
NIST Special Publication 1019-5

Fire Dynamics Simulator (Version 5)
User’s Guide

Kevin McGrattan
Bryan Klein

Simo Hostikka
Jason Floyd

In cooperation with:
VTT Technical Research Centre of Finland

NIST Special Publication 1019-5

Fire Dynamics Simulator (Version 5)
User’s Guide

Kevin McGrattan
Bryan Klein

NIST Building and Fire Research Laboratory
Gaithersburg, Maryland, USA

Simo Hostikka
VTT Technical Research Centre of Finland

Espoo, Finland

Jason Floyd
Hughes Associates, Inc.

Baltimore, Maryland, USA

October 1, 2007
SV NRepository Revision : 726

U
N

IT
E

D
STATES OF AM

E
R

IC
A

D
E

PA
RTMENT OF COMMERC

E

U.S. Department of Commerce
Carlos M. Gutierrez, Secretary

National Institute of Standards and Technology
James M. Turner, Acting Director

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately. Such

identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 1019-5
Natl. Inst. Stand. Technol. Spec. Publ. 1019-5, 186 pages (October 2007)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 2007

For sale by the Superintendent of Documents, U.S. Government Printing Office
Internet: bookstore.gpo.gov – Phone: (202) 512-1800 – Fax: (202) 512-2250

Mail: Stop SSOP, Washington, DC 20402-0001

Preface

This guide describes how to use the Fire Dynamics Simulator (FDS), Version 5. It does not provide the
background theory. A companion document, called the FDS Technical Reference Guide [1], contains details
about the governing equations and numerical methods. The FDS User’s Guide contains limited information
on how to operate Smokeview, the companion visualization program for FDS. Its full capability is described
in the “User’s Guide for Smokeview Version 5” [2].

i

ii

Disclaimer

The US Department of Commerce makes no warranty, expressed or implied, to users of the Fire Dynamics
Simulator (FDS), and accepts no responsibility for its use. Users of FDS assume sole responsibility under
Federal law for determining the appropriateness of its use in any particular application; for any conclusions
drawn from the results of its use; and for any actions taken or not taken as a result of analyses performed
using these tools.

Users are warned that FDS is intended for use only by those competent in the fields of fluid dynamics,
thermodynamics, combustion, and heat transfer, and is intended only to supplement the informed judgment
of the qualified user. The software package is a computer model that may or may not have predictive
capability when applied to a specific set of factual circumstances. Lack of accurate predictions by the model
could lead to erroneous conclusions with regard to fire safety. All results should be evaluated by an informed
user.

Throughout this document, the mention of computer hardware or commercial software does not con-
stitute endorsement by NIST, nor does it indicate that the products are necessarily those best suited for the
intended purpose.

iii

iv

About the Authors

Kevin McGrattan is a mathematician in the Building and Fire Research Laboratory of NIST. He received
a bachelors of science degree from the School of Engineering and Applied Science of Columbia Uni-
versity in 1987 and a doctorate at the Courant Institute of New York University in 1991. He joined
the NIST staff in 1992 and has since worked on the development of fire models, most notably the Fire
Dynamics Simulator.

Simo Hostikka is a Senior Research Scientist at VTT Technical Research Centre of Finland. He is the
principal developer of the radiation and solid phase sub-models within FDS.

Jason Floyd is a Senior Engineer at Hughes Associates, Inc., in Baltimore, Maryland. He received a bache-
lors of science degree and a doctorate from the Nuclear Engineering Program of the University of Mary-
land. After graduating, he won a National Research Council Post-Doctoral Fellowship at the Building
and Fire Research Laboratory of NIST, where he developed the combustion algorithm within FDS. He
is currently funded by NIST under grant 60NANB5D1205 from the Fire Research Grants Program (15
USC 278f). He is the principal developer of the multi-parameter mixture fraction combustion model
and control logic within FDS.

Bryan Klein is an Information Technology Specialist in the Building and Fire Research Laboratory of
NIST. Before coming to NIST, Bryan worked for five years with Western Fire Center, Inc., performing
a wide range of activities including fire modeling, data acquisition programming, and quantitative fire
measurements. His current focus is on FDS development and user support, along with experimental
model validation work.

v

vi

Acknowledgments

The Fire Dynamics Simulator, in various forms, has been under development for almost 25 years. However,
the publicly released software has only existed since 2000. Since its first release, continued improvements
have been made to the software based largely on feedback from its users. Included here are some who made
important contributions.

At NIST, thanks to Dan Madrzykowski, Doug Walton, Bob Vettori, Dave Stroup, Steve Kerber and
Nelson Bryner, who have used FDS and Smokeview as part of several investigations of fire fighter line of
duty deaths. As part of these studies, they have provided valuable information on the model’s usability and
accuracy when compared to large scale measurements made during fire reconstructions.

The US Nuclear Regulatory Commission has provided financial support for the maintenance and de-
velopment of FDS, along with valuable insights into how fire models are used as part of probabilistic risk
assessments of nuclear facilities. Special thanks to Mark Salley and Jason Dreisbach of NRC, and Francisco
Joglar of SAIC.

The Society of Fire Protection Engineers (SFPE) sponsors a training course on the use of FDS and
Smokeview. Chris Wood of ArupFire, Dave Sheppard of the US Bureau of Alcohol, Tobacco and Firearms
(ATF), and Doug Carpenter of Combustion Science and Engineering developed the materials for the course,
along with Morgan Hurley of the SFPE.

Prof. David McGill of Seneca College, Ontario, Canada has conducted a remote-learning course on the
use of FDS, and he has also maintained a web site that has provided valuable suggestions from users.

Thanks to Chris Lautenburger and Carlos Fernandez-Pello for their assistance with the “two-reaction”
test case.

Thanks to Ian Thomas, Khalid Moinuddin, and Ian Bennetts for their description of and data for the
ethanol pan fire example. Prof. Ian Thomas of Victoria University has also presented short courses on the
use of FDS in Australia. His students have also performed some validation work on compartment fires.

Prof. Charles Fleischmann and his students at the University of Canterbury, New Zealand, have provided
valuable assistance in improving the documentation and usability of the model.

James White Jr. of the Western Fire Center has provided valuable feedback on how to improve the
functionality of the model in the area of forensic science.

Paul Hart of Swiss Re, GAP Services, and Pravinray Gandhi of Underwriters Laboratories provided
useful suggestions about water droplet transport on solid objects.

Finally, on the following pages is a list of individuals and organizations who have volunteered their time
and effort to “beta test” FDS and Smokeview prior to its official release. Their contribution is invaluable
because there is simply no other way to test all of the various features of the model.

vii

FDS 5 Beta Testers
Nick Agnew Maunsell, Australia
Camille Azzi Universities of Glasgow and Strathclyde, Scotland
Matthew Bilson Maunsell, Australia
George Braga Federal District Fire Department, Brazil
Keith Calder Senez Reed Calder Engineering, Canada
Steven Chi Heng Lam Hoare Lea Fire Engineering, UK
Doo Chan Choi Rolf Jensen & Associates, Inc., USA
Marco Cigolini Italferr spa, Italy
John Cutonilli Hughes Associates, Inc., USA
Sylvain Desanghere CTICM (Centre Technique Industriel de la Construction Métallique), France
Montu L. Das Gage-Babcock & Associates, USA and Canada
Franck Didieux Laboratoire National de Métrologie et d’Essais (LNE), France
Johannes Dimyadi AstraVision-Solutions, New Zealand
Bill Ferrante Roosevelt Fire District, USA
Paul Fuss NIST, USA
Andreas Gerndt University of Louisiana, USA
Emanuele Gissi Corpo Nazionale dei Vigili del Fuoco, Comando Prov. di Genova, Italy
Paul Hart Swiss Re, GAP Services, USA
Hsiao, Li Kai (Gary) Fire Bureau, Taipei, Taiwan
Hu Zhi-Xin University of Maryland, USA
Ilya N. Karkin SITIS Ltd., Russia
Susanne Kilian hhpberlin, Fire Safety Engineers, Germany
Sung Chan Kim School of Mechanical Engineering, Chung Ang University, Korea
Pierre-Louis Lamballais Flashover-Backdraft, France
A. Leonardi StIL (Studio di Ingegneria Leonardi), Italy
Davy Leroy Arup Fire, UK
Jason Liu Warrington Fire Research, Australia
Timothy Liu Locke Carey Fire Consultants, UK
Dave McGill Seneca College, Ontario, Canada
Ken Miller Las Vegas Fire & Rescue, USA
Pete Muir Safe Consulting, UK
Stephen Olenick Combustion Science & Engineering, Inc., USA
Kristopher Overholt University of Houston-Downtown, USA
PENG Wei State Key Labortory of Fire Science, China
Andrew Purchase Maunsell, Australia
Christian Rogsch University of Wuppertal, Germany
Michael Roth RWDI, Canada
Ahmed Salem Alexandria University, Egypt
Robert Schmidt Combustion Science & Engineering, Inc., USA
Joe Skaggs CASE Forensics, USA
Piotr Smardz Ahearne Fire Engineering Consultants, Ireland
Jamie Stern-Gottfried Arup Fire, UK
Boris Stock BFT Cognos Gmb, Germany
Blair Stratton Beca, New Zealand

viii

Csaba Szilagyi Szolnok Fire Department, Hungary
Charlie Thornton Thunderhead Engineering, USA
Sebastian Ukleja University of Ulster, Northern Ireland
Giacomo Villi Dipartimento Fisica Tecnica (DfT) UNIPd, Italy
Andreas Vischer RWTH Aachen University, Germany
Karl Wallasch Hoare Lea Fire Engineering, UK
Kaoru Wakatsuki National Research Institute of Fire and Disaster, Japan
Yang Shan-You State Key Laboratory of Fire Science, China
Robin Zevotek C&S Engineers, Life Safety Services, Syracuse, New York, USA

GIDAI, University of Cantabria, Spain

ix

x

Contents

Preface i

Disclaimer iii

About the Authors v

Acknowledgments vii

I Running FDS 1

1 Introduction 3
1.1 Features of FDS . 3
1.2 What’s New in FDS 5? . 4

2 Getting Started 7
2.1 How to Acquire FDS and Smokeview . 7
2.2 Computer Hardware Requirements . 7
2.3 Computer Operating System (OS) and Software Requirements 8

3 Running FDS 9
3.1 Starting an FDS Calculation . 9

3.1.1 Starting an FDS Calculation (Single Processor Version) 9
3.1.2 Starting an FDS Calculation (Multiple Processor Version) 10

3.2 Monitoring Progress . 12

4 User Support 13
4.1 The Version Number . 13
4.2 Common Error Statements . 14
4.3 Support Requests and Bug Tracking . 15

II Writing an FDS Input File 17

5 The Basic Structure of an Input File 19
5.1 Naming the Job . 19
5.2 Namelist Formatting . 19
5.3 Input File Structure . 20

xi

6 Setting the Bounds of Time and Space 23
6.1 Naming the Job: The HEAD Namelist Group (Table 13.6) 23
6.2 Simulation Time: The TIME Namelist Group (Table 13.24) 23
6.3 Computational Meshes: The MESH Namelist Group (Table 13.11) 25

6.3.1 Two-Dimensional and Axially-Symmetric Calculations 25
6.3.2 Multiple Meshes and Parallel Processing . 26
6.3.3 Mesh Stretching: The TRNX, TRNY and/or TRNZ Namelist Groups (Table 13.25) . . 28
6.3.4 Choosing the Right Mesh Dimensions . 29

6.4 Miscellaneous Parameters: The MISC Namelist Group (Table 13.12) 31
6.4.1 Stopping and Restarting Calculations . 31
6.4.2 Special Topic: Defying Gravity . 32
6.4.3 Special Topic: Restoring the Baroclinic Vorticity 32
6.4.4 Special Topic: Stack Effect . 33
6.4.5 Special Topic: Large Eddy Simulation Parameters 33
6.4.6 Special Topic: Numerical Stability Parameters . 33

6.5 Special Topic: Unusual Initial Conditions: The INIT Namelist Group (Table 13.8) 35
6.6 Special Topic: Setting Limits: The CLIP Namelist Group (Table 13.2) 35

7 Building the Model 37
7.1 Creating Obstructions: The OBST Namelist Group (Table 13.13) 37

7.1.1 Non-rectangular Geometry and Sloped Ceilings . 38
7.2 Creating Voids: The HOLE Namelist Group (Table 13.7) 39
7.3 Applying Surface Properties: The VENT Namelist Group (Table 13.26) 40

7.3.1 Special VENTs . 41
7.3.2 Controlling VENTs . 41
7.3.3 Trouble-Shooting VENTs . 41

8 Boundary Conditions 43
8.1 Basics . 43
8.2 Describing the Bounding Surfaces: The SURF Namelist Group (Table 13.22) 44

8.2.1 Specifying a Fire with a Known Heat Release Rate 44
8.2.2 Simple Thermal Boundary Conditions . 45
8.2.3 Velocity and Total Mass Flux Boundary Conditions 45
8.2.4 Species and Species Mass Flux Boundary Conditions 46
8.2.5 Special Topic: Fires and Flows in the Outdoors . 47
8.2.6 Special Topic: A Radially-Spreading Fire . 47
8.2.7 Special Topic: Non-Planar Walls and Targets . 48

8.3 Pressure-Related Effects: The ZONE Namelist Group (Table 13.26) 49
8.3.1 Leaks . 49
8.3.2 Fans . 50

8.4 Describing Real Materials: The MATL Namelist Group . 52
8.4.1 Thermal Properties . 53
8.4.2 Pyrolysis Models . 53
8.4.3 Special topic: Making Fuels Disappear (BURN_AWAY) 57
8.4.4 Special Topic: Initial and Backside Boundary Conditions 58
8.4.5 Special Topic: Numerical Accuracy and Stability 58

8.5 User-Specified Functions: The RAMP and TABL Namelist Groups 59
8.5.1 Time-Dependent Functions . 59

xii

8.5.2 Temperature-Dependent Functions . 60
8.5.3 Tabular Functions . 61

8.6 Coloring Obstructions, Vents, Surfaces and Meshes . 62
8.6.1 Texture Mapping . 62

8.7 Verifying the Solid Phase Properties . 64

9 Combustion and Radiation 65
9.1 Mixture Fraction Combustion: The REAC Namelist Group 65

9.1.1 Important Issues Related to the Mixture Fraction Models 67
9.2 Extra Gas Species: The SPEC Namelist Group . 69
9.3 Finite-Rate Combustion . 71
9.4 Radiation Transport: The RADI Namelist Group . 71

10 Particles and Droplets: The PART Namelist Group 73
10.1 Basics . 73
10.2 Controlling Particles and Droplets . 74
10.3 Particle and Droplet Properties . 75
10.4 Special Types of Particles and Droplets . 76
10.5 Coloring Particles and Droplets . 77
10.6 Special Topic: Droplet Fuel Sprays . 77
10.7 Special Topic: Suppression by Water (Mixture Fraction Model Only) 78

11 Devices and Control Logic 79
11.1 Device Location and Orientation: The DEVC Namelist Group (Table 13.4) 79
11.2 Device Output . 80
11.3 Special Devices and their Properties: The PROP Namelist Group (Table 13.16) 80

11.3.1 Sprinklers . 80
11.3.2 Nozzles . 82
11.3.3 Heat Detectors . 82
11.3.4 Smoke Detectors . 83
11.3.5 Beam Detection Systems . 83
11.3.6 Aspiration Detection Systems . 84

11.4 Basic Control Logic . 85
11.4.1 Creating and Removing Obstructions . 85
11.4.2 Activating and Deactivating Vents . 86

11.5 Advanced Control Functions: The CTRL Namelist Group 88
11.5.1 Control Functions: ANY, ALL, ONLY, and AT_LEAST 88
11.5.2 Control Function: TIME_DELAY . 89
11.5.3 Control Function: DEADBAND . 89
11.5.4 Control Function: RESTART and KILL . 90
11.5.5 Control Function: CUSTOM . 90
11.5.6 Combining Control Functions: A Pre-Action Sprinkler System 91
11.5.7 Combining Control Functions: A Dry Pipe Sprinkler System 91

12 Output Data 93
12.1 Output Control Parameters: The DUMP Namelist Group . 93
12.2 Output Options . 94

12.2.1 Point Measurement Devices . 94

xiii

12.2.2 Integrated (non-pointwise) Measurement Devices 94
12.2.3 Output Statistics . 95
12.2.4 Quantities within Solids: The PROF Namelist Group 95
12.2.5 Animated Planar Slices: The SLCF Namelist Group 95
12.2.6 Animated Boundary Quantities: The BNDF Namelist Group 96
12.2.7 Animated Isosurfaces: The ISOF Namelist Group 96
12.2.8 Plot3D Static Data Dumps . 96

12.3 Special Output Quantities . 98
12.3.1 Heat Release Rate . 98
12.3.2 Visibility and Obscuration . 98
12.3.3 Layer Height and the Average Upper and Lower Layer Temperatures 99
12.3.4 The True Gas Temperature vs. the Measured Gas Temperature 100
12.3.5 Heat Fluxes . 100
12.3.6 Droplet Output Quantities . 101
12.3.7 Interfacing with Structural Models . 101
12.3.8 Integrated Mass and Energy Fluxes through Openings 101
12.3.9 Wind and the Pressure Coefficient . 102

12.4 Extracting Numbers from the Output Data Files . 102
12.5 Summary of Output Quantities . 103

13 Alphabetical List of Input Parameters 105
13.1 BNDF (Boundary File Parameters) . 106
13.2 CLIP (MIN/MAX Clipping Parameters) . 106
13.3 CTRL (Control Function Parameters) . 107
13.4 DEVC (Device Parameters) . 108
13.5 DUMP (Output Parameters) . 109
13.6 HEAD (Header Parameters) . 109
13.7 HOLE (Obstruction Cutout Parameters) . 110
13.8 INIT (Initial Conditions) . 110
13.9 ISOF (Isosurface Parameters) . 110
13.10MATL (Material Properties) . 111
13.11MESH (Mesh Parameters) . 112
13.12MISC (Miscellaneous Parameters) . 113
13.13OBST (Obstruction Parameters) . 114
13.14PART (Lagrangian Particles/Droplets) . 115
13.15PROF (Wall Profile Parameters) . 116
13.16PROP (Device Properties) . 117
13.17RADI (Radiation Parameters) . 118
13.18RAMP (Ramp Function Parameters) . 118
13.19REAC (Reaction Parameters) . 119
13.20SLCF (Slice File Parameters) . 120
13.21SPEC (Species Parameters) . 120
13.22SURF (Surface Properties) . 121
13.23TABL (Table Parameters) . 122
13.24TIME (Time Parameters) . 122
13.25TRNX, TRNY, TRNZ (MESH Transformations) . 123
13.26VENT (Vent Parameters) . 123
13.27ZONE (Pressure Zone Parameters) . 124

xiv

14 Conversion of Old Input Files to FDS 5 125
14.1 Numerical Domain Parameters: GRID and PDIM . 125
14.2 Obstructions, Vents, and Holes: OBST, VENT, and HOLE 125
14.3 Surface Parameters: SURF . 125
14.4 Reaction Parameters: REAC . 126
14.5 Device Parameters: SPRK, SMOD, HEAT, THCP . 127

III Sample Cases and Verification 129

15 Forms of Verification 131
15.1 Comparison with Analytical Solutions . 131
15.2 Code Checking . 132
15.3 Numerical Tests . 134

16 Verification Test Suite 135
16.1 Hydrodynamics . 135

16.1.1 Axially-Symmetric Helium Plume (helium_2d) 135
16.1.2 Pressure Rise in a Sealed Enclosure (pressure_rise) 136
16.1.3 Leaks and Fans in a Sealed Enclosure (leak_test and leak_test_2) 137
16.1.4 Two Fans in a Wall (fan_test) . 138
16.1.5 Stack Effect (stack_effect) . 139
16.1.6 Sawtooth (sawtooth) . 140

16.2 Combustion . 141
16.2.1 A Simple Under-Ventilated Compartment Fire (door_crack) 141

16.3 Radiation . 142
16.3.1 Radiation inside a box (radiation_in_a_box) . 142
16.3.2 Radiation from a plane layer (radiation_plane_layer) 143

16.4 Solid Phase Phenomena . 144
16.4.1 Simple Heat Conduction Through a Solid Slab (heat_conduction) 144
16.4.2 Temperature-Dependent Thermal Properties (heat_conduction_kc) 145
16.4.3 A Simple Two-Step Pyrolysis Example (two_step_solid_reaction) 146
16.4.4 Wall Internal Radiation (wall_internal_radiation) 147
16.4.5 A Liquid Pool Fire (ethanol_pan) . 148
16.4.6 A Thermoplastic (thermoplastic) . 149
16.4.7 A Charring Solid (charring_solid) . 150
16.4.8 Testing the “Burn-Away” Feature (box_burn_away) 152
16.4.9 A Couch Fire (couch) . 153
16.4.10 Flame Spread along a Cable Tray (cable_tray) . 154

16.5 Detectors . 155
16.5.1 Aspiration Detector (beam_detector) . 155
16.5.2 Aspiration Detector (aspiration_detector) . 156

16.6 Droplets and Sprays . 157
16.6.1 Water Droplet Evaporation (water_evaporation) 157
16.6.2 A Liquid Fuel Spray Burner (spray_burner) . 158
16.6.3 Measuring Water Flux (bucket_test) . 159
16.6.4 Complex Spray Patterns (bucket_test_2) . 159

16.7 General Functionality . 161

xv

16.7.1 Creating and Removing HOLEs and OBSTructions (create_remove) 161

17 Sensitivity Analysis 163
17.1 Grid Sensitivity . 163
17.2 Sensitivity of Large Eddy Simulation Parameters . 165
17.3 Sensitivity of Radiation Parameters . 165
17.4 Sensitivity of Thermophysical Properties of Solid Fuels . 166
17.5 Summary . 167

IV Working with the FDS Source Code 169

18 Compiling FDS 171
18.1 FDS Source Code . 171

19 Output File Formats 173
19.1 Diagnostic Output . 173
19.2 Plot3D Data . 174
19.3 Device Output Data . 174
19.4 Control Output Data . 175
19.5 Gas Mass Data . 175
19.6 Mixture Fraction State Relations . 175
19.7 Slice Files . 176
19.8 Boundary Files . 176
19.9 Particle Data . 177
19.10Profile Files . 177

Bibliography 179

Index 183

xvi

Part I

Running FDS

1

Chapter 1

Introduction

The software described in this document, Fire Dynamics Simulator (FDS), is a computational fluid dynamics
(CFD) model of fire-driven fluid flow. FDS solves numerically a form of the Navier-Stokes equations
appropriate for low-speed, thermally-driven flow with an emphasis on smoke and heat transport from fires.
The formulation of the equations and the numerical algorithm are contained the FDS Technical Reference
Guide [1].

Smokeview is a separate visualization program that is used to display the results of an FDS simulation.
A detailed description of Smokeview is found in the User’s Guide for Smokeview Version 5 [2].

1.1 Features of FDS

The first version of FDS was publicly released in February 2000. To date, about half of the applications of
the model have been for design of smoke handling systems and sprinkler/detector activation studies. The
other half consist of residential and industrial fire reconstructions. Throughout its development, FDS has
been aimed at solving practical fire problems in fire protection engineering, while at the same time providing
a tool to study fundamental fire dynamics and combustion.

Hydrodynamic Model FDS solves numerically a form of the Navier-Stokes equations appropriate for low-
speed, thermally-driven flow with an emphasis on smoke and heat transport from fires. The core algo-
rithm is an explicit predictor-corrector scheme, second order accurate in space and time. Turbulence is
treated by means of the Smagorinsky form of Large Eddy Simulation (LES). It is possible to perform a
Direct Numerical Simulation (DNS) if the underlying numerical mesh is fine enough. LES is the default
mode of operation.

Combustion Model For most applications, FDS uses a single step chemical reaction whose products are
tracked via a two-parameter mixture fraction model. The mixture fraction is a conserved scalar quantity
that represents the mass fraction of one or more components of the gas at a given point in the flow
field. By default, two components of the mixture fraction are explicitly computed. The first is the
mass fraction of unburned fuel and the second is the mass fraction of burned fuel (i.e. the mass of
the combustion products that originated as fuel.). A two-step chemical reaction with a three parameter
mixture fraction decomposition can also be used with the first step being oxidation of fuel to carbon
monoxide and the second step the oxidation of carbon monoxide to carbon dioxide. The three mixture
fraction components for the two step reaction are unburned fuel, mass of fuel that has completed the
first reaction step, and the mass of fuel that has completed the second reaction step. The mass fractions
of all of the major reactants and products can be derived from the mixture fraction parameters by means
of “state relations,”. Lastly, a multiple-step finite rate model is also available.

3

Radiation Transport Radiative heat transfer is included in the model via the solution of the radiation trans-
port equation for a gray gas, and in some limited cases using a wide band model. The equation is solved
using a technique similar to finite volume methods for convective transport, thus the name given to it
is the Finite Volume Method (FVM). Using approximately 100 discrete angles, the finite volume solver
requires about 20 % of the total CPU time of a calculation, a modest cost given the complexity of radi-
ation heat transfer. The absorption coefficients of the gas-soot mixtures are computed using RADCAL
narrow-band model. Liquid droplets can absorb and scatter thermal radiation. This is important in cases
involving mist sprinklers, but also plays a role in all sprinkler cases. The absorption and scattering
coefficients are based on Mie theory.

Geometry FDS approximates the governing equations on a rectilinear mesh. Rectangular obstructions are
forced to conform with the underlying mesh.

Multiple Meshes This is a term used to describe the use of more than one rectangular mesh in a calculation.
It is possible to prescribe more than one rectangular mesh to handle cases where the computational
domain is not easily embedded within a single mesh.

Parallel Processing It is possible to run an FDS calculation on more than one computer using the Message
Passing Interface (MPI). Details can be found in Section 3.1.2.

Boundary Conditions All solid surfaces are assigned thermal boundary conditions, plus information about
the burning behavior of the material. Heat and mass transfer to and from solid surfaces is usually handled
with empirical correlations, although it is possible to compute directly the heat and mass transfer when
performing a Direct Numerical Simulation (DNS).

1.2 What’s New in FDS 5?

FDS 5 differs from previous versions in its treatment of solid boundaries and gas phase combustion. Among
the more important changes are:

Multi-Step Combustion Previous versions of FDS have assumed only one gas phase reaction. Now,
multiple-step reaction schemes are available to describe local extinction, CO production, among var-
ious other phenomena. The most important improvements to the combustion model are a more accurate
heat release rate calculation, and a better treatment of local flame extinction.

Material Layers Past versions of FDS have assumed that solid boundaries consist of a single homogenous
layer. Now, solid boundaries can be modeled with multiple layers of materials, with each material
specified via a new namelist group called MATL. This change makes past input files obsolete.

Command Line Format FDS is still run from the command line, but the syntax is slightly different than
in previous versions. See Section 3 for details.

Database Previous versions of FDS used a separate “database” file to store material and reaction parame-
ters. This file is no longer available, and now all parameters must be specified within the input file.

Device Descriptions The method used to describe a device and/or sensor (Sprinkler, Heat Detector, Ther-
mocouple, etc.) has changed. See Section 11.1 for more information on defining devices and their
properties. Any device can be used to control sprinkler activation and the creation and removal of vents
or obstacles.

4

Sprinklers The external sprinkler files used in previous versions are no longer used. All information about
sprinklers and other fire-specific devices are conveyed in the input file. Sprinklers are now defined with
the new method of describing devices mentioned above. See Section 11.1 for more information.

Control Functions A new group of input parameters is available to describe functions that control sprinkler
activation, the creation and removal of vents or obstacles, and code execution (termination or dumping
of restart files). See Section 11.5 for details.

Numerical Mesh Previous versions of FDS used separate input groups to define the numerical grid and the
computational domain. Now the two groups have been merged into a single, simplified MESH namelist
group. Namelist groups PDIM and GRID shall no longer be used in the input file. See Section 6.3 for
more detail.

Pressure Zones It is possible in FDS 5 to declare individual regions in the computational domain to have
background pressures different from ambient, allowing for calculations of leakage, fan curves, and so
forth. See Section 8.3 for more details.

Stack Effect and Atmospheric Stratification Improvements have been made to better characterize a strat-
ified atmosphere and the movement of air in a tall building due to temperature differences between inside
and outside.

Adiabatic Surface Temperature A new output quantity has been added to facilitate using FDS output in
thermal and mechanical finite element models. See Section 8.2.2 for more information.

Development, Distribution and Formal User Support Starting with FDS 5, the open-source development
environment SourceForge.net is being used for configuration management (code archiving, revision
tracking, bug fixes, user suggestions, and so on). See Section 2.1 for more information.

FDS Verification and Validation Guide Starting with FDS 5, more emphasis has been placed on main-
taining a permanent collection of Verification and Validation cases. This improves the quality of each
FDS update and release, as a standard test suite will now be used to insure that changes made to the
source code do not degrade FDS output. This also provides users with a standard data set to verify their
own installation of FDS and to compare the results that FDS is returning on their system to published
data.

5

6

Chapter 2

Getting Started

FDS is a computer program that solves equations that describe the evolution of fire. It is a Fortran program
that reads input parameters from a text file, computes a numerical solution to the governing equations, and
writes user-specified output data to files. Smokeview is a companion program that reads FDS output files
and produces animations on the computer screen. Smokeview has a simple menu-driven interface. FDS
does not. However, there are various third-party programs that have been developed to generate the text file
containing the input parameters needed by FDS.

This guide describes how to obtain FDS and Smokeview and how to use FDS. A separate document [2]
describes how to use Smokeview. Other tools related to FDS and Smokeview can be found at the web site.

2.1 How to Acquire FDS and Smokeview

Detailed instructions on how to download executables, manuals, source-code and related utilities, can
be found on the FDS-SMV Website http://fire.nist.gov/fds for more information. The typical
FDS/Smokeview distribution consists of an installation package or compressed archive, which is available
for MS Windows, Mac OS X, and Linux. For other operating systems, consult the web site.

If you ever want to keep an older version of FDS and Smokeview, copy the installation directory to some
other place so that it is not overwritten during the updated installation.

2.2 Computer Hardware Requirements

FDS requires a fast CPU and a substantial amount of random-access memory (RAM) to run efficiently. For
minimum specifications, the system should have a 1 GHz CPU, and at least 512 MB RAM. The CPU speed
will determine how long the computation will take to finish, while the amount of RAM will determine how
many mesh cells can be held in memory. A large hard drive is required to store the output of the calculations.
It is not unusual for the output of a single calculation to consume more than 1 GB of storage space.

Most computers purchased within the past few years are adequate for running Smokeview with the
caveat that additional memory (RAM) should be purchased to bring the memory size up to at least 512 MB.
This is so the computer can display results without “swapping" to disk. For Smokeview it is also important
to obtain a fast graphics card for the PC used to display the results of the FDS computations.

For Multi-Mesh calculations, the MPI version of FDS will operate over standard 100 Mbps networks.
A Gigabit or 1000 Mbps network will further reduce latency and improve data transfer rates between nodes.

7

http://fire.nist.gov/fds

2.3 Computer Operating System (OS) and Software Requirements

The goal of making FDS and Smokeview publicly available has been to enable practicing fire protection
engineers to perform fairly sophisticated fire simulations at a reasonable cost. Thus, FDS and Smokeview
have been designed for computers running Microsoft Windows, Mac OS X, and various implementations of
Unix/Linux.

MS Windows An installation package is available for Windows operating system. It is not recommended
to run FDS/Smokeview under any version of MS Windows released prior to Windows 2000.

Mac OS X A Mac OS X Tiger FDS .zip archive is available for both the PowerPC and Intel architectures.
OS X 10.4.x or better is recommended, versions of OS X prior to 10.4.x are not officially supported.
Users can always download the latest version of FDS source and compile FDS for other versions of OS
X (See Appendix 18 for details).

Unix, Linux Unix, Linux users can run FDS and Smokeview by downloading the appropriate pre-compiled
executables and installing them wherever they see fit. If the pre-compiled FDS executable does not work
(usually because of library incompatibilities), the FDS source code can be downloaded and compiled
using a Fortran 90 and C compiler (See Appendix 18 for details). If Smokeview does not work on the
Linux or Unix workstation, you should use a Windows or Mac PC to view FDS output.

FDS in Parallel For those wishing to run FDS in parallel, MPI (Message Passing Interface) must be in-
stalled on each of the computers within the network that will be used for FDS computations. Information
about installing MPI on different computer platforms is given on the FDS website. See the Development
section of the website for more information.

8

Chapter 3

Running FDS

This chapter describes the procedure to run an FDS calculation. The primary requirement for any calculation
is an FDS input file. The creation of an input file is covered in detail in Part II. If you are new to FDS and
Smokeview, it is strongly suggested that you start with an existing data file, run it as is, and then make the
appropriate changes to the input file for the desired scenario. Sample input files are included as part of the
standard installation. By running a sample case, you become familiar with the procedure, learn how to use
Smokeview, and ensure that your computer is up to the task before embarking on learning how to create new
input files.

3.1 Starting an FDS Calculation

FDS can be run from the command prompt, or with a third party Graphical User Interface (GUI). In the
discussion to follow, it is assumed that FDS is being run from the command prompt. FDS can be run on a
single computer, using only one CPU, or it can be run on multiple computers and use multiple CPUs. For
any operating system, there are two FDS executable files. The single CPU Windows executable is called
fds#.exe. The parallel executable is called fds#_mpi.exe. The letters “mpi” in the filename denote Message
Passing Interface (MPI), which will be discussed below.

Note that the input file for both single and parallel versions of FDS are the same. In fact, it is recommended
that before embarking on parallel processing, you should run your input file in serial mode to ensure that it
is properly set up.

3.1.1 Starting an FDS Calculation (Single Processor Version)

Sample input files are provided with the program for new users who are encouraged to first run a sample
calculation before attempting to write an input file. Assuming that an input file called job_name.fds exists
in some directory, run the program either in a DOS or Unix command prompt as follows:

MS Windows

Open up a Command Prompt window, and change directories (“cd”) to where the input file for the case is
located, then run the code by typing at the command prompt

fds5 job_name.fds

9

The character string job_name is usually designated within the input file as the CHID. It is recommended
that the name of the input file and the CHID be the same so that all of the files associated with a given
calculation have a consistent name. The progress of a simulation is indicated by diagnostic output that is
written out onto the screen. Detailed diagnostic information is automatically written to a file CHID.out,
where CHID is a character string, usually the same as job_name, designated in the input file.. Screen output
can be redirected to a file via the alternative command

fds5 job_name.fds > job_name.err

Mac OS X, Unix, Linux

Depending on the type of installation, you may need to set various path or environment variables in order
to invoke FDS without a full path reference to the executable. The easiest way to do this is via an “alias” in
your shell start-up script. For the example below, it is assumed that fds5 is aliased to its full path name. You
may also need to “chmod + x” to make the file executable. Once this is done, run FDS from the command
line by typing:

fds5 job_name.fds

The input parameters are read from the file job_name.fds, and error statements and other diagnostics are
written out to the screen. To run the job in the background:

fds5 job_name.fds >& job_name.err &

Note that in the latter case, the screen output is stored in the file job_name.err and the detailed di-
agnostics are saved automatically in a file CHID.out, where CHID is a character string, usually the same
as job_name, designated in the input file. It is preferable to run jobs in the background so as to free the
console for other uses.

3.1.2 Starting an FDS Calculation (Multiple Processor Version)

Running FDS across a network using multiple processors and multiple banks of memory (RAM) is more
difficult than running the single processor version. More is required of the user to make the connections
between the machines as seamless as possible. This involves creating accounts for a given user on each
machine, sharing directories, increasing the speed of the network, making each machine aware of the others,
etc. Some of these details are handled by the parallel-processing software, others are not. Undoubtedly the
process will be simplified in years to come, but for the moment, parallel-processing is still relatively new and
requires more expertise in terms of understanding both the operating system and the network connections of
a given set of computers.

FDS uses MPI (Message-Passing Interface) [3] to allow multiple computers to run a single FDS job.
Actually, the job must be broken up into multiple meshes, and a processor is assigned to work on each
mesh. Each processor runs an FDS job (called a thread) for its given mesh, and the MPI handles the transfer
of information between meshes. There are different implementations of MPI, much like there are different
Fortran and C compilers. Each implementation is essentially a library of subroutines called from FDS that
transfer data from one thread to another across a fast network. The format of the subroutine calls has been
widely accepted in the community, allowing different vendors and organizations the freedom to develop
better software while working within an open framework.

The way FDS is executed in parallel depends on which implementation of MPI has been installed. At
NIST, the parallel version of FDS is presently run on Windows PCs connected by the Local Area Network
(LAN, 100 Mbps) or on a cluster of Linux PCs linked together with a dedicated, fast (1000 Mbps) network.
The Windows computers use MPICH2, a free implementation of MPI from Argonne National Laboratory,
USA.

10

MPICH2

With MPICH2, a parallel FDS calculation can be invoked either from the command line or by using a
Graphical User Interface (GUI). After the MPICH2 libraries are installed on each computer and the neces-
sary directories are shared, FDS is run using the command issued from one of the computers

mpiexec -file config.txt

where config.txt is a text file containing the name and location of the FDS executable, name of the FDS input
file, the working directory, and the names of the various computers that are to run the job. For example, the
config.txt file might look like this for a job run at NIST with computers named fire_1, fire_2, and fire_3:

exe \\fire_1.nist.gov\NIST\FDS\fds5_mpi.exe job_name.fds
dir \\fire_1.nist.gov\Projects\
hosts
fire_1.nist.gov 2
fire_2.nist.gov 1
fire_3.nist.gov 2

The numbers following the “host” machines represent the number of threads to run on that particular ma-
chine. In this example, 5 threads are run for an FDS calculation that has 5 meshes. The exe and dir

directories need to be shared, with the latter having read and write permissions.

All the computers must be able to access the executable and the working directory on fire_1. This is
achieved under Windows by “sharing.” Under Unix/Linux and OS X, the process involves cross-mounting
the file systems of the various machines.

LAM-MPI

On the Linux cluster in the Building and Fire Research Lab at NIST, LAM-MPI, a free implemenation from
Indiana University, is installed.1 With LAM/MPI, the computers to be used are linked prior to the actual
execution of FDS with a separate command called a “lamboot.” FDS is then run using the command

mpirun -np 5 fds5_mpi job_name.fds

where the 5 indicates that 5 processors are to be used. In this case, the executable fds5_mpi is located in the
working directory. To make the process run in the background

mpirun -np 5 fds5_mpi job_name.fds >& job_name.err &

The file job_name.err contains what is normally printed out to the screen.

Note that there are several other implementations of MPI, some free, some not. Support for the software
varies, thus FDS has been designed to run under any of the more popular versions without too much user
intervention. However, keep in mind that parallel processing is a relatively new area of computer science,
and there are bound to be painful growth spurts in the years ahead.

1http://www.lam-mpi.org

11

http://www.lam-mpi.org

3.2 Monitoring Progress

Diagnostics for a given calculation are written into a file called CHID.out. The CPU usage and simulation
time are written here, so you can see how far along the program has progressed. At any time during a
calculation, Smokeview can be run and the progress can be checked visually. To stop a calculation before
its scheduled time, either kill the process, or preferably create a file in the same directory as the output files
called CHID.stop. The existence of this file stops the program gracefully, causing it to dump out the latest
flow variables for viewing in Smokeview.

Since calculations can be hours or days long, there is a restart feature in FDS. Details of how to use this
feature are given in Section 6.4.1. Briefly, specify at the beginning of calculation how often a “restart” file
should be saved. Should something happen to disrupt the calculation, like a power outage, the calculation
can be restarted from the time the last restart file was saved.

It is also possible to control the stop time and the dumping of restart files by using control functions as
described in Section 11.5.

12

Chapter 4

User Support

It is not unusual over the course of a project to run into various problems, some related to FDS, some related
to your computer. FDS is not a typical PC application. It is a serious calculation that pushes your computer’s
processor and memory to its limits. In fact, there are no hardwired bounds within FDS that prevent you
from starting a calculation that is too much for your hardware. Even if your machine has adequate memory
(RAM), you can still easily set up calculations that can require weeks or months to complete. It is difficult
to predict at the start of a simulation just how long and how much memory will be required. Learn how to
monitor the resource usage of your computer. Start with small calculations and build your way up.

Although many features in FDS are fairly mature, there are many that are not. FDS is used for practical
engineering applications, but also for research in fire and combustion. As you become more familiar with the
software, you will inevitably run into areas that are of current research interest. Indeed, burning a roomful
of ordinary furniture is one of the most challenging applications of the model. So be patient, and learn to
dissect a given scenario into its constitutive parts. For example, do not attempt to simulate a fire spreading
through an entire floor of a building unless you have simulated the burning of the various combustibles with
relatively small calculations. The examples described in Part III should help you to develop larger, more
complicated simulations from smaller building blocks.

Along with the FDS User’s Guide, there are resources available on the Internet. These include an “Issue
Tracker,” that allows you to report bugs, feature requests and ask specific clarifying questions, and “Group
Discussions,” which support more general topics than just specific problems. Before using these on-line
resources, it is important to first try to solve your own problems by performing simple test calculations, or
debugging your input file. The next few sections provide a list of error statements and suggestions on how
to solve problems.

4.1 The Version Number

If you encounter problems with FDS, it is crucial that you submit, along with a description of the problem,
the FDS version number. Each release of FDS comes with a version number like 5.2.6, where the first
number is the major release, the second is the minor release, and the third is the maintenance release.
Major releases occur every few years, and as the name implies dramatically change the functionality of the
model. Minor releases occur every few months, and may cause minor changes in functionality. Release
notes can help you decide whether the changes should effect the type of applications that you typically do.
Maintenance releases are just bug fixes, and should not affect code functionality. To get the version number,
just type the executable at the command prompt:

fds5

13

and the relevant information will appear, along with a date of compilation (useful to you) and a so-called
SVN number (useful to us). The SVN number refers to the Subversion repository number of the source
code. It allows us to go back in time and recover the exact source code files that were used to build that
executable.

Simply get in the habit of checking the version number of your executable, periodically checking for
new releases which might already have addressed your problem, and telling us what version you are using
if you report a problem.

4.2 Common Error Statements

An FDS calculation may end before the user-prescribed time limit. Following is a list of common error
statements and how to diagnose the problems:

Input File Errors: The most common errors in FDS are due to mis-typed input statements. These errors
result in the immediate halting of the program and a statement like, “ERROR: Problem with the HEAD
line.” For these errors, check the line in the input file named in the error statement. Make sure the
parameter names are spelled correctly. Make sure that a / (forward slash) is put at the end of each
namelist entry. Make sure that the right type of information is being provided for each parameter, like
whether one real number is expected, or several integers, or whatever. Make sure there are no non-ASCII
characters being used, as can sometimes happen when text is cut and pasted from other applications or
word-processing software. Make sure zeros are zeros and O’s are O’s. Make sure 1’s are not !’s. Make
sure apostrophes are used to designate character strings. Make sure the text file on a Unix/Linux machine
was not created on a DOS machine, and vice versa. Make sure that all the parameters listed are still
being used – new versions of FDS often drop or change parameters to force you to re-examine old input
files.

Numerical Instability Errors: It is possible that during an FDS calculation the flow velocity at some loca-
tion in the domain can increase due to numerical error causing the time step size to decrease to a point
where logic in the code decides that the results are unphysical and stops the calculation with an error
message in the file CHID.out. In these cases, FDS ends by dumping out one final Plot3D file giving
the user some means by which to see where the error is occurring within the computational domain.
Usually, a numerical instability can be identified by fictitiously large velocity vectors emanating from a
small region within the domain. Common causes of such instabilities are mesh cells that have an aspect
ratio larger than 2 to 1, high speed flow through a small opening, a sudden change in the heat release
rate, or any number of sudden changes to the flow field. There are various ways to solve the problem,
depending on the situation. Try to diagnose and fix the problem before reporting it. It is difficult for
anyone but the originator of the input file to diagnose the problem.

Inadequate Computer Resources: The calculation might be using more RAM than the machine has, or the
output files could have used up all the available disk space. In these situations, the computer may or may
not produce an intelligible error message. Sometimes the computer is just unresponsive. It is the user’s
responsibility to ensure that the computer has adequate resources to do the calculation. Remember, there
is no limit to how big or how long FDS calculations can be – it depends on the resources of the computer.
For any new simulation, try running the case with a modest-sized mesh, and gradually make refinements
until the computer can no longer handle it. Then back off somewhat on the size of the calculation so that
the computer can comfortably run the case. Trying to run with 90 % to 100 % of computer resources is
risky. In fact, for a typical Windows PC with 4 GB RAM, only 2 GB will be available to FDS, based on
user feedback.

14

Run-Time Errors: An error occurs either within the computer operating system or the FDS program. An
error message is printed out by the operating system of the computer onto the screen or into the diag-
nostic output file. This message is most often unintelligible to most people, including the programmers,
although occasionally one might get a small clue if there is mention of a specific problem, like “stack
overflow,” “divide by zero,” or “file write error, unit=...” These errors may be caused by a bug in FDS,
for example if a number is divided by zero, or an array is used before it is allocated, or any number of
other problems. Before reporting the error to the SourceForge Support Tracker, try to systematically
simplify the input file until the error goes away. This process usually brings to light some feature of the
calculation responsible for the problem and helps in the debugging.

Poisson Initialization: Sometimes at the very start of a calculation, an error appears stating that there is a
problem with the “Poisson initialization.” The equation for pressure in FDS is known as the Poisson
equation. The Poisson solver consists of large system of linear equations that must be initialized at the
start of the calculation. Most often, an error in the initialization step is due to a mesh IJK dimension
being less than 4 (except in the case of a two-dimensional calculation). It is also possible that something
is fundamentally wrong with the coordinates of the computational domain. Diagnose the problem by
checking the MESH lines in the input file.

4.3 Support Requests and Bug Tracking

Because FDS development is on-going, problems will inevitably occur with various routines and features.
The developers need to know if a certain feature is not working, and reporting problems is encouraged.
However, the problem must be clearly identified. The best way to do this is to simplify the input file as
much as possible so that the bug can be diagnosed. Also, limit the bug reports to those features that clearly
do not work. Physical problems such as fires that do not ignite, flames that do not spread, etc., may be
related to the mesh resolution or scenario formulation and need to be investigated first by the user before
being reported. If an error message originates from the operating system as opposed to FDS, first investigate
some of the more obvious possibilities, such as memory size, disk space, etc.

If that does not solve the problem, report the problem with as much information about the error message
and circumstances related to the problem. The input file should be simplified as much as possible so that the
bug occurs early in the calculation. Attach the simplified input file if necessary, following the instructions
provided at the web site. In this way, the developers can quickly run the problem input file and hopefully
diagnose the problem.

NOTE: Reports of specific problems, feature requests and enhancements should be posted to the Issue
Tracker and not the Discussion Group.

15

16

Part II

Writing an FDS Input File

17

Chapter 5

The Basic Structure of an Input File

5.1 Naming the Job

The operation of FDS is based on a single input text1 file containing parameters organized into namelist 2

groups. The input file provides FDS with all of the necessary information to describe the scenario. The
input file is saved with a name such as job_name.fds, where job_name is any character string that helps to
identify the simulation. If this same string is repeated under the HEAD namelist group within the input file,
then all of the output files associated with the calculation will then have this common name.

There should be no blank spaces in the job name. Instead use the underscore character to represent
a space. Using an underscore characters instead of a space also applies to the general practice of naming
directories on your system.

Be aware that FDS will simply over-write the output files of a given case if its assigned name is the
same. This is convenient when developing an input file because you save on disk space. Just be careful not
to overwrite a calculation that you want to keep.

5.2 Namelist Formatting

Parameters are specified within the input file by using namelist formatted records. Each namelist record
begins with the ampersand character “&” followed immediately by the name of the namelist group, then a
comma-delimited list of the input parameters, and finally a forward slash “/”. For example, the line

&DUMP NFRAMES=1800, DT_HRR=10., DT_DEVC=10., DT_PROF=30. /

sets various values of parameters contained in the DUMP namelist group. The meanings of these various
parameters will be explained in subsequent chapters. The namelist records can span multiple lines in the
input file, but just be sure to end the record with a “/” or else the data will not be understood. Do not add
anything to a namelist line other than the parameters and values appropriate for that group. Otherwise, FDS
will stop immediately upon execution.

Parameters within a namelist record can be separated by either commas, spaces, or line breaks. It is a
good idea to use commas or line breaks. Some machines do not recognize the spaces. Comments and notes
can be written into the file so long as nothing comes before the & except a space and nothing comes between
the ampersand & and the slash / except appropriate parameters corresponding to that particular namelist
group.

1ASCII – American Standard Code for Information Interchange
2A namelist is a Fortran input record.

19

The parameters in the input file can be integers (T_END=5400), real numbers (CO_YIELD=0.008),
groups of real numbers or integers (XYZ=6.04,0.28,3.65) or (IJK=90,36,38), character strings:

CHID=’WTC_05_v5’

groups of character strings:
SURF_IDS=’burner’,’INERT’,’INERT’

or logical parameters:
POROUS_FLOOR=.FALSE.

A logical parameter is either .TRUE. or .FALSE. – the periods are a Fortran convention. Character strings
that are listed in this User’s Manual must be copied exactly as written – the code is case sensitive and
underscores do matter.

Most of the input parameters are simply real or integer scalars, like DT=0.02, but sometimes the in-
puts are multidimensional arrays. For example, when describing a particular solid surface, you need to
express the mass fractions of multiple materials that are to be found in multiple layers. The input array
MATL_MASS_FRACTION(IL,IC) is intended to convey to FDS the mass fraction of component IC of layer
IL. For example, if the mass fraction of the second material of the third layer is 0.5, then write

MATL_MASS_FRACTION(3,2)=0.5

To enter more than one mass fraction, use this notation:
MATL_MASS_FRACTION(1,1:3)=0.5,0.4,0.1

which means that the first three materials of layer 1 have mass fractions of 0.5, 0.4, and 0.1, respectively.
The notation 1:3 means array element 1 through 3, inclusive.

Note that character strings can be enclosed either by apostrophes or quotation marks. Be careful not to create
the input file by pasting text from something other than a simple text editor, in which case the punctuation
marks may not transfer properly into the text file.

