
NATL INST OF STAND & TECH

AlllDt. ^7fl3fiE

National Bureau

of Standards

Computer Science
and Technology

NBS

PUBLICATIONS

NBS Special Publication 500-94

NBS FIPS
Software Documentation

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act ot Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts
research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and
the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement
systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government
agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Manufacturing

Engineering — Building Technology — Fire Research — Chemical Engineering^

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

'Some divisions within the center are located at Boulder, CO 80303.

or STMTDMUIB
UBwuty

DEI 1 198?

Computer Science r ^

and Technology

NBS Special Publication 500-94

NBS FIPS
Software Documentation

Proceedings of a Workshop
Held March 3, 1982 at NBS, Gaithersburg, MD.

A.J. Neumann, Editor

Institute for Computer Sciences and Technology
National Bureau of Standards
Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued October 1982

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 82-600600

Natl. Bur. Stand. (U.S.) Spec. Pub. 500-94, 294 pages (Oct. 1982)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1982

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
Price $8.50

(Add 25 percent for other than U.S. mailing)

Acknowledgement

The support and assistance which have made this workshop possible are gratefully
acknowledged. The steering committee and the program committee, whose names are listed

separately, have worked for over a year diligently and intensely to shape the program and

to organize the sessions. I wish to express my appreciation to all committee members,
authors, discussants, recorders, session chairs and the organizations, both in the

private sector and in Government, who supported the participants. Special thanks are

due to Leo Beltracchi, who contributed materially to the planning, organization, and

success of this workshop.

A.J.N.

Disclaimer

The viewpoints expressed by participants in this workshop are those of the individuals
and not those of organizations, agencies, or individual companies.

Workshop Organization

Workshop Chair: Albrecht J. Neumann, National Bureau of Standards

Program Chair: Leo Beltracchi, U. S. Nuclear Regulatory Commission

Publicity Chair: Virginia C, Walker, U. S„ Department of Energy

Treasurer: Bonnie S. Eilertson, National Bureau of Standards

Arrangements: Greta D. Pignone, National Bureau of Standards

Exhibit: Thomas Q. Stevenson, U. S. Department of Agriculture

Steering Committee: Leo Beltracchi, LI. S. Nuclear Regulatory Commission
Charles H. Dickson, Jr., U. S. Department of

Agriculture
Trudy Grieb, Hadron, Inc.

Thomas M. Kurihara, U. S. Department of Transportation
Albrecht J. Neumann, (Chair), National Bureau of

Standards
Samuel T. Redwine, Jr„, The MITRE Corporation
Charles S. Shimkus, U. S. General Accounting Office
Thomas Q. Stevenson, U. S. Department of Agriculture
Virginia C. Walker, U. S. Department of Energy
C. Robert Mangum, U. S. Department of Defense
Saul Zeveler, U. S. Air Force

Program Committee: Leo Beltracchi, (Chair), U. S. Nuclear Regulatory
Commission

Charles H. Dickson, Jr„, U. S„ Department of Agriculture
Charles L. Gerhardt, U. S„ Department of Agriculture
Trudy Grieb, Hadron, Inc.

Raymond C. Houghton, National Bureau of Standards
Lenore S. Maruyama, Library of Congress
Albrecht Jo Neumann, National Bureau of Standards
Joseph Psotka, National Institute of Education
Alfred R. Sorkowitz, U. S. Department of Housing and

Urban Development
Virginia C. Walker, U. S. Department of Energy

NBS FIPS Software Documentation Workshop, March 3, 1982

INTRODUCTION

-This workshop is the result of over a year's work by a group of people who feel that
software documentation has an important place in software and overall systems
development. The purpose of the workshop was to review current documentation standards
and guidelines, to provide a forum for information exchange, and to propose and discuss
future guidelines and standards for software documentation.

In order to determine the scope of the workshop, to obtain some idea of what topics
would be of interest, and who the audience might be, a "Call for Indications of

Interest", was issued, with a deadline of May 15, 1980. The response was generous, and

by October 1980, a preliminary program was finalized.

