)*A1)
 RKI = ASUB*S2
 DO 810 M=1,KLIM
 RM(L+KIIM,M) = RN(L,M)*(RKL+VAL(M)*CI/RKO)
 RM(L+KLIM,M+KLIM) = RN(L,M+KLIM)*(RKI-VAL(M)*CI/RKO)
 CONTINUE
 CONTINUE
ELSE
 DO }836 L=1,KLI
 V = CMPLX((WAVE*SPAFRE*(L-LIM-1))**2,0.0)
 S2 = CSQRT(CRSUB**2-V)
 S3 = CSQRT(CRS**2-V)
 A1 = CEXP(CMPLX(0.0,2.0)*RR0*TSUB*S2)
 ASUB = ((S2+S3)-(S2-S3)*A1)/((S2+S3)+(S2-S3)*A1)
 RKL = ASUB*S2
 DO 834 M=1,KIIM
 DO }832\mathrm{ I=1,KLIM
 RM(L+KLIM,M) = RM(L+KLIM,M) + RKL*(RN(L,I)*T(I,M) +
 RN(L,I+KIIM)*T(I+KLIM,M)) + (RN(L,I)*VAL(I)*CI/RKO*
 T(I,M) - RN(L,I+KIIM)*VAL(I)*CI/RKO*T(I+KLIM,M))
 RM(L+KLIM,M+KLIM) = RM(L+KLIM,M+KLIM) + RKI*(RN(L,I)*
 T(I,M+KLIM) + RN(I,I+KIIM)*T(I+KLIM,M+KLIM)) +
 (RN(L,I)*VAL(I)*CI/RKO*T(I,M+KLIM) - RN(I,I+KLIM)*
 VAL(I)*CI/RKO*T(I+KIIM,M+KLIM))
 CONTINUE
 CONTINUE
 CONTINUE
END IF
 SET UP THE RIGHT HAND SIDE VECTOR RV.
 DO }840\mathrm{ L=1,MLIM
 WKSPCE(L) = 0.0
 RV(L) = CMPLX(0.0,0.0)
 CONTINUE
RV(LIM+1)=CMPLX(2.0,0.0)
FO4ADF SOLVES THE SET OF SIMULTANEOUS EQUATIONS DEFINED
BY RM AND RV. SEE EQ. 21 OF APPENDIX III.
THE SOLUTIONS ARE RETURNED IN THE VECTOR AV.
IFAIL = 0
 PRINT *, '4 SECTIONS OF RM MATRIX'
```

752
753 C 754

```
 WRITE(1,*)'FIRST SECTION RM(1,M),M=1,45'
 PRINT *, (RM(1,M) ,M=1,45)
 WRITE(1,*)(RM(1,M),M=1,45)
 PRINT *, (RM(1,M+45),M=1,45)
 WRITE(1,*) 'SECOND SECTION RM(1,M+45),M=1,45'
 WRITE(1,*)(RM(1,M+45),M=1,45)
 PRINT *, (RM(46,M),M=1,45)
WRITE(1,*)'THIRD SECTION RM(46,M),M=1,45'
 WRITE(1,*)(RM(46,M),M=1,45)
PRINT *, (RM(46,M+45),M=1,45)
WRITE(1,*)'FOURTH SECTION RM(46,M+45),M=1,45'
 WRITE(1,*)(RM(46,M+45),M=1,45)
```

    IFAIL=0
    CALL FO4ADF(RM,MLIM,RV,MLIM,MLIM,1,AV,MLIM,
WKSPCE,IFAIL)
IF(IFAIL.EQ.O) THEN
PRINT*,'SUCCESSFUL SOLUTION FOR (A) COEFFICIENTS.'
ELSE
PRINT*,'FAILURE TO SOLVE FOR (A) COEFFICIENTS.'
END IF
PRINT *, (AV(L), L, 'AV', L=1,MLIM)
RETURN
END

```
SUBROUTINE FCOEFF(AV,FC,T)
PARAMETER (NLIM=-22, LIM=22, KLIM=45, MLIM=90)
COMPLEX AV(MLIM),FC(KLIM),T(MLIM,MLIM)
REAL VR,VI
REWIND }1
```

CALCULATE THE FOURIER COEFFICIENTS OF THE PSEUDO-OBJECT
AND WRITE THE RESULTS ON UNIT15.
STORE THE FIRST LAYER EIGENVECTORS IN MATRIX T.
DO 920 L=1,KLIM
WRITE(15,*) AV(L), AV(L+KLIM), L
DO 910 M=1,KLIM
$\operatorname{READ}(13, *)$ VR,VI
$T(L, M)=\operatorname{CMPLX}(V R, V I)$
CONTINUE
CONTINUE

CLEAR THE FC VECTOR AND SET THE FC(O) VALUE TO -1.0.
CALCULATE FOURIER SERIES COEFFICIENTS FC USING THE A-
COEFFICIENTS AND THE EIGENVECTORS. SEE EQ. 22 OF APPENDIX III.

801 802 803 804 805 806 807 808 809 810930
811940
812 C
813 C
814 C
815 C
816
817
818
819
820950
821. 999

822
823
824 C
825 C
826 C
827
828
829
830
831
832 C
833
834 C
835
836
837
838 C
839
840
841
842
843
844
845
846
847
C

```
DO 940 L=1,KLIM
 IF(L.EQ.LIM+1) THEN
 FC(L) = CMPLX(-1.0,0.0)
 ELSE
 FC(L) = CMPLX(0.0,0.0)
 END IF
 DO 930 M=1,KLIM
 FC(L) = FC(L)+(AV(M)+AV(M+KLIM))*T(L,M)
 CONTINUE
CONTINUE
```

THE FOURIER SERIES FOR THE PSEUDO-OBJECT IS WRITTEN ON
UNIT16, IN A FORMAT WHICH ALLOWS IT TO INTERFACE TO A
PLANAR IMAGING OR OTHER PROGRAM.

```
DO 950 K=1,KLIM
 WRITE(16,999) FC(K)
 PRINT*,FC(K)
CONTINUE
FORMAT(1X,2F20.8)
RETURN
END
```

SUBROUTINE IMAGE(FC,PI,SPAFRE,TRA,DF,LSKIP,WAVE)
PARAMETER(NLIM=-22, LIM=22, KLIM=45, MLIM=90)
REAL PI,WAVE,SPAFRE,RR,RI,XPOS,TRA(2),
$\operatorname{RIM}(-600: 600), I R, \operatorname{CAM}(-100: 100), \operatorname{ELEC}(-500: 500), X, Y N, X I$
COMPLEX FC(NLIM:LIM),CI,CCI,RT,FFC,FOC(-KLIM:KLIM)
THIS SUBROUTINE COMPUTES THE IMAGE OF THE LINE ASSUMING
ONE DIMENSIONAL OPTICS.
THE IMAGE IS COMPUTED FOR 1000 POINTS OVER A RANGE
$\mathrm{OF}+/-0.5 * T H E$ PERIOD.
$C I=\operatorname{CMPLX}(0.0,1.0)$
IF LSKIP $=1$ THEN READ IN THE PREVIOUS COEFFICIENTS.
IF(LSKIP.EQ.1) THEN
DO 105 I=NLIM,LIM
$\operatorname{READ}(16, *) \operatorname{RR}, \operatorname{RI}$
$\mathrm{FC}(\mathrm{I})=\operatorname{CMPLX}(R R, R I)$
CONTINUE
END IF
OBJ = NUMERICAL APERTURE OF THE OBJECTIVE.
CON = NUMERICAL APERTURE OF THE "CONDENSER"
(ILLUMINATION APERTURE).
THESE PARAMETERS ARE PRESENTLY SET FOR THE NBS LASER SYSTEM
$O B J=0.85$
CON $=0.17$
$F M=O B J * L I M$
$F R=C O N * L I M$

THE DEFOCUS TERM DF ADDS A PHASE MODULATION TO THE FOURIER SERIES.

```
CCI = CI*2.0*PI*SPAFRE
DO }115\textrm{I}=-\textrm{KLIM,RIIM
 FOC(I) = CEXP(2.0*PI*CI*DF*(WAVE*I*SPAFRE)**2)
CONTINUE
```

THE IMAGE IS COMPUTED FOR AN ADDITIONAL 100 POINTS ON
EITHER SIDE IN ORDER TO ALLOW FOR CONVOLUTION WITH A
DETECTOR APERTURE OR IMPULSE RESPONSE.

```
DO 130 IX=-600,600
 XPOS = IX/(SPAFRE*1000.0)
 RIM(IX) = 0.0
 DO 120 J=-FR,FR
 RT = CMPLX(0.0,0.0)
 DO }110\textrm{K}=\textrm{J}-\textrm{FM},\textrm{J}+F
 IF(ABS(K).GT.LIM) THEN
 FFC = CMPLX(0.0,0.0)
 ELSE
 FFC = FC(K)*FOC(K-J)
 END IF
 RT = RT+FFC*CEXP(CCI*XPOS*K)
 CONTINUE
 RIM(IX) = RIM(IX)+REAL(RT)**2+AIMAG(RT)**2
 CONTINUE
CONTINUE
```

THE ARRAY RIM() CONTAINS THE OPTICAL IMAGE PROFILE.