5.3 Input File Structure

In general, the namelist records can be entered in any order in the input file, but it is a good idea to organize
them in some systematic way. Typically, general information is listed near the top of the input file, and
detailed information, like obstructions, devices, and so on, are listed below. FDS scans the entire input file
each time it processes a particular namelist group. With some text editors, it has been noticed that the last
line of the file is often not read by FDS because of the presence of an “end of file” character. To ensure that
FDS reads the entire input file, add

&TAIL /

as the last line at the end of the input file. This completes the file from &HEAD to &TAIL. FDS does not even
look for this last line. It just forces the “end of file” character past relevant input.

Another general rule of thumb when writing input files is to only add to the file parameters that are to
change from their default value. That way, you can more easily distinguish between what you want and what
FDS wants. Add comments liberally to the file, so long as these comments do not fall within the namelist
records.

The general structure of an input file is shown below, with many lines of the original validation input
file (WTC_05_v5.fds) removed for clarity.

&HEAD CHID='WTC_05_v5', TITLE='WTC Phase 1, Test 5, FDS version 5' /
&MESH IJK=90,36,38, XB=-1.0,8.0,-1.8,1.8,0.0,3.82 /
&TIME T_END=5400. /

20

&MISC SURF_DEFAULT='MARINITE BOARD', TMPA=20., POROUS_FLOOR=.FALSE. /
&DUMP NFRAMES=1800, DT_HRR=10., DT_DEVC=10., DT_PROF=30. /

&REAC ID = 'HEPTANE TO CO2'
FYI = 'Heptane, C_7 H_16'
C = 7.
H = 16.
CO_YIELD = 0.008 /
SOOT_YIELD = 0.015 /

&OBST XB= 3.5, 4.5,-1.0, 1.0, 0.0, 0.0, SURF_ID='STEEL FLANGE' / Fire Pan
...
&SURF ID = 'STEEL FLANGE'

COLOR = 'BLACK'
MATL_ID = 'STEEL'
BACKING = 'EXPOSED'
THICKNESS = 0.0063 /

...
&VENT MB='XMIN',SURF_ID='OPEN' /
...
&SLCF PBY=0.0, QUANTITY='TEMPERATURE', VECTOR=.TRUE. /
...
&BNDF QUANTITY='GAUGE_HEAT_FLUX' /
...
&DEVC XYZ=6.04,0.28,3.65, QUANTITY='oxygen', ID='EO2_FDS' /
...
&TAIL / End of file.

It is strongly recommended that when looking at a new scenario, first select a pre-written input file that
resembles the case, make the necessary changes, then run the case at fairly low resolution to determine if the
geometry is set up correctly. It is best to start off with a relatively simple file that captures the main features
of the problem without getting tied down with too much detail that might mask a fundamental flaw in the
calculation. Initial calculations ought to be meshed coarsely so that the run times are less than an hour and
corrections can easily be made without wasting too much time. As you learn how to write input files, you
will continually run and re-run your case as you add in complexity.

Table 5.1 provides a quick reference to all the namelist parameters and where you can find the reference
to where it is introduced in the document and the table containing all of the keywords for each group.

21

Table 5.1: Namelist Group Reference Table
Group Name Namelist Group Description Reference Section Parameter Table

BNDF Boundary File Output 12.2.6 13.1
CTRL Control Function Parameters 11.5 13.3
DEVC Device Parameters 11.1 13.4
DUMP Output Parameters 12.1 13.5
HEAD Input File Header 6.1 13.6
HOLE Obstruction Cutout 7.2 13.7
INIT Initial Condition 6.5 13.8
ISOF Isosurface File Output 12.2.7 13.9
MATL Material Property 8.4 13.10
MESH Mesh Parameters 6.3 13.11
MISC Miscellaneous 6.4 13.12
OBST Obstruction 7.1 13.13
PART Lagrangian Particle 10 13.14
PROF Profile Output 12.2.4 13.15
PROP Device Property 11.3 13.16
RADI Radiation 9.4 13.17
RAMP Ramp Profile 8.5 13.18
REAC Reactions 9.1 13.19
SLCF Slice File Output 12.2.5 13.20
SPEC Species Parameters 9.2 13.21
SURF Surface Properties 8.2 13.22
TIME Simulation Time 6.2 13.24
TRNX Mesh Stretching 6.3.3 13.25
VENT Vent Parameters 7.3 13.26
ZONE Pressure Zone Parameters 8.3 13.27

22

Chapter 6

Setting the Bounds of Time and Space

6.1 Naming the Job: The HEAD Namelist Group (Table 13.6)

The first thing to do when setting up an input file is to give the job a name. The name of the job is important
because often a project involves numerous simulations in which case the names of the individual simulations
can help organize the effort. The namelist group HEAD contains two parameters, as in this example:

&HEAD CHID='WTC_05_v5', TITLE='WTC Phase 1, Test 5, FDS version 5' /

CHID is a string of 30 characters or less used to tag the output files. If, for example, CHID=’WTC_05_v5’,
it is convenient to name the input data file WTC_05_v5.fds so that the input file can be associated
with the output files. No periods or spaces are allowed in CHID because the output files are tagged with
suffixes that are meaningful to certain computer operating systems.

TITLE is a string of 60 characters or less that describes the simulation. It is simply descriptive text that is
passed to various output files.

6.2 Simulation Time: The TIME Namelist Group (Table 13.24)

TIME is the name of a group of parameters time define the time duration of the simulation and the initial time
step used to advance the solution of the discretized equations. Usually, only the duration of the simulation
is required on this line, via the parameter T_END (Time End). The default is 1 s. Note: TWFINTWFIN will
still work but it has been deprecated, it is recommended that T_END be used now instead.

For example, the following line will instruct FDS to run the simulation for 5400 seconds.

&TIME T_END=5400. /

If T_END is set to zero, only the set-up work is performed, allowing you to quickly check the geometry
in Smokeview.

If you want the timeline to start at a number other than zero, you can ues the parameter T_BEGIN (Time
Begin) to specify the time written to file for the first timestep. This would be useful for matching timelines
of experimental data or or video recordings.

This does not run any of the simulation prior to the T_BEGIN value. It is only used to offset the reported
starting time from zero.

23

Time based RAMPs are evaluated using the actual time if the RAMP activation time is the same as T_BEGIN;
otherwise, the are evaluated using the time from when the RAMP activates. Therefore, if you are setting
T_BEGIN in order to test a time based CTRL or DEVC that is ultimately linked to a RAMP, then you should set
T_BEGIN to be slightly less than the time the RAMP will activate. For example if you were testing a VENT
that is to open at 10 s whose SURF_ID uses a RAMP, T_BEGIN should be set slightly less than 10 s.

The initial time step size can be specified with DT. This parameter is normally set automatically by
dividing the size of a mesh cell by the characteristic velocity of the flow. During the calculation, the time
step is adjusted so that the CFL (Courant, Friedrichs, Lewy) condition is satisfied. The default value of DT
is 5(δxδyδ z)

1
3 /
√

gH s, where δx, δy, and δ z are the dimensions of the smallest mesh cell, H is the height
of the computational domain, and g is the acceleration of gravity.

If something sudden is to happen right at the start of a simulation, like a sprinkler activation, it is a good idea
to set the initial time step to avoid a numerical instability caused by too large a time step. Experiment with
different values of DT by monitoring the initial time step sizes recorded in the output file job_name.out.

One additional parameter in the TIME group is SYNCHRONIZE , a logical flag (.TRUE. or .FALSE.) indi-
cating that in a multi-mesh computation the time step for each mesh should be the same, thus ensuring that
each mesh is processed each iteration. More details can be found in Section 6.3.2. The default value of
SYNCHRONIZE is .TRUE.

24

6.3 Computational Meshes: The MESH Namelist Group (Table 13.11)

All FDS calculations must be performed within a domain that is made up of rectilinear volumes called
meshes. Each mesh is divided into rectangular cells, the number of which depends on the desired resolution
of the flow dynamics. MESH is the namelist group that defines the computational domain. A mesh is a single
right parallelepiped, i.e. a box. The coordinate system within a mesh conforms to the right hand rule. The
origin point of a mesh is defined by the first, third and fifth values of the real number sextuplet, XB, and the
opposite corner is defined by the second, fourth and sixth values. For example,

&MESH IJK=10,20,30, XB=0.0,1.0,0.0,2.0,0.0,3.0 /

defines a mesh that spans the volume starting at the origin and extending 1 m in the positive x direction, 2 m
in the positive y direction, and 3 m in the positive z direction. The mesh is subdivided into uniform cells via
the parameter IJK. In this example, the mesh is divided into 10 cm cubes. If it is desired that the mesh cells
in a particular direction not be uniform in size, then the namelist groups TRNX, TRNY and/or TRNZ may be
used to alter the uniformity of the mesh (See Section 6.3.3).

Any obstructions or vents that extend beyond the boundary of the mesh are cut off at the boundary.
There is no penalty for defining objects outside of the mesh, and these objects will not appear in Smokeview
either.

Note that it is best if the mesh cells resemble cubes, that is, the length, width and height of the cells ought
to be roughly the same.

Because an important part of the calculation uses a Poisson solver based on Fast Fourier Transforms (FFTs)
in the y and z directions, the second and third dimensions of the mesh should each be of the form 2l 3m 5n,
where l, m and n are integers. For example, 64 = 26, 72 = 2332 and 108 = 2233 are good mesh cell divisions,
but 37, 99 and 109 are not. The first number of mesh cell divisions (the I in IJK) does not use FFTs and
need not be given as a product of small numbers. However, you should experiment with different values of
divisions to ensure that those that are ultimately used do not unduly slow down the calculation.

Here is a list of numbers between 1 and 1024 that can be factored down to 2’s, 3’s and 5’s:

2 3 4 5 6 8 9 10 12 15 16 18 20 24 25
27 30 32 36 40 45 48 50 54 60 64 72 75 80 81
90 96 100 108 120 125 128 135 144 150 160 162 180 192 200

216 225 240 243 250 256 270 288 300 320 324 360 375 384 400
405 432 450 480 486 500 512 540 576 600 625 640 648 675 720
729 750 768 800 810 864 900 960 972 1000 1024

6.3.1 Two-Dimensional and Axially-Symmetric Calculations

The governing equations solved in FDS are written in terms of a three dimensional Cartesian coordinate
system. However, a two dimensional Cartesian or two dimensional cylindrical (axially-symmetric) calcu-
lation can be performed by setting the J in the IJK triplet to 1 on the MESH line. For axial symmetry,
add CYLINDRICAL=.TRUE. to the MESH line, and the coordinate x is then interpreted as the radial coordi-
nate r. No boundary conditions should be set at the planes y = YMIN=XB(3) or y = YMAX=XB(4), nor at
r = XMIN=XB(1) in an axially-symmetric calculation in which r = XB(1)=0. For better visualizations, the
difference between XB(4) and XB(3) should be small so that the Smokeview rendering appears to be in
2-D. An example of an axially-symmetric helium plume (helium_2d) is given in the V&V Guide.

25

Figure 6.1: An example of a multiple-mesh geometry.

6.3.2 Multiple Meshes and Parallel Processing

The term “multiple meshes” means that the computational domain consists of more than one computational
mesh, usually connected although this is not required. In each mesh, the governing equations can be solved
with a time step based on the flow speed within that particular mesh. Because each mesh can have different
time steps, this technique can save CPU time by requiring relatively coarse meshes to be updated only when
necessary. Coarse meshes are best used in regions where temporal and spatial gradients of key quantities
are small or unimportant. To run FDS in parallel, you need to break up the computational domain into
multiple meshes so that each processor receives one mesh to work on. Whether the calculation is to be
run on a single processor, or on multiple processors, the rules of prescribing multiple meshes are similar,
with some issues to keep in mind. Here is a list of guidelines and warnings about the use of multiple meshes.

• If more than one mesh is used, there should be a MESH line for each. The order in which these lines
are entered in the input file matters. In general, the meshes should be entered from finest to coarsest.
FDS assumes that a mesh listed first in the input file has precedence over a mesh listed second if the two
meshes overlap. Meshes can overlap, abut, or not touch at all. In the last case, essentially two separate
calculations are performed with no communication at all between them. Obstructions and vents are
entered in terms of the overall coordinate system and need not apply to any one particular mesh. Each
mesh checks the coordinates of all the geometric entities and decides whether or not they are to be
included.

• Avoid putting mesh boundaries where critical action is expected, especially fire. Sometimes fire spread
from mesh to mesh cannot be avoided, but if at all possible try to keep mesh interfaces relatively free of
complicated phenomena since the exchange of information across mesh boundaries is not yet as accurate

26

as cell to cell exchanges within one mesh.

• Information from other meshes is received only at the exterior boundary of a given mesh. This means
that a mesh that is completely embedded within another receives information at its exterior boundary,
but the larger mesh receives no information from the mesh embedded within. Essentially, the larger,
usually coarser, mesh is doing its own simulation of the scenario and is not affected by the smaller,
usually finer, mesh embedded within it. Details within the fine mesh, especially related to fire growth
and spread, may not be picked up by the coarse mesh. In such cases, it is preferable to isolate the
detailed fire behavior within one mesh, and position coarser meshes at the exterior boundary of the fine
mesh. Then the fine and coarse meshes mutually exchange information.

• Experiment with different mesh configurations using relatively coarse mesh cells to ensure that infor-
mation is being transferred properly from mesh to mesh. There are two issues of concern. First, does it
appear that the flow is being badly affected by the mesh boundary? If so, try to move the mesh bound-
aries away from areas of activity. Second, is there too much of a jump in cell size from one mesh to
another? If so, consider whether the loss of information moving from a fine to a coarse mesh is tolerable.

• Be careful when using the shortcut convention of declaring an entire face of the domain to be an OPEN

vent. Every mesh takes on this attribute. See Section 7.3 for more details.

• It is possible, starting with FDS 5, to have a background pressure rise in multiple pressure zones, even
if the pressure zones cross mesh boundaries. See Section 8.3 for more information.

• In a parallel calculation, you can force the time steps in all meshes to be the same by setting SYNCHRONIZE=.TRUE.
on the TIME line.

Starting in FDS 5, this is the default for all modes of operation.

With this setting, all meshes are active each iteration. For a single-processor, multiple mesh calculation,
this strategy reduces and may even eliminate any benefit seen by using multiple meshes. However, in
a parallel calculation, if a particular mesh is inactive during an iteration because it is not ready to be
updated, then the processor assigned to that mesh is also inactive. Forcing the mesh to be updated with
a smaller than ideal time step does not cost anything since that processor would have been idle anyway.
The benefit is that there is a tighter connection between meshes. It is also possible to synchronize the
time step in only a select set of meshes. To do this, add SYNCHRONIZE=.TRUE. to the appropriate
MESH lines and then add SYNCHRONIZE=.FALSE. to the TIME line.

• If a planar obstruction is close to where two meshes abut, make sure that each mesh “sees” the obstruc-
tion. If the obstruction is even a millimeter outside of one of the meshes, that mesh does not account for
it, in which case information is not transferred properly between meshes.

• When running a case with multiple meshes in parallel, the efficiency of the calculation can be checked
as follows: (1) Set SYNCHRONIZE=.TRUE. on the TIME line, (2) Let the program run several hundred
time steps, (3) Calculate the difference in wall clock time between two 100 iteration print outs in the file
CHID.out (see Section 19.1). Divide the time difference by 100. This is the average elapsed wall clock
time per time step, (4) Look at the CPU/step for each mesh. The largest value should be less than, but
close to, the average elapsed wall clock time. The efficiency of the parallel calculation is the maximum
CPU/step divided by the average wall clock time per step. If this number is between 90 % and 100 %,
the parallel code is working well.

27

6.3.3 Mesh Stretching: The TRNX, TRNY and/or TRNZ Namelist Groups (Table 13.25)

By default the mesh cells that fill the computational domain are uniform in size. However, it is possible
to specify that the cells be non-uniform in one or two of the three coordinate directions. For a given co-

Figure 6.2: Piecewise-Linear Transformation. Figure 6.3: Polynomial Transformation.

ordinate direction, x, y or z, a function can be prescribed that transforms the uniformly-spaced mesh to a
non-uniformly spaced mesh. Be careful with mesh transformations! If you shrink cells in one region you
must stretch cells somewhere else. When one or two coordinate directions are transformed, the aspect ratio
of the mesh cells in the 3D mesh will vary. To be on the safe side, transformations that alter the aspect ratio
of cells beyond 2 or 3 should be avoided. Keep in mind that the large eddy simulation technique is based
on the assumption that the numerical mesh should be fine enough to allow the formation of eddies that are
responsible for the mixing. In general, eddy formation is limited by the largest dimension of a mesh cell,
thus shrinking the mesh resolution in one or two directions may not necessarily lead to a better simulation
if the third dimension is large.

Transformations, in general, reduce the efficiency of the computation, with two coordinate transformations
impairing efficiency more than a transformation in one coordinate direction. Experiment with different
meshing strategies to see how much of a penalty you will pay.

Here is an example of how to do a mesh transformation. Suppose your mesh is defined

&MESH IJK=15,10,20, XB=0.0,1.5,1.2,2.2,3.2,5.2 /

and you want to alter the uniform spacing in the x direction. First, refer to the figures above. You need
to define a function x = f (ξ) that maps the uniformly-spaced Computational Coordinate (CC) 0 ≤ ξ ≤ 1.5
to the Physical Coordinate (PC) 0 ≤ x ≤ 1.5. The function has three mandatory constraints: it must be
monotonic (always increasing), it must map ξ = 0 to x = 0, and it must map ξ = 1.5 to x = 1.5. The default
transformation function is f (ξ) = ξ for a uniform mesh, but you need not do anything in this case.

28

Two types of transformation functions are allowed. The first, and simplest, is a piecewise-linear func-
tion. Figure 6.2 gives an example of a piecewise-linear transformation. The graph indicates how 15 uni-
formly spaced mesh cells along the horizontal axis are transformed into 15 non-uniformly spaced cells along
the vertical axis. In this case, the function is made up of straight line segments connecting points (CC,PC),
in increasing order, as specified by the following lines in the input file:

&TRNX CC=0.30, PC=0.50, MESH_NUMBER=2 /
&TRNX CC=1.20, PC=1.00, MESH_NUMBER=2 /

The parameter CC refers to the Computational Coordinate, ξ , located on the horizontal axis; PC is the
Physical Coordinate, x, located on the vertical axis. The slopes of the line segments in the plot indicate
whether the mesh is being stretched (slopes greater than 1) or shrunk (slopes less than 1). The tricky part
about this process is that you usually have a desired shrinking/stretching strategy for the Physical Coordinate
on the vertical axis, and must work backwards to determine what the corresponding points should be for the
Computational Coordinate on the horizontal axis. Note that the above transformation is applied to the second
mesh in a multiple mesh job.

The second type of transformation is a polynomial function whose constraints are of the form

dn f (CC)
dξ n = PC

Figure 6.3 gives an example of a polynomial transformation, for which the parameters are specified (assum-
ing that this is the third mesh):

&TRNX IDERIV=0, CC=0.75, PC=0.75, MESH_NUMBER=3 /
&TRNX IDERIV=1, CC=0.75, PC=0.50, MESH_NUMBER=3 /

which correspond to the constraints f (0.75) = 0.75 and d f
dξ

(0.75) = 0.5, or, in words, the function maps 0.75
into 0.75 and the slope of the function at ξ = 0.75 is 0.5 . The transform function must also pass through
the points (0,0) and (1.5,1.5), meaning that FDS must compute the coefficients for the cubic polynomial
f (ξ) = c0 +c1 ξ +c2 ξ 2 +c3 ξ 3. More constraints on the function lead to higher order polynomial functions,
so be careful about too many constraints which could lead to non-monotonic functions. The monotonicity
of the function is checked by the program and an error message is produced if it is not monotonic.

6.3.4 Choosing the Right Mesh Dimensions

A common question asked by new FDS users is, “What size mesh should I use?” The answer is not easy
because it depends considerably on what you are trying to accomplish. In general, you should build an FDS
input file using a relatively coarse mesh, and then gradually refine the mesh until you do not see appreciable
differences in your results. Formally, this is referred to as a mesh sensitivity study.

For simulations involving buoyant plumes, a measure of how well the flow field is resolved is given by
the non-dimensional expression D∗/δx, where D∗ is a characteristic fire diameter

D∗ =
(

Q̇
ρ∞ cp T∞

√
g

) 2
5

(6.1)

and δx is the nominal size of a mesh cell1. The quantity D∗/δx can be thought of as the number of compu-
tational cells spanning the characteristic (not necessarily the physical) diameter of the fire. The more cells

1The characteristic fire diameter is related to the characteristic fire size via the relation Q∗ = (D∗/D)5/2, where D is the physical
diameter of the fire.

29

spanning the fire, the better the resolution of the calculation. It is better to assess the quality of the mesh in
terms of this non-dimensional parameter, rather than an absolute mesh cell size. For example, a cell size of
10 cm may be “adequate,” in some sense, for evaluating the spread of smoke and heat through a building
from a sizable fire, but may not be appropriate to study a very small, smoldering source.

As an example, in the mesh sensitivity study for NUREG 1824 [4], the D∗/δx values ranged from
4 to 16. These values were used to adequately resolve plume dynamics, along with other geometrical
characteristics of the models as well. This range does not indicate what values to use for all models, only
what values worked well for that particular set of models.

30

6.4 Miscellaneous Parameters: The MISC Namelist Group (Table 13.12)

MISC is the namelist group of global miscellaneous input parameters. Only one MISC line should be entered
in the data file. For example, the input line

&MISC SURF_DEFAULT='CONCRETE',TMPA=25. /

establishes that all bounding surfaces are to be made of CONCRETE unless otherwise specified, and that the
ambient temperature is 25 ◦C.

The MISC parameters vary in scope and degree of importance. Here is a partial list of MISCellaneous
parameters. Others are described where necessary throughout this guide.

DNS A logical parameter that, if .TRUE., directs FDS to perform a Direct Numerical Simulation, as opposed
to the default Large Eddy Simulation (LES).

GVEC The 3 components of gravity, in m/s2. The default is GVEC=0,0,-9.81.

HUMIDITY Relative humidity, in units of %. This need only be specified if there is a source of water in the
simulation other than the fire itself. Otherwise, water vapor is not explicitly tracked. Default 40 %.

ISOTHERMAL A logical parameter that indicates that the calculation does not involve any changes in tem-
perature or radiation heat transfer, thus reducing the number of equations that must be solved, and
simplifying those that are. Automatically sets RADIATION to .FALSE.

NOISE FDS initializes the flow field with a very small amount of “noise” to prevent the development of a
perfectly symmetric flow when the boundary and initial conditions are perfectly symmetric. To turn this
off, set NOISE=.FALSE.

P_INF Background pressure (at the ground) in Pa. The default is 101325 Pa.

RADIATION A logical parameter indicating whether radiation transport ought to be calculated. The default
is .TRUE.

SUPPRESSION A logical parameter indicating whether FDS should include gas phase flame extinction. The
default is .TRUE.

SURF_DEFAULT The SURF line that is to be applied to all boundaries, unless otherwise specified. The
default is ’INERT’.

TMPA Ambient temperature, the temperature of everything at the start of the simulation. The default is
20 ◦C.

U0, V0, W0 Initial values of the gas velocity in each of the coordinate directions. Normally, these are all
0 m/s, but there are a few applications where it is convenient to start the flow immediately, like in an
outdoor simulation involving wind.

6.4.1 Stopping and Restarting Calculations

An important MISC parameter is called RESTART. Normally, a simulation consists of a sequence of events
starting from ambient conditions. However, there are occasions when you might want to stop a calculation,
make a few limited adjustments, and then restart the calculation from that point in time. To do this, first
bring the calculation to a halt gracefully by creating a file called CHID.stop in the directory where the

31

output files are located. Remember that FDS is case-sensitive. The file name must be exactly the same as
the CHID and ‘stop’ should be lower case. FDS checks for the existence of this file at each time step, and
if it finds it, gracefully shuts down the calculation after first creating a final Plot3D file and a file (or files
in the case of a multiple mesh job) called CHID.restart (or CHID_nn.restart). To restart a job, the file(s)
CHID.restart should exist in the working directory, and the phrase RESTART=.TRUE. needs to be added
to the MISC line of the input data file. For example, suppose that the job whose CHID is “plume” is halted
by creating a dummy file called plume.stop in the directory where all the output files are being created. To
restart this job from where it left off, add RESTART=.TRUE. to the MISC line of the input file plume.fds, or
whatever you have chosen to name the input file. The existence of a restart file with the same CHID as the
original job tells FDS to continue saving the new data in the same files as the old. If RESTART_CHID is also
specified on the MISC line, then FDS will look for old output files tagged with this string instead of using
the specified CHID on the HEAD line. In this case, the new output files will be tagged with CHID, and the old
output files will not be altered.

When running the restarted job, the diagnostic output of the restarted job is appended to the file CHID.out
that was created by the original job. All of the other output files from the original run are appended as well.

There may be times when you want to save restart files periodically during a run as insurance against
power outages or system crashes. If this is the case, at the start of the original run set DT_RESTART=50. on
the DUMP line to save restart files every 50 s, for example. The default for DT_RESTART is 1000000, meaning
no restart files are created unless you gracefully stop a job by creating a dummy file called CHID.stop.

It is also possible to use the new control function feature (see Section 11.5) to stop a calculation or dump
a restart file when the computation reaches some measurable condition such as a first sprinkler activation.

Between job stops and restarts, major changes cannot be made in the calculation like adding or removing
vents and obstructions. The changes are limited to those parameters that do not instantly alter the existing
flow field. Since the restart capability has been used infrequently by the developers, it should be considered
a fragile construct. Examine the output to ensure that no sudden or unexpected events occur during the stop
and restart.

6.4.2 Special Topic: Defying Gravity

Most users of FDS assume that the acceleration of gravity points toward the negative end of the z axis, or
more simply, downward. However, to change the direction of gravity to model a sloping roof or tunnel,
for example, specify the gravity vector on the MISC line with a triplet of numbers of the form GVEC=0.0,

0.0, -9.81 (units are m/s2). This is the default, but it can be changed to be any direction.
Note: if sprinklers are specified, the gravity vector must not be changed. Much of the logic governing

the trajectories of water droplets over solid objects assumes that gravity points in the negative z direction.
There are a few special applications where you might want to vary the gravity vector in time, for in-

stance, for spacecraft applications. The gravity vector, GVEC, can be made a function of time using “ramps”
for the individual components, RAMP_GX, RAMP_GY, and RAMP_GZ, all specified on the MISC line. More
about RAMPs can be found in Section 8.5.

6.4.3 Special Topic: Restoring the Baroclinic Vorticity

There is an approximation made when solving for the pressure where it is assumed that

∇ · 1
ρ

∇p̃ =
1

ρ∞

∇
2 p̃ (6.2)

The consequence of this approximation is that the vorticity generated due to the non-alignment of the density
and pressure gradients, or the baroclinic torque, is neglected. For most large scale applications, the assump-
tion is justified by the fact that the vorticity generated by buoyancy is the dominant source of vorticity. By

32

neglecting the baroclinic torque the solution of the elliptic partial differential equation obtained by taking
the divergence of the momentum equation is greatly simplified. However, an option exists in the code to
restore the baroclinic torque by decomposing the relevant term in the pressure equation

∇ · 1
ρn ∇p̃n = ∇ · 1

ρ
n ∇p̃n +∇ ·

(
1

ρn −
1

ρ
n

)
∇p̃n−1 (6.3)

and evaluating the second term on the right hand side with values of pressure from the previous time step.
The expression ρ is an average density, equal to 2ρminρmax/(ρmin +ρmax). To make this correction, simply
include the statement BAROCLINIC=.TRUE. on the MISC line. In a DNS calculation (DNS=.TRUE.), the
correction is made by default. However, for an LES calculation (the default mode in FDS), the correction
must be explicitly invoked. The cost of the correction is not prohibitive – try calculations with and without
the correction to determine if its inclusion is warranted.

6.4.4 Special Topic: Stack Effect

Tall buildings often experience buoyancy-induced air movement due to temperature differences between
inside and outside, known as stack effect. To simulate this phenomenon in FDS, you must include the entire
building, or a substantial fraction of it, both inside and out, in the computational domain. It is important to
capture the pressure and density decrease in the atmosphere based on the specified temperature LAPSE_RATE
(◦C/m) that is entered on the MISC line. Experiment with different meshing strategies before including any
fire or HVAC functionality. Slowly build in complexity. See Section 16.1.5 for an example.

6.4.5 Special Topic: Large Eddy Simulation Parameters

In default mode, FDS uses the Smagorinsky form of Large Eddy Simulation (LES) to model subgrid-scale
turbulence. The viscosity µ is modeled

µLES = ρ (Cs ∆)2
(

2 Si j ·Si j−
2
3
(∇ ·u)2

) 1
2

(6.4)

where Cs is an empirical constant and ∆ is a length on the order of the size of a grid cell. The bar above
the various quantities denotes that these are the resolved, or filtered, values, meaning that they are computed
on a numerical grid. The other diffusive parameters, the thermal conductivity and material diffusivity, are
related to the turbulent viscosity by

kLES =
µLES cp

Prt
; (ρD)l,LES =

µLES

Sct
(6.5)

The turbulent Prandtl number Prt and the turbulent Schmidt number Sct are assumed to be constant for a
given scenario. Although it is not recommended for most calculations, you can modify Cs = 0.2, Prt = 0.5,
and Sct = 0.5 via the parameters CSMAG, PR, and SC on the MISC line. A more detailed discussion of these
parameters is given in the FDS Technical Reference Guide [1].

6.4.6 Special Topic: Numerical Stability Parameters

The time step of an FDS simulation is constrained by the convective and diffusive transport speeds via two
conditions. The first is known as the Courant-Friedrichs-Lewy (CFL) condition. The CFL condition asserts
that the solution of the equations cannot be updated with a time step larger than that which would allow a

33

parcel of fluid to travel further than a single mesh cell. In each mesh cell of dimension δx by δy by δ z with
velocity components u, v, and w, the CFL number is defined:

CFL = δ t max
(
|u|
δx

,
|v|
δy

,
|w|
δ z

)
(6.6)

Every time step, the CFL number is computed in each mesh cell, and the time step, δ t, is adjusted if the
maximum value of the CFL number is not between CFL_MIN and CFL_MAX, whose default values are 0.8
and 1.0, respectively. These values are included in the MISC namelist group.

A similar condition, but one constraining the time step when diffusive transport dominates, is sometimes
called the Von Neumann condition. The Von Neumann number is defined:

VN = 2 max
(

ν ,D,
k

ρcp

)
δ t
(

1
δx2 +

1
dy2 +

1
δ z2

)
(6.7)

Like the CFL number, VN is computed in each mesh cell, and the time step is adjusted if VN is outside the
range between VN_MIN and VN_MAX, which are 0.8 and 1.0 by default. Note that this constraint is applied
to the momentum, mass and energy equations via the relevant diffusion parameter – viscosity, material
diffusivity or thermal conductivity. This constraint on the time step is typical of any explicit, second-order
numerical scheme for solving a parabolic partial differential equation. To save CPU time, the Von Neumann
criterion is only invoked for DNS calculations or for LES calculations with mesh cells smaller than 5 mm.

Resetting the stability parameters is not recommended except in very special circumstances, as they can lead
to simulations failing due to numerical instabilities.

34

6.5 Special Topic: Unusual Initial Conditions: The INIT Namelist Group
(Table 13.8)

Usually, an FDS simulation begins at time t = 0 with ambient conditions. The air temperature is assumed
constant with height, and the density and pressure decrease with height (the z direction). This decrease is
not noticed in most building scale calculations, but it is important in large outdoor simulations. There are
some scenarios for which it is convenient to change the ambient conditions within some rectangular region
of the domain. If so, add lines of the form

&INIT XB=0.5,0.8,2.1,3.4,2.5,3.6, TEMPERATURE=30. /

Here, within the region whose bounds are given by the sextuplet XB, the initial temperature shall be
30 ◦C instead of the ambient. This construct can also be used for DENSITY or MASS_FRACTION(N) where
N indicates the Nth species listed in the input file.

The INIT construct may be useful in examining the influence of stack effect in a building, where the
temperature is different inside and out.

Note that a solid obstruction can be given an initial temperature via the parameter TMP_INNER on the
SURF line. An initial velocity can be prescribed via U0, V0, and W0 on the MISC line.

6.6 Special Topic: Setting Limits: The CLIP Namelist Group (Table 13.2)

On rare occasions you might need to set upper or lower bounds on the density, temperature, or species mass
fractions. The parameters listed in Table 13.2 are for diagnostic purposes only.

35

36

Chapter 7

Building the Model

A considerable amount of work in setting up a calculation lies in specifying the geometry of the space
to be modeled and applying boundary conditions to these objects. The geometry is described in terms of
rectangular obstructions that can heat up, burn, conduct heat, etc.; and vents from which air or fuel can
be either injected into, or drawn from, the flow domain. A boundary condition needs to be assigned to
each obstruction and vent describing its thermal properties. A fire is just one type of boundary condition.
This chapter describes how to build the model. The next chapter describes how to assign properties to the
boundaries.

7.1 Creating Obstructions: The OBST Namelist Group (Table 13.13)

The namelist group OBST contains parameters used to define obstructions. Each OBST line contains the
coordinates of a rectangular solid within the flow domain. This solid is defined by two points (x1,y1,z1) and
(x2,y2,z2) that are entered on the OBST line in terms of the sextuplet XB = X1, X2, Y1, Y2, Z1, Z2. In
addition to the coordinates, the boundary conditions for the obstruction can be specified with the parameter
SURF_ID, which designates which SURF group (Section 8.2) to apply at the surface of the obstruction. If the
obstruction has different properties for its top, sides and bottom, do not specify only one SURF_ID. Instead,
use SURF_IDS, an array of three character strings specifying the boundary condition IDs for the top, sides
and bottom of the obstruction, respectively. If the default boundary condition is desired, then SURF_ID(S)

need not be set. However, if at least one of the surface conditions for an obstruction is the inert default, it
can be referred to as ’INERT’. For example:

&SURF ID='FIRE',HRRPUA=1000.0 /
&OBST XB=2.3,4.5,1.3,4.8,0.0,9.2,SURF_IDS='FIRE','INERT','INERT' /

puts a fire on top of the obstruction. This is a simple way of prescribing a burner.
Some additional features of obstructions are as follows:

• In addition to SURF_ID and SURF_IDS, you can also use the sextuplet SURF_ID6 as follows:

&OBST XB=2.3,4.5,1.3,4.8,0.0,9.2,
SURF_ID6='FIRE','INERT','HOT','COLD','BLOW','INERT' /

where the six surface descriptors refer to the planes x = 2.3, x = 4.5, y = 1.3, y = 4.8, z = 0.0, and
z = 9.2, respectively. Note that SURF_ID6 should not be used on the same OBST line as SURF_ID or
SURF_IDS.

37

• Obstructions can have zero thickness. Often, thin sheets, like a window, form a barrier, but if the
numerical mesh is coarse relative to the thickness of the barrier, the obstruction might be unnecessarily
large if it is assumed to be one layer of mesh cells thick. All faces of an obstruction are shifted to the
closest mesh cell. If the obstruction is very thin, the two faces may be approximated on the same cell
face. FDS and Smokeview render this obstruction as a thin sheet, but it is allowed to have thermally
thick boundary conditions. This feature is fragile, especially in terms of burning and blowing gas. A
thin sheet obstruction can only have one velocity vector on its face, thus a gas cannot be injected reliably
from a thin obstruction because whatever is pushed from one side is necessarily pulled from the other.
For full functionality, the obstruction should be specified to be at least one mesh cell thick. Thin sheet
obstructions work fine as flow barriers, but other features are fragile and should be used with caution.
To prevent FDS from allowing thin sheet obstructions, set THICKEN_OBSTRUCTIONS=.TRUE. on the
MISC line, or THICKEN=.TRUE. on each OBST line for which the thin sheet assumption is not allowed.

• Unlike earlier versions of FDS, obstructions that are too small relative to the underlying numerical mesh
are rejected. Be careful when testing cases on coarse meshes.

• Obstructions may be created or removed during a simulation. See Section 11.4.1 for details.

• If two obstructions overlap at one or more faces, the one listed last in the input file takes precedence over
the one listed first, in the sense that the latter’s surface properties will be applied to the overlapping face.
Smokeview renders both obstructions independently of each other, often leading to an unsightly cross-
hatching of the two surface colors where there is an overlap. A simple remedy for this is to “shrink” the
first obstruction slightly by adjusting its coordinates (XB) accordingly. Then, in Smokeview, toggle the
“q” key to show the obstructions as you specified them, rather than as FDS rendered them.

• Obstructions can be protected from the HOLE punching feature. Sometimes it is convenient to create
a door or window using a HOLE. For example, suppose a HOLE is punched in a wall to represent a
door or window. An obstruction can be defined to fill this hole (presumably to be removed or col-
ored differently or whatever) so long as the phrase PERMIT_HOLE=.FALSE. is included on the OBST
line. In general, any OBSTruction can be made impenetrable to a HOLE using this phrase. By default,
PERMIT_HOLE=.TRUE., meaning that an OBSTruction is assumed to be penetrable unless otherwise
directed.

• If the obstruction is not to be removed or rejected for any reason, set REMOVABLE=.FALSE. This is
sometimes needed to stop FDS from removing the obstruction if it is embedded within another, like a
door within a wall.

• In rare cases, you might not want to allow a VENT to be attached to a particular obstruction, in which
case set ALLOW_VENT=.FALSE.

• Obstructions can be made semi-transparent by assigning a TRANSPARENCY on the OBST line. This real
parameter ranges from 0 to 1, with 0 being fully transparent. The parameter should always be set along
with either COLOR or an RGB triplet. It can also be specified on the appropriate SURF line, along with a
color indicator.

• Obstructions are drawn solid in Smokeview. To draw an outline representation, set OUTLINE=.TRUE.

7.1.1 Non-rectangular Geometry and Sloped Ceilings

The efficiency of FDS is due to the simplicity of its numerical mesh. However, there are situations in which
certain geometric features do not conform to the rectangular mesh, such as a sloped ceiling or roof. In

38

these cases, construct the curved geometry using rectangular obstructions, a process sometimes called “stair
stepping”. A concern is that the stair stepping changes the flow pattern near the wall. To lessen the impact
of stair stepping on the flow field near the wall, prescribe the parameter

SAWTOOTH=.FALSE.

on each OBST line that makes up the stair stepped obstruction. The effect of this parameter is to prevent
vorticity from being generated at sharp corners, in effect smoothing out the jagged steps that make up the
obstruction. This is not a complete solution of the problem, but it does provide a simple way of ensuring that
the flow field around a non-rectangular obstruction is not inhibited by extra drag created at sharp corners.

Do not apply SAWTOOTH=.FALSE. to obstructions that have any SURF_IDs with the attribute
BURN_AWAY=.TRUE.

7.2 Creating Voids: The HOLE Namelist Group (Table 13.7)

The HOLE namelist group is used to define parameters (Table 13.7) to carve a hole out of an existing ob-
struction or set of obstructions. To do this, add lines of the form

&HOLE XB=2.0,4.5,1.9,4.8,0.0,9.2 /

Any solid mesh cells within the volume 2.0 < x < 4.5, 1.9 < y < 4.8, 0.0 < z < 9.2 are removed. Obstruc-
tions intersecting the volume are broken up into smaller blocks.

If the hole represents a door or window, a good rule of thumb is to punch more than enough to create the
hole. This ensures that the hole is created through the entire obstruction.

For example, if the OBST line denotes a wall 0.1 m thick:

&OBST XB=1.0,1.1,0.0,5.0,0.0,3.0 /

and you want to create a door, add this:

&HOLE XB=0.99,1.11,2.0,3.0,0.0,2.0 /

The extra centimeter added to the x coordinates of the hole make it clear that the hole is to punch through
the entire obstruction.

When a HOLE is created, the affected obstruction(s) are either rejected, or created or removed at pre-
determined times. See Section 11.4.1 for details. To allow a hole to be controlled with either the CTRL or
DEVC namelist groups, you will need to add the CTRL_ID or DEVC_ID parameter respectively, to the HOLE
line.

If it is desired that the obstruction(s) to be cut out should have a different color than the original obstruc-
tion, set the COLOR or integer triplet RGB on the HOLE line (see Section 8.6).

When a HOLE is in a .FALSE. state, an obstruction is placed in the hole. To make this obstruc-
tion transparent, the TRANSPARENCY parameter should be specified by a real number from 0-1. Note
that if TRANSPARENCY is specified, then either a COLOR or RGB triplet ought to be specified as well. A
TRANSPARENCY value near, but not equal to, zero can be used to simulate a window when the HOLE’s
INITIAL_STATE=.FALSE. When the DEVC or CTRL is activated and changes the state of the hole to
.TRUE., the HOLE is then open and completely transparent. See Section 16.7.1 for an example.

39

If an obstruction is not to be punctured by a HOLE, add PERMIT_HOLE=.FALSE. to the OBST line.

It is a good idea to inspect the geometry by running either a setup job (T_END=0 on the TIME line) or a
short-time job to test the operation of devices and control functions.

Note that a HOLE has no effect on a VENT or a mesh boundary. It only applies to OBSTstructions.

7.3 Applying Surface Properties: The VENT Namelist Group (Table 13.26)

Whereas the OBST group is used to specify obstructions within the computational domain, the VENT group
(Table 13.26) is used to prescribe planes adjacent to obstructions or external walls. The vents are chosen in
a similar manner to the obstructions, with the sextuplet XB denoting a plane abutting a solid surface. Two of
the six coordinates must be the same, denoting a plane as opposed to a solid.

The term “VENT” is somewhat misleading. Taken literally, a VENT can be used to model components of
the ventilation system in a building, like a diffuser or a return. In these cases, the VENT coordinates form a
plane on a solid surface forming the boundary of the duct. No holes need to be created through the solid; it
is assumed that air is pushed out of or sucked into duct work within the wall. Less literally, a VENT is used
simply as a means of applying a particular boundary condition to a rectangular patch on a solid surface.
A fire, for example, is usually created by first generating a solid obstruction via an OBST line, and then
specifying a VENT somewhere on one of the faces of the solid with a SURF_ID with the characteristics of
the thermal and combustion properties of the fuel. For example, the lines

&OBST XB=0.0,5.0,2.0,3.0,0.0,4.0, SURF_ID='big block' /
&VENT XB=1.0,2.0,2.0,2.0,1.0,3.0, SURF_ID='hot patch' /

specify a large obstruction (with the properties given elsewhere in the file under the name ’big block’)
with a “patch” applied to one of its faces with alternative properties under the name ’hot patch’. This
latter surface property need not actually be a “vent,” like a supply or return duct, but rather just a patch with
different boundary conditions than those assumed for the obstruction. Note that the surface properties of a
VENT over-ride those of the underlying obstruction.

Unlike previous versions of FDS, you can no longer specify a free-standing fan using the VENT construct. A
VENT must always be attached to a solid obstruction. See Section 8.3 for instructions on specifying different
types of fans.

An easy way to specify an entire external wall is to replace XB with MB (Mesh Boundary), a character string
whose value is one of the following: ’XMAX’, ’XMIN’, ’YMAX’, ’YMIN’, ’ZMAX’ or ’ZMIN’ denoting the
planes x = XMAX, x = XMIN, y = YMAX, y = YMIN, z = ZMAX or z = ZMIN, respectively. Like an obstruction,
the boundary condition index of a vent is specified with SURF_ID, indicating which of the listed SURF lines
to apply. If the default boundary condition is desired, then SURF_ID need not be set.

Be careful when using the MB shortcut when doing a multiple mesh simulation, that is, when more
than one rectangular mesh is used. The plane designated by the keyword MB is applied to all of the meshes,
possibly leading to confusion about whether a plane is a solid wall or an open boundary. Check the geometry
in Smokeview to assure that the VENTs are properly prescribed. Use color as much as possible to double-
check the set-up. More detail on color in Section 8.6 and Table 8.1. Also, the parameter OUTLINE=.TRUE.
causes the VENT to be drawn as an outline in Smokeview.

40

7.3.1 Special VENTs

There are two reserved SURF_ID’s that may be applied to a VENT – ’OPEN’ and ’MIRROR’. The term
reserved means that these two SURF_IDs should not be explicitly defined by you. Their properties are
predefined.

An OPEN VENT

The first special VENT is invoked by the parameter SURF_ID=’OPEN’. This is used only if the VENT is
applied to the exterior boundary of the computational domain, where it denotes a passive opening to the
outside. By default, FDS assumes that the exterior boundary of the computational domain (the XBs on the
MESH line) is a solid wall. To change this, use an OPEN vent as if it were an open door or window. To create
a totally or partially open domain, use OPEN vents on the exterior mesh boundaries (MBs).

By default, it is assumed that ambient conditions exist beyond the ’OPEN’ vent. However, in some
cases, you may want to alter this assumption, for example, the temperature. If you assume a temperature
other than ambient, specify TMP_EXTERIOR along with SURF_ID=’OPEN’. Use this option cautiously – in
many situations if you want to describe the exterior of a building, it is better to include the exterior explicitly
in your calculation because the flow in and out of the doors and windows will be more naturally captured.
See Section 6.4.4 for more details.

As with exterior temperature, to change the exterior mass fraction of a particular gas species, set
MASS_FRACTION(N) on the VENT line, where N denotes the species index. See Section 9.2 for more infor-
mation about gas species.

Vents to the outside of the computational domain (OPEN vents) may not be opened or closed during a
simulation. See Section 11.4.2 for details.

A MIRROR VENT

A VENT with SURF_ID=’MIRROR’ denotes a symmetry plane. Usually, a MIRROR spans an entire face of
the computational domain, essentially doubling the size of the domain with the MIRROR acting as a plane of
symmetry. The flow on the opposite side of the MIRROR is exactly reversed. From a numerical point of view,
a MIRROR is a no-flux, free-slip boundary. As with OPEN, a MIRROR can only be prescribed at an exterior
boundary of the computational domain. Often, OPEN or MIRROR VENTs are prescribed along an entire side
of the computational domain, in which case the “MB” notation is handy.

Note that the mirror image of a scene is not shown in Smokeview.

7.3.2 Controlling VENTs

VENT functionality can be controlled in some cases using “devices” and “controls,” specified via a DEVC_ID
or a CTRL_ID. See Section 11.4.2 for details.

7.3.3 Trouble-Shooting VENTs

If an error message appears requesting that the orientation of a vent be specified, first check to make sure
that the vent is a plane. If the vent is a plane, then the orientation can be forced by specifying the parameter
IOR. If the normal direction of the VENT is in the positive x direction, set IOR=1. If the normal direction
is in the negative x direction, set IOR=-1. For the y and z direction, use the number 2 and 3, respectively.

41

Setting IOR may sometimes solve the problem, but it is more likely that if there is an error message about
orientation, then the VENT is buried within a solid obstruction, in which case the program cannot determine
the direction in which the VENT is facing.

42

Chapter 8

Boundary Conditions

This chapter describes how to specify the properties of the objects that make up the bounding surfaces of
the flow domain. This is the most challenging part of setting up the simulation. Why? First, for both
real and simulated fires, the growth of the fire is very sensitive to the thermal properties of the surrounding
materials. Second, even if all the material properties are known to some degree, the physical phenomena
of interest may not be simulated properly due to limitations in the model algorithms or resolution of the
numerical mesh. It is your responsibility to supply the thermal properties of the materials, and then assess
the performance of the model to ensure that the phenomena of interest are being captured.

8.1 Basics

By default, the outer boundary of the computational domain is assumed to be a solid boundary that is
maintained at ambient temperature. The same is true for any obstructions that are added to the scene. To
specify the properties of solids, use the namelist group SURF (Section 8.2). Starting in FDS 5, solids are
assumed to consist of layers which can be made of different materials. The properties of each material
required are designated via the MATL namelist group (Section 8.4). These properties indicate how rapidly
the materials heat up, and how they burn. Each MATL entry in the input file must have an ID, or name, so
that they may be associated with a particular SURF via the parameter MATL_ID. For example, the input file
entries:

&MATL ID = 'BRICK'
CONDUCTIVITY = 0.69
SPECIFIC_HEAT = 0.84
DENSITY = 1600. /

&SURF ID = 'BRICK WALL'
MATL_ID = 'BRICK'
COLOR = 'RED'
BACKING = 'EXPOSED'
THICKNESS = 0.20 /

&OBST XB=0.1, 5.0, 1.0, 1.2, 0.0, 1.0, SURF_ID='BRICK WALL' /

define a brick wall that is 4.9 m long, 1 m high, and 20 cm thick.

43

The thickness of the wall indicated by the OBST line need not match that indicated by the SURF line. The
thickness of the material on the surface of the wall is dictated by the parameter THICKNESS. These two
parameters are independent for each other, the OBST line describes the overall geometric structure, the SURF
line describes the characteristics of the surfaces of the geometry which includes the thickness of the layers
of materials applied to that surface.

8.2 Describing the Bounding Surfaces: The SURF Namelist Group (Table
13.22)

SURF is the namelist group (Table 13.22) that defines the structure of all solid surfaces or openings within
or bounding the flow domain. Boundary conditions for obstructions and vents are prescribed by referencing
the appropriate SURF line(s) whose parameters are described in this section.

The default boundary condition for all solid surfaces is that of a cold, inert wall. If only this boundary
condition is needed, there is no need to add any SURF lines to the input file. If additional boundary con-
ditions are desired, they are to be listed one boundary condition at a time. Each SURF line consists of an
identification string ID=’...’ to allow references to it by an obstruction or vent. Thus, on each OBST and
VENT line, the character string SURF_ID=’...’ indicates the ID of the SURF line containing the desired
boundary condition parameters. If a particular SURF line is to be applied as the default boundary condition,
CONCRETE for example, set SURF_DEFAULT=’CONCRETE’ on the MISC line.

The default boundary condition INERT does allow for heat loss and is not the same as an adiabatic surface.
If you wish to define a surface as adiabatic, then you should set ADIABATIC=.TRUE. on the SURF line.

8.2.1 Specifying a Fire with a Known Heat Release Rate

Solids and liquid fuels can be modeled by specifying their relevant properties via the MATL namelist group.
However, if you simply want to specify a fire of a given heat release rate (HRR), you need not specify any
material properties. A specified fire is basically modeled as the ejection of gaseous fuel from a solid surface
or vent. This is essentially a burner, with a specified Heat Release Rate Per Unit Area, HRRPUA, in units of
kW/m2. For example

&SURF ID='FIRE',HRRPUA=500. /

applies 500 kW/m2 to any surface with the attribute SURF_ID=’FIRE’. See the discussion of Time Depen-
dent Conditions in Section 8.5 to learn how to ramp the heat release rate up and down.

