
 
 

NISTIR 7256 
 

A Simulation and Gaming Architecture 
for Manufacturing Research, Testing, 

and Training 
 
 
 

Charles R. McLean
Sanjay Jain
Y. Tina Lee

Frank Riddick

 

  



NISTIR 7256 
 
 
 

A Simulation and Gaming Architecture 
for Manufacturing Research, Testing, 

and Training 
 

Charles R. Mclean 
Manufacturing Systems Integration Division 

National Institute of Standards and Technology 
Gaithersburg, MD  20899-8260 

 
Sanjay Jain 

Department of Management Science, School of Business 
The George Washington University 

Washington, DC  20052 

 
Y. Tina Lee 

Frank Riddick 
Manufacturing Systems Integration Division 

National Institute of Standards and Technology 
Gaithersburg, MD  20899-8260 

 

 
 
 
 
 
 
 
 
 
 

September 2005

U.S. DEPARTMENT OF COMMERCE 
Carlos M. Gutierrez, Secretary 

TECHNOLOGY ADMINISTRATION 
Michelle O’Neill, Acting Under Secretary of Commerce for Technology 

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 
William Jeffrey, Director 

  



Table of Contents 
 

Abstract: ......................................................................................................................................................... 1 
1. Introduction ................................................................................................................................................ 1 
2. Why Use Video Game Technology? .......................................................................................................... 2 
3. Opportunities for Industrial Research, Testing, and Training .................................................................... 4 

3.1 Research ............................................................................................................................................... 4 
3.2 Testing .................................................................................................................................................. 6 
3.3 Training ................................................................................................................................................ 7 

4. An Integrated Reference Architecture ........................................................................................................ 9 
4.1 Manufacturing Simulation Subsystem.................................................................................................. 9 

4.1.1 Simulation Applications .............................................................................................................. 11 
4.1.2 Simulation Engines...................................................................................................................... 13 
4.1.3 Simulation Management and Data Servers.................................................................................. 14 
4.1.4 Manufacturing Simulation Data Model ....................................................................................... 16 
4.1.5 Simulation Integration Infrastructure........................................................................................... 20 

4.2 Manufacturing Gaming Subsystem .................................................................................................... 23 
4.2.1 Game Applications ...................................................................................................................... 25 
4.2.2 Core Game Engine....................................................................................................................... 25 
4.2.3 Game Integration Infrastructure .................................................................................................. 26 
4.2.4 Game Management and Data Servers.......................................................................................... 29 
4.2.5 Game Information Model ............................................................................................................ 30 

5. Conclusions .............................................................................................................................................. 31 
6. References ................................................................................................................................................ 32 
7. Acknowledgement.................................................................................................................................... 34 
8. Disclaimer ................................................................................................................................................ 34 

 

 



A Simulation and Gaming Architecture  
For Manufacturing Research, Testing, and Training 

 
 
Abstract: 
Manufacturing systems are often costly to develop and operate.  Simulation technology 
has been demonstrated to be an effective tool for improving the efficiency of 
manufacturing system design, operation, and maintenance.  But manufacturing 
simulations are usually developed to address a narrow set of industrial issues, e.g., the 
purchase of new equipment or the modification of a manufacturing process.  Once the 
analysis is complete a particular simulation model may not be used again.  If simulations 
could be made more modular and easily integrated, they could have tremendous value as 
tools for manufacturing research, testing, and training.  With the incorporation of video 
game technology, simulations could be created that would enable researchers and 
students to get near real-world experiences with manufacturing.  In order to create a 
realistic virtual manufacturing environment, a number of different types of systems will 
need to be modeled and integrated.  This paper presents a modular reference architecture 
to facilitate the integration of manufacturing simulation and gaming systems. 
Opportunities for research, testing, and training are also discussed that will be enabled by 
the implementation of the architecture. 
 
Keywords: virtual manufacturing, simulation, video games, serious games, software 
architectures, information models, interface standards 
 
 
 
 
1. Introduction 
Manufacturing systems tend to be large, complex, and expensive to construct and 
operate.  Due to hardware-acquisition, maintenance, and space costs, academic and 
research institutions cannot afford to duplicate real manufacturing systems in their 
laboratories.  Student and researcher hands-on experiences with manufacturing systems 
are often limited to individual or small groups of machine tools in laboratory shops, 
prototype work cells, or tabletop manufacturing systems.  Engineering schools often 
arrange cooperative extension or intern programs with manufacturing facilities so that 
students may get hands-on experience with real production systems while working 
towards their academic degrees.  Although the student or researcher typically benefits 
personally, these experiences are often narrow in scope.  Furthermore, the educational 
institution often gets little direct benefit or useful knowledge from the student’s work 
experiences. 
 
Manufacturing training, experimentation, and testing could be significantly enhanced if 
manufacturing systems could somehow be brought into the laboratories of academic and 
research institutions.  Computer simulation and video game technology now allow us to 
construct large, realistic virtual worlds in software. The military and the entertainment 
industry have made extensive use of this technology for a number of years.  The 

 1



corporate and academic world is just beginning to recognize the potential of this 
technology as a training tool.  Virtual manufacturing enterprises could be used by a 
variety of organizations involved in manufacturing for training, experimentation, and 
testing.  This paper focuses on what this technology is and how it might be put to 
effective use by manufacturing industry and supporting institutions. 
 
Although simulations have been used as instructional tools in the past, this paper suggests 
that these tools can be significantly enhanced through the addition of and integration with 
video-game technology.  The paper presents an architecture for manufacturing research, 
testing, and training based upon simulation, virtual reality, and video game technology, as 
well as actual commercial manufacturing software and hardware systems.  The 
architecture is being implemented at the U.S. National Institute of Standards and 
Technology (NIST) as part of the Virtual Manufacturing Enterprise Project within the 
Manufacturing Interoperability Program.  The systems under development at NIST will 
be used primarily as research tools for testing and evaluating interface specifications and 
standards. 
 
The paper provides background on video game technology (Section 2), summarizes 
opportunities for using a simulation and game-based manufacturing environment for 
industrial research, testing, and training (Section 3), and provides an overview of the 
proposed simulation and gaming system architecture (Section 4). 
 
2. Why Use Video Game Technology? 
Video game technology could be a powerful tool for training the manufacturing 
workforce.  Game technology promises to enhance the educational process by providing 
a more engaging learning experience than traditional classroom or computer-aided 
instruction methods alone.  Video game technology could be used to create virtual 
environments for the student.  These environments would contain realistic three-
dimensional graphics and sound that could significantly enhance the learning experience.  
Training applications might address theory, development, operation, and maintenance of 
manufacturing systems. 
 
Video game engines provide integrated environments for creating virtual worlds.  
Engines typically have capabilities for creating three-dimensional graphics, sound, 
animated characters, intelligent character behaviors, and various physical phenomena.  
They may also provide support for the creation of user-level game modifications, Web-
based software distribution, and multi-player game interactions over the Internet. 
 
Given market demands, it is not surprising that computer games have evolved in a rather 
haphazard fashion over the past 25 years.  Due to language barriers and regional interests, 
individual game titles have been targeted to specific sectors in the international 
marketplace.  Furthermore, games had to be tailored to run on a wide variety of platforms 
including personal computers, game consoles, handheld game players, palm computers, 
and, more recently, cell phones. Each of these computing devices had different 
performance characteristics, display screen resolutions, and user input mechanisms.  For 

 2



a graphical history of the evolution of video games, see [Demaria 2004].  For some 
predictions about the future of the video game industry, see [Rollings 2004] 
 
Although games were largely produced for entertainment in the past, there has been more 
and more interest in using game technology for serious purposes.  Recently, a number of 
organizations and conferences have sprung up that are focused on educational and 
training applications of video games technology.  Some examples include the Serious 
Games Summit [Vargas 2004] and [Serious 2005], the MIT Education Arcade [MIT 
2005] at the Electronics Entertainment Expo (E3), and the U.S. Navy’s Naval Education 
and Training Command (NETC) Learning Strategies Consortium [Learning 2004].  
 
Given the diversity of game titles, computing platforms, and tremendous deadline 
pressures that are often placed on game developers, it is not surprising that their software 
development process has been somewhat chaotic.  Within the video game industry, there 
has always been a rush to get the next game to market before the customer’s interests or 
technology changes.  Experienced game developers acknowledge that good software 
engineering practices were seldom used in the past [Rollings 2004].  Little thought was 
typically given to code re-use.  Game programmers spend considerable time and effort re-
developing code that they or others may have written before.  Standards that are purely 
game-related are non-existent; although the game development community makes 
considerable use of graphics and sound standards developed by related industries.  For 
these reasons, games, supporting software, and hardware (peripheral devices, consoles, 
etc.) are often incompatible with each other. Only recently has there been a trend towards 
separating the code that is specific to a particular game title, the common elements of the 
game engine, the hardware computer platform, and its peripheral devices. 
 
Video games are usually very complex software systems. Game software has elements of 
graphics visualization systems, sound processors, computer operating systems, compilers, 
text editors, networked client-server environments, artificial intelligence, physics 
modeling systems, as well as other functionality.  Since games are often intended to 
create realistic visual environments for the user, the motions of game characters and other 
animated objects must appear to be smooth.  Much of the data in the game world needs to 
be updated at video frame rates (i.e., television screen refresh rates of 30 times per second 
or faster).  As such, a considerable amount of complex information processing must be 
carefully orchestrated during each second of game execution.  Due to these demands, 
game developers have been more concerned with performance and appearance of the 
game than following good software engineering practices. 
 
There are problems that make it difficult to adapt game software quickly for new 
purposes. In the past, games were monolithic software systems. Each game typically 
involved considerable custom software development. A single publisher or small 
development team was responsible for creating all of the software modules that 
comprised a game title.  The term “game engine” was often used to refer to the entire 
body of software associated with a single title.  If the industry is to become more efficient 
and achieve its growth potential in the future, title-specific content should be separated 
from the generic processing functions needed to implement a variety of games.  The code 

 3



required to support the generic processing functions should be consolidated into a 
general-purpose game engine that can be re-used.  Title-specific code should be the only 
custom software development required and it should not require low-level coding. 
 