CONVOLVE THE IMAGE WITH THE DETECTOR LINE SPREAD FUNCTION.
IF TRA(1) IS GREATER THAN 0.01 THEN A SLIT APERTURE IS ASSUMED.
OTHERWISE IF TRA(2) IS GREATER THAN 0.05 THEN A VIDEO CAMERA WITH A GAUSSIAN LINE SPREAD FUNCTION IS ASSUMED. IF BOTH ARE ZERO THEN NO CONVOLUTION TAKES PLACE.
THE ARRAY CAM() CONTAINS THE VIDEO CAMERA RESPONSE. THE ARRAY ELEC() CONTAINS THE ELECTRICAL OUTPUT SIGNAL OF THE TRANSDUER.

901 902 903 904 905 906 907 908 909 910 911 912 913140 914150
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934 935 936 937
938
939
940
941
942
943
944
945 946
947
948
949
C

```
IF(TRA(1).GT.0.01) THEN
 IR = TRA(1)*SPAFRE*500.0
 IF(IR.GT.100) THEN
 IR = 100
 ELSE IF(IR.LT.1) THEN
 IR = 1
 END IF
 DO 150 I=-500,500
 ELEC(I) = 0.0
 DO 140 J=-IR,IR
 ELEC(I) = ELEC(I)+RIM(J+I)
 CONTINUE
 CONTINUE
ELSE IF(TRA(2).GT.0.05) THEN
 DO 160 I=-100,100
 X = I/(SPAFRE*1000)
 CAM(I) = EXP(-0.5*(X**2)/(TRA(2)**2))
 CONTINUE
 DO 180 I=-500,500
 ELEC(I) = 0.0
 DO 170 J=-100,100
 ELEC(I) = ELEC(I)+CAM(J)*RIM(I+J)
 CONTINUE
 CONTINUE
ELSE
 DO }190\mathrm{ I=-500,500
 ELEC(I) = RIM(I)
 CONTINUE
 END IF
WRITE THE OUTPUT IMAGE DATA ON UNIT17.
THE IMAGE IS NORMALISED WITH RESPECT TO THE INTENSITY AT
A DISTANCE OF 1/2 THE PERIOD AWAY FROM THE ORIGIN.
YN = AMAX1(ELEC(0),ELEC(500))
DO 195 I=-500,500
 XI = I/(SPAFRE*1000.0)
 ELEC(I) = ELEC(I)/YN
 WRITE(17,*) ELEC(I),XI
CONTINUE
THE FOLLOWING 'END OF DATA' STATEMENT IS FOR THE
 'DATAPLOT' GRAPHICS PACKAGE.
WRITE(17,*) 'END OF DATA'
RETURN
END
```


# Appendix II <br> Test Cases for Thick Layer Imaging Program (THKIMAG) 

THICK DIELECTRIC LAYER WITH VERTICAL EDGES
( $6 \mu \mathrm{~m}$ wide line with vertical edges patterned
in a $0.65 \mu \mathrm{~m}$ thick silicon dioxide layer on a
silicon substrate).
silicon substrate).
$\begin{aligned} & \text { : WAVELENGTH, PERIOD, NUMBER OF LAYERS } \\ & \text { : RI(AIR), RI (SUBSTRATE), ID } \\ 0.00 & : \text { WIDTH, } 3 \text { POLYNOMINAL COEFFICIENTS } \\ & : \text { DISPLACEMENTS IN Z } \\ & : \text { RI(PATTERNED LAYER), LAYER THICKNESS } \\ & : \text { SLIT WIDTH, CAMERA WIDTH } \\ & : \text { SKIP, DEFOCUS }\end{aligned}$



Test Case \#1: File FCOFPO: Fourier Coefficients of the Pseudo-Object

1	-. 09108273	. 00519622
2	-. 06079249	. 01308535
3	. 00478018	. 01658667
4	. 04455374	. 00100212
5	. 00810522	-. 00558479
6	-. 03495132	-. 01667204
7	-. 00672853	. 00298502
8	. 01767570	. 02462243
9	. 00840075	-. 000504291
10	-. 00193394	-. 02052349
11	-. 01237166	. 00493059
12	-. 00605733	. 00957640
13	. 01508445	-. 00253726
14	. 00599687	. 00264588
15	-. 01573390	-. 00030316
16	-. 00008822	-. 01386078
17	. 01502888	. 00264068
18	-. 01048221	. 02557344
19	-. 01386187	-. 00424937
20	. 02992448	-. 04556850
21	. 01290886	. 00491631
22	-. 10926479	. 13891567
23	. 39447293	. 04366360
24	-. 10926479	. 13891567
25	. 01290886	. 00491631
26	. 02992448	-. 04556850
27	-. 01386187	-. 00424937
28	-. 01048221	. 02557344
29	. 01502888	. 00264068
30	-. 00008822	-. 01386078
31	-. 01573390	-. 00030316
32	. 00599687	. 00264588
33	. 01508445	-. 00253726
34	-. 00605733	. 00957640
35	-. 01237166	. 00493059
36	-. 00193394	-. 02052349
37	. 00840075	-. 00504291
38	. 01767570	. 02462243
39	-. 00672853	. 00298502
40	-. 03495132	-. 01667204
41	. 00810522	-. 00558479
42	. 04455374	. 00100212
43	. 00478018	. 01658667
44	-. 06079249	. 01308535
45	-. 09108273	. 00519622


( $6 \mu \mathrm{~m}$ wide line with vertical edges patterned in a $0.09 \mu \mathrm{~m}$ thick chromium layer on a silicon substrate).

0.53	12.0	1		WAVELENGTH, PERIOD, NUMBER OF LAYERS
$2(1.00,0.00)$	(4.10,0.06)	0	:	RI(AIR), RI(SUBSTRATE), ID
36.00	0.00	0.00	0.00	: WIDTH, 3 POLYNOMINAL COEFFICIENTS
40.00	0.00	0.00	:	DISPLACEMENTS IN 2
$5(1.40,2.55)$	0.09		:	RI(PATTERNED LAYER), LAYER THICKNESS
60.20	0.00			SLIT WIDTH, CAMERA WIDTH
70	0.00			SKIP, DEFOCUS

Test Case \#2: File FCOFPO: Fourier Coefficients of the Pseudo-Object

1	. 02598611	-. 01092292
2	. . 01353529	. 00904450
3	-. 01731358	. 00311739
4	. 01756685	-. 000795909
5	. 01356888	-. 00057359
6	-. 02047819	. 00686085
7	-. 01107900	-. 00064297
8	. 02327938	-. 00598552
9	. 00921602	. 00126586
10	-. 02648625	. 00536360
11	-. 00773381	-. 00157148
12	. 03061512	-. 000501271
13	. 00650267	. 00169434
14	-. 03646409	. 00498365
15	-. 00544231	-. 00171108
16	. 04564310	-. 00541449
17	. 00449766	. 00167165
18	-. 06227954	. 00669869
19	-. .00362787	-. 00161367
20	. 10149616	-. 01032568
21	. 00279663	. 00156888
22	-. 29965151	. 02984478
23	-. 14235833	-. 46645156
24	-. 29965151	. 02984478
25	. 00279663	. 00156888
26	. 10149616	-. 01032568
27	-. 00362787	-. 00161367
28	-. 06227954	. 00669869
29	. 00449766	. 00167165
30	. 04564310	-. 000541449
31	-. 00544231	-. 00171108
32	-. 03646409	. 00498365
33	. 00650267	. 00169434
34	. 03061512	-. 000501271
35	-. 00773381	-. 00157148
36	-. 02648625	. 00536360
37	. 00921602	. 00126586
38	. 02327938	-. 00598552
39	-. 01107900	-. 00064297
40	-. 02047819	. 00686085
41	. 01356888	-. 00057359
42	. 01756685	-. 00795909
43	-. 01731358	. 00311739
44	-. 01353529	. 00904450
45	. 02598611	-. 01092292




ロロトツリな」 ーストいスルート
$\sim$

> THICK DIELECTRIC LAYER WITH CURVED EDGES
> ( $6 \mu \mathrm{~m}$ wide line with curved edges patterned in a $0.65 \mu \mathrm{~m}$ thick silicon dioxide layer on a silicon substrate).