An alternative to HRRPUA with the exact same functionality is MLRPUA, except this parameter specifies
the Mass Loss Rate of fuel gas Per Unit Area in kg/m2/s. Do not specify both HRRPUA and MLRPUA on
the same SURF line. With either, the stoichiometry of the gas phase reaction is set by the parameters on
the REAC line. All of the species associated with the combustion process are accounted for by way of the
mixture fraction variable and should not be explicitly prescribed. The exception to this rule is where a non-
reacting gas is introduced into the domain that merely serves as a diluent, like CO2 from an extinguisher or
H2O from evaporated sprinkler droplets (see Section 9.2 for details). If a finite rate combustion model is
desired instead of the default mixture fraction model, see Section 9.3.

Specifying HRRPUA or MLRPUA automatically invokes the mixture fraction combustion model.

44

8.2.2 Simple Thermal Boundary Conditions

Usually, the thermal properties of a solid boundary are specified via the MATL namelist group, which is
in turn invoked by the SURF entry via the character string MATL_ID. However, sometimes it is convenient
to simply specify a fixed temperature boundary condition, in which case set TMP_FRONT to be the surface
temperature in units of ◦C. For a solid surface of fixed convective heat flux, set CONVECTIVE_HEAT_FLUX
to be the convective heat flux in units of kW/m2. If CONVECTIVE_HEAT_FLUX is positive, the wall heats up
the surrounding gases. If CONVECTIVE_HEAT_FLUX is negative, the wall cools the surrounding gases. The
radiative heat flux can be specified only by setting both TMP_FRONT and EMISSIVITY.

Fixed temperature or fixed heat flux boundary conditions are easy to apply, but only of limited usefulness
in real fire scenarios. In most cases, walls, ceilings and floors are made up of several layers of lining
materials.

It is assumed that the innermost layer backs up to an air gap at ambient temperature (like a sheet of
gypsum board attached to wood studs), or it backs up to an insulated material in which case no heat is
lost to the backing material, or it backs up to the room on the other side of the wall. By default, it is
assumed that the wall liner backs up to an air gap (BACKING=’VOID’). If the wall liner is assumed to back
up against an insulating material, like a sheet of steel attached to a fiber insulating board, the expression
BACKING=’INSULATED’ on the SURF line prevents any heat loss from the back side of the material.

Finally, if it is desired that the heat transfer through the wall into the space behind the wall, the attribute
BACKING=’EXPOSED’ should be listed. This feature only works if the wall is less than or equal to one
mesh cell thick, and if there is a non-zero volume of computational domain on the other side of the wall.
Obviously, if the wall is an external boundary of the domain, the heat is lost to the void.

For some special applications, it is often desired that a solid surface be adiabatic, that is, there is no net
heat transfer (radiative and convective) from the gas to the solid. For this case, all that must be prescribed
on the SURF line is ADIABATIC=.TRUE., nothing else. FDS will compute a wall temperature so that the
sum of the convective and radiative fluxes is zero.

8.2.3 Velocity and Total Mass Flux Boundary Conditions

Velocity boundary conditions affect both the normal and tangential components of the velocity vector at
boundaries. The normal component of velocity is controlled by the parameter VEL. If VEL is negative, the
flow is entering the computational domain. If VEL is positive, the flow is exiting the domain. Sometimes
it is desired that a given volume flux through a vent be prescribed rather than a velocity. If this is the
case then VOLUME_FLUX can be prescribed instead of VEL. The units are m3/s. If the flow is entering the
computational domain, VOLUME_FLUX should be a negative number.

Note that either VEL or VOLUME_FLUX should be prescribed, not both. The choice depends on whether an
exact velocity is desired at a given vent, or whether the given volume flux is desired.

The dimensions of the vent that are prescribed usually change because the prescribed vent dimensions are
sometimes altered so that the vent edges line up with mesh cells. Also note that a SURF group with a
VOLUME_FLUX prescribed can be invoked by either a VENT or an OBST, but be aware that in the latter case,
the resulting velocity on the face or faces of the obstruction will be given by the specified VOLUME_FLUX

divided by the area of that particular face. For example:

&SURF ID='LOUVER', VOLUME_FLUX=-5.0, VEL_T=2.0,-1.0, COLOR='GREEN' /
&OBST XB=..., SURF_ID6='BRICK','LOUVER','BRICK','BRICK','BRICK','BRICK' /

45

dictates that the forward x-facing surface of the obstruction is to have a velocity equal to 5 m/s divided by
the area of the face (as approximated within FDS) flowing into the computational domain.

Finally, note that if HRRPUA or solid phase reaction parameters are specified, no velocity should be
prescribed. The combustible gases are ejected at a velocity computed by the code.

As an example, a simple blowing vent would be described by the line

&SURF ID='BLOWER',VEL=-1.2,TMP_FRONT=50. /

The vent with SURF_ID=’BLOWER’ would blow 50 ◦C air at 1.2 m/s into the flow domain. Making VEL

positive would suck air out, in which case TMP_FRONT would not be necessary.
At other times the user may wish that a specific flux of mass, be added or removed at a vent. This can

be accomplished by specifying the quantity MASS_FLUX_TOTAL. MASS_FLUX_TOTAL uses the same sign
convention as VEL. In fact, the value entered for MASS_FLUX_TOTAL is converted internally into a velocity
boundary condition whose value for an outflow is adjusted based on the local density.

The tangential velocity boundary condition controls how the gas “sticks” to a solid surface. In theory, the
tangential component of velocity is zero at the surface, but increases rapidly through a narrow region called
the boundary layer . For most practical problems, the mesh is not fine enough to resolve the boundary layer,
which is typically a few millimeters thick. For this reason, in an LES calculation, the velocity at the wall is
set to be a fraction of its value in the mesh cell adjacent to the wall. Only in a DNS calculation is the velocity
at the wall set to zero. To alter these defaults, set a parameter called SLIP_FACTOR. This parameter ranges
from -1 to 1. If a no-slip wall is desired, SLIP_FACTOR=-1. If a free-slip wall is desired, SLIP_FACTOR=1.
Numbers in between -1 and 1 can represent partial slip conditions, which may be appropriate for simulations
involving large mesh cells. (Default SLIP_FACTOR is 0.5 for LES, -1.0 for DNS)

In the case of a blowing vent (or even a solid surface), it is possible to prescribe both the normal and
tangential components of the flow (or just the tangential). The normal component is specified with VEL as
described above. The tangential is prescribed via a pair of real numbers VEL_T representing the desired
tangential velocity components. For example, the line

&SURF ID='LOUVER',VEL=-1.2,VEL_T=0.5,-0.3 /

is a boundary condition for a louver vent that pushes air into the space with a normal velocity of 1.2 m/s, and
with a tangential velocity of 0.5 m/s in either the x or y direction and -0.3 m/s in either the y or z direction,
depending on what the normal direction is.

8.2.4 Species and Species Mass Flux Boundary Conditions

There are two species boundary conditions that can be specified (see Section 9.2 for details on inputting
and using species). These boundary conditions are MASS_FLUX(N) and MASS_FRACTION(N) where N

refers to a given species is via its place in the input file. For example, the second listed species is N=2.
If a simple no-flux condition is desired at a solid wall, do not set anything. If the mass fraction of the Nth
species is to be some value at a forced flow boundary (VEL or MASS_FLUX_TOTAL) set MASS_FRACTION(N)
equal to the desired mass fraction on the appropriate SURF line. If the mass flux of the Nth species is
desired, set MASS_FLUX(N) instead of MASS_FRACTION(N). If MASS_FLUX(N) is set, no VEL should
be set. It is automatically calculated based on the mass flux. The inputs MASS_FLUX(N) (and typically
MASS_FRACTION(N)) should only be used for inflow boundary conditions. MASS_FLUX(N) should be
positive with units of kg/m2/s.

46

Note that specifying MASS_FRACTION(N), sets the "ghost" cell values for the species mass fractions. Since
the mass conservation equation is an advection-diffusion equation, if the specified velocity is small, then the
diffusion term can dominate resulting in an unintended mass flux of species. To obtain a guaranteed mass
flux of a species, you should use MASS_FLUX(N)

8.2.5 Special Topic: Fires and Flows in the Outdoors

Simulating a fire in the outdoors is not much different than a fire indoors, but there are a few issues that
need to be addressed. First, the velocity of the wind profile at any exterior boundary will be a top hat
(constant) by default, but the parameter PROFILE on the SURF line can yield other profiles. For exam-
ple, PROFILE=’PARABOLIC’ produces a parabolic profile with VEL being the maximum velocity, and
’ATMOSPHERIC’ produces a typical atmospheric wind profile of the form u = u0(z/z0)p. If an atmospheric
profile is prescribed, also prescribe Z0 for z0 and PLE for p. VEL specifies the reference velocity u0.

Another useful parameter for outdoor simulations is the temperature lapse rate of the atmosphere. Typ-
ically, in the first few hundred meters of the atmosphere, the temperature decreases several degrees Celsius
per kilometer. These few degrees are important when considering the rise of smoke since the temperature of
the smoke decreases rapidly as it rises. The LAPSE_RATE of the atmosphere can be specified on the MISC
line in units of ◦C/m. A negative sign indicates that the temperature decreases with height. This need only
be set for outdoor calculations where the height of the domain is tens or hundreds of meters. The default
value of the LAPSE_RATE is 0 ◦C/m.

By default, FDS assumes that the density and pressure decrease with height, regardless of the application
or domain size. For most simulations, this effect is negligible, but it can be turned off completely by setting
STRATIFICATION=.FALSE. on the MISC line.

8.2.6 Special Topic: A Radially-Spreading Fire

Sometimes it is desired that a fire spread radially at some specified rate. Rather than trying to design material
properties to achieve this, you can alternatively use a VENT in a special way. If the SURF_ID associated with
a VENT defines a specified heat release rate, HRRPUA, and time history, RAMP_Q or TAU_Q, you can also
specify XYZ and SPREAD_RATE on the VENT line. Then the fire is directed to start at the point XYZ and
spread radially at a rate of SPREAD_RATE (m/s). The ramp-up begins at the time when the fire arrives at a
given point. For example, the lines

&SURF ID='FIRE', HRRPUA=500.0, RAMP_Q='fireramp' /
&RAMP ID='fireramp', T= 0.0, F=0.0 /
&RAMP ID='fireramp', T= 1.0, F=1.0 /
&RAMP ID='fireramp', T=30.0, F=1.0 /
&RAMP ID='fireramp', T=31.0, F=0.0 /
&VENT XB=0.0,5.0,1.5,9.5,0.0,0.0, SURF_ID='FIRE', XYZ=1.5,4.0,0.0, SPREAD_RATE=0.03 /

create a rectangular patch at z = 0 on which the fire starts at the point (1.5,4.0,0.0) and spreads outwards at a
rate of 0.03 m/s. Each surface cell burns for 30 s as the fire spreads outward, creating a widening ring of fire.
Note that the RAMP_Q is used in this construct to turn the burning on and off to simulate the consumption
of fuel as the fire spreads radially. It should not be used to mimic the “t-squared” curve – the whole point
of the exercise is to mimic this curve in a more natural way. Eventually, the fire goes out as the ring grows
past the boundary of the rectangle. Some trial and error is probably required to find the SPREAD_RATE that
leads to a desired time history of the heat release rate.

47

8.2.7 Special Topic: Non-Planar Walls and Targets

All obstructions in FDS are assumed to conform to the rectilinear mesh, and all bounding surfaces are
assumed to be flat planes. However, many objects, like cables, pipes, and ducts, are not flat. Even though
these objects have to be represented in FDS as “boxes,” you can still perform the internal heat transfer
calculation as if the object were really cylindrical or spherical. For example, the input lines:

&OBST XB=0.0,5.0,1.1,1.2,3.4,3.5, SURF_ID='CABLE' /
&SURF ID='CABLE', MATL_ID='PVC', GEOMETRY='CYLINDRICAL', THICKNESS=0.01 /

can be used to model a power cable that is 5 m long, cylindrical in cross section, 2 cm in diameter. The
heat transfer calculation is still one-dimensional; that is, it is assumed that there is a uniform heat flux
all about the object. This can be somewhat confusing because the cable is represented as an obstruction of
square cross section, with a separate heat transfer calculation performed at each face, and no communication
among the four faces. Obviously, this is not an ideal way to do solid phase heat transfer, but it does provide a
reasonable bounding surface temperature for the gas phase calculation. More detailed assessment of a cable
would require a two or three-dimensional heat conduction calculation, which is not included in FDS. Use
GEOMETRY=’SPHERICAL’ to describe a spherical object.

48

8.3 Pressure-Related Effects: The ZONE Namelist Group (Table 13.26)

The basic FDS equation set assumes pressure to be composed of a “background” component, p(z, t), plus
a perturbation, p̃(x, t). Most often, p is just the hydrostatic pressure, and p̃ is the flow-induced pressure
field that FDS calculates at each time step. Originally (FDS v. 1-4), it was possible to create a single,
sealed compartment whose walls conformed to the exterior of the computational domain. A fire or fan
could increase (or decrease) the background pressure in this single compartment, and a leakage area could
be defined between the compartment and the ambient exterior. Flow through the “cracks” was simply a
function of the background pressure via the usual empirical rules. This idea has been generalized starting in
FDS 5. Now, you can specify any number of sealed portions of the computational domain to have their own
“background” pressures, and these zones can be connected via leakage and duct paths.

There are several restrictions to assigning pressure zones. First, the pressure zones must be completely
surrounded by obstructions (an external boundary also suffices). Second, the obstructions cannot be re-
moved during the calculation. In other words, the door or window cannot suddenly fly open (equivalently,
there must be no OPEN vents if one of the zone boundaries is an external boundary of the computational
domain). Third, the pressure zones can span multiple meshes, but check the pressure in each mesh to ensure
consistency.

8.3.1 Leaks

The volume flow, V̇ , through a leak of area AL is given by

V̇leak = AL sign(∆p)

√
2
|∆p|
ρ∞

(8.1)

where ∆p is the pressure difference between the adjacent compartments (in units of Pa) and ρ∞ is the ambient
density (in units of kg/m3). The discharge coefficient normally seen in this type of formula is assumed to
be 1. Leakage is inherently a submesh-scale phenomenon because the leakage area is usually very small.
In other words, it is not possible to define a leak directly on the numerical mesh. It is sometimes possible
to “lump” the leaks into a single mesh-resolvable hole, but this is problematic for two reasons. First, the
leakage area rarely corresponds neatly to the area of a single mesh cell-sized hole. Second, the flow speeds
through the hole can be large and cause numerical instabilities.

A better way to handle leakage is by exploiting pressure zones. A pressure zone is a user-specified
volume within the computational domain that is entirely surrounded by solid obstructions. For example, the
interior of a closed room can be, and should be, declared a pressure zone. Leakage from one compartment
to another is then designated on the input lines defining the individual pressure ZONEs:

&ZONE XB=0.3,1.2,0.4,2.9,0.3,4.5, LEAK_AREA(0)=0.0001 /
&ZONE XB=2.3,5.8,1.4,2.9,6.8,9.7, LEAK_AREA(1)=0.0002 /

The first line designates a region of the computational domain to be “Pressure Zone” 1. Zone 0 is by default
the ambient pressure exterior. In this example, a leak exists between Zone 1 and the exterior Zone 0, and
the area of the leak is 0.0001 m2 (1 cm by 1 cm hole, for example). Zone 2 leaks to Zone 1 (and vis verse)
with a leak area of 0.0002 m2. At least one of the obstructions that form the walls of Zone 1 must have
the attribute LEAK_PATH=1,0, meaning that the leak between Zones 1 and 0 is uniformly distributed over
solids defined with:

&SURF ID='whatever',..., LEAK_PATH=1,0 /

Likewise, the boundaries of Zone 1 and Zone 2 must include solids whose SURF properties include LEAK_PATH=1,2.
This tells FDS to lump all of the leakage over these surfaces. The order of the pressure zones designated by
LEAK_PATH is unimportant.

49

8.3.2 Fans

In Section 8.2 there is a discussion of velocity boundary conditions, in which a fan is modeled simply as a
solid boundary that blows or sucks air, regardless of the surrounding pressure field. In reality, fans operate
based on the pressure drop across the duct or manifold in which they are installed. A very simple “fan curve”
is given by:

V̇fan = AductUmax sign(∆pmax−∆p)

√
|∆p−∆pmax|

∆pmax
(8.2)

where Aduct is the area of the duct (m2), Umax is the air velocity (m/s), and ∆pmax is the maximum pressure
difference the fan can operate upon. Figure (8.1 displays a typical fan curve.

Figure 8.1: Fan curve corresponding to VOLUME_FLUX=10 and MAX_PRESSURE=500.

The ideal velocity of the fan, Umax, is specified via the parameter VEL on the appropriate SURF line.
Alternatively, the volume flow rate, AductUmax, can be specified using VOLUME_FLUX. Do not use both.
These parameters were already introduced in Section 8.2. To simulate the behavior of a real fan, a few extra
parameters need to be specified. To set ∆pmax, the maximum operating over-pressure, add MAX_PRESSURE

to the SURF line. Note that MAX_PRESSURE should always be positive and in units of Pa. If in the simulation
the computed pressure exceeds the specified MAX_PRESSURE, then there will be a backflow in the duct.

Here is an example how fans can be specified. The actual case (fan_test) is included in the V&V
Guide. In it, two simple compartments share a common wall. Both compartments are considered as separate
“pressure zones.” Two fans are mounted in the Partition Wall, blowing in opposite directions.

&SURF ID='BLOW LEFT', POROUS=.TRUE., VEL=-0.2, DUCT_PATH=1,2, MAX_PRESSURE=1000. /
&SURF ID='BLOW RIGHT', POROUS=.TRUE., VEL= 0.4, DUCT_PATH=2,1, MAX_PRESSURE=1000. /

&ZONE XB=-3.0, 0.0,-1.0, 1.0, 0.0, 2.0 / Pressure Zone 1
&ZONE XB= 0.0, 3.0,-1.0, 1.0, 0.0, 2.0 / Pressure Zone 2

&OBST XB= 0.0, 0.0,-1.0, 1.0, 0.0, 2.0 / Partition Wall

&HOLE XB=-0.1, 0.1,-0.1, 0.1, 0.4, 0.6 /
&OBST XB= 0.0, 0.0,-0.1, 0.1, 0.4, 0.6, ..., SURF_ID='BLOW RIGHT', PERMIT_HOLE=.FALSE. /

50

&HOLE XB=-0.1, 0.1,-0.1, 0.1, 1.4, 1.6 /
&OBST XB= 0.0, 0.0,-0.1, 0.1, 1.4, 1.6, ..., SURF_ID='BLOW LEFT', PERMIT_HOLE=.FALSE. /

Consider a few of the extra parameters. The attribute POROUS=.TRUE. allows hot, smokey gases to pass
through the obstructions that represent the fans. These obstructions are merely flat plates, by necessity. The
velocity VEL associated with a POROUS surface is meant to represent the velocity in the positive or negative
coordinate direction, as indicated by its sign. This is different than the convention used when the SURF

is attached to a solid wall. The DUCT_PATH defines the pressure ZONE downstream and upstream of the
fan, respectively. The fan with ID=’BLOW LEFT’, for example, blows air into ZONE 1 from ZONE 2. In
more complicated scenarios, it is possible to tie the fan behavior to disconnected compartments, where it is
assumed that a “virtual” duct connects the two spaces. The HOLEs in the Partition Wall serve only to carve
out space for the obstructions that represent the fans. Note the obstructions have zero thickness, as required
by the POROUS surface. The attribute PERMIT_HOLE=.FALSE. tells FDS not to reject the obstructions
because they are embedded within the Partition Wall.

51

8.4 Describing Real Materials: The MATL Namelist Group

A solid boundary can consist of multiple layers of different materials, and each layer can consist of multiple
material components. These combinations of layers and material components are specified on the SURF line
via the array called MATL_ID(IL,IC). The argument IL is an integer indicating the layer index, starting
at 1, the layer at the exterior boundary. The argument IC is an integer indicating the component index.
For example, MATL_ID(2,3)=’BRICK’ indicates that the third material component of the second layer is
BRICK. In practice, the materials are often listed as in the following example:

&MATL ID = 'INSULATOR'
CONDUCTIVITY = 0.041
SPECIFIC_HEAT = 2.09
DENSITY = 229. /

&SURF ID = 'BRICK WALL'
MATL_ID = 'BRICK','INSULATOR'
COLOR = 'RED'
BACKING = 'EXPOSED'
THICKNESS = 0.20,0.10 /

Without arguments, the parameter MATL_ID is assumed to be a list of the materials in multiple layers, with
each layer consisting of only a single material component.

Note also in this example that the BRICK WALL is not symmetric. Be careful when applying this SURF
line to an entire obstruction, because the attribute EXPOSED implies that the back surface of the obstruction
is different than the front surface.

The maximum number of material layers is 20. The maximum number of material components is 20.

Mixtures of solid materials within the same layer can be defined using the MATL_MASS_FRACTION

keyword. This parameter has the same two indices as the MATL_ID keyword. For example, if the brick layer
contains some additional water, the input could look like this:

&MATL ID = 'WATER'
CONDUCTIVITY = 0.60
SPECIFIC_HEAT = 4.19
DENSITY = 1000. /

&SURF ID = 'BRICK WALL'
MATL_ID(1,1:2) = 'BRICK','WATER'
MATL_MASS_FRACTION(1,1:2) = 0.95,0.05
MATL_ID(2,1) = 'INSULATOR'
COLOR = 'RED'
BACKING = 'EXPOSED'
THICKNESS = 0.20,0.10 / <--- for layers 1 and 2

It is important to notice that the components of the solid mixtures are treated as pure substances with no
voids. The density of the mixture is

ρ =

(
∑

i

Yi

ρi

)−1

(8.3)

where Yi are the material mass fractions and ρi are the material bulk densities defined on the MATL lines.
In the example above, the resulting density of the wall would be about 1553 kg/m3. The fact that the wall

52

density is smaller than the density of pure brick may be confusing, but can be explained easily. If the wall
can contain water, the whole volume of the wall can not be pure brick. Instead there are voids (pores) that
are filled with water. If the water is taken away, there is only about 1476 kg/m3 of brick left. To have a
density of 1600 kg/m3 for a partially void wall, a higher density should be used for the pure brick.

8.4.1 Thermal Properties

For any solid material, specify its thermal CONDUCTIVITY (W/m·K), DENSITY (kg/m3), SPECIFIC_HEAT
(kJ/kg/K), and EMISSIVITY (0.9 by default). Both CONDUCTIVITY and SPECIFIC_HEAT can be functions
of temperature. DENSITY and EMISSIVITY cannot. Temperature-dependence is specified using the RAMP
convention. As an example, consider marinite, a wall material suitable for high temperature applications:

&MATL ID = 'MARINITE'
EMISSIVITY = 0.8
DENSITY = 737.
SPECIFIC_HEAT_RAMP = 'c_ramp'
CONDUCTIVITY_RAMP = 'k_ramp' /

&RAMP ID='k_ramp', T= 24., F=0.13 /
&RAMP ID='k_ramp', T=149., F=0.12 /
&RAMP ID='k_ramp', T=538., F=0.12 /
&RAMP ID='c_ramp', T= 93., F=1.172 /
&RAMP ID='c_ramp', T=205., F=1.255 /
&RAMP ID='c_ramp', T=316., F=1.339 /
&RAMP ID='c_ramp', T=425., F=1.423 /

Notice that with temperature-dependent quantities, the RAMP parameter T means Temperature, and F is the
value of either the specific heat or conductivity. In this case, neither CONDUCTIVITY nor SPECIFIC_HEAT
is given on the MATL line, but rather the RAMP names.

Prior to FDS5, the thermal radiation from the gas space was always absorbed at the surface of the solid
material and the emission to the gas space took place on the surface. Starting in FDS5, the solid material can
be given an ABSORPTION_COEFFIENT (1/m) that allows the radiation penetrate and absorb into the solid.
Correspondingly, the emission of the material is based on the internal temperatures, not just the surface.

8.4.2 Pyrolysis Models

FDS has several approaches for describing the pyrolysis of solids and liquids. The approach to take depends
largely on the availability of material properties and the appropriateness of the underlying pyrolysis model.
This section provides a description of the input parameters, starting with a general solid.

Solid Fuels

A solid object might contain multiple layers with multiple material components per layer. The solid object is
described by a SURF line which contains the names of the various MATLs it is composed of. Each MATL can
undergo several reactions that may occur at different temperatures and consume different amounts of heat.
Each individual reaction can produce a (single) solid RESIDUE, water vapor, and/or fuel gas. For example,
the evaporation of water from a solid material is described by the “reaction” that converts liquid water to
water vapor. This reaction occurs close to 100 ◦C and produces only water vapor. It does not produce a
solid RESIDUE nor fuel gas. However, a pyrolyzing solid might undergo a reaction that produces a solid
RESIDUE, water vapor, and fuel gas.

For each MATL entry in the input file, decide how many reactions it can undergo. It may not undergo any
– it may only just heat up. However, if it is to change form via one or more reactions, designate the number

53

of reactions with the integer N_REACTIONS. It is very important that you designate N_REACTIONS or else
FDS will ignore all parameters associated with reactions. Note, that quite often the empirical observation
of multiple reactions does not imply N_REACTIONS > 1, but is caused by the fact that the examined sample
is a mixture of multiple materials reacting at different temperatures. Currently, the maximum number of
reactions for each material is 10 and the chain of consecutive reactions may contain up to 20 steps.

Next, decide what each reaction produces: a (single) solid RESIDUE, water vapor, and/or fuel gas.
This information is conveyed to FDS via the yields: NU_RESIDUE(j), NU_WATER(j), and NU_FUEL(j),
respectively. Here, j indicates which reaction the parameters pertain to. If, like the evaporation of water,
only water vapor is produced, set NU_WATER(j)=1.0 and the other two to zero. The yields are all zero by
default. If NU_RESIDUE(j) is non-zero, then you must indicate what the solid residue is via RESIDUE(j),
the ID of another MATL that is also listed in the input file. Ideally, the sum of the yields should add to 1,
meaning that the mass of the reactant is conserved. However, there are times when it is convenient to have
the yields sum to something less than one. For example, the spalling or ablation of concrete can be described
as a “reaction” that consumes energy but does not produce any “product” because the concrete is assumed
to have either fallen off the surface in chunks or pulverized powder. The concrete’s mass is not conserved in
the model because it has essentially disappeared from that particular surface.

Now you must specify at what temperature the reaction occurs, and how fast the reaction occurs at that
temperature. The reaction rate at the temperature, Ts, of the ith material (i.e. the MATL that you are currently
describing) undergoing its jth reaction is given by:

ri j =
∂

∂ t

(
ρs,i

ρs0

)
=
(

ρs,i

ρs0

)ns,i j

Ai j exp
(
−

Ei j

RTs

)
max

[
0,Ts−Tthr,i j

]nt,i j (8.4)

ρs,i is the density of the ith material within that particular layer, in the sense of the mass of the ith material
divided by the volume of the layer. ρs0 is the initial density of the layer. Thus, ρs,i/ρs0 is a quantity that
increases as the ith material is produced as a residue of some other reaction, and decreases as the ith material
decomposes. If the layer is composed of only one material, and if the reactions produce no solid residues,
then ρs,i/ρs0 is always 1. ns,i j is the reaction order and prescribed under the name N_S(j), and is 1 by
default. If the value of ns is not known, it is a good starting point to assume ns = 1.

The pre-exponential factor, Ai j, is prescribed under the name A(j), with units of 1/s. Ei j, the activation
energy, is prescribed via E(j) in units of kJ/kmol. Remember that 1 kcal is 4.184 kJ, and be careful with
factors of 1000. A and E are not readily accessible for most real materials. However, if they are known,
specify both. Avoid specifying just one because they act as a pair. If A and E are not known, which is usually
the case, specify REFERENCE_RATE (1/s) and REFERENCE_TEMPERATURE (◦C). This directs FDS to choose
A and E so that the reaction rate (REFERENCE_RATE) is achieved at the REFERENCE_TEMPERATURE. The
default value of REFERENCE_RATE is 0.1 s−1. It is suggested that unless you have information to the
contrary, leave REFERENCE_RATE at its default value and just specify the REFERENCE_TEMPERATURE.
Note that the REFERENCE_TEMPERATURE is not the same as an ignition temperature. Rather, it is simply
the temperature at which the mass fraction of the ith material decreases at a rate of 0.1 s−1. You should
check the sensitivity of these parameters following the procedure explained in Section 8.7.

Tthr,i j is an optional “threshold” temperature that allows the definition of non-Arrhenius pyrolysis func-
tions and ignition criteria, and is prescribed by THRESHOLD_TEMPERATURE(j). By default, Tthr,i j is -273.15
degrees Celsius, nt, j is zero; thus, the last term of Equation 8.4 does not affect the pyrolysis rate. The term
can be used to describe a threshold temperature for the pyrolysis reaction by setting Tthr,i j and nt, j = 0. Then
the term is equal to 0 at temperatures below Tthr,i j and 1 at temperatures above. nt, j is prescribed under the
name N_T(j).

54

Remember that all temperatures are specified in degrees Celsius, but are then converted to degrees Kelvin
within the program. Thus, the formulae in this section ought to be interpreted in terms of the absolute
temperature.

One last issue before a few examples – the most important one of all. Eq. (8.4) describes the rate of the re-
action as a function of temperature. Most solid phase reactions require energy; that is, they are endothermic.
The amount of energy consumed, per unit mass of reactant that is converted into something else, is specified
by the HEAT_OF_REACTION(j). Technically, this is the enthalpy difference between the products and the
reactant. A positive value indicates that the reaction is endothermic; that is, the reaction takes energy out of
the system. Usually the HEAT_OF_REACTION is accurately known only for simple phase change reactions
like the vaporization of water. For other reactions, it must be determined empirically.

Here is an example of a material that burns in the neighborhood of 350 ◦C, converting all its mass to
fuel gases (NU_FUEL=1.).

&MATL ID = 'My Fuel'
FYI = 'Properties completely fabricated'
SPECIFIC_HEAT = 1.0
CONDUCTIVITY = 0.1
DENSITY = 100.0
HEAT_OF_COMBUSTION = 15000.
N_REACTIONS = 1
NU_FUEL(1) = 1.
REFERENCE_TEMPERATURE(1) = 350.
HEAT_OF_REACTION(1) = 3000. /

Note that the (1) has been added to the reaction parameters to emphasize the fact that these parameters are
stored in arrays of length equal to N_REACTIONS. If there is only one reaction, you need not include the
(1), but it is a good habit to get into. Note also that the HEAT_OF_COMBUSTION is the energy released
per unit mass of fuel gas that mixes with oxygen and combusts. This has nothing to do with the pyrolysis
process, so why is it specified here? The answer is that there can be only one gas phase reaction of fuel
and oxygen in FDS, but there can be dozens of different materials and dozens of solid phase reactions. To
ensure that the fuel vapors from different materials combust to produce the proper amount of energy, it is
very important to specify a HEAT_OF_COMBUSTION for each material. That way, the mass loss rate of fuel
gases is automatically adjusted so that the effective mass loss rate multiplied by the single, global, gas phase
heat of combustion produces the expected heat release rate.

Several other examples of solid phase reactions can be found in various Verification examples. See
Sections 16.4.6 and 16.4.7.

Solid Fuels that Burn at a Specified Rate

Real objects, like furnishings, office equipment, and so on, are often difficult to describe via the SURF and
MATL parameters. Sometimes the only information about a given object is its bulk thermal properties, its
“ignition” temperature, and what its subsequent burning rate is, as a function of time from ignition. For this
situation, add lines similar to the following:

&MATL ID = 'stuff'
CONDUCTIVITY = 0.1
SPECIFIC_HEAT = 1.0
DENSITY = 900.0 /

&SURF ID = 'my surface'

55

COLOR = 'GREEN'
MATL_ID = 'stuff'
HRRPUA = 1000.
IGNITION_TEMPERATURE = 500.
RAMP_Q = 'fire_ramp'
THICKNESS = 0.01 /

&RAMP ID='fire_ramp', T= 0.0, F=0.0 /
&RAMP ID='fire_ramp', T= 10.0, F=1.0 /
&RAMP ID='fire_ramp', T=310.0, F=1.0 /
&RAMP ID='fire_ramp', T=320.0, F=0.0 /

An object with surface properties defined by ’my surface’ shall burn at a rate of 1000 kW/m2 after a
linear ramp-up of 10 s following its “ignition” when its surface temperature reaches 500 ◦C. Burning shall
continue for 5 min, and then ramp-down in 10 s. Note that the time T in the RAMP means time from ignition.
Note also that now the ”ignition temperature” is a surface property, not material property.

After the surface has ignited, the heat transfer into the solid is still being solved but there is no coupling
between the burning rate and the surface temperature. As a result, the surface temperature may increase too
much. To account for the energy loss due to the vaporization of the solid fuel, HEAT_OF_VAPORIZATION
can be specified for the surface. For example, when using the lines below, the net heat flux at the material
surface is reduced by a factor 1000 kJ/kg times the instantaneous burning rate.

&SURF ID = 'my surface'
COLOR = 'GREEN'
MATL_ID = 'stuff'
HRRPUA = 1000.
IGNITION_TEMPERATURE = 500.
HEAT_OF_VAPORIZATION = 1000.
RAMP_Q = 'fire_ramp'
THICKNESS = 0.01 /

The parameters HRRPUA, IGNITION_TEMPERATURE, and HEAT_OF_VAPORIZATION are all telling FDS
that you want to control the burning rate yourself, but you still want to simulate the heating up and “ignition”
of the fuel. When these parameters appear on the SURF line, they are acting in concert. If HRRPUA appears
alone, the surface will begin burning at the start of the simulation, like a piloted burner. The addition of
an IGNITION_TEMPERATURE delays burning until your specified temperature is reached. The addition of
HEAT_OF_VAPORIZATION tells FDS to account for the energy used to vaporize the fuel. For any of these
options, if a MATL line is invoked by a SURF line containing a specified HRRPUA, then that MATL ought to
have only thermal properties. It should have no reaction parameters, product yields, and so on, like those
described in the previous sections. By specifying HRRPUA, you are controlling the burning rate rather than
letting the material pyrolyze based on the conditions of the surrounding environment.

Liquid Fuels

For a liquid fuel, the thermal properties are similar to those of a solid material, with a few exceptions. The
evaporation rate of the fuel is governed by the Clausius-Clapeyron equation (see FDS Technical Reference
Guide for details). The only drawback of this approach is that the fuel gases burn regardless of any ignition
source. Thus, if a liquid fuel is specified, the fuel begins burning at once. Here is an example of a steel pan
filled with a thin layer of ethanol. Note that the material properties have not all been verified.

&MATL ID = 'ETHANOL LIQUID'
EMISSIVITY = 1.0
NU_FUEL = 0.97

56

HEAT_OF_REACTION = 880.
CONDUCTIVITY = 0.17
SPECIFIC_HEAT = 2.45
DENSITY = 787.
ABSORPTION_COEFFICIENT = 40.
BOILING_TEMPERATURE = 76. /

&MATL ID = 'STEEL'
EMISSIVITY = 1.0
DENSITY = 7850.
CONDUCTIVITY = 45.8
SPECIFIC_HEAT = 0.46 /

&MATL ID = 'CONCRETE'
DENSITY = 2200.
CONDUCTIVITY = 1.2
SPECIFIC_HEAT = 0.88 /

&SURF ID = 'ETHANOL POOL'
FYI = '4 kg of ethanol in a 0.7 m x 0.8 m pan'
COLOR = 'YELLOW'
MATL_ID = 'ETHANOL LIQUID','STEEL','CONCRETE'
THICKNESS = 0.0091,0.001,0.05
TMP_INNER = 18. /

The inclusion of BOILING_TEMPERATURE on the MATL line tells FDS to use its liquid pyrolysis model.
It also automatically sets N_REACTIONS=1, that is, the only “reaction” is the phase change from liquid
to gaseous fuel. Thus, HEAT_OF_REACTION in this case is the latent heat of vaporization. The gaseous
fuel yield, NU_FUEL, is 0.97 instead of 1 to account for impurities in the liquid that do not take part in the
combustion process.

The thermal conductivity, density and specific heat are used to compute the loss of heat into the liquid
via conduction using the same one-dimensional heat transfer equation that is used for solids. Obviously, the
convection of the liquid is important, but is not considered in the model.

Note also the ABSORPTION_COEFFICIENT for the liquid. This denotes the absorption in depth of
thermal radiation. Liquids do not just absorb radiation at the surface, but rather over a thin layer near the
surface. Its effect on the burning rate is significant. An example is given in Section 16.4.5.

8.4.3 Special topic: Making Fuels Disappear (BURN_AWAY)

If a burning object is to disappear from the calculation once it is exhausted of fuel, set BURN_AWAY=.TRUE..
Use this parameter cautiously. If an object has the potential of burning away, a significant amount of extra
memory has to be set aside to store additional surface information as the rectangular block is eaten away.
If BURN_AWAY is prescribed as a SURF parameter, then a solid object with this SURF_ID disappears from a
calculation as the mass of each of its mesh cells are consumed. The mass of each mesh cell is the volume of
the mesh cell multiplied by the DENSITY of the materials making up the the obstruction.

Note also that if BURN_AWAY is prescribed, the SURF should be applied to the entire object, not just a face
of the object because it is unclear how to handle edges of solid obstructions that have different SURF_IDs
on different faces.

Also note that the amount of combustible fuel equals the DENSITY of the designated materials multiplied
by the volume of the mesh cell. If the volume of the obstruction changes because it has to conform to the

57

uniform mesh, FDS does not adjust the burning rate to account for this as it does with various quantities
associated with areas, like HRRPUA.

If all the material components of the surface are reacting, and the pyrolysis reactions have no solid
residue, the thickness of the surface is going to shrink when the surface reacts. The shrinking behavior
can be prevented in the numerical model by setting SHRINK=.FALSE. on the SURF line. However, setting
SHRINK=.FALSE. may introduce numerical problems in the wall solver. When all the material of a shrink-
ing surface is consumed but BURN_AWAY is not prescribed, the surface temperature is set to TMP_BACK,
convective heat flux to zero and burning rate to zero.

8.4.4 Special Topic: Initial and Backside Boundary Conditions

By default, the initial temperature of the solid material is set to ambient temperature. Use TMP_INNER on
the SURF line to specify a different initial temperature. Also, the backside temperature boundary condition
of a solid can be set using the parameter TMP_BACK on the SURF line. TMP_BACK is not the actual backside
surface temperature, but the gas temperature that the surface transfer heat with. This parameter has no
meaning for surfaces with BACKING=’EXPOSED’ or BACKING=’INSULATED’.

Note that the parameters TMP_INNER and TMP_BACK are only meaningful for solids with specified
THICKNESS and material properties (via the MATL_ID keyword).

8.4.5 Special Topic: Numerical Accuracy and Stability

To compute the temperature and reactions inside the solids, FDS solves the one-dimensional heat transfer
equation numerically. The size of the mesh cells on the surface of the solid is automatically chosen using a
rule that makes the cell size smaller than the square root of the material diffusivity (k/ρc). By default, the
solid mesh cells increase towards the middle of the material layer and are smallest on the layer boundaries.

The default parameters are usually appropriate for simple heat transfer calculations but sometimes the
use of pyrolysis reactions makes the temperatures and burning rate fluctuate. The numerical stability of the
solid phase solution may then be improved by making the mesh density more uniform inside the material
and by making the mesh cells smaller. Adjustments may also be needed in case of extremely transient heat
transfer situations. Use STRETCH_FACTOR=1. on the SURF line to have a perfectly uniform mesh. Values
between 1 and 2 give different levels of stretching. The size of all the mesh cells can be scaled by setting
CELL_SIZE_FACTOR less than 1.0. For example, CELL_SIZE_FACTOR=0.5 makes the mesh cells half the
size. Setting WALL_INCREMENT=1 on the TIME line forces the solid phase temperatures to be solved on
every time step.

See Section 8.7 for ways to check and improve the accuracy of the solid phase calculation.

58

8.5 User-Specified Functions: The RAMP and TABL Namelist Groups

Many of the parameters specified in the input file are fixed constants. However, there are several parameters
that may vary in time, temperature, or space. These functions can be complex, thus you have to have some
way to convey them. The namelist group RAMP and TABL, as it names imply, allow you to control the
behavior of selected parameters. RAMP allows you to specify a function with one independent variable (such
as time) is mapped to one dependent variable (such as velocity). TALB allows for the specification of a
mapping from multiple independent variables (such as a solid angle) to multiple dependent variables (such
as a sprinkler flow rate and droplet speed).

8.5.1 Time-Dependent Functions

At the start of any calculation, the temperature is ambient everywhere, the flow velocity is zero everywhere,
nothing is burning, and the mass fractions of all species are uniform. When the calculation starts temper-
atures, velocities, burning rates, etc., are ramped-up from their starting values because nothing can happen
instantaneously. By default, everything is ramped-up to their prescribed values in roughly 1 s. However,
control the rate at which things turn on, or turn off, by specifying time histories for the boundary condi-
tions that are listed on a given SURF line. The above boundary conditions can be made time-dependent
using either prescribed functions or user-defined functions. The parameters TAU_Q, TAU_T, and TAU_V in-
dicate that the heat release rate (HRRPUA); surface temperature (TMP_FRONT); and/or normal velocity (VEL,
VOLUME_FLUX), or MASS_FLUX_TOTAL are to ramp up to their prescribed values in TAU seconds and re-
main there. If TAU_Q is positive, then the heat release rate ramps up like tanh(t/τ). If negative, then the
HRR ramps up like (t/τ)2. If the fire ramps up following a t2 curve, it remains constant after TAU_Q sec-
onds. These rules apply to TAU_T and TAU_V as well. The default value for all TAUs is 1 s. If something
other than a tanh or t2 ramp up is desired, then a user-defined burning history must be input. To do this,
set RAMP_Q, RAMP_T or RAMP_V equal to a character string designating the ramp function to use for that
particular surface type, then somewhere in the input file generate lines of the form:

&RAMP ID='rampname1', T= 0.0, F=0.0 /
&RAMP ID='rampname1', T= 5.0, F=0.5 /
&RAMP ID='rampname1', T=10.0, F=0.7 /

.

.

.
&RAMP ID='rampname2', T= 0.0, F=0.0 /
&RAMP ID='rampname2', T=10.0, F=0.3 /
&RAMP ID='rampname2', T=20.0, F=0.8 /

.

.

.

Here, T is the time, and F indicates the fraction of the heat release rate, wall temperature, velocity, mass
fraction, etc., to apply. Linear interpolation is used to fill in intermediate time points. Be sure that the
prescribed function starts at T=0.0.

Note that each set of RAMP lines must have a unique ID and that the lines must be listed with monotonically
increasing T.

Note that the TAUs and the RAMPs are mutually exclusive. For a given surface quantity, both cannot be
prescribed.

59

As an example, the simple blowing vent from above can be controlled via the lines:

&SURF ID='BLOWER',VEL=-1.2,TMP_FRONT=50., RAMP_V='BLOWER RAMP', RAMP_T='HEATER RAMP' /
&RAMP ID='BLOWER RAMP',T= 0.0,F=0.0 /
&RAMP ID='BLOWER RAMP',T=10.0,F=1.0 /
&RAMP ID='BLOWER RAMP',T=80.0,F=1.0 /
&RAMP ID='BLOWER RAMP',T=90.0,F=0.0 /
&RAMP ID='HEATER RAMP',T= 0.0,F=0.0 /
&RAMP ID='HEATER RAMP',T=20.0,F=1.0 /
&RAMP ID='HEATER RAMP',T=30.0,F=1.0 /
&RAMP ID='HEATER RAMP',T=40.0,F=0.0 /

Now the temperature and velocity of the incoming air stream would follow the same ramp functions.

Note that the temperature and velocity can be independently controlled by assigning different RAMPs to
RAMP_T and RAMP_V, respectively.

Use TAU_MF(N) or RAMP_MF(N) to control the ramp-ups for either the mass fraction or mass flux of
species N. The mass fraction of species N at the surface is given by

YN(t) = YN(0)+ f (t)(YN −YN(0))

where YN(0) is the ambient mass fraction of species N (MASS_FRACTION_0 in the Nth SPEC namelist
line is used to prescribe YN(0)), YN is the desired mass fraction to which the function f (t) is ramping
(MASS_FRACTION(N) specified in the SURF line is used to prescribe YN). The function f (t) is either a
tanh, t2, or user-defined function. For a user-defined function, indicate the name of the ramp function with
RAMP_MF(N), a character string.

8.5.2 Temperature-Dependent Functions

Thermal properties like conductivity and specific heat can vary significantly with temperature. In such cases,
use the RAMP function like this:

&MATL ID = 'STEEL'
FYI = 'A242 Steel'
SPECIFIC_HEAT_RAMP = 'c_steel'
CONDUCTIVITY_RAMP = 'k_steel'
DENSITY = 7850. /

&RAMP ID='c_steel', T= 20., F=0.45 /
&RAMP ID='c_steel', T=377., F=0.60 /
&RAMP ID='c_steel', T=677., F=0.85 /

&RAMP ID='k_steel', T= 20., F=48. /
&RAMP ID='k_steel', T=677., F=30. /

Note that here (as opposed to time ramps) the parameter F is the actual physical quantity, not just a fraction of
some other quantity. Thus, if CONDUCTIVITY_RAMP is used, there should be no value of CONDUCTIVITY
given. Note also that for values of temperature, T, below and above the given range, FDS will assume a
constant value equal to the first or last F specified.

Note that each set of RAMP lines must have a unique ID and that the lines must be listed with monotonically
increasing T.

60

8.5.3 Tabular Functions

Some input quantities, such as a sprinkler spray pattern, vary multi-dimensionally. In such cases, use the
TABL namelist group. The format of the TABL lines is application-specific, but in general look like this:

&TABL ID='TABLE1', TABLE_DATA=40,50, 85, 95,10,0.5 /
&TABL ID='TABLE1', TABLE_DATA=40,50,185,195,10,0.5 /

A detailed description of the various table entries is given in the sections that describe quantities that use
such tables. Currently, only sprinklers and nozzles use this group of parameters to define a complex spray
pattern.

Note that each set of TABL lines must have a unique ID. Specific requirements on ordering the lines will
depend upon the type of TABL and those requirements are provided in the appropriate section in this guide.

61

8.6 Coloring Obstructions, Vents, Surfaces and Meshes

Colors for many items within FDS can be prescribed in two ways; a triplet of integers after keyword RGB or
one of many COLOR name character strings.

The three RGB integer numbers range from 0 to 255, indicating the amount of Red, Green and Blue that
make up the color. If you define the COLOR by name, it is important that you type the name EXACTLY as it
is listed in the color tables here in this document and on the FDS website.

Table 8.1 provides a small sampling of RGB values and COLOR names for a variety of colors. A complete
listing of all 500+ colors that can be specified by name after the COLOR keyword is available on the FDS
website. If the COLOR name is not listed in the table on the website, then that name does not exist to FDS.

It is highly recommended that colors be assigned to surfaces via the SURF line because as the geometries
of FDS simulations become more complex, it is very useful to use color as a spot check to determine if the
desired surface properties have been assigned throughout the room or building under study.

For example, if you desire that all surfaces associated with a given SURF line be colored the same way,
prescribe a triplet of integers called RGB on the SURF line. The following SURF line;
&SURF ID='UPHOLSTERY',...,RGB=0,255,0 /

will cause the furnishings with a “SURF” of “UPHOLSTERY” to be colored green in Smokeview. It is best
to avoid using the primary colors because these same colors are used by Smokeview to draw color contours.

Obstructions and vents may be colored individually (over-riding the SURF line’s RGB) by specifying
COLOR value to any of the listed names in Table 8.1 or ’INVISIBLE’ on the respective OBST or VENT line.
Using ’INVISIBLE’ causes the vent or obstruction to not be drawn.

Colors may also be specified using the integer triplet RGB on an OBST or VENT line to gain a wider color
palette. The use of RGB is preferable, especially to create colors that do not clash with the pastel colors used
to show temperatures, concentrations, etc. See Table 8.1 for a list of color names and RGB values.

8.6.1 Texture Mapping

There are various ways of prescribing the color of various objects within the computational domain, but
there is also a way of pasting images onto the obstructions for the purpose of making the Smokeview images
more realistic. This technique is known as “texture mapping.” For example, to apply a wood paneling image
to a wall, add to the SURF line defining the physical properties of the paneling the text

&SURF ID='wood paneling',...,TEXTURE_MAP='paneling.jpg',TEXTURE_WIDTH=1.,
TEXTURE_HEIGHT=2. /

Assuming that a JPEG file called paneling.jpg exists in the working directory, Smokeview should read it
and display the image wherever the paneling is used (SGI Users: use rgb files instead of jpg). Note that the
image does not appear when Smokeview is first invoked. It is an option controlled by the Show/Hide menu.
The parameters TEXTURE_WIDTH and TEXTURE_HEIGHT are the physical dimensions of the image. In this
case, the JPEG image is of a 1 m wide by 2 m high piece of paneling. Smokeview replicates the image as
often as necessary to make it appear that the paneling is applied where desired. Consider carefully how the
image repeats itself when applied in a scene. If the image has no obvious pattern, there is no problem with
the image being repeated. If the image has an obvious direction, the real triplet TEXTURE_ORIGIN should
be added to the VENT or OBST line to which a texture map should be applied. For example,

&OBST XB=1.0,2.0,3.0,4.0,5.0,7.0,SURF_ID='wood paneling',
TEXTURE_ORIGIN=1.0,3.0,5.0 /

applies paneling to an obstruction whose dimensions are 1 m by 1 m by 2 m, such that the image of the
paneling is positioned at the point (1.0,3.0,5.0). The default value of TEXTURE_ORIGIN is (0,0,0), and the
global default can be changed by added a TEXTURE_ORIGIN statement to the MISC line.

