
Special Publication 500-283

Report on the Third Static Analysis Tool
Exposition (SATE 2010)

Editors:
Vadim Okun

Aurelien Delaitre
Paul E. Black

Software and Systems Division
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

October 2011

U.S. Department of Commerce
John E. Bryson, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary for Standards and Technology and Director

Abstract:

The NIST Software Assurance Metrics And Tool Evaluation (SAMATE) project
conducted the third Static Analysis Tool Exposition (SATE) in 2010 to advance research
in static analysis tools that find security defects in source code. The main goals of SATE
were to enable empirical research based on large test sets, encourage improvements to
tools, and promote broader and more rapid adoption of tools by objectively
demonstrating their use on production software.

Briefly, participating tool makers ran their tool on a set of programs. Researchers led by
NIST performed a partial analysis of tool reports. The results and experiences were
reported at the SATE 2010 Workshop in Gaithersburg, MD, in October, 2010. The tool
reports and analysis were made publicly available in 2011.

This special publication consists of the following three papers. “The Third Static
Analysis Tool Exposition (SATE 2010),” by Vadim Okun, Aurelien Delaitre, and Paul E.
Black, describes the SATE procedure and provides observations based on the data
collected. The other two papers are written by participating tool makers.

“Goanna Static Analysis at the NIST Static Analysis Tool Exposition,” by Mark Bradley,
Ansgar Fehnker, Ralf Huuck, and Paul Steckler, introduces Goanna, which uses a
combination of static analysis with model checking, and describes its SATE experience,
tool results, and some of the lessons learned in the process.

Serguei A. Mokhov introduces a machine learning approach to static analysis and
presents MARFCAT’s SATE 2010 results in “The use of machine learning with signal-
and NLP processing of source code to fingerprint, detect, and classify vulnerabilities and
weaknesses with MARFCAT.”

Keywords:
Software security; static analysis tools; security weaknesses; vulnerability

Certain instruments, software, materials, and organizations are identified in this paper to
specify the exposition adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the
instruments, software, or materials are necessarily the best available for the purpose.

NIST SP 500-283 2

Table of Contents

The Third Static Analysis Tool Exposition (SATE 2010) …..……………….....………………4
Vadim Okun, Aurelien Delaitre, and Paul E. Black

Goanna Static Analysis at the NIST Static Analysis Tool Exposition …..………………….....41
Mark Bradley, Ansgar Fehnker, Ralf Huuck, and Paul Steckler

The use of machine learning with signal- and NLP processing of source code to fingerprint,
detect, and classify vulnerabilities and weaknesses with MARFCAT …...………………........49

Serguei A. Mokhov

NIST SP 500-283 3

The Third Static Analysis Tool Exposition (SATE 2010)

Vadim Okun Aurelien Delaitre Paul E. Black
{vadim.okun, aurelien.delaitre, paul.black}@nist.gov

National Institute of Standards and Technology
Gaithersburg, MD 20899

Abstract
The NIST Software Assurance Metrics And Tool Evaluation (SAMATE) project conducted the
third Static Analysis Tool Exposition (SATE) in 2010 to advance research in static analysis tools
that find security defects in source code. The main goals of SATE were to enable empirical
research based on large test sets, encourage improvements to tools, and promote broader and
more rapid adoption of tools by objectively demonstrating their use on production software.

Briefly, participating tool makers ran their tool on a set of programs. Researchers led by NIST
performed a partial analysis of tool reports. The results and experiences were reported at the
SATE 2010 Workshop in Gaithersburg, MD, in October, 2010. The tool reports and analysis
were made publicly available in 2011.

This paper describes the SATE procedure and provides our observations based on the data
collected. We improved the procedure based on lessons learned from our experience with
previous SATEs. One improvement was selecting programs based on entries in the Common
Vulnerabilities and Exposures (CVE) dataset. Other improvements were selection of tool
warnings that identify the CVE entries, expanding the C track to a C/C++ track, having larger —
up to 4 million lines of code — test cases, clarifying further the analysis categories, and having
much more detailed analysis criteria.

This paper identifies several ways in which the released data and analysis are useful. First, the
output from running many tools on production software can be used for empirical research.
Second, the analysis of tool reports indicates actual weaknesses that exist in the software and that
are reported by the tools.

Third, the CVE-selected test cases contain real-life exploitable vulnerabilities, with additional
information about the CVE entries, including their locations in the code. These test cases can
serve as a challenge to practitioners and researchers to improve existing tools and devise new
techniques. Finally, the analysis may be used as a basis for a further study of the weaknesses in
the code and of static analysis.

Disclaimer

Certain instruments, software, materials, and organizations are identified in this paper to specify
the exposition adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the instruments, software, or materials are
necessarily the best available for the purpose.

NIST SP 500-283 4

Cautions on Interpreting and Using the SATE Data

SATE 2010, as well as its predecessors, taught us many valuable lessons. Most importantly, our
analysis should NOT be used as a basis for rating or choosing tools; this was never the goal of
SATE.

There is no single metric or set of metrics that is considered by the research community to
indicate or quantify all aspects of tool performance. We caution readers not to apply unjustified
metrics based on the SATE data.

Due to the variety and different nature of security weaknesses, defining clear and comprehensive
analysis criteria is difficult. While the analysis criteria have been much improved since the
previous SATEs, further refinements are necessary.

The test data and analysis procedure employed have limitations and might not indicate how these
tools perform in practice. The results may not generalize to other software because the choice of
test cases, as well as the size of test cases, can greatly influence tool performance. Also, we
analyzed a small subset of tool warnings.

In SATE 2010, we added CVE-selected programs to the test sets for the first time. The procedure
that was used for finding CVE locations in code and selecting tool warnings related to the CVEs
has limitations, so the results may not indicate tools’ ability to find important security
weaknesses.

The tools were used in this exposition differently from their use in practice. We analyzed tool
warnings for correctness and looked for related warnings from other tools, whereas developers
use tools to determine what changes need to be made to software, and auditors look for evidence
of assurance. Also in practice, users write special rules, suppress false positives, and write code
in certain ways to minimize tool warnings.

We did not consider the user interface, integration with the development environment, and many
other aspects of the tools, which are important for a user to efficiently and correctly understand a
weakness report.

Teams ran their tools against the test sets in July 2010. The tools continue to progress rapidly, so
some observations from the SATE data may already be out of date.

Because of the stated limitations, SATE should not be interpreted as a tool testing exercise. The
results should not be used to make conclusions regarding which tools are best for a particular
application or the general benefit of using static analysis tools. In Section 4 we suggest
appropriate uses of the SATE data.

NIST SP 500-283 5

1 Introduction
SATE 2010 was the third in a series of static analysis tool expositions. It was designed to
advance research in static analysis tools that find security-relevant defects in source code.
Briefly, participating tool makers ran their tool on a set of programs. Researchers led by NIST
performed a partial analysis of test cases and tool reports. The results and experiences were
reported at the SATE 2010 Workshop [26]. The tool reports and analysis were made publicly
available in 2011. SATE had these goals:

• To enable empirical research based on large test sets
• To encourage improvement of tools
• To foster adoption of tools by objectively demonstrating their use on production software

Our goal was neither to evaluate nor choose the "best" tools.

SATE was aimed at exploring the following characteristics of tools: relevance of warnings to
security, their correctness, and prioritization. We based SATE analysis on the textual reports
produced by tools — not their user interfaces — which limited our ability to understand the
weakness reports.

SATE focused on static analysis tools that examine source code to detect and report weaknesses
that can lead to security vulnerabilities. Tools that examine other artifacts, like requirements, and
tools that dynamically execute code were not included.

SATE was organized and led by the NIST Software Assurance Metrics And Tool Evaluation
(SAMATE) team [21]. The tool reports were analyzed by a small group of analysts, consisting of
the NIST researchers and a volunteer. The supporting infrastructure for analysis was developed
by the NIST researchers. Since the authors of this report were among the organizers and the
analysts, we sometimes use the first person plural (we) to refer to analyst or organizer actions.
Security experts from Cigital performed time-limited analysis for 2 test cases.

1.1 Terminology
In this paper, we use the following terminology. A vulnerability is a property of system security
requirements, design, implementation, or operation that could be accidentally triggered or
intentionally exploited and result in a security failure [24]. A vulnerability is the result of one or
more weaknesses in requirements, design, implementation, or operation.

A warning is an issue (usually, a weakness) identified by a tool. A (tool) report is the output
from a single run of a tool on a test case. A tool report consists of warnings. Many weaknesses
can be described using source-to-sink paths. A source is where user input can enter a program. A
sink is where the input is used.

1.2 Previous SATE Experience
We planned SATE 2010 based on our experience from SATE 2008 [27] and SATE 2009 [30].
The large number of tool warnings and the lack of the ground truth complicated the analysis task
in SATE. To address this problem in SATE 2009, we selected a random subset of tool warnings
and tool warnings related to findings by security experts for analysis. We found that while
human analysis is best for some types of weaknesses, such as authorization issues, tools find

NIST SP 500-283 6

weaknesses in many important weakness categories and can quickly identify and describe in
detail many weakness instances.

In SATE 2010, we included an additional approach to this problem – CVE-selected test cases.
Common Vulnerabilities and Exposures (CVE) [5] is a database of publicly reported security
vulnerabilities. The CVE-selected test cases are pairs of programs: an older, vulnerable version
with publicly reported vulnerabilities (CVEs) and a fixed version, that is, a newer version where
some or all of the CVEs were fixed. For the CVE-selected test cases, we focused on tool
warnings that correspond with the CVEs.

We also found that the tools’ philosophies about static analysis and reporting were often very
different, which is one reason they produced substantially different warnings. While tools often
look for different types of weaknesses and the number of warnings varies widely by tool, there is
a higher degree of overlap among tools for some well known weakness categories, such as buffer
errors. More fundamentally, the SATE experience suggested that the notion that weaknesses
occur as distinct, separate instances is not reasonable in most cases.

A simple weakness can be attributed to one or two specific statements and associated with a
specific Common Weakness Enumeration (CWE) [3] entry. In contrast, a non-simple weakness
has one or more of these properties:

• Associated with more than one CWE (e.g., chains and composites [4]).
• Attributed to many different statements.
• Has intermingled flows.

In [27], we estimated that only between 1/8 and 1/3 of all weaknesses are simple weaknesses.

We found that the tool interface was important in understanding most weaknesses – a simple
format with line numbers and little additional information did not always provide sufficient
context for a user to efficiently and correctly understand a weakness report. Also, a binary
true/false positive verdict on tool warnings did not provide adequate resolution to communicate
the relation of the warning to the underlying weakness. We expanded the number of correctness
categories to four in SATE 2009 and five in SATE 2010: true security, true quality, true but
insignificant, unknown, and false. At the same time, we improved the warning analysis criteria.

1.3 Related Work
Many researchers have studied static analysis tools and collected test sets. Among these, Zheng
et. al [37] analyzed the effectiveness of static analysis tools by looking at test and customer-
reported failures for three large-scale network service software systems. They concluded that
static analysis tools are effective at identifying code-level defects. Also, SATE 2008 found that
tools can help find weaknesses in most of the SANS/CWE Top 25 [23] weakness categories [27].

Several collections of test cases with known security flaws are available [12] [38] [15] [22].
Several assessments of open-source projects by static analysis tools have been reported recently
[1] [9] [10]. Walden et al. [33] measured the effect of code complexity on the quality of static
analysis. For each of the 35 format string vulnerabilities that they selected, they analyzed both
the vulnerable and the fixed version of the software. We took a similar approach with the CVE-
selected test cases. Walden et al. [33] concluded that successful detection rates of format string
vulnerabilities decreased with an increase in code size or code complexity.

NIST SP 500-283 7

Kupsch and Miller [13] evaluated the effectiveness of static analysis tools by comparing their
results with the results of an in-depth manual vulnerability assessment. Of the vulnerabilities
found by manual assessment, the tools found simple implementation bugs, but did not find any
of the vulnerabilities requiring a deep understanding of the code or design.

National Security Agency’s Center for Assured Software [36] ran 9 tools on over 59 000
synthetic test cases covering 177 CWEs and found that static analysis tools differed significantly
in precision and recall, and their precision and recall ordering varied for different weaknesses.
They concluded that the sophisticated use of multiple tools would increase the rate of finding
weaknesses and decrease the false positive rate.

A number of studies have compared different static analysis tools for finding security defects,
e.g., [8] [12] [16] [20] [38] [11]. SATE was different in that many teams ran their own tools on a
set of open source programs. Also, the objective of SATE was to accumulate test data, not to
compare tools.

The rest of the paper is organized as follows. Section 2 describes the SATE 2010 procedure and
summarizes the changes from the previous SATEs. Since we made a few changes and
clarifications to the SATE procedure after it started (adjusting the deadlines and clarifying the
requirements), Section 2 describes the procedure in its final form. Section 3 gives our
observations based on the data collected. Section 4 provides summary and conclusions, and
Section 5 lists some future plans.

2 SATE Organization
The exposition had two language tracks: a C/C++ track and a Java track. At the time of
registration, teams specified which track(s) they wished to enter. We performed separate analysis
and reporting for each track. Also at the time of registration, teams specified the version of the
tool that they intended to run on the test set(s). We required teams to use a version of the tool
having a release or build date that was earlier than the date when they received the test set(s).

2.1 Steps in the SATE procedure
The following summarizes the steps in the SATE procedure. Deadlines are given in parentheses.

• Step 1 Prepare
o Step 1a Organizers choose test sets
o Step 1b Teams sign up to participate (by 25 June 2010)

• Step 2 Organizers provide test sets via SATE web site (28 June 2010)
• Step 3 Teams run their tool on the test set(s) and return their report(s) (by 30 July 2010)
• Step 4 Organizers analyze the reports, provide the analysis to the teams (preliminary

analysis by 14 Sep 2010, updated analysis by 22 Sep 2010)
o Organizers select a subset of tool warnings for analysis and share with the teams

(by 24 Aug 2010)
o (Optional) Teams check their tool reports for matches to the CVE-selected test

cases and return their review (by 1 Sep 2010)
o (Optional) Teams return their review of the selected warnings from their tool's

reports (by 8 Sep 2010)
• Step 5 Report comparisons at SATE 2010 workshop [26] (1 Oct 2010)

NIST SP 500-283 8

• Step 6 Publish results1 (Originally planned for Feb - May, but delayed until Oct 2011)

2.2 Test Sets
This Section lists the test cases we selected, along with some statistics for each test case, in Table
1. The last two columns give the number of files and the number of non-blank, non-comment
lines of code (LOC) for the test cases. The lines of code and files were counted before building
the programs. For several test cases, counting after the build process would have produced higher
numbers. For each CVE-selected test case, the table has separate rows for the vulnerable and
fixed versions.

The counts for C and C++ test cases include C/C++ source (e.g., .c, .cpp, .objc) and header (.h)
files. Dovecot and Wireshark are C programs, whereas Chrome is a C++ program. The counts
for Dovecot include 2 C++ files. The counts for the Java test cases include Java (.java) and JSP
(.jsp) files. Pebble’s test code (in src/test subdirectory) is not included in its counts. Tomcat ver.
5.5.13 includes 192 C files. Tomcat ver. 5.5.29 does not include any C files. The C files were not
included in the counts for Tomcat. The counts do not include source files of other types: make
files, shell scripts, Assembler, Perl, PHP, and SQL.

Mitigation for Cross-Site Request Forgery (CSRF) CWE-352 was introduced in the version of
Pebble that was analyzed by tools. However, an implementation bug in CSRF mitigation code
prevented many features of Pebble from working properly. Security experts analyzed, as part of
SATE 2010, a newer build of Pebble, where the only change was removal of CSRF mitigation
code. The expert analysis is described in Section 2.6.1, Method 2.

The lines of code and files were counted using SLOCCount by David A. Wheeler [35].

Test case Track Description Version # Files # LOC
Dovecot C/C++ Secure IMAP and POP3 server 2.0 Beta 6 1111 193 501
Wireshark Network protocol analyzer 1.2.0 2281 1 625 396

1.2.9 2278 1 630 282
Google
Chrome

Web browser 5.0.375.54 19 070 3 958 861
5.0.375.70 19 070 3 958 998

Pebble Java Weblog software 2.5 M2 603 29 422
Apache
Tomcat

Servlet container 5.5.13 1494 180 966
5.5.29 1603 197 060

Table 1 Test cases

The links to the test case developer web sites, as well as links to download the versions analyzed,
are available at the SATE web page [28].

We spent several weeks selecting the test cases and considered dozens of candidates. In
particular, we looked for test cases with various security defects, over 10 000 lines of code, and
compilable using a commonly available compiler. We used different selection criteria and
selection process for the CVE-based test cases and the general test cases. The following section
describes how we selected the CVE-based test cases.

1 Per requests by Coverity and Grammatech, their tool output is not released as part of SATE data. Consequently,
our detailed analysis of their tool warnings is not released either. However, the observations and summary analysis
in this paper are based on the complete data set.

NIST SP 500-283 9

2.3 CVE-Selected Test Cases
In addition to the criteria listed above, we used the following selection criteria for the CVE-based
test cases and also for selecting the specific versions of the test cases.

• Program had several, preferably dozens, of vulnerabilities reported in the CVE database.
• We were able to find the source code for a version of the test case with CVEs present

(vulnerable version).
• We were able to identify the location of some or all CVEs in the vulnerable version.
• We were able to find a newer version where some or all CVEs were fixed (fixed version).
• Reliable resources, such as bug databases and source code repositories, were available for

locating the CVEs.
• Both vulnerable and fixed versions were available for Linux OS.
• Many CVEs were in the vulnerable version, but not in the fixed versions.
• Both versions had similar design and directory structure.

There is a tradeoff between the last two items. Having many CVEs fixed between the vulnerable
and fixed versions increased the chance of a substantial redesign between the versions.

We used the following sources of information in selecting the test cases and identifying the
CVEs. First, we exchanged ideas within the NIST SAMATE team and with other researchers.
Second, we used several lists to search for open source programs [25] [18] [1] [10]. Third, we
used several public vulnerability databases [5] [7] [17] [19] to identify the CVEs.

The selection process for the CVE-based test cases included the following steps. The process
was iterative, and we adjusted it in progress.

• Identify potential test cases – popular open source software written in C, C++ or Java and
likely to have vulnerabilities reported in CVE.

• Collect a list of CVEs for each program.
• For each CVE, collect several factors, including CVE description, versions where the

CVE, weakness type (or CWE if available), version where the CVE is fixed, and patch.
• Choose a smaller number of test cases that best satisfy the above selection criteria.
• For each CVE, find where in the code it is located.

We used the following sources to identify the CWE ids for the CVE entries. First, National
Vulnerability Database (NVD) [17] entries often contain CWE ids. Second, for some CWE
entries, there is a section “Observed Examples” with links to CVE entries. Two CVE entries
from SATE 2010 occurred as Observed Examples: CVE-2010-2299 for CWE-822 and CVE-
2008-0128 for CWE-614. Finally, we sometimes assigned the CWE ids as a result of a manual
review.

Locating a CVE in the code is necessary for finding related warnings from tools. Since a CVE
location can be either a single statement or a block of code, we recorded the block length in lines
of code. If a warning refers to any statement within the block of code, it may be related to the
CVE.

As we noted in Section 1, a weakness can often be located on a path, so it cannot be attributed to
a single line of code. Also, sometimes a weakness can be fixed in a different part of code.
Accordingly, we attempted to find three kinds of locations:

NIST SP 500-283 10

• Fix – a location where the code has been fixed,
• Sink – location where user input is used, and
• Path – location that is part of the path leading to the sink.

The following example, a simplified version of CVE-2009-3243 in Wireshark, demonstrates the
different kinds of locations. The statements are far apart in the code.
 // Index of the missing array element
 #define SSL_VER_TLSv1DOT2 7

 const gchar* ssl_version_short_names[] = {
 "SSL",
 "SSLv2",
 "SSLv3",
 "TLSv1",
 "TLSv1.1",
 "DTLSv1.0",
 "PCT",
 // Fix: the following array element was missing in the vulnerable version
+ "TLSv1.2"
 };

 // Path: may point to SSL_VER_TLSv1DOT2
 conv_version =&ssl_session->version;

 // Sink: Array overrun
 ssl_version_short_names[*conv_version]

Since the CVE information is often incomplete, we used several approaches to find CVE
locations in code. First, we searched the CVE description and references for relevant file or
function names. Second, we reviewed program’s bug tracking, patch, and version control log
information, available online. We also reviewed relevant vulnerability notices from Linux
distributions that included these programs. Third, we used the file comparison utility “diff” to
compare the corresponding source files in the last version with a CVE present and the first
version where the CVE was fixed. This comparison often showed the fix locations. Finally, we
manually reviewed the source code.

Some of the information links, such as which bug ID in the bug database corresponds to the
CVE, were missing. We reviewed change logs and used other hints to find the CVE locations.

The following is one scenario for pinpointing the CVE in code. First, view a CVE entry in the
NVD. Second, follow a link to the corresponding bug description in the program’s bug database.
Third, from the bug description, find the program’s revision where the bug was fixed. Fourth, for
each source file that was changed in the revision, examine the patch, that is, the difference with
the previous version of the file. The patch often contains the fix location. Finally, examine the
source code to find the corresponding sink and/or path locations.

2.4 Tools
Table 2 lists, alphabetically, the tools and the tracks in which the tools were applied.

One of the teams, Veracode, is a service. Its tool is not available publicly. Veracode performed a
human quality review of its reports to remove spurious warnings such as high false positives in a
particular weakness category. This quality review is part of its usual analysis procedure.

NIST SP 500-283 11

Tool Version Tracks
Armorize CodeSecure 4.0.0.2 Java
Concordia University MARFCAT2 SATE2010.6 C/C++, Java
Coverity Static Analysis for C/C++3 5.2.1 C/C++
Cppcheck 1.43 C/C++
Grammatech CodeSonar45 3.6 (build 59634) C/C++
LDRA Testbed6 8.3.0 C/C++
Red Lizard Software Goanna 2.0 C/C++
Seoul National University Sparrow7 1.0 C/C++
SofCheck Inspector for Java8 2.22510 Java
Veracode SecurityReview9 As of 07/12/2010 C/C++, Java

Table 2 Tools

2.5 Tool Runs and Submissions
Teams ran their tools and submitted reports following these specified conditions.

• Teams did not modify the code of the test cases.
• For each test case, teams did one or more runs and submitted the report(s). See below for

more details.
• Except for Veracode, the teams did not do any hand editing of tool reports. Veracode, a

service, performed a human quality review of its reports to remove spurious warnings
such as high false positives in a particular weakness category. This quality review did
not add any results.

• Teams converted the reports to a common XML format. See Section 2.8.1 for description
of the format.