10.53	12.0	9		WAVELENGTH, PERIOD, NUMBER OF LAYERS
$2(1.00,0.00)$	(4.10,0.06)	0	:	RI(AIR), RI (SUBSTRATE), ID
6.00	0.00	2.00	0.00	: WIDTH, 3 POLYNOMINAL COEFFICIENTS
0.00	0.00	0.00	:	DISPLACEMENTS IN 2
5 (1.46,0.00)	0.65		:	RI(PATTERNED LAYER), LAYER THICKNESS
0.20	0.00		:	SLIT WIDTH, CAMERA WIDTH
70	0.00		:	SKIP, DEFOCUS

1 RUN PARAMETERS.
2 WAVELENGTH $=.53$
3 NUMBER OF LAYERS=9.
4 WAVE NUMBER $=11.85506661732$
5 AIR LAYER $=(1,0$.
6 SUBSTRATE $=(4.1, .06)$
7 DEFOCUS $=0$.
8 SLIT WIDTH IN MICRONS $=.2$
9 CAMERA WIDTH PARAMETER $=0$.

10	LAYER	WIDTH	POSITION	RI	OFFSET	
11	1	6.003	.072	1.460	.000	.000
12	2	6.023	.144	1.460	.000	.000
13	3	6.065	.217	1.460	.000	.000
14	4	6.128	.289	1.460	.000	.000
15	5	6.211	.361	1.460	.000	.000
16	6	6.316	.433	1.460	.000	.000
17	7	6.441	.506	1.460	.000	.000
18	8	6.587	.578	1.460	.000	.000
19	9	6.754	.650	1.460	.000	.000

Test Case \#3: File FCOFPO: Fourier Coefficients of the Pseudo-Object

1	. 03128047	-. 04799119
2	-. 00117774	. . 02619416
3	-. 04538472	. 02843279
4	. 00285586	-. 00315021
5	. 04860053	. 01296409
6	-. 01663746	-. 01247821
7	-. 02455180	-. 02653567
8	. 00370391	. 02884274
9	. 01005389	. 01942759
10	. 01510389	-. 02721254
11	-. 00775574	-. 00992680
12	-. 02538226	. 01395119
13	. 01109421	. 00413423
14	. 02493682	. 00192007
15	-. 01569382	-. 00211696
16	-. 01660809	-. 01617415
17	. 01970374	. 00272111
18	. 00248225	. 02957102
19	-. 02276161	-. 00472439
20	. 02118083	-. 04960428
21	. 02524568	. 00671538
22	-. 10579441	. 14143811
23	. 38000129	. 04024071
24	-. 10579441	. 14143811
25	. 02524568	. 00671538
26	. 02118083	-. 04960428
27	-. 02276161	-. 00472439
28	. 00248225	. 02957102
29	. 01970374	. 00272111
30	-. 01660809	-. 01617415
31	-. 01569382	-. 00211696
32	. 02493682	. 00192007
33	. 01109421	. 00413423
34	-. 02538226	. 01395119
35	-. 00775574	-. 00992680
36	. 01510389	-. 02721254
37	. 01005389	. 01942759
38	. 00370391	. 02884274
39	-. 02455180	-. 02653567
40	-. 01663746	-. 01247821
41	. 04860053	. 01296409
42	. 00285586	-. 00315021
43	-. 04538472	. 02843279
44	-. 00117774	-. 02619416
45	. 03128047	-. 04799119




○ロトーU๔」 - Zトயマルート
$\sim$


Test Case \#4: File FCOFPO: Fourier Coefficients of the Pseudo-Object

1	.02870492	-.00727836
2	-.03936288	-.01604885
3	.00858718	.02754465
4	.02527876	.00266374
5	-.01939032	-.03161583
6	-.00720966	.00412280
7	.01258914	.04300149
8	-.00154677	-.02651014
9	.00149106	-.03863546
10	-.00367560	.04706727
11	-.00975738	.02263821
12	.01454326	-.05862991
13	.01080683	-.00255415
14	-.02546317	.06130368
15	-.00753362	-.01701846
16	.03522425	-.05701120
17	.00344633	.03333270
18	-.04739825	.04842201
19	-.00070328	-.04416899
20	.07514600	-.04152960
21	-.00182714	.04869017
22	-.21542281	.06822844
23	-.26974701	-.56211569
24	-.21542281	.06822866
25	-.00182724	.04869002
26	.07514611	-.04152962
27	-.00070319	-.04416899
28	-.04739853	.04842213
29	.00344651	.03333271
30	.03522438	-.05701149
31	-.00753393	-.01701814
32	-.02546294	.06130364
33	.01080669	-.00255426
34	.01454345	-.05863000
35	-.00975762	.02263852
36	-.00367547	.04706706
37	.00149104	-.03863546
38	-.00154668	-.02651021
39	.01258891	.04300184
40	-.00720944	.00412244
41	.01939040	.03161581
42	.02527873	.02756401
43	.00858720	-.01604884
44	.02870492	-00727828
45		

ロローーいく」ーストいでいットン


ロロトツUく」－Zールていートン
$r$
Test Case \#5: THICK METAL LAYER WITH CURVED EDGES

0.53	12.0	9		WAVELENGTH, PERIOD, NUMBER OF LAYERS
(1.00,0.00)	$(4.10,0.06)$	0		RI(AIR), RI(SUBSTRATE), ID
6.00	0.00	2.00	0.00	: WIDTH, 3 POLYNOMINAL COEFFICIENTS
0.00	0.00	0.00		DISPLACEMENTS IN Z
$5(1.40,2.55)$	0.60			RI(PATTERNED LAYER), LAYER THICKNESS
60.20	0.00			SLIT WIDTH, CAMERA WIDTH
70	0.00			SKIP, DEFOCUS

1 RUN PARAMETERS.
2 WAVELENGTH $=.53$
3 NUMBER OF LAYERS=9.
4 WAVE NUMBER $=11.85506661732$
5 AIR LAYER $=(1 ., 0$.
6 SUBSTRATE $=(4.1, .06)$
7 DEFOCUS $=0$.
8 SLIT WIDTH IN MICRONS $=.2$
9 CAMERA WIDTH PARAMETER $=0$.

10	LAYER	WIDTH	POSITION	RI	OFFSET	
11	1	6.002	.067	1.400	2.550	.000
12	2	6.020	.133	1.400	2.550	.000
13	3	6.056	.200	1.400	2.550	.000
14	4	6.109	.267	1.400	2.550	.000
15	5	6.180	.333	1.400	2.550	.000
16	6	6.269	.400	1.400	2.550	.000
17	7	6.376	.467	1.400	2.550	.000
18	8	6.500	.533	1.400	2.550	.000
19	9	6.642	.600	1.400	2.550	.000

Test Case \#5: File FCOFPO: Fourier Coefficients of the Pseuđo-Object
.02859869
. . 01777494
-. 01575921
.01125702
.03861030
$-.05863673$
.00882784
.04261764
-. 02643598
-. 01766390
.01759161
.00861215
$-.00318939$
-. 01427936
-. 00661590
.02942126
.00859497
-. 05174989
$-.00051795$
.08337158
-. 01442410
-. 20644118
$-.27539556$
-. 20644114
-. 01442399
.08337133
$-.00051788$
-. 05174964
.00859462
.02942143
$-.00661589$
-. 01427944
-. 00318921
.00861184
.01759189
-. 01766396
$-.02643602$
.04261751
.00882814
-. 05863689
.03861020
.01125717
-. 01575919
-. 01777511
.02859880
.01883469
-. 05351227
.07268917
-. 04988998
.00407903
.02278771
-. 01948456
.00856627
-. 00272235
-. 00659771
.01642617
$-.00775205$
-. 01494420
.01811821
.00686578
-. 02111680
-. 00085589
.02242236
-. 00098279
$-.03235164$
.00796601
.07115434
$-.53212378$
.07115399
.00796627
-. 03235159
$-.00098292$
.02242235
-. 00085587
-. 02111668
.00686571
.01811798
-. 01494381
-. 00775220
.01642605
-. 00659770
$-.00272207$
.00856600
-. 01948459
.02278783
.00407919
-. 04989043
.07268954
$-.05351234$
.01883462

○ロトール『」 - Zトயスルットン

THICK POLYSILICON LAYER WITH CURVED EDGES
( $6 \mu \mathrm{~m}$ wide line with curved edges patterned in
a $0.6 \mu \mathrm{~m}$ thick polysilicon layer on a silicon
substrate).
Test Case \#6:

1	0.53	12.0	9	: WAVELENGTH, PERIOD, NUMBER OF LAYERS
2	$(1.00,0.00)$	$(4.10,0.06)$	0	: RI(AIR), RI (SUBSTRATE), ID
3	6.00	0.00	2.00	0.00 : WIDTH, 3 POLYNOMINAL COEFFICIENTS
4	0.00	0.00	0.00	: DISPLACEMENTS IN 2
5	$(3.80,0.10)$	0.60		: RI (PATTERNED LAYER), LAYER THICKNESS
6	0.20	0.00		: SLIT WIDTH, CAMERA WIDTH
7	0	0.00		: SKIP, DEFOCUS