62

Table 8.1: Sample of Color Definitions (A complete list is included on the website)

Name R G B Name R G B
AQUAMARINE � 127 255 212 MAROON � 128 0 0

ANTIQUE WHITE � 250 235 215 MELON � 227 168 105
BEIGE � 245 245 220 MIDNIGHT BLUE � 25 25 112
BLACK � 0 0 0 MINT � 189 252 201
BLUE � 0 0 255 NAVY � 0 0 128

BLUE VIOLET � 138 43 226 OLIVE � 128 128 0
BRICK � 156 102 31 OLIVE DRAB � 107 142 35
BROWN � 165 42 42 ORANGE � 255 128 0

BURNT SIENNA � 138 54 15 ORANGE RED � 255 69 0
BURNT UMBER � 138 51 36 ORCHID � 218 112 214
CADET BLUE � 95 158 160 PINK � 255 192 203
CHOCOLATE � 210 105 30 POWDER BLUE � 176 224 230
COBALT � 61 89 171 PURPLE � 128 0 128
CORAL � 255 127 80 RASPBERRY � 135 38 87
CYAN � 0 255 255 RED � 255 0 0

DIMGRAY � 105 105 105 ROYAL BLUE � 65 105 225
EMERALD GREEN � 0 201 87 SALMON � 250 128 114
FIREBRICK � 178 34 34 SANDY BROWN � 244 164 96
FLESH � 255 125 64 SEA GREEN � 84 255 159

FOREST GREEN � 34 139 34 SEPIA � 94 38 18
GOLD � 255 215 0 SIENNA � 160 82 45

GOLDENROD � 218 165 32 SILVER � 192 192 192
GRAY � 128 128 128 SKY BLUE � 135 206 235
GREEN � 0 255 0 SLATEBLUE � 106 90 205

GREEN YELLOW � 173 255 47 SLATE GRAY � 112 128 144
HONEYDEW � 240 255 240 SPRING GREEN � 0 255 127
HOT PINK � 255 105 180 STEEL BLUE � 70 130 180

INDIAN RED � 205 92 92 TAN � 210 180 140
INDIGO � 75 0 130 TEAL � 0 128 128
IVORY � 255 255 240 THISTLE � 216 191 216

IVORY BLACK � 41 36 33 TOMATO � 255 99 71
KELLY GREEN � 0 128 0 TURQUOISE � 64 224 208

KHAKI � 240 230 140 VIOLET � 238 130 238
LAVENDER � 230 230 250 VIOLET RED � 208 32 144

LIME GREEN � 50 205 50 WHITE � 255 255 255
MAGENTA � 255 0 255 YELLOW � 255 255 0

63

8.7 Verifying the Solid Phase Properties

As this chapter has demonstrated, real materials can be very complicated. Undoubtedly, the SURF and
MATL lines in the input file will consist of a combination of empirical and fundamental properties, often
originating from different sources. How do you know that the various property values and the associated
thermo-physical model in FDS constitute an appropriate description of the solid? For a full-scale simulation,
it is hard to untangle the uncertainties associated with the gas and solid phase routines. However, it is easy
to perform a simple check of any set of surface properties by essentially turning off the gas phase – no
combustion and no convective heat transfer. There are several parameters that allow you do this, spread out
over the various namelist groups.

1. Create a trivially small mesh, just to let FDS run. Since the gas phase calculation is essentially being
shut off, you just need 4 cells in each direction (IJK=4,4,4) for the pressure solver to function properly.

2. On the TIME line, set WALL_INCREMENT=1 to force FDS to update the solid phase every time step
(normally it does this every other time step), and set DT to whatever value appropriate for the solid
phase calculation. Since there is no gas phase calculation that will limit the time step, it is best to
control this yourself.

3. Put H_FIXED=0. on the MISC line. This turns off the convective heat flux from gas to surface and vis
verse. The heat flux to the solid is specified via EXTERNAL_FLUX (kW/m2) on the SURF line that is
assigned to the solid surface. If you want to specify a particular convective heat flux to the solid surface,
you can set ASSUMED_GAS_TEMPERATURE on the MISC line, along with a non-zero value of H_FIXED.

4. Turn off all the gas phase computations by setting SOLID_PHASE_ONLY=.TRUE. on the MISC line. This
will also speed up the computations significantly. If the gas phase computations are needed, you may
turn off combustion by creating a REAC line with only Y_O2_INFTY=0.01. This sets the background
oxygen mass fraction to 0.01, too low to support any burning.

5. Generate MATL lines, plus a single SURF line, as you normally would, except add EXTERNAL_FLUX to
the SURF line. This is simply a “virtual” source that heats the solid. Think of this as a perfect radiant
panel or cone calorimeter.

6. Assign the SURF_ID to a VENT that spans the bottom of the computational domain. Create OPEN vents
on all other faces.

7. Finally, add solid phase output devices to the solid surface, like WALL_TEMPERATURE, HEAT_FLUX,
BURNING_RATE, GAUGE_HEAT_FLUX, and WALL_THICKNESS (assuming the solid is to burn away).
Use these to track the condition of the solid as a function of time. In particular, make sure that
the BURNING_RATE is appropriate for the particular external heat flux applied. Make sure that the
WALL_TEMPERATURE is appropriate. Compare your results to measurements made in a bench-scale de-
vice, like the cone calorimeter. Keep in mind, however, that the calculation and the experiment are not
necessarily perfectly matched. The calculation is designed to eliminate uncertainties related to convec-
tion, combustion, and apparatus-specific phenomena.

64

Chapter 9

Combustion and Radiation

A common source of confusion in FDS is the distinction between gas phase combustion and solid phase
pyrolysis. The former refers to the reaction of fuel vapor and oxygen; the latter the generation of fuel vapor
at a solid or liquid surface. Whereas there can be many types of combustibles in an FDS fire simulation,
there can only be one gaseous fuel. The reason is cost. It is expensive to solve transport equations for
multiple gaseous fuels. Consequently, the burning rates of solids and liquids are automatically adjusted by
FDS to account for the difference in the heats of combustion of the various combustibles. In effect, you
specify a single gas phase reaction as a surrogate for all the potential fuel sources.

The gas phase reaction can be described in two ways. By default, a so-called mixture fraction model
is used to account for the evolution of the fuel gas from its surface of origin through the combustion pro-
cess. The alternative is what is referred to as the finite-rate approach, where all of the individual gas species
involved in the combustion process are defined and tracked individually. This is a costlier and more compli-
cated approach than the mixture fraction model. This chapter describes both methods, with an emphasis on
the more commonly used mixture fraction model.

9.1 Mixture Fraction Combustion: The REAC Namelist Group

There are two ways of designating a fire: the first is to specify a Heat Release Rate Per Unit Area HRRPUA
on a SURF line. The other is to specify a HEAT_OF_REACTION, along with other thermal parameters on a
MATL line, in which case the burning rate of the fuel depends on the net heat feedback to the surface. In
both cases, the mixture fraction combustion model is used. In fact, the mere presence of these parameters
automatically invokes the mixture fraction model. Do not specify explicitly gas species like oxygen if you
have also specified heat release rates or solid phase reaction rates.

A single REAC line is used with the mixture fraction model. If the REAC line is not found in the input
file, propane will be used as the surrogate fuel, and all burning rates will be adjusted accordingly. If you
only specify the fire’s heat release rate with HRRPUA, then the reaction parameters may not require adjusting,
and no REAC line need be added to the input file. However, if you know something about the predominant
fuel gas, you might want to consider specifying, at the very least, the basic stoichiometry via the REAC line.

Using the mixture fraction model, each reaction is assumed to be of the form:

CxHyOzNvOtherw +νO2 O2 → νCO2 CO2 +νH2O H2O+νCO CO+νSoot Soot+νN2 N2 +νOther Other
(9.1)

You need only specify the chemical formula of the fuel along with the yields of CO, soot, and H2, and the
amount of hydrogen in the soot, H f rac. For completeness you can specify the N2 content of the fuel and the
presence of other species. FDS will use that information internally to determine the amount of combustion

65

products that are formed:

νO2 = νCO2 +
νCO

2
+

νH2O

2
− z

2
νCO2 = x−νCO− (1−H f rac)νsoot

νH2O =
y
2
−

H f rac

2
νsoot −νH2

νCO =
Wf

WCO
yCO

νH2 =
Wf

WH2

yH2

νsoot =
Wf

WS
ys

νN2 =
v
2

νother = w

Ws = H f racWH +(1−H f rac)WC

The following parameters may be prescribed on the REAC line. Note that the various YIELDs are for well-
ventilated, post-flame conditions. There are options to predict various species yields in under-ventilated fire
scenarios, but these special models still require the post-flame yields for CO, soot and any other species
listed below.

ID A character string naming the reaction.

C, H, O, N, OTHER The fuel chemical formula. All numbers are positive. (Mixture Fraction only, de-
fault values are those of propane)

MW_OTHER Average molecular weight for OTHER (g/mol). (Mixture Fraction only, default is the molecular
weight of N2, 28 g/mol)

Y_O2_INFTY Ambient mass fraction of oxygen (Mixture Fraction only, default 0.23)

Y_F_INLET Mass fraction of fuel in fuel stream (Mixture Fraction only, default 1.0)

SOOT_YIELD The fraction of fuel mass converted into smoke particulate, ys. Note that this parameter does
not apply to the processes of soot growth and oxidation, but rather to the net production of the smoke
particulate from the fire. (Mixture Fraction only, default 0.01)

SOOT_H_FRACTION The fraction of the atoms in the soot that are hydrogen. (Mixture Fraction only, default
0.1)

CO_YIELD The fraction of fuel mass converted into carbon monoxide, yCO. (Mixture Fraction only, default
0.0)

H2_YIELD The fraction of fuel mass converted into hydrogen, yH2 . (Mixture Fraction only, default 0.0)

HEAT_OF_COMBUSTION ∆H (kJ/kg). The amount of energy released per unit mass of fuel consumed. Note
that if the heat of combustion is not specified, it is assumed to be

∆H ≈ νO2 WO2

ν f Wf
EPUMO2 kJ/kg

66

EPUMO2 The amount of energy released per unit mass of oxygen consumed. (kJ/kg) Default is 13,100 kJ/kg.
Note that if both EPUMO2 and HEAT_OF_COMBUSTION are specified that FDS will ignore the value for
EPUMO2.

IDEAL Logical value indicating whether or not the EPUMO2 or HEAT_OF_COMBUSTION values represent
values for complete combustion (.TRUE.) or for incomplete combustion (.FALSE.), i.e. the values
account for the specified yCO, yH2 , and ys. If IDEAL, then FDS will internally adjust ∆H to account for
products of incomplete combustion.

A few sample REAC lines are given here. The values are for demonstration only.

&REAC ID = 'METHANE'
C = 1.
H = 4. /

&REAC ID = 'PROPANE'
SOOT_YIELD = 0.01
C = 3.
H = 8.
HEAT_OF_COMBUSTION = 46460.
IDEAL = .TRUE. /

&REAC ID = 'PROPANE'
SOOT_YIELD = 0.01
C = 3.
H = 8.
HEAT_OF_COMBUSTION = 46124.
IDEAL = .FALSE. /

&REAC ID = 'ACRYLONITRILE'
C = 3.
H = 3.
N = 1.
HEAT_OF_COMBUSTION = 24500.
IDEAL = .TRUE. /

&REAC ID = 'CARBON DISULFIDE'
C = 1.
Other = 2.
MW_OTHER = 32.
HEAT_OF_COMBUSTION = 13600.
IDEAL = .TRUE. /

9.1.1 Important Issues Related to the Mixture Fraction Models

This section explains the various approximations that affect both the gas phase parameters (REAC line) and
the solid (or liquid) phase parameters (SURF line). These approximations are needed either to compensate
for less than desirable mesh resolution or limitations of the mixture fraction combustion model.

Heat of Combustion: By default the EPUMO2 value is combined with the stoichiometric parameters listed on
the REAC line to compute the heat of combustion. Specifying the HEAT_OF_COMBUSTION will override that
computation. However, if heats of reaction have been specified on the MATL line and the heat of combustion
of the material differs from that specified by the governing reaction, then add a HEAT_OF_COMBUSTION

(kJ/kg) to the MATL line. With the mixture fraction combustion model, it is assumed that there is only one
fuel. However, in a realistic fire scenario, there may be many fuels originating from the various burning

67

objects in the building. Specify the stoichiometry of the predominant reaction via the REAC namelist group.
If the stoichiometry of the burning material differs from the global reaction, the HEAT_OF_COMBUSTION is
used to ensure that an equivalent amount of fuel is injected into the flow domain from the burning object.

Gas Phase Fire Suppression: Modeling suppression of a fire due to the introduction of a suppression
agent like CO2 or water mist, or due to the exhaustion of oxygen within a compartment is challenging
because the relevant physical mechanisms occur at length scales smaller than a single mesh cell. Flames
are extinguished due to lowered temperatures and dilution of the oxygen supply. A simple suppression
algorithm has been implemented in FDS that attempts to gauge whether or not a flame is viable at the
fuel-oxygen interface. The Technical Reference Guide [1] contains more details about how the mech-
anism works. The only parameters you can control are the Limiting Oxygen Index X_O2_LL, and the
CRITICAL_FLAME_TEMPERATURE. Both are set on the REAC line. The default values are 0.15 (volume
fraction) and 1427 ◦C, respectively. To eliminate any gas phase suppression, set X_O2_LL to 0. To turn off
suppression completely, set SUPPRESSION=.FALSE. on the MISC line.

CO Production: An algorithm has been implemented that computes the combustion as a two step reaction
that predicts the formation and destruction of CO. The Technical Reference Guide [1] contains more details
about how the mechanism works. This algorithm is used when CO_PRODUCTION is set to .TRUE. on
the MISC line. Even though the algorithm predicts CO formation and its eventual oxidation at elevated
temperature, it cannot predict the post-flame yield of CO. For example, within a flashed over compartment,
the algorithm predicts the elevated CO levels, but it cannot predict the CO concentration of the exhaust gases
that exit the flaming region. Thus, even if using this model, you must specify the CO_YIELD that is expected
of a well-ventilated fire.

Note that when active, this algorithm requires the use of three parameters for the mixture fraction vs. the two
parameters used when it is disabled and will therefore increase run times and memory usage accordingly. If
the simulation you are performing will not result in an under-ventilated fire, then there will be of little if any
benefit to enabling the CO production algorithm.

68

9.2 Extra Gas Species: The SPEC Namelist Group

Normally when you specify a fire via either HRRPUA on the SURF line or reaction parameters on the MATL
line, the mixture fraction combustion model is applied. A a set of two or three scalar variables, Zi, represent
the state of the combustion process from pure fuel (∑Zi = 1) to pure air (∑Zi = 0). The major reactants
and products of combustion – fuel, O2, CO2, H2O, N2, CO and soot – are all pre-tabulated functions of the
mixture fraction, Z. In other words, the values of Zi in any given mesh cell determines the mass fraction
of all the gases listed. The fuel chemistry listed under the REAC namelist group is used to generate the
table associating the mass fractions with Zi. You need not, and should not, explicitly list the reactants and
products of combustion.

Suppose however that gases are introduced into the domain that are neither reactants nor products of
combustion. This gas can be tracked separately from the mixture fraction via an additional scalar transport
equation1. In fact, there does not need to be any fire at all – FDS can be used to transport a mixture of
non-reacting ideal gases.

The namelist group SPEC is used to specify each additional species. Each SPEC line should include at
the very least the name of the species via a character string called (ID). Next, if the ambient (initial) mass
fraction of the gas is something other than 0, then the parameter MASS_FRACTION_0 is used to specify it.
Several gases that can be included in a calculation are listed in Table 9.1. The physical properties of these
gases are known and do not need to be specified. However, if a desired gas is not included in Table 9.1,
its molecular weight MW must be specified in units of g/mol. In addition, if a DNS calculation is being
performed, either the Lennard-Jones potential parameters σ (SIGMALJ) and ε/k (EPSILONKLJ) should be
specified; or the VISCOSITY (kg/m/s), CONDUCTIVITY (W/m/K), and DIFFUSIVITY (m2/s) between the
given species and the background species should be specified.

&SPEC ID='ARGON',MASS_FRACTION_0=0.1,MW=40. /

As an example, the lines:

&SPEC ID='ARGON', MASS_FRACTION_0=0.1, MW=40. /
&SPEC ID='HELIUM' /

.

.
&SURF ID='INLET', MASS_FRACTION(2)=0.2, VEL=-0.3, TAU_MF(2)=0.5, TAU_V=0.5 /

specify that ARGON and HELIUM are to be included in the calculation in addition to the (unlisted) default
BACKGROUND_SPECIES=’AIR’. At the INLET, a mixture of helium (0.2 by mass), argon (0.1 by mass
because nothing different is specified), and air (0.7 by mass making up the rest) flows out at a velocity of
0.3 m/s into the flow domain. The mass fraction of helium and the velocity are both ramped up according to
the function tanh(t/0.5).

If the simulation does not involve the mixture fraction model – either because no combustion is desired
or if a finite rate reaction(s) is being specified (see Section 9.3) – you can specify that the background gas
species be something other than air. For a gas mixture comprised of n species, FDS only solves transport
equations for n− 1 because it also solves an equation for total mass conservation. To set the properties of
the implicitly defined BACKGROUND_SPECIES, use the MISC line. If this species is not listed in Table 9.1,
specify its molecular weight, MW, and (optionally) its VISCOSITY and CONDUCTIVITY. In the absence of
any of these parameters, the appropriate values of ’AIR’ are assumed.

1 Often an extra gas introduced into a calculation is the same as a product of combustion, like water vapor from a sprinkler or
carbon dioxide from an extinguisher. These gases are tracked separately, thus water vapor generated by the combustion is tracked via
the mixture fraction variable and water vapor generated by evaporating sprinkler droplets is tracked via its own transport equation.
In the case of sprinklers, do not specify WATER VAPOR as an extra species – it is done automatically.

69

Table 9.1: Optional Gas Species [5]

Species Mol. Wgt. σ k/ε

(g/mol) (Å) (K)
AIR 29 3.711 78.6
CARBON DIOXIDE 44 3.941 195.2
CARBON MONOXIDE 28 3.690 91.7
HELIUM 4 2.551 10.22
HYDROGEN 2 2.827 59.7
METHANE 16 3.758 148.6
NITROGEN 28 3.798 71.4
OXYGEN 32 3.467 106.7
PROPANE 44 5.118 237.1
WATER VAPOR 18 2.641 809.1

Recognized species that are emissive will been defined as ABSORBING and radiative absorption for those
species will be computed. The keyword ABSORBING can be specified on the SPEC line as well. If .TRUE.
and the species is not in the recognized list, then it will be assumed to be a fuel when invoking RADCAL to
compute its absorptivity.

70

9.3 Finite-Rate Combustion

Usually, FDS uses mixture fraction concepts to describe combustion. However, FDS can also explicitly
track gas species and reactions that can occur between them. This section describes how to do this.

1. It is strongly recommended that finite-rate reactions be invoked only when FDS is running in DNS
mode. Set DNS=.TRUE. on the MISC line. Note: you may use the finite-rate reaction scheme in an LES
calculation, but because the temperature in a large scale calculation is smeared out over a mesh cell,
some of the reaction parameters may need to be modified to account for the lower temperatures.

2. The BACKGROUND_SPECIES on the MISC line is normally set to be ’NITROGEN’.

3. The namelist group SPEC is used to specify each additional species. Do not enter a SPEC line for the
background species.

4. Read Section 9.2 for a description of the boundary conditions for the gas species.

5. The REAC namelist group is used to designate the fuel and the reaction rate parameters. For a finite-rate
reaction you can specify multiple REAClines. Note that FDS will evalute the reactions in the order they
are listed in the input file.

FUEL Character string indicating which of the listed optional gas species is the fuel.

OXIDIZER Character string indicating which of the listed optional gas species is the oxidizerl.

BOF Pre-exponential factor in one-step chemical reaction in units of cm3/mole/s.

E Activation energy for one-step chemical reaction in units of kJ/kmol.

NU Array containing the stoichiometry of the chemical reaction for each SPEC where negative values
indicate reactants and positive values indicate products. Note that the background species cannot
participate in the reaction.

N_S Array containing the exponents for the finite rate equation for each SPEC. Note that a SPEC can
be given an N_S but not a NU, i.e the rate equation can be dependent on a species that does not
participate directly in the reaction. Note that the background species cannot participate in the
reaction.

HEAT_OF_COMBUSTION The effective heat of combustion the chemical reaction in units of kJ/kg. (De-
fault 40,000 kJ/kg)

9.4 Radiation Transport: The RADI Namelist Group

For most FDS simulations, thermal radiation transport is computed by default and you need not set any
parameters to make this happen. However, there are situations where it is important to be aware of issues
related to the radiative transport solver. The most important issue involves the fraction of energy released
from the fire as thermal radiation, commonly referred to as the radiative fraction. It is a function of both
the flame temperature and chemical composition, neither of which are reliably calculated in a large scale
fire calculation because the flame sheet is not well-resolved on the mesh. In calculations in which the mesh
cells are on the order of a centimeter and larger, the temperature near the flame surface cannot be relied
upon when computing the source term in the radiation transport equation, especially because of the T 4

dependence. To compensate, if you prescribe a non-zero value of RADIATIVE_FRACTION on the RADI line,
a mesh cell cut by the flame radiates that fraction of the chemical energy being released into it. Some of that
energy may be reabsorbed elsewhere, yielding a net radiative loss that is less than RADIATIVE_FRACTION,

71

depending mainly on the size of the fire and the soot loading. If it is desired to use the radiation transport
equation as is, then RADIATIVE_FRACTION ought to be set to zero, and the source term in the radiative
transport equation is then based solely on the gas temperature and the chemical composition. By default,
the RADIATIVE_FRACTION is 0.35 for an LES calculation, and zero for DNS.

There are several ways to improve the performance of the Finite Volume Method in solving the radia-
tion transport equation (RTE), most of which increase the computation time. The solver has two modes of
operation – a gray gas model (default) and a wide band model [1]. Modifications to these models can be
made via a namelist group called RADI. If running in gray gas mode (default), increase the number of an-
gles from the default 100 with the integer parameter NUMBER_RADIATION_ANGLES. The frequency of calls
to the radiation solver can be reduced from every 3 time steps with integer TIME_STEP_INCREMENT. The
increment over which the angles are updated can be reduced from 5 with the integer ANGLE_INCREMENT.
Briefly, if TIME_STEP_INCREMENT and ANGLE_INCREMENT are both set to 1, the radiation field is com-
pletely updated in a single time step, but the cost of the calculation increases significantly.

A few parameters affecting the absorption of radiation by water droplets are as follows: RADTMP is the
assumed radiative source temperature. It is used in the computation of the mean scattering and absorption
cross sections of water droplets. The default is 900 ◦C. NMIEANG is the number of angles in the numerical
integration of the Mie-phase function. Increasing NMIEANG improves the accuracy of the radiative properties
of water droplets. The cost of the better accuracy is seen in the initialization phase, not during the actual
simulation. The default value for NMIEANG is 15.

If the optional six band model is desired, set WIDE_BAND_MODEL=.TRUE.. It is recommended that this
option only be used when the fuel is relatively non-sooting because it adds significantly to the cost of the
calculation. To add three additional fuel bands, set CH4_BANDS=.TRUE.. See FDS Technical Reference
Guide for more details.

Note also that it is possible to turn off the radiation transport solver (saving roughly 20 % in CPU
time) by adding the statement RADIATION=.FALSE. to the MISC line. For isothermal calculations, the
radiation is turned off automatically. If burning is taking place and radiation is turned off, then the total
heat release rate is reduced by the RADIATIVE_FRACTION, which is input on the RADI line. This radiated
energy completely disappears from the calculation. More on this feature can be found in Section 9.1.1.

72

Chapter 10

Particles and Droplets: The PART Namelist
Group

Lagrangian particles1 are used in FDS as water or liquid fuel droplets, flow tracers, and various other objects
that are not defined or confined by the numerical mesh. Sometimes the particles have mass, sometimes they
do not. Some evaporate, absorb radiation, etc. PART is the namelist group that is used to prescribe parameters
associated with Lagrangian particles.

All Lagrangian particles must be explicitly defined via the PART namelist group. In versions of FDS prior
to 5, water droplets and smoke particles were implicitly defined. Shortcuts for defining water droplets and
smoke particles are possible, via parameters like WATER=.TRUE. and MASSLESS=.TRUE.

10.1 Basics

Properties of different types of Lagrangian particles are designated via the PART namelist group. Much like
SURF lines contain the properties of a solid surface or vent, PART lines contain information about particles
and droplets. Once a particular type of particle or droplet has been described using a PART line, then the
name of that particle or droplet type is invoked elsewhere in the input file via the parameter PART_ID. There
are no reserved PART_IDs – all must be defined. For example, an input file may have several PART lines
that include the properties of different types of Lagrangian particles:

&PART ID='my smoke',... /
&PART ID='my water',... /

These Lagrangian particles can be introduced at a solid surface via the SURF line that defines the properties
of the material, for example

&SURF ...,PART_ID='my smoke' /

or the PART type can be invoked from a PROP line to change the properties of the droplets ejected by a
sprinkler or nozzle, for example

&PROP ID='Acme Spk-123', QUANTITY='SPRINKLER LINK TEMPERATURE', PART_ID='my water', ... /

1Throughout this section, the terms “droplets” and “particles” are used interchangeably. From the point of view of FDS, they
are all Lagrangian particles; that is, point elements that are not bound by the structure of the underlying grid.

73

Note that a surface on which particles are specified must have a non-zero normal velocity directed into the
computational domain. This happens automatically if the surface is burning, but must be specified if it is
not.

10.2 Controlling Particles and Droplets

Depending on how the particles or droplets are introduced into the computational domain, the following are
important parameters for controlling them:

DT_INSERT Time increment in seconds between the introduction of a “batch” of particles or droplets. The
number per “batch” depends on how they are introduced. If more particles are desired, lower the input
value of this parameter. The default value is 0.05 s.

SAMPLING_FACTOR Sampling factor for the output file CHID.prt5. This parameter can be used to reduce
the size of the particle output file used to animate the simulation. The default value is 1 for MASSLESS
particles, meaning that every particle or droplet will be shown in Smokeview. The default is 10 for all
other types of particles. MASSLESS particles are discussed in Section 10.4.

AGE Number of seconds the particle or droplet exists, after which time it is removed from the calcula-
tion. This is a useful parameter to use when trying to reduce the number of droplets or particles in a
simulation.

Particles Introduced at a Solid Surface

If the particles have mass and are introduced from a solid surface, specify PARTICLE_MASS_FLUX on the
SURF line. The number of particles inserted at each solid cell every DT_INSERT seconds is specified by
NPPC on the SURF line defining the solid surface. The default value of NPPC is 1. As an example, the
following set of input lines:

&PART ID='drops', QUANTITIES(1:3)='DROPLET_DIAMETER','DROPLET_TEMPERATURE','DROPLET_AGE',
DIAMETER=750., SAMPLING_FACTOR=1, COLOR='RED', EVAPORATE=.FALSE. /

&SURF ID='HOLE', PART_ID='drops', VEL=-5., PARTICLE_MASS_FLUX=0.1, COLOR='RED' /
&OBST XB=-0.2,0.2,-0.2,0.2,4.0,4.4, SURF_IDS='INERT','HOLE','INERT' /

creates an obstruction that ejects non-evaporating, red particles with a mean volumetric diameter of 750 µm
out of its sides at a rate of 0.1 kg/m2/s. FDS will adjust the mass flux if the obstruction or vent dimensions
are changed to conform to the numerical grid. Note that the IDs have no meaning other than as identifiers.
The particles are colored red in Smokeview, but can also be colored according to their diameter, temperature,
or age.

Droplets Introduced at a Sprinkler or Nozzle

DROPLETS_PER_SECOND is the number of droplets inserted every second per active sprinkler or nozzle. Its
default value is 1000. Note that this parameter only affects sprinklers and nozzles. Changing this parameter
does not change the flow rate, but rather the number of droplets used to represent the flow. Also note that
the number of droplets introduced per “batch” is DROPLETS_PER_SECOND times DT_INSERT.

74

Particles or Droplets Introduced Initially

Sometimes it is convenient to introduce droplets or particles at the start of the simulation. For this purpose,
NUMBER_INITIAL_DROPLETS is the number of particles/droplets within the computational domain at the
start of the simulation. Its default value is 0, meaning that initially there are no particles or droplets present.
If non-zero, also specify MASS_PER_VOLUME (kg/m3) which specifies the particle/droplet mass per unit
volume (Default 1 kg/m3). Do not confuse this parameter with DENSITY, explained in the next section. For
example, water has a DENSITY of 1000 kg/m3, whereas a liter of water broken up into droplets and spread
over a cubic meter has a MASS_PER_VOLUME of 1 kg/m3. Also, to limit the particles/droplets to a certain
region of the domain, add the real sextuplet XB to designate the coordinates of a rectangular volume. The
format for XB is the same as that used on the OBST line.

Droplets that Strike Solid Surfaces

When a droplet strikes a solid surface, it sticks and is reassigned a new speed and direction. If the sur-
face is horizontal, the direction is randomly chosen. If vertical, the direction is downwards. The rate at
which the droplets move over the horizontal and vertical surfaces is difficult to quantify. The parameters
HORIZONTAL_VELOCITY and VERTICAL_VELOCITY on the PART line allow you to control the rate at
which droplets move horizontally or vertically (downward). The defaults are 0.2 m/s and 0.5 m/s, respec-
tively.

Be aware that when droplets hit obstructions, the vertical direction is assumed to coincide with the z axis,
regardless of any change to the gravity vector, GVEC.

10.3 Particle and Droplet Properties

For Lagrangian particles that are not MASSLESS, the following parameters should be included on the PART
line.

DENSITY The density of the liquid or solid droplet/particle. (Default 1000 kg/m3)

SPECIFIC_HEAT Specific heat of liquid or solid droplet/particle. (Default 4.184 kJ/kg/K)

DIAMETER Median volumetric diameter of droplets/particles, with the distribution assumed to be a combi-
nation of Rosin-Rammler and log-normal (Default 500 µm). The width of the distribution is controlled
by the parameter GAMMA_D (default 2.4) The Rosin-Rammler/log-normal distribution is given by

F(d) =

 1√
2π

∫ d

0

1
σ d′ e−

[ln(d′/dm)]2

2σ2 dd′ (d ≤ dm)

1− e−0.693(d
dm)γ

(dm < d)
(10.1)

Note that the parameter σ is given the value σ = 2/(
√

2π (ln 2) γ) = 1.15/γ which ensures that the
two functions are smoothly joined at d = dm. The larger the value of γ , the narrower the droplet
size is distributed about the median value. Note that you can prevent droplets or particles from ex-
ceeding MAXIMUM_DIAMETER, which is infinitely large by default. Also note that droplets less than
MINIMUM_DIAMETER are assumed to evaporate in a single time step, eliminating numerical instabilities
that can occur when droplets get very, very small. The default MINIMUM_DIAMETER is 20 µm. To pre-
vent FDS from generating a distribution of droplets/particles altogether, set MONODISPERSE=.TRUE.
on the PART line, in which case every droplet or particle will be assigned the same DIAMETER.

75

The following parameters pertain to the evaporation of liquid droplets. It is assumed by default that non-
massless particles are liquid droplets, but you can specify EVAPORATE=.FALSE. to change this. Details are
in the next section.

VAPORIZATION_TEMPERATURE Boiling temperature of liquid droplet. (Default 100 ◦C)

MELTING_TEMPERATURE Melting (solidification) temperature of liquid droplet. (Default 0 ◦C)

INITIAL_TEMPERATURE Initial temperature of liquid droplet. (Default TMPA)

HEAT_OF_VAPORIZATION Latent heat of vaporization of liquid droplet. (Default 2259 kJ/kg)

10.4 Special Types of Particles and Droplets

There are several useful attributes that you can assign to particles or droplets, usually via a simple logical
parameter. Be aware with each of these parameters that specifying it as .TRUE. may cause other parameters
to be functionally useless, or may cause conflicts that FDS may or may not detect. A good rule of thumb is
always to ask yourself what is the basic information that must be conveyed to the program, and stick to that.
For example, if the particles are to be MASSLESS, there is no point in declaring anything else except maybe
a COLOR for Smokeview.

Massless Particles

The simplest use of Lagrangian particles is for visualization, in which case the particles are considered
massless tracers. In this case, the particles are defined via the line

&PART ID='tracers', MASSLESS=.TRUE., ... /

Note that if the particles are MASSLESS, it is not appropriate to color them according to any particular
property. Unlike early versions of FDS, particles are no longer colored by gas phase quantities, but rather by
properties of the particle itself. For example, ’DROPLET_TEMPERATURE’ for a non-massless particle refers
to the temperature of the particle itself rather than the local gas temperature.

Also note that if MASSLESS=.TRUE., the SAMPLING_FACTOR is set to 1 unless you say otherwise,
which would be silly since MASSLESS particles are for visualization only.

Static Particles or Droplets

STATIC is a logical parameter indicating whether particles move or just serve as obstructions or clutter. Set-
ting STATIC=.TRUE. only makes sense in conjunction with a non-zero value of NUMBER_INITIAL_DROPLETS.
The default value of STATIC is .FALSE.

Water Droplets

WATER=.TRUE. declares that the liquid droplets evaporate into WATER VAPOR, a separate gas phase species
that is automatically added to the calculation by this command. By default, WATER=.FALSE., even though
the default properties of droplets are that of water. Setting WATER=.TRUE. instructs FDS to add WATER

VAPOR as an explicitly defined species, and it also invokes appropriate constants related to the absorption of
thermal radiation by the water droplets. It also causes the droplets to be colored blue in Smokeview.

If the liquid droplets are to evaporate into some other gaseous species, you must explicitly define the
species via the SPEC namelist group (see Section 9.2), and then designate the appropriate SPEC_ID on the
PART line.

76

Fuel Droplets

FUEL=.TRUE. indicates that the liquid droplets evaporate into fuel gas and burn. In this case, add the
HEAT_OF_COMBUSTION (kJ/kg) of the fuel. Fuel droplets are colored yellow by default in Smokeview. This
feature only works for a mixture fraction-based combustion calculation, in which case the droplets evap-
orate into an equivalent amount of fuel vapor such that the resulting heat release rate (assuming complete
combustion) is equal to the evaporation rate multiplied by the HEAT_OF_COMBUSTION.

Particles that do not Evaporate

Unless you declare MASSLESS=.TRUE. on the PART line, it is assumed that the particle or droplet has mass
and thermal properties that dictate its heat up and evaporation. To prevent evaporation, set EVAPORATE=.FALSE.
The particles will still heat up due to convection, but they will not shrink and no additional gaseous species
need to be declared.

Note that the absorption of thermal radiation by water (WATER=.TRUE.) or fuel droplets (FUEL=.TRUE.)
is handled in FDS with fairly well-established physical sub-models, the details of which are contained in
the FDS Technical Reference Guide [1]. However, for arbitrary particles or droplets, there is no assumed
radiative absorption.

10.5 Coloring Particles and Droplets

The parameter QUANTITIES is an array of character strings indicating which scalar quantities should be used
to color the particles or droplets when viewed as an animation. The choices are ’DROPLET_TEMPERATURE’
(◦C), ’DROPLET_DIAMETER’ (µm), ’DROPLET_VELOCITY’ (m/s), ’DROPLET_MASS’ (kg), ’DROPLET_AGE’
(s). As a default, if no QUANTITIES are specified and none are selected in Smokeview, then Smokeview
will display particles with a single color. To select this color specify either RGB or COLOR. By default, water
droplets are colored blue and fuel droplets yellow. All others are colored black.

10.6 Special Topic: Droplet Fuel Sprays

The evaporation of water droplets from sprinklers has been generalized so that a liquid fuel spray nozzle can
be modeled. Fuel evaporation is triggered by the inclusion of the phrase FUEL=.TRUE. on the appropriate
PART line. The spray nozzle characteristics are specified in the same way as those for a sprinkler. Here is an
example of a liquid fuel spray nozzle (also see Section 16.6.2):

&DEVC ID='nozzle_1', XYZ=4.0,-.3,0.5, PROP_ID='nozzle', QUANTITY='TIME', SETPOINT=0. /

&PART ID='heptane droplets', FUEL=.TRUE., VAPORIZATION_TEMPERATURE=98.,
HEAT_OF_VAPORIZATION=316., SPECIFIC_HEAT=2.25, DENSITY=688.,
QUANTITIES(1:2)='DROPLET_DIAMETER','DROPLET_TEMPERATURE',
DROPLETS_PER_SECOND=2000, DIAMETER=1000., HEAT_OF_COMBUSTION=44500.,
DT_INSERT=0.02, SAMPLING_FACTOR=1 /

&PROP ID='nozzle', PART_ID='heptane droplets', FLOW_RATE=1.96,
FLOW_RAMP='fuel', DROPLET_VELOCITY=10., SPRAY_ANGLE=0.,30. /

&RAMP ID='fuel', T= 0.0, F=0.0 /
&RAMP ID='fuel', T=20.0, F=1.0 /
&RAMP ID='fuel', T=40.0, F=1.0 /
&RAMP ID='fuel', T=60.0, F=0.0 /

77

The vaporization (boiling) temperature of the liquid fuel is in degrees Celsius, the heat of vaporization is in
units of kJ/kg, the specific heat is in units of kJ/kg/K, and the density is in units of kg/m3. FUEL=.TRUE.
automatically invokes a mixture fraction calculation in which fuel from the evaporating fuel droplets is
burned according to the overall reaction scheme.

Note that this construct is fragile and subject to mesh dependence. If the mesh cells are too coarse, the
evaporating fuel is diluted to such a degree that it never burns. Proper resolution depends on the type of fuel
and the amount of fuel being ejected from the nozzle.

Simulations with both fuel and water droplets are possible, unlike versions of FDS prior to 5.

10.7 Special Topic: Suppression by Water (Mixture Fraction Model Only)

Modeling suppression of a fire by a water spray is challenging because the relevant physical mechanisms
occur at length scales smaller than a single mesh cell. In the gas phase, flames are extinguished due to
lowered temperatures and dilution of the oxygen supply. See Section 9.1.1 for more information about gas
phase suppression.

For the solid phase, water reduces the fuel pyrolysis rate by cooling the fuel surface and also changing
the chemical reactions that liberate fuel gases from the solid. If the solid or liquid fuel has been given
reaction parameters via the MATL line, there is no need to set any additional suppression parameters. It is
assumed that water impinging on the fuel surface takes energy away from the pyrolysis process and thereby
reduces the burning rate of the fuel. If the surface has been assigned a HRRPUA (Heat Release Rate Per Unit
Area), a parameter needs to be specified that governs the suppression of the fire by water. An empirical way
to account for fire suppression by water is to characterize the reduction of the pyrolysis rate in terms of an
exponential function. The local mass loss rate of the fuel is expressed in the form

ṁ′′
f (t) = ṁ′′

f ,0(t) e−
∫

k(t) dt (10.2)

Here ṁ′′
f ,0(t) is the user-specified burning rate per unit area when no water is applied and k is a function of

the local water mass per unit area, m′′
w, expressed in units of kg/m2.

k(t) = E_COEFFICIENT m′′
w(t) s−1 (10.3)

The parameter E_COEFFICIENT must be obtained experimentally, and it is expressed in units of m2/kg/s.
Usually, this type of suppression algorithm is invoked when the fuel is complicated, like a cartoned com-
modity.

78

Chapter 11

Devices and Control Logic

Sprinklers, smoke detectors, heat flux gauges, and thermocouples may seem to be completely unrelated,
but from the point of view of FDS, they are simply devices that operate in specific ways depending on the
properties assigned to them. They can be used to record some quantity of the simulated environment, like a
thermocouple, or they can represent a mathematical model of a complex sensor, like a smoke detector, and
in some cases they can trigger events to happen, like a timer.

Past versions of FDS used device specific namelist groups, like SPRK, HEAT, SMOD, and THCP, but the
number and variety of fire-specific sensing and measurement devices continues to expand, and the data
structures in FDS could not easily accommodate all possibilities. In addition, the logic associated with
sensor activation and subsequent actions, like a vent opening, had become too complicated and prone to
bugs. Devices are now specified with a new format that streamlines and expands the possibilities of sensor
profiles.

Starting in FDS 5, all devices, in the broadest sense of the word, are designated via the namelist group
DEVC. In addition, advanced functionality and properties are accommodated via additional namelists groups
called CTRL (Control) and PROP (Properties).

11.1 Device Location and Orientation: The DEVC Namelist Group (Table
13.4)

Regardless of the specific properties, each device needs to be sited either at a point within the computational
domain, or over a span of the domain, like a beam smoke detector. For example, a sprinkler is sited within
the domain with a line like:

&DEVC XYZ=3.0,5.6,2.3, PROP_ID='Acme Sprinkler 123', ID='Spk_39' /

The physical coordinates of the device are given by a triplet of real numbers XYZ . The properties of the
device are contained on the PROP line PROP_ID, which will be explained below for each of the special
devices included in FDS. The character string ID is merely a descriptor to identify the device in the output
files, and if any action is tied to its activation.

Some devices have a particular orientation which can be specified with various parameters; IOR, ORIENTATION,
ROTATION. IOR or the Index of Orientation, is necessary for any device that is placed on the surface of a
solid. The values ±1 or ±2 or ±3 indicate the direction that the device “points”, where 1 is parallel to the
X axis, 2 is parallel to the Y axis and 3 is parallel to the Z axis.

ORIENTATION is used for devices that are not on a surface and require a directional specification, like
a sprinkler. ORIENTATION is specified with a triplet of real number values that indicate the components of
the direction vector. The default value of ORIENTATION is (0,0,-1).

79

For example, a default downward-directed sprinkler spray can be redirected in other direction. If you
were to prescribe,

&DEVC XYZ=3.0,5.6,2.3, PROP_ID='...', ID='...', ORIENTATION=1,0,0 /

the sprinkler would point in the positive x direction. For other devices, the ORIENTATION would only
change the way the device is drawn by Smokeview.

11.2 Device Output

Each device has a QUANTITY associated with it. The output file for all DEVC quantities is a comma-delimited
ASCII file called CHID_devc.csv (See Section 19.3 for output file format.) This file can be imported into
most spread sheet software packages. If the number of DEVC lines exceeds 256, the limit of some spreadsheet
applications, the output file will be split into appropriately sized smaller files. To prevent the file splitting,
specify COLUMN_DUMP_LIMIT=.FALSE. on the DUMP line.

All devices must have a specified QUANTITY. Some special devices (Section /refinfo:PROP) have their
QUANTITY specifed on a PROP line.

A QUANTITY specified on a PROP line associated with a DEVC line will override an QUANTITY specified on
the DEVC line.

11.3 Special Devices and their Properties: The PROPNamelist Group (Table
13.16)

Many devices are fairly easy to describe, like a point measurement, with only a few parameters which can
be included on the DEVC line. However, for more complicated devices, it is inconvenient to list all of the
properties on each and every DEVC line. For example, a simulation might include hundreds of sprinklers,
but it is tedious to list the properties of the sprinkler each time the sprinkler is sited. For these devices, use
a separate namelist group called PROP to store the relevant parameters. Each PROP line is identified by a
unique ID, and invoked by a DEVC line by the string PROP_ID. The ID might be the manufacturer’s name,
like ’ACME Sprinkler 123’, for example.

The best way to describe the PROP group is to list the various special devices and their properties.

11.3.1 Sprinklers

Here is a very simple example of sprinkler:

&PROP ID='K-11', QUANTITY='SPRINKLER LINK TEMPERATURE', RTI=148., C_FACTOR=0.7,
ACTIVATION_TEMPERATURE=74., OFFSET=0.10,PART_ID='water drops', FLOW_RATE=189.3,
DROPLET_VELOCITY=10., SPRAY_ANGLE=30.,80. /

&DEVC ID='Spr_60', XYZ=22.88,19.76,7.46, PROP_ID='K-11' /
&DEVC ID='Spr_61', XYZ=22.88,21.76,7.46, PROP_ID='K-11' /

A sprinkler, known as ’Spr_60’, is located at a point in space given by XYZ. It is a ’K-11’ type sprinkler,
whose properties are given on the PROP line. Note that the various names (IDs) mean nothing to FDS,

80

except as a means of associating one thing with another, so try to use IDs that are as meaningful to you as
possible. The parameter QUANTITY=’SPRINKLER LINK TEMPERATURE’ does have a specific meaning
to FDS, directing it to compute the activation of the device using the standard RTI algorithm. The various
sprinkler properties will be discussed below. 1

Properties associated with sprinklers included in the PROP group are:

RTI Response Time Index in units of
√

m · s. (Default 165.)

C_FACTOR in units of
√

m/s. (Default 0.)

ACTIVATION_TEMPERATURE in units of ◦C. (Default 74 ◦C)

INITIAL_TEMPERATURE of the link in units of ◦C. (Default TMPA)

FLOW_RATE in units of L/min. An alternative is to provide the K_FACTOR in units of L/min/bar
1
2 and the

OPERATING_PRESSURE in units of atm. The flow rate is then given by ṁw = K
√

p. Note that 1 bar is
equivalent to 14.5 psi, 1 gpm is equivalent to 3.785 L/min, 1 gpm/psi

1
2 is equivalent to 14.41 L/min/bar

1
2 .

OFFSET Radius of a sphere (m) surrounding the sprinkler where the water droplets are initially placed in
the simulation. It is assumed that at and beyond the OFFSET the droplets have completely broken up
and are transported independently of each other. (Default 0.05 m)

DROPLET_VELOCITY Initial droplet velocity. (Default 5 m/s)

SPRAY_ANGLE A pair of angles (in degrees) through which the droplets are sprayed. The angles outline a
conical spray pattern relative to the south pole of the sphere centered at the sprinkler with radius OFFSET.
For example, SPRAY_ANGLE=30.,80. directs the water droplets to leave the sprinkler through a band
between 60◦ and 10◦ south latitude, assuming the orientation of the sprinkler is (0,0,-1), the default. The
droplets are uniformly distributed within this belt.

SPRAY_PATTERN_TABLE Name of a set of TABL lines containing the description of the spray pattern.

PART_ID The name of the PART line containing properties of the droplets. See Section 10 for additional
details.

Be aware that sprinklers produce many droplets that need to be tracked in the calculation. To limit the bur-
den, sprinkler droplets disappear when they hit the lower boundary of the computational domain, regardless
of whether it is solid or not. To stop FDS from removing sprinkler droplets from the lower boundary of the
computational domain, add the phrase POROUS_FLOOR=.FALSE. to the MISC (Section 6.4) line. Be aware,
however, that droplets that land on the floor continue to move horizontally in randomly selected directions;
bouncing off obstructions, and consuming CPU time.
For more information about sprinklers, their activation and spray dynamics, is included in the FDS Technical
Reference Guide [1].

Special Topic: Specifying Complex Spray Patterns

If a more complex spray pattern is desired than can be achieved by using SPRAY_ANGLE, VELOCITY, and
FLOW_RATE, then a SPRAY_PATTERN_TABLE can be specified using the TABL (Section 8.5) namelist group.
For a spray pattern, specify the total flow using FLOW_RATE of the PROP line, the name of the spray pattern
using SPRAY_PARTTERN_TABLE and then one or more TABL lines of the format:

1Past versions of FDS used a separate file to store properties of a given sprinkler. This file is no longer used.

81

&TABL ID='table_id', TABLE_DATA=LAT1,LAT2,LON1,LON2,VELO,FRAC /

where each TABL line for a given ’table_id’ provides information about the spherical distribution of the
spray pattern for a specified solid angle. LAT1 and LAT2 are the bounds of the solid angle measured in
degrees from the south pole (0 is the south pole and 90 is the equator, 180 is the north pole). Note that this
is not the conventional way of specifying a latitude, but rather a convenient system based on the fact that
a typical sprinkler sprays water downwards, which is why 0 degrees is assigned to the “south pole,” or the
−z direction. The parameters LON1 and LON2 are the bounds of the solid angle (also in degrees), where 0
(or 360) is aligned with the −x axis and 90 is aligned with the −y axis. VELO is the velocity (m/s) of the
droplets at their point of insertion. FRAC the fraction of the total flow rate of liquid that should emerge from
that particular solid angle.

In the example below, the spray pattern is defined as two jets, each with a velocity of 10 m/s and a flow
rate of 20 L/min (the total FLOW_RATE is 40 L/min and the fraction for each jet is 0.5). The jets are centered
at points 45◦ below the “equator,” and are separated by 180◦.

&PROP ID='y-pipe',
QUANTITY='SPRINKLER LINK TEMPERATURE',
FLOW_RATE=40.,
PART_ID='water_drops',
SPRAY_PATTERN_TABLE='TABLE1' /

&TABL ID='TABLE1', TABLE_DATA=40,50, 85, 95,10,0.5 /
&TABL ID='TABLE1', TABLE_DATA=40,50,185,195,10,0.5 /

Note that each set of TABL lines must have a unique ID. Specific requirements on ordering the lines will
depend upon the type of TABL and those requirements are provided in the appropriate section in this guide.
Also note that the TABL lines can be specified in any order.

11.3.2 Nozzles

Nozzles are very much like sprinklers, only they do not activate based on the standard RTI model. To
simulate a nozzle that activates at a given time, for example, specify a QUANTITY and SETPOINT directly
on the DEVC line. An example of a nozzle can be found in the verification case water_fuel_sprays.fds

The following lines:

&DEVC XYZ=23.91,21.28,0.50, PROP_ID='nozzle', ORIENTATION=0,0,1, QUANTITY='TIME',
SETPOINT=0., ID='noz_1' /

&DEVC XYZ=26.91,21.28,0.50, PROP_ID='nozzle', ORIENTATION=0,0,1, QUANTITY='TIME',
SETPOINT=5., ID='noz_2' /

&PROP ID='nozzle', PART_ID='heptane drops', FLOW_RATE=2.132,
FLOW_TAU=-50., DROPLET_VELOCITY=5., SPRAY_ANGLE=0.,45. /

designate two nozzles of the same type, one which activates at zero seconds, the other at 5 s. Note that
nozzles must have an associated PROP line. The parameter PART_ID tells FDS to spray liquid droplets.

11.3.3 Heat Detectors

QUANTITY=’LINK TEMPERATURE’, as in this example, defines a heat detector, which uses essentially the
same activation algorithm as a sprinkler, without the water spray.

&DEVC ID='HD_66', PROP_ID='Acme Heat', XYZ=2.3,4.6,3.4 /
&PROP ID='Acme Heat', QUANTITY='LINK TEMPERATURE', RTI=132., ACTIVATION_TEMPERATURE=74. /

82

Like a sprinkler, RTI is the Response Time Index in units of
√

m · s. ACTIVATION_TEMPERATURE is the
link activation temperature in degrees C (Default 74 ◦C). INITIAL_TEMPERATURE is the initial temperature
of the link in units of ◦C (Default TMPA).