This division of functionality and responsibility will help the market to grow by allowing 
content developers to work independently.  Whereas today, a development company may 
need to have expertise in both low-level game engine programming and content 
development, in the future that need not be so.  Similar product specialization, standard 
interfaces, and division of labor have enabled the personal computer industry to undergo 
tremendously rapid growth.  Specialization with the game and learning-content industry 
has similar potential.  Today, a number of companies are now marketing or developing 
game engines for the PC.  Some companies are actually selling components of a game 
engine, e.g., physics and graphics modules.  The licensing cost per seat (i.e., development 
user station) of these engines or component modules varies from several hundred dollars 
to hundreds of thousands of dollars.  Section 4.2 of this paper discusses a modular 
architecture for a core game engine that will allow different software vendors to develop 
plug-compatible component modules independently. 
 
The next section discusses how the manufacturing community could benefit from the use 
of simulation and gaming technology. 
 
3. Opportunities for Industrial Research, Testing, and Training 
Simulation technology enables the construction of technically correct, dynamic models of 
organizations, systems, and processes.  The models, once validated, can be used for 
supporting decisions for design and operation of the systems to achieve desired 
performance.  Gaming technology provides user interfaces, interaction mechanisms, and 
human modeling capabilities that support the creation of immersive experiences in virtual 
worlds.  It thus provides the means to train operator and decision makers allowing them 
to get familiarized with the machine or manufacturing system and understand the 
potential consequences of their decisions and actions without suffering actual costs, lost 
time, injury, equipment damage, etc.  The subsections that follow discuss how these 
technologies could support industrial research, testing, and training. 

3.1 Research 
Research applications include those that may be used by academia or the manufacturing 
research and development community. Applications include the development of models 
of new manufacturing systems, policies, procedures, processes, and algorithms.  
Simulation can be a powerful tool for conducting research experiments in manufacturing.  
In The Handbook of Simulation, Jerry Banks defines simulation as: 
 

“…the imitation of the operation of a real-world process or system over time. 
Simulation involves the generation of an artificial history of the system and the 
observation of that artificial history to draw inferences concerning the 
operational characteristics of the real system that is represented.  Simulation is 
an indispensable problem-solving methodology for the solution of many real-
world problems.  Simulation is used to describe and analyze the behavior of a 
system, ask what-if questions about the real system, and aid in the design of real 

 4



systems. Both existing and conceptual systems can be modeled with simulation.” 
[Banks, 1998] 

Manufacturing simulation focuses on modeling the behavior of manufacturing 
organizations, processes, and systems.  Organizations, processes and systems include 
supply chains, as well as people, machines, tools, and information systems.  Simulation 
models can be used to study parts of the manufacturing organization, sub-systems or 
individual processes as needed to evaluate their performance.  The individual models can 
be integrated to create a virtual factory that can be used to support decisions through 
manufacturing system life cycle [Jain 2001].  The research applications of manufacturing 
simulation include system design and operation, as described below: 
 
Manufacturing system design 
• Utilize hybrid optimization-simulation to support selection of design parameters such 

as locations of distribution centers and manufacturing plants, number of machines, 
grouping of machines, and products 

• Select new production systems, equipment, and processes 
• Evaluate the impact of new systems on overall business performance 
• Analyze layouts and flow of materials within production areas, lines, and 

workstations 
• Perform capacity planning analyses 
• Determine production and material handling resource requirements 
• Visualize the form, fit, and function of products, as well as the processes and systems 

used to manufacture those products 
 Perform ergonomic analysis of manual tasks and work area layout. •

 
Manufacturing system operation 
• Evaluate new operating policies by modeling “as-is” and “to-be” manufacturing and 

support operations from the supply chain level down to the shop floor 
• Evaluate improvements in business processes supporting manufacturing by modeling 

“as-is” and “to-be” for order processing, shipping, invoicing, etc. 
• Optimize process parameters for existing and new products using models of physics 

of the processes such as machining, injection molding, sheet metal forming, and 
semiconductor fabrication 

• Evaluate resource allocation, scheduling and dispatching algorithms 
• Evaluate use of simulation to support generation and evaluation of plans and 

schedules. 
 
Simulation models may also be built to support decisions regarding investment in new 
technology, expansion of production capabilities, modeling of supplier relationships, 

aterials management, human resources, etc. m
 
The research applications require the simulation models to be technically accurate 
commensurate with the level of detail.  The system-level applications should focus on use 
of stochastic factors to ensure evaluation of the artifacts in realistic situations. The 
models should be validated carefully before their use for supporting research application 

 5



such as those listed above.  The simulation application may also be integrated with other 
input and output analysis tools to ensure statistical validity.  In addition, integration w
applications such as design of experiments w

ith 
ould help guide the development of the 

rtifact that is the objective of the research. 

s 

 model 

 

cedures for validation and experimentation would further help the users 
of the test bed. 

or 

system 

tudents and faculty members to experience, analyze, and study the testing 
rocedures. 

n be used to support the following 
sting applications in the manufacturing domain.  

• 
e integrated with a model of the robot for 

•  
veyor 

• ability of the delivered process, system or design to meet interface 

• imulations to create the specified 

• ications, 

• 
f manufacturing operations. 

a
 
Availability of a test bed that is based on the proposed architecture would help 
researchers focus on their key objectives.  They would not have to spend substantial 
amounts of time building and integrating the needed simulation models.  Based on the 
application, the researchers can select the relevant set of simulation and gaming module
that should be brought together to test the development.  For example, for evaluating a 
scheduling algorithm, the researchers may pull together the manufacturing system
and associated supply chain modules.  For evaluating a new process, the relevant 
machine models may be integrated with models of the relevant parts of the manufacturing
system to understand the feasibility of individual steps and the impact on material flow.  
Documented pro

3.2 Testing 
Testing applications include the use of simulation primarily by operations personnel 
operations support engineers to test new methods, processes, and equipment before 
integrating them into operations.  Testing applications are also applicable at design and 
prototype stages.  Some of the testing applications may appear to duplicate the research 
applications, but they are typically carried out when the product or manufacturing 
design is nearly finalized.  Sometimes the testing is carried out by using the same 
applications as used for research but by personnel other than those directly involved in 
the development.  Use of video game technology integrated with simulation may allow 
engineering s
p
 
Integrated simulation and video game technology ca
te
 

Perform interoperability testing with models of systems being integrated.  For 
example a model of a robot controller may b
testing purposes to ensure interoperability. 
Perform interoperability testing with emulated physical equipment.  For example, a
physical programmable logic controller may be tested with an emulated con
system before the physical conveyor system is installed or even delivered. 
Evaluate the cap
specifications. 
Perform conformance and acceptance tests using s
range of inputs for a delivered system or process. 
Evaluate whether new systems, processes or designs meet performance specif
for example, test program for robots and other machinery using simulations. 
Develop metrics to allow the comparison of predicted performance against “best in 
class” benchmarks to support continuous improvement o

 6



• Evaluate the manufacturability of new product designs. 
Test the usability of a•  system using its representation through immersive video 
gaming technology. 

 
d 

he 

arameters defined in the 
ecifications should be provided to facilitate the process. 

 

g 
ill 

rt for 

 

rsonnel would gain the ability to 
nd savings of time involved. 

 
ts in 

 

cation and 
erhaps feeling the vibrations of the machine through force feedback devices. 

tand 
g 

e 

ng 
ent on one hand and by helping the researchers 

rovide better solutions on the other.  

 
Testing applications also require gaming and simulation representations to be technically
correct.  Again the models need to be carefully validated, however, the procedures use
may be more focused on functional and deterministic validation rather than statistical 
validation used for system-level research applications that use stochastic factors.  T
validation procedures should be defined to ensure common practices.  Supporting 
applications that exercise the models through the range of p
sp
 
Associated development of test cases and procedures would help by allowing a common
scale on which alternate artifacts can be tested.  Vendors of artifacts can use the results 
from standard test cases to highlight their products.  Customers can use the results from 
the standard test cases for initial screening of vendors and then proceed with testing usin
company specific data.  The test bed with associated test procedures and test cases w
benefit both researchers and industrial personnel due to large reduction in effo
testing of new artifacts.  Researchers from academic world will gain a better 
understanding of industrial strength systems and testing.  Researchers and developers
from manufacturing and vendor organizations would gain by unbiased testing of the 
developed and delivered artifacts.  Finally, operations pe
perform objective testing a

3.3 Training 
Training applications include the use of simulation and video game technology to 
increase familiarity of the human operators and decision makers with the artifact and 
provide accelerated experience through exposure to a range of potential behaviors of the 
artifact that may be generated based on their interactions with it.  These applications are
used typically just before the trainees are expected to interact with the new artifac
their areas of responsibility.  For example, a scheduler may be trained on setting 
parameters for scheduling software based on the daily inputs of status, orders, resource 
availabilities, and performance reports that are generated using simulations based on the
inputs.  A machine operator may be trained on setting the feed and rotation rates of the 
machine through visualizing the impact on the feed stock through a game appli
p
 
The training applications should be useful to industrial personnel in preparing them for 
delivering improved performance on the job.  The applications will help them unders
the options and the impact of decisions for a wide variety of scenarios.  The trainin
applications should be equally, if not more, useful to researchers and students for 
exposing them to industrial environments to ensure that their research addresses real 
problems and that students are well prepared for the industry. It will greatly increase th
experience level and readiness of students to tackle a wide range of problems.  These 
applications have the potential to improve industry performance by reducing the learni
curves of the workforce and managem
p

 7



 
Training applications that would gain from use of integrated simulation and gaming 

chnology include: 

• ystem visualization for technical and management personnel 

• es 
igns, supply chain 

• 
ociated with their design, operation, and maintenance to 

• 
gineering, management issues, supply chain formation, operation 

and maintenance. 

 a single 

as a 

anager to an operator on the shop floor and the range of skills associated with each role. 

r for 

 

efined training procedures associated with each training scenario. 

 
 

the 

te
 

Improve process and s
responsible for them. 

• Train operators on controlling machinery and equipment. 
• Train production and support staff on systems and processes. 