1	RUN PARAMETERS.					
2	WAVELENGTH $=.53$					
3	NUMBER OF LAYERS=9.					
4	WAVE NUMBER $=11.85506661732$					
5	AIR LAYER $=(1 ., 0$.					
6	SUBSTRATE $=(4.1, .06)$					
7	DEFOCUS $=0$.					
8	SLIT WIDTH IN MICRONS $=.2$					
9	CAMERA WIDTH PARAMETER $=0$.					
10	LAYER	WIDTH	POSITION			OFFSET
11	1	6.002	. 067	3.800	. 100	.000
12	2	6.020	. 133	3.800	. 100	.000
13	3	6.056	. 200	3.800	. 100	.000
14	4	6.109	. 267	3.800	. 100	. 000
15	5	6.180	. 333	3.800	. 100	. 000
16	6	6.269	. 400	3.800	. 100	. 000
17	7	6.376	. 467	3.800	.100	. 000
18	8	6.500	. 533	3.800	. 100	. 000
19	9	6.642	. 600	3.800	. 100	. 000

Test Case \#6: File FCOFPO: Fourier Coefficients of the Pseudo-Object

1	-. 06445069	. 00175338
2	. 10217661	-. 01417309
3	-. 06446184	. 01696297
4	-. 03134388	-. 00120886
5	. 07807896	-. 01799169
6	-. 01812634	. 01902242
7	-. 06195582	-. 00139914
8	. 04708281	-. 01378403
9	. 03549830	. 01048018
10	-. 05741779	. 00419147
11	-. 01086065	-. 01166372
12	. 05640716	. 00465509
13	-. 00874018	. 00740007
14	-. 04823824	-. 01104616
15	. 02114851	. 00151754
16	. 03683013	. 01295479
17	-. 02419279	-. 01478962
18	-. 02814956	-. 00686661
19	. 01508793	. 03343811
20	. 03801847	-. 01927935
21	. 00830037	-. 06197198
22	-. 16673161	. 17059941
23	-. 31875250	-. 22803972
24	-. 16673161	. 17059941
25	. 00830037	-. 06197198
26	. 03801847	-. 01927935
27	. 01508793	. 03343811
28	-. 02814956	-. 00686661
29	-. 02419279	-. 01478962
30	. 03683013	. 01295479
31	. 02114851	. 00151754
32	-. 04823824	-. 01104616
33	-. 00874018	. 00740007
34	. 05640716	. 00465509
35	-. 01086065	-. 01166372
36	-. 05741779	. 00419147
37	. 03549830	. 01048018
38	. 04708281	-. 01378403
39	-. 06195582	-. 00139914
40	-. 01812634	. 01902242
41	. 07807896	-. 01799169
42	-. 03134388	-. 00120886
43	-. 06446184	. 01696297
44	. 10217661	-. 01417309
45	-. 06445069	. 00175338



## Appendix III

Reprint - "Modeling of the optical microscope image of lines patterned in thick layers with variable edge geometry," by D. Nyyssonen and C. P. Kirk (submitted to J. Opt. Soc. Am.).

Modeling of the optical microscope imaging of lines patterned in thick layers with variable edge geometry*

Diana Nyyssonen**

National Bureau of Standards, Gaithersburg, MD 20899

Chris P. Kirk ${ }^{\dagger}$<br>Vickers Instruments, Haxby Road, York. Y03 7SD. England and<br>Department of Electrical and Electronic Engineering, Leeds University, Leeds. LS2 9JT. England


#### Abstract

A monochromatic, waveguide model is presented which can predict the optical microscope images of line objects with arbitrary edge geometry, patterned in thick-layers including multilayer structures with sloping, curved, and undercut edges, granular structures such as lines patterned in polysilicon, as well as asymmetric objects. The model is used to illustrate the effects of line edge structure on the optical image. Qualitative agreement with experimentally obtained optical image profiles is demonstrated. Application of the model to study the effects of variations in layer thickness and edge geometry on linewidth measurements made at different stages of manufacturing integratedcircuit devices is discussed.


[^2]During the manufacture of integrated circuit wafers, critical dimensions of certain features must be measured at different stages of the production process. The control of the critical dimension of linewidth is usually monitored by using an optical or scanning-electron microscope. The measurements made by a correctly aligned microscope fitted with an appropriate measurement attachment are usually limited in accuracy and precision not by instrumental errors but by the lack of understanding of the characteristics of the image profile and the lack of accurate edge detection algorithms.

In the past, optical imaging in the microscope has been described by the scalar theory of partially coherent imaging [1-3] which characterizes the object by a planar complex transmittance or reflectance function. However, this approach does not accurately predict either the scattered field or the image structure for micrometer-sized line objects thicker than approximately onequarter of the illuminating wavelength [3]. Unfortunately, most of the line features to be measured during the production of integrated circuits fall into this category of thick objects. Typical line objects are patterned in layers with thicknesses ranging from 0.3 to over $1.0 \mu \mathrm{~m}$ (e.g. photoresist).

Integrated-circuit features encompass a wide variety of materials including dielectrics and absorbing materials of high and low conductivity (e.g., semiconductors in crystalline and amorphous states with varying amounts of dopant impurities, refractory metals, etc.) and line geometries with edge shapes varying from vertical to the complex shapes shown in Fig. 1. These lines may be etched into layers and be situated on top of metal or dielectric layers. Because of this wide variation, most of the approaches found in the literature are of only limited usefulness.

Scattering from micrometer-sized thick objects with complex indices of refraction falls in the domain of scattering by objects whose size is comparable to the illuminating wavelength such as Mie scattering [4] and requires an electromagnetic field treatment to accurately predict the scattered field. The various approaches that have been used to treat scattering by objects on the order of a wavelength can be found in the large volume of papers primarily in the areas of scattering by particles [5], scattering by surfaces with defects or protuberances [6], or diffraction by gratings [7]. Many of these approaches are limited either to objects of specific shapes $[4,8]$ or weakly scattering objects which satisfy either the Rayleigh [9] or Born [10] approximations, or require infinite conductivity or specific grating geometries. Many are mathematically cumbersome when applied to the wide range of object shapes and materials of present interest.

Recently, the problem of imaging of line objects with vertical edge walls patterned in thick layers of dielectrics and metals was treated by Nyyssonen [3,11] who developed a model based on the waveguide analysis for thick dielectric structures of Burckhardt [12]. Burckhardt's model was originally developed for diffraction from sinusoidal dielectric gratings and was applied to the reconstruction of bleached holograms. Kaspar [13,14] extended Burckhardt's approach to include absorbing photographic emulsions and non-sinusoidal grating structures and applied this approach to contact printing as well. Kaspar's work related the dielectric constant of the grating to the photographic density of the film.

The waveguide model previously used by Nyyssonen [3,11] assumes that the line structure is patterned in a nonmagnetic layer which can be characterized by its complex index of refraction which is taken to be constant with depth within the layer. Thus, this model can be used to represent homogeneous line structures with
vertical edge walls. The spatial function representing the variation in the dielectric constant (square of the complex index of refraction) in the layer is expanded in a Fourier series. When this is substituted into the wave equation, Hill's equation [15] is obtained. The eigenvalue solutions to this equation represent waveguide modes. Assuming a single incident plane wave normal to the surface, the boundary value problem at the layer interfaces is solved to determine the Fourier coefficients in the expansions for the transmitted and reflected fields. This method allows the use 'of conventional scalar imaging theory to compute the image when no polarization effects are present. In such a case, the $E$ and H-field components are equivalent and either may be used in the scalar imaging equations.

In this paper, the waveguide model is extended to line objects whose index of refraction and geometry vary with depth in the layer, thus enabling line objects with nonvertical edges and multilayer structures to be considered. This extension of the model allows the images of virtually all line structures commonly encountered in IC fabrication to be modeled.

## Thick-layer Model for Variable Edge Geometry

The method of solution for line structures of arbitrary edge geometry whose index of refraction may vary with depth in the layer is an extension of Nyyssonen's earlier method used for vertical edge walls discussed above. A line object of the type to be treated in this paper is shown in Fig. 2a. This line structure has been chosen because it contains different materials, curved edges, asymmetry, and an unpatterned sub-layer. The line structure in the patterned layer varies in both width and dielectric constant as a function of depth $z$ within the layer. Figure $2 b$ shows how this line structure may be approximated by a multilayer set of line objects each of which has a constant index of refraction over a small interval of depth $z$. The line may thus
be represented by a set of layers with the complex dielectric constant $\varepsilon$ in each layer represented by the Fourier series expansion of:
$\varepsilon_{n}(x)= \begin{cases}{\hat{n_{n}}}^{2}, & \left(\frac{-w_{n}}{2}+\Delta_{n}\right)<x<\left(\frac{w_{n}}{2}+\Delta_{n}\right) \\ 1, & \text { between the lines }\end{cases}$
where:

$$
\begin{aligned}
& \hat{n}_{n}=\text { refractive index of the } n \text {th layer of the line structure, } \\
& w_{n}=\text { width of the nth layer, and } \\
& \Delta_{n}=\text { offset of the nth layer in the x-direction. (See Fig. } 2 b \text { ) }
\end{aligned}
$$

Nonperiodic structures are taken as periodic with a very large repeating distance (period).

The eigenvalue solutions for the electromagnetic field components are found independently for each layer. The boundary value equations at each interface form a set of complex matrix equations which when solved allow the substitution of a single "equivalent" scattering layer for the multilayer structure. Thereafter, the solution for the transmitted and reflected field components and image are found in the same manner as for the single layer case [3,11].