The program was planned to be a regional affair, covering commuting distance from
Washington, D.C., Maryland, and Virginia.

In the following pages there are presented introductions by session moderators, papers
presented, comments by discussants, recorders, and members of the audience.

It is hoped that the record of this workshop will contribute to the identification and

clarification of software documentation issues, will help in solving some of the issues,

and will thus contribute to the development of better and more useful information
systems.

The final program, as it was presented, has been reproduced, and references to page

numbers in the Proceedings provide an index to the presented material.

V

NBS FIPS Software Documentation Standards Workshop, Wednesday, March 3, 1982

PROGRAM

8:30 a,m. REGISTRATION

9:15 a.m. GENERAL SESSION - OPENING REMARKS

Welcome: James H„ Burrows, Director, Institute for Computer Sciences
and Technology, National Bureau of Standards

Charge to Workshop: Albrecht J. Neumann, Institute for Computer
Sciences and Technology, National Bureau of Standards

10:00 a„m„ BREAK

10:15 a.m. - 12:30 p.m. MORNING PARALLEL SESSIONS

SESSION A: Applying Documentation Standards - Case Studies

Moderator: Charles H„ Dickson, U„S, Department of Agriculture

The papers highlight various problems encountered by software groups

both inside and outside the Federal government as they have attempted
to cope with the array of presently existing software documentation
standards.

User Experience and Compatibility in Documentation Standards - A

Summary
Betty F. Maskewitz, Oak Ridge National Laboratories

Systems Development Methodology and Documentation Practices
Louis J. O'Korn, Chemical Abstract Service

Experience in Application of Software Documentation Standards
William Bryan and Stan Siege! , CTEC, Inc.

Case Studies, Management Guidance and Quality Criteria for

Software Documentation
James N. Orton, Westinghouse Company

Experiences in Software Standards Selection and Application - A

Case History
Thomas L„ Hannan and Alice Wong, Federal Aviation Administration

Discussants: Bruce E. Baxter, Internal Revenue Service
Stephen B. Leibowitz, Library of Congress

Recorder: R. J. Gavin, Federal Deposit Insurance Corporation

SESSION B: Documenting for Operation and Maintenance

Moderator: Charles L. Gerhardt, U„S. Department of Agriculture

FIPS documentation guidelines exist for the Initiation and
Development phases but not for the Operation phase of the software
life cycle. It is during the latter phase that software is

maintained, evaluated, and changed as additional requirements are
identifiedo Is there a need for documentation guidance for this
phase? This session explores the question by presenting case
studies of governmental and non-governmental software, including
commercial products. Software certification, change control, config-
uration management, and end user documentation needs are discussed.

vi

The Development and Implementation of Uniform ADP Documentation
Standards at FAA

Harvey P. Kaplan, Federal Aviation Administration, U.So Department
of Transportation

Supplemental Documentation of Modifications to Software Products on
Small to Medium Sized Systems
Henry A. Lewis, DCD Company

Operations Documentation Standards - Online, Realtime Versus Offline,
Batch
Deborah A. Harman, Online Computer Library Center

Documentation for Operation Phase of Systems Life Cycle
Robert A. Larson, Forest Service, U.S. Department of Agriculture

A Proposed Guideline for Documentation of Computer Programs and
Automated Data Systems for the Operation Phase
Thomas M. Kurihara, U.S. Department of Transportation

Discussants: James Mo Stierwalt, Booz-Allen & Hamilton, Inc.

Mary Ann Engelbert, Naval Data Automation Command

Recorder: Nancy Mae Bonney, Dynamac Corporation

^
SESSION C: Tools for Improved Documentation

^Moderator: Raymond C. Houghton, National Bureau of Standards

Documentation Tools not only provide a means for developing more
accurate and less costly documentation, but they can also enforce
the development of standard documentation and provide a consistent
means for obtaining information about a software system.