11.3.4 Smoke Detectors

A smoke detector is defined in the input file with an entry similar to:

&DEVC ID='SD_29', PROP_ID='Acme Smoke Detector', XYZ=2.3,4.6,3.4 /
&PROP ID='Acme Smoke Detector', QUANTITY='spot obscuration', LENGTH=1.8,

ACTIVATION_OBSCURATION=3.28 /

for the single parameter Heskestad model. Note that a PROP line is mandatory for a smoke detector, in which
case the DEVC QUANTITY can be specified on the PROP line. For the four parameter Cleary model, use a
PROP line like:

&PROP ID='Acme Smoke Detector', QUANTITY='spot obscuration', ALPHA_C=1.8, BETA_C=-1.1,
ALPHA_E=0.98, BETA_E=-0.77, ACTIVATION_OBSCURATION=3.28 /

where the two characteristic filling or “lag” times are of the form:

δ te = αeuβe ; δ tc = αcuβc (11.1)

The default detector parameters are for the Heskestad model with a characteristic LENGTH of 1.8 m. For
the Cleary model, the ALPHAs and BETAs must all be listed explicitly. Suggested constants for unidentified
ionization and photoelectric detectors presented in Table 11.1. ACTIVATION_OBSCURATION is the thresh-
old value in units of %/m. The threshold can be set according to the setting commonly provided by the
manufacturer. The default setting is 3.28 %/m (1 %/ft).

Table 11.1: Suggested Values for Smoke Detector Model. See Ref. [6] for others.

Detector αe βe αc, L βc

Cleary Ionization I1 2.5 -0.7 0.8 -0.9
Cleary Ionization I2 1.8 -1.1 1.0 -0.8
Cleary Photoelectric P1 1.8 -1.0 1.0 -0.8
Cleary Photoelectric P2 1.8 -0.8 0.8 -0.8
Heskestad Ionization — — 1.8 —

11.3.5 Beam Detection Systems

A beam detector can be defined by specifying the endpoints (x1,y1,z1),(x2,y2,z2), of the beam,
using XB, and the total total % obscuration at which the detector activates. The two endpoints must lie in the
same mesh. FDS determines which mesh cells lie along the path specified by the two endpoints. The beam
detector response is evaluated as

Obscuration =

(
1− exp

(
−Km

N

∑
i=1

ρsoot,i ∆xi

))
×100 % (11.2)

where i is a mesh cell along the path of the beam, ρsoot,i is the soot density of the mesh cell, and ∆xi is the
distance within the mesh cell that is traversed by the beam.

83

&DEVC XB=x1,x2,y1,y2,z1,z2, QUANTITY='path obscuration', ID='beam1', SETPOINT=0.33 /

11.3.6 Aspiration Detection Systems

An aspiration detection system groups together a series of soot measurement devices. An aspiration system
consists of a sampling pipe network that draws air from a series of locations to a central point where an
obscuration measurement is made. To define such a system in FDS, you must provide the sampling locations,
sampling flow rates, the transport time from each sampling location, and if an alarm output is desired, the
overall obscuration “setpoint.” One or more DEVC inputs are used to specify details of the sampling locations,
and one additional input is used to specify the central detector:

&DEVC XYZ=..., QUANTITY='soot density', ID='soot1', DEVC_ID='asp1', FLOWRATE=0.1, DELAY=20 /
&DEVC XYZ=..., QUANTITY='soot density', ID='soot2', DEVC_ID='asp1', FLOWRATE=0.2, DELAY=10 /
...

&DEVC XYZ=..., QUANTITY='soot density', ID='sootN', DEVC_ID='asp1', FLOWRATE=0.3, DELAY=30 /

&DEVC XYZ=..., QUANTITY='aspiration', ID='asp1', BYPASS_FLOWRATE=0.4, SETPOINT=0.02 /

where the DEVC_ID is used at each sampling point to reference the central detector, FLOWRATE is the gas
flow rate in kg/s, DELAY is the transport time (in seconds) from the sampling location to the central detector,
BYPASS_FLOWRATE is the flow rate in kg/s of any air drawn into the system from outside the computational
domain (accounts for portions of the sampling network lying outside the domain defined by the MESH inputs),
and SETPOINT is the alarm threshold obscuration in units of %/m. The output of the aspiration system is
computed as

Obscuration =
(

1− exp
(
−Km

∑
N
i=1 ρsoot,i(t− td,i) ṁi

∑
N
i=1 ṁi

))
×100 %/m (11.3)

where ṁi is the mass FLOWRATE of the ith sampling location, ρsoot,i(t−td,i) is the soot density at the ith sam-
pling location td,i s prior (DELAY) to the current time t, and Km is the MASS_EXTINCTION_COEFFICIENT
associated with visible light.

84

11.4 Basic Control Logic

Devices can be used to control various actions, like creating and removing obstructions, or activating and
deactivating fans and vents. Every device has an associated QUANTITY, whether it is included directly on
the DEVC line or indirectly on the optional PROP line. Using the DEVC parameter SETPOINT, you can trigger
an action to occur when the QUANTITY value passes above, or below, the given SETPOINT. The choice
is dictated by the given TRIP_DIRECTION, which is just a positive or negative integer. The following
parameters dictate how a device will control something:

SETPOINT The value of the device at which its state changes. For a detection type of device (e.g. heat or
smoke) this value is taken from the device’s PROP inputs and need not be specified on the DEVC line.

TRIP_DIRECTION A positive integer means the device will change state when its value increases past the
setpoint and a negative integer means the device will change state when its value decreases past the
setpoint. The default value is +1.

LATCH If this logical value is set to .TRUE. the device will only change state once. The default value is
.TRUE..

INITIAL_STATE This logical value is the initial state of the device. The default value is .FALSE. For
example, if an obstruction associated with the device is to disappear, set INITIAL_STATE=.TRUE.

If you desire to control FDS using more complex logic than can be provided by the use of a single device
and its setpoint, control functions can be specified using the CTRL input. See Section 11.5 for more on CTRL
functions.

The simplest example of a device is just a timer:

&DEVC XYZ=1.2,3.4,5.6, ID='my clock', QUANTITY='TIME', SETPOINT=30. /

Anything associated with the device via the parameter, DEVC_ID=’my clock’, will change its state at
30 seconds. For example, if the text were added to an OBST line, that obstruction would change from its
INITIAL_STATE of .FALSE. to .TRUE. after 30 s. In other words, it would be created at 30 s instead of
at the start of the simulation. This is a simple way to open a door or window.

11.4.1 Creating and Removing Obstructions

In many fire scenarios, the opening or closing of a door or window can lead to dramatic changes in the course
of the fire. Sometimes these actions are taken intentionally, sometimes as a result of the fire. Within the
framework of an FDS calculation, these actions are represented by the creation or removal of solid obstacles,
or the opening or closing of exterior vents.

Remove or create a solid obstruction by assigning the character string DEVC_ID the name of a DEVC ID
on the OBST line that is to be created or removed. This will direct FDS to remove or create the obstruction
when the device changes state to .FALSE. or .TRUE., respectively. For example, the lines

&OBST XB=..., SURF_ID='...', DEVC_ID='det2' /
.
.

&DEVC XYZ=..., PROP_ID='...', ID='det1' /
&DEVC XYZ=..., PROP_ID='...', ID='det2', INITIAL_STATE=.TRUE. /

85

will cause the given obstruction to be removed when the specified DEVC changes state.

Note that while single DEVC can be used to control multiple items, a DEVC that is being used for a HOLE

should not be used for anything else other than additional HOLEs.

Creation or removal at a predetermined time can be performed using a DEVC that has TIME as its measured
quantity. For example, the following instructions will cause the specified HOLEs and OBSTstructions to
appear/disappear at the various designated times:

&HOLE XB=0.25,0.45,0.20,0.30,0.20,0.30, COLOR='RED', DEVC_ID='timer 1' /
&HOLE XB=0.25,0.45,0.70,0.80,0.70,0.80, COLOR='GREEN', DEVC_ID='timer 2' /
&OBST XB=0.70,0.80,0.20,0.30,0.20,0.30, COLOR='BLUE', DEVC_ID='timer 3' /
&OBST XB=0.70,0.80,0.60,0.70,0.60,0.70, COLOR='PINK', DEVC_ID='timer 4' /

&DEVC XYZ=..., ID='timer 1', SETPOINT= 1., QUANTITY='TIME', INITIAL_STATE=.FALSE./
&DEVC XYZ=..., ID='timer 2', SETPOINT= 2., QUANTITY='TIME', INITIAL_STATE=.TRUE. /
&DEVC XYZ=..., ID='timer 3', SETPOINT= 3., QUANTITY='TIME', INITIAL_STATE=.FALSE./
&DEVC XYZ=..., ID='timer 4', SETPOINT= 4., QUANTITY='TIME', INITIAL_STATE=.TRUE. /

The blue obstruction appears at 3 s because its initial state is false, meaning that it does not exist initially.
The pink obstruction disappears at 4 s because it does exist initially. The red hole is created at 1 s because
it does not exist initially (it is filled in with a red obstruction). The green hole is filled in at 2 s because
it does exist (as a hole) initially. You should always try a simple example first before embarking on a
complicated creation/removal scheme for obstructions and holes.

To remove an obstruction, then re-create a different one in its place, use 2 lines

&OBST XB=..., SURF_ID='whatever', DEVC_ID='device 1' /
&OBST XB=..., SURF_ID='whatever', DEVC_ID='device 2' /

since the code simply sees this as two different obstructions.

Until further notice, an obstruction that makes up the boundary of a “pressure zone” (see Section 8.3)
should not be created or removed. The reason for this restriction is that abrupt changes in pressure can cause
numerical instabilities.

11.4.2 Activating and Deactivating Vents

When a device or control function is applied to a VENT, the purpose is to either activate or deactivate any
time ramp associated with the VENT via its SURF_ID. For example, to control a fan with the device ’det2’,
do the following:

&SURF ID='FAN', VOLUME_FLUX=5. /
&VENT XB=..., SURF_ID='FAN', DEVC_ID='det2' /
&DEVC ID='det2', XYZ=..., QUANTITY='TIME', SETPOINT=30., INITIAL_STATE=.FALSE. /

Note that at 30 seconds, the “state” of the ’FAN’ changes from .FALSE. to .TRUE., or more simply, the
’FAN’ turns on. Since there is no explicit time function associated with the ’FAN’, the default 1 second
ramp-up will begin at 30 seconds instead of at 0 seconds.

If in this example INITIAL_STATE=.TRUE., then the fan should “deactivate,” or turn off at 30 sec-
onds. Essentially, “activation” of a VENT causes all associated time functions to be delayed until the device
SETPOINT is reached. “Deactivation” of a VENT turns off all time functions. Usually this means that the

86

parameters on the SURF line are all nullified, so it is a good idea to check the functionality with a simple
example.

Until further notice, a ’MIRROR’ or ’OPEN’ VENT should not be activated or deactivated. The reason for
this restriction is that abrupt changes in pressure can cause numerical instabilities.

87

11.5 Advanced Control Functions: The CTRL Namelist Group

There are many systems whose functionality cannot be described by a simple device with a single “setpoint.”
Consider for example, a typical HVAC system. It is controlled by a thermostat that is given a temperature
setpoint. The system turns on when the temperature goes below the setpoint by some amount and then turns
off when the temperature rises above that same setpoint by some amount. This behavior can not be defined
by merely specifying a single setpoint. You must also define the range or “deadband” around the setpoint,
and whether an increasing or decreasing temperature activates the system. For the HVAC example, crossing
the lower edge of the deadband activates heating; crossing the upper edge activates cooling.

While HVAC is not the primary purpose of FDS, there are numerous situations where a system responds
to the fire in non-trivial way. The CTRL input is used to define these more complicated behaviors. A control
function will take as input the outputs of one or more devices and/or control functions. In this manner,
complicated behaviors can be simulated by making functions of other functions. For most of the control
function types, the logical value output of the devices and control functions and the time they last changed
state are used as the inputs.

Table 11.2: Control function types for CTRL

Function Type Description
ANY Changes state if any INPUTs are .TRUE.
ALL Changes state if all INPUTs are .TRUE.
ONLY Changes state if and only if N INPUTs are .TRUE.
AT_LEAST Changes state if at least N INPUTs are .TRUE.
TIME_DELAY Changes state DELAY s after INPUT becomes .TRUE.
CUSTOM Changes state based on evaluating a RAMP of the function’s input
DEADBAND Behaves like a thermostat
KILL Terminates code execution if its sole INPUT is .TRUE.
RESTART Dumps restart files if its sole INPUT is .TRUE.

A control is identified by the ID parameter. The inputs to the control are identified by the INPUT_ID
parameter. INPUT_ID would be passed one or more ID strings from either devices or other controls.

If you want to design a system of controls and devices that involves multiple changes of state, include
the attribute LATCH=.FALSE. on the relevant DEVC or CTRL input lines. By default, devices and controls
may only change state once, like a sprinkler activating or smoke detector alarming. LATCH=.TRUE. by
default for both devices and controls.

11.5.1 Control Functions: ANY, ALL, ONLY, and AT_LEAST

Suppose you want an obstruction to be removed (a door is opened, for example) after any of four smoke
detectors in a room has activated. Use input lines of the form:

&OBST XB=..., SURF_ID='...', CTRL_ID='SD' /

&DEVC XYZ=1,1,3, PROP_ID='Acme Smoker', ID='SD_1' /
&DEVC XYZ=1,4,3, PROP_ID='Acme Smoker', ID='SD_2' /
&DEVC XYZ=4,1,3, PROP_ID='Acme Smoker', ID='SD_3' /
&DEVC XYZ=4,4,3, PROP_ID='Acme Smoker', ID='SD_4' /
&CTRL ID='SD', FUNCTION_TYPE='ANY', INPUT_ID='SD_1','SD_2','SD_3','SD_4',

88

INITIAL_STATE=.TRUE. /

The INITIAL_STATE of the control function SD is .TRUE., meaning that the obstruction exists initially.
The “change of state” means that the obstruction is removed when any smoke detector alarms. By default,
the INITIAL_STATE of the control function SD is .FALSE., meaning that the obstruction does not exist
initially.

Suppose that now you want the obstruction to be created (a door is closed, for example) after all four
smoke detectors in a room have activated. Use a control line of the form:

&CTRL ID='SD', FUNCTION_TYPE='ALL', INPUT_ID='SD_1','SD_2','SD_3','SD_4' /

The control functions AT_LEAST and ONLY are generalizations of ANY and ALL.
For example,

&CTRL ID='SD', FUNCTION_TYPE='AT_LEAST', N=3, INPUT_ID='SD_1','SD_2','SD_3','SD_4' /

changes the state from .FALSE. to .TRUE. when at least 3 detectors activate.
Note that in this example, and the example below, the parameter N is used to specify the number of

activated or “TRUE” inputs required for the conditions of the Control Function to be satisfied.
The control function,

&CTRL ID='SD', FUNCTION_TYPE='ONLY', N=3, INPUT_ID='SD_1','SD_2','SD_3','SD_4' /

changes the state from .FALSE. to .TRUE. when 3, and only 3, detectors activate.

11.5.2 Control Function: TIME_DELAY

There is often a time delay between when a device activates, and when some other action occurs, like in a
dry pipe sprinkler system.

&DEVC XYZ=2,2,3, PROP_ID='Acme Sprinkler_link', QUANTITY='LINK TEMPERATURE',
ID='Spk_29_link', CTRL_ID='dry pipe' /

&DEVC XYZ=2,2,3, PROP_ID='Acme Sprinkler', QUANTITY='CONTROL', ID='Spk_29',
CTRL_ID='dry pipe' /

&CTRL ID='dry pipe', FUNCTION_TYPE='TIME_DELAY', INPUT_ID='Spk_29_link', DELAY=30. /

This relationship between a sprinkler and its pipes means that the sprinkler spray is controlled (in this case
delayed) by the dry pipe, which adds 30 s to the activation time of Spk_29, measured by Spk_29_link,
before water can flow out of the head.

11.5.3 Control Function: DEADBAND

For an HVAC example, the following lines of input would set up a simple thermostat:

&SURF ID='FAN', TMP_FRONT=40., VOLUME_FLUX=-1. /
&VENT XB=-0.3,0.3,-0.3,0.3,0.0,0.0, SURF_ID='FAN', CTRL_ID='thermostat' /
&DEVC ID='TC', XYZ=2.4,5.7,3.6, QUANTITY='TEMPERATURE' /
&CTRL ID='thermostat', FUNCTION_TYPE='DEADBAND', INPUT_ID='TC',

ON_BOUND='LOWER', SETPOINT=23.,27.,LATCH=.FALSE./

Here, we want to control the VENT that simulates the FAN, which blows hot air into the room. A DEVC

called TC is positioned in the room to measure the TEMPERATURE. The thermostat uses a SETPOINT to
turn on the FAN when the temperature falls below 23 ◦C (ON_BOUND=’LOWER’) and it turns off when the
temperature rises above 27 ◦C.

Note that a deadband controller needs to have LATCH set to .FALSE. .

89

11.5.4 Control Function: RESTART and KILL

There are times when one only wishes to run a simulation until some goal is reached. Previously this
could generally only be done by constantly monitoring the simulation’s output and manually stopping the
calculation when one observed the goal being met. By using the KILL control function this can be done
automatically.

Additionally there are analyses where one wishes to create some baseline condition and the run multiple
permutations of that baseline. For example one may wish to run a series of simulations where different
mitigation strategies are tried once a detector alarms. By using the RESTART control function, one can cause
a restart file to be created once a desired condition is met. The simulation can continue and the restart files
can be copied to have the CHID of the various permutations (providing of course that the usual restrictions
on the use of restart files are followed). For example, the lines

&DEVC ID='temp', QUANTITY='TEMPERATURE', SETPOINT=1000., XYZ=4.5,6.7,3.6 /
&DEVC ID='velo', QUANTITY='VELOCITY', SETPOINT=10., XYZ=4.5,6.7,3.6 /

&CTRL ID='kill', FUNCTION_TYPE='KILL', INPUT_ID='temp' /
&CTRL ID='restart', FUNCTION_TYPE='RESTART', INPUT_ID='velo' /

will lead to the job being stopped gracefully, with restart files output, when the temperature at a given point
rises above 1000 ◦C; or to just restart files being output when the velocity at a given point exceeds 10 m/s.

11.5.5 Control Function: CUSTOM

For most of the control function types, the logical (true/false) output of the devices and control functions
and the time they last changed state are taken as inputs. A CUSTOM function uses the numberical output of a
DEVC along with a RAMP to determine the output of the function. When the RAMP output for the DEVC value
is negative, the CTRL will have the value of its INITIAL_STATE. When the RAMP output for the DEVC value
is positive, the CTRL will have the opposite value of its INITIAL_STATE. In the case below, the CUSTOM

control function uses the numerical output of a timer device as its input. The function returns true (the
default vaule for INITIAL_STATE is .FALSE.) when the F parameter in the ramp specified with RAMP_ID
is a positive value and false when the RAMP F value is negative. In this case, the control would start false
and would switch to true when the timer reaches 60 seconds. It would then stay in a true state until the timer
reaches 120 seconds and would then change back to false.

Note that when using control functions the IDs assigned to both the CTRL and the DEVC inputs must be
unique across both sets of inputs, i.e. you cannot use the same ID for both a control function and a device.

In the HVAC example above, we could set the system to function on a fixed cycle by using a CUSTOM control
function based on time:

&SURF ID='FAN', TMP_FRONT=40., VOLUME_FLUX=-1. /
&VENT XB=-0.3,0.3,-0.3,0.3,0.0,0.0, SURF_ID='FAN', CTRL_ID='cycling timer' /
&DEVC ID='TIMER', XYZ=2.4,5.7,3.6, QUANTITY='TIME' /
&CTRL ID='cycling timer', FUNCTION_TYPE='CUSTOM, INPUT_ID='TIMER', RAMP_ID='cycle' /
&RAMP ID='cycle', T= 59, F=-1 /
&RAMP ID='cycle', T= 61, F= 1 /
&RAMP ID='cycle', T=119, F= 1 /
&RAMP ID='cycle', T=121, F=-1 /

In the above example the fan will be off initially, turn on at 60 s and then turn off at 120 s.
You can make an obstruction appear and disappear multiple times by using lines like

90

&OBST XB=..., SURF_ID='whatever', CTRL_ID='cycling timer' /
&DEVC ID='TIMER', XYZ=..., QUANTITY='TIME' /
&CTRL ID='cycling timer', FUNCTION_TYPE='CUSTOM, INPUT_ID='TIMER', RAMP_ID='cycle' /
&RAMP ID='cycle', T= 0, F=-1 /
&RAMP ID='cycle', T= 59, F=-1 /
&RAMP ID='cycle', T= 61, F= 1 /
&RAMP ID='cycle', T=119, F= 1 /
&RAMP ID='cycle', T=121, F=-1 /

The above will have the obstacle initially removed, then added at 60 s, and removed again at 120 s.
Experiment with these combinations using a simple case before trying a case to make sure that FDS

indeed is doing what is intended.

11.5.6 Combining Control Functions: A Pre-Action Sprinkler System

For a pre-action sprinkler system, the normally dry sprinkler pipes are flooded when a detection event
occurs. For this example, the detection event is when two of four smoke detectors alarm. It takes 30 s
to flood the piping network. The nozzle is a DEVC named ’NOZZLE 1’ controlled by the CTRL named
’nozzle trigger’. The nozzle activates when both detection and the time delay have occurred. Note
that the DEVC is specified with QUANTITY=’CONTROL’.

&DEVC XYZ=1,1,3, PROP_ID='Acme Smoker', ID='SD_1' /
&DEVC XYZ=1,4,3, PROP_ID='Acme Smoker', ID='SD_2' /
&DEVC XYZ=4,1,3, PROP_ID='Acme Smoker', ID='SD_3' /
&DEVC XYZ=4,4,3, PROP_ID='Acme Smoker', ID='SD_4' /
&DEVC XYZ=2,2,3, PROP_ID='Acme Nozzle', QUANTITY='CONTROL',

ID='NOZZLE 1', CTRL_ID='nozzle trigger' /

&CTRL ID='nozzle trigger', FUNCTION_TYPE='ALL', INPUT_ID='smokey','delay' /
&CTRL ID='delay', FUNCTION_TYPE='TIME_DELAY', INPUT_ID='smokey', DELAY=30. /
&CTRL ID='smokey', FUNCTION_TYPE='AT_LEAST', N=2, INPUT_ID='SD_1','SD_2','SD_3','SD_4' /

11.5.7 Combining Control Functions: A Dry Pipe Sprinkler System

For a dry-pipe sprinkler system, the normally dry sprinkler pipes are pressurized with gas. When a link
activates in a sprinkler head, the pressure drop allows water to flow into the pipe network. For this example
it takes 30 s to flood the piping network once a sprinkler link has activated. The sequence of events required
for operation is first ANY of the links must activate which starts the 30 s TIME_DELAY. Once the 30 s delay
has occurred, each nozzle with an active link, the ALL control functions, will then flow water.

&DEVC XYZ=2,2,3, PROP_ID='Acme Sprinkler Link', ID='LINK 1' /
&DEVC XYZ=2,3,3, PROP_ID='Acme Sprinkler Link', ID='LINK 2' /

&PROP ID='Acme Sprinkler Link', QUANTITY='LINK TEMPERATURE',
ACTIVATION_TEMPERATURE=74., RTI=30./

&DEVC XYZ=2,2,3, PROP_ID='Acme Nozzle', QUANTITY='CONTROL',
ID='NOZZLE 1', CTRL_ID='nozzle 1 trigger' /

&DEVC XYZ=2,3,3, PROP_ID='Acme Nozzle', QUANTITY='CONTROL',
ID='NOZZLE 2', CTRL_ID='nozzle 2 trigger' /

&CTRL ID='check links', FUNCTION_TYPE='ANY', INPUT_ID='LINK 1','LINK 2'/
&CTRL ID='delay', FUNCTION_TYPE='TIME_DELAY', INPUT_ID='check links', DELAY=30. /
&CTRL ID='nozzle 1 trigger', FUNCTION_TYPE='ALL', INPUT_ID='delay','LINK 1'/
&CTRL ID='nozzle 2 trigger', FUNCTION_TYPE='ALL', INPUT_ID='delay','LINK 2'/

91

92

Chapter 12

Output Data

Before a calculation is started, carefully consider what information should be saved. All output quantities
must be specified at the start of the calculation. In most cases, there is no way to retrieve information after
the calculation ends if it was not specified from the start. There are several different ways of visualizing the
results of a calculation. Most familiar to experimentalists is to save a given quantity at a single point in space
so that this quantity can be plotted as a function of time, like a thermocouple temperature measurement. The
namelist group DEVC, described previously, is used to specify point measurements.

To visualize the flow patterns better, save planar slices of data, either in the gas or solid phases, by using
the SLCF (SLiCe File) or BNDF (BouNDary File) namelist group. Both of these output formats permit you
to animate these quantities in time.

For static pictures of the flow field, use the PLot3D files that are automatically generated 5 times a run.
Plot3D format is used by many CFD programs as a simple way to store specified quantities over the entire
mesh at one instant in time.

Finally, tracer particles can be injected into the flow field from vents or obstacles, and then viewed in
Smokeview. Use the PART namelist group to control the injection rate, sampling rate and other parameters
associated with particles.

Note: unlike in FDS version 1, particles are no longer used to introduce heat into the flow, thus particles no
longer are ejected automatically from burning surfaces.

12.1 Output Control Parameters: The DUMP Namelist Group

The namelist group DUMP contains parameters (Table 13.5) that control the rate at which output files are
written, and various other global parameters associated with output files. This namelist group is new starting
in FDS 5, although its parameters have been specified via other namelist groups in past versions.

NFRAMES Number of output dumps per calculation. The default is 1000. Device data, slice data, parti-
cle data, isosurface data, 3D smoke data, boundary data, solid phase profile data, and control function
data are saved every (T_END-T_BEGIN)/NFRAMES seconds unless otherwise specified using DT_DEVC,
DT_SLCF, DT_PART, DT_ISOF, DT_BNDF, DT_PROF, or DT_CTRLNote that DT_SLCF controls Smoke3D
output. DT_HRR controls the output of heat release rate and associated quantities.

MASS_FILE If .TRUE., produce an output file listing the total masses of all gas species as a function of
time. It is .FALSE. by default because the calculation of all gas species in all mesh cells is time-
consuming. The parameter DT_MASS controls the frequency of output.

93

MAXIMUM_DROPLETS Maximum number of Lagrangian particles that can be included on any mesh at any
given time. (Default 500000)

SMOKE3D If .FALSE., do not produce an animation of the smoke and fire. It is .TRUE. by default.

FLUSH_FILE_BUFFERS By default, every 10 time steps FDS purges the output file buffers and forces the
data to be written out into the respective output files. To stop this from happening, set this parameter to
.FALSE.

12.2 Output Options

12.2.1 Point Measurement Devices

For many commonly used measurement devices there is no need to associate a specific PROP line to the
DEVC entry. In such cases, use the character string QUANTITY to indicate that a particular gas or solid phase
quantity at the point should be recorded in the output file with the suffix _devc.csv. The quantities are listed
in Table 12.1. Many of the gas phase quantities are self-explanatory. For example, if you just want to record
the time history of the temperature at a given point, add

&DEVC XYZ=6.7,2.9,2.1, QUANTITY='TEMPERATURE', ID='T-1' /

and a column will be added to the output file CHID_devc.csv under the label ’T-1’. In this case, the ID has
no other role than as a column label in the output file. Note that versions of FDS prior to version 5 used an
8 cell linear interpolation for a given gas phase point measurement. In other words, if you specified a point
via the triplet of real numbers, XYZ, FDS would calculate the value of the quantity by linearly interpolating
the values defined at the centers of the 8 nearest cells. Starting in FDS 5, this is no longer done. Instead,
FDS reports the value of the QUANTITY in the cell where the point XYZ is located.

When prescribing a solid phase quantity, be sure to position the probe at a solid surface. It is not
always obvious where the solid surface is since the mesh does not always align with the input obstruction
locations. To help locate the appropriate surface, the parameter IOR must be included when designating a
solid phase quantity. If the orientation of the solid surface is in the positive x direction IOR=1, negative x
direction IOR=-1, positive y IOR=2, negative IOR=-2, positive z IOR=3, and negative z IOR=-3. There are
still instances where FDS cannot determine which solid surface is being designated, in which case an error
message appears in the diagnostic output file. Re-position the probe and try again. For example, the line

&DEVC XYZ=0.7,0.9,2.1, QUANTITY='WALL_TEMPERATURE', IOR=-2, ID='...' /

designates the surface temperature of a wall facing the negative y direction.

12.2.2 Integrated (non-pointwise) Measurement Devices

In addition to point measurements, the DEVC group can be used to report integrated quantities (See Ta-
ble 12.1). For example, you may want to know the mass flow out of a door or window. To report this, add
the line

&DEVC XB=0.3,0.5,2.1,2.5,3.0,3.0, QUANTITY='MASS FLOW', ID='whatever' /

Note that in this case, a plane is specified rather than a point. The sextuplet XB is used for this purpose.
Notice when a flow is desired, two of the six coordinates need to be the same. Another QUANTITY, HRR, can
be used to compute the total heat release rate within a subset of the domain. In this case, the sextuplet XB

94

ought to define a volume rather than a plane. Specification of the plane or volume over which the integration
is to take place can only be done using XB – avoid planes or volumes that cross multiple mesh boundaries.
FDS has to decide which mesh to use in the integration, and it chooses the finest mesh overlapping the
centroid of the designated plane or volume.

12.2.3 Output Statistics

A useful feature of a device (DEVC) is to specify an output quantity along with a desired statistic. For
example,

&DEVC XYZ=2.3,4.5,6.7, QUANTITY='TEMPERATURE', ID='whatever', STATISTICS='MAX' /

causes FDS to write out the maximum gas phase temperature over the entire mesh containing the point XYZ.
Note that it does not compute the maximum over the entire computational domain, just that particular mesh.
Other STATISTICS include ’MIN’ and ’MEAN’. They can be used for both gas and solid phase output
quantities. In the case of solids, the specification of a SURF_ID limits the search to only those surfaces. Use
the STATISTICS feature with caution because it demands that FDS evaluate the given QUANTITY in all gas
or solid phase cells.

12.2.4 Quantities within Solids: The PROF Namelist Group

FDS uses a fine, non-uniform, one-dimensional mesh at each boundary cell to compute heat transfer within a
solid. The parameters (Table 13.15) to specify a given PROFile are similar to those used to specify a surface
quantity in the DEVC group. XYZ designates the triplet of coordinates, QUANTITY is the physical quantity to
monitor, IOR the orientation, and ID an identifying character string. Here is an example of how you would
use this feature to get a time history of temperature profiles within a given solid obstruction:

&PROF XYZ=..., QUANTITY='TEMPERATURE', ID='TU1SA_FDS', IOR=3 /

Other possible quantities are the total density of the wall (QUANTITY = ’DENSITY’) or densities of solid
material components (QUANTITY = ’MATL_ID’), where MATL_ID is the name of the material.

Each PROF line creates a separate file. This may be more than is needed. Sometimes, all you want to
know is the temperature at a certain depth. To get an inner wall temperature, you can also just use a device
as follows:

&DEVC XYZ=..., QUANTITY='INSIDE_WALL_TEMPERATURE', DEPTH=0.005, ID='Temp_1', IOR=3 /

The parameter DEPTH (m) indicates the distance inside the solid surface. Note that this QUANTITY is allowed
only as a DEVC, not a BNDF, output. Also note that if the wall thickness is decreasing over time due to the
solid phase reactions, the distance is measured from the current surface, and the measurement point is
’moving’ towards the back side of the solid. Eventually, the measurement point may get out of the solid, in
which case it starts to show ambient temperature.

12.2.5 Animated Planar Slices: The SLCF Namelist Group

The SLCF (“slice file”) namelist group parameters (Table 13.20) allows you to record various gas phase
quantities at more than a single point. A “slice” refers to a subset of the whole domain. It can be a line,
plane, or volume, depending on the values of XB. The sextuplet XB indicates the boundaries of the “slice”
plane. XB is prescribed as in the OBST or VENT groups, with the possibility that 0, 2, or 4 out of the 6
values be the same to indicate a volume, plane or line, respectively. A handy trick is to specify, for example,

95

PBY=5.3 instead of XB if it is desired that the entire plane y = 5.3 slicing through the domain be saved. PBX
and PBZ control planes perpendicular to the x and z axes, respectively.

Animated vectors can be created in Smokeview if a given SLCF line has the attribute VECTOR=.TRUE. If
two SLCF entries are in the same plane, then only one of the lines needs to have VECTOR=.TRUE.Otherwise,
a redundant set of velocity component slices will be created.

Slice file information is recorded in files (See Section 19.7) labeled CHID_n.sf, where n is the index of
the slice file. A short fortran program fds2ascii.f produces a text file from a line, plane or volume of data.
See Section 12.4 for more details.

12.2.6 Animated Boundary Quantities: The BNDF Namelist Group

The BNDF (“boundary file”) namelist group parameters allows you to record surface quantities at all solid
obstructions. As with the SLCF group, each quantity is prescribed with a separate BNDF line, and the output
files are of the form CHID_n.bf. No physical coordinates need be specified, however, just QUANTITY. See
Table 12.1. For certain output quantities, additional parameters need to be specified via the PROP namelist
group. In such cases, add the character string, PROP_ID, to the BNDF line to tell FDS where to find the
necessary extra information.

Note that BNDF files (Section 19.8) can become very large, so be careful in prescribing the time interval.
One way to reduce the size of the output file is to turn off the drawing of boundary information on desired
obstructions. On any given OBST line, if the string BNDF_OBST=.FALSE. is included, the obstruction is not
colored. To turn off all boundary drawing, set BNDF_DEFAULT=.FALSE. on the MISC line. Then individual
obstructions can be turned back on with BNDF_OBST=.TRUE. on the appropriate OBST line. Individual
faces of a given obstruction can be controlled via BNDF_FACE(IOR), where IOR is the index of orientation
(+1 for the positive x direction, -1 for negative, and so on).

12.2.7 Animated Isosurfaces: The ISOF Namelist Group

The ISOF (“ISOsurface File”) namelist group is used to specify the output of gas phase scalar quantities, as
three dimensional animated contours. For example, a 300 ◦C temperature isosurface shows where the gas
temperature is 300 ◦C. Three different values of the temperature can be saved via the line:

&ISOF QUANTITY='TEMPERATURE', VALUE(1)=50., VALUE(2)=200., VALUE(3)=500. /

where the values are in degrees C. Note that the isosurface output files CHID_n.iso can become very large,
so experiment with different sampling rates.

Any gas phase quantity can animated via iso-surfaces, but use caution. To render an iso-surface,
the desired quantity must be computed in every mesh cell at every output time step. For quantities like
TEMPERATURE, this is not a problem, as FDS computes it and saves it anyway. However, soot density

or oxygen demand substantial amounts of time to compute at each mesh cell.

12.2.8 Plot3D Static Data Dumps

By default, flow field data in Plot3D format is output 5 times a run. Five quantities are written out to a file
at one instant in time. The default specification is:

&DUMP ..., PLOT3D_QUANTITY(1:5)='TEMPERATURE',
'U-VELOCITY','V-VELOCITY','W-VELOCITY','HRRPUV' /

96

It’s best to leave the velocity components as is, because Smokeview uses them to draw velocity vectors. The
first and fifth quantities can be changed with the parameters PLOT3D_QUANTITY(1) and PLOT3D_QUANTITY(5)
on the DUMP line.

Note that there can only be one DUMP line.

Data stored in Plot3D [7] files (See Section 19.2) use a format developed by NASA and used by many
CFD programs for representing simulation results. Plot3D data is visualized in three ways: as 2D contours,
vector plots and iso-surfaces. Vector plots may be viewed if one or more of the u, v and w velocity compo-
nents are stored in the Plot3D file. The vector length and direction show the direction and relative speed of
the fluid flow. The vector colors show a scalar fluid quantity such as temperature. Plot3D data are stored in
files with extension .q . There is an optional file that can be output with coordinate information if another
visualization package is being used to render the files. If you write WRITE_XYZ=.TRUE. on the DUMP line, a
file with suffix .xyz is written out. Smokeview does not require this file because the coordinate information
can be obtained elsewhere.

97

12.3 Special Output Quantities

12.3.1 Heat Release Rate

Quantities associated with the overall energy budget are reported in the comma delimited file CHID_hrr.csv.
This file is automatically generated; the only input parameter associated with it is DT_HRR on the DUMP line.
The file consists of six columns. The first column contains the time in seconds. The second through fifth
columns contain integrated energy gains and losses, all in units of kW. The second column contains the total
heat release rate, the third contains the radiative heat loss to all the boundaries (solid and open), the fourth
contains the convective and radiative heat loss to the boundaries (i.e. the energy flowing out of or into the
domain), and the fifth contains the energy conducted into the solid surfaces. The sixth column contains the
total burning rate of fuel, in units of kg/s. It is included merely as a check of the total heat release rate.

Let Ω denote the unblocked computational domain, i.e. the volume within the bounding rectangle
occupied by gas. Let ∂Ω by the boundary of Ω. The boundary can be divided into two parts ∂Ω = ∂Ω1 +
∂Ω2. The first part ∂Ω1 consists of all the solid walls. The second part ∂Ω2 consists of openings from
outside the domain through which gases may flow. This could be an open window to the exterior, or a
forced vent.

The total heat release rate is given by

Q̇ =
∫

Ω

q̇′′′ dV (12.1)

The radiative loss to the boundaries can be computed with either a volume or boundary integral

Q̇r =
∫

Ω

∇ ·qr dV =
∫

∂Ω

qr ·dS =
∫

∂Ω

q̇′′r dA (12.2)

It represents the energy radiating away from the fire and hot gases into the solid boundaries or out of the
computational domain. The convective/radiative loss to open boundaries is

Q̇conv =
∫

∂Ω

cp ρ (T −T∞) u ·dS+
∫

∂Ω2

q̇′′r dA (12.3)

where the integral is positive if the flow and radiative flux are going out of the domain. The conductive loss
to solid surfaces is given by

Q̇cond =
∫

∂Ω1

q̇′′r + q̇′′c dA (12.4)

where the integral is positive if heat is being lost into a wall colder than the gas.
For scenarios in which the fire is the primary source of energy, after the gas temperatures within the

computational domain reach a nearly steady state

Q̇ ≈ Q̇conv + Q̇cond (12.5)

This is merely a check of the global energy balance, that is, the energy generated within the space heats up
the gases and solid surfaces, and then a balance between heat input and output is achieved.

12.3.2 Visibility and Obscuration

If you are performing a fire calculation using the mixture fraction approach, the smoke is tracked along with
all other major products of combustion. The most useful quantity for assessing visibility in a space is the
light extinction coefficient, K [8]. The intensity of monochromatic light passing a distance L through smoke
is attenuated according to

I/I0 = e−KL (12.6)

98

The light extinction coefficient, K, is a product of the density of smoke particulate, ρYs, and a mass specific
extinction coefficient that is fuel dependent

K = Km ρ Ys (12.7)

Devices that output a % obscuration such as a DEVCwith a QUANTITY of aspiration, spot obscuration

(smoke detector), or path obscuration (beam detector) are discussed respectively in Section 11.3.6,
Section 11.3.4, and Section 11.3.5

Estimates of visibility through smoke can be made by using the equation

S = C/K (12.8)

where C is a nondimensional constant characteristic of the type of object being viewed through the smoke,
i.e. C = 8 for a light-emitting sign and C = 3 for a light-reflecting sign [8]. Since K varies from point to point
in the domain, the visibility S does as well. Keep in mind that FDS can only track smoke whose production
rate and composition are specified. Predicting either is beyond the capability of the present version of the
model.

Three parameter control smoke production and visibility; each parameter is input on the REAC line. The
first parameter is SOOT_YIELD, which is the fraction of fuel mass that is converted to soot. The second
parameter is called the MASS_EXTINCTION_COEFFICIENT, and it is the Km in Eq. (12.7). The default
value is 8700 m2/kg, a value suggested for flaming combustion of wood and plastics. The third parameter is
called the VISIBILITY_FACTOR, the constant C in Eq. (12.8). It is 3 by default.

The gas phase output quantity extinction coefficient is K. The visibility S is output via the
keyword visibility. Note that each is tied to the mixture fraction formulation of combustion.

12.3.3 Layer Height and the Average Upper and Lower Layer Temperatures

Fire protection engineers often need to estimate the location of the interface between the hot, smoke-laden
upper layer and the cooler lower layer in a burning compartment. Relatively simple fire models, often re-
ferred to as two-zone models, compute this quantity directly, along with the average temperature of the upper
and lower layers. In a computational fluid dynamics (CFD) model like FDS, there are not two distinct zones,
but rather a continuous profile of temperature. Nevertheless, there are methods that have been developed
to estimate layer height and average temperatures from a continuous vertical profile of temperature. One
such method [9] is as follows: Consider a continuous function T (z) defining temperature T as a function
of height above the floor z, where z = 0 is the floor and z = H is the ceiling. Define Tu as the upper layer
temperature, Tl as the lower layer temperature, and zint as the interface height. Compute the quantities:

(H− zint) Tu + zint Tl =
∫ H

0
T (z) dz = I1

(H− zint)
1
Tu

+ zint
1
Tl

=
∫ H

0

1
T (z)

dz = I2

Solve for zint :

zint =
Tl(I1 I2−H2)

I1 + I2 T 2
l −2Tl H

(12.9)

Let Tl be the temperature in the lowest mesh cell and, using Simpson’s Rule, perform the numerical integra-
tion of I1 and I2. Tu is defined as the average upper layer temperature via

(H− zint) Tu =
∫ H

zint

T (z) dz (12.10)

99

Further discussion of similar procedures can be found in Ref. [10].
The quantities LAYER HEIGHT, UPPER TEMPERATURE and LOWER TEMPERATURE can be designated

via “device” (DEVC) lines in the input file1. For example, the entry

&DEVC XB=2.0,2.0,3.0,3.0,0.0,3.0, QUANTITY='LAYER HEIGHT', ID='whatever' /

produces a time history of the smoke layer height at x = 2 and y = 3 between z = 0 and z = 3. If multiple
meshes are being used, the vertical path cannot cross mesh boundaries.

12.3.4 The True Gas Temperature vs. the Measured Gas Temperature

The output quantity THERMOCOUPLE is the temperature of the thermocouple itself, usually close to the gas
temperature, but not always. It is determined by solving the following equation for TTC iteratively [11]

εTC(σT 4
TC−U/4)+h(TTC−Tg) = 0 (12.11)

where εTC is the emissivity of the thermocouple, U is the integrated radiative intensity, Tg is the true
gas temperature, and h is the heat transfer coefficient to a small sphere, h = kaNu/Pr/dTC. The bead
BEAD_DIAMETER and BEAD_EMISSIVITY are given on the associated PROP line. See the discussion on
heat transfer to a water droplet in the Technical Reference Guide for details of the convective heat transfer
to a small sphere.

12.3.5 Heat Fluxes

There are various ways of recording the heat flux at a solid boundary. If you want to record the net heat flux
to the surface, q̇′′c + q̇′′r , use the QUANTITY called HEAT_FLUX. The individual components, the net convective
and radiative fluxes, are CONVECTIVE_FLUX and RADIATIVE_FLUX, respectively. If you want to compare
predicted heat flux with a measurement, you often need to use GAUGE_HEAT_FLUX. The difference between
HEAT_FLUX and GAUGE_HEAT_FLUX is that the former is the rate at which energy is absorbed by the solid
surface; the latter is the amount of energy that would be absorbed if the surface were cold (or some specified
temperature):

q̇′′r /ε + q̇′′c +h(Tw−T∞)+σ(T 4
w −T 4

∞)

If the heat flux gauge used in an experiment has a temperature other than ambient, set GAUGE_TEMPERATURE
on the PROP line associated with the device. When comparing against a radiometer measurement, use
RADIOMETER:

q̇′′r /ε +σ(T 4
w −T 4

∞)

For diagnostic purposes it is sometimes convenient to output the INCIDENT_HEAT_FLUX:

q̇′′r /ε +σT 4
w + q̇′′c

There is a gas phase output quantity called RADIANT_INTENSITY. This is used mainly for diagnosing
problems with the radiation solver. Even though its units are kW/m2, it should not be interpreted as the heat
flux to an object that would occupy that particular point in space. Rather, it is the integral over all directions
of the radiation intensity, I(x,s), a function of both space and direction. It is denoted by U , as in Eq. (12.11).

1Note that in FDS 5 and beyond, these quantities are no longer available as slice files.

100

12.3.6 Droplet Output Quantities

It is possible to record various properties of evaporating droplets. Some of the output quantities are asso-
ciated with solid boundaries. For example, [PART_ID]_MPUA is the Mass Per Unit Area of the droplets
named PART_ID. Likewise, [PART_ID]_AMPUA is the Accumulated Mass Per Unit Area. Both of these
are given in units of kg/m2. Think of these outputs as measures of the instantaneous mass density per unit
area, and the accumulated total, respectively. The accumulated total is analogous to a “bucket test,” where
the droplets are collected in buckets and the total mass determined at the end of a given time period. The
cooling of a solid surface by droplets of a given type is given by [PART_ID]_CPUA, the Cooling Per Unit
Area in units of kW/m2.

Be aware of the fact that the default behavior for droplets hitting the “floor,” that is, the plane z = ZMIN,
is to disappear (POROUS_FLOOR=.TRUE. on the MISC line). In this case, [PART_ID]_MPUA will be zero,
but [PART_ID]_AMPUA will not. FDS stores the droplet mass just before removing the droplet from the
simulation for the purpose of saving CPU time.

Away from solid surfaces, [PART_ID]_MPUV is the Mass Per Unit Volume of the droplets as they fly
through the air, in units of kg/m3. [PART_ID]_FLUX_X, [PART_ID]_FLUX_Y, and [PART_ID]_FLUX_Z

produce only slice and Plot3D files of the mass flux of droplets in the x, y, and z directions, respectively, in
units of kg/m2/s.

12.3.7 Interfacing with Structural Models

FDS solves a one-dimensional heat conduction equation for each boundary cell marking the interface be-
tween gas and solid, assuming that material properties for the material layer(s) are provided. The results can
be transferred (via either DEVC or BNDF output) to other models that predict the mechanical response of the
walls or structure. For many applications, the 1-D solution of the heat conduction equation is adequate, but
in situations where it is not, another approach can be followed. FDS includes a calculation of the Adiabatic
Surface Temperature (AST), a quantity that is representative of the heat flux to a solid surface. Following the
idea proposed by Ulf Wickstrom [12], the following equation can be solved via a simple iterative technique
to determine an effective gas temperature, TAST:

q̇′′r + q̇′′c = εσ
(
T 4

AST−T 4
w
)
+h(TAST−Tw) (12.12)

The sum q̇′′r + q̇′′c is the net heat flux onto the solid surface, whose temperature is Tw. The heat fluxes and
surface temperature are computed in FDS, and they are inter-dependent. The computed wall temperature
affects the net heat flux and vice versa. However, because FDS only computes the solution to the 1-D
heat conduction equation in the solid, it may be prone to error if lateral heat conduction within the solid is
significant. Thus, in some scenarios neither the FDS-predicted heat fluxes or the surface temperature can be
used as an accurate indicator of the thermal insult from the hot, smokey gases onto solid objects.

Of course, both the heat fluxes, q̇′′r and q̇′′c , and the surface temperature, Tw can be passed from FDS to
the other model, and suitable corrections can be made based on a presumably more accurate prediction of the
solid temperature. Alternatively, the single quantity, TAST, can be transferred, as this is the temperature that
the solid surface effectively “sees.” It represents the gas phase thermal environment, however complicated,
but it does not carry along the uncertainty associated with the simple solid phase heat conduction model
within FDS. Obviously, the objective in passing information to a more detailed model is to get a better
prediction of the solid temperature (and ultimately its mechanical response) than FDS can provide.

12.3.8 Integrated Mass and Energy Fluxes through Openings

The net flow of mass and energy into or out of compartments can be useful for many applications. There
are several outputs that address these. All are prescribed via the device (DEVC) namelist group only. For

101

example:

&DEVC XB=0.3,0.5,2.1,2.5,3.0,3.0, QUANTITY='MASS FLOW', ID='whatever' /

outputs the net integrated mass flux through the given planar area, oriented in the positive z direction, in this
case. The three flows – ’VOLUME FLOW’, ’MASS FLOW’, and ’HEAT FLOW’ are defined:

V̇ =
∫

u ·dS

ṁ =
∫

ρu ·dS

q̇ =
∫

cpρ(T −T∞)u ·dS

The addition of a + or - to the QUANTITY names yields the integral of the flow in the positive or negative
direction only. In other words, if you want to know the mass flow out of a compartment, use ’MASS FLOW

+’ or ’MASS FLOW -’, depending on the orientation of the door.

12.3.9 Wind and the Pressure Coefficient

In the field of wind engineering, a commonly used quantity is known as the PRESSURE_COEFFICIENT:

Cp =
p− p∞

1
2 ρ∞U2

(12.13)

p∞ is the ambient, or “free stream” pressure, and ρ∞ is the ambient density. The parameter U is the free-
stream wind speed, given as CHARACTERISTIC_VELOCITY on the PROP line

&BNDF QUANTITY='PRESSURE_COEFFICIENT', PROP_ID='whatever' /
&DEVC ID='pressure tap', XYZ=..., IOR=2, QUANTITY='PRESSURE_COEFFICIENT', PROP_ID='whatever' /
&PROP ID='whatever', CHARACTERISTIC_VELOCITY=3.4 /

Thus, you can either paint values of Cp at all surface points, or create a single time history of Cp using a
single device at a single point.

12.4 Extracting Numbers from the Output Data Files

Often it is desired to present results of calculations in some form other than those offered by Smokeview.
In this case, there is a short Fortran 90 program called fds2ascii.f90, with a PC compiled version called
fds2ascii.exe. To run the program, just type

fds2ascii

at the command prompt. You will be asked a series of questions about which type of output file to pro-
cess, what time interval to time average the data, and so forth. A single file is produced with the name
CHID_fds2ascii.csv.

102

12.5 Summary of Output Quantities

Table 12.1, spread over the following pages, summarizes the various Output Quantities. Note that lower case
quantities are appropriate only for calculations involving the mixture fraction, Z. If individual species are
listed via SPEC namelist lines, the quantity for mass and volume fractions are [SPEC_ID] and [SPEC_ID]_VF,
respectively. For example, the quantities water vapor and WATER VAPOR denote the volume fraction
of water vapor generated by combustion and the mass fraction of water vapor from evaporated sprinkler
droplets, respectively.