Following Burckhardt's method [12] and assuming monochromatic illumination where $E=E_{E_{0}} e^{-i \omega t}$, we start with the inhomogeneous wave equation for either the $E$ - or $H$-field [16]:

$$
\begin{align*}
& { }^{2} \underline{E}+\hat{\varepsilon} \mu k_{O}^{2} \underline{E}+\operatorname{grad} \frac{E}{\hat{\hat{\varepsilon}}} \cdot \operatorname{grad} \hat{\varepsilon}=0  \tag{2}\\
& { }^{2} \underline{H}+\hat{\varepsilon} \mu k_{O}^{2} \underline{H}+\frac{\operatorname{grad} \hat{\varepsilon}}{\hat{\varepsilon}} \times \operatorname{curl} \underline{H}=0 \tag{3}
\end{align*}
$$

with $k_{0}^{2} \hat{\varepsilon} \mu=k_{0}^{2} \hat{\eta}^{2}$ for nonmagnetic media.

If we choose the $(x, y, z)$-axes as we have done so that $\hat{\varepsilon}$ is constant along the length of the line in the $y$-direction, for $T E-m o d e\left(\underline{E}=E_{Y} \underline{Y}\right)$ and $T M$-mode ( $\underline{H}=H_{Y} \mathbb{Y}$ ) respectively, these equations simplify to

$$
\begin{equation*}
\nabla^{2} E_{Y}+k_{0}^{2} \hat{\hat{e}^{2}} E_{Y}=0 \tag{4}
\end{equation*}
$$

(TE-mode)
and

$$
\begin{equation*}
\nabla^{2} H_{Y}-\frac{1}{\hat{\varepsilon}} \frac{\partial \varepsilon}{\partial x} \frac{H_{Y}}{\partial x}+k_{0}^{2} \hat{\varepsilon}_{Y}=0 \quad \quad \text { (TM-mode) } \tag{5}
\end{equation*}
$$

In the following analysis we consider only TE-mode because in the experimental NBS laser linewidth measuring system, the direction of polarization of the laser source is aligned parallel to the $y$-direction in the sample plane and the $x$-direction is the image scan direction. See Fig. 3. However, for any other system configuration and mode of illumination, the field can be considered as a superposition of TE - and TM -modes [17] and the corresponding analysis for $T M$-mode will be required. See ref. 12. Note that these modes are determined with respect to the orientation of the structure (not the incident wave) and are uncoupled (TE-mode: $E_{y}$, $H_{X}, H_{z}$, TM-mode $H_{y}, E_{x}, E_{z}$ ).

The solution for the TE-mode is taken in the form $E_{Y}(x, z)=X(x)$ $z(z)$ and since $\hat{\varepsilon}=\hat{\varepsilon}(x)$, the method of separation of variables using a separation constant $a$ results in
$\frac{\partial^{2} X(x)}{\partial x^{2}}+k_{0}^{2} \hat{\varepsilon}(x) X(x)+\alpha^{2} X(x)=0$
$\frac{\partial^{2} Z}{\partial z^{2}}=a^{2} Z(z)$

These equations hold for any functional form of $\hat{\varepsilon}(x)$. However, following Burckhardt, we choose the Fourier approach where $\hat{\varepsilon}_{n}(x)$ from eq. (1) is represented by the Fourier series
$\hat{\varepsilon}_{n}(x)=\sum_{q} E_{q, n} \exp (2 \pi i q x / P)$
where
$E_{q, n}= \begin{cases}\left(W_{n} / P\right) \hat{n}_{n}^{2}+\left(1-W_{n} / P\right) \hat{n}_{0}^{2} & q=0 \\ \frac{\left(\hat{n}_{n}^{2}-\hat{n}_{0}^{2}\right)}{q \pi} \exp \left(2 \pi i \Delta_{n} q / P\right) \sin \left(q \pi W_{n} / P\right) & q \neq 0\end{cases}$
where $P$ is the period chosen arbitrarily large when the object consists of a single line and $q$ is the summation index. Substituting eq. (8) into eq. (6) yields the differential equation known as Hill's equation
$\frac{\partial^{2} X(x)}{\partial x^{2}}+k_{0}^{2}\left[\sum_{q} E_{q, n} \exp (2 \pi i q x / P)\right] X(x)+a^{2} X(x)=0$

The solution for this general form of Hill's equation is given by Kaspar and others $[13,15]$. The form of the eigenvalue matrix is given in the Appendix. The solution of eq. (9) for the $n$-th layer is of the form

$$
\begin{aligned}
E_{\dot{y}}^{n}(x, z)= & \sum_{m}\left[A_{m, n} \exp \left(\alpha_{m, n} z\right)+A_{m, n}^{\prime} \exp \left(-\alpha_{m, n} z\right)\right] \\
& \cdot \sum_{j} B_{j, m, n} \exp (2 \pi i j x / P)
\end{aligned}
$$

where the $a_{m, n}$ 's are the eigenvalues and the $B_{j, m, n}$ 's are the eigenvector solutions to Hill's equation. The $A_{m, n}$ and $A_{m, n}^{\prime}$ are weighting constants which must be determined from the boundary conditions. Each of these terms represents an inhomogeneous plane wave or waveguide mode which is supported by the line structure. Note that, when there is no absorption, ( $\hat{n}$ real) the eigenvalues are purely imaginary and this form reduces to that of Burckhardt.

The solution for the transmitted and reflected fields is found by equating the tangential components of the $E-$ and $H$-fields at each layer interface. The $x$-component of the $H$-field is found from ik, $H=$ curl $E$ or, here, $i k_{o} H_{X}=-\partial E_{Y} / \partial z$ :

$$
\begin{align*}
H_{x}^{n}(x, z)= & \sum_{m}\left[A_{m, n}\left(\frac{\alpha_{m, n}}{-i k_{0}}\right) \exp \left(\alpha_{m, n} z\right)-A_{m, n}^{\prime}\left(\frac{\alpha_{m, n}}{-i k_{o}}\right) \exp \left(-\alpha_{m, n} z\right)\right] \\
& \cdot \sum_{j} B_{j, m, n} \exp (2 \pi i j x / P) . \tag{11}
\end{align*}
$$

With the tangential components of the incident field given by:
$E_{Y}^{I}=E_{0}^{I} \exp \left(i k_{0} z\right)$
$H_{X}^{I}=-E_{o}^{I} \exp \left(i k_{o} z\right)$,
the tangential components of the reflected field by:
$E_{Y}^{R}(x, z)=\sum_{j} E_{j}^{R} \exp \left\{-i k_{o}\left[\left(\frac{\lambda j}{P}\right) x+k_{j}^{R}\right]\right\}$
$H_{x}^{R}(x, z)=\sum_{j} K_{j} E_{j}^{R} \exp \left\{-i k_{0}\left[\left(\frac{\lambda j}{P}\right) x+k_{j}^{R}\right]\right\}$,
where $K_{j}^{R}=\sqrt{1-\left(\frac{\lambda j}{P}\right)^{2}}$
and the tangential components of the transmitted field by:
$E_{Y}^{T}(x, z)=\sum_{j} E_{j}^{T} \exp \left\{i k_{o}\left[\left(\frac{\lambda j}{P}\right) x+K_{j}^{T} z\right]\right\}$
$H_{X}^{T}(x, z)=\sum_{j}-K_{j}^{T} E_{j}^{T} \exp \left\{i k_{o}\left[\left(\frac{\lambda j}{P}\right) x+K_{j}^{T} z\right]\right\}$
where $K_{j}^{T}=\sqrt{\hat{n}_{s}^{2}-\left(\frac{\lambda j}{P}\right)^{2}}$ and $\hat{n}_{s}$ is the complex index of the substrate.