Provide manufacturing management staff an environment to test strategies for issu
such as product designs, manufacturing process and system des
partnerships, make-buy decisions, and inventory management. 
Provide realistic substitute for in-depth business and technical experience with real 
systems and the issues ass
researchers and students. 
Provide opportunities for students and researchers to deal with product life cycle 
process, systems en

 
The training applications should be supported by well-designed training scenarios that 
target a range of users and delivery options.  The options may include training
user learning on his own interacting with a computer, multiple users working 
independently in a computer lab setting with a facilitator, and multiple users working 
team.  The scenarios should support different user roles ranging from a supply chain 
m
 
Similar to research and testing applications, the training applications require simulations 
that are technically correct and valid.  It has to be noted though that training scenarios 
would seldom include controlled multiple replications and associated statistical rigo
simulation output analysis.  The focus in training is to ensure generation of correct 
technical response for the actions and decisions taken by trainees.  For complex, system 
level decisions and other artifacts involving random factors, the training scenarios would 
need to communicate the importance of understanding that the generated behavior is one 
among several potential outcomes.  In such scenarios, the importance of multiple training
sessions with similar settings should be stressed.  Such issues should be addressed using 
d
 
This section described the opportunities for integrated gaming and simulation for 
research, testing and training in manufacturing domain.  Unfortunately, traditional 
manufacturing simulators seldom provide much opportunity for the user to become 
engaged in real-time interaction or immersion in the simulated environment.  Each 
simulation vendor has had to develop its own graphical user interface or display system. 
The level of functionality of these display systems has varied considerably from vendor
to vendor.  Few manufacturing system simulators come close to achieving the level of 
graphics of most current video games.  Most game system vendors have excelled in 
creation of sophisticated graphical interfaces.  Gaming technology could be used to 

 8



provide a consistent, high quality, sharable, and re-usable front-end to manufacturing 

 proposed reference architecture. 

tion 
of 

vior, 
 

ms with 
egration issues is beyond the 

ope of this paper.  Figure 1 illustrates the next level of decomposition of the 

 

ed 
s 

ine a bridge between them.  The bridge 
s. 

 of 
 

tionality of simulation enabling users to do things that they could not do with a 
onolithic system. For example, a distributed approach would allow users and vendors 
 

 
• 

 all areas of interest 

unctionality 
• provide simultaneous access to executing simulation models for users in different 

locations (collaborative work environments) 

simulators. 
 
The next section presents an overview of the
 
4. An Integrated Reference Architecture 
The purpose of a reference architecture is to identify the major modules, module 
functions, and interfaces for a software system.  The proposed manufacturing simula
and gaming architecture defines a distributed system that may have three major groups 
subsystems, i.e., gaming, simulation, and real manufacturing subsystems.  Gaming 
provides users with a high quality, multimedia, role-playing environment.  Simulation 
provides technically correct models of human and manufacturing organization beha
systems, and processes.  Real manufacturing systems provide a capability for connecting
and using real manufacturing systems alongside the virtual gaming and simulation 
subsystems.  The architecture allows the integration of real manufacturing syste
gaming and simulation software, but a discussion of those int
sc
architecture into clusters of gaming and simulation systems. 
 
Techniques for integrating gaming and simulation subsystems have evolved 
independently over the years.  Within the simulation world, the High Level Architecture
(HLA) has been used to integrate distributed simulation systems.  Within the gaming 
world, massively multiplayer online gaming (MMOG) or massively multiplayer online 
role-playing game (MMORPG) architectures have been used to integrate distribut
gaming systems.  While HLA has become a standard [IEEE 2000], the gaming world ha
not standardized its architecture.  Each integration approach has its strengths and 
weaknesses that will be addressed later in this paper.  Our approach has been to accept 
the architectures of both communities and def
handles time synchronization and data transfer between the two groups of subsystem

4.1 Manufacturing Simulation Subsystem 
The manufacturing simulation subsystem is composed of a distributed collection
simulation applications and integration mechanisms that allow the applications to work
together. Why is the architecture based upon a distributed set of manufacturing 
simulations rather than a single monolithic one? A distributed approach increases the 
func
m
to:

utilize simulation tools developed by different software developers that are 
specialized to model specific aspects of manufacturing.  Individual simulation-
vendor’s products do not provide the capabilities to model

• allow a vendor to hide the internal workings of a simulation system through the 
creation of run-time simulators with limited f

 9



S
im

ul
at

io
n 

C
om

m
un

ic
at

io
ns

 In
te

gr
at

io
n 

In
fra

st
ru

ct
ur

e

P
hy

si
ca

l
P

ro
ce

ss
S

im
ul

at
or

s

Su
pp

ly
C

ha
in

S
im

ul
at

or
s

M
fg

 S
ys

te
m

&
 E

qu
ip

m
en

t
S

im
ul

at
or

s

E
nt

er
pr

is
e

O
rg

an
iz

at
io

n
S

im
ul

at
or

s

S
im

ul
at

io
n

M
an

ag
em

en
t

G
am

in
g 

C
om

m
un

ic
at

io
ns

 In
te

gr
at

io
n 

In
fra

st
ru

ct
ur

e

Li
ve

E
le

m
en

ts
G

am
e

M
an

ag
em

en
t

S
ho

p
Fl

oo
r

R
ol

es

E
ng

in
ee

rin
g

&
 S

up
po

rt
R

ol
es

M
fg

M
an

ag
em

en
t

R
ol

es

S
up

pl
y

C
ha

in
R

ol
es

 S
yn

ch
ro

ni
za

tio
n

an
d

D
at

a 
Tr

an
sf

er
P

ro
ce

ss
or

G
am

e
D

at
a

Se
rv

er
s

S
im

ul
at

io
n

D
at

a
S

er
ve

rs

Fi
gu

re
 1

.  
D

ec
om

po
si

tio
n 

of
 th

e 
ga

m
in

g 
an

d 
si

m
ul

at
io

n 
el

em
en

ts
 o

f t
he

 a
rc

hi
te

ct
ur

e.
 

 

  

 10



•  take advantage of additional computing power, specific operating systems, or 
peripheral devices (e.g., virtual reality interfaces) afforded by distributing across 
multiple computer processors  

• offer different types and numbers of software licenses for different functions 
supporting simulation activities (model building, visualization, execution, analysis). 

• create an array of low-cost, run-time, simulation models that can be integrated into 
larger models 

• model supply chains across multiple businesses where some of the information about 
the inner workings of each organization may be hidden from other supply chain 
members 

• simulate multiple levels of manufacturing systems at different degrees of resolution 
such that lower level simulations generate information that feeds into higher levels. 

 
Figure 2 shows the manufacturing simulation subsystem of the reference architecture.  
The elements of the architecture include clusters of simulation applications, data servers, 
an integrated infrastructure, and a simulation management module. 

4.1.1 Simulation Applications 
Simulation applications will be used to model the behavior of real manufacturing 
systems.  Several clusters of manufacturing simulators are envisioned.  Each cluster and 
possible simulation applications are briefly introduced below. 
 
• Supply chain simulators can be used to model the organization and management of 

supply chains.  Organizations that may be simulated include supply chain 
headquarters, manufacturing primes, suppliers, transportation networks, warehouses, 
distribution centers, retailers, and customers. Some of the issues that may be 
addressed include lead times, inventory levels, production capacity, operations under 
surge conditions, and information flows. 

• Enterprise organization simulators can be used to model the internal business 
processes of various departments within the manufacturing organization, such as 
customer order servicing, design, engineering, production, and inventory 
management.  Business process modeling techniques may be used to analyze order 
flow and processing times in order to streamline operations and minimize non value-
added functions. 

• Manufacturing system and equipment simulators can be used to model the normal 
operations, failure modes, and maintenance of various manufacturing equipment, 
such as fabrication, assembly, material handling, quality, and packaging systems. 
Examples of some of the equipment making up these systems includes machine tools, 
coordinate measuring machines, robots, storage and retrieval systems, and conveyors. 
Discrete event simulation techniques may be used to analyze operation times, 
capacity, queue lengths, bottlenecks, buffer storage requirements, inventory levels, 
etc. 

• Physical process simulators can be used to create accurate models of the physical 
transformations that products and tooling undergo in various manufacturing 
industries. Industries that will have unique process simulations include metalworking, 
electronics, food, textiles, plastics, and chemicals/refining. For example, a physical  

 11



O
th

er
s

S
im

ul
at

io
n 

C
om

m
un

ic
at

io
ns

 In
te

gr
at

io
n 

In
fra

st
ru

ct
ur

e

C
he

m
ic

al
s 

&
R

ef
in

in
g

Te
xt

ile
s

En
te

rp
ris

e
O

rg
an

iz
at

io
n

Si
m

ul
at

or
s

P
la

st
ic

G
oo

dsFo
od

O
th

er
s

M
at

er
ia

l
H

an
dl

in
g

S
ys

te
m

s

P
ac

ka
gi

ng
S

ys
te

m
s

Q
ua

lit
y

S
ys

te
m

s

A
ss

em
bl

y
S

ys
te

m
s

Fa
br

ic
at

io
n

S
ys

te
m

s

O
th

er
s

In
ve

nt
or

y
M

an
ag

em
en

t

P
ro

du
ct

io
n

P
ur

ch
as

in
g

E
ng

in
ee

rin
g

D
es

ig
n

C
us

to
m

er
 O

rd
er

S
er

vi
ci

ng

M
fg

S
ys

te
m

s 
&

Eq
ui

pm
en

t
S

im
ul

at
or

s

P
hy

si
ca

l
Pr

oc
es

s
Si

m
ul

at
or

s

S
im

ul
at

io
n

Fe
de

ra
tio

n
M

an
ag

em
en

t

Fe
de

ra
tio

n
D

at
a

S
er

ve
rs

S
up

pl
y

C
ha

in
Si

m
ul

at
or

s

C
us

to
m

er
s

R
et

ai
le

rs

W
ar

eh
ou

se
&

 D
is

tri
bu

tio
n

C
en

te
rs

Tr
an

sp
or

ta
tio

n
N

et
w

or
ks

S
up

pl
ie

rs

M
an

uf
ac

tu
rin

g
P

rim
e

Su
pp

ly
 C

ha
in

H
ea

dq
ua

rte
rs

E
le

ct
ro

ni
cs

M
et

al
w

or
ki

ng

Fi
gu

re
 2

.  
M

an
uf

ac
tu

rin
g 

si
m

ul
at

io
n 

su
bs

ys
te

m
: s

im
ul

at
io

n 
cl

us
te

rs
, s

im
ul

at
io

n 
fe

de
ra

tio
n 

m
an

ag
em

en
t, 

da
ta

 se
rv

er
s, 

an
d 

co
m

m
un

ic
at

io
ns

 in
fr

as
tru

ct
ur

e.
 