• Teams specified the environment (including the operating system and version of
compiler) in which they ran the tool. These details can be found in the SATE tool reports
available at [28].

Most teams submitted one tool report per test case for the track(s) that they participated in.
LDRA and Grammatech analyzed Dovecot only. Sparrow works on C only, so it was run on
Dovecot and Wireshark, but not on Chrome. Sparrow was run with an option which lets it
distinguish up to two array elements, whereas in default configuration, array elements are
combined into a single abstract location.

SofCheck analyzed Pebble only. SofCheck Inspector was run in default mode, which did not
include its checks for XSS and SQL injection weaknesses.

Coverity and Grammatech tools were configured to improve analysis of Dovecot’s custom
memory functions. See “Special case of Dovecot memory management” in Section 2.7.4.

2 Marfcat was in early stages of development; reports were submitted late; we did not analyze the reports
3 Per Coverity's request, Coverity tool output is not released as part of SATE data
4 Analyzed Dovecot only
5 Per Grammatech’s request, Grammatech tool output is not released as part of SATE data
6 Analyzed Dovecot only
7 Sparrow works on C only, so analyzed Dovecot and Wireshark
8 Analyzed Pebble only
9 A service

NIST SP 500-283 12

Whenever tool runs were tuned, e.g., with configuration options, the tuning details were included
in the teams’ submissions.

MARFCAT was in the early stages of development during SATE 2010, so the reports were
submitted late. As a result, we did not analyze the output from any of MARFCAT reports.
Serguei Mokhov described MARFCAT methodology and results in “The use of machine
learning with signal- and NLP processing of source code to fingerprint, detect, and classify
vulnerabilities and weaknesses with MARFCAT,” included in this publication.

In all, we analyzed the output from 32 tool runs. This counts tool outputs for vulnerable and
fixed versions of the same CVE-based program separately.

Several teams also submitted the original reports from their tools, in addition to the reports in the
SATE output format. During our analysis, we used some of the information, such as details of
weakness paths, from some of the original reports to better understand the warnings.

Several tools (Grammatech CodeSonar, Coverity Static Analysis, and LDRA Testbed) did not
assign severity to the warnings. For example, Grammatech CodeSonar uses rank (a combination
of severity and likelihood) instead of severity. All warnings in their submitted reports had
severity 1. We changed the severity field for some warning classes in the Grammatech
CodeSonar, Coverity Static Analysis, and LDRA Testbed reports based on the weakness names
and some additional information from the tools.

After the analysis step of the SATE protocol (Section 2.1) was completed, Armorize discovered
a flaw in the engine of the CodeSecure version used for SATE. This flaw caused many false
positives and false negatives for the JSP-related weaknesses. JSP accounts for 19 % of lines of
code in Pebble (not including Pebble’s test code), 3.7 % of lines of code in the vulnerable version
of Tomcat, and 3.4 % of lines of code in the fixed version of Tomcat.

2.6 Analysis of Tool Reports
For SATE, finding all weaknesses in a large program is impractical. Also, due to the large
number of tool warnings, analyzing all warnings is impractical. Therefore, we selected subsets of
tool warnings for analysis.

Figure 1 describes the high-level view of our analysis procedure. We used three complementary
methods to select tool warnings. In the first method, we randomly selected a subset of warnings
from each tool report. In the second method, we selected warnings related to manually identified
weaknesses. In the third method, we selected warnings related to CVEs in the CVE-based test
cases. We performed separate analysis and reporting for the resulting subsets of warnings.

For the selected tool warnings, we analyzed the following characteristics. First, we associated
(grouped together) warnings that refer to the same (or related) weakness. (See Section 3.4 of [27]
for a discussion of what constitutes a weakness.) Second, we analyzed correctness of the
warnings. Also, we included our comments about warnings.

2.6.1 Three Methods for Tool Warning Selection
This section describes the three methods that we used to select tool warnings for analysis.

NIST SP 500-283 13

Figure 1 Analysis procedure overview

Method 1 – Select a subset of tool warnings
We selected a total of 30 warnings from each tool report (except one report, which had only 6
warnings) using the following procedure. In this paper, a warning class is identified by a
(weakness name, severity) or (CWE ID, severity) pair, e.g., (Buffer Underrun, 1).

• Randomly selected 1 warning from each warning class with severities 1 through 4.

• While more warnings were needed, repeated:

o Randomly selected 3 of the remaining warnings (or all remaining warnings if
there were less than 3 left) from each warning class with severity 1,

o Randomly selected 2 of the remaining warnings (or all remaining warnings if
there were less than 2 left) from each warning class with severity 2,

o Randomly selected 1 of the remaining warnings from each warning class (if it still
had any warnings left) with severity 3.

• If more warnings were still needed, randomly selected warnings from warning class with
severity 4, then randomly selected warnings from warning class with severity 5.

If a tool did not assign severity, we assigned severity based on weakness names and our
understanding of their relevance to security.

We analyzed correctness of the selected warnings and also found associated warnings from other
tools.

Since MARFCAT reports were submitted late, we did not select any of its warnings.

Method 2 – Select tool warnings related to manually identified weaknesses
In this method, security experts manually analyzed Dovecot and Pebble and identified the most
important weaknesses in these test cases. In this paper, we call these weaknesses manual
findings. The human analysis identified both design weaknesses and source code weaknesses

Tool

reports

Select
randomly

Method 1

Related to
manual
findings

Method 2
Analyze

warnings for
correctness and

associate

Analyze
data

Selected
warnings

Related to
CVEs

Method 3

NIST SP 500-283 14

focusing on the latter. The human analysis combined multiple weaknesses with the same root
cause. That is, the security experts did not look for every weakness instance, but instead gave a
few (or just one) instances per root cause. Rapid threat modeling was used to guide specific
testing activities, including code review, automated analysis, penetration testing, and fuzzing.
Tools were used to aid human analysis, but tools were not the main source of manual findings.
The methodology of human analysis used is presented in [14]. Due to the limited resources
(about 3.5 person-weeks), security experts analyzed two of the five test cases only.

Specifically for Dovecot, the security experts considered only the external facing mechanisms as
targets of interest. First, fuzzing was performed on the externally exposed mail protocols (LMTP,
POP3, and IMAP). This involved sending data to be interpreted by the protocol implementation
in an attempt to cause unexpected application behavior. Dovecot did not exhibit any insecure or
unwanted behavior when under stress from the fuzzing tools.

Second, a code review was conducted to determine if the Dovecot source code contained
weaknesses that can lead to exploitable vulnerabilities. The review focused on manual analysis
of the memory management routines in the code, as well as problems reported by tools which
they ran, including the Clang static analysis tool (part of the LLVM project)10. No weakness was
determined to be exploitable by an external attacker on a Dovecot system configured using
default security constraints. To summarize, the security experts reported no findings for Dovecot
based on the limited analysis they had time to perform.

For Pebble, penetration testing and code review were performed. Security experts analyzed a
newer build of Pebble, where the only change was removal of the incorrect CSRF mitigation
code. See Section 2.2 for details. Security experts reported 10 findings for Pebble: 8 stored
Cross-Site Scripting (XSS) CWE-79 and 2 URL Redirection CWE-601 weaknesses.

Security experts, with our assistance, checked the tool reports to find warnings related to the
manual findings. For each manual finding, for each tool, they found at least one related warning,
or concluded that there were no related warnings.

Method 3 – Select tool warnings related to CVEs
We chose the CVE-based test case pairs and pinpointed the CVEs in code using the criteria and
process described in Section 2.3. For each test case, we produced a list of CVEs in SATE output
format with additional location information, see Section 2.8.2 for details. We then searched,
mechanically and manually, the tool reports to find warnings related to the CVEs.

2.6.2 Practical Analysis Aids
To simplify querying of tool warnings, we put all warnings into a relational database designed
for this purpose.

To support human analysis of warnings, we developed a web interface that allows searching the
warnings based on different criteria, viewing individual warnings, marking a warning with
human analysis which includes opinion of correctness and comments, studying relevant source
code files, associating warnings that refer to the same (or a related) weakness, etc.

After the SATE workshop, we wrote a utility to find all warnings that were present in one report
but not in another report. We used this utility to produce a subset of warnings reported by a tool

10 Available at http://clang.llvm.org/

NIST SP 500-283 15

for the vulnerable version but not for the fixed version of a test case. We then checked whether
any of these warnings are related to the CVEs.

2.6.3 Analysis Procedure
This section focuses on the procedure for analysis of warnings selected randomly, that is, using
Method 1. First, an analyst searched for warnings to analyze (from the list of selected warnings).
We analyzed some warnings that were not selected, either because they were associated with
selected warnings or because we found them interesting. An analyst usually concentrated his or
her efforts on a specific test case, since the knowledge of the test case gained enabled him to
analyze other warnings for the same test case faster. Similarly, an analyst often concentrated
textually, e.g., choosing warnings nearby in the same source file. Sometimes an analyst
concentrated on warnings of one type.

After choosing a particular warning, the analyst studied the relevant parts of the source code. If
he formed an opinion, he marked correctness and/or added comments. If he was unsure about an
interesting case, he may have investigated further by, for instance, extracting relevant code into a
simple example and/or executing the code. Usually the analyst searched for warnings to associate
among the warnings on nearby lines. Then the analyst proceeded to the next warning.

Below are two common scenarios for an analyst’s work.

Search → View list of warnings → Choose a warning to work on → View source code of the file
→ Return to the warning → Add an evaluation

Search → View list of warnings → Choose a warning to work on → Associate the warning with
another warning

Sometimes, an analyst may have returned to a warning that had already been analyzed, either
because he changed his opinion after analyzing similar warnings or for other reasons. Also, to
improve consistency, the analysts had a series of communications about application of the
analysis criteria to some weakness classes and weakness instances.

Review by teams
We used feedback from teams to improve our analysis. In particular, we asked teams to review
the selected tool warnings from their tool reports and provide their findings (optional step in
Section 2.1). Several teams submitted a review of their tool’s warnings.

Two teams, Red Lizard Software and Veracode, submitted reviews of their tool’s results for the
CVE selected test cases. The reviews helped identify mistakes in our analysis of the CVEs.

Additionally, several teams presented a review of our analysis at the SATE 2010 workshop.

2.7 Analysis Criteria
This Section describes the criteria that we used for marking correctness of the warnings and for
associating warnings that refer to the same weakness.

2.7.1 Overview of Correctness Categories
We assigned one of the following categories to each warning analyzed.

• True security weakness – a weakness relevant to security

NIST SP 500-283 16

• True quality weakness – poor code quality, but may not be reachable or may not be
relevant to security. In other words, the issue requires developer's attention.

o Example: buffer overflow where input comes from the local user and the
program is not run with super-user privileges, i.e., SUID.

o Example: "locally true" - function has a weakness, but the function is always
called with safe parameters.

• True but insignificant weakness
o Example: database tainted during configuration.
o Example: a warning that describes properties of a standard library function

without regard to its use in the code.
• Weakness status unknown – unable to determine correctness
• Not a weakness – false – an invalid conclusion about the code

The categories are ordered in the sense that a true security weakness is more important to
security than a true quality weakness, which in turn is more important than a true but
insignificant weakness.

We describe the decision process for analysis of correctness, with more details for one weakness
category. This is based on our past experience and advice from experts. We consider several
factors in the analysis of correctness: context, code quality, and path feasibility – we discuss
these factors below.

2.7.2 Decision Process
This Section omits details about several factors (context, code quality, path feasibility) used in
the decision process – see later sections for definitions and examples.

1. Mark a warning as false if any of the following holds

o Path is clearly infeasible

o Sink is never a problem, for example

 Tool confuses a function call with a variable name

 Tool misunderstands the meaning of a function, for example, tool warns
that a function can return an array with less than 2 elements, when in fact
the function is guaranteed to return an array with at least 2 elements.

 Tool is confused about use of a variable, e.g., tool warns that “an empty
string is used as a password,” but the string is not used as a password.

 Tool warns that an object can be null, but it is initialized on every path.

o For input validation issues, tool reports a weakness caused by unfiltered input, but
in fact the input is filtered correctly

2. Mark a warning as insignificant if a path is not clearly infeasible, does not indicate poor
code quality, and any of the following holds

o A warning describes properties of a function (e.g., standard library function)
without regard to its use in the code.

NIST SP 500-283 17

• For example, "strncpy does not null terminate" is a true statement, but if
the string is terminated after the call to strncpy in the actual use, then the
warning is not significant.

o A warning describes a property that may only lead to a security problem in
unlikely (e.g., memory or disk exhaustion for a desktop or server system) or local
(not caused by an external person) cases.

• For example, a warning about unfiltered input from a command that is run
only by an administrator during installation is likely insignificant.

o A warning about coding inconsistencies (such as "unused value") does not
indicate a deeper problem

3. Mark a warning as true quality if

o Poor code quality and any of the following holds:

• Path includes infeasible conditions or values

• Path feasibility is hard to determine

• Code is unreachable
o Poor code quality and not a problem under the intended security policy, but can

become a problem if the policy changes (e.g., a program not intended to run with
privileges is run with privileges)

• For example, for buffer overflow, program is intended not to run with
privileges (e.g., setuid) and input not under control of remote user.

4. Mark a warning as true security if path is feasible and the weakness is relevant to security

o For input validation issues, mark a warning as true security if input is filtered, but
the filtering is not complete. This is often the case for cross-site scripting
weaknesses

The decision process is affected by the type of the weakness considered. The above list contains
special cases for some weakness types. In Appendix A, we list the decision process details
specific to one particular weakness type: information leaks.

2.7.3 Context
A tool does not know about context (environment and the intended security policy) for the
program and may assume the worst case.

For example, if a tool reports a weakness that is caused by unfiltered input from command line or
from local files, mark it as true (but it may be insignificant - see below). The reason is that the
test cases are general purpose software, and we did not provide any environmental information to
the participants.

Often it is necessary to determine the following:

• Who can set the environment variables?
o For web applications, the remote user

NIST SP 500-283 18

o For desktop applications, the user who started the application

• Is the program intended to be run with privileges?

• Who is the user affected by the weakness reported?
o Regular user

o Administrator

2.7.4 Poor Code Quality vs. Intended Design
A warning that refers to poor code quality is usually marked as true security or true quality. On
the other hand, a warning that refers to code that is unusual but appropriate should be marked as
insignificant.

Some examples that always indicate poor code quality:

• Not checking size of a tainted string before copying it into a buffer.

• Outputting password

Some examples that may or may not indicate poor code quality:

• Not checking for disk operation failures

• Many potential null pointer dereferences are due to the fact that methods such as malloc
and strdup return null if no memory is available for allocation. If the caller does not
check the result for null, this almost always leads to a null pointer dereference. However,
this is not significant for some programs: if a program has run out of memory, seg-
faulting is as good as anything else.

• Outputting a phone number is a serious information leak for some programs, but an
intended behavior for other programs.

Special case of Dovecot memory management
Dovecot does memory allocation differently from other C programs. Its memory management is
described in [31]. For example, all memory allocations (with some exceptions in data stack)
return memory filled with NULLs.

This information was provided to the tool makers, so if a tool reports a warning for this intended
behavior, mark it as insignificant.

2.7.5 Path Feasibility
Determine path feasibility for a warning. Choose one of the following:

• Feasible - path shown by tool is feasible. If tool shows the sink only, the sink must be
reachable.

• Feasibility difficult to determine – path is complex and contains many complicated steps
involving different functions, or there are many paths from different entry points.

• Unreachable – a warning points to code within an unreachable function

NIST SP 500-283 19

• Infeasible conditions or values – a “dangerous” function is always used safely or a path is
infeasible due to a flag that is set in another portion of the code.

o An example where a function is "dangerous," but always used so that there is no
problem:

g(int j) {

a[j] = ‘x’; // potential buffer overflow

}

… other code …

if (i < size_of_a) {

g(i); // but g is called in a safe way

}

o An example where path is infeasible due to a flag that is set elsewhere (e.g., in a
different module). In the following example, tool may mark NULL pointer
dereference of arg, which is infeasible because flag that is set elsewhere in the
code is never equal FLAG_SET when value is not NULL:

if (value != NULL && flag == FLAG_SET) {

*arg = TRUE; // arg is never dereferenced when it is NULL

}

• Clearly infeasible
An example with infeasible path, local:
if (a) {

 if (!a) {

 sink

 }

}

• Another example, infeasible path, local, control flow within a complete stand-alone block
(e.g., a function):

char a[10];

if (c)

j = 10000;

else

j = 5;

… other code that does not change j or c …

if (!c)

a[j] = ‘x’;

• Infeasible path, another example
if (x == null && y) {

NIST SP 500-283 20

return 0;

} else if (x == null && !y) {

return 1;

} else {

String parts[] = x.split(“:”); // Tool reports NULL pointer
deference for x – false because x cannot be null here

}

• Infeasible path, for example, two functions with the same name are declared in two
different classes. Tool is confused about which function is called and considers a function
from the wrong class.

• Infeasible path which shows a wrong case taken in a switch statement.
In previous SATEs, we assumed perfect understanding of code by tools, so we implicitly had
only two options for path feasibility. We marked any warning for an infeasible path as false.
However, poor code that is infeasible now may become feasible one day, so a warning that
points to such a weakness on an infeasible path should be brought to the attention of a
programmer. Additionally, analysis of feasibility for some warnings took too much time.
Therefore, we marked some warnings on an infeasible path as quality weakness or insignificant.

2.7.6 Criteria for Warning Association
Warnings from multiple tools may refer to the same (or a related) weakness. (The notion of
distinct weaknesses may be unrealistic. See Section 3.4 of [27] for a discussion.) In this case, we
associated them. In contrast to SATE 2008, where any analysis for one warning applied to every
associated warning, in SATE 2010, as well as in SATE 2009, each warning could have a
separate analysis.

For each selected warning instance, our goal was to find at least one related warning instance (if
one existed) from each of the other tools. While there may be many warnings reported by a tool
that are related to a particular warning, we did not attempt to find all of them.

We used the following degrees of association:

• Equivalent – weakness names are the same or semantically similar; locations are the
same, or in case of paths, the source and the sink are the same and the variables affected
are the same.

• Strongly related – the paths are similar, where the sinks or sources are the same
conceptually, e.g., one tool may report a shorter path than another tool.

• Weakly related – warnings refer to different parts of a chain or composite; weakness
names are different but related in some ways, e.g., one weakness may lead to the other,
even if there is no clear chain; the paths are different but have a filter location or another
important attribute in common.

The following criteria apply to weaknesses that can be described using source-to-sink paths.
Source and sink were defined in Section 1.1.

• If two warnings have the same sink, but the sources are two different variables, mark
them as weakly related.

NIST SP 500-283 21

• If two warnings have the same source and sink, but paths are different, mark them as
strongly related. However, if the paths involve different filters, mark them as weakly
related.

• If one warning contains only the sink, and the other contains a path, the two warnings
refer to the same sink and use a similar weakness name,

o If there is no ambiguity as to which variable they refer to (and they refer to the
same variable), mark them as strongly related.

o If there are two or more variables affected and there is no way of knowing which
variable the warnings refer to, mark them as weakly related.

2.7.7 Criteria for Matching Warnings to Manual Findings and CVEs
We used the same guidelines for matching warnings to manual findings and to CVEs.

This matching is sometimes different from matching tool warnings from different tools because
the tool warnings may be at a different – lower – level than the manual findings or CVEs.

We marked tool warnings as related to manual findings or CVEs in the following cases:

• Same weakness instance

• Same weakness instance, different perspective

• Same weakness instance, different paths
o Example: different paths, e.g., different sources, but the same sink

Note that in SATE 2009, we considered two additional cases: “Coincidental” – tool reports a
lower level weakness that may lead the user to the high level weakness, and “Other weakness
instance” – tool reports a similar weakness (the same weakness type) elsewhere in the code.

In contrast, in SATE 2010, we did not find any cases of a coincidental warning. We also did not
look for “other weakness instance,” since for CVEs, we are interested in tools reporting the
particular weakness instance, and the manual findings belonged to just two weakness types.

2.8 SATE Data Formats
Teams converted their tool output to the SATE XML format. Section 2.8.1 describes this tool
output format. Section 2.8.2 describes the extension of the SATE format for storing our analysis
of the warnings. Section 2.8.4 describes the extension of the SATE format for our analysis of
which tool warnings are related to the manual findings. Section 2.8.5 describes the format for
storing the lists of associations of warnings.

2.8.1 Tool Output Format
In devising the tool output format, we tried to capture aspects reported textually by most tools. In
the SATE tool output format, each warning includes:

• ID - a simple counter.
• (Optional) tool specific ID.
• One or more paths (or traces) with one or more locations each, where each location has:

NIST SP 500-283 22

o (Optional) ID – path ID. If a tool produces several paths for a weakness, ID can
be used to differentiate between them.

o Line - line number.
o Path – pathname, e.g., wireshark-1.2.0/epan/dissectors/packet-smb.c.
o (Optional) fragment - a relevant source code fragment at the location.
o (Optional) explanation - why the location is relevant or what variable is affected.

• Name (class) of the weakness, e.g., buffer overflow.
• (Optional) CWE ID.
• Weakness grade (assigned by the tool):

o Severity on the scale 1 to 5, with 1 being most severe.
o (Optional) probability that the warning is a true positive, from 0 to 1.
o (Optional) tool_specific_rank - tool specific metric – useful if a tool does not use

severity and probability.
• Output - original message from the tool about the weakness. May be in plain text, HTML,

or XML.
• (Optional) An evaluation of the issue by a human; not considered to be part of tool

output. Note that each of the following fields is optional.
o Correctness - human analysis of the weakness, one of five categories listed in

Section 2.7.
o Comments.

The XML schema file for the tool output format is available at the SATE web page [28].

2.8.2 CVE Format
For the CVE-selected test cases, we manually prepared XML files with lists of CVE locations in
the vulnerable and/or fixed test cases. The lists use the SATE output format with two additional
attributes for the location element:

• Length - number of lines in the block of code relevant to the CVE.
• Type - one of fix/sink/path, described in Section 2.3.

2.8.3 Evaluated Tool Output Format
The evaluated tool output format, including our analysis of tool warnings, has other fields in
addition to the tool output format above. Specifically, each warning includes:

• UID – another ID, unique across all reports.
• Selected – “yes” means that we selected the warning for analysis using Method 1.

2.8.4 Manual Findings and CVEs Analysis Format
The format for analysis of manual findings and CVEs extends the tool output format with the
element named Related – one or more tool warnings related to a manual finding:

• UID – unique warning ID
• ID – warning ID from the tool report
• Tool – the name of the tool that reported the warning

NIST SP 500-283 23

• Comment – our description of how this warning is related to the manual finding. For
CVEs, the comment included whether the warning was reported in the vulnerable version
only or in the fixed version also

2.8.5 Association List Format
The association list consists of associations - pairs of associated warnings identified by unique
warning ids (UID). Each association also includes:

• Degree of association – equivalent, strongly related or weakly related.
• (Optional) comment.