For each Fourier component j, the following boundary equations must be satisfied:

1. At $z=0 \quad(x=y=0)$, the solution must match the tangential
components of the $E-$ and $\underline{H}-f i e l d s$ at the top surface:
$E_{o}^{I} \delta_{j 0}+E_{j}^{R}=\sum_{m}\left[A_{m, 1}+A_{m, 1}^{\prime}\right] B_{j, m, 1} ;$
$-E_{o}^{I} \delta_{j 0}+K_{j}^{R} E_{j}^{R}=\sum_{m}\left[A_{m, 1}\left(\frac{\alpha_{m, 1}}{-i k_{0}}\right)-A_{m, 1}^{\prime}\left(\frac{\alpha_{m, 1}}{-i k_{0}}\right)\right] B_{j ; m, 1}$,
where $\delta_{j 0}= \begin{cases}1 & j=0 \\ 0 & j \neq 0 .\end{cases}$
2. At the interface between the $n$-th and ( $n+1$ )-th layer, $z=-Z_{n} \quad(x=y=0)$, the $E-$ and $H^{-f i e l d s ~ m u s t ~ s a t i s f y ~ t h e ~ b o u n d a r y ~}$ conditions at each interface:

$$
\begin{align*}
& \sum_{m}\left[A_{m, n} \exp \left(\alpha_{m, n} z_{n}\right)+A_{m, n} \exp \left(-\alpha_{m, n} z_{n}\right)\right] B_{j, m, n} \\
& =\sum_{m}\left[A_{m, n+1} \exp \left(\alpha_{m, n+1 n}\right)+A_{m, n, 1}^{\prime} \exp \left(-\alpha_{m, n+1} z_{n}\right)\right] B_{j, m, n+1} ; \\
& \sum_{m}\left[A_{m, n}\left(\frac{a_{m, n}}{-i k_{0}}\right) \exp \left(\alpha_{m, n} z_{n}\right)-A_{m, n}^{\prime}\left(\frac{\alpha_{m, n}}{-i k_{0}}\right) \exp \left(-\alpha_{m, n} Z_{n}\right)\right] B_{j, m, n} \\
& =\sum_{m}\left[A_{m, n+1}\left(\frac{a_{m, n+1}}{-i k_{0}}\right) \exp \left(a_{m, n+1} z_{n}\right)\right. \\
& \text { - } \left.A_{m, n+1}^{\prime}\left(\frac{a_{m, n+1}}{-i k_{0}}\right) \exp \left(-\alpha_{m, n+1} z_{n}\right)\right] B_{j, m, n+1} \text {. } \tag{16b}
\end{align*}
$$

3. At $z=-Z_{N}=-T(x=y=0)$, the solution must satisfy the boundary conditions imposed by the substrate (assumed infinite in extent - see Fig. 3):

$$
\begin{align*}
& \sum_{m}\left[A_{m, N} \exp \left(\alpha_{m, N} T\right)+A_{m, N}^{\prime} \exp \left(-\alpha_{m, N^{T}}\right)\right] B_{j, m, N}  \tag{17a}\\
& =E_{j}^{T} \exp \left(-i k_{0} K_{j}^{T} T\right) ; \\
& \sum_{m}\left[A_{m, N}\left(\frac{\alpha_{m, N}}{-i k_{0}}\right) \exp \left(-\alpha_{m, N^{T}}\right)-A_{m, N}^{\prime}\left(\frac{\alpha_{m, N}}{-i k_{0}}\right) \exp \left(\alpha_{m, N} T\right)\right] B_{j, m, N} \\
& =-K_{j}^{T} E_{j}^{T} \exp \left(-i k_{o} K_{j}^{T} T\right) . \tag{17b}
\end{align*}
$$

In matrix notation,

$$
\begin{align*}
& \binom{E_{X}^{I R}}{H_{Y}^{I R}}=\left(B_{1}(0)\right) \cdot\binom{A_{1}}{A_{1}^{\prime}}  \tag{18a}\\
& \left(B_{n}\left(Z_{n}\right)\right) \cdot\binom{A_{n}}{A_{n}^{\prime}}=\left(B_{n+1}\left(Z_{n}\right)\right) \cdot\binom{A_{n+1}}{A_{n+1}^{\prime}} \\
& \left(B_{N}(T)\right) \cdot\left(\begin{array}{c}
A_{N} \\
A_{N}^{\prime} \\
N_{N}
\end{array}\right)=\binom{E_{X}^{T}}{H_{Y}^{T}} \tag{18c}
\end{align*}
$$

where
$B_{n}\left(z_{n}\right)=\left(\begin{array}{ll}B_{n}^{11}\left(z_{n}\right) & B_{n}^{12}\left(z_{n}\right) \\ B_{n}^{21}\left(z_{n}\right) & B_{n}^{22}\left(z_{n}\right)\end{array}\right)$
and the matrix elements are given by
$B_{j, m, n}^{11}\left(Z_{n}\right)=\exp \left(-\alpha_{m, n} Z_{n}\right) B_{j, m, n}$
$B_{j, m, n}^{12}\left(z_{n}\right)=\exp \left(\alpha_{m, n} z_{n}\right) B_{j, m, n}$
$B_{j, m, n}^{21}\left(z_{n}\right)=\left(\frac{a_{m, n}}{-i k_{0}}\right) \exp \left(-a_{m, n} z_{n}\right) B_{j, m, n}$
$B_{j, m, n}^{22}\left(z_{n}\right)=-\left(\frac{a_{m, n}}{-i k_{o}}\right) \exp \left(\alpha_{m, n} Z_{n}\right) B_{j, m, n}$

Depending upon whether the solution for the transmitted or reflected field is desired, all of the $A_{n}$ and $A_{n}^{\prime}$ s are eliminated from these equations except for either $A_{N}$ and $A_{N}^{\prime}$ or $A_{1}$ and $A_{1}$, i.e., for the transmitted field:

$$
\begin{aligned}
& \binom{A_{1}}{A_{1}^{\prime}}=\left(B_{1}\left(z_{1}\right)\right)^{-1} \cdot\left(B_{2}\left(z_{1}\right)\right) \cdot\left(B_{2}\left(z_{2}\right)\right)^{-1} \cdots \\
& \cdot\left(B_{N-1}\left(z_{N-1}\right)\right)^{-1} \cdot\left(B_{N}\left(z_{N-1}\right)\right) \cdot\binom{A_{N}}{A_{N}^{\prime}}=B \cdot\binom{A_{N}}{A_{N}^{\prime}} .
\end{aligned}
$$

or, for the reflected field:

$$
\begin{array}{r}
\binom{A_{N}}{A_{N}^{\prime}}=\left(B_{N}\left(z_{N-1}\right)\right)^{-1} \cdot\left(B_{N-1}\left(z_{N-1}\right)\right) \cdot\left(B_{N-1}\left(z_{N-2}\right)\right)^{-1} \cdots  \tag{19b}\\
\cdot\left(B_{2}\left(z_{1}\right)\right)^{-1} \cdot\left(B_{1}\left(z_{1}\right)\right) \cdot\binom{A_{1}}{A_{i}}=B^{-1} \cdot\binom{A_{1}}{A_{i}}
\end{array}
$$

This operation replaces the multilayer structure with an equivalent layer characterized by the matrix $B$.

The equations are now solved as for the single layer case by eliminating the unknown $E_{j}^{R}$ amd $E_{j}^{T}$ to solve for the $A_{1} s$ or $A_{N} s$ again depending upon whether the Fourier expansion of the reflected or transmitted field is desired. In the present paper, we compute the reflected field coefficients,

$$
\begin{equation*}
\binom{E_{X}^{I R}}{H_{Y}^{I R}}=\left(B_{1}(0)\right) \cdot\binom{A_{1}}{A_{1}} \tag{20a}
\end{equation*}
$$

$\left(\begin{array}{ll}B^{11} & B^{12} \\ B^{21} & B^{22}\end{array}\right) \cdot\binom{A_{1}}{A_{i}^{i}}=\binom{E_{X}^{T}}{H_{Y}^{T}}$
where
$\left(\begin{array}{ll}B^{11} & B^{12} \\ B^{21} & B^{22}\end{array}\right)=\left(B_{N}(T)\right) \cdot B^{-1}$

Using the format of eqs. (18) this reduces to the single matrix equation:

$$
\left(\begin{array}{ll}
D_{11} & D_{12}  \tag{21}\\
D_{21} & D_{22}
\end{array}\right) \cdot\binom{A_{1}}{A_{1}^{\prime}}=\binom{R}{0}
$$

where

$$
\begin{aligned}
& D_{j, m}^{11}=\left[K_{j}^{R}-\left(\frac{a_{m, 1}}{-i k_{o}}\right)\right] B_{j, m, 1} \\
& D_{j, m}^{12}=\left[K_{j}^{R}+\left(\frac{a_{m, 1}}{-i k_{o}}\right)\right] B_{j, m, 1} \\
& D_{j, m}^{21}=\left[K_{j}^{T} B_{11}+B_{21}\right] \\
& D_{j, m}^{22}=\left[K_{j}^{T} B_{12}+B_{22}\right] \\
& \text { and }
\end{aligned}
$$

$R_{j}=\left[E_{0}^{I}\left(1+K_{j}^{R}\right) \delta_{j 0}\right]$
where the desired coefficients $E_{j}^{R}$ are found from eq. (15a)

$$
\begin{equation*}
E_{j}^{R}=\sum_{m}\left[A_{m, 1}+A_{m, 1}^{\prime}\right] B_{j, m, 1}-E_{0}^{I} \delta_{j 0} \tag{22}
\end{equation*}
$$

These coefficients represent the Fourier coefficients of a pseudo or equivalent (planar) object. The microscope image of the reflected field is then computed using scalar imaging theory (See Ref. 3.) with the line object reflectance function given by

$$
\begin{equation*}
t(x)=\sum_{j} E_{j}^{R} \exp \left(i k_{0} \lambda j x / P\right) \tag{23}
\end{equation*}
$$

This method of computing both the reflected field and the corresponding microscope image requires no approximations of the type usually found, such as limits on the conductivity or slope of the surface, etc. Limitations may be imposed, however, by the computation capability available. First, the number of layers used to approximate the structure increases the computing time linearly. In most of the cases to be shown here, seven to nine layers were sufficient to produce significant results and required approximately one minute of CPU time on a Univac 1108.*

The second limitation is in the truncation of the series, i.e., the matrix sizes used in the computations. In the present case, as for a single layer [3], all of the reflected plane waves are included which have diffraction angles less than $\pm \pi / 2$ in air. With $P=12 \mu m$ and $\lambda=0.53 \mu m, 22$ diffracted orders are included which requires a $45 \times 45$ complex eigenvalue matrix and a $90 \times 90$

[^3]complex matrix for inversion of the $B$ matrices in eqs. (19). This choice necessarily truncates the series which represents the field in the layers with higher refractive index. In the cases considered here, this truncation does not appear to significantly affect the results.