 

 
 
 
 
 

 12



process simulator for metalworking may model processes associated with a 
machine tool’s operation. Information obtained from the simulation may include 
changes to work piece geometry, chip formation, tool wear, chatter, thermal and 
mechanical variations to the machine. 

 
Although a simulation may be developed as a custom software application, there are 
many commercial simulation engines available that support the types of simulation 
identified above. The next section discusses the topic of simulation engines. 

4.1.2 Simulation Engines 
The construction of a simulation usually involves some sort of software development.  
Since software development is often a costly, time-consuming, and error-prone process, 
minimization of programming and re-use of validated code is highly desirable.  A certain 
amount of code re-use can be achieved through the utilization of simulation engines.  
Many different simulation engines are available commercially. These engines, or 
simulators, are computer programs that typically provide functions to: 
 
• Develop and manage simulation models 
• Implement control logic and perform calculations 
• Assist in model debugging 
• Incorporate programming language extensions 
• Input and output data 
• Initiate and terminate simulation runs 
• Generate statistical variations between runs 
• Create and display 2D and/or 3D visualizations 
• Analyze results and generate reports 
 
By using a simulation engine, much low-level coding could be avoided.  Unfortunately, 
most simulation engines currently run as stand-alone systems on personal computers. 
 
The representation of time is a key aspect of simulation engines. They typically 
implement models as discrete-change, continuous-change, or combined-change, see 
[Banks 1998].  In discrete-change simulation engines, data variables only change values 
at distinct points in simulated time, i.e., discrete events.  In engines that implement 
continuous models, data variables may change values continuously as functions of time. 
With combined models, variables may change discretely, continuously, or both.  Some of 
the common elements found in simulation engines include a clock that keeps simulated 
time and system state variables that indicate the current state of the simulation execution.  
Other elements include representations for entities (the objects whose behavior is 
simulated), events (points in time where things happen), event queues (a sorted list of 
events), and random number generators (that are used to create variations in the 
simulation executions).  Some of the most common techniques for implementing and 
extending models using simulation engines include the use of conventional procedural 
code, object-oriented programming, rule-based systems, and/or finite state machines. 
 

 13



In the past simulation analysts have expended considerable time and effort extracting data 
from other software applications to drive simulators.  The next two sections describe the 
servers and the simulation data model that can be used to improve the management of 
this data. 

4.1.3 Simulation Management and Data Servers 
Management functions may be needed for the proper operation of a distributed simulation 
that are logically outside of any single simulation process.  In the distributed 
manufacturing simulation environment, the Manufacturing Simulation Federation 
Manager is the architectural element that provides these functions.  It may implement 
functionality to execute initialization scripts that launch federates, to provide 
initialization data to federates, to assist in federation time management, and to provide a 
user interface so that users can monitor and manipulate the federation and invoke 
federation services. 
 
Simulation applications will typically need to access manufacturing data that was created 
using other software applications, e.g., a computer-aided design system.  The other 
applications will store this information on data servers that will manage this information 
and deliver it to the simulations when requested.  The data server typically acts as a 
central repository for storing data.  As such, simulation applications are clients in a 
“client-server” architecture.  On the server-side, at least six types of servers and data 
repositories may be used to store manufacturing and simulation data.  See Figure 3 for an 
illustration of the simulation data servers. Each server type is briefly described below: 
 
• Relational Data Base Management System Server – Perhaps the most common type 

of database system in existence today is the relational database management system 
or RDBMS.  Some of the most popular commercial database systems are based upon 
relational technology.  Information is organized into relations that are essentially 
tables.  This type of server is potentially useful for storing any kind of information 
that can be represented in tables.  A standard interface has been defined to access and 
update information in relational databases, the Structured Query Language (SQL), see 
[ISO 2003] for more information. 

• Object-oriented Data Base Management System Server – Another, perhaps less 
commonly used, database server is based on object-oriented technology.  With this 
database, all data elements are defined as objects that have attributes and methods that 
define the objects behaviors.  Methods also define how the objects are created, 
modified, and destroyed.  Each vendor typically provides a custom application 
programmer interface for interacting with the object-oriented database. 

• Web Data Server – These servers enable users to access files or data over the Internet 
using HTTP protocol.  Web server applications have been used to provide online 
access to documentation and models. For more on web data access mechanisms, see 
[W3C 1999]. 

• Product Data Management System Server – Product data management (PDM) 
systems are specialized database systems designed to support manufacturing 
organizations. PDM systems are designed to maintain product-life-cycle data 
including product specifications, part designs and models, process plans, bills of 
materials, and engineering change orders.  PDM systems are typically implemented 

 14



 
  

P
D

M
S

 D
at

ab
as

es

P
ro

du
ct

 D
at

a
M

an
ag

em
en

t
Sy

st
em

 S
er

ve
r

W
eb

 F
ile

s

W
eb

 S
er

ve
r

O
bj

ec
t-O

rie
nt

ed
D

at
ab

as
es

O
bj

ec
t-O

rie
nt

ed
D

at
ab

as
e

M
an

ag
em

en
t

Sy
st

em
 S

er
ve

r

R
el

at
io

na
l

D
at

ab
as

es

R
el

at
io

na
l

 D
at

ab
as

e
M

an
ag

em
en

t
S

ys
te

m
 S

er
ve

r

Sp
ec

ia
l P

ur
po

se
Li

br
ar

ie
s

Sp
ec

ia
l P

ur
po

se
Li

br
ar

y
M

an
ag

em
en

t
S

ys
te

m
 S

er
ve

r

S
of

tw
ar

e 
Fi

le
S

ys
te

m

S
of

tw
ar

e 
S

ou
rc

e
C

od
e 

C
on

tro
l

S
ys

te
m

 S
er

ve
r

Fi
gu

re
 3

.  
Ty

pe
s o

f s
im

ul
at

io
n 

da
ta

 se
rv

er
s. 

 15



using either relational or object-oriented database management systems.  Standards 
have been defined to provide uniform mechanisms for accessing and updating 
product life cycle data, see [OMG 2002] and [STEP 2001]. 

• Special Purpose Library Management System Server – Often software vendors will 
incorporate their own custom database or library management system into their 
software.  For example, simulation models may be stored and accessed using a 
vendor’s proprietary interfaces.  There is no standardization for these special purpose 
libraries. Unless the vendor provides an application programmer’s interface, there 
will be no way to access the data on the server other than through the vendor’s 
simulation package. 

• Source Code Control System Server – Source Code Control Systems (SCCS) are 
special purpose data management systems that are designed to support the software 
development and maintenance process. SCCS servers store source code, object 
modules, header files, documentation, program build files, etc.  One of the strengths 
of these systems is the ability to maintain version control data and build programs 
using the appropriate component modules.  Access mechanisms are typically 
proprietary to a particular SCCS implementation. 

 
The next section introduces a common, manufacturing-simulation data model that has 
been developed to enable sharing of information between a wide variety of 
manufacturing software applications. 

4.1.4 Manufacturing Simulation Data Model 
If a number of software applications including simulators are going to share data, they 
should have a common understanding of its meaning and structure.  In this section, the 
concept of a common, shop information model is introduced. The primary objective of 
this model is to develop a structure for exchanging shop data between various 
manufacturing software applications, including simulation. The idea is to use the same 
data structures for managing actual production operations and simulating the machine 
shop. The rationale is that if one structure can serve both purposes, the need for 
translation and abstraction of the real data would be minimized when simulations are 
constructed. The mapping of real world data into simulation abstractions is not, for the 
most part, addressed in the current data model.  Figure 4 illustrates some of the major 
elements of the conceptual data model and their relationships to each other.  For a more 
detailed discussion of the data model, see [Lee 2003] or [McLean 2005a].  
 
Maintaining data integrity and minimizing the duplication of data is an important 
requirement.  For this reason, each unique piece of information appears in only one place 
in the model.  Cross-reference links are used to avoid the creation of redundant copies of 
data. 
 
The machine shop data model contains twenty major elements.  Each of the major data 
elements are italicized in the discussion that follows.  The data elements are called: 
Organizations, Calendars, Resources, Skill-definitions, Setup-definitions, Operation-
definitions, Maintenance-definitions, Layout, Parts, Bills-of-materials, Inventory, 
Procurements, Process-Plans, Work, Schedules, Revisions, Time-Sheets, Probability-
distributions, References, and Units-of-measurement.  Due to space limitations, the entire 

 16



cu
st

om
er

s
in

ve
nt

or
y

m
ac

hi
ne

pr
og

ra
m

s

su
pp

lie
rs

pr
oc

ur
em

en
ts

or
ga

ni
za

tio
ns

pa
rt

s

w
or

k

sp
ec

ify
pr

od
uc

ed
by

bi
lls

-o
f-

m
at

er
ia

ls

ro
ut

in
g

sh
ee

ts

pu
rc

ha
se

pr
oc

es
s

pl
an

s

pr
od

uc
tio

n
pr

oc
es

s
de

fin
ed

 b
y

op
er

at
io

n
sh

ee
ts

or
de

rs

jo
bs

ta
sk

s

co
ns

is
t o

f

co
ns

is
t o

f

hi
gh

-le
ve

l
pr

od
uc

tio
n

pr
oc

es
se

s
de

fin
ed

 b
y

st
or

e

sc
he

du
le

s

re
so

ur
ce

s

pr
ov

id
e

re
qu

ire
m

en
ts

as
se

m
bl

ie
d

by

su
pp

ly

as
si

gn

id
en

tif
y

de
co

m
po

se

m
ac

hi
ne

co
nt

ro
l

de
fin

ed
 b

y

de
fin

ed
by

de
fin

ed
by

re
qu

ire
d

by

ha
ve

m
ay

 re
su

lt
sp

ec
ifi

ca
tio

n
pr

ov
id

ed
 b

y

la
yo

ut

ca
le

nd
ar

s

st
at

io
ns

m
ac

hi
ne

s

em
pl

oy
ee

s

se
tu

p
de

fin
iti

on
s

sk
ill

de
fin

iti
on

s

lo
ca

te

m
ay

ha
ve

op
er

at
io

n
de

fin
iti

on
s

m
ay

 h
av

e

...
..

pl
ac

e

re
ce

iv
e

de
fin

ed
by

us
e

ha
s

m
ay

in
cl

ud
e

ab
ili

ty
de

fin
ed

 b
y

m
ac

hi
ne

se
tu

ps
de

fin
ed

 b
y

em
pl

oy

m
ai

nt
en

an
ce

de
fin

iti
on

s
m

ai
nt

en
an

ce
re

qu
ire

m
en

ts
de

fin
ed

 b
y

tim
e 

sh
ee

ts
m

ai
nt

ai
n

ac
tiv

ity
de

fin
ed

by

as
so

ci
at

ed
 w

ith

st
at

io
n 

op
er

at
io

ns
de

fin
ed

 b
y

Fi
gu

re
 4

.  
M

aj
or

 e
le

m
en

ts
 o

f t
he

 m
an

uf
ac

tu
rin

g 
co

nc
ep

tu
al

 d
at

a 
m

od
el

 a
nd

 th
ei

r r
el

at
io

ns
hi

ps
 to

 e
ac

h 
ot

he
r 

 

 17



model is not shown or discussed in detail.  The remainder of this section discusses the 
data elements and their significance. 
 