There is one association list per test case.

2.9 Summary of changes since previous SATEs
Based on our experience conducting SATE 2008 and 2009, we made the following changes to
the SATE procedure. First, we added CVE-selected programs to the test sets and selected tool
warnings related to the CVEs. This selection method complements the two methods used in
SATE 2009 by focusing our analysis on real-life exploitable vulnerabilities.

Second, we expanded the C track to C/C++ track by including Chrome and had larger test cases
than in previous SATEs. Having vulnerable and fixed version pairs for CVE-selected test cases
also meant that the total number of programs to scan, 8, was higher than in previous SATEs,
which, together with the larger sizes, put extra burdens on participating teams.

Third, based on analysis of SATE 2009 tool warnings, we added a fifth correctness category, true
quality weakness. We updated the SATE output format accordingly.

Fourth, we wrote much more detailed guidelines, including criteria and decision process, for
analysis of correctness. Previously, we assumed perfect understanding of data and control flow
by tools. Consider so called “locally true but globally false” cases. If a warning says that a
function can be called with a bad parameter, but in the test case it is always called with safe
values, the warning would be marked as false under the SATE 2009 criteria. However,
determining whether a function is always called with safe values can be very resource
consuming.

Therefore, in SATE 2010, we relaxed this assumption of perfect code understanding. For
example, tool warnings involving infeasible paths can now be marked as quality or insignificant,
depending on other considerations. The guidelines are in Section 2.7.

3 Data and Observations
This section describes our observations based on our analysis of the data collected.

3.1 Warning Categories
The tool reports contain 58 different CWE ids. In addition, there are 145 weakness names for
warnings that do not have a CWE ID. In all, there are 224 different weakness names. This
exceeds 58+145 since tools sometimes use different weakness names for the same CWE ID. In
order to simplify the presentation of data in this report, we defined categories of similar

NIST SP 500-283 24

weaknesses and placed tool warnings into the categories based on CWE ID and weakness name,
as assigned by tools.

Table 3 describes the weakness categories. The detailed list is part of the released data available
at the SATE web page [28]. Some categories are individual weakness classes; others are broad
groups of weaknesses. In particular, cross-site scripting (XSS) is a kind of improper input
validation. Also, race condition is a kind of time and state weakness category. Due to their
prevalence and severity, we decided to use separate categories for these weaknesses.
Name Abbre-

viation
Description Example types of

weaknesses
Cross-site
scripting
(XSS)

xss The software does not sufficiently validate,
filter, escape, and encode user-controllable
input before it is placed in output that is used
as a web page that is served to other users.

Reflected XSS,
stored XSS

Buffer errors buf Buffer overflows (reading or writing data
beyond the bounds of allocated memory) and
use of functions that lead to buffer overflows

Buffer overflow and
underflow,
unchecked array
indexing, improper
null termination

Numeric
errors

num-err Improper calculation or conversion of
numbers

Integer overflow,
incorrect numeric
conversion, divide by
zero

Race
condition

race The code requires that certain state not be
modified between two operations, but a timing
window exists in which the state can be
modified by an unexpected actor or process.

File system race
condition

Information
leak

info-leak The intentional or unintentional disclosure of
information to an actor that is not explicitly
authorized to have access to that information

Verbose error
reporting, system
information leak

Broad categories
Improper
input
validation

input-val Absent or incorrect protection mechanism that
fails to properly validate input

Log forging, HTTP
response splitting,
command injection,
SQL injection, re-
source injection, file
injection, path
manipulation, uncon-
trolled format string

Security
features

sec-feat Security features, such as authentication,
access control, confidentiality, cryptography,
and privilege management

Hard-coded
password, insecure
randomness, least
privilege violation

Improper
error
handling

err-handl An application does not properly handle
errors that occur during processing

Incomplete, missing
error handling,
missing check
against null

Insufficient
encapsula-
tion

encaps The software does not sufficiently
encapsulate critical data or functionality

Trust boundary
violation, leftover
debug code

API abuse api-
abuse

The software uses an API in a manner
inconsistent with its intended use

Heap inspection, use
of inherently
dangerous function

NIST SP 500-283 25

Name Abbre-
viation

Description Example types of
weaknesses

Time and
state

time-
state

Improper management of time and state in an
environment that supports simultaneous or
near-simultaneous computation by multiple
systems, processes, or threads

Concurrency weak-
nesses, session
management
problems

Code quality
problems

code-
qual

Features that indicate that the software has
not been carefully developed or maintained

See below

Null de-
reference

null-deref A program dereferences a pointer or
reference that is NULL

Null pointer
dereference

Improper
initializa-
tion

uninit A resource is not initialized or incorrectly
initialized

Uninitialized variable

Resource
manage-
ment
problems

res-mgmt Improper management of resources Denial of service due
to unreleased re-
sources, use after
free, double unlock,
memory leak

Other
quality

qual-
other

Other code quality problems Dead code, potential
violation of coding
standards

Uncatego-
rized

uncateg Other issues that we could not easily assign
to any category

Table 3 Weakness categories

The categories are similar to those used for SATE 2008 and 2009. The differences from SATE
2008 are due to a different set of tools used and to differences in the test cases. In particular,
there is no separate category for cross-site request forgery (CSRF) in SATE 2010, since there
were no CSRF warnings reported. The version of Pebble that was analyzed by tools contained
the CSRF mitigation code that broke other functionality. See Section 2.2 for details.

Also, there is no separate category for command injection, since there were only 2 warning
instances reported, both for Chrome. Command injection, as well as SQL injection, is under
improper input validation category.

Since the majority of warnings in SATE 2010 are under the code quality category, we included
the data for its subcategories. Several weakness types concerned with potential violation of
coding standards are included in the code quality category, not in a more specific category such
as numeric errors. Also, to avoid confusion with the “quality” correctness category introduced in
SATE 2010, we changed the abbreviation for the code quality category to code-qual.

The categories are derived from [6], [32], and other taxonomies. We designed this list
specifically for presenting the SATE data only and do not consider it to be a generally applicable
classification. We use abbreviations of weakness category names (the second column of Table 3)
in Sections 3.2 and 3.3.

When a weakness type had properties of more than one weakness category, we tried to assign it
to the most closely related category.

3.2 Test Case and Tool Properties
In this section, we present the division of tool warnings by various dimensions. Figure 2 presents
the numbers of tool warnings by test case.

NIST SP 500-283 26

Figure 2 Warnings by test case (total 60 831)

Figure 3 presents the numbers of tool warnings by severity as determined by the tool, with some
changes noted below. Several tools (Grammatech CodeSonar, Coverity Prevent, and LDRA
Testbed) did not assign severity to the warnings. For example, Grammatech CodeSonar uses
rank (a combination of severity and likelihood) instead of severity. All warnings in their
submitted reports had severity 1. We changed the severity field for some warning classes in the
CodeSonar, Prevent, and Testbed reports based on the weakness names, some additional
information from the tools. The numbers in Figure 3 and elsewhere in the report reflect this
change.

Figure 3 Warnings by severity (total 60 831)

 Table 4 presents, for each test case, the number of tool warnings per 1 000 lines of non-blank,
non-comment code (kLOC) in a report with the most warnings (high), a report with the least
warnings (low), and the median number. For CVE-selected test cases, the table presents the
numbers for vulnerable versions only. For consistency, we only included the reports from tools
that were run on every test case in a track. In other words, we included reports from 4 tools for
the C/C++ track and from 2 tools for the Java track. Accordingly, the numbers in the “median”
row for Pebble and Tomcat are the averages of the numbers in the “low” and “high” rows.

The number of warnings varies widely by tool, for several reasons. First, tools report different
kinds of warnings. Second, as noted in Section 1.2, the notion that weaknesses occur as distinct,
separate instances is not reasonable in most cases. Third, there were inconsistencies in the way

18410

3734

3723

7803

7901

8092

5129

6039

Dovecot

Wireshark (vuln)

Wireshark (fixed)

Chrome (vuln)

Chrome (fixed)

Pebble

Tomcat (vuln)

Tomcat (fixed)

2937

869

19053

4921

33051

1

2

3

4

5

NIST SP 500-283 27

tool output was mapped to the SATE output format. For example, in the Armorize CodeSecure
reports, each weakness path, or trace, was presented as a separate warning, which increased the
number of warnings greatly. Hence, tools should not be compared using numbers of warnings.
 Dovecot Wireshark Chrome Pebble Tomcat
High 3.88 1.33 1.27 263.92 27.98
Median 0.905 0.375 0.315 134.87 14.17
Low 0.32 0.18 0.07 5.81 0.36

Table 4 Low, high, and median number of tool warnings per kLOC

 IRSSI PVM3 Roller DMDirc
High 71.64 33.69 64 12.62
Median 23.5 8.94 7.86 6.78
Low 0.21 1.17 4.55 0.74

Table 5 Low, high, and median number of tool warnings per kLOC for reports in SATE 2009

 Naim Nagios Lighttpd OpenNMS MvnForum DSpace
High 37.05 45.72 74.69 80.81 28.92 57.18
Median 16.72 23.66 12.27 8.31 6.44 7.31
Low 4.83 6.14 2.22 1.81 0.21 0.67

Table 6 Low, high, and median number of tool warnings per kLOC for reports in SATE 2008

For comparison, Table 5 and Table 6 present the same numbers as Table 4 for the reports in
SATE 2009 and SATE 2008, respectively. The tables are not directly comparable, because not
all tools were run in each of the three SATEs. In calculating the numbers in Table 6, we omitted
the reports from one of the teams, Aspect Security, which did a manual review.

Weakness
category

C/C++ track Java track
All C/C++ Dovecot Wireshark Chrome All Java Pebble Tomcat

xss 0 0 0 0 2176 91 2085
buf 508 81 95 332 0 0 0
num-err 454 116 260 78 10 10 0
race 141 133 6 2 1 0 1
info-leak 0 0 0 0 68 5 63
input-val 153 104 9 40 10 726 7819 2907
sec-feat 99 32 23 44 12 7 5
code-qual 28 150 17 829 3262 7059 87 84 3
 null-deref 11 965 11 190 87 688 45 45 0
 uninit 4637 3405 62 1170 0 0 0
 res-mgmt 1731 1307 30 394 0 0 0
 qual-other 9817 1927 3083 4807 42 39 3
err-handl 401 107 78 216 0 0 0
encaps 6 0 0 6 6 5 1
api-abuse 20 6 0 14 5 1 4
time-state 9 2 0 7 66 6 60
uncateg 6 0 1 5 64 64 0

Total 29 947 18 410 3734 7803 13 221 8092 5129

Table 7 Reported warnings by weakness category

NIST SP 500-283 28

Table 7 presents the numbers of reported tool warnings by weakness category for the C/C++ and
Java tracks, as well as for individual test cases. For CVE-selected test cases, the table presents
the numbers for vulnerable versions only. The weakness categories are described in Table 3.

For the C/C++ track, there were no xss and info-leak warnings, mostly because these test cases
are not web applications. Also, since it is uncommon to write web applications in C or C++, the
tools tend not to look for web application vulnerabilities in the C or C++ code. However, as
noted in Section 3.4, Chrome had a CVE entry in the xss category. For the Java track, there were
no buf warnings - most buffer errors are not possible in Java. Most warnings for Java track were
input validation errors, including xss.

The great majority of warnings reported for Dovecot were from the code-qual category. This is
due to a combination of two factors. First, Dovecot was written with security in mind, so it was
not likely to have many security problems. Second, most of the tools that were run on Dovecot
were quality oriented.

In contrast, only 3 warnings reported for Tomcat were from the code-qual category. The main
reason is that the two tools that were run on Tomcat, Armorize CodeSecure and Veracode, were
security oriented.

Using Method 1 introduced in Section 2.6.1, we randomly selected a subset of tool warnings for
Dovecot and Pebble for analysis. The analysis confirmed that tools are capable of finding
weaknesses in a variety of categories.

For Dovecot, we judged weaknesses from the following weakness categories to be security or
quality: buf, num_err, race, input_val, sec_feat, code-qual (including null pointer dereference
and various resource management problems), err_handl, and api_abuse.

For Pebble, we judged weaknesses from the following weakness categories to be security or
quality: xss, input_val (including HTTP response splitting, log forging, and external control of
file name or path), sec_feat, code-qual, and encaps.

Since we selected a small subset of warnings for analysis, we do not report the numbers of
security and quality weaknesses. See Table 7 in [30] for the numbers of true significant
weaknesses, as determined by analysts, in SATE 2009.

Figure 4 presents, for Dovecot and Pebble, for true security correctness category and for all
correctness categories, the percentage of weaknesses that were reported by 1 tool or 2 or more
tools. It also gives, on the bars, the numbers of weaknesses reported by different numbers of
tools. For example, of 6 true security weaknesses for Dovecot, 3 were reported by 2 tools and 3
were reported by 1 tool.

Of the 23 weaknesses reported by multiple tools for Dovecot, 21 weaknesses were reported by 2
tools and 2 weaknesses were reported by 3 tools. No other weaknesses were reported by 3 or
more tools. For reference, we analyzed the results from 7 tools for Dovecot and 3 tools for
Pebble. Although MARFCAT was run on both Dovecot and Pebble, we did not analyze its
results.

For Pebble, SofCheck Inspector warnings did not overlap with the warnings from other tools at
all. We see two reasons. First, it is a quality-oriented tool, in contrast with Armorize CodeSecure
and Veracode. Second, SofCheck Inspector was run in default mode, which in particular did not
include its checks for XSS weaknesses.

NIST SP 500-283 29

As Figure 4 shows, tools mostly find different weaknesses. This is partly due to the fact that
tools often look for different weakness types. However, as shown in Section 3.2 of [30], there is
more overlap for some well known and well studied categories, such as buf.

Figure 4 Weaknesses, by number of tools that reported them

Overall, tools handled the code well, which is not an easy task for test cases of this size.

3.3 On our Analysis of Tool Warnings
Using Method 1 introduced in Section 2.6.1, we randomly selected 276 Dovecot and Pebble
warnings for analysis. It is about 1 % of the total number of warnings for these 2 test cases
(26 502). We also analyzed some other warnings. In all, we analyzed (associated or marked
correctness of) 405 warnings, about 1.5 % of the total. In this section, we present data on what
portion of test cases was selected for analysis. We also briefly describe the effort that we spent
on the analysis.

Figure 5 Warnings for Dovecot and Pebble selected for analysis, by severity

Our selection procedure ensured that we analyzed warnings from each warning class for
severities 1 through 4. However, for many warning classes we selected for analysis only a small
subset of warnings. Figure 5 presents, by severity, the percentage of warnings of that severity
class for Dovecot and Pebble selected for analysis. Due to a very large number of severity 3
warnings for Dovecot and Pebble – about 55 % of the total – a small portion of these warnings
were selected.

3

7

161

76

3

1

23

8

0% 25% 50% 75% 100%

Dovecot - security

Pebble - security

Dovecot - all

Pebble - all

1 tool 2 or more tools

0% 5% 10% 15% 20%

1

2

3

4

5

% warnings selected for analysis

NIST SP 500-283 30

Five researchers analyzed the tool warnings, spending anywhere from a few days to a few weeks.
All analysts were competent software engineers with knowledge of security; however, the
analysts were only occasional users of static analysis tools. The SATE analysis interface
recorded when an analyst chose to view a warning and when he or she submitted an evaluation
for a warning. The analyst productivity during SATE 2010 was similar to previous SATEs, see
[27] [30] for details.

3.4 Manual Findings and CVEs by Weakness Category
The security experts found 10 weaknesses for Pebble and no weaknesses for Dovecot. The
weaknesses in Pebble included 8 stored XSS weaknesses (xss category) with several sources
each and 2 URL redirection weaknesses (a subcategory of the input-val category).

Table 8 presents the numbers of CVEs in the CVE-selected test cases by weakness category. The
table omits rows for the weakness categories that had no CVEs. The table also lists the CWE ids
of the CVEs in each weakness category. See Section 2.3 for a description of how we identified
the CWE ids.

The weakness categories are described in Table 3. When a CWE had properties of more than one
weakness category, we tried to assign it to the most closely related category. For example, CVE-
2009-2562 in Wireshark represents a chain of integer overflow leading to buffer overflow. We
classified it as CWE-190 and placed under num-err category.

3.4.1 CVE Analysis Details and Changes
Three CVEs applied exclusively to the C code portion of Tomcat. Since Tomcat was in the Java
track, the numbers in this report do not include these CVEs.

Weakness
category

CWE ids All Wireshark Chrome Tomcat

xss 79 8 0 1 7
buf 119, 822 10 8 2 0
num-err 189, 190 5 4 1 0
info-leak 200 6 0 0 6
input-val 20, 22 11 2 1 8
sec-feat 255, 264,

327, 614
5 0 0 5

code-qual 399, 401,
457, 474,
476

13 10 3 0

uncateg 1 0 1 0
Total 59 24 9 26

Table 8 CVEs by weakness category

Our original analysis of CVEs had several errors. First, we included several CVEs in Chrome
that were still present in the fixed version of the test case. We were alerted about this error by the
tool makers and excluded these CVEs from consideration.

NIST SP 500-283 31

Second, during reanalysis of CVEs after the workshop, we found several mistakes in our original
analysis and corrected those. One of these CVEs, CVE-2007-6286, was described incorrectly in
our original analysis and was matched by a warning (UID 13216). UID is a warning identifier we
assigned, unique across all tool reports. We later determined that the CVE was in a different part
of the code and was unrelated to the warning.

Third, for Chrome, CVE-2010-2304 was replaced by CVE-2010-1773 and CVE-2010-2303 was
replaced by CVE-2010-1772 in the CVE and NVD databases. We made the corresponding
change in our data files.

Finally, we originally marked a warning (UID 13217) as related to CVE-2008-0128. During
reanalysis, we determined that the warning was not related to the CVE.

3.5 Tool Warnings Related to Manual Findings and CVEs
The description of the manual findings and CVEs, as well as our listing of the related tool
warnings, is available at [28].

Figure 6 presents the numbers of manual findings and CVEs for which at least one tool identified
the same weakness instance or no tool produced a related warning. Since security experts did not
find any weaknesses for Dovecot, and we did not find any matching warnings for Wireshark and
Chrome11, the figure presents the data for the two Java test cases only. Overall, tools produced
related warnings for 7 of 10 manual findings for Pebble and for 4 of 26 CVEs for Tomcat.

Figure 6 Related warnings from tools

Of the three tools that were run on Pebble, only two found warnings related to manual findings.
Of the 8 XSS weaknesses, 4 were found by one tool only and 1 was found by two tools. The two
URL redirection weaknesses were found by one tool only.

The number of CVEs by weakness category for each CVE-selected test case is shown in Table 8.
All 4 CVEs with related tool warnings were XSS in Tomcat. 3 of the 4 CVEs were reported for
the vulnerable version only, 1 was reported in both the vulnerable and fixed versions.

3.6 On Detecting CVEs by Tools
The data collected about the CVEs during SATE 2010 can provide some insights into what
properties of the vulnerabilities make them easier or harder to find by static analysis tools. In this
Section, we describe sample CVEs, pointing out their properties relevant to their detectability by

11 This Section does not include the results from one of the tools, MARFCAT, which was trained on the SATE 2010
CVE-based test cases and achieved good precision when used on these test cases.

7

4

3

22

Pebble

Tomcat

Related warnings None

NIST SP 500-283 32

tools. We then summarize the possible reasons for the low number of matching tool warnings for
CVEs.

First, consider CVEs that were detected by a tool. For example, CVE-2007-2449 is in JSP code
which is part of a sample web application. In the vulnerable version, request.getQueryString() is
printed to the web page without filtering, whereas in the fixed version, it is filtered using
util.HTMLFilter.filter() function. The tool recognized the filter function and reported the
weakness in the vulnerable version only.

CVE-2006-7195 is in JSP code that uses JSP Standard Tag Library (JSTL) functions. In the
vulnerable version, the Host request-header field is printed to the web page without filtering,
whereas in the fixed version, it is filtered using a JSTL tag fn:escapeXml(). The tool did not
recognize the filter tag and reported the weakness in both vulnerable and fixed versions. Tools
can be made better by improving their understanding of popular libraries and frameworks.

The rest of the examples described in this Section were not detected by tools12. The following
example, CVE-2009-3551 in Wireshark, is an off-by-one error in the SMB dissector. The
incorrect condition on line 2195 is in bold font.
#define MAX_DIALECTS 20

struct negprot_dialects {

int num;

2097 char *name[MAX_DIALECTS+1];

};

...

dissect_negprot_request(...) {

 ...

 struct negprot_dialects *dialects = NULL;

...

 if (... && dialects && dialects->num<MAX_DIALECTS) {

 dialects->name[dialects->num++] = se_strdup(str);

 }

dissect_negprot_response(...) {

 ...

 struct negprot_dialects *dialects = NULL;

 ...

/* Dialect Index */

dialect = tvb_get_letohs(tvb, offset);

if (si->sip && si->sip->extra_info_type==SMB_EI_DIALECTS) {

12 This Section does not include the results from one of the tools, MARFCAT, which was trained on the SATE 2010
CVE-based test cases and achieved good precision when used on these test cases.

NIST SP 500-283 33

 dialects = si->sip->extra_info;

2195 if (dialect <= dialects->num) {

 dialect_name = dialects->name[dialect];

 }

}

static smb_function smb_dissector[256] = {

 ...

 /* 0x72 Negotiate Protocol*/ {dissect_negprot_request,
dissect_negprot_response},

Here, dialects is populated in function dissect_negprot_request(). It is used in function
dissect_negprot_response(), where the off-by-one access occurs. The fix is to replace <= with <
on line 2195. The functions dissect_negprot_request() and dissect_negprot_response() are called
indirectly via a table of function pointers.

Flawfinder [34], an early static analysis tool that does not do control flow or data flow analysis,
produces a general warning for line 2097: “Statically-sized arrays can be overflowed.” This
warning is too general and is also generated for a fixed version of the test case. Tools such as
those participating in SATE 2010, that do deeper analysis, including inter-procedural and
indirect function call handling, should be able to report this kind of weakness for the vulnerable
version and not report it for the fixed version of the test case. However, this weakness was not
detected.

Some CVEs represent the types of weaknesses that are hard to discover by tools. Some examples
are as follows.

• CVE-2007-5342 in Tomcat is an access control problem, where the default policy for a
logging component does not restrict certain permissions for web applications.

• CVE-2007-1858 in Tomcat is a design error where the default SSL cipher configuration
uses certain insecure ciphers.