The column “File Type” lists the allowed output files for the quantities. “B” is for Boundary (BNDF),
“D” is for Device (DEVC), “I” is for Iso-surface (ISOF), “P” is for Plot3D, “PA” for PArticle (PART), “S”
is for Slice (SLCF). Be careful when specifying complicated quantities for Iso-surface or Plot3D files, as it
requires computation in every gas phase cell.

Table 12.1: Summary of all Output Quantities
Output QUANTITY Symbol Units File Type
ABSORPTION_COEFFICIENT κ 1/m D,I,P,S
ADIABATIC_SURFACE_TEMPERATURE See Section 12.3.7 ◦C B,D
aspiration See Section 11.3.6 % D
BURNING_RATE ṁ′′

f kg/m2/s B,D
carbon dioxide XCO2(Z) mol/mol D,I,P,S
carbon monoxide XCO(Z) mol/mol D,I,P,S
CONTROL See Section 11.5 D
CONVECTIVE_FLUX q̇′′c (Section 12.3.5) kW/m2 B,D
DENSITY ρ kg/m3 D,I,P,S
DIVERGENCE ∇ ·u s−1 D,I,P,S
DROPLET_DIAMETER 2rd µm PA
DROPLET_VELOCITY |ud | m/s PA
DROPLET_TEMPERATURE Td

◦C PA
DROPLET_MASS md kg PA
DROPLET_AGE td s PA
extinction coefficient K (Section 12.3.2) 1/m D,I,P,S
fuel XF(Z) mol/mol D,I,P,S
GAUGE_HEAT_FLUX See Section 12.3.5 kW/m2 B,D
H H = |u|2/2+ p̃/ρ0 (m/s)2 D,I,P,S
HEAT FLOW See Section 12.3.8 kW D
HEAT_FLUX See Section 12.3.5 kW/m2 B,D
HRR

∫
q̇′′′ dV kW D

HRRPUV q̇′′′ kW/m3 D,I,P,S
INCIDENT_HEAT_FLUX See Section 12.3.5 kW/m2 B,D
INSIDE_WALL_TEMPERATURE See Section 12.2.4 ◦C D
LAYER HEIGHT See Section 12.3.3 m D
LINK TEMPERATURE See Section 11.3.3 ◦C D
LOWER TEMPERATURE See Section 12.3.3 ◦C D

103

Output QUANTITY Symbol Units File Type
MASS FLOW See Section 12.3.8 kg/s D
MIXTURE_FRACTION Z kg/kg D,I,P,S
nitrogen XN2(Z) mol/mol D,I,P,S
oxygen XO2(Z) mol/mol D,I,P,S
oxygen mass fraction YO2(Z) kg/kg D,I,P,S
[PART_ID]_AMPUA See Section 12.3.6 kg/m2 B,D
[PART_ID]_CPUA See Section 12.3.6 kW/m2 B,D
[PART_ID]_FLUX_X See Section 12.3.6 kg/m2/s P,S
[PART_ID]_FLUX_Y See Section 12.3.6 kg/m2/s P,S
[PART_ID]_FLUX_Z See Section 12.3.6 kg/m2/s P,S
[PART_ID]_MPUA See Section 12.3.6 kg/m2 B,D
[PART_ID]_MPUV See Section 12.3.6 kg/m3 D,I,P,S
path obscuration See Section 11.3.5 % D
PRESSURE p̃ Pa D,I,P,S
PRESSURE_COEFFICIENT Cp (Section 12.3.9) B,D
RADIANT_INTENSITY

∫
I(x,s)dΩ kW/m2 D,I,P,S

RADIATIVE_FLUX See Section 12.3.5 kW/m2 B,D
RADIOMETER See Section 12.3.5 kW/m2 B,D
soot volume fraction ρYs(Z)/ρs mol/mol D,I,P,S
soot density ρYs(Z) mg/m3 D,I,P,S
[SPEC_ID] Y kg/kg D,I,P,S
[SPEC_ID]_VF X mol/mol D,I,P,S
[SPEC_ID]_FLUX_X ρuYα kg/m2/s D,I,P,S
[SPEC_ID]_FLUX_Y ρvYα kg/m2/s D,I,P,S
[SPEC_ID]_FLUX_Z ρwYα kg/m2/s D,I,P,S
spot obscuration See Section 11.3.4 %/m D
SPRINKLER LINK TEMPERATURE See Section 11.3.1 ◦C D
TEMPERATURE T (Section 12.3.4) ◦C D,I,P,S
THERMOCOUPLE TTC (Section 12.3.4) ◦C D,I,P,S
TIME t (Section 11.1) s D
U-VELOCITY u m/s D,I,P,S
V-VELOCITY v m/s D,I,P,S
W-VELOCITY w m/s D,I,P,S
UPPER TEMPERATURE See Section 12.3.3 ◦C D
VELOCITY

√
u2 + v2 +w2 m/s D,I,P,S

VISCOSITY µ kg/m/s D,I,P,S
visibility S = C/K (Section 12.3.2) m D,I,P,S
VOLUME FLOW See Section 12.3.8 m3/s D
WALL_TEMPERATURE Tw

◦C B,D
water vapor XH2O(Z) mol/mol D,I,P,S
WATER VAPOR XH2O mol/mol D,I,P,S

104

Chapter 13

Alphabetical List of Input Parameters

This Appendix lists all of the input parameters for FDS in seperate tables grouped by Namelist, these tables
are in alphabetical order along with the parameters within them. This is intended to be used as a quick
reference and does not replace reading the detailed description of the parameters in the main body of this
guide. See Table 5.1 for a cross-reference of relevant sections and the tables in this Appendix. The reason
for this statement is that many of the listed parameters are mutually exclusive – specifying more than one
can cause the program to either fail or run in an unpredictable manner. Also, some of the parameters trigger
the code to work in a certain mode when specified. For example, specifying the thermal conductivity of a
solid surface triggers the code to assume the material to be thermally-thick, mandating that other properties
be specified as well. Simply prescribing as many properties as possible from a handbook is bad practice.
Only prescribe those parameters which are necessary to describe the desired scenario.

105

13.1 BNDF (Boundary File Parameters)

Table 13.1: For more information see Section 12.2.6.
BNDF (Boundary File Parameters)

FYI Character Comment String (has no effect)
PROP_ID Character Source of specific property info
QUANTITY Character Quantity to visualize

13.2 CLIP (MIN/MAX Clipping Parameters)

Table 13.2: For more information see Section 6.6.
CLIP (Specified Upper and Lower Limits)

FYI Character Comment String (has no effect)
MAXIMUM_DENSITY Real Maximum Gas Density kg/m3

MAXIMUM_MASS_FRACTION Real Array Maximum Gas Mass Fraction kg/kg
MAXIMUM_TEMPERATURE Real Maximum Gas Temperature ◦C
MINIMUM_DENSITY Real Minimum Gas Density kg/m3

MINIMUM_MASS_FRACTION Real Array Minimum Gas Mass Fraction kg/kg
MINIMUM_TEMPERATURE Real Maximum Gas Temperature ◦C

106

13.3 CTRL (Control Function Parameters)

Table 13.3: For more information see Section 11.5.
CTRL (Control Function Parameters)

DELAY Real Time delay s 0.
FUNCTION_TYPE Character Type of control function
ID Character IDentifier
INITIAL_STATE Logical Initial state of control function .FALSE.

INPUT_ID Char. Array DEVC and/or CTRL input IDs
LATCH Logical Control function changes state only once .TRUE.

N Integer Number of .TRUE. INPUTs 1
ON_BOUND Character Active edge of a DEADBAND LOWER

RAMP_ID Character ID for a CUSTOM ramp controller
SETPOINT(2) Real Lower and upper bound of a DEADBAND

107

13.4 DEVC (Device Parameters)

Table 13.4: For more information see Section 11.1.
DEVC (Device Parameters)

BYPASS_FLOWRATE Real Aspiration smoke detector parameter kg/s 0
CTRL_ID Character Associated CTRL line
DELAY Real Transport time for an aspiration detector s 0
DEVC_ID Character Associated DEVC line for aspiration detector
DEPTH Real Depth into surface for internal wall temp m 0
FLOWRATE Real Suction flowrate for an aspiration detector kg/s 0
FYI Character Comment String (has no effect)
IOR Integer Index of Orientation (±1,±2,±3)
ID Character Identifying label for output
INITIAL_STATE Logical Initial state of device .FALSE.

LATCH Logical Device cannot change state multiple times .TRUE.

ORIENTATION Real Triplet Direction vector 0,0,-1
PROP_ID Character Associated PROPerty line
QUANTITY Character Name of Quantity to output
ROTATION Real Triplet Rotation Angle deg 0
SETPOINT Real Value at which device changes state
STATISTICS Character See Section 12.2.3
SURF_ID Character See Section 12.2.3
TRIP_DIRECTION Integer Sign of derivative at first state change 1
XB(6) Real Sextuplet Coordinates of non-point measurement m
XYZ Real Triplet Physical coordinates m

108

13.5 DUMP (Output Parameters)

Table 13.5: For more information see Section 12.1.
DUMP (Output Parameters)

COLUMN_DUMP_LIMIT Logical Limit text output to 255 columns .TRUE.

DT_BNDF Real Boundary dump interval s 2∆t/NFRAMES
DT_CTRL Real Control status dump interval s ∆t/NFRAMES
DT_DEVC Real Device output dump interval s ∆t/NFRAMES
DT_HRR Real Heat release dump interval s ∆t/NFRAMES
DT_ISOF Real Iso-surface dump interval s ∆t/NFRAMES
DT_MASS Real Mass diagnostic dump interval s ∆t/NFRAMES
DT_PART Real Particle dump interval s ∆t/NFRAMES
DT_PL3D Real PLOT3D dump interval s ∆t/5
DT_PROF Real Profile dump interval s ∆t/NFRAMES
DT_RESTART Real Restart core dump interval s 1000000.
DT_SLCF Real Slice dump interval s ∆t/NFRAMES
FLUSH_FILE_BUFFERS Logical Periodically empty file buffers .TRUE.

MASS_FILE Logical Flag for species MASS file .FALSE.

MAXIMUM_DROPLETS Integer Max particles per mesh 500000
NFRAMES Integer Number of Frames of output data 1000
PLOT3D_QUANTITY(5) Char. Quint Names of PLOT3D Quantities See Section 12.2.8
SMOKE3D Logical Flag for 3D Smoke Visualization .TRUE.

WRITE_XYZ Logical Flag for writing PLOT3D .xyz file .FALSE.

∆t=T_END-T_BEGIN

13.6 HEAD (Header Parameters)

Table 13.6: For more information see Section 6.1.
HEAD (Header Parameters)

CHID Character Job Identification String ’output’

FYI Character Comment String (has no effect)
TITLE Character Title for job

109

13.7 HOLE (Obstruction Cutout Parameters)

Table 13.7: For more information see Section 7.2.
HOLE (Obstruction Cutout Parameters)

COLOR Character Color name of obstruction color
CTRL_ID Character ID of ConTRoL to control hole’s existence
DEVC_ID Character ID of DEViCe to control hole’s existence
FYI Character Comment String (has no effect)
RGB(3) Integer Triplet Color indices (0 - 255) for resulting obstruction(s)
TRANSPARENCY Real Transparency of obstruction
XB(6) Real Sextuplet Physical coordinates m

13.8 INIT (Initial Conditions)

Table 13.8: For more information see Section 6.5.
INIT (Initial Conditions)

DENSITY Real Initial value of density kg/m3 Ambient
MASS_FRACTION(II) Real Array Initial value of species II kg/kg Ambient
TEMPERATURE Real Initial value of temperature ◦C TMPA

XB(6) Real Sextuplet Coordinates m

13.9 ISOF (Isosurface Parameters)

Table 13.9: For more information see Section 12.2.7.
ISOF (Isosurface Parameters)

FYI Character Comment String (has no effect)
QUANTITY Character Quantity to visualize
VALUE(I) Real Array Contour value(s)

110

13.10 MATL (Material Properties)

Table 13.10: For more information see Section 8.4.
MATL (Material Properties)

A Real Pre-exponential factor 1/s 1E13
ABSORPTION_COEFFICIENT Real Absorption Coefficient 1/m 50000.
BOILING_TEMPERATURE Real Boiling temperature ◦C 5000.
CONDUCTIVITY Real Thermal conductivity W/m/K 0.1
CONDUCTIVITY_RAMP Character Ramp ID for conductivity
DENSITY Real Solid mass per unit volume kg/m3 500.
E Real Activation energy kJ/kmol
EMISSIVITY Real Emissivity 0.9
FYI Character Comment String (has no effect)
HEAT_OF_COMBUSTION Real Heat of combustion kJ/kg
HEAT_OF_REACTION Real Heat of reaction kJ/kg 0.
ID Character IDentifier
THRESHOLD_TEMPERATURE Real Threshold temperature ◦C -273.15
N_REACTIONS Character Number of Reactions 0
N_S Real Exponent of mass fraction 1.
N_T Real Exponent of temperature 0.
NU_FUEL Real Fuel Yield kg/kg 0.
NU_RESIDUE Real Residue Yield kg/kg 0.
NU_WATER Real Steam Yield kg/kg 0.
REFERENCE_RATE Real Reaction rate at ref. temp. s−1 0.10
REFERENCE_TEMPERATURE Real Reference temperature ◦C
RESIDUE Character ID of residue MATL
SPECIFIC_HEAT Real Specific heat kJ/kg/K 1.0
SPECIFIC_HEAT_RAMP Character Ramp ID for specific heat

111

13.11 MESH (Mesh Parameters)

Table 13.11: For more information see Section 6.3.
MESH (Mesh Parameters)

COLOR Character Mesh Line Color ’BLACK’

CYLINDRICAL Logical 2-D Axi-symmetric calculation .FALSE.

ID Character MESH IDentifier
IJK Integer Triplet No. cells in x, y, and z directions 10
FYI Character Comment String (has no effect)
RGB Integer Triplet Color indices (0-255) 0,0,0
SYNCHRONIZE Logical Sync. time steps of multiple meshes .TRUE.

XB Real Sextuplet Min/Max Coordinates of the MESH m 0,1,0,1,0,1

112

13.12 MISC (Miscellaneous Parameters)

Table 13.12: For more information see Section 6.4.
MISC (Miscellaneous Parameters)

ASSUMED_GAS_TEMPERATURE Real See Section 8.7
BACKGROUND_SPECIES Character See Section 9.2 ’AIR’

BAROCLINIC Logical Baroclinic torque correction .FALSE.

BNDF_DEFAULT Logical See Section 12.2.6 .TRUE.

CFL_MAX Real See Section 6.4.6 1.0
CFL_MIN Real See Section 6.4.6 0.8
CSMAG Real Smagorinsky constant 0.20
CONDUCTIVITY Real See Section 9.2 W/m/K
CO_PRODUCTION Logical See Section 9.1.1 .FALSE.

DNS Logical Direct Numerical Simulation .FALSE.

FYI Character Comment String (has no effect)
GVEC Real triplet Gravity vector m/s2 0,0,-9.81
H_FIXED Real See Section 8.7
HUMIDITY Real Relative Humidity % 40.
ISOTHERMAL Logical Isothermal calculation .FALSE.

LAPSE_RATE Real See Section 8.2.5 ◦C/m 0
LES Logical Large Eddy Simulation .TRUE.

MW Real Molecular Weight (Section 9.2) g/mol
NOISE Logical Toggle initial noise on and off .TRUE.

PR Real Prandtl number (LES only) 0.5
P_INF Real Ambient pressure Pa 101325
POROUS_FLOOR Logical See Section 11.3.1 .TRUE.

RADIATION Logical Radiation calculation flag .TRUE.

RAMP_GX Character Time function, x comp. of gravity
RAMP_GY Character Time function, y comp. of gravity
RAMP_GZ Character Time function, z comp. of gravity
RESTART Logical Restart previous calculation .FALSE.

RESTART_CHID Character Restart file CHID CHID

SC Real Schmidt number (LES only) 0.5
SOLID_PHASE_ONLY Logical See Section 8.7 .FALSE.

STRATIFICATION Logical See Section 8.2.5 .TRUE.

SUPPRESSION Logical See Section 9.1.1 .TRUE.

SURF_DEFAULT Character Default SURFace type ’INERT’

TEXTURE_ORIGIN(3) Char. Triplet See Section 8.6.1 m (0.,0.,0.)
THICKEN_OBSTRUCTIONS Logical See Section 7.1 .FALSE.

TMPA Real Ambient Temperature ◦C 20.
U0,V0,W0 Reals Prevailing velocity field m/s 0.
VISCOSITY Real See Section 9.2 kg/m/s
VN_MAX Real See Section 6.4.6 1.0
VN_MIN Real See Section 6.4.6 0.8

113

13.13 OBST (Obstruction Parameters)

Table 13.13: For more information see Section 7.1.
OBST (Obstruction Parameters)

ALLOW_VENT Logical Allow vents on obstruction .TRUE.

BNDF_FACE(-3:3) Logical Array See Section 12.2.6 .TRUE.

BNDF_OBST Logical See Section 12.2.6 .TRUE.

COLOR Character Color name of obstruction color
CTRL_ID Character ID of Controlling ConTRoL

DEVC_ID Character ID of Controlling DEViCe

FYI Character Comment String (has no effect)
OUTLINE Logical Draw as Outline .FALSE.

PERMIT_HOLE Logical Allow a Hole .TRUE.

REMOVABLE Logical Allow obstruction to be removed .TRUE.

RGB(3) Integer Triplet Color indices (0 - 255)
SAWTOOTH Logical See Section 7.1.1 .TRUE.

SURF_ID Character Associated Surface
SURF_IDS(3) Character Triplet Associated Surfaces (top,side,bot.)
SURF_ID6(6) Character Sextuplet Associated Surfaces (like XB)
THICKEN Logical Force at least one cell thick .FALSE.

TEXTURE_ORIGIN(3) Real Triplet See Section 8.6.1 m (0.,0.,0.)
TRANSPARENCY Real Transparency indicator 1
XB(6) Real Sextuplet Min/Max Physical coordinates m

114

13.14 PART (Lagrangian Particles/Droplets)

Table 13.14: For more information see Section 10.
PART (Lagrangian Particles/Droplets)

AGE Real Droplet lifetime s 100000.
COLOR Character Default color of droplets ’BLACK’

DENSITY Real Droplet density kg/m3 1000.
DIAMETER Real Median Volumetric Diameter µm 500.
DROPLETS_PER_SECOND Integer Drops per second per head 1000
DT_INSERT Real Time between particle insertions s 0.05
EVAPORATE Logical Assume liquid evaporation .TRUE.

FYI Character Comment String (has no effect)
FUEL Logical Liquid Fuel .FALSE.

GAMMA_D Real Parameter for size distribution 2.4
HEAT_OF_COMBUSTION Real Heat of Combustion kJ/kg
HEAT_OF_VAPORIZATION Real Latent Heat of Vaporization kJ/kg 2259.
HORIZONTAL_VELOCITY Real Droplet speed, horizontal m/s 0.2
ID Character Identifier
INITIAL_TEMPERATURE Real Initial Temperature ◦C TMPA

MASSLESS Logical Massless tracers .FALSE.

MASS_PER_VOLUME Real Droplet mass per unit volume kg/m3 1.
MAXIMUM_DIAMETER Real Above which droplet breaks up µm ∞

MINIMUM_DIAMETER Real Below which droplet evaporates µm 20.
MELTING_TEMPERATURE Real Melting Temperature ◦C 0.
MONODISPERSE Logical Uniform droplet size .FALSE.

NUMBER_INITIAL_DROPLETS Integer Number of droplets at start 0
QUANTITIES(10) Character Quantities for coloring
RGB(3) Integers Color indices (0-255)
SAMPLING_FACTOR Integer Filter for output file 1
SPEC_ID Character Name of gas species
SPECIFIC_HEAT Real Droplet specific heat kJ/kg/K 4.184
STATIC Logical Stationary Particles .FALSE.

VAPORIZATION_TEMPERATURE Real Liquid Droplet Boiling Temp ◦C 100.
VERTICAL_VELOCITY Real Droplet speed, vertical m/s 0.5
XB(6) Real Initial particle placement region m
WATER Logical Water Droplet .FALSE.

115

13.15 PROF (Wall Profile Parameters)

Table 13.15: For more information see Section 12.2.4.
PROF (Wall Profile Parameters)

IOR Real Orientation of wall surface
ID Character Identifier
FYI Character Comment String (has no effect)
QUANTITY Character Name of output quantity
XYZ Real Triplet Coordinates of wall surface m

116

13.16 PROP (Device Properties)

Table 13.16: For more information see Section 11.3.
PROP (Device Properties)

ACTIVATION_TEMPERATURE Real Threshold link temperature ◦C 74
ACTIVATION_OBSCURATION Real Threshold value of obscuration %/m 3.28
ALPHA_C Real Smoke detector parameter 1.8
ALPHA_E Real Smoke detector parameter 0.0
BETA_C Real Smoke detector parameter 1.0
BETA_E Real Smoke detector parameter 1.0
BEAD_DIAMETER Real Diameter of TC bead m 0.001
BEAD_EMISSIVITY Real Emissivity of TC bead 0.85
C_FACTOR Real Sprinkler activation parameter 0.
CHARACTERISTIC_VELOCITY Real See Section 12.3.9 m/s 1.0
DROPLET_VELOCITY Real Initial droplet velocity m/s 5.0
FLOW_RATE Real Sprinkler or nozzle flow rate L/min
FLOW_RAMP Character Time RAMP for flow
FLOW_TAU Real Time constant for flow 0.0
GAUGE_TEMPERATURE Real See Section 12.3.5 ◦C TMPA

ID Character IDentifier
INITIAL_TEMPERATURE Real Initial link temperature ◦C TMPA

K_FACTOR Real Flow parameter L/min/atm1/2 1.
LENGTH Real Smoke detector parameter 1.8
OFFSET Real Droplet offset distance m 0.05
OPERATING_PRESSURE Real Sprinkler pipe pressure atm 1.
PART_ID Character Name of associated PART line
QUANTITY Character Name of associated output
RTI Real Response Time Index

√
m s 100.

SMOKEVIEW_ID Character Name of drawn object
SPRAY_ANGLE(2) Real Cone angles for water spray deg 60.,75.
SPRAY_PATTERN_TABLE Character TABL for spray pattern

117

13.17 RADI (Radiation Parameters)

Table 13.17: For more information see Section 9.4.
RADI (Radiation Parameters)

ANGLE_INCREMENT Integer Number of angles skipped per update 5
CH4_BANDS Logical Include extra fuel bands .FALSE.

KAPPA0 Real Constant absorption coefficient 1/m 0
NMIEANG Integer Number of polar angles 15
NUMBER_RADIATION_ANGLES Integer Number of solid angles 104
PATH_LENGTH Real Path length for radiation calc. m
RADIATIVE_FRACTION Real Radiative Loss Fraction 0.35
RADTMP Real Assumed radiative source temp. ◦C 900
TIME_STEP_INCREMENT Integer Number time steps skipped 3
WIDE_BAND_MODEL Logical Non-gray gas assumption .FALSE.

13.18 RAMP (Ramp Function Parameters)

Table 13.18: For more information see Section 8.5.
RAMP (Ramp Function Parameters)

FYI Character Comment String (has no effect)
F Real Function value
FYI Character Comment String (has no effect)
ID Character Identifier
T Real Time (or Temperature) s (or ◦C)

118

13.19 REAC (Reaction Parameters)

Table 13.19: For more information see Section 9.1.
REAC (Reaction Parameters)

BOF Real Pre-exponential Factor (Finite Rate) cm3/mol/s
C Real Carbon atoms in fuel 3
CO_YIELD Real Fraction of CO from the fuel kg/kg 0
CRITICAL_FLAME_TEMPERATURE Real Suppression criterion ◦C 1427
E Real Activation Energy (Finite Rate) kJ/kmol
EPUMO2 Real Energy per Unit Mass Oxygen kJ/kg 13100
FUEL Character Name of Fuel (Finite Rate)
FYI Character Comment String (has no effect)
H Real Hydrogen atoms in fuel 8
H2_YIELD Real Fraction of H2 from the fuel kg/kg 0
HEAT_OF_COMBUSTION Real Energy per Unit Mass Fuel kJ/kg
HRRPUA_SHEET Real Upper limit on flame HRR kW/m2 200.
ID Character Identifier
IDEAL Logical Adjust for minor product yields .FALSE.

MASS_EXTINCTION_COEFFICIENT Real Visibility parameter m2/kg 8700.
MAXIMUM_VISIBILITY Real Visibility parameter m 30
MW_OTHER Real Molecular Weight of OTHER g/mol 28
N Real Nitrogen atoms in the fuel 0
N_S(N) Real Arrhenius Exponents (Finite Rate)
NU(N) Real Reaction stoichiometry (Finite Rate)
O Real Oxygen atoms in the fuel 0
OTHER Real Other atoms in the fuel 0
OXIDIZER Character Name of Oxidizer (Finite Rate)
SOOT_YIELD Real Fraction of soot from the fuel kg/kg 0.01
SOOT_H_FRACTION Real Atom fraction of hydrogen in soot 0.1
VISIBILITY_FACTOR Real Visibility parameter 3
X_O2_LL Real Lower Oxygen Limit mol/mol 0.15
Y_F_INLET Real Mass Frac. of Fuel in Burner kg/kg 1.0
Y_F_LFL Real Lower Fuel limit (mass fraction) kg/kg 0.0
Y_O2_INFTY Real Ambient Oxygen Mass Frac. kg/kg 0.23

119

13.20 SLCF (Slice File Parameters)

Table 13.20: For more information see Section 12.2.5.
SLCF (Slice File Parameters)

FYI Character Comment String (has no effect)
MESH_NUMBER Integer Save only slices in this mesh
PBX Real x-plane to save slice file
PBY Real y-plane to save slice file
PBZ Real z-plane to save slice file
QUANTITY Character Name of Quantity to display
VECTOR Logical Include flow vectors .FALSE.

XB(6) Real Sextuplet Min/Max coordinates of region to save m

13.21 SPEC (Species Parameters)

Table 13.21: For more information see Section 9.2.
SPEC (Species Parameters)

ABSORBING Logical Gas species abosrbs radiation .FALSE.

CONDUCTIVITY Real Conductivity k W/m/K
DIFFUSIVITY Real Diffusivity D m2/s
EPSILONKLJ Real Leonard-Jones Parameter 0
FYI Character Comment String (has no effect)
ID Character Name of species
MASS_FRACTION_0 Real Initial mass fraction 0
MW Real Molecular Weight g/mol 29.
SIGMALJ Real Leonard-Jones Parameter 0
VISCOSITY Real Dynamic Viscosity mu kg/m/s

120

13.22 SURF (Surface Properties)

Table 13.22: For more information see Section 8.2.

SURF (Surface Properties)
ADIABATIC Logical Adiabatic thermal BC .FALSE.

BACKING Character Back boundary condition ’VOID’

BURN_AWAY Logical Object can vanish .FALSE.

CELL_SIZE_FACTOR Real See Section 8.4.5 1.0
COLOR Character Surface Color
CONVECTIVE_HEAT_FLUX Real Heat flux at surface kW/m2 0.
DUCT_PATH Integer Pair Pressure Zones for fans 0,0
E_COEFFICIENT Real Extinguishing coefficient 1/s 0.
EMISSIVITY Real Emissivity 0.9
EXTERNAL_FLUX Real Heat flux to surface kW/m2 0.
FYI Character Comment String
GEOMETRY Character Geometry type ’CARTESIAN’

HEAT_OF_VAPORIZATION Real For specified HRR only kJ/kg 0.
HRRPUA Real HRR Per Unit Area kW/m2 0.
ID Character IDentifier
IGNITION_TEMPERATURE Real Ignition temperature ◦C 5000.
LEAK_PATH Integer Pair Pressure Zones for leakage
MASS_FLUX(I) Real Array For species I 0.
MASS_FLUX_TOTAL Real Total Mass Flux
MASS_FRACTION(I) Real Array For species I
MATL_ID Char. 2D Array (Layer,Component)
MATL_MASS_FRACTION Real 2D Array (Layer,Component)
MAX_PRESSURE Real Max over-pressure for fan Pa 1E12
MLRPUA Real Mass loss rate per unit area kg/m2s 0.
NPPC Integer Number of particles per cell 1
PARTICLE_MASS_FLUX Real See Section 10.2 kg/m2 s 0.
PART_ID Character Lagrangian Particle ID
POROUS Logical Non-solid boundary .FALSE.

PLE Real Atmospheric profile exponent 0.3
PROFILE Character Name of velocity profile
RAMP_MF(I) Character Ramp ID for species I
RAMP_Q Character Ramp ID for HRR
RAMP_T Character Ramp ID for temp.
RAMP_V Character Ramp ID for velocity
RGB(3) Integer Triplet Color indices (0-255) 255,204,102
SHRINK Logical Shrinking material .TRUE.

SLIP_FACTOR Real Velocity Slip Condition 0.5
STRETCH_FACTOR Real See Section 8.4.5 2.0
TAU_MF(I) Real Array Ramp time for species I s 1.
TAU_Q Real Ramp time for HRR s 1.
TAU_T Real Ramp time for temp. s 1.

121

TAU_V Real Ramp time for velocity s 1.
TEXTURE_HEIGHT Real Height of texture image m 1.
TEXTURE_MAP Character Name of texture map file
TEXTURE_WIDTH Real Width of texture image m 1.
THICKNESS(IL) Real Array Thickness of Layer IL m 0.
TMP_BACK Real Back surface temperature BC ◦C 20.
TMP_FRONT Real Front surface temperature ◦C 20.
TMP_INNER Real Initial solid temperature ◦C 20.
TRANSPARENCY Real Transparency of obstruction 1
VEL Real Normal velocity m/s 0.
VEL_T Real Pair Tangential velocity comps. m/s 0.
VOLUME_FLUX Real Normal velocity x vent area m3/s 0.
Z0 Real Atmospheric profile origin m 10.

13.23 TABL (Table Parameters)

Table 13.23: For more information see Section 8.5.
TABL (Table Parameters)

ID Character IDentifier
FYI Character Comment String (has no effect)
TABLE_DATA Real Array Data for one row of the table

13.24 TIME (Time Parameters)

Table 13.24: For more information see Section 6.2.
TIME (Time Parameters)

DT Real Initial time step s
FYI Character Comment String (has no effect)
SYNCHRONIZE Logical Sync time step of multiple meshes .TRUE.

T_BEGIN Real Starting time for calculation s 0.
T_ENDorTWFIN Real Ending time for calculation s 1
WALL_INCREMENT Integer Time steps between 1D wall solution updates 2

122

13.25 TRNX, TRNY, TRNZ (MESH Transformations)

Table 13.25: For more information see Section 6.3.3.
TRNX, TRNY, TRNZ (MESH Transformations)

CC Real Computational coordinate m
FYI Character Comment String (has no effect)
IDERIV Integer Order of polynomial transformation
MESH_NUMBER Integer Number of mesh to transform
PC Real Physical coordinate or derivative

13.26 VENT (Vent Parameters)

Table 13.26: For more information see Section 7.3.
VENT (Vent Parameters)

COLOR Character See Section 8.6
CTRL_ID Character ID of Control Function
DEVC_ID Character ID of Controlling Device
FYI Character Comment String (has no effect)
IOR Integer Orientation Index
MASS_FRACTION(N) Real Array Mass Fraction of species N at OPEN vent kg/kg
MB Character Mesh Boundary
OUTLINE Logical Draw vent as outline .FALSE.

PBX, PBY, PBZ Real Coordinate Plane
RGB(3) Integer Triplet See Section 8.6
SPREAD_RATE Real See Section 8.2.6 m/s 0.0
SURF_ID Character Associated Surface ’INERT’

TEXTURE_ORIGIN(3) Real Triplet See Section 8.6.1 m (0.,0.,0.)
TMP_EXTERIOR Real Temperature at OPEN vent ◦C
TRANSPARENCY Real Transparency indicator 1.0
XB(6) Real Sextuplet Min/Max physical coordinates m
XYZ(3) Real Triplet See Section 8.2.6 m

123

13.27 ZONE (Pressure Zone Parameters)

Table 13.27: For more information see Section 8.3.
ZONE (Pressure Zone Parameters)

ID Character IDentifier
LEAK_AREA(N) Real Leakage area to pressure zone N m2 0
XB(6) Real Sextuplet Coordinates of Zone m

124

Chapter 14

Conversion of Old Input Files to FDS 5

Many changes and improvements have been made in the latest release FDS 5. To make an FDS 4 input data
file compatible with the new FDS 5 application, a few changes must be made to the file. This appendix will
point out all the changes that need to be made to convert an FDS 4.x input file to the new FDS 5.x format.

14.1 Numerical Domain Parameters: GRID and PDIM

In previous versions, the computational domain and numerical mesh were specified via lines of the form:

&GRID IBAR=30, JBAR=20, KBAR=10 /
&PDIM XBAR0=0.0, XBAR=3.0, YBAR0=0.0, YBAR=2.0, ZBAR0=0.0, ZBAR=1.0 /

In FDS 5, these two lines are now written via the single line:

&MESH IJK=30,20,10, XB=0.0,3.0,0.0,2.0,0.0,1.0 /

Rules for multiple meshes and mesh transformations still apply.

14.2 Obstructions, Vents, and Holes: OBST, VENT, and HOLE

The syntax for these lines is fairly similar to past versions, with the following exceptions:

• For a VENT that spans an entire mesh boundary, CB=’XBAR0’ is now MB=’XMIN’. The character string
’XBAR’ is now ’XMAX’. The same applies for the y and z coordinate parameters.

• Control parameters like T_ACTIVATE, HEAT_REMOVE, etc., are now consolidated into DEVC_ID and
CTRL_ID. In brief, any change to an obstruction, vent, or hole is tied to a specific device or control
function. See Sections 11.1 and 11.5 for details.

14.3 Surface Parameters: SURF

The most significant change to the input file format has been splitting of the SURF line. In past versions, the
SURF namelist group contained all the information about a particular boundary type – its material properties,
color, thickness, and so on. However, in FDS 5, solid boundaries can now consist of multiple layers of
materials, making the old SURF line too cumbersome to specify. Instead, there is a new namelist group
called MATL that just contains the properties of a given material. What used to be

125

&SURF ID = 'BRICK WALL'
RGB = 0.6,0.2,0.2
KS = 0.69
C_P = 0.84
DENSITY = 1600.
BACKING = 'EXPOSED'
THICKNESS = 0.20 /

is now given by two input lines:

&MATL ID = 'BRICK'
CONDUCTIVITY = 0.69
SPECIFIC_HEAT = 0.84
DENSITY = 1600. /

&SURF ID = 'BRICK WALL'
MATL_ID = 'BRICK'
RGB = 166,41,41
BACKING = 'EXPOSED'
THICKNESS = 0.20 /

The surface is still specified the same way as before, for example:

&OBST XB=0.1, 5.0, 1.0, 1.2, 0.0, 1.0, SURF_ID='BRICK WALL' /

Notice the change in the names of the thermal properties KS and C_P to CONDUCTIVITY and SPECIFIC_HEAT,
respectively. Notice that the color RGB is now specified via integers between 0 and 255, instead of real num-
bers between 0.0 and 1.0. Better yet, just use the COLOR Table 8.1.

14.4 Reaction Parameters: REAC

For most applications, the specification of the combustion reaction has become easier. In past versions, you
needed to specify the fuel, its molecular weight, soot and/or CO yields, and the ideal stoichiometry of the
reaction:

&REAC ID = 'PROPANE'
FYI = 'C_3 H_8'
MW = 44.
SOOT_YIELD = 0.01
NU_O2 = 5.
NU_CO2 = 3.
NU_H2O = 4. /

Now, you just need to describe the composition of the fuel molecule and any non-ideal product yield. FDS
5 computes what it needs based on this information.

&REAC ID = 'PROPANE'
SOOT_YIELD = 0.01
C = 3.
H = 8. /

126

14.5 Device Parameters: SPRK, SMOD, HEAT, THCP

Past versions of FDS had a variety of ways to specify devices. For example, a sprinkler was specified via a
line of the form:

&SPRK XYZ=4.5,6.7,3.6, MAKE='Acme_K-17', LABEL='spk_34' /

which located the sprinkler at XYZ and indicated that the sprinkler’s properties were listed in a file called
Acme_K-17.spk. Smoke and heat detectors were specified via lines of the form:

&SMOD XYZ=4.5,6.7,3.6, LENGTH=2.6, ACTIVATION_OBSCURATION=1.4, LABEL='sd_34' /
&HEAT XYZ=4.5,6.7,3.6, RTI=45., ACTIVATION_TEMPERATURE=74., LABEL='hd_39' /

In FDS 5, these devices are all specified in the same way:

&PROP ID='Acme_K-17', QUANTITY='SPRINKLER LINK TEMPERATURE', RTI=148., C_FACTOR=0.7,
ACTIVATION_TEMPERATURE=74., PART_ID='water drops', FLOW_RATE=189.3,
DROPLET_VELOCITY=10., SPRAY_ANGLE=30.,80. /

&DEVC ID='spk_34', XYZ=4.5,6.7,3.6, PROP_ID='Acme_K-17' /

Point output via “thermocouples” (THCPs) are now given by “devices” (DEVCs):

&DEVC XYZ=0.7,0.9,2.1, QUANTITY='WALL_TEMPERATURE', IOR=-2, ID='probe_2' /

The syntax of the old THCP namelist group is almost the same. Just swap DEVC for THCP, and change LABEL
to ID. In FDS 5, any input record is identified via its ID.

127

128

Part III

Sample Cases and Verification

129

Chapter 15

Forms of Verification

ASTM E 1355 [13] outlines methods to evaluate the mathematical and numerical robustness of deterministic
fire models. This process, often referred to as model verification, ensures the accuracy of the numerical solu-
tion of the governing equations. The methods include comparison with analytical solutions, code checking,
and numerical tests.

15.1 Comparison with Analytical Solutions

Most complex combustion processes, including fire, are turbulent and time-dependent. There are no closed-
form mathematical solutions for the fully-turbulent, time-dependent Navier-Stokes equations. CFD provides
an approximate solution for the non-linear partial differential equations by replacing them with discretized
algebraic equations that can be solved using a powerful computer. While there is no general analytical
solution for fully-turbulent flows, certain sub-models address phenomenon that do have analytical solutions,
for example, one-dimensional heat conduction through a solid. These analytical solutions can be used to
test sub-models within a complex code such as FDS. The developers of FDS routinely use such practices
to verify the correctness of the coding of the model [14, 15]. Such verification efforts are relatively simple
and routine and the results may not always be published nor included in the documentation. Examples of
routine analytical testing include:

• The radiation solver has been verified with scenarios where simple objects, like cubes or flat plates, are
positioned in simple, sealed compartments. All convective motion is turned off, the object is given a
fixed surface temperature and emissivity of one (making it a black body radiator). The heat flux to the
cold surrounding walls is recorded and compared to analytical solutions. These studies help determine
the appropriate number of solid angles to be set as the default.

• Solid objects are heated with a fixed heat flux, and the interior and surface temperatures as a function of
time are compared to analytical solutions of the one-dimensional heat transfer equation. These studies
help determine the number of nodes to use in the solid phase heat transfer model. Similar studies are
performed to check the pyrolysis models for thermoplastic and charring solids.

• Early in its development, the hydrodynamic solver that evolved to form the core of FDS was checked
against analytical solutions of simplified fluid flow phenomena. These studies were conducted at the
National Bureau of Standards (NBS)1 by Rehm, Baum and co-workers [16, 17, 18, 19]. The emphasis
of this early work was to test the stability and consistency of the basic hydrodynamic solver, especially

1The National Institute of Standards and Technology (NIST) was formerly known as the National Bureau of Standards.

131

the velocity-pressure coupling that is vitally important in low Mach number applications. Many numer-
ical algorithms developed up to that point in time were intended for use in high-speed flow applications,
like aerospace. Many of the techniques adopted by FDS were originally developed for meteorologi-
cal models, and as such needed to be tested to assess whether they would be appropriate to describe
relatively low-speed flow within enclosures.

• A fundamental decision made by Rehm and Baum early in the FDS development was to use a direct
(rather than iterative) solver for the pressure. In the low Mach number formulation of the Navier-Stokes
equations, an elliptic partial differential equation for the pressure emerges, often referred to as the Pois-
son equation. Most CFD methods use iterative techniques to solve the governing conservation equations
to avoid the necessity of directly solving the Poisson equation. The reason for this is that the equation
is time-consuming to solve numerically on anything but a rectilinear grid. Because FDS is designed
specifically for rectilinear grids, it can exploit fast, direct solvers of the Poisson equation, obtaining the
pressure field with one pass through the solver to machine accuracy. FDS employs double-precision
(8 byte) arithmetic, meaning that the relative difference between the computed and the exact solution
of the discretized Poisson equation is on the order of 10−12. The fidelity of the numerical solution of
the entire system of equations is tied to the pressure/velocity coupling because often simulations can
involve hundreds of thousands of time steps, with each time step consisting of two solutions of the Pois-
son equation to preserve second-order accuracy. Without the use of the direct Poisson solver, build-up
of numerical error over the course of a simulation could produce spurious results. Indeed, an attempt
to use single-precision (4 byte) arithmetic to conserve machine memory led to spurious results simply
because the error per time step built up to an intolerable level.

15.2 Code Checking

An examination of the structure of the computer program can be used to detect potential errors in the nu-
merical solution of the governing equations. The coding can be verified by a third party either manually or
automatically with profiling programs to detect irregularities and inconsistencies [13].

At NIST and elsewhere, FDS has been compiled and run on computers manufactured by IBM, Hewlett-
Packard, Sun Microsystems, Digital Equipment Corporation, Apple, Silicon Graphics, Dell, Compaq, and
various other personal computer vendors. The operating systems on these platforms include Unix, Linux,
Microsoft Windows, and Mac OSX. Compilers used include Lahey Fortran, Digital Visual Fortran, Intel
Fortran, IBM XL Fortran, HPUX Fortran, Forte Fortran for SunOS, the Portland Group Fortran, and several
others. Each combination of hardware, operating system and compiler involves a slightly different set of
compiler and run-time options and a rigorous evaluation of the source code to test its compliance with
the Fortran 90 ISO/ANSI standard [20]. Through this process, out-dated and potentially harmful code is
updated or eliminated, and often the code is streamlined to improve its optimization on the various machines.
However, simply because the FDS source code can be compiled and run on a wide variety of platforms does
not guarantee that the numerics are correct. It is only the starting point in the process because it at least rules
out the possibility that erratic or spurious results are due to the platform on which the code is running.

Beyond hardware issues, there are several useful techniques for checking the FDS source code that
have been developed over the years. One of the most best ways is to exploit symmetry. FDS is filled with
thousands of lines of code in which the partial derivatives in the conservation equations are approximated
as finite differences. It is very easy in this process to make a mistake. Consider, for example, the finite
difference approximation of the thermal diffusion term in the i jkth cell of the three-dimensional grid:

(∇ · k∇T)i jk ≈ 1
δx

[
ki+ 1

2 , jk
Ti+1, jk−Ti jk

δx
− ki− 1

2 , jk
Ti jk−Ti−1, jk

δx

]
+

132

1
δy

[
ki, j+ 1

2 ,k
Ti, j+1,k−Ti jk

δy
− ki, j− 1

2 ,k
Ti jk−Ti, j−1,k

δy

]
+

1
δ z

[
ki j,k+ 1

2

Ti j,k+1−Ti jk

δ z
− ki j,k− 1

2

Ti jk−Ti j,k−1

δ z

]
which is written as follows in the Fortran source code:

DTDX = (TMP(I+1,J,K)-TMP(I,J,K))*RDXN(I)
KDTDX(I,J,K) = .5*(KP(I+1,J,K)+KP(I,J,K))*DTDX
DTDY = (TMP(I,J+1,K)-TMP(I,J,K))*RDYN(J)
KDTDY(I,J,K) = .5*(KP(I,J+1,K)+KP(I,J,K))*DTDY
DTDZ = (TMP(I,J,K+1)-TMP(I,J,K))*RDZN(K)
KDTDZ(I,J,K) = .5*(KP(I,J,K+1)+KP(I,J,K))*DTDZ

DELKDELT = (KDTDX(I,J,K)-KDTDX(I-1,J,K))*RDX(I) +
. (KDTDY(I,J,K)-KDTDY(I,J-1,K))*RDY(J) +
. (KDTDZ(I,J,K)-KDTDZ(I,J,K-1))*RDZ(K)

This is one of the simpler constructs because the pattern that emerges within the lines of code make it fairly
easy to check. However, a mis-typing of an I or a J, a plus or a minus sign, or any of a hundred different
mistakes can cause the code to fail, or worse produce the wrong answer. A simple way to eliminate many of
these mistakes is to run simple scenarios that have perfectly symmetric initial and boundary conditions. For
example, put a hot cube in the exact center of a larger cold compartment, turn off gravity, and watch the heat
diffuse from the hot cube into the cold gas. Any simple error in the coding of the energy equation will show
up almost immediately. Then, turn on gravity, and in the absence of any coding error, a perfectly symmetric
plume will rise from the hot cube. This checks both the coding of the energy and the momentum equations.
Similar checks can be made for all of the three dimensional finite difference routines. So extensive are these
types of checks that the release version of FDS has a routine that generates a tiny amount of random noise
in the initial flow field so as to eliminate any false symmetries that might arise in the numerical solution.

The process of adding new routines to FDS is as follows: typically the routine is written by one person
(not necessarily a NIST staffer) who takes the latest version of the source code, adds the new routine, and
writes a theoretical and numerical description for the FDS Technical Reference Guide, plus a description
of the input parameters for the FDS User’s Guide. The new version of FDS is then tested at NIST with
a number of benchmark scenarios that exercise the range of the new parameters. Provisional acceptance
of the new routine is based on several factors: (1) it produces more accurate results when compared to
experimental measurement, (2) the theoretical description is sound, and (3) any empirical parameters are
obtainable from the open literature or standard bench-scale apparatus. If the new routine is accepted, it is
added to a test version of the software and evaluated by external users and/or NIST grantees whose research
is related to the subject. Assuming that there are no intractable issues that arise during the testing period,
the new routine eventually becomes part of the release version of FDS.

Even with all the code checking performed at NIST, it is still possible for errors to go unnoticed. One
remedy is the fact that the source code for FDS is publicly released. Although it consists of on the order
of 10,000 lines of Fortran statements, various researchers outside of NIST have been able to work with
it, add enhancements needed for very specific applications or for research purposes, and report back to the
developers bugs that have been detected. The source code is organized into 14 separate files, each containing
subroutines related to a particular feature of the model, like the mass, momentum, and energy conservation
equations, sprinkler activation and sprays, the pressure solver, etc. The lengthiest routines are devoted to
input, output and initialization. Most of those working with the source code do not concern themselves with
these lengthy routines but rather focus on the finite-difference algorithm contained in a few of the more

133

important files. Most serious errors are found in these files, for they contain the core of the algorithm. The
external researchers provide feedback on the organization of the code and its internal documentation, that is,
comments within the source code itself. Plus, they must compile the code on their own computers, adding to
its portability. Some of the work performed by researchers who have modified the source code is discussed
in Volume 2. However, most of the routine error reports are via electronic mail and are undocumented.
Most of the current error reports involve routines that are not frequently used by the FDS developers. For
example, the opening of compartment doors or the breaking of windows, especially upon activation of a
heat detector, is a feature of FDS commonly used in the fire protection engineering community but less so
at NIST. As a result, numerous reports have been made over the years in which a complicated sequence of
events prescribed by the user is not carried out by the program. The errors are easy to fix, but the number
of possible permutations of events make it difficult to check them all. Another problem reported by users
are scenarios that extend the parameter range beyond which the model was originally conceived. Walls
made of foam, fires in refrigerators, gas leaks, fuel spills, etc., are just some of the phenomena that users
have attempted to model but have run into difficulty because the model parameters either have never been
exercised (e.g. very low thermal conductivities) or are not allowed (e.g. temperatures below ambient). These
reports by the users help to improve and extend the use of the model.

15.3 Numerical Tests

Numerical techniques used to solve the governing equations within a model can be a source of error in
the predicted results. The hydrodynamic model within FDS is second-order accurate in space and time.
This means that the error terms associated with the approximation of the spatial partial derivatives by finite
differences is of the order of the square of the grid cell size, and likewise the error in the approximation of
the temporal derivatives is of the order of the square of the time step. As the numerical grid is refined, the
“discretization error” decreases, and a more faithful rendering of the flow field emerges. The issue of grid
sensitivity is extremely important to the proper use of the model and will be taken up in the next chapter.

A common technique of testing flow solvers is to systematically refine the numerical grid until the
computed solution does not change, at which point the calculation is referred to as a Direct Numerical
Solution (DNS) of the governing equations. For most practical fire scenarios, DNS is not possible on
conventional computers. However, FDS does have the option of running in DNS mode, where the Navier-
Stokes equations are solved without the use of sub-grid scale turbulence models of any kind. Because the
basic numerical method is the same for LES and DNS, DNS calculations are a very effective way to test the
basic solver, especially in cases where the solution is steady-state. Throughout its development, FDS has
been used in DNS mode for special applications. For example, FDS (or its core algorithms) have been used at
a grid resolution of roughly 1 mm to look at flames spreading over paper in a microgravity environment [21,
22, 23, 24, 25, 26], as well as "g-jitter" effects aboard spacecraft [27]. Simulations have been compared
to experiments performed aboard the US Space Shuttle. The flames are laminar and relatively simple in
structure, and the comparisons are a qualitative assessment of the model solution. Similar studies have been
performed comparing DNS simulations of a simple burner flame to laboratory experiments [28]. Another
study compared FDS simulations of a counterflow diffusion flames to experimental measurements and the
results of a one-dimensional multi-step kinetics model [29].

Early work with the hydrodynamic solver compared two-dimensional simulations of gravity currents
with salt-water experiments [30]. In these tests, the numerical grid was systematically refined until almost
perfect agreement with experiment was obtained. Such convergence would not be possible if there were a
fundamental flaw in the hydrodynamic solver.