Perhaps a good place to start the discussion of the data model is with the customer. 
Machine shops are businesses.  They typically produce machined parts for either internal 
or external customers.  Data elements are needed to maintain information on customers.  
The types of organizational information that is needed about customers are very similar 
to the data needed about suppliers that provide materials to the shop.  The same types of 
organizational data are also needed about the machine shop itself.  For this reason, an 
Organizations element was created to maintain organizational and contact information on 
the shop, its customers, and its suppliers. 
 
Organizations can be thought of as both a phone book and an organization chart.  The 
element provides sub-elements for identifying departments, their relationships to each 
other, individuals within departments, and their contact information.  Various other types 
of information needs to be cross-referenced to organizations and contacts within 
structure, e.g., customer orders, parts, and procurements to suppliers. 
 
The operation of the machine shop revolves around the production of parts, i.e., the 
fabrication of parts from raw materials such as metal or plastic.  The raw materials 
typically come in the form of blocks, bars, sheets, forgings, or castings.  These materials 
are themselves parts that are procured from suppliers.  The Parts data element was 
created to maintain the broad range of information that is needed about each part that is 
handled by the machine shop.  Part data includes an identifying part number, name, 
description, size, weight, material composition, unit-of-issue, cost, group technology 
classification codes, and revision (change) data.  Cross-reference links are needed to the 
customers that buy the parts from the shop and/or the suppliers that provide them as raw 
materials.  Links are also needed to other data elements, documents, and files that are 
related to the production of parts including part specification documents, geometric 
models, drawings, bills-of-materials, and process plans. 
 
The Bills-of-materials element is basically a collection of hierarchically structured parts 
lists.  It is used to define the parts and subassemblies that make up higher-level part 
assemblies.  A bill-of-materials identifies the component or subassembly required at each 
level of assembly by a part-number reference link. The quantity required for each part is 
also indicated.  Cross-reference links are needed between parts that are assemblies and 
their associated bill-of-materials. 
 
The Parts and Bills-of-materials elements establish the basic definition of parts produced 
or used by the shop.  Another element, Inventory, is used to identify quantity of part 
instances at each location within the facility.  Inventory data elements are provided for 
parts, tools, fixtures, and materials.  Materials are defined as various types of stock that 
may be consumed partially in production, e.g., sheets, bars, and rolls.  Structures are 
provided within inventory to keep track of various stock levels (e.g., reorder point level) 
and the specific instances of parts that are used in assemblies. 
 

 18



The Procurements element identifies the internal and external purchase orders that have 
been created to satisfy order or part inventory requirements.  Cross-reference links are 
defined to Parts to identify the specific parts that are being procured and to Work to 
indicate which work items they will be used to satisfy. 
 
The Work data element is used to specify a hierarchical collection of work items that 
define orders, production, and support activities within the shop.  Support activities 
include maintenance, inventory picking, and fixture/tool preparation.  Work is broken 
down hierarchically into orders, jobs, and tasks. 
 
Orders may be either customer orders for products or internally-generated orders to 
satisfy part requirements within the company, e.g., maintenance of inventory levels of 
stock items sold through a catalog.  The Orders element contains both definition and 
status information.  Definition information specifies who the order is for (i.e., customer 
cross-references), its relative priority, critical due dates, what output products are 
required (a list order items, i.e., part references and quantities required), special resource 
requirements, precedence relationships on the processing of order items, and a summary 
of estimated and actual costs.  Order items are also cross-referenced to jobs and tasks that 
decompose the orders into individual process steps performed at workstations within the 
shop.  Status information includes data about scheduled and actual progress towards 
completing the order 
 
Jobs typically define complex production work items that involve activities at multiple 
stations and ultimately produce parts.  Tasks are lower-level work items that are typically 
performed at a single workstation or area within the shop. 
 
The Process-plans element contains the process specifications that describe how 
production and support work is to be performed in the shop.  Major elements contained 
within Process-plans include routing sheets, operation sheets, and equipment programs.  
Routing and operation sheets are the plans used to define job and task level work items, 
respectively, in the work hierarchy.  These process plans define the steps, precedence 
constraints between steps, and resources required to produce parts and perform support 
activities.  Precedence constraints defined in process plan are used to establish 
precedence relationships between jobs and tasks.  Equipment program elements establish 
cross-reference links to files that contain computer programs that are used to run machine 
tools and other programmable equipment that process specific parts.  Each part in the 
Parts element contains cross-reference links to the process plans that define how to make 
that part. Jobs and tasks contain links back to the process plans that defined them. 
 
The Resources element is used to define production and support resources that may be 
assigned to jobs or tasks in the shop, their status, and scheduled assignments to specific 
work items.  The resource types available in the machine shop environment include: 
stations and machines, cranes, employees, tool and tool sets, fixtures and fixture sets. 
 
The Skill-definitions, Setup-definitions, Operations-definitions, Maintenance-definitions, 
and Time-Sheets elements provide additional supporting information associated with 

 19



resources.  Skill-definitions lists the skills that an employee may possess and the levels of 
proficiency associated with these skills.  Skills are referenced in employee resource 
requirements contained in process plans. Setup-definitions typically specifies tool or 
fixture setups on a machine.  Tool setups are typically the tools that are required in the 
tool magazine.  Fixture setups are work-holding devices mounted on the machine.  Setups 
may also apply to cranes or stations.  Operation-definitions specifies the types of 
operations that may be performed at a particular station or group of stations within the 
shop.  Maintenance-definitions specifies preventive or corrective maintenance to be done 
on machines or other maintained resources.  Time-sheets are used to log individual 
employee’s work hours, leave hours, overtime hours, etc. 
 
The Layout element defines the physical locations of resource objects and part instances 
within the shop. It also defines reference points, area boundaries, paths, etc.  It contains 
references to external files that are used to further define resource and part objects using 
appropriate graphics standards.  Cross-reference links are also provided between layout 
objects and the actual resources that they represent. 
 
Schedules and Calendars data elements are used to deal with time. Schedules provides 
two views of the planned assignment of work and resources.  Work items (orders, jobs, 
and tasks) are mapped to resources, and conversely, resources are mapped to work items. 
The planned time events associated with those mappings are also identified, e.g., 
scheduled start times and end times.  Calendars identifies scheduled work days for the 
shop, the shift schedules that are in effect for periods of time, planned breaks, and holiday 
periods. 
 
The four remaining major data elements are Revisions, References, Probability-
distributions, and Units-of-measurement.  The Revisions element is used repeatedly 
throughout many levels of the data model.  It provides a mechanism for identifying 
versions of subsets of the data, revision dates, and the creator of the data.  The References 
element identifies external digital files and paper documents that support and further 
defines the data elements contained within the shop data structure.  It provides a 
mechanism for linking outside files that conform to various other format specifications or 
standards, e.g., STEP part design files.  The Probability-distributions element defines 
probability distributions that are used to vary processing times, breakdown and repair 
times, availability of resources, etc.  Distributions may be cross-referenced from 
elsewhere in the model, e.g., equipment resources maintenance data.  Units-of-
measurement specifies the units used in the file for various quantities such as length, 
weight, currency, speed, etc. 
 
This information model and associated data formats are undergoing standardization under 
the Simulation Interoperability Standards Organization [SISO 2005]. 

4.1.5 Simulation Integration Infrastructure 
Although simulations are often implemented as individually executable computer 
processes, sometimes there is a need to divide simulations into multiple processes.  These 
processes may need to run as a distributed simulation system on a single computer or 
over a network of computers.  A distributed simulation system may be used to: 

 20



 
• Divide a large simulation into smaller functional modules that can be used by 

multiple training packages 
• Provide a simulation service to other client applications 
• Enable coordinated simulations over a local Intranet or the Internet. 
 
The High Level Architecture (HLA) is a standard, originally initiated by the DoD, for 
implementing distributed simulation. It was developed by the Defense Modeling and 
Simulation Office (DMSO) to provide a consistent approach for integrating distributed, 
defense simulations.  In HLA terms, the individual simulations are called federates and 
the distributed simulation is referred to as a federation. The HLA defines a framework by 
which individually executing federates can be combined into a distributed simulation 
federation. 
 
The HLA framework has three major parts.  The first part is a set of rules that federates 
and federations must adhere to ensure that a federation operates properly.  The second 
part is the integration infrastructure called the Run Time Infrastructure (RTI). The RTI 
defines an interface that provides a number of services that federates can use to 
communicate (i.e., exchange simulation data), and coordinate their execution (i.e., 
synchronize simulation clocks) with other federates in a federation.  The third part of the 
HLA is called the Object Model Template (OMT).  The OMT provides a means for 
describing the format of the data that will be exchanged between federates.  For more 
information on distributed simulation using HLA, see Kuhl et al (1999). 
 
Several implementations of the HLA RTI software are currently available from different 
sources.  There is, however, no interoperability across different vendor’s RTI 
implementations.  A distributed simulation running on different computer systems across 
a network must use the same RTI software as an integration infrastructure 
 
An HLA-based distributed manufacturing simulation may include simulators, 
visualization system, real production system, and output analysis system as federates.  
Figure 5 illustrates the relationship between the various component elements of the 
distributed manufacturing simulation federate. 
 