• As described in Section 7 of “Goanna Static Analysis at the NIST Static Analysis Tool
Exposition” by Bradley, et al. included in this publication, CVE-2010-2286 in Wireshark
is an infinite loop weakness for a loop implemented by goto statements that span
approximately 2000 lines of code.

Table 9 provides a short description of CVEs in Chrome with our comments about how easily
the tools could detect them. In most cases, some understanding of program design is required.

The following are possible reasons for the lack of matching tool warnings for Wireshark and
Chrome and a low number of matching tool warnings for Tomcat.

• Some CVEs could have been identified with tool tuning, but were not identified by tools
in default configuration. The accompanying paper “Goanna Static Analysis at the NIST
Static Analysis Tool Exposition” by Bradley, et al. provides an example where CVE-
2010-2283 was not detected in the SATE tool run which used a low timeout value, but
was detected in another run with a higher timeout value.

NIST SP 500-283 34

• Not all tools were run on the CVE-selected test cases. In particular, Grammatech
CodeSonar’s results were not submitted to SATE; these results are described in [2].

• Due to the limitations in our procedure for finding CVE locations in code and selecting
tool warnings related to the CVEs, we may have missed some matches.

• Some CVEs, such as design level flaws, are very hard to detect by automated analysis.
• There are other, unknown to us, important vulnerabilities in the test cases, which may

have been found by tools. For example, since we selected SATE 2010 test cases, 5 new
CVEs were reported for Tomcat 5.5.13. For one of these, CVE-2010-3718, Tomcat does
not make the ServletContext attribute read-only, which allows local web applications to
read or write files outside of the intended working directory. In fact, a SATE 2010 tool
report contained related lower-level resource injection warnings about creation of the
working directory.

• The CVE-selected test cases are large, from about 200k to about 4M non-blank, non-
comment lines of code. The software has complex data structures, program-specific
functions, and complicated control and data flow. This complexity presents a challenge
for static analysis tools, especially when run in default configuration. A significant effect
of code complexity and code size on quality of static analysis results was found in [33].

CVE ID Brief description Detectability by tools
CVE-2010-1773 Off-by-one leading to out of bounds array access in

the rendering code. The fix was to decrement the
dividend instead of subtracting one from the modulo
operation’s result.

Not difficult. Note that a tool
reported an unrelated warning
in the same function.

CVE-2010-1772 Use after free - geolocation timers were not stopped
upon deletion of a document.

Requires understanding the
geolocation data structures
and its semantics.

CVE-2010-2302 Use-after-free in WebKit. Loading a remote font
forces a style recalculation. However, the
recalculation is not propagated into shadow DOM
trees.

Requires understanding of
complex classes.

CVE-2010-2301 HTML text area tag was not escaped. XSS is uncommon in C++, so
tools usually do not look for it.

CVE-2010-2300 Use after free in WebKit. The normalization process
can result in removing attributes from the DOM
element being normalized. This can lead to
accessing attributes past the end of the vector.

Requires understanding of the
normalization algorithm.

CVE-2010-2299 The untrusted pointer to shared memory based
bitmaps is replaced when processing synchronous
messages, but not when processing asynchronous
messages. The fix is to remove the pointer when
processing an asynchronous message.

Requires knowledge of
application design

CVE-2010-2298 In OS_POSIX based systems, the browser sends a
directory file descriptor to the renderer process. This
enables escaping of the chroot()-based sandbox.

Not all platforms are affected.

CVE-2010-2297 Vector size is not checked in table layout calculation
resulting in out of bounds read.

Not difficult, but presence of
an assertion that aborts
execution in debug mode only
may have confused tools.

CVE-2010-2295 EventHandler can operate on a wrong frame if focus
changes during keyboard event dispatch. This allows
keystroke redirection via a crafted HTML document.

Requires knowledge of
application design

Table 9 Summary of Chrome CVEs

NIST SP 500-283 35

4 Summary and Conclusions
We conducted the Static Analysis Tool Exposition (SATE) 2010 to enable empirical research on
large data sets and encourage improvement and adoption of tools. Based on our observations
from the previous SATEs, we improved the SATE procedure, including analysis categories and
analysis criteria.

Teams ran their tools on eight code bases - open source programs from 29k to 4M non-blank,
non-comment lines of code. Ten teams returned 40 tool reports with about 61 000 tool warnings.
We analyzed approximately 1.5 % of the tool warnings. We selected the warnings for analysis
randomly, based on findings by security experts, and based on CVEs. Several teams improved
their tools based on their SATE experience.

Communication with developers of the test cases improved the accuracy of our analysis and
resulted in fixes to the software.

The released data is useful in several ways. First, the output from running many tools on
production software is available for empirical research. Second, our analysis of tool reports
indicates weaknesses that exist in the software and that are reported by the tools.

Third, the CVE-selected test cases contain real-life exploitable vulnerabilities, with clearly
identified locations in the code. These test cases can serve as a challenge to the practitioners and
researchers to improve existing tools and devise new techniques. Finally, the analysis may be
used as a basis for a further study of the weaknesses in the code and of static analysis.

SATE 2010 data, as well as the data from previous SATEs, suggests that tools often look for
different types of weaknesses and the number of warnings varies widely by tool. The following
important questions can be investigated further using SATE data:

• What is the degree of overlap among tools for different weakness categories?
• Does coincidence of warnings from multiple tools imply correctness (similar to the

conclusion in [36])?
• Are important weaknesses, such as CVEs, more likely to be in higher complexity

modules?

As part of SATE 2010, we selected tool warnings related to findings by security experts and to
CVEs. Tools reported related warnings for 7 of 10 manual findings in Pebble and for 4 of 26
CVEs in Tomcat. The security experts did not find any weaknesses for Dovecot, and we did not
find any matching warnings for Wireshark and Chrome. This does not include the results from
one of the tools, MARFCAT, which was trained on the SATE 2010 CVE-based test cases and
found almost all CVEs in these test cases.

In Section 3.6 we described sample CVEs, pointing out their properties relevant to their
detectability by tools, and summarized possible reasons for the low number of matching tool
warnings. While human analysis is better for some types of weaknesses, such as design and
authorization issues, tools find weaknesses in many important weakness categories and can
quickly identify and describe in detail many weakness instances.

Due to complexity of the task and limited resources, our analysis of the tool reports is imperfect.
The procedure that was used for finding CVE locations in code and selecting tool warnings
related to the CVEs is new and has limitations, so the results may not indicate tools’ ability to
find important security weaknesses. For this and other reasons, our analysis must not be used as a

NIST SP 500-283 36

direct source for rating or choosing tools or even in making a decision whether or not to use
tools.

5 Future Plans
In previous SATEs, a large number of tool warnings and insufficiency of ground truth made
analysis difficult. We partially addressed this problem by selecting a random subset of tool
warnings for analysis and selecting tool warnings related to findings by security experts and
CVEs. We plan to improve our future analysis as follows. First, we will improve the procedure
for finding CVE locations in code and selecting tool warnings related to the CVEs. Second, we
will introduce synthetic test cases which contain precisely characterized weaknesses and thus
warnings for them are amenable to mechanical analysis. Third, we intend to improve the analysis
guidelines by making the structure of the decision process more precise, clarifying ambiguous
statements, and providing more details for some important weakness categories.

Additionally, the following improvements will make SATE easier for participants and more
useful to the community.

• Allow teams more time to run their tools and analysts more time to analyze the tool
reports.

• Since installing a tool is often easier than installing multiple test cases, provide teams
with a virtual machine image containing the test cases properly configured and ready for
analysis by the tools.

• Work with teams to detect and correct reporting and formatting inconsistencies early in
the SATE procedure.

• Introduce a PHP language track in addition to the C/C++ and Java tracks.

Finally, we will begin a transition toward using the new unified Software Assurance Findings
Expression Schema (SAFES) [3] as the common tool output format.

6 Acknowledgements
Bill Pugh came up with the idea of SATE. SATE is modeled on the NIST Text Retrieval
Conference (TREC): http://trec.nist.gov/. Paul Anderson wrote a detailed proposal for using
CVE-based test cases to provide ground truth for analysis. Romain Gaucher helped with
planning SATE. Romain Gaucher and Ramchandra Sugasi of Cigital are the security experts
that quickly and accurately performed human analysis of the test cases.

We thank Sue Wang, now at MITRE, for great help with all phases of SATE 2010, including
planning, selection of CVE-based test cases, and analysis. We also thank Sue Wang, Charline
Cleraux, and Jenise Reyes-Rodriguez for help with the analysis of tool reports. We thank other
members of the NIST SAMATE team for their help during all phases of the exposition.

We especially thank those from participating teams – Tucker Taft, Paul Anderson, Fletcher
Hirtle, Andy Chou, Peter Henriksen, Daniel Marjamaki, Ralf Huuck, Ansgar Fehnker, Benson
Wu, Daniel Shih, Kwangkeun Yi, Hakjoo Oh, Nat Hillary, Serguei Mokhov, Chris Eng, and
Chris Wysopal - for their effort, valuable input, and courage.

7 References
[1] Accelerating Open Source Quality, http://scan.coverity.com/

NIST SP 500-283 37

[2] Anderson, Paul, Bugs that Matter: True Positives and False Negatives in CodeSonar,
Presentation, Static Analysis Tool Exposition (SATE 2010) Workshop, Gaithersburg, MD, Oct 1,
2010.

[3] Barnum, Sean, Software Assurance Findings Expression Schema (SAFES) Framework,
Presentation, Static Analysis Tool Exposition (SATE 2009) Workshop, Arlington, VA, Nov 6,
2009.

[4] Chains and Composites, The MITRE Corporation,
http://cwe.mitre.org/data/reports/chains_and_composites.html

[5] Common Vulnerabilities and Exposures (CVE), The MITRE Corporation, http://cve.mitre.org/.
[6] Common Weakness Enumeration, The MITRE Corporation, http://cwe.mitre.org/
[7] CVE Details, Serkan Özkan, http://www.cvedetails.com/.
[8] Emanuelsson, Par, and Ulf Nilsson, A Comparative Study of Industrial Static Analysis Tools

(Extended Version), Linkoping University, Technical report 2008:3, 2008.
[9] Frye, C., Klocwork static analysis tool proves its worth, finds bugs in open source projects,

SearchSoftwareQuality.com, June 2006.
[10] Java Open Review Project, Fortify Software, http://opensource.fortifysoftware.com/
[11] Johns, Martin and Moritz Jodeit, Scanstud: A Methodology for Systematic, Fine-grained

Evaluation of Static Analysis Tools, in Second International Workshop on Security Testing
(SECTEST'11), March 2011.

[12] Kratkiewicz, K., and Lippmann, R., Using a Diagnostic Corpus of C Programs to Evaluate Buffer
Overflow Detection by Static Analysis Tools, In Workshop on the Evaluation of Software Defect
Tools, 2005.

[13] Kupsch, James A. and Barton P. Miller, Manual vs. Automated Vulnerability Assessment: A
Case Study, First International Workshop on Managing Insider Security Threats (MIST 2009),
West Lafayette, IN, June 2009.

[14] Lindsay, David and Romain Gaucher, Threat Modeling and Manual Assessment, Presentation,
Static Analysis Tool Exposition (SATE 2009) Workshop, Arlington, VA, Nov 6, 2009.

[15] Livshits, Benjamin, Stanford SecuriBench, http://suif.stanford.edu/~livshits/securibench/
[16] Michaud, F., and R. Carbone, Practical verification & safeguard tools for C/C++, DRDC Canada

– Valcartier, TR 2006-735, 2007.
[17] National Vulnerability Database (NVD), NIST, http://nvd.nist.gov/.
[18] Open Source Software in Java, http://java-source.net/.
[19] Open Source Vulnerability Database (OSVDB), Open Security Foundation, http://osvdb.org/.
[20] Rutar, N., C. B. Almazan and J. S. Foster, A Comparison of Bug Finding Tools for Java, 15th

IEEE Int. Symp. on Software Reliability Eng. (ISSRE'04), France, Nov 2004.
[21] SAMATE project, https://samate.nist.gov/
[22] SAMATE Reference Dataset (SRD), http://samate.nist.gov/SRD/
[23] SANS/CWE Top 25 Most Dangerous Programming Errors, http://cwe.mitre.org/top25/
[24] Source Code Security Analysis Tool Functional Specification Version 1.0, NIST Special

Publication 500-268. May 2007, http://samate.nist.gov/docs/source_code_
security_analysis_spec_SP500-268.pdf

[25] SourceForge, Geeknet, Inc., http://sourceforge.net/.
[26] Static Analysis Tool Exposition (SATE 2010) Workshop, Co-located with 13th semi-annual

Software Assurance Forum, Gaithersburg, MD, Oct 1, 2010,
http://samate.nist.gov/SATE2010Workshop.html

[27] Static Analysis Tool Exposition (SATE) 2008, NIST Special Publication 500-279, June 2009,
Vadim Okun, Romain Gaucher, and Paul E. Black, editors.

[28] Static Analysis Tool Exposition (SATE), http://samate.nist.gov/SATE2010.html
[29] Steven M. Christey, Personal communication, October 2009.

NIST SP 500-283 38

[30] The Second Static Analysis Tool Exposition (SATE) 2009, NIST Special Publication 500-287,
June 2010, Vadim Okun, Aurelien Delaitre, and Paul E. Black.

[31] Timo Sirainen, Dovecot Design/Memory, http://wiki2.dovecot.org/Design/Memory.
[32] Tsipenyuk, K., B. Chess, and G. McGraw, “Seven Pernicious Kingdoms: A Taxonomy of

Software Security Errors,” to be published in Proc. NIST Workshop on Software Security
Assurance Tools, Techniques, and Metrics (SSATTM), US Nat’l Inst. Standards and Technology,
2005.

[33] Walden, James, Adam Messer, and Alex Kuhl, Measuring the Effect of Code Complexity on
Static Analysis, International Symposium on Engineering Secure Software and Systems (ESSoS),
Leuven, Belgium, February 4-6, 2009.

[34] Wheeler, David A., Flawfinder, http://www.dwheeler.com/flawfinder/
[35] Wheeler, David A., SLOCCount, http://www.dwheeler.com/sloccount/
[36] Willis, Chuck, CAS Static Analysis Tool Study Overview, In Proc. Eleventh Annual High

Confidence Software and Systems Conference, page 86, National Security Agency, 2011,
http://hcss-cps.org/.

[37] Zheng, J., L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. Vouk, On the Value of
Static Analysis for Fault Detection in Software, IEEE Trans. on Software Engineering, v. 32, n. 4,
Apr. 2006.

[38] Zitser, M., Lippmann, R., Leek, T., Testing Static Analysis Tools using Exploitable Buffer
Overflows from Open Source Code. In SIGSOFT Software Engineering Notes, 29(6):97-106,
ACM Press, New York (2004).

Appendix A Decision Process Details for Information Leaks
This Appendix provides more details for one weakness category: information leaks. It is based
on Steve Christey’s suggestions [29].

• Mark these information leak warnings as false:
o Error codes that communicate user-level errors or status. The "404 not found"

error message is how the web server tells the client that the web page does not
exist. (However, if the 404 message includes, for example, a full pathname, the
warning is not false.)

o Presentation information such as what color background should be used, or the
font

o process ID numbers

o Version number of the software. (Exception: security software or other software
that explicitly advertises itself as "invisible")

o Inode numbers, file descriptor numbers, ...

o Memory addresses (usually)

• Mark these information leak warnings as security or quality or insignificant:
o Valid usernames

o Passwords (encrypted or not)

o Personally identifiable information (social security number, email address, phone
number, address, etc.)

NIST SP 500-283 39

o Financial information (credit card number, etc.)

o Other privacy (e.g. list of books or movies most recently purchased)

o Installation path or other internal pathnames

o Session IDs, cookies, or other mechanisms for session management

o Source code of a program that should have been executed

o Entire configuration file

o Directory listings

o Process listings

o Response discrepancy information leaks, e.g. if authentication errors can return
either "username not valid" or "password not valid," this would tell the attacker
whether or not a given username is valid

Whether a warning is “true security,” “true quality” or insignificant, depends on the role of the
person who sees the data. For example, providing unencrypted passwords to an administrator is
at least a quality problem. However, providing encrypted passwords to an administrator is
probably insignificant.

To distinguish between “true security” and insignificant: if the "attacker" already has access to
the targeted information or functionality through legitimate means, then it may be true-but-
insignificant. Any functionality advertised by the program counts as "legitimate." For example:

• On LinkedIn, your contacts are legitimately allowed to have access to your personal
information such as email address and phone number – that would not be an information
leak, and if flagged might be insignificant. But if any anonymous user can get your
contact info without logging in - then it's a "true" information leak.

• A web application administrator should be expected to have access to the data files that
list who the users on the system are, and probably knows the full path of the application,
so that is probably insignificant.

• A denial-of-service weakness can only be exploited by an attacker with physical access to
the machine. Well, that attacker can already cause DoS by throwing the machine out of a
window, so this is insignificant.

• The administrator can trick the program into deleting itself. Presumably the program file
already has the permissions to let the admin delete it, so this could be insignificant.

Generally, mark as insignificant or quality, if the information is only available to the person who
started the program, or the program is remotely available but the information is only accessible
to the program's administrator.

NIST SP 500-283 40

Goanna Static Analysis at the NIST Static Analysis Tool Exposition

Mark Bradley, Ansgar Fehnker, Ralf Huuck and Paul Steckler
Red Lizards Software

Email: info@redlizards.com
Url: redlizards.com

Abstract

In 2010 Red Lizard software participated for the first time

in the Static Analysis Tool Exposition (SATE) organized

by the National Institute of Standards and Technology

(NIST) with the static analysis tool Goanna. The aim of

SATE is to advance static analysis research and solutions

that detect serious security and quality issues in source

code. Goanna is a static analysis solution for the desk-

top and server, which detects bugs in C/C++ source code

by a combination of static analysis techniques with model

checking technology. This report will give a brief intro-

duction to source code analysis with Goanna, it describes

how the submission to SATE was prepared, the results that

were obtained, and some of the lessons that were learned

in the process.

1 Introduction

Software development cycles are a major competitive as-

pect in many market segments including mobile phone

handsets, games, and consumer electronics. The obvious

goal is to deliver software as fast as possible, as cheaply

as possible at the highest possible quality. For these rea-

sons automation and tool support play an increasing role.

VDC estimates that around 50% of the software develop-

ment costs result from testing and debugging.

A category tools that help to reduce these costs are

source code analysis tools like Goanna. These tools use

a combination of techniques to detect deficiencies of the

source code in the programming phase. Integrating these

tools in the SDLC has the numerous benefits. First, it

reduces the number of defects detected by testing, and

thus the number of test cycles. It is estimated that find-

ing bug by testing can be up to 80 times more costly than

finding them in the programming phase. These tools can

also be used to ensure that code meets certain coding stan-

dards, which will help to make keep it maintainable. They

furthermore help programmers with debugging their own

code more efficiently, i.e. coding itself becomes more ef-

ficiently, especially if these tools are available in the de-

velopment environment. Another benefit is that these tool

can find potential bugs that are difficult, if not impossible,

to find through traditional means. And of course there

is the benefit that these tools give the programmer auto-

matic, and often instant feedback on his programming.

Goanna by Red Lizards Software is an integrated

C/C++ source code analysis tools for mission-critical in-

dustries. It is the first solution in the market that combines

the automated technologies of static analysis with model

checking. There are two product lines: Goanna Studio,

the IDE version, and Goanna Central, the command line

version.

Goanna Studio is the desktop solution, integrated with

either the Eclipse IDE both for Linux and Windows, or

Microsoft Visual Studio, version 2005, 2008 and 2010.

Red Lizard Software was a SimShip partner when Mi-

crosoft launched Visual Studio 2010, the only static anal-

ysis solution in the market to be jointly launched. Goanna

Studio is a developer tool, fully integrated into the IDEs,

and offers the full solution to be used while programming.

Goanna Central is the command line version that can

be integrated with the nightly build system. It supports all

common common C/C++ dialects such as ANSI/ISO C,

the Microsoft dialects of C/C++, and GNU C/C++, and

the most common build systems such as make, cmake, or

scons.

NIST SP 500-283 41

NIST specified for SATE five C/C++ code bases as test

bed for the participating static analysis tools. One code

base was for Dovecot, an open source IMAP and POP3

server, and two different version for each Wireshark, a

network protocol analyzer, and for Chrome an operating

system. To analyze this code we used Goanna Central

for Linux. The next section introduces the different types

of static analysis techniques, Section 3 desribes the tool

architecture of Goanna, Section 4 describes which checks

and which version of Goanna were used in SATE, Section

5 presents the overall results, while Section 6 selects and

explain a few warnings from the tool reports.

2 Static Analysis Technologies
Goanna checks for bugs, memory leaks and security vul-

nerabilities, is fully path-sensitive and inter-procedural. It

uses a combination of techniques, from pattern matching,

to data flow analysis, and model checking. In the fol-

lowing we describe the main techniques used by modern

static analysis tools for detecting security vulnerabilities

in source code.

Tree-Pattern Matching. Pattern matching is the sim-

plest technology applied by virtually all static analysis

tools. Pattern matching means to identify points of inter-

est in the program’s syntax, typically by defining queries

on either the plain source code or on the abstract syntax
tree (AST), i.e. the representation of the source code after

parsing. For instance, it is well known that in C/C++ pro-

grams the library function strcopy is vulnerable to se-

curity exploitation if not used absolutely correctly. Hence,

a simple keyword scan for strcopy can help with this.

Queries can become more complicated, and a series of

interdependent queries may be used for more advanced

checks, for example to identify inconsistent use of seman-

tic attributes. Our analysis tool Goanna uses such tree-

pattern matching [BFK02] on the AST. However, pattern

matching is fundamentally limiting, since it only searches

for keywords and their context, but is unable to take con-

trol flow, data flow, or other semantic information into ac-

count.

Data Flow Analysis. The next step up in terms of tech-

nology is about understanding how certain constructs are

related. Data flow analysis [NNH99] makes use of the

structure of program, in particular its control flow graph
(CFG). It is a standard compiler technique to examine the

flow of information between variables and other elements

of interest that can be syntactically identified. An exam-

ple is checking for uninitialized variables leading to un-

expected arbitrary behavior. We can syntactically identify

program locations that are variable declarations and uses

of variables either as a reading operation (such as the right

hand side of an assignment) or a write operation (such as

the left hand side of an assignment). Data flow analy-

sis enables us to examine if there exists a read operation

to a variable without a prior write operation. These and

similar methods are used to analyze how certain elements

in a program are related. Typically, however, data flow

analysis uses a number of approximation techniques that

prohibit the precise identification of the program path. To

remedy this model checking can be applied.