Also, for grating objects with $P \leq 12 \mu m$, the computations are exact. However, for isolated line objects near resonances (where the thickness times index of refraction of the patterned layer is approximately equal to the wavelength), $P=12 \mu \mathrm{~m}$ is not large enough to eliminate the effect of the adjacent lines on the image. Larger matrix sizes would have to be used where $P>12 \mu m$ is required.

The Effect of Geometry on the Image Profile

The present method was developed primarily for the purpose of modeling the effect of nonvertical edges on the image profile. There is a very wide range of edge geometries which can be modeled, therefore, only a few key examples will be presented here in order to demonstrate trends. Figure 1 shows six basic shapes which are frequently encountered in integrated circuit processing. In order to simplify the definition of these shapes, they will be represented by a polynominal expansion which defines the width as a function of $z$.
$w(z)=\sum_{j=0}^{J} x_{j}\left(z-z_{j}\right)^{j}$,
where $J=$ the polynominal order,

$$
\begin{aligned}
& X_{j}=\text { coefficient of the } j-t h \text { order, and } \\
& z_{j}=\text { offset of the } j-t h \text { order. }
\end{aligned}
$$

The shapes in Fig. 1 have been restricted to fifth order polynominals $(J \leq 5)$. In these examples it will be assumed that the patterned layer is $0.6 \mu \mathrm{~m}$ thick, and the nominal linewidth $\mathrm{X}_{0}$ is 6.0 $\mu m$. The line consists of loss-free silicon dioxide with a real refractive index of 1.46 . The substrate is taken to be silicon with a complex refractive index of $4.1+0.06 i$ at an illumination wavelength of $0.53 \mu \mathrm{~m}$. The diffraction-limited images have been computed for a 0.14 NA illumination aperture and 0.85 NA objective aperture. Note that in this polynominal representation of the line object, although $X_{0}$ as shown in Fig. 1 is the nominal linewidth, $X_{0}$ is: the width at the top $(z=0)$ in cases (b) and $(g)$; the width at the bottom ( $z=d$ ) in cases ( $C$ ), (d), and (f), and the mean width in cases (e) and (h). Figure 4 shows the theoretical image intensity profile of an ideal line with vertical edge walls. The oxide line extends from -3.0 to $+3.0 \mu \mathrm{~m}$ as shown by the dashed lines, and the rest of the object is bare silicon. In the calculation of the Fourier series coefficients, this structure is assumed to be repeated with a period of $12.0 \mu \mathrm{~m}$. The line edge image is characterized by a dark fringe wider than the interference fringe that would be calculated for a similar thin layer.

The set of image profiles in Fig. 5 demonstrates the effect of different edge geometries on the image. The line has been assumed to be symmetrical and so only half the image profile is shown. The line objects are defined in terms of Eq. (2) and the width of the line edge is getting progressively broader down each of the three columns. There are two effects which are common to all three geometries. As the edge becomes broader, the dark fringe associated with the edge also becomes broader with the bright fringes on either side becoming brighter than occurs with partially coherent imaging of planar objects. When the edge becomes very broad, the dark fringe itself begins to broaden out and small peaks form within it.

According to the method described so far, the object is assumed to consist of homogeneous slabs of materials. This assumption is implicit in Eq. (1). In practice many materials such as polycrystalline silicon cannot be regarded as homogeneous as they have a definite internal structure which will result in a variation in refractive index within the material. These structures can be modeled by representing the random refractive index disturbances within the material by functions.

$$
\hat{\varepsilon}_{n}^{\prime}(x)=\hat{\varepsilon}_{n}(x)+\sum_{j=1}^{J} c_{j} \delta\left(x-x_{j}\right)
$$

where:

$$
\begin{aligned}
& \hat{\varepsilon}_{n}(x)=\text { refractive index profile from Eq. (1), } \\
& c_{j}=\text { amplitude of } j \text {-th refractive index disturbance, and } \\
& x_{j}=\text { position of } j-\text { th disturbance. }
\end{aligned}
$$

The function $\hat{\varepsilon}_{n}(x)$ now describes a noisy layer, and by restricting the range of values for $X_{j}$, the noise may be confined to different parts of the layer.

Figure 6 shows three image profiles for a noisy structure. The object is the oxide structure used to produce the profile in Fig. 4 and noise has been added to the entire layer. In each of the three cases shown in Fig. 6, different sets of noise data have been used corresponding to different sets of $C_{j}$ selected from a random number table. The most striking feature of these curves is that, although the field is perturbed within the area of the object, the dark fringe at the edge of the line remains well defined, and relatively unperturbed.

In order to test the model against experimental image profiles, a test specimen was prepared which consisted of lines patterned in photoresist on a silicon substrate. The same test pattern was put down repeatedly by projection printing but with a range of focus positions. This produced a series of patterns with a range of edge slopes. Two patterns were selected to illustrate different edge properties. One pattern corresponded to the in-focus exposure and had near vertical edge walls; the second corresponded to a considerable defocus on exposure and had significantly sloping edges.

The in-focus exposure was assumed to produce near vertical edge walls, and when the structures were examined in a scanning electron microscope, this was found to be the case. The edge walls had slopes of about $80^{\circ}$, which according to the theory may effectively be assumed to be vertical for films of submicrometer thickness. The width of the window in the resist was taken as 2.5 um .

The out-of-focus pattern had significant edge slopes, and the structure was modeled by the asymmetric third order window shown in Fig. 7, based on SEM pictures of the cross section. The photoresist thickness was not known exactly but was nominally $1 \mu \mathrm{~m}$. The refractive index of the resist is not known exactly, but this is not serious as small changes in the refractive index can be offset by small adjustments in the layer thickness without significantly changing the image profile. The refractive index of the photoresist was assumed to be 1.513. The theoretical layer thickness was adjusted until it produced the same contrast as the experimental data; this gave a thickness for the resist of $0.94 \mu \mathrm{~m}$.

It is very difficult to accurately determine the position corresponding to "best focus" when viewing these thick structures in
the optical linewidth measurement system. Therefore, it is necessary to generate a series of profiles as a function of focus position and compare these with the theoretical data. Figure 8 shows a comparison of the experimental and theoretical image profiles produced by these structures. The experimental data were generated using the coherent optical linewidth measurement system which has been described in detail in the literature by Nyyssonen.[3]

The profiles for the sloping edge structure are quite different from those for the vertical edge structure. However, in both cases they show good agreement with the models. The theoretical profiles display the same features as the experimental profiles, but the agreement is not perfect. One significant source of differences is the assumption that the resist is homogeneous. This is not strictly true. To get better agreement, it would have been advantageous to use a material such as silicon dioxide which is homogeneous and which would produce a stable and accurately known refractive index.

A second source of differences may arise from the assumption that the illumination is normally incident. As shown in the experimental data, the central peak of the sloping edge profile moves as the object moves through focus and the line with nearly vertical edges generates slightly asymmetric profiles (See Fig. 8). Both of these may be attributed to slight asymmetry in either the illumination system or imaging optics. The NBS profiling system used to generate these profiles was checked for illumination symmetry when profiling thin layers. However, it is expected that these thick layers are significantly more sensitive to asymmetric illumination than is a thin-layer object.

Case Study of the Production of an MOS Transistor

This section considers some typical structures which are encountered in microlithography and the effect of small variations in
these structures on the optical image profile. The two structures shown in Fig. 9 are considered. These structures represent the key stages of patterning the polysilicon layer when making an MOS device. The structure in Fig. $9(a)$ represents the stage between patterning the resist and etching the polysilicon. Controlling the resist dimensions at this stage will help control the final etched polysilicon linewidth. However, measuring the width of the resist line at this stage is difficult because the image profile is a function of the geometry, refractive index, and thickness of each of the three layers. The polysilicon was assumed to have a refractive index of $3.8+0.1 i$.

The curves in Fig. 10 show how variations in the thickness of the polysilicon affect the image profile of the resist line. Again, only half the image profile is shown. The most striking feature of these curves is that the image structure in the immediate vicinity of the line edge is sensitive to the thickness of the polysilicon layer.

The structure in Fig. 11 represents a polysilicon line after etching and stripping of the resist. The image profile is a function of the thickness of the silicon-dioxide layer. Figure 12 shows the effect of changing the thickness of the oxide sublayer on the image profile of the structure shown in Fig. 9(b). The polysilicon is assumed in this case to have vertical edge walls and the oxide thickness is varied over a range of 40 nm . As the thickness changes, the image profile changes considerably. This makes linewidth measurement difficult as there appears to be no feature or threshold which locates the edge independently of oxide thickness.

The image profile is also a function of edge geometry and in Fig. $9(b)$ it has been assumed that the edge shape can be defined by a second order polynomial with the polynomial of Eq. (2) given by
$w(z)=x_{0}+x_{2} \cdot z^{2}$,
where, again, the nominal linewidth $X_{0}$ is $6.0 \mu \mathrm{~m}$. The curves in Fig. 12 show the effect of variations in the edge curvature of the polysilicon layer on the image profile. The edge image profile is clearly sensitive to the curvature of the physical edge of a curved feature. In this case, three possible definitions of linewidth are the minimum, maximum, or mean width of the layer. For the examples shown in Fig. 12, these definitions all give linewidths which do not correspond to that given by the position of the minimum of the dark fringe. More importantly, however, the offset between the true and measured linewidth varies with the degree of curvature over a range of a few tenths of a micrometer regardless of the definition used for the line edge.