One common data definition is created for domain data that is shared across the entire 
federation.  It is called the federation object model (FOM).  Each federate has a 
simulation object model that defines the elements of the FOM that it implements. 
 
Developing the adaptation code to integrate with the RTI can be a significant 
undertaking. This effort must be repeated for each legacy simulation that is to be 
integrated.  Figure 5 also shows the architecture of a legacy simulation that has been 
integrated into a distributed simulation using the DMS Adapter.  Instead of having legacy 
simulations integrated directly with the HLA/RTI, those simulations will interact with the 
interface of the adapter.   The goal of the adapter is to provide a simplified method for 
integrating legacy simulations into distributed simulations while also providing as much 
of the capabilities of the HLA/RTI as possible. Some adaptation code must still be  

 21



 

R
un

 T
im

e
 In

fra
st

ru
ct

ur
e

S
ha

re
d

In
te

rn
al

S
im

ul
at

io
n

O
bj

ec
t a

nd
D

at
a 

S
pa

ce

S
im

ul
at

io
n 

Ap
pl

ic
at

io
n 

an
d

M
od

el
s

D
is

tri
bu

te
d 

M
an

uf
ac

tu
rin

g
S

im
ul

at
io

n 
A

da
pt

er

C
om

m
on

 D
at

a
A

cc
es

s 
M

ec
ha

ni
sm

S
er

ve
r

S
ub

ro
ut

in
e

 In
te

rfa
ce

XM
L

G
en

er
at

or

XM
L

P
ar

se
r

Fe
de

ra
te

O
w

ne
d 

H
LA

O
bj

ec
t

M
an

ag
em

en
t

S
pa

ce

H
LA

 A
m

ba
ss

ad
or

A
da

pt
er

 S
up

er
vi

so
r

S
im

ul
at

io
n 

E
ng

in
e

U
se

r S
im

ul
at

io
n 

M
od

el
s

 a
nd

 D
at

a

O
th

er
S

im
ul

at
io

n
Fe

de
ra

te
s

D
is

tri
bu

te
d

M
an

uf
ac

tu
rin

g
D

at
a 

R
ep

os
ito

ry

Fe
de

ra
te

 A

Fe
de

ra
te

  B

Fe
de

ra
te

  C

R
TI

 S
er

vi
ce

s,
FO

M
 O

bj
ec

ts
 &

In
te

ra
ct

io
ns

C
om

m
on

 D
at

a
A

cc
es

s 
M

ec
ha

ni
sm

Tr
an

sa
ct

io
ns

Fi
gu

re
 5

.  
St

ru
ct

ur
e 

of
 a

 d
is

tri
bu

te
d 

m
an

uf
ac

tu
rin

g 
si

m
ul

at
io

n 
fe

de
ra

te
 

 

 22



developed to integrate a legacy simulation system with the DMS Adapter.   However, by 
reducing the complexity of the interface to which the legacy simulation is being 
integrated, the level of effort for performing the integration should be greatly reduced. 
 
DMS Adapter Module is incorporated into each DMS federate.  The DMS Adapter 
handles the transmission, receipt, and internal updates to all FOM objects used by a 
federate. The DMS Adapter Module will contain a subroutine interface and data 
definition file that will facilitate its use as an integration mechanism by software 
developers. The DMS adapter eases the development of distributed manufacturing 
simulations by reusing implementations for some of the necessary housekeeping and 
administrative work. The DMS adapter provides a simplified time management interface, 
automatic storage for local object instances, management of lists of remote object 
instances of interest, management and logging for interactions of interest, and simplified 
object and interaction filtering.  For a more detailed discussion of the NIST distributed 
manufacturing simulation architecture and the adapter module, see [McLean 2005B]. 

4.2 Manufacturing Gaming Subsystem 
The purpose of the gaming subsystem is to provide an immersive virtual manufacturing 
environment in which users, i.e., players can interact with each other, with manufacturing 
systems, and organizations.  The video game development community has become a 
leading innovator in the use of graphics, audio, and force feedback to create virtual 
worlds.  Multiplayer game technology allows many players to interact in the same virtual 
world across the Internet.  As such, it is only natural to look to the technology leaders for 
solutions to creating the front-end interface to a virtual manufacturing environment. 
 
What functions does the gaming subsystem need to provide?  Some of the key functions 
that need to be supported: 
 
• Allow the creation of different game genres such as strategy, role-playing, and puzzle 

solving based on individual training needs 
• Provide user interfaces that allow a variety of user input devices 
• Animate characters and other objects 
• Render graphics scenes, generate audio, and provide force feedback 
• Sequence all processes in a timely fashion 
• Implement intelligent behaviors for both player and non-player characters 
• Coordinate multi-player game play across the Internet 
• Enable “modding” of the game environment through high level scripts 
• Compile high level scripts into more efficient low level code 
• Manage user sessions and security  
• Provide a central repository for game assets or resources 
 
Figure 6 shows the major elements of the manufacturing gaming subsystem, i.e., clusters 
of game applications, game management, data servers, and communications 
infrastructure.  The next sections discuss these elements in more detail. 

 23



O
th

er
s

Li
ne

S
up

er
vi

so
r

P
ro

du
ct

io
n

S
ch

ed
ul

er

G
am

in
g 

C
om

m
un

ic
at

io
ns

 In
te

gr
at

io
n 

In
fra

st
ru

ct
ur

e

S
up

pl
y

C
ha

in
R

ol
es

S
ho

p 
Fo

re
m

an

E
ng

in
ee

rin
g

M
an

ag
em

en
t

P
la

nt
M

an
ag

er

M
an

uf
ac

tu
rin

g
M

an
ag

em
en

t
R

ol
es

G
am

e
M

an
ag

em
en

t

G
am

e
D

at
a

S
er

ve
rs

S
ho

p 
Fl

oo
r

R
ol

es

O
th

er
s

C
on

tro
l R

oo
m

O
pe

ra
to

r

A
ss

em
bl

y 
Li

ne
W

or
ke

r

E
qu

ip
m

en
t

M
ai

nt
en

an
ce

Te
ch

ni
ci

an

C
M

M
 O

pe
ra

to
r

M
ac

hi
ne

 T
oo

l
O

pe
ra

to
r

O
th

er
s

P
ro

du
ct

Te
st

in
g

Q
ua

lit
y

E
ng

in
ee

r

P
ro

ce
ss

E
ng

in
ee

r

D
es

ig
ne

r

E
ng

in
ee

rin
g

an
d 

S
up

po
rt

R
ol

es

O
th

er
s

C
us

to
m

er

R
et

ai
le

r

W
ar

eh
ou

se
&

 D
is

tri
bu

tio
n

M
an

ag
er

S
hi

pp
er

S
up

pl
ie

r

M
an

uf
ac

tu
rin

g
P

rim
e

S
up

pl
y 

C
ha

in
M

an
ag

er

G
am

e 
A

pp
lic

at
io

n 
C

lu
st

er
s

 

Fi
gu

re
 6

.  
M

an
uf

ac
tu

rin
g 

ga
m

in
g 

su
bs

ys
te

m
: g

am
e 

ap
pl

ic
at

io
n 

cl
us

te
rs

, g
am

e 
m

an
ag

em
en

t, 
da

ta
 se

rv
er

s, 
an

d 
co

m
m

un
ic

at
io

ns
 in

fr
as

tru
ct

ur
e 

 

 24



4.2.1 Game Applications 
Manufacturing gaming applications are created to support the roles that users may need 
to play in manufacturing organization for research, testing or training purposes.  Four 
groups of roles and game interfaces have been initially identified: supply chain 
representatives, manufacturing management, shop floor personnel, engineering and 
support staff.  Other roles and interfaces might also be defined.  Each group is briefly 
described below: 
 
• Supply Chain Representatives – Allows players to assume various management roles 

in a manufacturing supply chain and interact with players representing other supply 
chain organizations.  Players deal with supply chain organizational and management 
issues including selection of suppliers, negotiations between chain participants, 
determining lead times, management of inventory levels, etc.  Some possible roles 
include supply chain manager, prime manufacturer, supplier, shipper, warehouse or 
distribution manager, retailers, and customers. 

 
• Manufacturing Management – Players take on various roles in the internal 

management of a manufacturing organization.  Some of the tasks include planning, 
scheduling, financial management, and reporting. Some of the possible roles include 
plant manager, engineering manager, shop foreman, production scheduler, and 
production line supervisor. 

 
• Engineering and Support Staff – Players assume technical roles that allow them to 

perform various engineering and support functions that generate the technical data 
that is used to drive manufacturing operations.  Possible roles include designer, 
process engineer, tool design, quality engineer, product testing, and others. 

 
• Shop Floor Personnel – These roles and interfaces enable players to get hands-on 

experience with production operations and equipment using virtual machines and 
virtual products.  Some possible roles include machine tool operator, coordinate 
measuring machine operator, equipment maintenance technician, assembly line 
worker, and control room operator. 

 
• Live elements – The roles and interfaces enable the incorporation of live game play 

(outside of the virtual world), video feed, external communications channels, etc. 
 
The above list of player roles and interfaces is only intended to be a sampling of what is 
possible. A game style interface could be devised for almost any job within a 
manufacturing organization.  Management and engineering textbooks define many case 
study scenarios that could form the basis for engaging game interactions in each of these 
areas. 

4.2.2 Core Game Engine 
The Core Game Engine (CGE) provides the basic functionality required to play video 
games in stand-alone mode and in distributed mode using remote servers, and networks. 
The CGE executes the game content, outputs graphics to display devices, sound to 

 25



speakers, and receives user input from different types of peripherals. The architecture of 
the CGE defines its major modules and the relationships of those modules to each other. 
 