Model Checking. Model checking was developed in

the early 1980s as a technique to check whether larger

concurrent systems satisfy given temporal properties

[CE82, QS82]. It is essentially a technique to determine

whether all paths in a graph satisfy certain ordering of

events along that path. Unlike other techniques that enu-

merate paths, model checking does not put a limit of the

number, the length or the branching of paths. Another ad-

vantage is that if it finds a violation, it will also return a

counterexample path. For their solution the original au-

thors received the Turing Award in 2007.

Model checking was originally applied to the formal

verification of protocols and hardware designs. In recent

years a strong push has been made towards software ver-

ification, and effective methods have been developed to

overcome scalability challenges. Our tool Goanna is the

first tool that manages to apply model checking on a grand

scale to static program analysis. This means that we use

it to analyze millions of lines of code for over one hun-

dred different classes of checks. The advantage of this

approach is that it is oftentimes faster than existing data

flow and path enumeration approaches. Moreover, it also

tends to be more powerful as it allows specifying complex

relations between program constructs.

NIST SP 500-283 42

Abstract Data Tracking. To detect buffer overflows,

division-by-zero errors and other defects it is helpful to

know as much as possible about the values that can oc-

cur at certain program locations. A technique to approx-

imate and track data values is commonly called abstract

interpretation [Cou81]. Abstract interpretation estimates

for every variable at every program location all the poten-

tial range of variables. For example, for an array access,

all potential index values can be estimated. Different do-

mains can be used for data tracking, with varying levels of

precision. There is a trade-off between the precision and

speed of the analysis. Goanna uses a variant of interval

constraint analysis that is reasonably precise while fast,

but can also use automated theorem proving techniques

(SMT solving) to validate individual program paths.

Inter-procedural Analysis. While the aforementioned

techniques help to detect various security issues and are

often complimentary, one of the key factors to success is

to scale to large code bases. Many potential issues require

to understand the overall call structure of a program, and

being able to track data and control flow across function

boundaries. To overcome this challenges advanced tools

introduce the ability to generate function summaries au-

tomatically. These summaries contain only the essential

information of a function that is needed for particular se-

curity check. Instead of propagating information of the

whole function, which can be prohibitively large, only the

summary information is used. Generating summaries is

an iterative process taking the mutual impact (from recur-

sion etc.) into account.

3 The Goanna Static Analysis
Goanna is an automated analysis tool that does not exe-

cute code as in traditional testing, but examines the code

structure, the keywords, their inter-relation as well as the

data and information flow across the whole source code

base. These techniques can be fully automated and scale

to millions of lines of code. As such Goanna is able

to identify many classes of security issues automatically

at software development time. Moreover, Goanna is the

only tool that combines all the techniques mentioned in

Section 2. The Goanna tool is fully path-sensitive and

performs inter-procedural analysis. For a detailed tech-

Figure 1: Goanna static analysis architecture

nical description of the underlying formal techniques see

[FHJ+07].

Supported Languages and Architectures. The

Goanna tool is currently implemented to handle C/C++

source code. The architecture and the technology are

in theory adaptable to other imperative programming

languages such as C# or Java. However, the C/C++

programming language is still predominant in many

mission-critical systems while at the same time it easily

suffers from potential exploits.

The Goanna tool fully parses C/C++ source code in-

cluding compiler specific dialects and extensions such as

GNU, Visual C++ or GreenHills. It is available for Mi-

crosoft Windows as well as various Linux on either 32-bit

or 64-bit machines. On top of that Goanna supports the

cross-compilation to a number of embedded platforms. It

is possible to integrate the tool in popular build environ-

ments, such as make or scons.

Analysis Framework. Figure 1 depicts how the dif-

ferent types of analysis are embedded in Goanna. The

core of the tool uses model checking, while the other

techniques are used for particular checks, and to assist

in the generation of the models. A distinguishing fea-

ture of Goanna is that it architecturally modularizes the

core analysis engine and the checks that are performed.

Goanna has a specification language to define checks; this

allow for the rapid development of new checks, separately

from the core algorithms, and any future improvement of

the engine will be effective for all checks.

In short, Goanna uses model checking for all path-

sensitive check on how program information relates. It

NIST SP 500-283 43

uses tree-pattern matching to identify certain locations

and operations of interest and abstract data tracking by

constraint solving for specialized checks, such as buffer

overruns, shifting beyond bounds and overflow errors.

Moreover, Goanna uses a number of heuristics and ad-

vanced features such as interprocedural whole-program

analysis to achieve speed and scalability.

4 The Entry
NIST specified five code bases for SATE, but the partici-

pants were free to configure their tool to fit the code base.

For the entry to SATE we used a development snapshot of

the then current version of Goanna 2.0 (r7225), running

on Linux Ubuntu Server 8.04. None of the code bases

required special configuration above what would be re-

quired to configure a normal build. All of the code bases

specified by NIST use a combination of configure and

make files; all that was required is to configure them

with Goanna, and in addition, since we are using inter-

procedural analysis, to specify a database file. The re-

maining configuration dealt with formatting the output to

comply with the NIST specification.

For analysis of Chrome 5.0.375.54 and 5.0.375.70 we

used the standard version of goanna. For Dovecot and

Wireshark 1.2.0 and 1.2.9 we used a prototype version. It

differed from the standard version in that it used an addi-

tional SMT solver to evaluate paths, and an off-the-shelf

model checker, rather than our custom build checker. The

latter has no influence on the results. It was used to for the

prototype because it supported a secondary feature that

was not supported at the time by the in house checker.

This came at an expense of performance, since it has not

been optimised for the use with Goanna. The in-house

checker can be up to 2 orders of magnitude faster than the

off-the-shelf solution.

For our submission we selected the 55 default checks

of Goanna 2.0. These checks are enabled by default,

because they detect the more serious issues that should

be addressed by any programmer. We omitted the other

checks which typically deal more with either stylistic re-

quirements, such as the unused parameter check, or warn

very conservatively, i.e. even if an actual bug is unlikely.

The remainder of this section will give a quick overview

of the classes of checks that we included.

Array bounds. These checks are concerned with correct

array access. They will warn if they detect an out of

bound array access. We included three checks of this

class.

Arithmetic errors. These checks are concerned with

arithmetic errors such as division by zero or out of

bound shifts. We included ten checks of this class.

C++ copy control. These checks are concerned with the

correct initialization, construction or destruction.

This class only applies to C++. We included three

checks from this class.

C++ usage. These checks are concerned with the correct

use of C++ features. For example, they warn if a

nonvirtual destructor is defined for an abstract class.

Potentially unexpected behavior. These checks are

concerned with features and idiosyncracies of

C/C++ that are often poorly understood. An exam-

ple is an ambiguous use of an else. Two of these

checks have been included.

Function pointer usage. These are concerned with us-

ing accidentally a function pointer incorrectly, for

example in an arithmetic expression. We included

two checks of this class.

Memory usage. These checks deal with the correct us-

age of stacks, arrays and pointers, like storing a stack

address in a global variable. Ten of these checks have

been included.

Pointer misuse. These checks deal more specifically

with the correct use of pointers, like testing for

NULL pointer. We included five checks of this class.

Redundant code. These checks deal with code that may

be redundant, like dead code or trivial conditions.

We included six checks of this class.

Semantic attributes. These checks are concerned with

the correct use of the GNU C language extension

with semantic attributes like const or pure. We

included four checks from this class.

Unspecified behavior. These checks deal with code for

which the C standard does not define behavior. This

NIST SP 500-283 44

includes cases where the execution order is unde-

fined, or cases where initialization is undefined. We

included five checks of this class.

As mentioned before, we selected the default checks,

which report serious issues, and assume that the program-

mer is programming defensively. They try not to warn in

cases that are common and accepted programming prac-

tice. And example would be redundant return state-

ments. While the warning would be technically correct,

redundant return statements are often included to deal

with compiler warnings on missing return statements.

5 The Results
The size of the code bases in SATE differed greatly.

Dovecot is 360 kLoC in size, Wireshark 1.2.0 and

1.2.9 are both 1.7 MLoC, and Chrome 5.0.375.54 and

5.0.375.70 are 1.5MLoC and 1.7MLoC, respectively. The

number of warnings Goanna issued range from 180 for

Dovecot, 534 and 532 for the Wireshark code bases, to

1079 and 1173 for the Chrome code bases, respectively.

But the result do not only differ in the number of warnings

found, but also in the type of warnings. Table 1 list the top

ten checks by the number of warnings for Dovecot.

Most of the Dovecot warnings relate to potential NULL

pointer dereferences and to trivial conditions. A class of

warning that only occurred for the Dovecot code base are

the warnings on the correct use of the semantic attributes

const and pure. These attributes are a GNU language

extension, that can be used in compiler optimization, how-

ever the gnu compiler does not check for proper use of

these attributes. This might explain the fairly high num-

ber of warnings of this type; the programmer is expected

to use these attributes correctly, without being held to a

correct use by the compiler.

The Wireshark code bases does not use this language

extension, and this type of warnings is therefore ab-

sent. The majority of warnings concern potential NULL

pointer, uninitialized variables and trivial conditions. One

check with remarkably many warnings is the check for

unused pointer values. This check will warn if a pointer

is assigned a value that is not NULL, and then not used

along any path. While the warnings can be insignificant,

they do quite often uncover serious issues, if, for exam-

Check
1 Dereference of possible NULL pointer 59

2 Comparison never holds 31

3 Comparison always holds 21

4 Uninitialized variable on some paths 15

5 Global variable access by const func-

tion

12

6 Dereference of possible NULL pointer

by function

11

7 Call of function w/o pure by function

with pure attribute

10

8 Unused variable on all paths 7

9 Uninitialized struct field 4

10 Store stack in a global 2

Table 1: The 10 checks with the most warnings for Dove-

cot, ranked by the number of warnings.

Check 1.2.0 1.2.9
1 Comparison never holds 281 282

2 Unused pointer value 54 55

3 NULL check after derefer-

ence

54 50

4 Uninitialized variable on

some paths

35 35

5 Dereference of possible

NULL pointer

35 34

6 Comparison always holds 33 35

7 Uninitialized struct field 10 10

8 Dereference of possible

NULL pointer by function

8 8

9 Variable used in divisor be-

fore comparison with 0

6 6

10 Parameter checked before

deref only on some paths

4 4

Table 2: The 10 checks with the most warnings for Wire-

shark 1.2.0 and 1.2.9, ranked by the number of warnings.

ple, by a copy an paste error, the wrong pointer was used

subsequently.

The number of warnings changed slightly from version

1.2.0 to 1.2.9, but not significantly. A warning that

disappeared completely in revision 1.2.9 was a warning

about the potential dereference of a definite NULL

NIST SP 500-283 45

Check x.54 x.70
1 Dereference of possible

NULL pointer

400 424

2 Comparison always holds 166 193

3 NULL check after derefer-

ence

110 112

4 Comparison never holds 92 102

5 Dereference of possible

NULL pointer by function

54 63

6 Uninitialized variable on

some paths

49 55

7 Paramter checked before

derefence only on some

paths

42 43

8 Unused variable on all paths 29 23

9 Switch case unreachable 21 21

10 Uninitialized variable on all

paths

14 25

Table 3: The 10 checks with the most warnings for

Chrome 5.0.375.54 and 5.0.375.70, ranked by the num-

ber of warnings.

pointer. There were only two warning of this particular

check for Wireshark 1.2.0, both caused by the incorrect

used of a macro #define MATCH ((class ==
info->tclass) && (tag == info->tag)). It

was used on a possible paths when info was definitely

NULL. In Wireshark 1.2.9 this macro was replaced

by #define MATCH (info && (class ==
info->tclass) && (tag == info->tag)),

i.e. it included a NULL check before the rest of the

expression got evaluated. This effectively addressed the

warning.

Table 3 lists the most common warning for Chrome.

Also for this code bases most warning were concerned

with trivial conditions, uninitialized variables, and poten-

tial NULL pointers. For Chrome there are significant

changes between version 5.0.375.54 and 5.0.375.70, but

this reflects that the later version also grew 11% in size.

The next section will discuss a few warning that have been

evaluated by NIST in detail.

6 Selected Warnings Explained
NIST selected as a part of SATE for each tool 30 warnings

from the set of Dovecot warnings for evaluation. In addi-

tion NIST selected CVEs from Wireshark, that is known

bugs the list of Common Vulnerabilities and Exposures

maintained by MITRE. In this section we will discuss a

few of these warnings and defects, since they illustrate

nicely the types of analysis Goanna performs to detect po-

tential defects.

Failed Error Handling Routine. The following warn-

ings from the Dovecot code base deals with the correct

use of semantic attributes; a checks which requires pat-

tern matching only.

u n i c h a r . c : 1 9 3 : warn ing : Goanna [SEM−c o n s t−c a l l]

Non−c o n s t f u n c t i o n ‘ u i n t 1 6 f i n d ’ i s c a l l e d i n

c o n s t f u n c t i o n ‘ u n i u c s 4 t o t i t l e c a s e ’

u n i c h a r t u n i u c s 4 t o t i t l e c a s e (u n i c h a r t

c h r)

{ [. . .]

193 i f (! u i n t 1 6 f i n d (t i t l e c a s e 1 6 k e y s ,

N ELEMENTS(t i t l e c a s e 1 6 k e y s) , chr , &

i d x))

re turn c h r ;

e l s e [. . .]

The detected issue results from a wrong use of GNU

semantic attribute const. These allow the use to de-

fine attributes of functions, which can then be used by

the compiler to optimize code. In the above example

function uni ucs4 to titlecase has the attribute

const. The documentation on the GNU language exten-

sion says that ”a function that calls a non-const function

usually must not be const”. This requirement is violated

in the above example, since function uint16 find does

not have the attribute const. To find this type of vio-

lation it is sufficient to check if all functions that are a

called in a function with attribute const, have this at-

tribute themselves. This can be achieved by combining

two patterns on the AST, one to find function calls in

const functions, and one to check the attribute of the

called functions.

Failed Error Handling Routine. The following exam-

ple, also from Dovecot, was found with a combination of

summaries and abstract data tracking.

NIST SP 500-283 46

d i r e c t o r −c o n n e c t i o n . c : 6 5 5 : warn ing : Goanna [RED−
cmp−n e v e r] Comparison n e v e r h o l d s

655 i f (s t r a r r a y l e n g t h (a r g s) != 2 | |
d i r e c t o r a r g s p a r s e i p p o r t (. . .) < 0) {

i e r r o r () ;

re turn FALSE ;

}
The above code fragment is part of an error handler;

the error routine i error will be called if the output of

director args parse ip port is negative. How-

ever, the output range of this function is in the inter-

val [0, 1] and will thus never be negative. Closer in-

spection showed that this code was refactored to return

0 if an error is detected rather than −1. Except for a

few exceptions, the output of this function was treated

like a Boolean. The mistake presumably entered since

manual refactoring did not change all occurring tests in

the error handler to use a Boolean condition. Abstract

data tracking was used to determine the output range of

director args parse ip port. This range was

then part of the inter-procedural summary and subse-

quently used to detect unsatisfiable conditions in other

functions.

Denial of Service. The following example, from the

Wireshark code base, highlights a potential denial of ser-

vice exploit. Goanna required its model checking capa-

bilities to detect this security issue. The surrounding code

is:

packe t−smb . c : 8 2 1 1 : warn ing : Goanna [PTR−param−
unchk−some] P a r a m e t e r ‘ n t i ’ i s n o t checked

a g a i n s t NULL b e f o r e i t i s d e r e f e r e n c e d on some

p a t h s , b u t on o t h e r p a t h s i t i s

case NT TRANS IOCTL : [. . .]

8211 d i s s e c t s m b 2 i o c t l d a t a (i o c t l t v b , p i n f o ,

t r e e , t o p t r e e , n t i−>i o c t l f u n c t i o n ,

TRUE) ;

[. . .]

case NT TRANS SSD :

i f (n t i) { s w i t c h (n t i−>f i d t y p e) { [. . .]

The detected issue resides in a longer switch statement.

In one case nti is not checked to be not NULL before it

is dereferenced, in the other case it is. This points to an

inconsistency, which can lead to a NULL-pointer deref-

erence. This particular example was reported as CVE-

2010-2283 in the MITRE bug database. Finding this bug

requires to compare behavior along two paths. In this ex-

ample, the inconsistency happens within a few lines. In

general inconsistent paths may contain conditional jumps

and loops, such that an explicit path enumeration becomes

infeasible. Model checking provides algorithms to checks

this exhaustively and efficiently.

Unfortunately, this warning was not included in the

Goanna report for Wireshark. In Goanna it is possible

to set a timeout, after which the tool stop with the analy-

sis of a file, and proceeds with the following file. For the

SATE participation the timeout was set to 120 seconds,

which in hindsight seems to be rather low. In this partic-

ular case only half of the file was analyzed, the function

in line 8211 however was not. Increasing the timeout to

a more reasonable five minutes would have revealed this

bug.

Potential Program Crash. The final warning we like to

discuss is also taken from the Dovecot code base. Goanna

used model checking and interprocedural whole-program

analysis to detect this defect.

d i r e c t o r . c 180 : warn ing : Goanna [PTR−n u l l−a s s i g n

−fun−pos] D e r e f e r e n c e o f ‘ p r e f e r r e d h o s t ’ which

may be NULL

∗ p r e f e r r e d h o s t =

d i r e c t o r g e t p r e f e r r e d r i g h t h o s t (d i r) ;

[. . .]

i f (c u r h o s t != p r e f e r r e d h o s t)

180 (void) d i r e c t o r c o n n e c t h o s t (d i r ,

p r e f e r r e d h o s t) ;

e l s e { [. . .] }
The detected issues is based on the fact that the func-

tion director get preferred right host
may return a NULL pointer and assigns it to

*preferred host. This is later used as param-

eter of director connect host. However,

inter-procedural analysis shows that there exists a path

in director connect host where this parameter

will be dereferenced, without a prior check for being

potentially NULL. The dereferencing of this NULL

pointer can lead to an exception/crash that enables an

attacker to potentially enter the system.

7 Conclusion
This report described the entry and results of the static

analysis tool Goanna by Red Lizard Software for the

NIST SP 500-283 47

Static Analysis Tool Exposition, organized by NIST.

Goanna is a novel type of tool that combines static analy-

sis techniques such as pattern matching, data flow analysis

and abstract data tracking with model checking to obtain a

fast, scalable and precise solution to detect potential soft-

ware defects. For SATE we selected the default checks of

Goanna, and applied them to the five code bases.

The results show that Goanna is a competitive solution

to find serious software defects in real life code. At the

time of writing the final results of the evaluation by NIST

evaluation are still unknown, and it would be premature

to make a final comment. Intermediate results that were

shared among participants, however, confirm that Goanna

is at least on par with the other leading tools in this area

when it comes to the fraction of serious security and qual-

ity issues detected, versus the fraction of insignificant and

false warnings. This is what a tool should to deliver; ac-

tionable warnings that help with improving the code.

The intermediate feedback also gave us valuable feed-

back on how to further improve the tool. The feedback

was in particular useful, since the manual evaluation of

NIST went through the effort to describe the potential is-

sue in detail. Cause for false positives were omitted corner

cases, unused semantic information, incomplete semantic

models, non-trivial invariants, and custom asserts. The

first two causes can be directly addressed by refining the

existing checks. Given that Goanna defines the checks

separately from the analysis engine, this is an easy im-

provement. This type of issue that were revealed by the

NIST evaluation have been addressed in the meanwhile.

Addressing an incomplete semantic model requires to

improve the basic semantic models are already used by

the tool; all that is required to refine these models. Non

trivial invariants is a more fundamental problem of static

analysis. For example, detecting one of the CVEs se-

lected by NIST, CVE-2010-2286, would require to prove

the absence of an appropriate loop invariant, for a loop

that was realized by gotos that span approximately 2000

lines of code. This type of analysis is arguably outside

of the scope of static analysis tools. Even more power-

ful techniques, such as automatic theorem provers, would

have a hard time detecting such issues automatically, re-

gardless of the problem that these solutions will currently

also not scale to problems of this size. The final problem

of custom asserts can be addressed by giving the user a

way to redefine or refine checks, or give by giving them

the means to add annotations or pragmas. However, from

among users there exists some reluctancy to change the

code to accommodate static analysis, which is expected

to be fully automatic.

Red Lizard Software participated in 2010 for the first

time in SATE. The challenge for the tools was to deal

with code bases of different sizes and of different type.

The evaluation by NIST focused mostly on the quality of

the warnings, rather than on the speed of a solution or its

ease of use. The exposition helped to shed a light on the

strength and weaknesses of the tool, and confirmed that

Goanna is a competitive solution for C/C++ analysis.

References
[BFK02] Michael Benedikt, Wenfei Fan, and

Gabriel M. Kuper, Structural properties
of xpath fragments, ICDT ’03: Proceedings of

the 9th International Conference on Database

Theory (London, UK), Springer, 2002,

pp. 79–95.

[CE82] Edmund M. Clarke and E. Allen Emerson, De-
sign and synthesis of synchronization skele-
tons for branching time temporal logic, Log-

ics of Programs Workshop, LNCS, vol. 131,

Springer, 1982, pp. 52–71.

[Cou81] P. Cousot, Semantic foundations of program
analysis, Program Flow Analysis: Theory and

Applications, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, 1981, pp. 303–342.

[FHJ+07] A. Fehnker, R. Huuck, P. Jayet, M. Lussen-

burg, and F. Rauch, Model checking soft-
ware at compile time, Proc. TASE 2007, IEEE

Computer Society, 2007.

[NNH99] F. Nielson, H. Riis Nielson, and C. L. Han-

kin, Principles of program analysis, Springer,

1999.

[QS82] Jean-Pierre Queille and Joseph Sifakis, Speci-
fication and verification of concurrent systems
in CESAR, Proc. Intl. Symposium on Program-

ming, Turin, April 6–8, 1982, Springer, 1982,

pp. 337–350.

NIST SP 500-283 48

The use of machine learning with signal- and NLP

processing of source code to fingerprint, detect, and

classify vulnerabilities and weaknesses with

MARFCAT
Serguei A. Mokhov
Concordia University

Montreal, QC, Canada
mokhov@cse.concordia.ca

Abstract

We present a machine learning approach to static code analysis and findgerprinting for
weaknesses related to security, software engineering, and others using the open-source MARF
framework and the MARFCAT application based on it for the NIST’s SATE 2010 static
analysis tool exposition workshop.

1 Introduction

This paper elaborates on the details of the methodology and the corresponding results of appli-
cation of the machine learning techniques along with signal processing and NLP alike to static
source code analysis in search for weaknesses and vulnerabilities in such a code. This work re-
sulted in a proof-of-concept tool, code-named MARFCAT, a MARF-based Code Analysis Tool
[14], presented at the Static Analysis Tool Exposition (SATE) workshop 2010 [21] collocated
with the Software Assurance Forum on October 1, 2010.