## Summary

A waveguide model has been presented which enables the optical images of line structures patterned in thick layers to be computed. The model has been shown to be applicable to a wide range of structures, and qualitative agreement with experimental image profiles has been demonstrated. From the results presented here, it can be seen that the image profile of a thick line object, and therefore the measured linewidth, is affected by the physical shape of the edges.

The model enables the effects of process variations on the optical image profile to be determined and this, in turn, enables the accuracy and sensitivity of different measurement techniques to be investigated. Further work is in progress to improve existing measurement methods in order to minimize the effects of process variations on the accuracy and repeatability of linewidth measurements.

## Acknowledgments

The authors wish to acknowledge the help of Marilyn J. Dodge who collected the experimental image profiles for this work. This work was carried out as part of one of the author's (Kirk) Ph.D. research program supported by the Science and Engineering Research Council (UK).

## Appendix

In matrix notation, the eigenvalue problem of eq. (9) is:
$D \cdot B_{n}=\alpha^{2} I \cdot B_{n}$
where the matrix elements $D_{i, j}$ for the $n$-th layer are given by

and $k_{j}=\frac{\lambda j}{P}$

1. M. Born and E. Wolf, Principles of Optics, 5th ed., (Pergamon Press, Oxford, 1975), pp. 522-532.
2. L. C. Martin, The Theory of the Microscope, (Blackie, London, 1966), Chapters V and VIII.
3. D. Nyyssonen, "Theory of optical edge detection and imaging of thick layers", J. Opt. Soc. Am. 72, pp. 1425-1436 (1982).
4. Ref. 1, Section 13.5, pp. 633-664.
5. P. W. Barber, D. Y. Wang, and M. B. Long, "Scattering calculations using a microcomputer," App. Opt. 20, 1121-1123 (1981).
6. J. P. Hugonin and R. Petit, "Theoretical and numerical study of a locally deformed stratified media," J. Opt. Soc. Am. 71. 664-674 (1981).
7. R. Petit, ed., Electromagnetic Theory of Gratings, (SpringerVerlag, Berlin, 1980).
8. K. A. Zaki and A. R. Neureuther, "Scattering from a perfectly conducting surface with sinusoidal height profile, TE polarization," IEEE Trans. Antennas. Propagat. AP-19, 208214 (1971).
9. J. P. Hugonin, R. Petit, and M. Cadilhac, "Plane-wave expansions used to describe the field diffracted by a grating," J. Opt. Soc. Am. 71, 593-598 (1981).
10. Ref. 1, p. 453.
11. D. Nyyssonen, "Optical linewidth measurement on patterned metal layers," Proc. SPIE 480, Integrated Circuit Metrology II, 65-70 (1984).
12. C. B. Burckhardt, "Diffraction of a plane wave at a sinusoidally stratified dielectric grating", J. Opt. Soc. Am. 56, pp. 1502-1509 (1966).
13. F. G. Kaspar, "Diffraction by thick, periodically stratified gratings with complex dielectric constant," J. Opt. Soc. Am. 63, 37-45 (1973). 14. F. G. Kaspar, "Computation of light transmitted by a thick grating, for application to contact printing," J. Opt. Soc. Am. 64, 1623-1630 (1974).
14. W. Magnus and S. Winkler, Hill's Equation (John Wiley and Sons, New York, 1966 and Dover, New York, 1979).
15. Ref. 1, p. 612.
16. Ref. 1, p. 579.


Fig. 1. The geometry of most line objects encountered in integrated circuits may be approximated by low order polynomials.


Fig. 2. Cross section of a hypothetical thick line object (a) and the corresponding multi-layer representation (b).


Fig. 3. Orientation of the line structure and incident fields in the NBS linewidth measuring system. The $y$-direction is out of the page and parallel to the length of the line patterns.


Fig. 4. Theoretical image intensity profile of a $6.0 \mu \mathrm{~m}$ wide line centered at zero, patterned in a $0.6 \mu \mathrm{~m}$ thick $\mathrm{SiO}_{2}$ layer on silicon. $\lambda=530 \mathrm{~nm}$.

First Order


Second Order

$$
W(z)=6.0+x_{2}(z-0.6)^{2}
$$


dISTANCE IN MICROMETERS



dISTANCE IN MICROMETERS



distance in micrometers




DISTANCE IN MICROMETERS

Fig. 5. The effect of edge geometry on the calculated optical image profile. The edge geometry has been superimposed on the image profile for reference.


Fig. 6. Theoretical image intensity profiles of a line patterned in a noisy dielectric layer on silicon. A different set of noise data has been used for each curve.


Fig. 7. Physical profile model of the asymmetric window structure in resist used to compute the image profiles in Fig. 8. (Dimensions in micrometers.)


Fig. 8. Comparison of experimental and theoretical image intensity profiles of a window in photoresist on silicon. The window has either vertical edge walls (a) or sloping edges (b). The experimental profiles are shown by the thick line and the theoretical profiles by the thin line. The photoresist was assumed to have a thickness of $0.94 \mu \mathrm{~m}$ and the geometry shown in Fig. 7 was used to model the window in the case of sloping edges.


Fig. 9. Cross sections of the shapes used to model the polysilicon patterning stage of making an MOS transistor. The two shapes are patterned resist in unetched polysilicon (a) and etched polysilicon with the resist removed (b). (Dimensions in micrometers.)


Fig. 10. Theoretical image profiles of a resist line on polysilicon (structure in Fig. 9a) for polysilicon thicknesses of a) 0.5, b) 0.6 , and c) $0.7 \mu \mathrm{~m}$. A vertical edge is assumed.


Fig. 11. Theoretical image profiles of a polysilicon line (structure in Fig. 9b) for oxide thicknesses of a) 85, b) 105 , and c) 125 nm . A vertical edge is assumed and $0.6 \mu \mathrm{~m}$ polysilicon thickness.


Fig. 12. Theoretical image profiles of a polysilicon line (structure in Fig. 9b) for a range of edge curvatures defined by Eq. 26. Oxide thickness is 105 nm ; polysilicon thickness is $0.6 \mu \mathrm{~m}$.

## FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY


13. Narrative

This computer software calculates the optical microscope images of line objects patterned in thick layers (more than one-quarter of the illuminating wavelength thick). The algorithms used are based on a monochromatic, waveguide model which can predict the image of line objects with arbitrary cross-section geometry including multilayer structures with sloped, curved,asymmetric, and undercut edges. Along with the computer software, test cases for help in implementation are given. As written, the program uses subroutines for complex matrix eigenvalues and eigenvectors from the NAG library.
14. Keywords
diffraction; dimensional metrology; linewidth; microscopy; optical imaging; optical metrology; waveguide

15. Computer manuf'r and model   Cyber 855 (CDC)	16. Computer operating system   NOS 2 (CDC)	17. Programing language(s)   ANSI FORTRAN77	18. Number of source program state-   ments   949
19. Computer memory requirements	20. Tape drives	21. Disk/Drum units   91170 words	

23. Other operational requirements

## 24. Software availability


25. Documentation availability
Available Inadequate In-house only
26. FOR SUBMITTING ORGANIZATION USE

Computer Software for the Computation of the Scattered Field and the Optical Microscope Image of Line Objects Patterned in Thick Layers

## 5. AUTHOR(S)

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE GAITHERSBURG, MD 20899
7. Contract/Grant No.
8. Type of Report \& Period Covered
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZZIP)
10. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summory of most significont information. If document includes a significant bibliography or literature survey, mention it here)

This report contains computer sof tware for calculating optical microscope images of line objects patterned in thick layers ( $>\lambda / 4$ thick). The algorithms used are based on a monochromatic, waveguide model which can predict the images of line objects with arbitrary edge geometry including multilayer structures with sloped, curved, asymmetric, and undercut edges. Along with the computer software listing, the mathematics of the model, a short description of its structure and use, and test cases for help in implementation are given.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) diffraction; dimensional metrology; linewidth; microscopy; optical imaging; optical metrology; computer software
13. AVAILABILITY


UnlimitedFor Official Distribution. Do Not Release to NTISOrder From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.Order From National Technical Information Service (NTIS), Springfield. VA. 22161
14. NO. OF PRINTED PAGES

86
15. Price
\$13.95
$\square$


[^0]:    *Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify experimental or computational procedure. Such identification does not imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

[^1]:    *See previous footnote.

[^2]:    * Contribution of the National Bureau of Standards; not subject to copyright.
    This work was performed under the Research Associate Agreement (CN-454) between the National Bureau of Standards and Vickers Instruments, July 1984.
    ** Currently with CD Metrology, Inc., Germantown, MD 20874.
    † Currently with KLA Instruments, San Jose, CA 95131.

[^3]:    *Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify experimental or computational procedure. Such identification does not imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