Figure 7 illustrates the major modules of the CGE and their general relationships to each 
other (Client Interface Module is not shown).  The component modules of the CGE are 
briefly described below: 
 
• Game Content Module (GCM) - consists of the scripts and objects of a particular 

game-based training application that are created by the content developer. 
• Supervisory Controller Module (SCM) - provides an operating system that sequences 

processes and executes game content scripts and other internal subsystem functions. 
• Script Interpreter-Compiler Module (SICM) - translates game content scripts into an 

internal computer program that invokes internal system services and functions of 
other modules within the game engine  

• User Input Module (UIM) - processes and redirects user inputs from various 
peripheral devices 

• Data Management Module (DMM) - provides support functions for maintaining and 
accessing shared data 

• Data Import/Export Module (DIEM) - moves and translates data between external 
files and internal data stores 

• Artificial Intelligence Module (AIM) - performs various decision-making or problem-
solving processes that are normally associated with human or animal intelligence 

• Physics Module (PM) - models behaviors of objects associated with various physical 
phenomena, e.g., collisions, gravity, buoyancy, aerodynamics 

• Animation Module (AM) - manipulates various characteristics of objects over time to 
effect graphic, audio, and force renditions 

• Graphics (GM), Sound (SM), and Haptics Modules (HM) - output information to 
displays, speakers, and force feedback devices 

• Client Interface Module (CIM) – provides mechanisms for synchronizing timing and 
data interactions with other players via communications networks and remote data 
servers. 

 
The development of the game engine architecture was developed in collaboration with 
the U.S. Naval Education and Training Command to support the Navy’s future 
simulation-based training needs.  For a more detailed discussion of the game architecture, 
see [McLean 2004]. 

4.2.3 Game Integration Infrastructure 
Unlike distributed simulation, there is no standard for integrating distributed multi-player 
games.  In the simulation world, a number of implementations of the High Level 
Architecture (HLA) Run-Time Infrastructure (RTI) have been developed.  In order to 
integrate a set of distributed simulations, one vendor’s RTI implementation must be 
selected and software must be adapted to work with that RTI. 
 
In the game world, there is no software corresponding to the HLA RTI that can be used to 
integrate multi-player games created by one developer.  For performance reasons, the  

 26



 
 

Su
pe

rv
is

or
y 

C
on

tro
lle

r
M

od
ul

e 
(S

C
M

)

Fo
rc

e 
M

od
ul

e
(F

M
)

G
ra

ph
ic

s
M

od
ul

e(
G

M
)

So
un

d 
M

od
ul

e
(S

M
)

Sc
rip

t
In

te
rp

re
te

r -
C

om
pi

le
r

M
od

ul
e 

(S
IC

M
)

D
at

a
M

an
ag

em
en

t
M

od
ul

e 
(D

M
M

)

D
at

a 
Im

po
rt 

-
Ex

po
rt 

M
od

ul
e

(D
IE

M
)

Ph
ys

ic
s 

M
od

ul
e

(P
M

)

Ar
tif

ic
ia

l
In

te
llig

en
ce

M
od

ul
e 

(A
IM

)

U
se

r I
np

ut
M

od
ul

e 
(U

IM
)

G
am

e 
Lo

gi
c

M
od

ul
e 

(G
LM

)

An
im

at
io

n
M

od
ul

e 
(A

M
)

G
am

e 
En

gi
ne

 In
te

rn
al

 D
at

a 
St

or
e

- S
up

er
vi

so
ry

 C
on

tro
lle

r D
at

a
- U

se
r I

np
ut

 D
at

a
- G

am
e 

Lo
gi

c 
Sc

rip
ts

 a
nd

 D
at

a
- S

cr
ip

t C
om

pi
le

r D
at

a
- A

rti
fic

ia
l I

nt
el

lig
en

ce
 D

at
a

- P
hy

si
cs

 D
at

a
- A

ni
m

at
io

n 
D

at
a

- G
ra

ph
ic

s 
D

at
a

- S
ou

nd
 D

at
a

- F
or

ce
 D

at
a

- D
at

a 
D

ire
ct

or
y,

 D
ef

in
iti

on
s 

&
 T

em
pl

at
es

- D
at

a 
Im

po
rt/

E
xp

or
t B

uf
fe

rs

Fi
gu

re
 7

.  
M

aj
or

 m
od

ul
es

 o
f t

he
 c

or
e 

ga
m

e 
en

gi
ne

 a
nd

 th
ei

r g
en

er
al

 re
la

tio
ns

hi
ps

 to
 e

ac
h 

ot
he

r. 

 27



HLA RTIs have been considered unsuitable by game developers.  Perhaps the primary 
reason that the game world has been less than enthusiastic about HLA is their need for 
real-time performance.  HLA can help guarantee that simulations behave in a technically 
correct manner, e.g., messages arrive at recipient in proper order, but in doing so HLA 
implementations may sacrifice efficiency and performance to achieve technically correct 
behavior.  Also in the HLA world, there is no requirement for centralized control or 
persistent data storage.  Multi-player games typically need to centralize control and 
maintain game state data for long periods of time.  
 
Although a common gaming integration infrastructure does not exist, there are some 
features that are typically used to integrate multi-player games.  Features that will be 
briefly discussed include the client-server interaction model, proxies, arbitration, and 
socket-based communications. 
 
• Client-server interaction model – The primary mechanism used for integrating multi-

player games today is the client-server model.  Peer-to-peer games have been 
implemented in the past, but it is unlikely that they will be used in the future.  Players 
do not communicate with each other, but rather with the server.  The client-server 
model is capable of supporting a large number of players, where the peer-to-peer 
model does not.  In client-server game implementations, the server acts as a 
centralized control point for the game.  Game action takes place on the server, but is 
reflected in the player’s display on the local platform.  The server is responsible for 
determining the advancement of time. 

 
• Proxies and arbitration – The characters and action that the player views on the local 

platform is just a proxy for the real characters and actions that exist on the server. 
When the player moves a proxy character on the local platform, the server must 
verify that the move is acceptable.  The server can later adjust the movement and 
location of the character, if it determines that the move is not right. An action taken 
by a player on the local platform must be confirmed by the action on the server.  The 
server as an arbitrator of game interaction and is the ultimate authority on 
determining game state.  For example, if two players are involved in a battle, the 
server ultimately determines who wins and who loses. 

 
• Socket-based communications – The most common mechanism used for 

communications between clients and servers in multi-player games are sockets. A 
socket is an endpoint of a two-way communication link between two programs 
running on a communications network. A socket is bound to a particular port number 
on a networked computer.  The client and server programs write message packets to 
the socket for delivery to each other.  Sockets guarantee the delivery of game data 
packets across the Internet. 

 
It appears unlikely that the integration infrastructure requirements of the gaming and 
simulation worlds will be reconciled any time soon.  For the purpose of the proposed 
reference architecture, a separate local integration infrastructure has been identified for 
each world.  A bridge has been defined to join the two worlds, i.e., simulation and 

 28



gaming.  The bridge does not guarantee that the two worlds can be successfully 
integrated in all circumstances.  Time synchronization between the two worlds is perhaps 
the major problem.  If the simulation world can keep up with real-time or generate and 
store data in advance of game play, integration may be achievable. If a game is turn-
based, its performance requirements are not severe, or its execution can be slowed for 
synchronization purposes, integration may also be achievable.  Otherwise, a mutually 
acceptable integration solution must be found between the two worlds. 

4.2.4 Game Management and Data Servers 
Because of the extensive use of the client-server-computing model in multi-player 
gaming, data servers perhaps play a more important role in gaming than they do in 
simulation.  Servers are needed to establish connections for players joining a game 
session, manage and distribute content, and maintain game state and arbitrate interactions 
between game players. 
 
These servers may be implemented using the relational, object-oriented, or web-based 
technologies described in the earlier discussion of simulation data servers.  In addition to 
the purely game-based servers, two other types of servers may be used to support 
educational games: learning content management system (LCMS), and learning 
management systems (LMS) servers.  Each of the four major types of gaming and 
educational servers is described below: 
 
• Game Connection Server – Large multi-player games may require multiple game 

world servers to run concurrently in order to support the large number of players 
involved.  Rather than connect directly to the game world, the player first contacts a 
connection server that acts as operator.  The connection server validates the player’s 
identity and routes the player to an appropriate game world server.  As such, the 
connection server may perform load balancing to ensure an appropriate number of 
players are being supported by each game world server. 

 
• Game World Server – The game world server is typically a powerful computer that 

hosts the game for many players.  It is responsible for maintaining game state data for 
all players. It maintains persistent data between game play sessions. It arbitrates 
interactions between players.  It provides security mechanisms to ensure that players 
cannot hack or unfairly manipulate game play. Game world servers may divide the 
regions of game play into cells.  As players move around the world, they may move 
into different cells and be routed to new servers.  As programmers update game 
worlds over time, the preferred approach is to patch the code on the servers rather 
than on client computers.  This simplifies software updates since code does not need 
to be distributed to clients, rather only game world data is transferred. 

 
• Learning Content Management System Server – The LCMS is a development 

environment where multiple learning content authors can create, store, reuse, manage, 
and deliver digital learning content. The LCMS provides a central repository for the 
storage and retrieval of learning content objects. The LCMS may include Learning 
Management System (LMS) and Course Authoring System (CAS) functions.  The 

 29



LCMS may also interact with external LMS and CAS systems developed by other 
software vendors. 

 
• Learning Management System Server - The LMS server is a system for managing 

learners, keeping track of their progress and performance across all types of training 
activities.  Other functions of the LMS may include publishing a catalog of course 
offerings, providing communications connectivity and interact with the LCMS to 
obtain course content, providing access control to courses including mechanisms for 
course enrollment and checking of prerequisites, managing personalize learning 
plans, launching and tracking progress on learning applications. It also provides 
instructor interfaces for grading, retaking courses, setting up courses, maintaining 
transcripts for the student population, taking required tests and assessments online, 
track student progress, scores, completion, etc.  The LMS may also enable 
collaboration and communication between students and instructors, and enable virtual 
classrooms.  It also may provide an Application Programmer’s Interface to enable 
interactions between courseware and the LMS.  