At the core of the workshop there were C/C++-language and Java language tracks compris-
ing CVE-selected cases as well as stand-alone cases. The CVE-selected cases had a vulnerable
version of a software in question with a list of CVEs attached to it, as well as the most know
fixed version within the minor revision number. One of the goals for the CVE-based cases is to
detect the known weaknesses outlined in CVEs using static code analysis and also to verify if
they were really fixed in the “fixed version” [21].

The test cases at the time included CVE-selected:

• C: Wireshark 1.2.0 (vulnerable) and Wireshark 1.2.9 (fixed)

• C++: Chrome 5.0.375.54 (vulnerable) and Chrome 5.0.375.70 (fixed)

• Java: Tomcat 5.5.13 (vulnerable) and Tomcat 5.5.29 (fixed)

and non-CVE selected:

• C: Dovecot 2.0-beta6

• Java: Pebble 2.5-M2

We develop MARFCAT to machine-learn from the CVE-based vulnerable cases and verify
the fixed versions as well as non-CVE based cases from similar programming languages.

NIST SP 500-283 49

mokhov@cse.concordia.ca

Organization

The related work, some of the present methodology is based on, is referenced in Section 2. The
methodology summary is in Section 3. We present the results, most of which were reported at
SATE2010, in Section 4. We then describe the machine learning aspects as well as mathematical
estimates of functions of how to determine line numbers of unknown potentially weak code
fragments in Section 3.5. (The latter is necessary since during the representation of the code
a wave form (i.e. signal) with current processing techniques the line information is lost (e.g.
filtered out as noise) making reports less informative, so we either machine-learn the line numbers
or provide a mathematical estimate and that section describes the proposed methodology to do
so, some of which was implemented.) Then we present a brief summary, description of the
limitations of the current realization of the approach and concluding remarks in Section 5.

2 Related Work

Related work (to various degree of relevance) can be found below (this list is not exhaustive):

• Taxonomy of Linux kernel vulnerability solutions in terms of patches and source code as
well as categories for both are found in [16].

• The core ideas and principles behind the MARF’s pipeline and testing methodology for
various algorithms in the pipeline adapted to this case are found in [11]. There also one can
find the core options used to set the configuration for the pipeline in terms of algorithms
used.

• A binary analysis using machine learning approach for quick scans for files of known types
in a large collection of files is described in [15].

• The primary approach here is similar in a way that was done for DEFT2010 [13, 12] with
the corresponding DEFT2010App and its predecessor WriterIdentApp [17].

• Tlili’s 2009 PhD thesis covers topics on automatic detection of safety and security vulner-
abilities in open source software [24].

• Statistical analysis, ranking, approximation, dealing with uncertainty, and specification
inference in static code analysis are found in the works of Engler’s team [8, 6, 7].

• Kong et al. further advance static analysis (using parsing, etc.) and specifications to
eliminate human specification from the static code analysis in [5].

• Spectral techniques are used for pattern scanning in malware detection by Eto et al. in
[1].

• Researchers propose a general data mining system for incident analysis with data mining
engines in [4].

• Hanna et al. describe a synergy between static and dynamic analysis for the detection of
software security vulnerabilities in [3] paving the way to unify the two analysis methods.

• The researchers propose a MEDUSA system for metamorphic malware dynamic analysis
using API signatures in [18].

NIST SP 500-283 50

3 Methodology

Here we briefly outline the methodology of our approach to static source code analysis in its
core principles in Section 3.1, the knowledge base in Section 3.2, machine learning categories in
Section 3.3, and the high-level step-wise description in Section 3.4.

3.1 Core principles

The core methodology principles include:

• Machine learning

• Spectral and NLP techniques

We use signal processing techniques, i.e. presently we do not parse or otherwise work at the
syntax and semantics levels. We treat the source code as a “signal”, equivalent to binary, where
each n-gram (n = 2 presently, i.e. two consecutive characters or, more generally, bytes) are used
to construct a sample amplitude value in the signal.

We show the system examples of files with weaknesses and MARFCAT learns them by
computing spectral signatures using signal processing techniques from CVE-selected test cases.
When some of the mentioned techniques are applied (e.g. filters, silence/noise removal, other
preprocessing and feature extraction techniques), the line number information is lost as a part
of this process.

When we test, we compute how similar or distant each file is from the known trained-on
weakness-laden files. In part, the methodology can approximately be seen as some signature-
based antivirus or IDS software systems detect bad signature, except that with a large number
of machine learning and signal processing algorithms, we test to find out which combination
gives the highest precision and best run-time.

At the present, however, we are looking at the files overall instead of parsing the fine-grained
details of patches and weak code fragments, which lowers the precision, but is fast to scan all
the files.

3.2 CVEs – the “Knowledge Base”

The CVE-selected test cases serve as a source of the knowledge base to gather information of
how known weak code “looks like” in the signal form, which we store as spectral signatures
clustered per CVE or CWE. Thus, we:

• Teach the system from the CVE-based cases

• Test on the CVE-based cases

• Test on the non-CVE-based cases

3.3 Categories for Machine Learning

The tow primary groups of classes we train and test on include:

• CVEs [19, 20]

• CWEs [25] and/or our custom-made, e.g. per our classification methodology in [16]

NIST SP 500-283 51

The advantages of CVEs is the precision and the associated meta knowledge from [19, 20]
can be all aggregated and used to scan successive versions of the the same software or derived
products. CVEs are also generally uniquely mapped to CWEs. The CWEs as a primary class,
however, offer broader categories, of kinds of weaknesses there may be, but are not yet well
assigned and associated with CVEs, so we observe the loss of precision.

Since we do not parse, we generally cannot deduce weakness types or even simple-looking
aspects like line numbers where the weak code may be. So we resort to the secondary categories,
that are usually tied into the first two, which we also machine-learn along, shown below:

• Types (sink, path, fix)

• Line numbers

3.4 Basic Methodology

Algorithmically-speaking, MARFCAT performs the following steps to do its learning analysis:

1. Compile meta-XML files from the CVE reports (line numbers, CVE, CWE, fragment size,
etc.). Partly done by a Perl script and partly manually. This becomes an index mapping
CVEs to files and locations within files.

2. Train the system based on the meta files to build the knowledge base (learn). Presently
in these experiments we use simple mean clusters of feature vectors per default MARF
specification ([11, 23]).

3. Test on the training data for the same case (e.g. Tomcat 5.5.13 on Tomcat 5.5.13) with
the same annotations to make sure the results make sense by being high and deduce the
best algorithm combinations for the task.

4. Test on the testing data for the same case (e.g. Tomcat 5.5.13 on Tomcat 5.5.13) without
the annotations as a sanity check.

5. Test on the testing data for the fixed case of the same software (e.g. Tomcat 5.5.13 on
Tomcat 5.5.29).

6. Test on the testing data for the general non-CVE case (e.g. Tomcat 5.5.13 on Pebble).

3.5 Line Numbers

As was earlier mentioned, line number reporting with MARFCAT is an issue because the source
text is essentially lost without line information preserved (filtered out as noise or silence or mixed
in with another signal sample). Therefore, some conceptual ideas were put forward to either
derive a heuristic, a function of a line number based on typical file attributes as described below,
or learn the line numbers as a part of the machine learning process. While the methodology
of the line numbers discussed more complete scenarios and examples, only and approximation
subset was actually implemented in MARFCAT.

NIST SP 500-283 52

3.5.1 Line Number Estimation Methodology

Line number is a function of the file’s dimensions in terms of line numbers, size in bytes, and
words. The meaning of W may vary. The implementations of f may vary and can be purely
mathematical or relativistic and with side effects. These dimensions were recorded in the meta
XML files along with the other indexing information. This gives as the basic Equation 1.

l = f(LT , B,W) (1)

where

• LT – number of lines of text in a file

• B – the size of the file in bytes

• W – number of words per wc [2], but can be any blank delimited printable character
sequence; can also be an n-gram of n characters.

The function should be additive to allow certain components to be zero if the information is not
available or not needed, in particular f(B) and f(W) may fall into this category. The ceiling
d. . .e is required when functions return fractions, as shown in Equation 2.

f(LT , B,W) = df(LT) + f(B) + f(W)e (2)

Constraints on parameters:

• l ∈ [1, . . . , LT] – the line number must be somewhere within the lines of text.

• f(LT) > 0 – the component dependent on the the lines of text LT should never be zero or
less.

• EOL = {\n, \r, \r\n, EOF}. The inclusion of EOF accounts for the last line of text missing
the traditional line endings, but is non-zero.

• LT > 0 =⇒ B > 0

• B > 0 =⇒ LT > 0 under the above definition of EOL; if EOF is excluded this implication
would not be true

• B = 0 =⇒ LT = 0,W = 0

Affine combination is in Equation 3:

f(LT , B,W) = dkL · f(LT) + kB · f(B) + kW · f(W)e (3)

• kL + kB + kW < 1 =⇒ the line is within the triangle

Affine combination with context is in Equation 4:

f(LT , B,W) = dkL · f(LT) + kB · f(B) + kW · f(W)e ±∆c (4)

where ±∆c is the amount of context surrounding the line, like in diff [9]; with c = 0 we are
back to the original affine combination.

NIST SP 500-283 53

Learning approach with matrices and probabilities from examples. This case of the
line number determination must follow the preliminary positive test with some certainty that a
give source code file contains weaknesses and vulnerabilities. This methodology in itself would
be next to useless if this preliminary step is not performed.

In a simple case a line number is a cell in the 3D matrix M given the file dimensions alone,
as in Equation 5. The matrix is sparse and unknown entries are 0 by default. Non-zero entries
are learned from the examples of files with weaknesses. This matrix is capable of encoding a
single line location per file of the same dimensions. As such it can’t handle multiple locations
per file or two or more distinct unrelated files with different line numbers for a single location.
However, it serves as a starting point to develop a further and better model.

l = f(LT , B,W) = M [LT , B,W] (5)

To allow multiple locations per file we either replace the W dimension with the locations
dimension N if W is not needed, as e.g. in Equation 6, or make the matrix 4D by adding N
to it, as in Equation 7. This will take care of the multiple locations issue mentioned earlier. N
is not known at the classification stage, but the coordinates LT , B,W will give a value in the
3D matrix, which is a vector of locations ~n. At the reporting stage we simply report all of the
elements in ~n.

~l = f(LT , B,W) = M [LT , B,N] (6)

~l = f(LT , B,W) = M [LT , B,W,N] (7)

In the above matrices M , the returned values are either a line number l or a collection of
line numbers ~l that were learned from examples for the files of those dimensions. However, if we
discovered a file tested positive to contain a weakness, but we have never seen its dimensions
(even taking into the account we can sometimes ignore W), we’ll get a zero. This zero presents
a problem: we can either (a) rely on one of the math functions described earlier to fill in that
zero with a non-zero line number or (b) use probability values, and convert M to Mp, as shown
in Equation 8.

The Mp matrix would contain a vector value ~np of probabilities a given line number is a line
number of a weakness.

~lp = f(LT , B,W) = Mp[LT , B,W,N] (8)

We then select the most probable ones from the list with the highest probabilities. The index
i within ~lp represents the line number and the value at that index is the probability p = ~lp[i].

Needless to say this 4D matrix is quite sparse and takes a while to learn. The learning is
performed by counting occurrences of line numbers of weaknesses in the training data over total
of entries. To be better usable for the unseen cases the matrix needs to be smoothed using any of
the statistical estimators available, e.g. from NLP, such as add-delta, ELE, MLE, Good-Turing,
etc. by spreading the probabilities over to the zero-value cells from the non-zero ones. This is
promising to be the slowest but the most accurate method.

In MARF, M is implemented using marf.util.Matrix, a free-form matrix that grows upon
the need lazily and allows querying beyond physical dimensions when needed.

NIST SP 500-283 54

4 Results

The preliminary results of application of our methodology are outlined in this section. We
summarize the top precisions per test case using either signal-processing or NLP-processing of
the CVE-based cases and their application to the general cases. Subsequent sections detail some
of the findings and issues of MARFCAT’s result releases with different versions.

4.1 Preliminary Results Summary

Current top precision at the SATE2010 timeframe:

• Wireshark:

– CVEs (signal): 92.68%, CWEs (signal): 86.11%,

– CVEs (NLP): 83.33%, CWEs (NLP): 58.33%

• Tomcat:

– CVEs (signal): 83.72%, CWEs (signal): 81.82%,

– CVEs (NLP): 87.88%, CWEs (NLP): 39.39%

• Chrome:

– CVEs (signal): 90.91%, CWEs (signal): 100.00%,

– CVEs (NLP): 100.00%, CWEs (NLP): 88.89%

• Dovecot:

– 14 warnings; but it appears all quality or false positive

– (very hard to follow the code, severely undocumented)

• Pebble:

– none found during quick testing

What follows are some select statistical measurements of the precision in recognizing CVEs
and CWEs under different configurations using the signal processing and NLP processing tech-
niques.

“Second guess” statistics provided to see if the hypothesis that if our first estimate of a
CVE/CWE is incorrect, the next one in line is probably the correct one. Both are counted if
the first guess is correct.

4.2 Version SATE.4

4.2.1 Wireshark 1.2.0

Typical quick run on the enriched Wireshark 1.2.0 on CVEs is in Table 1. All 22 CVEs are
reported. Pretty good precision for options -diff and -cheb (Diff and Chebyshev distance clas-
sifiers, respectively [11]). In Unigram, Add-Delta NLP results on Wireshark 1.2.0’s training file
for CVEs, the precision seems to be overall degraded compared to the classical signal processing
pipeline. Only 20 out of 22 CVEs are reported, as shown in Table 2. CWE-based testing on

NIST SP 500-283 55

Wireshark 1.2.0 (also with some basic line heuristics that does not impact the precision) is in
Table 3.

The following select reports are about Wireshark 1.2.0 using a small subset of algorithms.
There are line numbers that were machine-learned from the train.xml file. The two XML
report files are the best ones we have chosen among several of them. Their precision rate using
machine learning techniques is 92.68% after several bug corrections done. All CVEs are reported
making recall 100%. The stats-*.txt files are there summarizing the evaluation precision. The
results are as good as the training data given; if there are mistakes in the data selection and
annotation XML files, then the results will also have mistakes accordingly.
The best reports are:
report-noprepreprawfftcheb-wireshark-1.2.0-train.xml

report-noprepreprawfftdiff-wireshark-1.2.0-train.xml

4.2.2 Wireshark 1.2.9

The following analysis reports are about Wireshark 1.2.9 using a small subset of MARF’s al-
gorithms. The system correctly does not report the fixed CVEs (currently, the primary class),
so most of the reports come up empty (no noise). All example reports (one per configuration)
validate with the schemas sate_2010.xsd and sate_2010.pathcheck.xsd.
The best (empty) reports are:
report-noprepreprawfftcheb-wireshark-1.2.9-test.xml

report-noprepreprawfftdiff-wireshark-1.2.9-test.xml

report-noprepreprawffteucl-wireshark-1.2.9-test.xml

report-noprepreprawffthamming-wireshark-1.2.9-test.xml

The below particular report shows the Minkowski distance classifier (-mink) was not perhaps
the best choice, as it mistakingly reported a known CVE that was in fact fixed, this is an example
of machine learning “red herring”:
report-noprepreprawfftmink-wireshark-1.2.9-test.xml

4.2.3 Chrome 5.0.375.54

This version’s CVE testing result of Chrome 5.0.375.54 (after updates and removal unrelated
CVEs per SATE organizers) is in Table 4. The corresponding select reports produced below are
about Chrome 5.0.375.54 using a small subset of algorithms. There are line numbers that were
machine-learned from the * train.xml file. The two report-*.xml files are ones of the best
ones we have picked. Their precision rate using machine learning techniques is 90.91% after
all the corrections done. The stats-*.txt file is there summarizing the evaluation precision
in the end of that file. Again, the results are as good as the training data given; if there are
mistakes in the data selection and annotation XML files, then the results will also have mistakes
accordingly.
The best reports are:
report-noprepreprawfftcheb-chrome-5.0.375.54-train.xml

report-noprepreprawfftdiff-chrome-5.0.375.54-train.xml

Both validate with both sate2010 schemas.

4.2.4 Chrome 5.0.375.70

The following reports are about Chrome 5.0.375.70 using a small subset of algorithms. The
system correctly does not report the fixed CVEs, so most of the reports come up empty (no

NIST SP 500-283 56

report-noprepreprawfftcheb-wireshark-1.2.0-train.xml
report-noprepreprawfftdiff-wireshark-1.2.0-train.xml
sate_2010.xsd
sate_2010.pathcheck.xsd
report-noprepreprawfftcheb-wireshark-1.2.9-test.xml
report-noprepreprawfftdiff-wireshark-1.2.9-test.xml
report-noprepreprawffteucl-wireshark-1.2.9-test.xml
report-noprepreprawffthamming-wireshark-1.2.9-test.xml
report-noprepreprawfftmink-wireshark-1.2.9-test.xml
report-noprepreprawfftcheb-chrome-5.0.375.54-train.xml
report-noprepreprawfftdiff-chrome-5.0.375.54-train.xml

noise) as they are expected to be for known CVE-selected weaknesses. All example reports (one
per configuration) validate with the schema sate_2010.xsd and sate_2010.pathcheck.xsd.
The best (empty) reports are:
report-noprepreprawfftcheb-chrome-5.0.375.70-test.xml

report-noprepreprawfftdiff-chrome-5.0.375.70-test.xml

report-noprepreprawffteucl-chrome-5.0.375.70-test.xml

report-noprepreprawffthamming-chrome-5.0.375.70-test.xml

report-noprepreprawfftmink-chrome-5.0.375.70-test.xml

4.3 Version SATE.5

4.3.1 Chrome 5.0.375.54

Here we complete the CVE results from the MARFCAT SATE.5 version by using Chrome
5.0.375.54 training on Chrome 5.0.375.54 with classical CWEs as opposed to CVEs. The result
summary is in Table 5.

4.3.2 Tomcat 5.5.13

With this MARFCAT version we did first CVE-based testing on training for Tomcat 5.5.13.
Classifiers corresponding to -cheb (Chebyshev distance) and -diff (Diff distance) continue to
dominate as in the other test cases. An observation: for some reason, -cos (cosine similarity
classifier) with the same settings as for the C/C++ projects (Wireshark and Chrome) actually
preforms well and * report.xml is not as noisy; in fact comparable to -cheb and -diff. These
CVE-based results are summarized in Table 6. Further, we perform quick CWE-based testing on
Tomcat 5.5.13. Reports are quite larger for -cheb, -diff, and -cos, but not for other classifiers.
The precision results are illustrated in Table 7. Then, in SATE.5, quick Tomcat 5.5.13 CVE
NLP testing shows higher precision of 87.88%, but the recall is poor, 25/31 – 6 CVEs are missing
out (see Table 8). Subsequent, quick Tomcat 5.5.13 CWE NLP testing was surprisingly poor
topping at 39.39% (see Table 9). The resulting select reports about this Apache Tomcat 5.5.13
test case using a small subset of algorithms are mentioned below with some commentary.

CVE-based training and reporting: As before, there are line numbers that were machine-
learned from the train.xml file as well as the types of locations and descriptions provided
by the SATE organizers and incorporated into the reports via machine learning. This includes
the types of locations, such as “fix”, “sink”, or “path” learned from the ogranizers-provided
XML/spreadsheet as well as the source code files. Two of all the produced XML reports are the
best ones. The macro precision rate in there using machine learning techniques is 83.72%. The
stats-*.txt files are there summarizing the evaluation precision.
The best reports are:
report-noprepreprawfftcheb-apache-tomcat-5.5.13-train-cve.xml

report-noprepreprawfftdiff-apache-tomcat-5.5.13-train-cve.xml

(does not validate three tool-specific lines)
Other reports are, to a various degree of detail and noise:
report-noprepreprawfftcos-apache-tomcat-5.5.13-train-cve.xml

(does not validate two lines)
report-noprepreprawffteucl-apache-tomcat-5.5.13-train-cve.xml

(does not validate three tool-specific lines)
report-noprepreprawffthamming-apache-tomcat-5.5.13-train-cve.xml

NIST SP 500-283 57

sate_2010.xsd
sate_2010.pathcheck.xsd
report-noprepreprawfftcheb-chrome-5.0.375.70-test.xml
report-noprepreprawfftdiff-chrome-5.0.375.70-test.xml
report-noprepreprawffteucl-chrome-5.0.375.70-test.xml
report-noprepreprawffthamming-chrome-5.0.375.70-test.xml
report-noprepreprawfftmink-chrome-5.0.375.70-test.xml
report-noprepreprawfftcheb-apache-tomcat-5.5.13-train-cve.xml
report-noprepreprawfftdiff-apache-tomcat-5.5.13-train-cve.xml
report-noprepreprawfftcos-apache-tomcat-5.5.13-train-cve.xml
report-noprepreprawffteucl-apache-tomcat-5.5.13-train-cve.xml
report-noprepreprawffthamming-apache-tomcat-5.5.13-train-cve.xml

report-noprepreprawfftmink-apache-tomcat-5.5.13-train-cve.xml

report-nopreprepcharunigramadddelta-apache-tomcat-5.5.13-train-cve-nlp.xml

The --nlp version reports use the NLP techniques with the machine learning instead of
signal processing techniques. Those reports are largely comparable, but have smaller recall, i.e.
some CVEs are completely missing out from the reports in this version. Some reports have
problems with tool-specific ranks like: 4.199735736674989E − 4, which we will have to see how
to reduce these.

CWE-based training and reporting: The CWE-based reports use the CWE as a primary
class instead of CVE for training and reporting, and as such currently do not report on CVEs
directly (i.e. no direct mapping from CWE to CVE exists unlike in the opposite direction);
however, their recognition rates are not very low either in the same spots, types, etc. In the
future version of MARFCAT the plan is to combine the two machine learning pipeline runs of
CVE and CWE together to improve mutual classification, but right now it is not available. The
CWE-based training is also used on the testing files say of Pebble to see if there are any similar
weaknesses to that of Tomcat found, again e.g. in Pebble. CWEs, unlike CVEs for most projects,
represent better cross-project classes as they are largely project-independent. Both CVE-based
and CWE-base methods use the same data for training. CWEs are recognized correctly 81.82%
for Tomcat. NLP-based CWE testing is not included as its precision was quite low (≈ 39%).