134

Chapter 16

Verification Test Suite

This Chapter contains a set of relatively simple calculations that are used to verify the major physical algo-
rithms within FDS. That is, these samples confirm that the equations have been properly coded. They do not
imply that the equations actually represent some physical phenomena. That is part of the Validation process.
Note that the names in parentheses in each section header correspond to the names of the input files for the
cases.

16.1 Hydrodynamics

There are no analytical solutions of the fully-turbulent Navier-Stokes equations, but it is possible to simulate
well known fluid flows to determine if the basic fluid flow solver in FDS is working properly.

16.1.1 Axially-Symmetric Helium Plume (helium_2d)

The governing equations solved in FDS are written in terms of a three dimensional Cartesian coordinate sys-
tem. However, a two dimensional Cartesian or two dimensional cylindrical (axially-symmetric) calculation
can be performed by setting the number of cells in the y direction to 1. An example of an axially-symmetric
helium plume is shown here, along with the input file:

&HEAD CHID='helium_2d',TITLE='Axisymmetric Helium Plume' /
&MESH IJK=72,1,144 XB=0.00,0.08,-0.001,0.001,0.00,0.16, CYLINDRICAL=.TRUE. /
&TIME TWFIN=5.0 /
&MISC DNS=.TRUE., ISOTHERMAL=.TRUE. /
&SPEC ID='HELIUM' /
&SURF ID='HELIUM', VEL=-0.673, MASS_FRACTION(1)=1.0, TAU_MF(1)=0.3 /
&VENT MB='XMAX' ,SURF_ID='OPEN' /
&VENT MB='ZMAX' ,SURF_ID='OPEN' /
&OBST XB= 0.0,0.036,-0.001,0.001,0.00,0.02, SURF_IDS='HELIUM','INERT','INERT' /
&DUMP PLOT3D_QUANTITY(1)='PRESSURE',PLOT3D_QUANTITY(5)='HELIUM' /
&SLCF PBY=0.000,QUANTITY='DENSITY', VECTOR=.TRUE. /
&SLCF PBY=0.000,QUANTITY='HELIUM' /
&TAIL /

135

16.1.2 Pressure Rise in a Sealed Enclosure (pressure_rise)

This example tests several basic features of FDS. A narrow channel, 3 m long, 0.002 m wide, and 1 m tall, has
air injected at a rate of 0.1 kg/m2/s over an area of 0.2 m by 0.002 m for 60 s, with a linear ramp-up and ramp-
down over 1 s. The total mass of air in the channel at the start is 0.00718 kg. The total mass of air injected
is 0.00244 kg. The domain is assumed two-dimensional, the walls are adiabatic, and STRATIFICATION is
set to .FALSE.. The domain is divided into three meshes each 1 m long with identicle gridding. We expect
the pressure, temperature and density to rise during the 60 s injection period. Afterwards, the temperature,
density, and pressure should remain constant. A hand computation is performed at 10 second intervals
using the First Law of Thermodynamics and the equation of state. The figures below show the results of
this verification case. As is seen denisty matches exactly showing that FDS is injecting the appropriate
quantity of mass and is properly initializing the domain. Pressure rise and temperature rise; however, are
overpredicted by 3 % and 12 % respectively. Also a slight drop in pressure is seen from 60 s to 120 s,
indicating that the current implementation adiabatic boundary condition has a slight error in it.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

Time (s)

T
em

p
er

at
u

re
 R

is
e

(K
)

FDS Mesh 1 FDS Mesh 2 FDS Mesh 3 Hand Calc

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100 120

Time (s)

P
re

ss
u

re
 R

is
e

(P
a)

FDS Mesh 1 FDS Mesh 2 FDS Mesh 3 Hand Calc

1.10

1.20

1.30

1.40

1.50

1.60

1.70

0 20 40 60 80 100 120

Time (s)

D
en

si
ty

 (
kg

/m
3)

FDS Mesh 1 FDS Mesh 2 FDS Mesh 3 Hand Calc

136

16.1.3 Leaks and Fans in a Sealed Enclosure (leak_test and leak_test_2)

A new feature of FDS 5 is the idea of a “pressure zone.” Unlike traditional compartment or “zone” fire
models, FDS was not designed under the assumption that there exist rooms connected by doors or ducts.
Rather, the geometry in FDS is completely specified by the user. However, there are features of simpler
models that we want to retain. For example, a leak through a small crack, or the transport of air through a
ventilation duct. In the following example, a simple compartment (3.6 m by 2.4 m by 2.4 m) has a small fan
at one end and one leak under the door at the other end. It is assumed for this example that the compartment
is contained within a larger compartment that is perfectly sealed. The fan draws air into the compartment
from the plenum space, increasing the pressure inside and decreasing it outside. A steady state is achieved
when the volume flow into and out of the compartment falls into balance.

The volume flow rate of the fan is given by the “fan curve”

V̇fan = AductUmax sign(∆pmax−∆p)

√
|∆p−∆pmax|

∆pmax
(16.1)

where ∆p is the difference in pressure and Aduct = 0.16 m2, Umax = 0.1 m/s, and ∆pmax = 1000 Pa. The
volume flow due to the leak is given by:

V̇leak = Aleak

√
2∆p
ρ∞

(16.2)

where Aleak = 0.0001 m2 and ρ∞ = 1.2 kg/m3. After 5 min the pressure difference is 938.2 Pa. The theo-
retical value, obtained by equating the fan and leak volume flow rates and solving for ∆p, is 938.9 Pa. The
slight difference is due to the fact that the solid boundaries within the interior of the computational domain
admit a slight volume flux related to details of the numerical solver.

Just for fun, we add another leak to the compartment, only this time the leak is to the exterior of the
entire computational domain, an infinite void at ambient pressure. Now the fan flow rate ought to balance
the sum of the flow rates from the two leaks. After 5 min, the pressure difference is 935.2 Pa.

The two cases are summarized in the following plots:

Compartment Pressure Rise (leak_test)

Time (s)

0 50 100 150 200 250 300

P
re

ss
ur

e
(P

a)

-1000

-500

0

500

1000

Outside Compartment
Inside Compartment

Compartment Pressure Rise (leak_test_2)

Time (s)

0 50 100 150 200 250 300

P
re

ss
ur

e
(P

a)

-1000

-500

0

500

1000

Outside Compartment
Inside Compartment

137

16.1.4 Two Fans in a Wall (fan_test)

Consider two simple compartments divided by a wall with two fans installed, blowing in opposite directions.

138

16.1.5 Stack Effect (stack_effect)

If the interior temperature of a building is at a different temperature than the surrounding atmosphere, up-
ward or downward air flows within shafts or stairwells connected to the ambient via leakage paths will occur.
This phenomena is known as the stack effect. The stack_effect test case is a 2D simulation of a 304 m tall
building initialized to a temperature of 20 ◦ with the surround ambient temperature initialized to 10 ◦. Two
small openings in the building are defined 2.5 m above the ground floor of the building and 2.5 m below the
roof of the building.

The initial density stratification is defined by assuming a lapse rate of 0 ◦C/m.

ρ0(z) = ρ∞ e
gW

R0T0
z (16.3)

Applying this to the external and internal locations at the lower and upper vents results in densities of
1.2392, 1.1969, 1.1954, and 1.1546 kg/m3, respectively. FDS computes the same values to within machine
precision. Since the openings in the building are equally spaced over its height, the neutral plane of the
building will be close to its midpoint. The pressure gradient across the building’s wall can be computed as

δP =
WP0g

R0

(
1

Tambient
− 1

Tbuilding

)
h (16.4)

where h is the distance from the neutral plane. Using this pressure gradient in Bernoulli’s equation (and
assuming it remains constant) results in a velocity of 10.09 m/s through the vent. FDS computes a peak
velocity of 10.13 m/s or an error of 0.5 %.

139

16.1.6 Sawtooth (sawtooth)

Sometimes it is desired to have stair-stepped obstructions representing curved or sloped geometry. A concern
is that this may change the flow pattern near the wall. To lessen the impact of stair-stepped boundaries near
the edges of the obstructions, one may specify the option SAWTOOTH=.FALSE. If SAWTOOTH is set to
FALSE, then the velocity boundary conditions will be applied in such a way as to minimize the impact of
the boundaries due to vortices at sharp corners, as shown in the following example:

&OBST XB= 0.00, 0.05,-0.01, 0.01, 0.00, 0.05, SAWTOOTH=.FALSE., COLOR='EMERALD GREEN' /
&OBST XB= 0.05, 0.10,-0.01, 0.01, 0.00, 0.10, SAWTOOTH=.FALSE., COLOR='EMERALD GREEN' /
&OBST XB= 0.10, 0.15,-0.01, 0.01, 0.05, 0.15, SAWTOOTH=.FALSE., COLOR='EMERALD GREEN' /
&OBST XB= 0.15, 0.20,-0.01, 0.01, 0.10, 0.20, SAWTOOTH=.FALSE., COLOR='EMERALD GREEN' /

In the figure below, the top set of obstructions are using the default SAWTOOTH=.TRUE. and the bottom
set of obstructions are using SAWTOOTH=.FALSE. The adjacent obstructions that have SAWTOOTH=.FALSE.
are displayed in Smokeview as one smooth obstruction, shown in green. Notice that as the air moves across
the different sets of obstructions, the air velocity on the bottom set of obstructions is not affected as much
by the vortices.

140

16.2 Combustion

16.2.1 A Simple Under-Ventilated Compartment Fire (door_crack)

This example uses the same simple compartment that was used to test leakage and fan curves in the previous
section. Now, we add a small (160 kW) fire, with the same fan and leak under the door. The compartment
now opens to the atmosphere, not a sealed plenum. We expect a rapid pressure rise in the compartment due
to the effect of the fire and the fan. Initially, the pressure rise is approximately:

d p1

dt
≈ (γ −1)

Q̇
V

+ γ p
V̇
V
≈ 3200 Pa/s ≈ 0.03 atm/s (16.5)

where γ ≈ 1.4, Q̇ = 160,000 W, V = 20.7 m3, and V̇ = 0.016 m3/s. In roughly 150 s, the pressure rises
about 0.6 atm, at which point the fire dies due to lack of oxygen. Then the pressure decreases, and the fan
starts up again (it had stalled due to high pressure in the compartment). The fan, and the leak under the door,
increase the oxygen concentration, at least near these openings, and the fuel-rich gases in the compartment
continue to burn.

Pressure Rise (door_crack)

Time (s)

0 50 100 150 200 250 300

P
re

ss
ur

e
(a

tm
)

0.0

0.2

0.4

0.6

0.8

1.0
Heat Release Rate (door_crack)

Time (s)

0 50 100 150 200 250 300

H
ea

t R
el

ea
se

 R
at

e
(k

W
)

0

50

100

150

200

While this case has a number of interesting physical effects, and it verifiies several features of FDS, it is
very important to note the following:

• Although there is smoke seen flowing backwards out the fan duct, in reality there would have been much
more. Most conventionally built structures will not withstand over-pressures of 0.6 atm without some
sort of relief. The fan and the crack under the door obey simple formulae based on pressure differences,
but these assumptions have limits.

• It is likely that the fire in this scenario would indeed extinguish itself as the oxygen volume fraction
decreased below about 15 %. But, its re-ignition at the door crack and fan opening would depend on the
presence of a spark or hot spot of some sort. FDS continues to flow fuel into the compartment past the
point of local extinction, but the compartment cools. The default combustion algorithm in FDS assumes
that in every grid cell there is a “virtual spark plug” that initiates combustion if the local ratio of fuel
and oxygen are appropriate.

141

16.3 Radiation

16.3.1 Radiation inside a box (radiation_in_a_box)

This verification case tests the computation of three-dimensional configuration factor Φ inside a cube box
with one hot wall and five cold (0 K) walls. An overview of the test geometry is shown here:

(y,z)

dAH2

cH3

H4

H1

c

a

b

The configuration factors are calculated at the diagonal of the cold wall opposite to the hot wall. The exact
values of the configuration factor from plane element dA to parallel rectangle H are calculated using the
analytical solution [31]

(y,z) ΦHdA (y,z) ΦHdA

0.025 0.1457 0.275 0.2135
0.075 0.1603 0.325 0.2233
0.125 0.1748 0.375 0.2311
0.175 0.1888 0.425 0.2364
0.225 0.2018 0.475 0.2391

Different variations of the case include the mesh resolution (203 and 1003 cells) and the number of radiation
angles (50, 100, 300, 1000, 2000). The exact and FDS results are shown here:

Spatial resolution 20x20x20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Position z

Φ
H

dA

Exact
2000
1000
300
100
50

Spatial resolution 100x100x100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Position z

Φ
H

dA

Exact
2000
1000
300
100
50

142

16.3.2 Radiation from a plane layer (radiation_plane_layer)

This case tests the computation of three-dimensional radiation from a homogenous, infinitely wide layer of
radiating material. The temperature of the layer is 1273.15 K and absorption coefficients are varied. The
thickness of the layer is fixed at 1.0 m, and the optical depth is 1.0κ . Wall temperatures are set to 0 K. The
results are compared against the exact solution S(τ) presented in [32]

S(τ) = Sb [1−2E3(τ)] (16.6)

where Sb = σT 4 is the black-body heat flux from the radiating plane and E3(τ) is the exponential integral
function (order 3) of optical depth τ .

The FDS results are computed at two mesh resolutions in the x-direction (I = 20 and I = 150). For I=20,
both one-band and six-band versions are included to test the correct integration of heat fluxes over multiple
bands. For I=20, 2D-versions are also computed (J=1). A special case with KAPPA0 = 0 and an opposite
wall temperature of 1273.15 K is computed to test the wall heat flux computation. The exact values and
FDS predictions of the wall heat fluxes are given here:

τ S(τ) FDS (I=20,J=20) FDS (I=20,J=1) FDS (I=150)
1 band 6 bands 1 band 6 bands 1 band

0 148.9709 148.9709 148.4037 147.9426 147.3793 148.9709
0.01 2.8970 2.9180 2.9069 2.8364 2.8256 2.9258
0.1 24.9403 25.5501 25.4529 25.1078 25.0122 25.7045
0.5 82.9457 83.1309 82.8144 84.3719 84.0506 84.0264
1.0 116.2891 115.4051 114.9656 117.801 117.353 116.7751
10. 148.9698 148.9616 148.3947 148.9677 148.4005 148.9695

143

16.4 Solid Phase Phenomena

This section contains examples that test the one-dimensional heat conduction solver in FDS, along with
those that include pyrolysis.

16.4.1 Simple Heat Conduction Through a Solid Slab (heat_conduction)

Analytical solutions of transient, one-dimensional heat conduction through a slab can be found in Refs. [33]
and [34]. Four cases are examined here. In each, a slab of thickness L = 0.1 m is exposed on one face to
an air temperature of Tg = 120 ◦C. The other face is insulated (adiabatic). The convective heat transfer from
the gas to the slab is q̇′′c = h(Tg−Ts), where h is constant, and Ts is the slab face temperature. No thermal
radiation is included.

Case k ρ c h Bi
(W/m/K) (kg/m3) (kJ/kg/K) (W/m2/K) hL/k

A 0.1 100 1 100 100
B 0.1 100 1 10 10
C 1.0 1000 1 10 1
D 10.0 10000 1 10 0.1

heat_conduction_a

Time (s)

0 500 1000 1500 2000

T
em

pe
ra

tu
re

 (
C

)

0

20

40

60

80

100

120

140
heat_conduction_b

Time (s)

0 2000 4000 6000 8000 10000 12000 14000

T
em

pe
ra

tu
re

 (
C

)

0

20

40

60

80

100

120

140

heat_conduction_c

Time (s)

0 10000 20000 30000 40000 50000

T
em

pe
ra

tu
re

 (
C

)

0

20

40

60

80

100

120

140
heat_conduction_d

Time (s)

0 10000 20000 30000 40000 50000

T
em

pe
ra

tu
re

 (
C

)

10

20

30

40

50

60

70

144

16.4.2 Temperature-Dependent Thermal Properties (heat_conduction_kc)

This example demonstrates the 1-D heat conduction in cartesian, cylindrical and spherical geometries with
temperature-dependent thermal properties. The reference results were computed using HEATING (ver-
sion 7.3), a multi-dimensional, finite-difference, general purpose heat transfer model [35]. In cartesian and
cylindrical cases, the results have also been verified using a commercial finite-element solver, ABAQUS.

The sample of homogenous material is initially at 0 ◦C and at t > 0 exposed to a gas at 700 ◦C. A
fixed heat transfer coefficient of 10 W/Km2 is assumed. The density of the material is 10000 kg/m3. The
conductivity and specific heat are functions of temperature with the following values: k(0) = 0.10 W/m/K,
k(200) = 0.20 W/m/K, c(0) = 1.0 kJ/kg/K, c(100) = 1.2 kJ/kg/K, c(200) = 1.0 kJ/kg/K. The thickness
(radius) of the sample is 0.01 m. In the cartesian case, the back surface of the material is exposed to a gas
at 0 ◦C. In the Figure below, the solid lines are FDS results and the open symbols are the HEATING results.
An example input with cylindrical geometry looks like:

&MATL ID='MAT_1'
EMISSIVITY = 0.0
CONDUCTIVITY_RAMP='K_RAMP'
SPECIFIC_HEAT_RAMP = 'C_RAMP'
DENSITY=10000. /

&RAMP ID = 'K_RAMP' T=0, F= 0.10 /
&RAMP ID = 'K_RAMP' T=100, F= 0.15 /
&RAMP ID = 'K_RAMP' T=200, F= 0.20 /
&RAMP ID = 'C_RAMP' T=0, F= 1.00 /
&RAMP ID = 'C_RAMP' T=100, F= 1.20 /
&RAMP ID = 'C_RAMP' T=200, F= 1.00 /

&SURF ID='SLAB'
STRETCH_FACTOR = 1.0
GEOMETRY = 'CYLINDRICAL'
MATL_ID='MAT_1'
THICKNESS=0.01 /

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

220

Time (s)

∆T
 (K

)

Cartesian
Cylindrical
Spherical

EXPOSED SURFACE

UNEXPOSED SURFACE / CENTER

145

16.4.3 A Simple Two-Step Pyrolysis Example (two_step_solid_reaction)

Consider the set of ordinary differential equations describing the mass fraction of three components of a
solid material undergoing thermal degradation:

dYa

dt
= −KabYa

dYb

dt
= KabYa−KbcYb (16.7)

dYc

dt
= KbcYa

where the mass fraction of component a is 1 initially. The analytical solution is [?]

Ya(t) = exp(−Kabt)

Yb(t) =
Kab

Kbc−Kab
exp(−Kabt)− exp(−Kbct) (16.8)

Yc(t) = [Kab(1− exp(−Kbct))+Kbc ∗ (exp(−Kabt)−1)]/(Kab−Kbc) (16.9)

The analytical and numerical solution for the parameters Kab = 0.389 and Kbc = 0.262 are shown here:

146

16.4.4 Wall Internal Radiation (wall_internal_radiation)

The radiative flux inside the walls is computed using a two-flux model. In this case, the accuracy of the two-
flux model is tested in the computation of emissive flux from a 0.10 m thick, homogenous layer of material
at temperature of 1273.15 K and at ambient temperature of 10 K. The absorption coefficient is varied to
cover a range [0.01, 10] of optical depths.

The exact solutions for radiative flux are the analytical solutions of plane layer emission [32]

S(τ) = Sb [1−2E3(τ)] (16.10)

where Sb = σT 4 is the black-body heat flux from the radiating plane and E3(τ) is the exponential integral
function (order 3) of optical depth τ . The exact solutions and FDS results are shown below

τ S(τ)(kW/m2) FDS (kW/m2)
0.01 2.897 2.950
0.1 24.94 26.98
0.5 82.95 93.90
1.0 116.3 128.4
10. 149.0 149.0

147

16.4.5 A Liquid Pool Fire (ethanol_pan)

In this example, a steel pan (0.7 m by 0.8 m) is filled with a thin layer (about 5 L, 9 mm) of ethanol, which
burns out within about 10 min. This case tests a number of features – burning liquids, multiple layers of
solids/liquids, and, most importantly, the absorption coefficient of the liquid. The pyrolysis models in FDS
prior to version 5 assumed that radiative feedback from the fire and hot gases within a compartment were
absorbed at the surface. In reality, this energy is absorbed in depth; the extent of which is characterized by
the absorption coefficient, κ . This is a property of the liquid, as well as the gaseous vapors. FDS now uses
an absorption coefficient for both the gas and solid/liquid phases. Here are the input lines that describe the
properties of ethanol, and the pan in which it lies:

&MATL ID = 'ETHANOL LIQUID'
EMISSIVITY = 1.0
NU_FUEL =0.97
HEAT_OF_REACTION=880.
CONDUCTIVITY=0.17
SPECIFIC_HEAT= 2.45
DENSITY= 787.
ABSORPTION_COEFFICIENT = 40.
BOILING_TEMPERATURE=76. /

&SURF ID='ETHANOL POOL'
FYI = '4 kg of ethanol in a 0.7 m x 0.8 m pan'
COLOR = 'YELLOW'
MATL_ID = 'ETHANOL LIQUID','STEEL','CONCRETE'
THICKNESS=0.0091,0.001,0.05
TMP_INNER = 18. /

The results of three calculations are shown below, each identical except for the value of the
ABSORPTION_COEFFICIENT. The results of a single experiment are also shown, courtesy of Ian Thomas,
Victoria University, Australia [36].

148

16.4.6 A Thermoplastic (thermoplastic)

This example just exercises the solid phase algorithm in FDS. Essentially, the gas phase is shut off except
for the imposition of a 50 kW/m2 “virtual” heat flux. The solid in this example is a slab of plastic, similar
in composition to PMMA.

&MATL ID='PMMA'
CONDUCTIVITY=0.25
SPECIFIC_HEAT=1.0
DENSITY=500.
N_REACTIONS=1
NU_FUEL=1.
HEAT_OF_REACTION=1578.
HEAT_OF_COMBUSTION=25200.
REFERENCE_TEMPERATURE=330. /

&SURF ID='PMMA SLAB'
COLOR='BLACK'
MATL_ID='PMMA'
THICKNESS=0.025
EXTERNAL_FLUX=50. / External Flux is ONLY for this simple demo exercise

The material undergoes only one reaction – the conversion of solid to gaseous fuel vapor. In this case,
the HEAT_OF_REACTION is essentially the latent heat of vaporization. The REFERENCE_TEMPERATURE

indicates that the reaction is to occur at a (default) rate of 0.1 s−1 at 330 ◦C. The HEAT_OF_COMBUSTION
refers to the combustion of the gaseous fuel vapor, which does not occur in this example.

The figures above show that both the temperature and burning rate of the thermoplastic are more or less
constant over the burning phase. The slab “burns away” after about 10 min.

149

16.4.7 A Charring Solid (charring_solid)

This example just exercises the solid phase algorithm in FDS. Essentially, the gas phase is shut off except
for the imposition of a 50 kW/m2 “virtual” heat flux. The reaction mechanism is fairly complicated, as it
includes various solids like cellulose, char, and ash. Each are input via MATL lines as follows:

&SURF ID='SPRUCE'
STRETCH_FACTOR = 1.
CELL_SIZE_FACTOR = 0.5
MATL_ID(1,1:3) = 'CELLULOSE','WATER','LIGNIN'
MATL_MASS_FRACTION(1,1:3) = 0.70,0.1,0.20
MATL_ID(2,1) = 'CASI'
THICKNESS(1:2) = 0.01,0.01
EXTERNAL_FLUX = 50. /

&MATL ID = 'CELLULOSE'
CONDUCTIVITY_RAMP = 'k_cell'
SPECIFIC_HEAT = 2.3
DENSITY = 400.
N_REACTIONS = 1
A = 2.8E19
E = 2.424E5
HEAT_OF_REACTION = 0.
NU_RESIDUE = 1.0
RESIDUE = 'ACTIVE'/

&MATL ID = 'ACTIVE'
EMISSIVITY = 1.0
CONDUCTIVITY_RAMP = 'k_cell'
SPECIFIC_HEAT = 2.3
DENSITY = 400.
N_REACTIONS = 2
A(1:2) = 1.3E10, 3.23E14
E(1:2) = 1.505E5, 1.965E5
HEAT_OF_REACTION(1:2) = 418., 418.
NU_RESIDUE(1:2) = 0.35, 0.0
NU_FUEL(1:2) = 0.65, 1.0
RESIDUE(1) = 'CHAR' /

&MATL ID = 'WATER'
EMISSIVITY = 1.0
DENSITY = 1000.
CONDUCTIVITY = 0.6
SPECIFIC_HEAT = 4.19
N_REACTIONS = 1
A = 1E20
E = 1.62E+05
NU_WATER = 1.0
HEAT_OF_REACTION = 2260. /

&MATL ID = 'CASI'
CONDUCTIVITY_RAMP = 'k_CASI'
DENSITY = 200.
SPECIFIC_HEAT = 1.0 /

&MATL ID = 'LIGNIN'
EMISSIVITY = 1.0
DENSITY = 550.
CONDUCTIVITY = 0.1
SPECIFIC_HEAT = 1.1 /

&MATL ID = 'CHAR'
EMISSIVITY = 1.0
DENSITY = 140.
CONDUCTIVITY_RAMP = 'k_char'
SPECIFIC_HEAT = 1.1 /

150

&RAMP ID='k_cell', T= 20., F=0.15 /
&RAMP ID='k_cell', T=500., F=0.29 /

&RAMP ID='k_char', T= 20., F=0.08 /
&RAMP ID='k_char', T=900., F=0.25 /

&RAMP ID='k_CASI', T= 20., F=0.06 /
&RAMP ID='k_CASI', T=400., F=0.25 /

Note the edition of the parameter EXTERNAL_FLUX on the SURF line. This produces a 50 kW/m2 flux on
the sample, without any additional input lines in the file. It is just to test the solid phase model and should
not be copied into an actual fire simulation.

The figures below show the surface temperature and burning rate of the wood under the 50 kW/m2

external heat flux. The burning rate peaks at the start of the simulation, decreases throughout the burning
phase, and then peaks again at the end due to presence of an external backing material. The initial peak is
typical of char-forming solids.

151

16.4.8 Testing the “Burn-Away” Feature (box_burn_away)

This is a silly example of a solid block of “foam” that is ignited and burns until it is completely consumed.
The properties of the block of foam were chosen simply to assure a quick calculation. The objective of the
test is to check that the integrated heat release rate is consistent with the material properties of the block.
The block is 0.4 m on a side, with a density of 20 kg/m3. Its heat of combustion is 20000 kJ/kg. The ignitor
is a 10 kW burner placed beside the block. The integrated heat release rate for a 120 s calculation ought to
be:

(0.4)3 m3×20 kg/m3×20000 kJ/kg+10 kW×120 s = 26.8 MJ (16.11)

152

16.4.9 A Couch Fire (couch)

In residential fires, upholstered furniture makes up a significant fraction of the combustible load. A single
couch can generate several megawatts of energy and sometimes lead to compartment flashover. Modeling a
couch fire requires a simplification of its structure and materials. At the very least, we want the upholstery
to be described as fabric covering foam:

&MATL ID = 'FABRIC'
FYI = 'Properties completely fabricated'
SPECIFIC_HEAT = 1.0
CONDUCTIVITY = 0.1
DENSITY = 100.0
N_REACTIONS = 1
NU_FUEL = 1.
REFERENCE_TEMPERATURE = 350.
HEAT_OF_REACTION = 3000.
HEAT_OF_COMBUSTION = 15000. /

&MATL ID = 'FOAM'
FYI = 'Properties completely fabricated'
SPECIFIC_HEAT = 1.0
CONDUCTIVITY = 0.05
DENSITY = 40.0
N_REACTIONS = 1
NU_FUEL = 1.
REFERENCE_TEMPERATURE = 350.
HEAT_OF_REACTION = 1500.
HEAT_OF_COMBUSTION = 30000. /

&SURF ID = 'UPHOLSTERY'
FYI = 'Properties completely fabricated'
COLOR = 'PURPLE'
BURN_AWAY = .TRUE.
MATL_ID(1:2,1) = 'FABRIC','FOAM'
THICKNESS(1:2) = 0.002,0.1
PART_ID = 'smoke' /

Both the fabric and the foam decompose into fuel gases via single-step reactions. The fuel gases from each
have different composition and heats of combustion. FDS automatically adjusts the mass loss rate of each so
that the “effective” fuel gas is that specified by the user on the REAC line. The attribute BURN_AWAY forces
FDS to break up the couch into individual cell-sized blocks that will disappear from the calculation as soon
as the fuel is exhausted. The surface is specified as consisting of two layers, with a thickness of 2 mm for
the FABRIC and 10 cm for the FOAM. The 10 cm is chosen to be the same as the mesh cell size.

153

16.4.10 Flame Spread along a Cable Tray (cable_tray)

A common combustible in industrial settings are power, control, and instrument cables. The cables may
be bundled in a variety of conduits; the most common of which is a ladder-like “tray.” From the point of
view of FDS, the pile of cables in a tray is a composite of a variety of plastics, insulators, and metal, usually
copper. Here is one way to describe a tray of cables:

&MATL ID = 'PLASTIC'
CONDUCTIVITY = 0.2
SPECIFIC_HEAT = 1.5
DENSITY = 1500.
N_REACTIONS = 1
HEAT_OF_REACTION = 3000.
HEAT_OF_COMBUSTION = 25000.
REFERENCE_TEMPERATURE = 400.
NU_FUEL = 1.0 /

&MATL ID = 'COPPER'
SPECIFIC_HEAT = 0.38
CONDUCTIVITY = 387.
DENSITY = 8940. /

&SURF ID = 'Loose Cable'
COLOR = 'IVORY BLACK'
MATL_ID(1,1:2) = 'PLASTIC','COPPER'
MATL_MASS_FRACTION(1,1:2) = 0.4,0.6
BACKING = 'EXPOSED'
THICKNESS = 0.02 /

&OBST XB=-2.00, 2.00,-0.14, 0.14, 0.51, 0.55, SURF_ID='Loose Cable' /

&OBST XB=-2.00, 2.00,-0.15,-0.15, 0.50, 0.60, SURF_ID='SHEET METAL' / Tray Side
&OBST XB=-2.00, 2.00, 0.15, 0.15, 0.50, 0.60, SURF_ID='SHEET METAL' / Tray Side
&OBST XB=-1.95,-1.90,-0.15, 0.15, 0.50, 0.50, SURF_ID='SHEET METAL' / Rung
&OBST XB=-1.60,-1.55,-0.15, 0.15, 0.50, 0.50, SURF_ID='SHEET METAL' / Rung
...
&OBST XB= 1.90, 1.95,-0.15, 0.15, 0.50, 0.50, SURF_ID='SHEET METAL' / Rung

The pile of cables is assumed to be a solid slab, 28 cm wide and 2 cm deep. The tray is slightly wider and
deeper, and because it is listed second in the input file, its surface properties take precedence wherever the
cable slab and tray coincide. The mesh cells in this example are 5 cm on a side, but the heat transfer within
the cable slab are governed by the 2 cm THICKNESS. The slab is 60 % copper, by mass. Note that we are
not assuming multiple layers in this example – the slab is a single layer composite of plastic and copper.
The plastic burns at about 400 ◦, but the copper remains. Thus, the cable does not “burn away.”

The point of this test case is merely to propose a simple model of flame spread along a tray of assorted
cable. Detailed thermo-physical property data for industrial-grade cable is usually not available, and even if
it were, it would probably not improve upon the given model. The properties given in this example are almost
completely fabricated. What is important here are the HEAT_OF_REACTION and REFERENCE_TEMPERATURE,
obtained in most cases by a bench-scale measurement device like the cone calorimeter.

154

16.5 Detectors

16.5.1 Aspiration Detector (beam_detector)

A 10 m x 10 m x 4 m compartment is filled with 0.006 kg/kg of MIXTURE_FRACTION_2 with the de-
fault soot yield 0.01 kg/kg. This results in an initial soot density of 71.9 mg/m3 which using the default
extinction coefficient of 8700 m2/kg results in an optical depth of 0.626 m−1. The compartment has a
series of obstructions placed at varying depths that are multiples of 1 m. Using the correlation for the
output quantity visibility, one obtains a visibility distance of 4.8 m. When viewing the smoke lev-
els with Smokeview, one can just barely see the fifth obstacle which is at a distance of 5 m. Smoke-
view, therefore, is properly displaying the obscuration of the initial soot density. Three beam detectors
are also placed in the compartment. These all have a path length of 10 m, but are at different orienta-
tions within the compartment. Using the optical depth of 0.626 m−1 and the path length of 10 m, the
expected total obscuration is 99.81 %, which is the result computed by FDS for each of the three detectors.

155

16.5.2 Aspiration Detector (aspiration_detector)

A cubical compartment, 2 m on a side with a fire has a three sampling location aspiration system. The three
locations have flow rates of 0.1, 0.5, and 0.8 kg/s, respectively, and transport times of 0.2, 0.1, and 0.3 s,
respectively. No bypass flow rate is specified for the aspiration detector. The input file fixes the initial time
step to 0.01 s so that the initial output times in the aspiration_detector_devc.csv file will line up exactly
with the transport times. At 0.75 s, when FDS begins reducing the time step below 0.01 s, the time delayed
soot densities at the three sampling locations are 7.4x10−6 kg/m3, 9.5x10−4 kg/m3, and 1.6x10−18 kg/m3,
respectively. Using these values along with the respective flow rates results in a detector obscuration of
0.000823 %/m which is the same obscuration as predicted by FDS.

156

16.6 Droplets and Sprays

This section considers cases involving evaporating droplets, both water and fuel.

16.6.1 Water Droplet Evaporation (water_evaporation)

The case called water_evaporation is nothing more than stationary water droplets in an adiabatic box with
dimensions of 1 m on a side. The air within the box is stirred to maintain uniform conditions, and there are
no leaks or heat losses. The initial air temperature is 40 ◦C. Initially, the droplets have a median volumetric
diameter of 100 µm, a temperature of 90 ◦C, and a total mass of 0.02 kg. It is expected that a steady-state
will be achieved after several minutes. The initial energy content, sum of the air and water enthalpies, of
the box is 360,000 kJ. After a short period of time, 0.0141 kg of water evaporate and the box reaches an
equilibrium temperature of 16.2 ◦C, see the figure below. At this point the energy content of the box is
372,000 kJ or a 3 % error. At 16.2 ◦C, the expected evaporation is 0.0142 kg.

157

16.6.2 A Liquid Fuel Spray Burner (spray_burner)

Controlled fire experiments are often conducted using a spray burner, where a liquid fuel is sprayed out of a
nozzle and ignited. In this example (spray_burner.data), heptane from two nozzles is sprayed downwards
into a steel pan. The flow rate is increased linearly so that the fire grows to 2 MW in 20 s, burns steadily for
another 20 s, and then ramps down linearly in 20 s. The key input parameters are given here:

&DEVC ID='nozzle_1', XYZ=4.0,-.3,0.5, PROP_ID='nozzle', QUANTITY='TIME', SETPOINT=0. /
&DEVC ID='nozzle_2', XYZ=4.0,0.3,0.5, PROP_ID='nozzle', QUANTITY='TIME', SETPOINT=0. /

&PART ID='heptane droplets', FUEL=.TRUE., VAPORIZATION_TEMPERATURE=98.,
HEAT_OF_VAPORIZATION=316., SPECIFIC_HEAT=2.25, DENSITY=688.,
QUANTITIES(1:2)='DIAMETER','DROPLET_TEMPERATURE',
DROPLETS_PER_SECOND=2000, DIAMETER=1000., HEAT_OF_COMBUSTION=44500.,
DT_INSERT=0.02, SAMPLING_FACTOR=1 /

&PROP ID='nozzle', CLASS='NOZZLE', PART_ID='heptane droplets',
FLOW_RATE=1.96, FLOW_RAMP='fuel', DROPLET_VELOCITY=10.,
SPRAY_ANGLE=0.,30. /

&RAMP ID='fuel', T= 0.0, F=0.0 /
&RAMP ID='fuel', T=20.0, F=1.0 /
&RAMP ID='fuel', T=40.0, F=1.0 /
&RAMP ID='fuel', T=60.0, F=0.0 /

Many of these parameters are self-explanatory and the units are given in the User’s Guide [37]. Note that a
2 MW fire is achieved via 2 nozzles flowing heptane at 1.96 L/min each:

2×1.96
L

min
× 1

60
min

s
×688

kg
m3 ×

1
1000

m3

L
×44500

kJ
kg

= 2000 kW (16.12)

The parameter HEAT_OF_COMBUSTION over-rides that for the overall reaction scheme. Thus, if other
droplets or solid objects have different heats of combustion, the effective burning rates are adjusted so that
the total heat release rate is that which the user expects. However, exercises like this ought to be conducted
just to ensure that this is the case. The HRR curve for this example is given here:

spray_burner

Time (s)

0 15 30 45 60 75 90

H
ea

t R
el

ea
se

 R
at

e
(k

W
)

0

500

1000

1500

2000

2500

FDS
Ideal

158

16.6.3 Measuring Water Flux (bucket_test)

A common way of measuring the spray distribution for any fire sprinkler is called a “bucket test.” Usually,
one or several sprinklers is mounted a specified distance above an array of catch bins, the water flows for a
given period of time, and the water flux distribution is calculated from the accumulated water mass in each
bin. In the test case bucket_test, a single sprinkler is mounted 10 cm below a 5 m ceiling. Water flows for
5 s at a constant rate of 60 L/min. The simulation continues for another 5 s to allow water drops time to
reach the floor. The total mass of water discharged is

60
L

min
×1

kg
L
× 1

60
min

s
×5 s = 5 kg (16.13)

In the simulation, the boundary quantity water_drops_AMPUA (Accumulated Mass Per Unit Area) records
the total water mass per unit area (kg/m2), analogous to actual buckets the size of a grid cell. Summing the
values of water_drops_AMPUA over the entire floor yields 4.96 kg. Where is the missing water? Some
droplets evaporate, and some droplets fly beyond the computational domain. Also, there remain a small
number of suspended drops at the end of the simulation. Note that there are no actual “buckets” in the
simulation.

The accumulated water mass at the floor is extracted from the boundary (BNDF) file via the command
line program fds2ascii. Here is a transcript of the session used to convert the binary FDS output file into
ASCII format:

>> fds2ascii
Enter Job ID string (CHID):

bucket_test
What type of file to parse?
PL3D file? Enter 1
SLCF file? Enter 2
BNDF file? Enter 3

3
Enter Sampling Factor for Data?
(1 for all data, 2 for every other point, etc.)

1
Limit the domain size? (y or n)

y
Enter min/max x, y and z

-5 5 -5 5 0 1
1 MESH 1, water_drops_AMPUA
Enter starting and ending time for averaging (s)

9 10
Enter orientation: (plus or minus 1, 2 or 3)

3
Enter number of variables

1
Enter boundary file index for variable 1

1
Enter output file name:

bucket_test_fds2ascii.csv
Writing to file... bucket_test_fds2ascii.csv

16.6.4 Complex Spray Patterns (bucket_test_2)

The test case from the prior section is modified to create two jets of water.

159

&PROP ID='K-11', QUANTITY='SPRINKLER LINK TEMPERATURE', OFFSET=0.10, PART_ID='water_drops',
FLOW_RATE=60.,SPRAY_PATTERN_TABLE='TABLE1', SMOKEVIEW_ID='sprinkler_upright' /

&TABL ID='TABLE1',TABLE_DATA=30,31,0,1,5,0.2/
&TABL ID='TABLE1',TABLE_DATA=30,31,179,180,5,0.8/

The jets are separated by 180 degrees. The jet in the -x direction is given one quarter the flow rate of
the jet in the +x direction.

Viewing the particles in Smokeview shows two distinct jets of droplets in opposite directions. Following
the post processing instructions above, you can observe that the +x jet does have four times the flow of the
-x jet.

160

16.7 General Functionality

This section contains a variety of simple tests to check the functionality of the code. These examples are
good demonstrations of how to make things happen in FDS.

16.7.1 Creating and Removing HOLEs and OBSTructions (create_remove)

It is often convenient to create or remove solid obstructions, or conversely, remove or create empty holes.
They are essentially the same thing as far as the logic in FDS is concerned, but the input can be tricky. To
avoid confusion, here is an example of holes and obstructions being created and removed.

&HOLE XB=0.25,0.45,0.20,0.30,0.20,0.30, COLOR='RED', DEVC_ID='timer 1' /
&HOLE XB=0.25,0.45,0.70,0.80,0.70,0.80, COLOR='GREEN', DEVC_ID='timer 2' /

&OBST XB=0.70,0.80,0.20,0.30,0.20,0.30, COLOR='BLUE', DEVC_ID='timer 3' /
&OBST XB=0.70,0.80,0.60,0.70,0.60,0.70, COLOR='PINK', DEVC_ID='timer 4' /

&DEVC XYZ=0.1,0.1,0.1, ID='timer 1', SETPOINT= 1.0, QUANTITY='TIME', INITIAL_STATE=.FALSE./
&DEVC XYZ=0.2,0.1,0.1, ID='timer 2', SETPOINT= 2.0, QUANTITY='TIME', INITIAL_STATE=.TRUE. /
&DEVC XYZ=0.1,0.1,0.1, ID='timer 3', SETPOINT= 3.0, QUANTITY='TIME', INITIAL_STATE=.FALSE./
&DEVC XYZ=0.2,0.1,0.1, ID='timer 4', SETPOINT= 4.0, QUANTITY='TIME', INITIAL_STATE=.TRUE./

161

162

Chapter 17

Sensitivity Analysis

A sensitivity analysis considers the extent to which uncertainty in model inputs influences model output.
Model parameters can be the physical properties of solids and gases, boundary conditions, initial conditions,
etc. The parameters can also be purely numerical, like the size of the numerical grid. FDS typically requires
the user to provide several dozen different types of input parameters that describe the geometry, materials,
combustion phenomena, etc. By design, the user is not expected to provide numerical parameters besides the
grid size, although the optional numerical parameters are described in both the Technical Reference Guide
and the User’s Guide.

FDS does not limit the range of most of the input parameters because applications often push beyond
the range for which the model has been validated. FDS is still used for research at NIST and elsewhere,
and the developers do not presume to know in all cases what the acceptable range of any parameter is. Plus,
FDS solves the fundamental conservation equations and is much less susceptible to errors resulting from
input parameters that stray beyond the limits of simpler empirical models. However, the user is warned that
he/she is responsible for the prescription of all parameters. The FDS manuals can only provide guidance.

The grid size is the most important numerical parameter in the model, as it dictates the spatial and tem-
poral accuracy of the discretized partial differential equations. The heat release rate is the most important
physical parameter, as it is the source term in the energy equation. Property data, like the thermal conduc-
tivity, density, heat of vaporization, heat capacity, etc., ought to be assessed in terms of their influence on
the heat release rate. Validation studies have shown that FDS predicts well the transport of heat and smoke
when the HRR is prescribed. In such cases, minor changes in the properties of bounding surfaces do not
have a significant impact on the results. However, when the HRR is not prescribed, but rather predicted
by the model using the thermophysical properties of the fuels, the model output is sensitive to even minor
changes in these properties.

The sensitivity analyses described in this chapter are all performed in basically the same way. For a given
scenario, best estimates of all the relevant physical and numerical parameters are made, and a “baseline”
simulation is performed. Then, one by one, parameters are varied by a given percentage, and the changes
in predicted results are recorded. This is the simplest form of sensitivity analysis. More sophisticated
techniques that involve the simultaneous variation of several parameters are impractical with a CFD model
because the computation time is too long and the number of parameters too large to perform the necessary
number of calculations to generate decent statistics.

17.1 Grid Sensitivity

The most important decision made by a model user is the size of the numerical grid. In general, the finer the
numerical grid, the better the numerical solution of the equations. FDS is second-order accurate in space and

163

time, meaning that halving the grid cell size will decrease the discretization error in the governing equations
by a factor of 4. Because of the non-linearity of the equations, the decrease in discretization error does not
necessarily translate into a comparable decrease in the error of a given FDS output quantity. To find out
what effect a finer grid has on the solution, model users usually perform some form of grid sensitivity study
in which the numerical grid is systematically refined until the output quantities do not change appreciably
with each refinement. Of course, with each halving of the grid cell size, the time required for the simulation
increases by a factor of 24 = 16 (a factor of two for each spatial coordinate, plus time). In the end, a
compromise is struck between model accuracy and computer capacity.

Some grid sensitivity studies have been documented and published. Since FDS was first publicly re-
leased in 2000, significant changes in the combustion and radiation routines have been incorporated into the
model. However, the basic transport algorithm is the same, as is the critical importance of grid sensitivity. In
compiling sensitivity studies, only those that examined the sensitivity of routines no longer used have been
excluded.

As part of a project to evaluate the use of FDS version 1 for large scale mechanically ventilated enclo-
sures, Friday [38] performed a sensitivity analysis to find the approximate calculation time based on varying
grid sizes. A propylene fire with a nominal heat release rate was modeled in FDS. There was no mechanical
ventilation and the fire was assumed to grow as a function of the time from ignition squared. The compart-
ment was a 3 m by 3 m by 6.1 m space. Temperatures were sampled 12 cm below the ceiling. Four grid
sizes were chosen for the analysis: 30 cm, 15 cm, 10 cm, 7.5 cm. Temperature estimates were not found to
change dramatically with different grid dimensions.

Using FDS version 1, Bounagui et al. [39] studied the effect of grid size on simulation results to de-
termine the nominal grid size for future work. A propane burner 0.1 m by 0.1 m was modeled with a heat
release rate of 1500 kW. A similar analysis was performed using Alpert’s ceiling jet correlation [40] that
also showed better predictions with smaller grid sizes. In a related study, Bounagui et al. [41] used FDS
to evaluate the emergency ventilation strategies in the Louis-Hippolyte-La Fontaine Tunnel in Montreal,
Canada.

Xin [42] used FDS to model a methane fueled square burner (1 m by 1 m) in the open. Engineering
correlations for plume centerline temperature and velocity profiles were compared with model predictions to
assess the influence of the numerical grid and the size of the computational domain. The results showed that
FDS is sensitive to grid size effects, especially in the region near the fuel surface, and domain size effects
when the domain width is less than twice the plume width. FDS uses a constant pressure assumption at open
boundaries. This assumption will affect the plume behavior if the boundary of the computational domain is
too close to the plume.

Ierardi and Barnett [43] used FDS version 3 to model a 0.3 m square methane diffusion burner with heat
release rate values in the range of 14.4 kW to 57.5 kW. The physical domain used was 0.6 m by 0.6 m with
uniform grid spacings of 15, 10, 7.5, 5, 3, 1.5 cm for all three coordinate directions. For both fire sizes, a
grid spacing of 1.5 cm was found to provide the best agreement when compared to McCaffrey’s centerline
plume temperature and velocity correlations [44]. Two similar scenarios that form the basis for Alpert’s
ceiling jet correlation were also modeled with FDS. The first scenario was a 1 m by 1 m, 670 kW ethanol
fire under a 7 m high unconfined ceiling. The planar dimensions of the computational domain were 14 m by
14 m. Four uniform grid spacings of 50, 33.3, 25, and 20 cm were used in the modeling. The best agreement
for maximum ceiling jet temperature was with the 33.3 cm grid spacing. The best agreement for maximum
ceiling jet velocity was for the 50 cm grid spacing. The second scenario was a 0.6 m by 0.6 m 1000 kW
ethanol fire under a 7.2 m high unconfined ceiling. The planar dimensions of the computational domain
were 14.4 m by 14.4 m. Three uniform grid spacings of 60, 30, and 20 cm were used in the modeling. The
results show that the 60 cm grid spacing exhibits the best agreement with the correlations for both maximum
ceiling jet temperature and velocity on a qualitative basis.

Petterson [45] also completed work assessing the optimal grid size for FDS version 2. The FDS model

164

predictions of varying grid sizes were compared to two separate fire experiments: The University of Canter-
bury McLeans Island Tests and the US Navy Hangar Tests in Hawaii. The first set of tests utilized a room
with approximate dimensions of 2.4 m by 3.6 m by 2.4 m and fire sizes of 55 kW and 110 kW. The Navy
Hangar tests were performed in a hangar measuring 98 m by 74 m by 15 m in height and had fires in the
range of 5.5 MW to 6.6 MW. The results of this study indicate that FDS simulations with grids of 0.15 m
had temperature predictions as accurate as models with grids as small as 0.10 m. Each of these grid sizes
produced results within 15 % of the University of Canterbury temperature measurements. The 0.30 m grid
produced less accurate results. For the comparison of the Navy Hangar tests, grid sizes ranging from 0.60 m
to 1.80 m yielded results of comparable accuracy.

Musser et al. [46] investigated the use of FDS for course grid modeling of non-fire and fire scenarios.
Determining the appropriate grid size was found to be especially important with respect to heat transfer at
heated surfaces. The convective heat transfer from the heated surfaces was most accurate when the near
surface grid cells were smaller than the depth of the thermal boundary layer. However, a finer grid size
produced better results at the expense of computational time. Accurate contaminant dispersal modeling re-
quired a significantly finer grid. The results of her study indicate that non-fire simulations can be completed
more quickly than fire simulations because the time step is not limited by the large flow speeds in a fire
plume.

17.2 Sensitivity of Large Eddy Simulation Parameters

FDS uses the Smagorinsky form of the Large Eddy Simulation (LES) technique. This means that instead of
using the actual fluid viscosity, the model uses a viscosity of the form

µLES = ρ (Cs ∆)2 |S|
1
2 (17.1)

where Cs is an empirical constant, ∆ is a length on the order of the size of a grid cell, and the deformation
term |S| is related to the Dissipation Function, given by Eq. (??). Related to the “turbulent viscosity” are
comparable expressions for the thermal conductivity and material diffusivity:

kLES =
µLES cp

Pr
; (ρD)LES =

µLES

Sc
(17.2)

The Prandtl number Pr and the Schmidt number Sc are likewise considered to be “turbulent” values. Thus,
Cs, Pr and Sc are a set of empirical constants. Most FDS users simply use the default values of (0.2,0.5,0.5),
but some have explored their effect on the solution of the equations.

In an effort to validate FDS with some simple room temperature data, Zhang et al. [47] tried different
combinations of the Smagorinsky parameters, and suggested the current default values. Of the three pa-
rameters, the Smagorinsky constant Cs is the most sensitive. Smagorinsky [48] originally proposed a value
of 0.23, but researchers over the past three decades have used values ranging from 0.1 to 0.23. There are
also refinements of the original Smagorinsky model [49, 50, 51] that do not require the user to prescribe the
constants, but rather generate them automatically as part of the numerical scheme.