4.2.5 Game Information Model 
A common information model will help facilitate integration of gaming systems with 
each other and with manufacturing simulators.  Currently no such model exists.  If a 
common model did exist, developers working on different aspects of a game 
development could reasonably expect to be able to share information with modules 
created by other developers.  NIST staff have begun to identify the major data types that 
would be required in a common gaming information model, as well as the data required 
to support game-based training in two other application areas, i.e., homeland security and 
Navy training applications. At the highest level, the major types of data required for 
gaming within the core game engine and/or on the server include: 
 
• Supervisory controller data – information about internal game processes and scripts, 

priority, status, etc. 
• User input data – information about the configuration of user input devices (e.g., 

game controller, keyboard, mouse, camera), input data stream, status etc. 
• Game scripts and data – structures to store program and data information such as 

game levels, objects, game world and character state in languages used for game 
scripting, including Python, Lua, Ruby, Perl, and C++ 

• Script compiler data – data structures used in the translation of high level scripts into 
low level executable code 

• Artificial intelligence data – data structures used to model intelligent behavior and 
decision making processes based on various techniques such as finite state machines, 
genetic algorithms, fuzzy logic, and general problem solvers 

• Physics data – various physical parameters of game objects and the environment 
including geometry, mass, location, and velocity 

• Animation data – animation plan, key frames definitions, interpolation parameters, 
motion and morphing algorithms and data 

• Graphics data – scene structures, object geometry, textures, lighting, special effects 
such as smoke and fog 

 30



• Sound data – audio clips, playing parameters, audio source location, environmental 
parameters, special effects 

• Force data – force feedback, vibration, etc. 
• Data import/export buffers – directories and files, file types, translators, mapping of 

file data to internal data structures 
 
The above list of data types is not exhaustive, but is indicative of the various types of data 
that must be incorporated into a common information model that supports gaming. 
 
5. Conclusions 
This paper presented an architecture for integrating gaming and simulation in the 
manufacturing domain.  This integration will bring together the interactive environment 
provided by gaming for taking actions and making decisions for a situation with the 
capability to use simulation to produce technically correct impact of the actions taken and 
decisions made.  The integration hence allows the use of gaming for serious applications 
for manufacturing industry.  Such serious gaming applications are expected to be quite 
effective for the coming generations of workforce that have grown up playing video 
games. 
 
The integration of gaming and simulation will also allow training of personnel and testing 
of applications that simultaneously address different levels of manufacturing hierarchy.  
Such simultaneous involvement of hierarchically diverse personnel and applications will 
provide improved opportunities for team training.  Manufacturing management personnel 
can visualize how personnel further down the chain implement their decisions.  For 
example, management personnel may make some aggressive scheduling decisions that 
then lead to the operators using gaming applications to carry out the production on virtual 
machines.  Such an environment will allow testing of practices or technologies for 
communicating information across the hierarchy as well as the decisions at each level. 
 
It is proposed that the architecture be implemented as a common infrastructure that can 
be used to integrate independently developed simulation and gaming modules.  The 
availability of such an infrastructure will strongly encourage development of gaming and 
simulation modules covering the breadth and depth of the manufacturing domain.  
Manufacturing personnel can select the modules applicable to their environment to create 
a capability to serve their research, testing and training needs. 
 
An implementation of the architecture will provide a test bed for the Manufacturing 
Interoperability Program at NIST’s Manufacturing Engineering Laboratory and other 
standards organizations.  It can be used to test the interoperability of manufacturing 
applications including enterprise resource planning, scheduling, manufacturing execution 
systems, machine and material handling equipment control programs, and machine and 
robot programs.  It can also be used to test the interfaces for such applications. 
 
The proposed test bed will be highly effective if supported with repositories for templates 
and test case data.  Academic and commercial researchers can use the templates and test 
case data to quickly test out new developments.  The test case data can also serve as a 

 31



benchmark for comparison of alternate approaches for similar applications and thus 
further spur development and help manufacturing personnel by providing a common 
scale to rank vendor offerings. 
 
Implementation of the architecture as a common infrastructure will require development 
of standards at several fronts including the data models, interfaces, distribution and 
synchronization mechanisms and user interaction devices.  NIST researchers have 
prepared draft standards for shop floor data and are working with the Simulation 
Interoperability Standards Organization for their formal acceptance.  Current work in 
progress on integration of gaming and simulation is expected to lead to more such 
activity in the future. 
 
6. References 
[Banks 1998] Banks, J. (Ed.), Handbook of Simulation: principles, methodology, 

advances, applications, and practice, John Wiley and Sons, New 
York, NY, 1998. 

 
[Demaria 2004] DeMaria, Russel and Johnny L. Wilson, High Score! The 

Illustrated History of Electronic Games, McGraw-Hill/Osborne, 
Emeryville, CA, 2004. 

 
[IEEE 2000] IEEE Standards Association, 1516-2000 IEEE Standard for 

Modeling and Simulation (M&S) High Level Architecture (HLA) - 
Framework and Rules. (Accessed at http://standards.ieee.org/) 

 
[ISO 2003]  International Organization for Standardization, Information 

technology -- Database languages -- SQL -- Part 1: Framework 
(SQL/Framework), ISO/IEC 9075-1:2003, (accessed at 
http://www.iso.org/ on 08-18-05) 

 
[Jain 2001] Jain,S., N.F. Choong, K.M. Aye and M. Luo, "Virtual Factory: An 

Integrated Approach to Manufacturing Systems Modeling", 
International Journal of Operations and Production Management, 
Volume 21, no. 5/6, 2001, pp. 594-608. 

 
[Kuhl 1999]  Kuhl, F., R. Weatherly and J. Dahmann, Creating Computer 

Simulations: An Introduction to the High Level Architecture, 
Prentice Hall, Upper Saddle River, NJ, 1999. 

 
[Lee 2003] Lee, Y. Tina, Charles McLean and Guodong Shao, “A Neutral 

Information Model for Simulating Machine Shop Operation.” 
Proceedings of the 2003 Winter Simulation Conference, eds: S. 
Chick, P.J. Sanchez, D. Ferrin and D.J. Morrice, Institute of 
Electrical and Electronics Engineers, Piscataway, NJ, 2003, 
pp.1296-1304. 

 

 32

http://standards.ieee.org/
http://www.iso.org/


[LSC 2004] Learning Strategies Consortium Conference, 
http://www.lscconsortium.com, July 26-27, 2004. 

 
[McLean 2004] McLean, Charles and Frank Riddick, “PC Modeling and 

Simulation Guidelines: Volume 1 – Overview,” NISTIR 7131, 
National Institute of Standards and Technology, Gaithersburg, 
MD, August 2004. 

 
[McLean 2005a] McLean, Charles, Y. Tina Lee, Guodong Shao, Frank Riddick, 

“Shop Data Model Interface Specification,” NISTIR 7198, 
National Institute of Standards and Technology, Gaithersburg, 
MD, January 2005. 

 
[McLean 2005b] McLean, Charles, Frank Riddick, Y. Tina Lee, “An Architecture 

and Interfaces for Distributed Manufacturing Simulation,” 
Simulation: Transactions of the Society for Modeling and 
Simulation International, Volume 81, No. 1, Sage Publications, 
San Diego, CA, January 2005, pp. 15-32. 

 
[MIT 2005]  http://www.educationarcade.org/ 
 
[OMG 2002] Object Management Group, Inc., Distributed Simulation Systems 

Specification, version 2.0 (accessed at 
http://www.omg.org/technology/documents/formal/distributed.htm
on 8-18-05) 

 
[Rollings 2004] Rollings, Andrew and Morris, Dave, Game Architecture and 

Design: A New Edition, New Riders Publishing, Indianapolis, IN, 
2004, p. 409. 

 
[Serious 2005] http://www.seriousgames.org/ 
 
[SISO 2005]  Simulation Interoperability Standards Organization, Core 

Manufacturing Simulation Data Product Development Group, 
(accessed at http://www.sisostds.org/ on 8-18-05) 

 
[STEP 2001] PDM Implementor Forum, Usage Guide for the STEP PDM 

Schema, Release 4.3 (accessed http://www.pdm-
if.org/pdm_schema/pdmug_release4_3.zip on 8-18-05) 

 
[Vargas 2004] Vargas, Jose, “Problems You Can Shake a Joystick At: War Room 

to Sickroom, Video Games Are Red-Hot,” Washington Post, 
Washington, DC, October 18, 2004, page A01 and 
http://www.washingtonpost.com/wp-dyn/articles/A40639-
2004Oct17.html?sub=AR. 

 

 33

http://www.lscconsortium.com/
http://www.sisostds.org/
http://www.washingtonpost.com/wp-dyn/articles/A40639-2004Oct17.html?sub=AR
http://www.washingtonpost.com/wp-dyn/articles/A40639-2004Oct17.html?sub=AR


[W3C 1999] Network Working Group, Hypertext Transfer Protocol -- 
HTTP/1.1, (accessed at 
http://www.w3.org/Protocols/rfc2616/rfc2616.html on 08-18-05) 

 
7. Acknowledgement 
Work described in this report was sponsored by the National Institute of Standards and 
Technology (NIST) Manufacturing Interoperability Program, Gaithersburg, Maryland 
and in part by the Naval Education Training Command, Pensacola, Florida.  The 
Manufacturing Interoperability Program supports NIST projects applying information 
technologies and standards-based approaches to manufacturing software integration 
problems. The work described was funded by the United States Government and is not 
subject to copyright. 
 
8. Disclaimer 
Software architecture, models and languages are identified in context in this paper.  This 
does not imply a recommendation or endorsement of the associated commercial software 
products by the authors or NIST, nor does it imply that such software products are 
necessarily the best available for the purpose. 
 

 34

http://www.w3.org/Protocols/rfc2616/rfc2616.html

	Abstract: 
	1. Introduction 
	2. Why Use Video Game Technology? 
	3. Opportunities for Industrial Research, Testing, and Training 
	3.1 Research 
	3.2 Testing 
	3.3 Training 
	4. An Integrated Reference Architecture 
	4.1 Manufacturing Simulation Subsystem 
	4.1.1 Simulation Applications 
	4.1.2 Simulation Engines 
	4.1.3 Simulation Management and Data Servers 
	4.1.4 Manufacturing Simulation Data Model 
	4.1.5 Simulation Integration Infrastructure 

	4.2 Manufacturing Gaming Subsystem 
	 4.2.1 Game Applications 
	4.2.2 Core Game Engine 
	4.2.3 Game Integration Infrastructure 
	4.2.4 Game Management and Data Servers 
	4.2.5 Game Information Model 


	5. Conclusions 
	6. References 
	7. Acknowledgement 
	8. Disclaimer 


		Superintendent of Documents
	2022-04-13T07:09:56-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office