The best reports are:

report-cweidnoprepreprawfftcheb-apache-tomcat-5.5.13-train-cwe.xml

(does not validate)

report-cweidnoprepreprawfftdiff-apache-tomcat-5.5.13-train-cwe.xml

(does not validate)

Other reports are, to a various degree of detail and noise:

report-cweidnoprepreprawfftcos-apache-tomcat-5.5.13-train-cwe.xml

report-cweidnoprepreprawffteucl-apache-tomcat-5.5.13-train-cwe.xml

(does not validate)

report-cweidnoprepreprawffthamming-apache-tomcat-5.5.13-train-cwe.xml

report-cweidnoprepreprawfftmink-apache-tomcat-5.5.13-train-cwe.xml

4.3.3 Pebble 2.5-M2

Using the machine learning approach of MARF by using the Tomcat 5.5.13 as a source of training
on a Java project with known weaknesses, we used that (rather small) “knowledge base” to test
if anything weak similar to the weaknesses in Tomcat are also present in the supplied version of
Pebble 2.5-M2. The current result is that under the version of MARFCAT SATE.5 all reports
come up empty under the current thresholding rules meaning the tool was not able to identify
similar weaknesses in files in Pebble. The corresponding tool-specific log files are also provided
if of interest, but the volume of data in them is typically large. It is planned to lower the
thresholds after reviewing logs in detail to see if anything interesting comes up that we missed
otherwise.

4.3.4 Tomcat and Pebble Testing Results Summary

• Tomcat 5.5.13 on Tomcat 5.5.29 classical CVE testing produced only report with -cos

with 10 weaknesses, some correspond to the files in training. However, the line numbers
reported are midline, so next to meaningless.

NIST SP 500-283 58

report-noprepreprawfftmink-apache-tomcat-5.5.13-train-cve.xml
report-nopreprepcharunigramadddelta-apache-tomcat-5.5.13-train-cve-nlp.xml
report-cweidnoprepreprawfftcheb-apache-tomcat-5.5.13-train-cwe.xml
report-cweidnoprepreprawfftdiff-apache-tomcat-5.5.13-train-cwe.xml
report-cweidnoprepreprawfftcos-apache-tomcat-5.5.13-train-cwe.xml
report-cweidnoprepreprawffteucl-apache-tomcat-5.5.13-train-cwe.xml
report-cweidnoprepreprawffthamming-apache-tomcat-5.5.13-train-cwe.xml
report-cweidnoprepreprawfftmink-apache-tomcat-5.5.13-train-cwe.xml

• Tomcat 5.5.13 on Tomcat 5.5.29 classical CWE testing also report with -cos with 2 weak-
nesses.

• Tomcat 5.5.13 on Tomcat 5.5.29 NLP CVE testing single report (quick testing only does
add-delta, unigram) came up empty.

• Tomcat 5.5.13 on Tomcat 5.5.29 NLP CWE testing, also with a single report (quick testing
only does add-delta, unigram) came up empty.

• Tomcat 5.5.13 on Pebble classical CVE reports are empty.

• Tomcat 5.5.13 on Pebble NLP CVE report is not empty, but reports wrongly on blank.html

(empty HTML file) on multiple CVEs. The probability P = 0.0 for all in this case CVEs,
not sure why it is at all reported. A red herring.

• Tomcat 5.5.13 on Pebble classical CWE reports are empty.

• Tomcat 5.5.13 on Pebble NLP CWE is similar to the Pebble NLP CVE report on blank.html

entries, but fewer of them. All the other symptoms are the same.

4.4 Version SATE.6

4.4.1 Dovecot 2.0.beta6

This is a quick test and a report for Dovecot 2.0.beta6, with line numbers and other information.
The report is ‘raw’, without our manual evaluation and generated as-is at this point.

The report of interest:

report-cweidnoprepreprawfftcos-dovecot-2.0.beta6-wireshark-test-cwe.xml

It appears though from the first glance most of the are warnings are ‘bogus’ or ‘buggy’, but
could indicate potential presence of weaknesses in the flagged files. One thing is for sure the
Dovecode’s source code’s main weakness is a near chronic lack of comments, which is also a
weakness of a kind. Other reports came up empty. The source for learning was Wireshark 1.2.0.

4.4.2 Tomcat 5.5.29

This is another quick CVE-based evaluation of Tomcat 5.5.29, with line numbers, etc. They are
’raw’, without our manual evaluation and generated as-is.

The reports of interest:

report-noprepreprawfftcos-apache-tomcat-5.5.29-test-cve.xml

report-cweidnoprepreprawfftcos-apache-tomcat-5.5.29-test-cwe.xml

As for the Dovecot case, it appears though from the first glance most of the warnings are either
‘bogus’ or ‘buggy’, but could indicate potential presence of weaknesses in the flagged files or
fixed as such. Need more manual inspection to be sure. Other XML reports came up empty.
The source for learning was Tomcat 5.5.13.

4.5 Version SATE.7

Up until this version NLP processing of Chrome was not successful. Errors related to the number
of file descriptors opened and “mark invalid” for NLP processing of Chrome 5.0.375.54 for both
CVEs and CWEs have been corrected, so we have produced the results for these cases. CVEs
are reported in Table 10. CWEs are further reported in Table 11.

NIST SP 500-283 59

report-cweidnoprepreprawfftcos-dovecot-2.0.beta6-wireshark-test-cwe.xml
report-noprepreprawfftcos-apache-tomcat-5.5.29-test-cve.xml
report-cweidnoprepreprawfftcos-apache-tomcat-5.5.29-test-cwe.xml

5 Conclusion

We review the current results of this experimental work, its current shortcomings, advantages,
and practical implications. We also release MARFCAT Alpha version as open-source that can
be found at [14]. This is following the open-source philosophy of greater good (MARF itself has
been open-source from the very beginning [23]).

5.1 Shortcomings

The below is a list of most prominent issues with the presented approach. Some of them are
more “permanent”, while others are solvable and intended to be addressed in the future work.
Specifically:

• Looking at a signal is less intuitive visually for code analysis by humans.

• Line numbers are a problem (easily “filtered out” as high-frequency “noise”, etc.). A
whole “relativistic” and machine learning methodology developed for the line numbers
in Section 3.5 to compensate for that. Generally, when CVEs is the primary class, by
accurately identifying the CVE number one can get all the other pertinent details from
the CVE database, including patches and line numbers.

• Accuracy depends on the quality of the knowledge base (see Section 3.2) collected. “Garbage
in – garbage out.”

• To detect CVE or CWE signatures in non-CVE cases requires large knowledge bases
(human-intensive to collect).

• No path tracing (since no parsing is present); no slicing, semantic annotations, context,
locality of reference, etc. The “sink”, “path”, and “fix” results in the reports also have to
be machine-learned.

• A lot of algorithms and their combinations to try (currently ≈ 1800 permutations) to get
the best top N. This is, however, also an advantage of the approach as the underlying
framework can quickly allow for such testing.

• File-level training vs. fragment-level training – presently the classes are trained based on
the entire file where weaknesses are found instead of the known fragments from CVE-
reported patches. The latter would be more fine-grained and precise than whole-file clas-
sification, but slower. However, overall the file-level processing is a man-hour limitation
than a technological one.

• No nice GUI. Presently the application is script/command-line based.

5.2 Advantages

There are some key advantages of the approach presented. Some of them follow:

• Relatively fast (e.g. Wireshark’s ≈ 2400 files train and test in about 3 minutes) on a
now-commodity desktop.

• Language-independent (no parsing) – given enough examples can apply to any language,
i.e. methodology is the same no matter C, C++, Java or any other source or binary
languages (PHP, C#, VB, Perl, bytecode, assembly, etc.).

NIST SP 500-283 60

• Can automatically learn a large knowledge base to test on known and unknown cases.

• Can be used to quickly pre-scan projects for further analysis by humans and other tools
that do in-depth semantic analysis.

• Can learn from other SATE’10 reports.

• Can learn from SATE’09 and SATE’08 reports.

• High precision in CVEs and CWE detection.

• Lots of algorithms and their combinations to select the best for a particular task or class
(see Section 3.3).

5.3 Practical Implications

Most practical implications of all static code analyzers are obvious – to detect and report source
code weaknesses and report them appropriately to the developers. We outline additional impli-
cations this approach brings to the arsenal below:

• The approach can be used on any target language without modifications to the method-
ology or knowing the syntax of the language. Thus, it scales to any popular and new
language analysis with a very small amount of effort.

• The approach can nearly identically be transposed onto the compiled binaries and byte-
code, detecting vulnerable deployments and installations – sort of like virus scanning of
binaries, but instead scanning for infected binaries, one would scan for security-weak bi-
naries on site deployments to alert system administrators to upgrade their packages.

• Can learn from binary signatures from other tools like Snort [22].

5.4 Future Work

There is a great number of possibilities in the future work. This includes improvements to
the code base of MARFCAT as well as resolving unfinished scenarios and results, addressing
shortcomings in Section 5.1, testing more algorithms and combinations from the related work,
and moving onto other programming languages (e.g. PHP, ASP, C#). Furthermore, plan to
conceive collaboration with vendors such as VeraCode, Coverity, and others who have vast data
sets to test the full potential of the approach with the others and a community as a whole. Then
move on to dynamic code analysis as well applying similar techniques there.

References

[1] Masashi Eto, Kotaro Sonoda, Daisuke Inoue, Katsunari Yoshioka, and Koji Nakao. A proposal
of malware distinction method based on scan patterns using spectrum analysis. In Proceedings of
the 16th International Conference on Neural Information Processing: Part II, ICONIP’09, pages
565–572, Berlin, Heidelberg, 2009. Springer-Verlag.

[2] Free Software Foundation, Inc. wc – print newline, word, and byte counts for each file. GNU coreutils
6.10, 2009. man 1 wc.

NIST SP 500-283 61

[3] Aiman Hanna, Hai Zhou Ling, Xiaochun Yang, and Mourad Debbabi. A synergy between static
and dynamic analysis for the detection of software security vulnerabilities. In Robert Meersman,
Tharam S. Dillon, and Pilar Herrero, editors, OTM Conferences (2), volume 5871 of Lecture Notes
in Computer Science, pages 815–832. Springer, 2009.

[4] Daisuke Inoue, Katsunari Yoshioka, Masashi Eto, Masaya Yamagata, Eisuke Nishino, Jun’ichi
Takeuchi, Kazuya Ohkouchi, and Koji Nakao. An incident analysis system NICTER and its analysis
engines based on data mining techniques. In Proceedings of the 15th International Conference on
Advances in Neuro-Information Processing – Volume Part I, ICONIP’08, pages 579–586, Berlin,
Heidelberg, 2009. Springer-Verlag.

[5] Ying Kong, Yuqing Zhang, and Qixu Liu. Eliminating human specification in static analysis. In
Proceedings of the 13th international conference on Recent advances in intrusion detection, RAID’10,
pages 494–495, Berlin, Heidelberg, 2010. Springer-Verlag.

[6] Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson Engler. Correlation exploitation in error
ranking. In Foundations of Software Engineering (FSE), 2004.

[7] Ted Kremenek and Dawson Engler. Z-ranking: Using statistical analysis to counter the impact of
static analysis approximations. In SAS 2003, 2003.

[8] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson Engler. From uncertainty to
belief: Inferring the specification within. In Proceedings of the 7th Symposium on Operating System
Design and Implementation, 2006.

[9] D. Mackenzie, P. Eggert, and R. Stallman. Comparing and merging files. [online], 2002. http:

//www.gnu.org/software/diffutils/manual/ps/diff.ps.gz.

[10] Serguei A. Mokhov. Introducing MARF: a modular audio recognition framework and its appli-
cations for scientific and software engineering research. In Advances in Computer and Information
Sciences and Engineering, pages 473–478, University of Bridgeport, U.S.A., December 2007. Springer
Netherlands. Proceedings of CISSE/SCSS’07.

[11] Serguei A. Mokhov. Study of best algorithm combinations for speech processing tasks in ma-
chine learning using median vs. mean clusters in MARF. In Bipin C. Desai, editor, Proceedings
of C3S2E’08, pages 29–43, Montreal, Quebec, Canada, May 2008. ACM.

[12] Serguei A. Mokhov. Complete complimentary results report of the MARF’s NLP approach to the
DEFT 2010 competition. [online], June 2010. http://arxiv.org/abs/1006.3787.

[13] Serguei A. Mokhov. L’approche MARF à DEFT 2010: A MARF approach to DEFT 2010. In
Proceedings of TALN’10, July 2010. To appear in DEFT 2010 System competition at TALN 2010.

[14] Serguei A. Mokhov. MARFCAT – MARF-based Code Analysis Tool. Published electronically within
the MARF project, http://sourceforge.net/projects/marf/files/Applications/MARFCAT/,
2010–2011. Last viewed February 2011.

[15] Serguei A. Mokhov and Mourad Debbabi. File type analysis using signal processing techniques and
machine learning vs. file unix utility for forensic analysis. In Oliver Goebel, Sandra Frings, Detlef
Guenther, Jens Nedon, and Dirk Schadt, editors, Proceedings of the IT Incident Management and
IT Forensics (IMF’08), LNI140, pages 73–85. GI, September 2008.

[16] Serguei A. Mokhov, Marc-André Laverdière, and Djamel Benredjem. Taxonomy of linux ker-
nel vulnerability solutions. In Innovative Techniques in Instruction Technology, E-learning, E-
assessment, and Education, pages 485–493, University of Bridgeport, U.S.A., 2007. Proceedings
of CISSE/SCSS’07.

[17] Serguei A. Mokhov, Miao Song, and Ching Y. Suen. Writer identification using inexpensive signal
processing techniques. In Tarek Sobh and Khaled Elleithy, editors, Innovations in Computing Sci-
ences and Software Engineering; Proceedings of CISSE’09, pages 437–441. Springer, December 2009.
ISBN: 978-90-481-9111-6, online at: http://arxiv.org/abs/0912.5502.

[18] Vinod P. Nair, Harshit Jain, Yashwant K. Golecha, Manoj Singh Gaur, and Vijay Laxmi. MEDUSA:
MEtamorphic malware dynamic analysis using signature from API. In Proceedings of the 3rd Inter-
national Conference on Security of Information and Networks, SIN’10, pages 263–269, New York,
NY, USA, 2010. ACM.

NIST SP 500-283 62

http://www.gnu.org/software/diffutils/manual/ps/diff.ps.gz
http://www.gnu.org/software/diffutils/manual/ps/diff.ps.gz
http://arxiv.org/abs/1006.3787
http://sourceforge.net/projects/marf/files/Applications/MARFCAT/
http://arxiv.org/abs/0912.5502

[19] NIST. National Vulnerability Database. [online], 2005–2011. http://nvd.nist.gov/.

[20] NIST. National Vulnerability Database statistics. [online], 2005–2011. http://web.nvd.nist.gov/
view/vuln/statistics.

[21] Vadim Okun, Aurelien Delaitre, Paul E. Black, and NIST SAMATE. Static Analysis Tool Exposition
(SATE) 2010. [online], 2010. See http://samate.nist.gov/SATE.html and http://samate.nist.

gov/SATE2010Workshop.html.

[22] Sourcefire. Snort: Open-source network intrusion prevention and detection system (IDS/IPS). [on-
line], 2010. http://www.snort.org/.

[23] The MARF Research and Development Group. The Modular Audio Recognition Framework and its
Applications. [online], 2002–2011. http://marf.sf.net and http://arxiv.org/abs/0905.1235,
last viewed April 2010.

[24] Syrine Tlili. Automatic detection of safety and security vulnerabilities in open source software. PhD
thesis, Concordia Institute for Information Systems Engineering, Concordia University, Montreal,
Canada, 2009. ISBN: 9780494634165.

[25] Various contributors and MITRE. Common Weakness Enumeration (CWE) – a community-
developed dictionary of software weakness types. [online], 2010. See http://cwe.mitre.org.

A Classification Result Tables

What follows are result tables with top classification results ranked from most precise at the
top. This include the configuration settings for MARF by the means of options (the algorithm
implementations are at their defaults [10]).

NIST SP 500-283 63

http://nvd.nist.gov/
http://web.nvd.nist.gov/view/vuln/statistics
http://web.nvd.nist.gov/view/vuln/statistics
http://samate.nist.gov/SATE.html
http://samate.nist.gov/SATE2010Workshop.html
http://samate.nist.gov/SATE2010Workshop.html
http://www.snort.org/
http://marf.sf.net
http://arxiv.org/abs/0905.1235
http://cwe.mitre.org

Table 1: CVE Stats for Wireshark 1.2.0, Quick Enriched, version SATE.4
guess run algorithms good bad %
1st 1 -nopreprep -raw -fft -diff 38 3 92.68
1st 2 -nopreprep -raw -fft -cheb 38 3 92.68
1st 3 -nopreprep -raw -fft -eucl 29 12 70.73
1st 4 -nopreprep -raw -fft -hamming 26 15 63.41
1st 5 -nopreprep -raw -fft -mink 23 18 56.10
1st 6 -nopreprep -raw -fft -cos 37 51 42.05
2nd 1 -nopreprep -raw -fft -diff 39 2 95.12
2nd 2 -nopreprep -raw -fft -cheb 39 2 95.12
2nd 3 -nopreprep -raw -fft -eucl 34 7 82.93
2nd 4 -nopreprep -raw -fft -hamming 28 13 68.29
2nd 5 -nopreprep -raw -fft -mink 31 10 75.61
2nd 6 -nopreprep -raw -fft -cos 38 50 43.18
guess run class good bad %
1st 1 CVE-2009-3829 6 0 100.00
1st 2 CVE-2009-2563 6 0 100.00
1st 3 CVE-2009-2562 6 0 100.00
1st 4 CVE-2009-4378 6 0 100.00
1st 5 CVE-2009-4376 6 0 100.00
1st 6 CVE-2010-0304 6 0 100.00
1st 7 CVE-2010-2286 6 0 100.00
1st 8 CVE-2010-2283 6 0 100.00
1st 9 CVE-2009-3551 6 0 100.00
1st 10 CVE-2009-3550 6 0 100.00
1st 11 CVE-2009-3549 6 0 100.00
1st 12 CVE-2009-3241 16 8 66.67
1st 13 CVE-2010-1455 34 20 62.96
1st 14 CVE-2009-3243 18 11 62.07
1st 15 CVE-2009-2560 8 6 57.14
1st 16 CVE-2009-2561 6 5 54.55
1st 17 CVE-2010-2285 6 5 54.55
1st 18 CVE-2009-2559 6 5 54.55
1st 19 CVE-2010-2287 6 6 50.00
1st 20 CVE-2009-4377 12 15 44.44
1st 21 CVE-2010-2284 6 9 40.00
1st 22 CVE-2009-3242 7 12 36.84
2nd 1 CVE-2009-3829 6 0 100.00
2nd 2 CVE-2009-2563 6 0 100.00
2nd 3 CVE-2009-2562 6 0 100.00
2nd 4 CVE-2009-4378 6 0 100.00
2nd 5 CVE-2009-4376 6 0 100.00
2nd 6 CVE-2010-0304 6 0 100.00
2nd 7 CVE-2010-2286 6 0 100.00
2nd 8 CVE-2010-2283 6 0 100.00
2nd 9 CVE-2009-3551 6 0 100.00
2nd 10 CVE-2009-3550 6 0 100.00
2nd 11 CVE-2009-3549 6 0 100.00
2nd 12 CVE-2009-3241 17 7 70.83
2nd 13 CVE-2010-1455 44 10 81.48
2nd 14 CVE-2009-3243 18 11 62.07
2nd 15 CVE-2009-2560 9 5 64.29
2nd 16 CVE-2009-2561 6 5 54.55
2nd 17 CVE-2010-2285 6 5 54.55
2nd 18 CVE-2009-2559 6 5 54.55
2nd 19 CVE-2010-2287 12 0 100.00
2nd 20 CVE-2009-4377 12 15 44.44
2nd 21 CVE-2010-2284 6 9 40.00
2nd 22 CVE-2009-3242 7 12 36.84

NIST SP 500-283 64

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3829
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2563
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2562
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2283
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3551
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3550
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3549
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3241
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1455
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3243
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2560
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2561
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2285
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2559
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2287
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4377
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2284
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3242
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3829
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2563
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2562
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2283
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3551
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3550
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3549
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3241
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1455
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3243
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2560
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2561
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2285
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2559
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2287
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4377
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2284
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3242

Table 2: CVE NLP Stats for Wireshark 1.2.0, Quick Enriched, version SATE.4
guess run algorithms good bad %

1st 1 -nopreprep -char -unigram -add-delta 30 6 83.33

2nd 1 -nopreprep -char -unigram -add-delta 31 5 86.11

guess run class good bad %

1st 1 CVE-2009-3829 1 0 100.00

1st 2 CVE-2009-2563 1 0 100.00

1st 3 CVE-2009-2562 1 0 100.00

1st 4 CVE-2009-4378 1 0 100.00

1st 5 CVE-2009-2561 1 0 100.00

1st 6 CVE-2009-4377 1 0 100.00

1st 7 CVE-2009-4376 1 0 100.00

1st 8 CVE-2010-2286 1 0 100.00

1st 9 CVE-2010-0304 1 0 100.00

1st 10 CVE-2010-2285 1 0 100.00

1st 11 CVE-2010-2284 1 0 100.00

1st 12 CVE-2010-2283 1 0 100.00

1st 13 CVE-2009-2559 1 0 100.00

1st 14 CVE-2009-3550 1 0 100.00

1st 15 CVE-2009-3549 1 0 100.00

1st 16 CVE-2010-1455 8 1 88.89

1st 17 CVE-2009-3243 3 1 75.00

1st 18 CVE-2009-3241 2 2 50.00

1st 19 CVE-2009-2560 1 1 50.00

1st 20 CVE-2009-3242 1 1 50.00

2nd 1 CVE-2009-3829 1 0 100.00

2nd 2 CVE-2009-2563 1 0 100.00

2nd 3 CVE-2009-2562 1 0 100.00

2nd 4 CVE-2009-4378 1 0 100.00

2nd 5 CVE-2009-2561 1 0 100.00

2nd 6 CVE-2009-4377 1 0 100.00

2nd 7 CVE-2009-4376 1 0 100.00

2nd 8 CVE-2010-2286 1 0 100.00

2nd 9 CVE-2010-0304 1 0 100.00

2nd 10 CVE-2010-2285 1 0 100.00

2nd 11 CVE-2010-2284 1 0 100.00

2nd 12 CVE-2010-2283 1 0 100.00

2nd 13 CVE-2009-2559 1 0 100.00

2nd 14 CVE-2009-3550 1 0 100.00

2nd 15 CVE-2009-3549 1 0 100.00

2nd 16 CVE-2010-1455 8 1 88.89

2nd 17 CVE-2009-3243 3 1 75.00

2nd 18 CVE-2009-3241 3 1 75.00

2nd 19 CVE-2009-2560 1 1 50.00

2nd 20 CVE-2009-3242 1 1 50.00

NIST SP 500-283 65

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3829
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2563
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2562
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2561
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4377
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2285
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2284
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2283
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2559
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3550
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3549
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1455
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3243
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3241
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2560
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3242
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3829
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2563
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2562
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2561
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4377
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2285
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2284
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2283
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2559
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3550
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3549
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1455
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3243
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3241
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2560
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3242