17.3 Sensitivity of Radiation Parameters

Radiative heat transfer is included in FDS via the solution of the radiation transport equation for a non-
scattering gray gas, and in some limited cases using a wide band model. The equation is solved using a
technique similar to finite volume methods for convective transport, thus the name given to it is the Finite
Volume Method (FVM). There are several limitations of the model. First, the absorption coefficient for

165

the smoke-laden gas is a complex function of its composition and temperature. Because of the simplified
combustion model, the chemical composition of the smokey gases, especially the soot content, can effect
both the absorption and emission of thermal radiation. Second, the radiation transport is discretized via
approximately 100 solid angles. For targets far away from a localized source of radiation, like a growing
fire, the discretization can lead to a non-uniform distribution of the radiant energy. This can be seen in the
visualization of surface temperatures, where “hot spots” show the effect of the finite number of solid angles.
The problem can be lessened by the inclusion of more solid angles, but at a price of longer computing
times. In most cases, the radiative flux to far-field targets is not as important as those in the near-field, where
coverage by the default number of angles is much better.

Hostikka et al. examined the sensitivity of the radiation solver to changes in the assumed soot pro-
duction, number of spectral bands, number of control angles, and flame temperature. Some of the more
interesting findings were:

• Changing the soot yield from 1 % to 2 % increased the radiative flux from a simulated methane burner
about 15 %

• Lowering the soot yield to zero decreased the radiative flux about 20 %.

• Increasing the number of control angles by a factor of 3 was necessary to ensure the accuracy of the
model at the discrete measurement locations.

• Changing the number of spectral bands from 6 to 10 did not have a strong effect on the results.

• Errors of 100 % in heat flux were caused by errors of 20 % in absolute temperature.

The sensitivity to flame temperature and soot composition are consistent with combustion theory, which
states that the source term of the radiative transport equation is a function of the absorption coefficient mul-
tiplied by the absolute temperature raised to the fourth power. The number of control angles and spectral
bands are user-controlled numerical parameters whose sensitivities ought to be checked for each new sce-
nario. The default values in FDS are appropriate for most large scale fire scenarios, but may need to be
refined for more detailed simulations such as a low-sooting methane burner.

17.4 Sensitivity of Thermophysical Properties of Solid Fuels

An extensive amount of verification and validation work with FDS version 4 has been performed by Hi-
etaniemi, Hostikka, and Vaari at VTT, Finland [52]. The case studies are comprised of fire experiments
ranging in scale from the cone calorimeter (ISO 5660-1) to full-scale fire tests such as the room corner test
(ISO 9705). Comparisons are also made between FDS results and data obtained in the SBI (Single Burning
Item) Euro-classification test apparatus (EN 13823) as well as data obtained in two ad hoc experimental
configurations: one is similar to the room corner test but has only partial linings and the other is a space to
study fires in building cavities.

All of the case studies involve real materials whose properties must be prescribed so as to conform to
the assumption in FDS that solids are of uniform composition backed by a material that is either cold or
totally insulating. Sensitivity of the various physical properties and the boundary conditions were tested.
Some of the findings were:

• The measured burning rates of various materials often fell between two FDS predictions in which cold
or insulated backings were assumed for the solid surfaces. FDS lacks a multi-layer solid model.

• The ignition time of upholstery is sensitive to the thermal properties of the fabric covering, but the steady
burning rate is sensitive to the properties of the underlying foam.

166

• Moisture content of wooden fuels is very important and difficult to measure.

• Flame spread over complicated objects, like cables laid out in trays, can be modeled if the surface area
of the simplified object is comparable to that of the real object. This suggests sensitivity not only to
physical properties, but also geometry. It is difficult to quantify the extent of the geometrical sensitivity.

There is little quantification of the observed sensitivities in the study. Fire growth curves can be linear to
exponential in form, and small changes in fuel properties can lead to order of magnitude changes in heat
release rate for unconfined fires. The subject is discussed in the FDS Validation Guide [?] where it is noted
in many of the studies that predicting fire growth is difficult.

Recently, Lautenberger, Rein and Fernandez-Pello [53] developed a method to automate the process of
estimating material properties to input into FDS. The methodology involves simulating a bench-scale test
with the model and iterating via a "genetic" algorithm to obtain an optimal set of material properties for
that particular item. Such techniques are necessary because most bench-scale apparatus do not provide a
complete set of thermal properties.

17.5 Summary

The basis of large eddy simulation is that accuracy increases as the numerical mesh is refined. For fire
applications, the grid sensitivity studies have shown that the accuracy of the model is a function of the
characteristic fire diameter D∗ divided by the grid cell size. It is not enough to describe the resolution of the
calculation solely in terms of the grid cell size, but rather the grid cell size relative to the heat release rate.
For non-fire applications, there are no simple means to evaluate “good resolution.”

As a rule of thumb, in simulations of limited resolution FDS predictions are more reliable in the far-
field because the substantial numerical diffusion mimics the unresolved sub-grid scale mixing. This is hard
to quantify other than through comparisons with experiment. In some of the sensitivity studies discussed
above, the authors conclude that the model works best with a cell size of a given value, and often this cell
is not the smallest one tested. In these cases, the authors have found a flow scenario where the unresolved
convective mixing is almost exactly offset by numerical diffusion. This is fortuitous, but the conclusion does
not necessarily extend to other scenarios. The disadvantage of any turbulence model, large eddy simulation
included, is that good results are not guaranteed on grids of limited resolution. The advantage of LES over
other turbulence models is that the solution of the actual governing equations, not a temporal or spatial
average, is obtained as the mesh is refined.

The same can be said for phenomena closer in to the fire. However, grid resolution is more critical
for near-field phenomena because numerical diffusion near the fire on coarse grids does not have the same
fortuitous effect as it does on far-field results. In general, coarse resolution will decrease temperatures and
velocities by smearing the values over the large grid cells. This can affect the radiative flux, convection to
surrounding solids, and ultimately flame spread and fire growth.

167

168

Part IV

Working with the FDS Source Code

169

Chapter 18

Compiling FDS

This section describes what you need to know if you want to compile the FDS source code yourself. It is not
a step by step guide, more detailed instructions can be found on the web site (http://fds-sv.sourceforge.net).

If a compiled version of FDS exists for the machine on which the calculation is to be run and no changes
have been made to the original source code, there is no need to re-compile the code. For example, the file
fds5.exe is the compiled single processor program for a Windows-based PC; thus PC users do not need a
Fortran compiler and do not need to compile the source code. For machines for which an executable has not
been compiled, you must compile the code. Fortran 90/95 and C compilers are needed for compilation.

18.1 FDS Source Code

Table 18.1 lists the files that make up the source code. The files with suffix “.f90” contain free form Fortran
90 instructions conforming to the ANSI and ISO standards, with a few exceptions that are discussed below.
The source files should be compiled in the order in which they are listed in Table 18.1 because some routines
are dependent on others. For Unix/Linux users, Makefiles for various platforms are available that assist in
the compilation. Compiler options differ from platform to platform. Note the following:

• The source code consists mainly of Fortran 90 statements organized into about 25 files, plus an extra file
containing some additional C routines needed for output to Smokeview. All of the C code is contained
within the file called isob.c.

• Be aware that different compilers handle the names of C subroutines differently. Some compilers append
an underscore to the names of the C routines called by the Fortran code. If the compiler produces an
error involving the names of routines that are not recognized, invoke the C compiler pre-processing
directive pp_noappend to stop the compiler from appending the underscore to the names of the C
routines.

• There is only one non-standard call in the Fortran code. The non-standard call is GETARG, in func.f90.
This routine reads the name of the input file off of the command line. This call cannot be simply
commented out; a suitable alternative must be found. The only compiler option necessary, in addition
to any needed to address the above issues, is for full optimization (usually -O or some variant). Some
compilers have a standard optimization level, plus various degrees of “aggressive” optimization. Be
cautious in using the highest levels of optimization.

• For the single processor version of FDS, compile with main.f90

171

• The parallel version of FDS uses main_mpi.f90 instead of main.f90, plus additional MPI libraries need
to be installed. More details on MPI can be found at the web site, along with links to the necessary
organizations who have developed free MPI libraries.

Table 18.1: Source Code Files

File Name Description
isob.c C Routine for computing isosurfaces and 3D smoke
prec.f90 Specification of numerical precision
smvv.f90 Interfaces for C routines used for Smokeview output
devc.f90 Derived type definitions and constants for devices’
type.f90 Derived type definitions
mesh.f90 Arrays and constants associated with each mesh
cons.f90 Global arrays and constants
func.f90 Global functions and subroutines
irad.f90 Functions needed for radiation solver, including RadCal
ieva.f90 Support routines for evac.f90
evac.f90 Egress computations (future capability)
pois.f90 Poisson (pressure) solver
radi.f90 Radiation solver
part.f90 Lagrangian particle transport and sprinkler activation
ctrl.f90 Definitions and routines for control functions
dump.f90 Output data dumps into files
read.f90 Read input parameters
mass.f90 Mass equation(s) and thermal boundary conditions
wall.f90 Wall boundary conditions
fire.f90 Combustion routines
pres.f90 Spatial discretization of pressure (Poisson) equation
divg.f90 Compute the flow divergence
init.f90 Initialize variables and Poisson solver
velo.f90 Momentum equations
main.f90 or main_mpi.f90 Main programs, serial and parallel versions

172

Chapter 19

Output File Formats

The output from the code consists of the file CHID.out, plus various data files that are described below.
Most of these output files are written out by the routine dump.f, and can easily be modified to accommodate
various plotting packages.

19.1 Diagnostic Output

The file CHID.out consists of a list of the input parameters, and an accounting of various important quanti-
ties, including CPU usage. Typically, diagnostic information is printed out every 100 time steps

.

.

Iteration 8300 May 16, 2003 08:37:53
--
Mesh 1, Cycle 3427
CPU/step: 2.272 s, Total CPU: 2.15 hr
Time step: 0.03373 s, Total time: 128.86 s
Max CFL number: 0.86E+00 at (21, 9, 80)
Max divergence: 0.24E+01 at (25, 30, 22)
Min divergence: -.39E+01 at (26, 18, 31)
Number of Sprinkler Droplets: 615
Total Heat Release Rate: 7560.777 kW
Radiation Loss to Boundaries: 6776.244 kW
Mesh 2, Cycle 2914
CPU/step: 1.887 s, Total CPU: 1.53 hr
Time step: 0.03045 s, Total time: 128.87 s
Max CFL number: 0.96E+00 at (21, 29, 42)
Max divergence: 0.20E+01 at (22, 20, 22)
Min divergence: -.60E+01 at (7, 26, 48)
Number of Sprinkler Droplets: 301

.

.

The Iteration number indicates how many time steps the code has run, whereas the Cycle number for a given
mesh indicates how many time steps have been taken on that mesh. The date and time (wall clock time) are
on the line starting with the word Iteration. The quantity CPU/step is the amount of CPU time required
to complete a time step for that mesh; Total CPU is the amount of CPU time elapsed since the start of
the run; Time step is the time step size for the given mesh; Total time is the time of the simulation;

173

Max/Min divergence is the max/min value of the function ∇ ·u and is used as a diagnostic when the flow
is incompressible (i.e. no heating); and Max CFL number is the maximum value of the CFL number. The
Radiation Loss to Boundaries is the amount of energy that is being radiated to the boundaries. As
compartments heat up, the energy lost to the boundaries can grow to be an appreciable fraction of the Total
Heat Release Rate. Finally, Number of Tracer Particles indicates how many passive particles
are being tracked at that time.

Following the completion of a successful run, a summary of the CPU usage per subroutine is listed.
This is useful in determining where most of the computational effort is being placed.

19.2 Plot3D Data

Quantities over the entire mesh can be output in a format used by the graphics package Plot3D. The Plot3D
data sets are single precision (32 bit reals), whole and unformatted. Note that there is blanking, that is,
blocked out data points are not plotted. If the statement WRITE_XYZ=.TRUE. is included on the DUMP line,
then the mesh data is written out to a file called CHID.xyz

WRITE(LU13) IBAR+1,JBAR+1,KBAR+1
WRITE(LU13) (((X(I),I=0,IBAR),J=0,JBAR),K=0,KBAR),

. (((Y(J),I=0,IBAR),J=0,JBAR),K=0,KBAR),

. (((Z(K),I=0,IBAR),J=0,JBAR),K=0,KBAR),

. (((IBLK(I,J,K),I=0,IBAR),J=0,JBAR),K=0,KBAR)

where X, Y and Z are the coordinates of the cell corners, and IBLK is an indicator of whether or not the cell
is blocked. If the point (X,Y,Z) is completely embedded within a solid region, then IBLK is 0. Otherwise,
IBLK is 1. Normally, the mesh file is not dumped.

The flow variables are written to a file called CHID_****_**.q, where the stars indicate a time at which
the data is output. The file is written with the lines

WRITE(LU14) IBAR+1,JBAR+1,KBAR+1
WRITE(LU14) ZERO,ZERO,ZERO,ZERO
WRITE(LU14) ((((QQ(I,J,K,N),I=0,IBAR),J=0,JBAR),K=0,KBAR),N=1,5)

The five channels N=1,5 are by default the temperature (◦C), the u, v and w components of the velocity
(m/s), and the heat release rate per unit volume (kW/m3). Alternate variables can be specified with the input
parameter PLOT3D_QUANTITY(1:5) on the DUMP line. Note that the data is interpolated at cell corners,
thus the dimensions of the Plot3D data sets are one larger than the dimensions of the computational mesh.

Smokeview can display the Plot3D data. In addition, the Plot3D data sets can be read into some other
graphics programs that accept the data format. This particular format is very convenient, and recognized by
a number of graphics packages, including AVS, IRIS Explorer and Tecplot 1.

19.3 Device Output Data

Data associated with particular devices (link temperatures, smoke obscuration, thermocouples, etc.) spec-
ified in the input file under the namelist group DEVC is output in comma delimited format in a file called
CHID_devc.csv. The format of the file is as follows

1With the exception of Smokeview, the graphics packages referred to in this document are not included with the source code,
but are commercially available.

174

N_DEVC
FDS Time , ID(1) , ID(2) , ... , ID(N_DEVC)
TIME , QUANTITY(1) , QUANTITY(2) , ... , QUANTITY(N_DEVC)
s , UNITS(1) , UNITS(2) , ... , UNITS(N_DEVC)
T(1) , VAL(1,1) , VAL(2,1) , ... , VAL(N_DEVC,1)
T(2) , VAL(1,2) , VAL(2,2) , ... , VAL(N_DEVC,2)

.

.

.

where N_DEVC is the number of devices, ID(I) is the user-defined ID of the Ith device, QUANTITY(I) is
the physical quantity represented, UNITS(I) the units, T(J) the time of the Jth dump, and VAL(I,J) the
value at the Ith device at the Jth time. The files can be imported into Microsoft Excel or almost any other
spread sheet program. If the number of columns exceeds 256, the file will automatically be split into smaller
files.

19.4 Control Output Data

Data associated with particular control functions specified in the input file under the namelist group CTRL is
output in comma delimited format in a file called CHID_ctrl.csv. The format of the file is as follows

N_CTRL
FDS Time , ID(1) , ID(2) , ... , ID(N_CTRL)
TIME , , , ... ,
s , status , status , ... , status(N_CTRL)
T(1) , VAL(1,1) , VAL(2,1) , ... , VAL(N_CTRL,1)
T(2) , VAL(1,2) , VAL(2,2) , ... , VAL(N_CTRL,2)

.

.

.

where N_CTRL is the number of control functions, ID(I) is the user-defined ID of the Ith control function,
and VAL(I,J) the state, -1 = .FALSE. and +1 = .TRUE., of the Ith control function at the Jth time.
The files can be imported into Microsoft Excel or almost any other spread sheet program. If the number of
columns exceeds 256, the file will automatically be split into smaller files.

19.5 Gas Mass Data

The total mass of the various gas species at any instant in time is reported in the comma delimited file
CHID_mass.csv. The file consists of several columns, the first column containing the time in seconds, the
second contains the total mass of all the gas species in the computational domain in units of kg, the next
lines contain the total mass of the individual species.

19.6 Mixture Fraction State Relations

The functional dependence of the mass fraction of the reactants and products of combustion on the mixture
fraction is reported in the comma delimited file CHID_state_II.csv. The file consists of nominally 10
columns, the first column containing the mixture fraction, the last column the average molecular weight, and
the rest the mass fractions of the various gases. Where II represents the chemical reaction for which the
state relationships represent. For the two parameter model these are 01 for the complete reaction (formation

175

of combustion products) and 02 for the null reaction (extinction). For the three parameter model these are
01, 02, and 03 for the incomplete (CO production) reaction, complete (CO2 production) reaction, and the
null reaction respectively.

19.7 Slice Files

The slice files defined under the namelist group SLCF are named CHID_n.sf (n=01,02...), and are written
out unformatted, unless otherwise directed. These files are written out from dump.f with the following
lines:

WRITE(LUSF) QUANTITY
WRITE(LUSF) SHORT_NAME
WRITE(LUSF) UNITS
WRITE(LUSF) I1,I2,J1,J2,K1,K2
WRITE(LUSF) TIME
WRITE(LUSF) (((QQ(I,J,K),I=11,I2),J=J1,J2),K=K1,K2)

.

.

.
WRITE(LUSF) TIME
WRITE(LUSF) (((QQ(I,J,K),I=11,I2),J=J1,J2),K=K1,K2)

QUANTITY, SHORT_NAME and UNITS are character strings of length 30. The sextuplet (I1,I2,J1,J2,K1,K2)
denotes the bounding mesh cell nodes. The sextuplet indices correspond to mesh cell nodes, or corners, thus
the entire mesh would be represented by the sextuplet (0,IBAR,0,JBAR,0,KBAR).

There is a short Fortran 90 program provided, called fds2ascii.f, that can convert slice files into text files
that can be read into a variety of graphics packages. The program combines multiple slice files correspond-
ing to the same “slice” of the computational domain, time-averages the data, and writes the values into one
file, consisting of a line of numbers for each node. Each line contains the physical coordinates of the node,
and the time-averaged quantities corresponding to that node. In particular, the graphics package Tecplot
reads this file and produces contour, streamline and/or vector plots. See Section 12.4 for more details about
the program fds2ascii.

19.8 Boundary Files

The boundary files defined under the namelist group BNDF are named CHID_n.bf (n=01,02...), and are
written out unformatted. These files are written out from dump.f with the following lines:

WRITE(LUBF) QUANTITY
WRITE(LUBF) SHORT_NAME
WRITE(LUBF) UNITS
WRITE(LUBF) NPATCH
WRITE(LUBF) I1,I2,J1,J2,K1,K2,IOR
WRITE(LUBF) I1,I2,J1,J2,K1,K2,IOR

.

.

.
WRITE(LUBF) TIME
WRITE(LUBF) (((QQ(I,J,K),I=11,I2),J=J1,J2),K=K1,K2)
WRITE(LUBF) (((QQ(I,J,K),I=11,I2),J=J1,J2),K=K1,K2)

.

.

176

.
WRITE(LUBF) TIME
WRITE(LUBF) (((QQ(I,J,K),I=11,I2),J=J1,J2),K=K1,K2)
WRITE(LUBF) (((QQ(I,J,K),I=11,I2),J=J1,J2),K=K1,K2)

.

.

.

QUANTITY, SHORT_NAME and UNITS are character strings of length 30. NPATCH is the number of planes (or
“patches”) that make up the solid boundaries plus the external walls. The sextuplet (I1,I2,J1,J2,K1,K2)
defines the cell nodes of each patch. IOR is an integer indicating the orientation of the patch (±1,±2,±3).
You do not prescribe these. Note that the data is planar, thus one pair of cell nodes is the same.

Presently, Smokeview is the only program available to view the boundary files.

19.9 Particle Data

The tracer particles and sprinkler droplets coordinates and related quantities are stored in a FORTRAN
unformatted (binary) file called CHID.prt5. Note that the format of this file has changed from previous
versions (4 and below). The file consists of some header material, followed by particle data output every
DT_PART seconds. The time increment DT_PART is specified on the DUMP line. It is T_END/NFRAMES by
default. The header materials is written by the following FORTRAN code in the file called dump.f90.

WRITE(LUPF) ONE_INTEGER ! The number ONE as a 4 byte real
WRITE(LUPF) NINT(VERSION*100.) ! FDS version number
WRITE(LUPF) N_PART ! Number of PARTicle classes
DO N=1,N_PART

PC => PARTICLE_CLASS(N)
WRITE(LUPF) PC%N_QUANTITIES,ZERO_INTEGER ! ZERO_INTEGER is a place holder
DO NN=1,PC%N_QUANTITIES

WRITE(LUPF) CDATA(PC%QUANTITIES_INDEX(NN)) ! 30 character output quantity
WRITE(LUPF) UDATA(PC%QUANTITIES_INDEX(NN)) ! 30 character output units

ENDDO
ENDDO

Every DT_PART seconds the coordinates of the particles and droplets are output as 4 byte reals:

WRITE(LUPF) REAL(T,FB) ! Write out the time T as a 4 byte real
WRITE(LUPF) NPLIM ! Number of particles to write out for this time step
WRITE(LUPF) (XP(I),I=1,NPLIM),(YP(I),I=1,NPLIM),(ZP(I),I=1,NPLIM)
WRITE(LUPF) (TA(I),I=1,NPLIM) ! Integer "tag" for each particle
IF (PC%N_QUANTITIES > 0) WRITE(LUPF) ((QP(I,NN),I=1,NPLIM),NN=1,PC%N_QUANTITIES)

The particle “tag” is used by Smokeview to keep track of individual particles and droplets for the purpose
of drawing streamlines. It is also useful when parsing the file. The quantity data, QP(I,NN), is used by
Smokeview to color the particles and droplets. Note that it is now possible with the new format to color the
particles and droplets with several different quantities.

19.10 Profile Files

The profile files defined under the namelist group PROF are named CHID_prof_nn.csv (nn=01,02...), and
are written out formatted. These files are written out from dump.f with the following line:

WRITE(LU_PROF) T,NWP+1,(X_S(I),I=0,NWP),(Q(I),I=0,NWP)

177

After the time T, the number of node points is given and then the node coordinates. These are written out at
every time step because the wall thickness and the local solid phase mesh may change over time due to the
solid phase reactions. Array Q contains the values of the output quantity, which may be wall temperature,
density or component density.

178

Bibliography

[1] K.B. McGrattan, S. Hostikka, J.E. Floyd, H.R. Baum, and R.G. Rehm. Fire Dynamics Simulator (Ver-
sion 5), Technical Reference Guide. NIST Special Publication 1018-5, National Institute of Standards
and Technology, Gaithersburg, Maryland, October 2007. i, 3, 33, 68, 72, 77, 81

[2] G.P. Forney. User’s Guide for Smokeview Version 5 - A Tool for Visualizing Fire Dynamics Simulation
Data. NIST Special Publication 1017-1, National Institute of Standards and Technology, Gaithersburg,
Maryland, August 2007. i, 3, 7

[3] W. Gropp, E. Lusk, and A. Skjellum. Using MPI – Portable Parallel Programming with the Message-
Passing Interface. MIT Press, Cambridge, Massachusetts, 2 edition, 1999. 10

[4] Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications. NUREG
1824, United States Nuclear Regulatory Commission, Washington, DC, 2007. 30

[5] R.C. Reid, J.M. Prausnitz, and B.E. Poling. Properties of Gases and Liquids. McGraw-Hill, New
York, 4th edition, 1987. 70

[6] P.J. DiNenno, editor. SFPE Handbook of Fire Protection Engineering. National Fire Protection Asso-
ciation, Quincy, Massachusetts, 3rd edition, 2002. 83

[7] Pamela P. Walatka and Pieter G. Buning. PLOT3D User’s Manual, version 3.5. NASA Technical
Memorandum 101067, NASA, 1989. 97

[8] G.W. Mulholland. SFPE Handbook of Fire Protection Engineering, chapter Smoke Production and
Properties. National Fire Protection Association, Quincy, Massachusetts, 3rd edition, 2002. 98, 99

[9] M.L. Janssens and H.C. Tran. Data Reduction of Room Tests for Zone Model Validation. Journal of
Fire Science, 10:528–555, 1992. 99

[10] Y.P. He, A. Fernando, and M.C. Luo. Determination of interface height from measured parameter
profile in enclosure fire experiment. Fire Safety Journal, 31:19–38, 1998. 100

[11] S. Welsh and P. Rubini. Three-dimensional Simulation of a Fire-Resistance Furnace. In Fire Safety
Science – Proceedings of the Fifth International Symposium. International Association for Fire Safety
Science, 1997. 100

[12] U. Wickstrom, D. Duthinh, and K.B. McGrattan. Adiabatic Surface Temperature for Calculating Heat
Transfer to Fire Exposed Structures. In Proceedings of the Eleventh International Interflam Confer-
ence. Interscience Communications, London, 2007. 101

[13] American Society for Testing and Materials, West Conshohocken, Pennsylvania. ASTM E 1355-04,
Standard Guide for Evaluating the Predictive Capabilities of Deterministic Fire Models, 2004. 131,
132

179

[14] W. Mell, K.B. McGrattan, and H. Baum. Numerical Simulation of Combustion in Fire Plumes.
In Twenty-Sixth Symposium (International) on Combustion, pages 1523–1530. Combustion Institute,
Pittsburgh, Pennsylvania, 1996. 131

[15] K.B. McGrattan, H.R. Baum, and R.G. Rehm. Large Eddy Simulations of Smoke Movement. Fire
Safety Journal, 30:161–178, 1998. 131

[16] H.R. Baum, R.G. Rehm, P.D. Barnett, and D.M. Corley. Finite Difference Calculations of Buoyant
Convection in an Enclosure, Part I: The Basic Algorithm. SIAM Journal of Scientific and Statistical
Computing, 4(1):117–135, March 1983. 131

[17] H.R. Baum and R.G. Rehm. Finite Difference Solutions for Internal Waves in Enclosures. SIAM
Journal of Scientific and Statistical Computing, 5(4):958–977, December 1984. 131

[18] H.R. Baum and R.G. Rehm. Calculations of Three Dimensional Buoyant Plumes in Enclosures. Com-
bustion Science and Technology, 40:55–77, 1984. 131

[19] R.G. Rehm, P.D. Barnett, H.R. Baum, and D.M. Corley. Finite Difference Calculations of Buoyant
Convection in an Enclosure: Verification of the Nonlinear Algorithm. Applied Numerical Mathematics,
1:515–529, 1985. 131

[20] J.C. Adams, W.S. Brainerd, J.T. Martin, B.T. Smith, and J.L. Wagener. Fortran 95 Handbook: Com-
plete ISO/ANSI Reference. MIT Press, Cambridge, Massachusetts, 1997. 132

[21] K.B. McGrattan, T. Kashiwagi, H.R. Baum, and S.L. Olson. Effects of Ignition and Wind on the
Transition to Flame Spread in a Microgravity Environment. Combustion and Flame, 106:377–391,
1996. 134

[22] T. Kashiwagi, K.B. McGrattan, S.L. Olson, O. Fujita, M. Kikuchi, and K. Ito. Effects of Slow Wind
on Localized Radiative Ignition and Transition to Flame Spread in Microgravity. In Twenty-Sixth
Symposium (International) on Combustion, pages 1345–1352. Combustion Institute, Pittsburgh, Penn-
sylvania, 1996. 134

[23] W. Mell and T. Kashiwagi. Dimensional Effects on the Transition from Ignition to Flame Spread
in Microgravity. In Twenty-Seventh Symposium (International) on Combustion, pages 2635–2641.
Combustion Institute, Pittsburgh, Pennsylvania, 1998. 134

[24] W. Mell, S.L. Olson, and T. Kashiwagi. Flame Spread Along Free Edges of Thermally-Thin Sam-
ples in Microgravity. In Twenty-Eighth Symposium (International) on Combustion, pages 2843–2849.
Combustion Institute, Pittsburgh, Pennsylvania, 2000. 134

[25] K. Prasad, Y. Nakamura, S.L. Olson, O. Fujita, K. Nishizawa, K. Ito, and T. Kashiwagi. Effect of Wind
Velocity on Flame Spread in Microgravity. In Twenty-Ninth Symposium (International) on Combus-
tion, pages 2553–2560. Combustion Institute, Pittsburgh, Pennsylvania, 2002. 134

[26] Y. Nakamura, T. Kashiwagi, K.B. McGrattan, and H.R. Baum. Enclosure Effects on Flame Spread
over Solid Fuels in Microgravity. Combustion and Flame, 130:307–321, 2002. 134

[27] W.E. Mell, K.B. McGrattan, and H.R. Baum. g-Jitter Effects on Spherical Diffusion Flames. Micro-
gravity Science and Technology, 15(4):12–30, 2004. 134

[28] A. Mukhopadhyay and I.K. Puri. An Assessment of Stretch Effects on Flame Tip Using the Thin
Flame and Thick Formulations. Combustion and Flame, 133:499–502, 2003. 134

180

[29] A. Hamins, M. Bundy, I.K. Puri, K.B. McGrattan, and W.C. Park. Suppression of Low Strain Rate
Non-Premixed Flames by an Agent. In Proceedings of the 6th International Microgravity Combustion
Workshop, NASA/CP-2001-210826, pages 101–104. National Aeronautics and Space Administration,
Lewis Research Center, Cleveland, Ohio, May 2001. 134

[30] K.B. McGrattan, R.G. Rehm, and H.R. Baum. Fire-Driven Flows in Enclosures. Journal of Computa-
tional Physics, 110(2):285–291, 1994. 134

[31] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. Taylor & Francis, New York, 4th
edition, 2002. 142

[32] Y.B. Zel’dovich and Y.P. Raizer. Physics of shock waves and high-temperature hydrodynamic phenom-
ena. Dover Publications, New York, 2002. Translated from the Russian and then edited by W.D.Hayes
and R.F. Probstein. 143, 147

[33] D. Drysdale. An Introduction to Fire Dynamics. John Wiley and Sons, New York, 2nd edition, 2002.
144

[34] H.S. Carslaw and J.C. Jaegar. Conduction of Heat in Solids. Oxford University Press, 2nd edition,
1959. 144

[35] K.W. Childs. HEATING 7: Multidimensional, Finite-Difference Heat Conduction Analysis Code
System. Technical Report PSR-199, Oak Ridge National Laboratory, Oak Ridge, TN, 1998. 145

[36] I.R. Thomas, K.A.M. Moinuddin, and I.D. Bennetts. The Effect of Fuel Quantity and Location on
Small Enclosure Fires. Journal of Fire Protection Engineering, 17(2):85–102, May 2007. 148

[37] K.B. McGrattan, B.W. Klein, S. Hostikka, and J.E. Floyd. Fire Dynamics Simulator (Version 5),
User’s Guide. NIST Special Publication 1019-5, National Institute of Standards and Technology,
Gaithersburg, Maryland, October 2007. 158

[38] P. Friday and F. W. Mowrer. Comparison of FDS Model Predictions with FM/SNL Fire Test Data.
NIST GCR 01-810, National Institute of Standards and Technology, Gaithersburg, Maryland, April
2001. 164

[39] A. Bounagui, N. Benichou, C. McCartney, and A. Kashef. Optimizing the Grid Size Used in CFD
Simulations to Evaluate Fire Safety in Houses. In 3rd NRC Symposium on Computational Fluid
Dynamics, High Performance Computing and Virtual Reality, pages 1–8, Ottawa, Ontario, Canada,
December 2003. National Research Council, Canada. 164

[40] R.L. Alpert. SFPE Handbook of Fire Protection Engineering, chapter Ceiling Jet Flows. National Fire
Protection Association, Quincy, Massachusetts, 3rd edition, 2003. 164

[41] A. Bounagui, A. Kashef, and N. Benichou. Simulation of the Dynamics of the Fire for a Section of
the L.H.-La Fontaine Tunnel. IRC-RR- 140, National Research Council Canada, Ottawa, Canada,
K1A0R, September 2003. 164

[42] Y. Xin. Assessment of Fire Dynamics Simulation for Engineering Applications: Grid and Domain
Size Effects. In Proceedings of the Fire Suppression and Detection Research Application Symposium,
Orlando, Florida. National Fire Protection Association, Quincy, Massachusetts, 2004. 164

[43] J.A. Ierardi and J.R. Barnett. A Quantititive Method for Calibrating CFD Model Calculations. In Pro-
ceedings of the CIB-CTBUH International Conference on Tall Buildings, pages 507–514. International
Council for Research and Innovation in Building and Construction (CIB), 2003. 164

181

[44] G. Heskestad. SFPE Handbook of Fire Protection Engineering, chapter Fire Plumes, Flame Height
and Air Entrainment. National Fire Protection Association, Quincy, Massachusetts, 3rd edition, 2002.
164

[45] N.M. Petterson. Assessing the feasibility of reducing the grid resolution in fds field modeling. Fire
Engineering Research Report 2002/6, University of Canterbury, Christchurch, New Zealand, March
2002. 164

[46] A. Musser, K. B. McGrattan, and J. Palmer. Evaluation of a Fast, Simplified Computational Fluid
Dynamics Model for Solving Room Airflow Problems. NISTIR 6760, National Institute of Standards
and Technology, Gaithersburg, Maryland, June 2001. 165

[47] W. Zhang, A. Hamer, M. Klassen, D. Carpenter, and R. Roby. Turbulence Statistics in a Fire Room
Model by Large Eddy Simulation. Fire Safety Journal, 37:721–752, 2002. 165

[48] J. Smagorinsky. General Circulation Experiments with the Primitive Equations. I. The Basic Experi-
ment. Monthly Weather Review, 91(3):99–164, March 1963. 165

[49] J.W. Deardorff. Numerical Investigation of Neutral and Unstable Planetary Boundary Layers. Journal
of Atmospheric Sciences, 29:91–115, 1972. 165

[50] M. Germano, U. Piomelli, P. Moin, and W.H. Cabot. A Dynamic Subgrid-Scale Eddy Viscosity Model.
Physics of Fluids A, 3(7):1760–1765, 1991. 165

[51] D.K. Lilly. A Proposed Modification of the Germano Subgrid-Scale Closure Method. Physics of Fluids
A, 4(3):633–635, 1992. 165

[52] J. Hietaniemi, S. Hostikka, and J. Vaari. FDS Simulation of Fire Spread – Comparison of Model
Results with Experimental Data. VTT Working Paper 4, VTT Building and Transport, Espoo, Finland,
2004. 166

[53] C. Lautenberger, G. Rein, and C. Fernandez-Pello. The application of a genetic algorithm to estimate
the material properties for fire modeling from bench-scale fire test data. Fire Safety Journal, 41:204–
214, 2006. 167

182

Index

2D Calculations, 25

atmospheric stratification, 47
Axially-Symmetric Calculations, 25

baroclinic torque, 32
BNDF, 96

QUANTITY, 96
boundary conditions, 43, 44
boundary layer, 46

CLIP, 35
CO Production, 68
Colors, 62
Controls, 88

Create and Remove Obstructions, 85
Function List, 88
Using DEVC, 85

CTRL, 88
DELAY, 89
FUNCTION_TYPE, 88

ALL, 89
ANY, 89
AT_LEAST, 89
CUSTOM, 90
DEADBAND, 89
KILL, 90
ONLY, 89
RESTART, 90
TIME_DELAY, 89

ID, 88
INITIAL_STATE, 89
INPUT_ID, 88
LATCH, 88
N, 89
ON_BOUND, 89
RAMP_ID, 90
SETPOINT, 89

DEVC, 79

BYPASS_FLOWRATE, 84
DELAY, 84
FLOWRATE, 84
ID, 79
IOR, 79
ORIENTATION, 79
PROP_ID, 79
QUANTITY, 80
XYZ, 79

Device
Aspiration Detector, 84
Beam Detector, 83
Heat Detector, 82
Smoke Detector, 83
Spray Nozzle, 82
Sprinkler, 80

Download, 7
dry-pipe sprinkler system, 91
DUMP, 93

COLUMN_DUMP_LIMIT, 80

fan, 89
fds2ascii, 102
Features, 3

Recent Changes, 4
Fire from Heat Release Rate, 44
fixed surface temperature, 45
Flame Extinction, 68

gravity, 32

HEAD, 23
CHID, 23
TITLE, 23

HOLE, 39
COLOR, 39
CTRL_ID, 39, 125
DEVC_ID, 39
RGB, 39

183

TRANSPARENCY, 39
XB, 39

HRRPUA, 44
HVAC, 33, 88–90

INIT, 35
initial solid temperature, 58
Input File

Overview, 19
ISOF, 96

Large Eddy Simulation, 33
Liquid Fuels, 56
louver, 46

Mass Flux, 45
Material layers, 52
MATL, 52

A, 53
ABSORPTION_COEFFICIENT, 53
BOILING_TEMPERATURE, 57
CONDUCTIVITY, 53
DENSITY, 53
E, 53
EMISSIVITY, 53
HEAT_OF_COMBUSTION, 55
HEAT_OF_REACTION, 55
N_S, 53
N_T, 54
NU_FUEL, 53
NU_RESIDUE, 53
NU_WATER, 53
REFERENCE_RATE, 54
REFERENCE_TEMPERATURE, 54
RESIDUE, 53
SPECIFIC_HEAT, 53
THRESHOLD_TEMPERATURE, 54

MB - Mesh Boundary, 40
MESH, 25

IJK, 25
SYNCHRONIZE, 27
XB, 25

mesh dimensions, 29
MISC, 31

RADIATION, 72
MLRPUA, 44
multi-mesh efficiency, 27
Multiple Meshes, 26

Namelist Group, 19
Namlist Groups Table, 22
Navier-Stokes, 3
non-planar geometries, 48

OBST, 37
CTRL_ID, 125
PERMIT_HOLE, 40

outdoor fires, 47
Output, 93

Adiabatic Surface Temperature, 101
Boundary File, 96
fds2ascii, 102
Integrated Measurements, 94
Isosurface File, 96
Plot3D, 96
Point Measurements, 94
Slice File, 96
Statistics, 95
Summary of Quantities, 103

Output Files
.out, 12
.stop, 12
_devc.csv, 80
_hrr.csv, 98

PART, 73
Poisson initialization, 15
POROUS_FLOOR

output issues, 101
pre-action sprinkler system, 91
pressure leakage, 49
PROF, 95

IOR, 95
QUANTITY, 95
XYZ, 95

PROP, 80
Pyrolysis models, 53

RADI, 71
ANGLE_INCRMENT, 72
CH4_BANDS, 72
NMIEANG, 72
NUMBER_RADIATION_ANGLES, 72
RADIATIVE_FRACTION, 71
RADTMP, 72
TIME_STEP_INCREMENT, 72
WIDE_BAND_MODEL, 72

radial fire spread, 47

184

RAMP, 59
REAC, 65
Restart, 31
Running FDS, 9

Parallel, 10
LAM-MPI, 11
MPICH2, 11

Serial, 9

Sawtooth, 38
SLCF, 95
Sloped Ceilings, 38
Solid fuels, 53
SPEC, 69
spinkler

Spray Pattern, 81
Spray Pattern, 81
sprinkler, 80, 89
Sprinkler Suppression, 78
stack effect, 33, 35
Support, 13

Error Statements, 14
Inadequate Resources, 14
Input File, 14
Numerical Instability, 14
Poisson, 15
Run-Time, 15

Issue Reporting, 15
Version Number, 13

SURF, 44
ADIABATIC, 44, 45
BACKING, 45
BURN_AWAY, 57
CELL_SIZE_FACTOR, 58
COLOR, 62
CONVECTIVE_HEAT_FLUX, 45
DUCT_PATH, 51
E_COEFFICIENT, 78
EMISSIVITY, 45
EXTERNAL_FLUX, 64
GEOMETRY, 48
HEAT_OF_VAPORIZATION, 55
HRRPUA, 47, 55
IGNITION_TEMPERATURE, 55
LEAK_PATH, 49
MASS_FLUX, 46
MASS_FLUX_TOTAL, 46
MASS_FRACTION, 46, 60

MATL_ID, 52
MATL_MASS_FRACTION, 52
MAX_PRESSURE, 50
NPPC, 74
PART_ID, 74
PARTICLE_MASS_FLUX, 74
PLE, 47
POROUS, 51
PROFILE, 47
RAMP_MF, 60
RAMP_Q, 47, 55, 59
RAMP_T, 59
RAMP_V, 59
RGB, 62
SHRINK, 58
SLIP_FACTOR, 46
STRETCH_FACTOR, 58
TAU_MF, 60
TEXTURE_HEIGHT, 62
TEXTURE_MAP, 62
TEXTURE_WIDTH, 62
THICKNESS, 52
THICNKNESS, 44
TMP_BACK, 58
TMP_FRONT, 45
TMP_INNER, 58
VEL, 45
VOLUME_FLUX, 45
Z0, 47

Surface Texture Maps, 62
System Requirements

Hardware, 7
MPI, 8
Operating System, 8

TABL, 59
TAIL, 20
tangential velocity, 46
thermostat, 89
TIME, 23

DT, 24
SYNCHRONIZE, 24, 27
T_BEGIN, 23
T_END, 23
WALL_INCREMENT, 58, 64

TRNX,TRNY,TRNZ, 25, 28
CC, 29
PC, 29

185

Troubleshooting
VENT Orientation, 41

VENT, 40
CTRL_ID, 125

Volume Flux, 45

ZONE, 49

186

	Preface
	Disclaimer
	About the Authors
	Acknowledgments
	I Running FDS
	Introduction
	Features of FDS
	What's New in FDS 5?

	Getting Started
	How to Acquire FDS and Smokeview
	Computer Hardware Requirements
	Computer Operating System (OS) and Software Requirements

	Running FDS
	Starting an FDS Calculation
	Starting an FDS Calculation (Single Processor Version)
	Starting an FDS Calculation (Multiple Processor Version)

	Monitoring Progress

	User Support
	The Version Number
	Common Error Statements
	Support Requests and Bug Tracking

	II Writing an FDS Input File
	The Basic Structure of an Input File
	Naming the Job
	Namelist Formatting
	Input File Structure

	Setting the Bounds of Time and Space
	Naming the Job: The HEAD Namelist Group (Table 13.6)
	Simulation Time: The TIME Namelist Group (Table 13.24)
	Computational Meshes: The MESH Namelist Group (Table 13.11)
	Two-Dimensional and Axially-Symmetric Calculations
	Multiple Meshes and Parallel Processing
	Mesh Stretching: The TRNX, TRNY and/or TRNZ Namelist Groups (Table 13.25)
	Choosing the Right Mesh Dimensions

	Miscellaneous Parameters: The MISC Namelist Group (Table 13.12)
	Stopping and Restarting Calculations
	Special Topic: Defying Gravity
	Special Topic: Restoring the Baroclinic Vorticity
	Special Topic: Stack Effect
	Special Topic: Large Eddy Simulation Parameters
	Special Topic: Numerical Stability Parameters

	Special Topic: Unusual Initial Conditions: The INIT Namelist Group (Table 13.8)
	Special Topic: Setting Limits: The CLIP Namelist Group (Table 13.2)

	Building the Model
	Creating Obstructions: The OBST Namelist Group (Table 13.13)
	Non-rectangular Geometry and Sloped Ceilings

	Creating Voids: The HOLE Namelist Group (Table 13.7)
	Applying Surface Properties: The VENT Namelist Group (Table 13.26)
	Special VENTs
	Controlling VENTs
	Trouble-Shooting VENTs

	Boundary Conditions
	Basics
	Describing the Bounding Surfaces: The SURF Namelist Group (Table 13.22)
	Specifying a Fire with a Known Heat Release Rate
	Simple Thermal Boundary Conditions
	Velocity and Total Mass Flux Boundary Conditions
	Species and Species Mass Flux Boundary Conditions
	Special Topic: Fires and Flows in the Outdoors
	Special Topic: A Radially-Spreading Fire
	Special Topic: Non-Planar Walls and Targets

	Pressure-Related Effects: The ZONE Namelist Group (Table 13.26)
	Leaks
	Fans

	Describing Real Materials: The MATL Namelist Group
	Thermal Properties
	Pyrolysis Models
	Special topic: Making Fuels Disappear (BURN_AWAY)
	Special Topic: Initial and Backside Boundary Conditions
	Special Topic: Numerical Accuracy and Stability

	User-Specified Functions: The RAMP and TABL Namelist Groups
	Time-Dependent Functions
	Temperature-Dependent Functions
	Tabular Functions

	Coloring Obstructions, Vents, Surfaces and Meshes
	Texture Mapping

	Verifying the Solid Phase Properties

	Combustion and Radiation
	Mixture Fraction Combustion: The REAC Namelist Group
	Important Issues Related to the Mixture Fraction Models

	Extra Gas Species: The SPEC Namelist Group
	Finite-Rate Combustion
	Radiation Transport: The RADI Namelist Group

	Particles and Droplets: The PART Namelist Group
	Basics
	Controlling Particles and Droplets
	Particle and Droplet Properties
	Special Types of Particles and Droplets
	Coloring Particles and Droplets
	Special Topic: Droplet Fuel Sprays
	Special Topic: Suppression by Water (Mixture Fraction Model Only)

	Devices and Control Logic
	Device Location and Orientation: The DEVC Namelist Group (Table 13.4)
	Device Output
	Special Devices and their Properties: The PROP Namelist Group (Table 13.16)
	Sprinklers
	Nozzles
	Heat Detectors
	Smoke Detectors
	Beam Detection Systems
	Aspiration Detection Systems

	Basic Control Logic
	Creating and Removing Obstructions
	Activating and Deactivating Vents

	Advanced Control Functions: The CTRL Namelist Group
	Control Functions: ANY, ALL, ONLY, and AT_LEAST
	Control Function: TIME_DELAY
	Control Function: DEADBAND
	Control Function: RESTARTKILL
	Control Function: CUSTOM
	Combining Control Functions: A Pre-Action Sprinkler System
	Combining Control Functions: A Dry Pipe Sprinkler System

	Output Data
	Output Control Parameters: The DUMP Namelist Group
	Output Options
	Point Measurement Devices
	Integrated (non-pointwise) Measurement Devices
	Output Statistics
	Quantities within Solids: The PROF Namelist Group
	Animated Planar Slices: The SLCF Namelist Group
	Animated Boundary Quantities: The BNDF Namelist Group
	Animated Isosurfaces: The ISOF Namelist Group
	Plot3D Static Data Dumps

	Special Output Quantities
	Heat Release Rate
	Visibility and Obscuration
	Layer Height and the Average Upper and Lower Layer Temperatures
	The True Gas Temperature vs. the Measured Gas Temperature
	Heat Fluxes
	Droplet Output Quantities
	Interfacing with Structural Models
	Integrated Mass and Energy Fluxes through Openings
	Wind and the Pressure Coefficient

	Extracting Numbers from the Output Data Files
	Summary of Output Quantities

	Alphabetical List of Input Parameters
	BNDF (Boundary File Parameters)
	CLIP (MIN/MAX Clipping Parameters)
	CTRL (Control Function Parameters)
	DEVC (Device Parameters)
	DUMP (Output Parameters)
	HEAD (Header Parameters)
	HOLE (Obstruction Cutout Parameters)
	INIT (Initial Conditions)
	ISOF (Isosurface Parameters)
	MATL (Material Properties)
	MESH (Mesh Parameters)
	MISC (Miscellaneous Parameters)
	OBST (Obstruction Parameters)
	PART (Lagrangian Particles/Droplets)
	PROF (Wall Profile Parameters)
	PROP (Device Properties)
	RADI (Radiation Parameters)
	RAMP (Ramp Function Parameters)
	REAC (Reaction Parameters)
	SLCF (Slice File Parameters)
	SPEC (Species Parameters)
	SURF (Surface Properties)
	TABL (Table Parameters)
	TIME (Time Parameters)
	TRNX, TRNY, TRNZ (MESH Transformations)
	VENT (Vent Parameters)
	ZONE (Pressure Zone Parameters)

	Conversion of Old Input Files to FDS 5
	Numerical Domain Parameters: GRID and PDIM
	Obstructions, Vents, and Holes: OBST, VENT, and HOLE
	Surface Parameters: SURF
	Reaction Parameters: REAC
	Device Parameters: SPRK, SMOD, HEAT, THCP

	III Sample Cases and Verification
	Forms of Verification
	Comparison with Analytical Solutions
	Code Checking
	Numerical Tests

	Verification Test Suite
	Hydrodynamics
	Axially-Symmetric Helium Plume (helium_2d)
	Pressure Rise in a Sealed Enclosure (pressure_rise)
	Leaks and Fans in a Sealed Enclosure (leak_test and leak_test_2)
	Two Fans in a Wall (fan_test)
	Stack Effect (stack_effect)
	Sawtooth (sawtooth)

	Combustion
	A Simple Under-Ventilated Compartment Fire (door_crack)

	Radiation
	Radiation inside a box (radiation_in_a_box)
	Radiation from a plane layer (radiation_plane_layer)

	Solid Phase Phenomena
	Simple Heat Conduction Through a Solid Slab (heat_conduction)
	Temperature-Dependent Thermal Properties (heat_conduction_kc)
	A Simple Two-Step Pyrolysis Example (two_step_solid_reaction)
	Wall Internal Radiation (wall_internal_radiation)
	A Liquid Pool Fire (ethanol_pan)
	A Thermoplastic (thermoplastic)
	A Charring Solid (charring_solid)
	Testing the ``Burn-Away'' Feature (box_burn_away)
	A Couch Fire (couch)
	Flame Spread along a Cable Tray (cable_tray)

	Detectors
	Aspiration Detector (beam_detector)
	Aspiration Detector (aspiration_detector)

	Droplets and Sprays
	Water Droplet Evaporation (water_evaporation)
	A Liquid Fuel Spray Burner (spray_burner)
	Measuring Water Flux (bucket_test)
	Complex Spray Patterns (bucket_test_2)

	General Functionality
	Creating and Removing HOLEs and OBSTructions (create_remove)

	Sensitivity Analysis
	Grid Sensitivity
	Sensitivity of Large Eddy Simulation Parameters
	Sensitivity of Radiation Parameters
	Sensitivity of Thermophysical Properties of Solid Fuels
	Summary

	IV Working with the FDS Source Code
	Compiling FDS
	FDS Source Code

	Output File Formats
	Diagnostic Output
	Plot3D Data
	Device Output Data
	Control Output Data
	Gas Mass Data
	Mixture Fraction State Relations
	Slice Files
	Boundary Files
	Particle Data
	Profile Files

	Bibliography
	Index

		Superintendent of Documents
	2022-04-16T03:39:56-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