Table 3: CVE NLP Stats for Wireshark 1.2.0, Quick Enriched, version SATE.4
guess run algorithms good bad %

1st 1 -cweid -nopreprep -raw -fft -cheb 31 5 86.11

1st 2 -cweid -nopreprep -raw -fft -diff 31 5 86.11

1st 3 -cweid -nopreprep -raw -fft -eucl 29 7 80.56

1st 4 -cweid -nopreprep -raw -fft -hamming 22 14 61.11

1st 5 -cweid -nopreprep -raw -fft -cos 33 25 56.90

1st 6 -cweid -nopreprep -raw -fft -mink 20 16 55.56

2nd 1 -cweid -nopreprep -raw -fft -cheb 33 3 91.67

2nd 2 -cweid -nopreprep -raw -fft -diff 33 3 91.67

2nd 3 -cweid -nopreprep -raw -fft -eucl 33 3 91.67

2nd 4 -cweid -nopreprep -raw -fft -hamming 27 9 75.00

2nd 5 -cweid -nopreprep -raw -fft -cos 41 17 70.69

2nd 6 -cweid -nopreprep -raw -fft -mink 22 14 61.11

guess run class good bad %

1st 1 CWE-399 6 0 100.00

1st 2 NVD-CWE-Other 17 3 85.00

1st 3 CWE-20 50 10 83.33

1st 4 CWE-189 8 2 80.00

1st 5 NVD-CWE-noinfo 72 40 64.29

1st 6 CWE-119 13 17 43.33

2nd 1 CWE-399 6 0 100.00

2nd 2 NVD-CWE-Other 17 3 85.00

2nd 3 CWE-20 52 8 86.67

2nd 4 CWE-189 8 2 80.00

2nd 5 NVD-CWE-noinfo 83 29 74.11

2nd 6 CWE-119 23 7 76.67

NIST SP 500-283 66

Table 4: CVE Stats for Chrome 5.0.375.54, Quick Enriched, (clean CVEs) version SATE.4
guess run algorithms good bad %

1st 1 -nopreprep -raw -fft -eucl 10 1 90.91

1st 2 -nopreprep -raw -fft -cos 10 1 90.91

1st 3 -nopreprep -raw -fft -diff 10 1 90.91

1st 4 -nopreprep -raw -fft -cheb 10 1 90.91

1st 5 -nopreprep -raw -fft -mink 9 2 81.82

1st 6 -nopreprep -raw -fft -hamming 9 2 81.82

2nd 1 -nopreprep -raw -fft -eucl 11 0 100.00

2nd 2 -nopreprep -raw -fft -cos 11 0 100.00

2nd 3 -nopreprep -raw -fft -diff 11 0 100.00

2nd 4 -nopreprep -raw -fft -cheb 11 0 100.00

2nd 5 -nopreprep -raw -fft -mink 10 1 90.91

2nd 6 -nopreprep -raw -fft -hamming 10 1 90.91

guess run class good bad %

1st 1 CVE-2010-2301 6 0 100.00

1st 2 CVE-2010-2300 6 0 100.00

1st 3 CVE-2010-2299 6 0 100.00

1st 4 CVE-2010-2298 6 0 100.00

1st 5 CVE-2010-2297 6 0 100.00

1st 6 CVE-2010-2304 6 0 100.00

1st 7 CVE-2010-2303 6 0 100.00

1st 8 CVE-2010-2295 10 2 83.33

1st 9 CVE-2010-2302 6 6 50.00

2nd 1 CVE-2010-2301 6 0 100.00

2nd 2 CVE-2010-2300 6 0 100.00

2nd 3 CVE-2010-2299 6 0 100.00

2nd 4 CVE-2010-2298 6 0 100.00

2nd 5 CVE-2010-2297 6 0 100.00

2nd 6 CVE-2010-2304 6 0 100.00

2nd 7 CVE-2010-2303 6 0 100.00

2nd 8 CVE-2010-2295 10 2 83.33

2nd 9 CVE-2010-2302 12 0 100.00

NIST SP 500-283 67

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2301
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2300
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2299
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2298
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2297
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2303
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2295
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2302
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2301
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2300
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2299
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2298
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2297
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2303
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2295
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2302

Table 5: CWE Stats for Chrome 5.0.375.54, (clean CVEs) version SATE.5
guess run algorithms good bad %

1st 1 -cweid -nopreprep -raw -fft -cheb 9 0 100.00

1st 2 -cweid -nopreprep -raw -fft -cos 9 0 100.00

1st 3 -cweid -nopreprep -raw -fft -diff 9 0 100.00

1st 4 -cweid -nopreprep -raw -fft -eucl 8 1 88.89

1st 5 -cweid -nopreprep -raw -fft -hamming 8 1 88.89

1st 6 -cweid -nopreprep -raw -fft -mink 6 3 66.67

2nd 1 -cweid -nopreprep -raw -fft -cheb 9 0 100.00

2nd 2 -cweid -nopreprep -raw -fft -cos 9 0 100.00

2nd 3 -cweid -nopreprep -raw -fft -diff 9 0 100.00

2nd 4 -cweid -nopreprep -raw -fft -eucl 8 1 88.89

2nd 5 -cweid -nopreprep -raw -fft -hamming 8 1 88.89

2nd 6 -cweid -nopreprep -raw -fft -mink 8 1 88.89

guess run class good bad %

1st 1 CWE-79 6 0 100.00

1st 2 NVD-CWE-noinfo 6 0 100.00

1st 3 CWE-399 6 0 100.00

1st 4 CWE-119 6 0 100.00

1st 5 CWE-20 6 0 100.00

1st 6 NVD-CWE-Other 10 2 83.33

1st 7 CWE-94 9 3 75.00

2nd 1 CWE-79 6 0 100.00

2nd 2 NVD-CWE-noinfo 6 0 100.00

2nd 3 CWE-399 6 0 100.00

2nd 4 CWE-119 6 0 100.00

2nd 5 CWE-20 6 0 100.00

2nd 6 NVD-CWE-Other 11 1 91.67

2nd 7 CWE-94 10 2 83.33

NIST SP 500-283 68

Table 6: CVE Stats for Tomcat 5.5.13, version SATE.5
1st 1 -nopreprep -raw -fft -diff 36 7 83.72
1st 2 -nopreprep -raw -fft -cheb 36 7 83.72
1st 3 -nopreprep -raw -fft -cos 37 9 80.43
1st 4 -nopreprep -raw -fft -eucl 34 9 79.07
1st 5 -nopreprep -raw -fft -mink 28 15 65.12
1st 6 -nopreprep -raw -fft -hamming 26 17 60.47
2nd 1 -nopreprep -raw -fft -diff 40 3 93.02
2nd 2 -nopreprep -raw -fft -cheb 40 3 93.02
2nd 3 -nopreprep -raw -fft -cos 40 6 86.96
2nd 4 -nopreprep -raw -fft -eucl 36 7 83.72
2nd 5 -nopreprep -raw -fft -mink 31 12 72.09
2nd 6 -nopreprep -raw -fft -hamming 29 14 67.44
guess run algorithms good bad %
1st 1 CVE-2006-7197 6 0 100.00
1st 2 CVE-2006-7196 6 0 100.00
1st 3 CVE-2006-7195 6 0 100.00
1st 4 CVE-2009-0033 6 0 100.00
1st 5 CVE-2007-3386 6 0 100.00
1st 6 CVE-2009-2901 3 0 100.00
1st 7 CVE-2007-3385 6 0 100.00
1st 8 CVE-2008-2938 6 0 100.00
1st 9 CVE-2007-3382 6 0 100.00
1st 10 CVE-2007-5461 6 0 100.00
1st 11 CVE-2007-6286 6 0 100.00
1st 12 CVE-2007-1858 6 0 100.00
1st 13 CVE-2008-0128 6 0 100.00
1st 14 CVE-2007-2450 6 0 100.00
1st 15 CVE-2009-3548 6 0 100.00
1st 16 CVE-2009-0580 6 0 100.00
1st 17 CVE-2007-1355 6 0 100.00
1st 18 CVE-2008-2370 6 0 100.00
1st 19 CVE-2008-4308 6 0 100.00
1st 20 CVE-2007-5342 6 0 100.00
1st 21 CVE-2008-5515 19 5 79.17
1st 22 CVE-2009-0783 11 4 73.33
1st 23 CVE-2008-1232 13 5 72.22
1st 24 CVE-2008-5519 6 6 50.00
1st 25 CVE-2007-5333 6 6 50.00
1st 26 CVE-2008-1947 6 6 50.00
1st 27 CVE-2009-0781 6 6 50.00
1st 28 CVE-2007-0450 5 7 41.67
1st 29 CVE-2007-2449 6 12 33.33
1st 30 CVE-2009-2693 2 6 25.00
1st 31 CVE-2009-2902 0 1 0.00
2nd 1 CVE-2006-7197 6 0 100.00
2nd 2 CVE-2006-7196 6 0 100.00
2nd 3 CVE-2006-7195 6 0 100.00
2nd 4 CVE-2009-0033 6 0 100.00
2nd 5 CVE-2007-3386 6 0 100.00
2nd 6 CVE-2009-2901 3 0 100.00
2nd 7 CVE-2007-3385 6 0 100.00
2nd 8 CVE-2008-2938 6 0 100.00
2nd 9 CVE-2007-3382 6 0 100.00
2nd 10 CVE-2007-5461 6 0 100.00
2nd 11 CVE-2007-6286 6 0 100.00
2nd 12 CVE-2007-1858 6 0 100.00
2nd 13 CVE-2008-0128 6 0 100.00
2nd 14 CVE-2007-2450 6 0 100.00
2nd 15 CVE-2009-3548 6 0 100.00
2nd 16 CVE-2009-0580 6 0 100.00
2nd 17 CVE-2007-1355 6 0 100.00
2nd 18 CVE-2008-2370 6 0 100.00
2nd 19 CVE-2008-4308 6 0 100.00
2nd 20 CVE-2007-5342 6 0 100.00
2nd 21 CVE-2008-5515 19 5 79.17
2nd 22 CVE-2009-0783 12 3 80.00
2nd 23 CVE-2008-1232 13 5 72.22
2nd 24 CVE-2008-5519 12 0 100.00
2nd 25 CVE-2007-5333 6 6 50.00
2nd 26 CVE-2008-1947 6 6 50.00
2nd 27 CVE-2009-0781 12 0 100.00
2nd 28 CVE-2007-0450 7 5 58.33
2nd 29 CVE-2007-2449 8 10 44.44
2nd 30 CVE-2009-2693 4 4 50.00
2nd 31 CVE-2009-2902 0 1 0.00

NIST SP 500-283 69

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7197
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7196
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7195
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0033
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3386
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2901
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2938
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3382
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5461
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1858
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0128
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3548
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0580
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1355
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2370
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4308
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5342
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5515
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0783
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1232
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5519
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5333
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1947
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0781
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2693
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2902
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7197
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7196
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7195
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0033
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3386
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2901
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2938
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3382
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5461
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1858
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0128
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3548
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0580
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1355
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2370
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4308
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5342
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5515
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0783
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1232
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5519
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5333
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1947
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0781
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2693
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2902

Table 7: CWE Stats for Tomcat 5.5.13, version SATE.5
guess run algorithms good bad %

1st 1 -cweid -nopreprep -raw -fft -cheb 27 6 81.82

1st 2 -cweid -nopreprep -raw -fft -diff 27 6 81.82

1st 3 -cweid -nopreprep -raw -fft -cos 24 9 72.73

1st 4 -cweid -nopreprep -raw -fft -eucl 13 20 39.39

1st 5 -cweid -nopreprep -raw -fft -hamming 12 21 36.36

1st 6 -cweid -nopreprep -raw -fft -mink 9 24 27.27

2nd 1 -cweid -nopreprep -raw -fft -cheb 32 1 96.97

2nd 2 -cweid -nopreprep -raw -fft -diff 32 1 96.97

2nd 3 -cweid -nopreprep -raw -fft -cos 29 4 87.88

2nd 4 -cweid -nopreprep -raw -fft -eucl 17 16 51.52

2nd 5 -cweid -nopreprep -raw -fft -hamming 18 15 54.55

2nd 6 -cweid -nopreprep -raw -fft -mink 13 20 39.39

guess run class good bad %

1st 1 CWE-264 7 0 100.00

1st 2 CWE-255 6 0 100.00

1st 3 CWE-16 6 0 100.00

1st 4 CWE-119 6 0 100.00

1st 5 CWE-20 6 0 100.00

1st 6 CWE-200 22 4 84.62

1st 7 CWE-79 24 21 53.33

1st 8 CWE-22 35 61 36.46

2nd 1 CWE-264 7 0 100.00

2nd 2 CWE-255 6 0 100.00

2nd 3 CWE-16 6 0 100.00

2nd 4 CWE-119 6 0 100.00

2nd 5 CWE-20 6 0 100.00

2nd 6 CWE-200 23 3 88.46

2nd 7 CWE-79 30 15 66.67

2nd 8 CWE-22 57 39 59.38

NIST SP 500-283 70

Table 8: CVE NLP Stats for Tomcat 5.5.13, version SATE.5
guess run algorithms good bad %
1st 1 -nopreprep -char -unigram -add-delta 29 4 87.88
2nd 1 -nopreprep -char -unigram -add-delta 29 4 87.88
guess run class good bad %
1st 1 CVE-2006-7197 1 0 100.00
1st 2 CVE-2006-7196 1 0 100.00
1st 3 CVE-2009-2901 1 0 100.00
1st 4 CVE-2006-7195 1 0 100.00
1st 5 CVE-2009-0033 1 0 100.00
1st 6 CVE-2007-1355 1 0 100.00
1st 7 CVE-2007-5342 1 0 100.00
1st 8 CVE-2009-2693 1 0 100.00
1st 9 CVE-2009-0783 1 0 100.00
1st 10 CVE-2008-2370 1 0 100.00
1st 11 CVE-2007-2450 1 0 100.00
1st 12 CVE-2008-2938 1 0 100.00
1st 13 CVE-2007-2449 3 0 100.00
1st 14 CVE-2007-1858 1 0 100.00
1st 15 CVE-2008-4308 1 0 100.00
1st 16 CVE-2008-0128 1 0 100.00
1st 17 CVE-2009-3548 1 0 100.00
1st 18 CVE-2007-5461 1 0 100.00
1st 19 CVE-2007-3382 1 0 100.00
1st 20 CVE-2007-0450 2 0 100.00
1st 21 CVE-2009-0580 1 0 100.00
1st 22 CVE-2007-6286 1 0 100.00
1st 23 CVE-2008-5515 3 1 75.00
1st 24 CVE-2008-1232 1 2 33.33
1st 25 CVE-2009-2902 0 1 0.00
2nd 1 CVE-2006-7197 1 0 100.00
2nd 2 CVE-2006-7196 1 0 100.00
2nd 3 CVE-2009-2901 1 0 100.00
2nd 4 CVE-2006-7195 1 0 100.00
2nd 5 CVE-2009-0033 1 0 100.00
2nd 6 CVE-2007-1355 1 0 100.00
2nd 7 CVE-2007-5342 1 0 100.00
2nd 8 CVE-2009-2693 1 0 100.00
2nd 9 CVE-2009-0783 1 0 100.00
2nd 10 CVE-2008-2370 1 0 100.00
2nd 11 CVE-2007-2450 1 0 100.00
2nd 12 CVE-2008-2938 1 0 100.00
2nd 13 CVE-2007-2449 3 0 100.00
2nd 14 CVE-2007-1858 1 0 100.00
2nd 15 CVE-2008-4308 1 0 100.00
2nd 16 CVE-2008-0128 1 0 100.00
2nd 17 CVE-2009-3548 1 0 100.00
2nd 18 CVE-2007-5461 1 0 100.00
2nd 19 CVE-2007-3382 1 0 100.00
2nd 20 CVE-2007-0450 2 0 100.00
2nd 21 CVE-2009-0580 1 0 100.00
2nd 22 CVE-2007-6286 1 0 100.00
2nd 23 CVE-2008-5515 3 1 75.00
2nd 24 CVE-2008-1232 1 2 33.33
2nd 25 CVE-2009-2902 0 1 0.00

NIST SP 500-283 71

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7197
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7196
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2901
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7195
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0033
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1355
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5342
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2693
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0783
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2370
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2938
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1858
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4308
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0128
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3548
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5461
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3382
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0580
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5515
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1232
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2902
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7197
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7196
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2901
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7195
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0033
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1355
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5342
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2693
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0783
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2370
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2938
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1858
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4308
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0128
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3548
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5461
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3382
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0450
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0580
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5515
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1232
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2902

Table 9: CWE NLP Stats for Tomcat 5.5.13, version SATE.5
guess run algorithms good bad %
1st 1 -cweid -nopreprep -char -unigram -add-delta 13 20 39.39
2nd 1 -cweid -nopreprep -char -unigram -add-delta 17 16 51.52
guess run class good bad %
1st 1 CWE-16 1 0 100.00
1st 2 CWE-255 1 0 100.00
1st 3 CWE-264 2 0 100.00
1st 4 CWE-119 1 0 100.00
1st 5 CWE-20 1 0 100.00
1st 6 CWE-200 3 1 75.00
1st 7 CWE-22 3 13 18.75
1st 8 CWE-79 1 6 14.29
2nd 1 CWE-16 1 0 100.00
2nd 2 CWE-255 1 0 100.00
2nd 3 CWE-264 2 0 100.00
2nd 4 CWE-119 1 0 100.00
2nd 5 CWE-20 1 0 100.00
2nd 6 CWE-200 4 0 100.00
2nd 7 CWE-22 5 11 31.25
2nd 8 CWE-79 2 5 28.57

Table 10: CVE NLP Stats for Chrome 5.0.375.54, version SATE.7
guess run algorithms good bad %
1st 1 -nopreprep -char -unigram -add-delta 9 0 100.00
2nd 1 -nopreprep -char -unigram -add-delta 9 0 100.00
guess run class good bad %
1st 1 CVE-2010-2304 1 0 100.00
1st 2 CVE-2010-2298 1 0 100.00
1st 3 CVE-2010-2301 1 0 100.00
1st 4 CVE-2010-2295 2 0 100.00
1st 5 CVE-2010-2300 1 0 100.00
1st 6 CVE-2010-2303 1 0 100.00
1st 7 CVE-2010-2297 1 0 100.00
1st 8 CVE-2010-2299 1 0 100.00
2nd 1 CVE-2010-2304 1 0 100.00
2nd 2 CVE-2010-2298 1 0 100.00
2nd 3 CVE-2010-2301 1 0 100.00
2nd 4 CVE-2010-2295 2 0 100.00
2nd 5 CVE-2010-2300 1 0 100.00
2nd 6 CVE-2010-2303 1 0 100.00
2nd 7 CVE-2010-2297 1 0 100.00
2nd 8 CVE-2010-2299 1 0 100.00

Table 11: CWE NLP Stats for Chrome 5.0.375.54, version SATE.7
guess run algorithms good bad %
1st 1 -cweid -nopreprep -char -unigram -add-delta 8 1 88.89
2nd 1 -cweid -nopreprep -char -unigram -add-delta 8 1 88.89
guess run class good bad %
1st 1 CWE-399 1 0 100.00
1st 2 NVD-CWE-noinfo 1 0 100.00
1st 3 CWE-79 1 0 100.00
1st 4 NVD-CWE-Other 2 0 100.00
1st 5 CWE-119 1 0 100.00
1st 6 CWE-20 1 0 100.00
1st 7 CWE-94 1 1 50.00
2nd 1 CWE-399 1 0 100.00
2nd 2 NVD-CWE-noinfo 1 0 100.00
2nd 3 CWE-79 1 0 100.00
2nd 4 NVD-CWE-Other 2 0 100.00
2nd 5 CWE-119 1 0 100.00
2nd 6 CWE-20 1 0 100.00
2nd 7 CWE-94 1 1 50.00

NIST SP 500-283 72

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2298
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2301
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2295
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2300
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2303
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2297
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2299
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2298
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2301
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2295
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2300
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2303
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2297
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2299

	sate2010
	1 Introduction
	1.1 Terminology
	1.2 Previous SATE Experience
	1.3 Related Work
	2 SATE Organization
	2.1 Steps in the SATE procedure
	2.2 Test Sets
	2.3 CVE-Selected Test Cases
	2.4 Tools
	2.5 Tool Runs and Submissions
	2.6 Analysis of Tool Reports
	2.6.1 Three Methods for Tool Warning Selection
	2.6.2 Practical Analysis Aids
	2.6.3 Analysis Procedure
	2.7 Analysis Criteria
	2.7.1 Overview of Correctness Categories
	2.7.2 Decision Process
	2.7.3 Context
	2.7.4 Poor Code Quality vs. Intended Design
	2.7.5 Path Feasibility
	2.7.6 Criteria for Warning Association
	2.7.7 Criteria for Matching Warnings to Manual Findings and CVEs
	2.8 SATE Data Formats
	2.8.1 Tool Output Format
	2.8.2 CVE Format
	2.8.3 Evaluated Tool Output Format
	2.8.4 Manual Findings and CVEs Analysis Format
	2.8.5 Association List Format
	2.9 Summary of changes since previous SATEs
	3 Data and Observations
	3.1 Warning Categories
	3.2 Test Case and Tool Properties
	3.3 On our Analysis of Tool Warnings
	3.4 Manual Findings and CVEs by Weakness Category
	3.4.1 CVE Analysis Details and Changes
	3.5 Tool Warnings Related to Manual Findings and CVEs
	3.6 On Detecting CVEs by Tools
	4 Summary and Conclusions
	5 Future Plans
	6 Acknowledgements
	7 References

	Goanna-edited
	marf-sate-nist
	Introduction
	Related Work
	Methodology
	Core principles
	CVEs – the ``Knowledge Base''
	Categories for Machine Learning
	Basic Methodology
	Line Numbers
	Line Number Estimation Methodology

	Results
	Preliminary Results Summary
	Version SATE.4
	Wireshark 1.2.0
	Wireshark 1.2.9
	Chrome 5.0.375.54
	Chrome 5.0.375.70

	Version SATE.5
	Chrome 5.0.375.54
	Tomcat 5.5.13
	Pebble 2.5-M2
	Tomcat and Pebble Testing Results Summary

	Version SATE.6
	Dovecot 2.0.beta6
	Tomcat 5.5.29

	Version SATE.7

	Conclusion
	Shortcomings
	Advantages
	Practical Implications
	Future Work

	Classification Result Tables

		Superintendent of Documents
	2022-04-16T03:48:46-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