State of the Art Documentation: What is it? How Does it Affect
Documentation Standards?
So Lee Henry, American Management Systems, Inc.

The EAS-E Approach to Documentation
A. Malhotra, Ho M. Markowitz, D. P. Pazel , Thomas J. Watson Research

Center, IBM

ADD: An Automated Tool for Software Design and Documentation
T. Co Ting, Worcester Polytechnic Institute

An Approach to Computer Maintained Software Documentation
Bruce I. Blum, The Johns Hopkins University

Automated and Automatic Documentation
Linda K. Lawrie, U,S. Army Construction Engineering Research Lab.

Discussants: Herbert Hecht, SoHaR, Inc.

Nathan Relies, Sperry Univac

Recorder: Sheila Frankel , National Bureau of Standards

SESSION D: Do Existing Standards Work?

Moderator: Alfred R. Sorkowitz, U.S. Department of Housing and

Urban Development

Page

This session deals with the existing FIPS 38 and related documentation
standards. The focus is on how these standards can be modified to be

responsive to new initiatives, such as the emphasis on security. Also
discussed will be new methods for producing documents, such as the use
of technical writing groups.

Documenting Systems Security
Ronald G, Thies, U„So Department of Housing and Urban Development 131

Using FIPS PUB 38: A Practical Experience
Patrick 0' Conor, Science Management Corporation and Samuel T,

Redwine, Jr., The MITRE Corporation 143

An Overview of the DOD Automated Data Systems Documentation Standard -

An Adaptable Standard
Robert R, Hegland, U.S. Department of the Navy 152

Discussant: James Pottmyer, U„Se Department of Defense

Recorder: Elizabeth Weinberger, U.So Department of Health and Human Services 157

1:00 p.m. LUNCH, SPECIAL SECTION, NBS CAFETERIA

2:00 p.m. - 4:00 p.m. AFTERNOON PARALLEL SESSIONS

^ SESSION E: Proposals for Documentation Standards

Moderator: Trudy Grieb, Hadron, Inc.

The papers propose approaches to documentation standards for the purpose
of overcoming problems encountered in using current - often inconsistent,
sometimes conflicting and awkward - documentation standards.

Proposed Approach to Standards for Documentation of Projects and

Systems Based on Actual Requirements
Trudy Grieb, Hadron, Inc. 160

A Proposed Documentation Standard Based on a System Decomposition and
Information Base Approach
Saul A. Zaveler, UoS„ Air Force 166

Microcomputer System Users Need Better Documentation
Richard Ac Bassler, The American University 174

Discussants: Edward W. Hurley, Hadron, Inc.

Samuel To Redwine, Jr., The MITRE Corporation

Recorder: Andrea Papillion, Hadron, Inc. 165, 172, 180

SESSION F: Enhancing Software Sharing

Moderator: Lenore S. Maruyama, Library of Congress ^81

This session considers different aspects of software sharing, which in a

broad context encompasses the use of software created by persons or
organizations outside one's immediate institutional affiliation.
Because of the increasing importance of software sharing in all sectors,
standards and standardized techniques have been or are being developed
to facilitate the sharing process.

vii i

Page

Effective Bibliographic Standards for Computer Software:
Improved Documentation and the Need for " Title Page" Equivalents
Sue A„ Dodd, University of North Carolina 183

Standards for Bibliographic Control of Machine-Readable Data Files
Lenore S. Maruyama, Library of Congress 189

The Computer Program Abstract as Software Documentation
Margaret K„ Butler, Argonne National Laboratory 197

An Integrated Machine-readable Data Documentation System
Richard C. Roistacher, Bureau of Social Science Research 203

Compilation of Bibliographic Data Element Dictionaries
Madeline M. Henderson , Consul tant 209

Capital games: the problem of compatibility of bibliographic citations
in data bases and in printed publications
Hans Ho Wellisch, College of Library and Information Services,
University of Maryland 215

Discussants: Joel Lipkin, King Research, Inc„

Alan Wenberg, National Technical Information Service

Recorder: Linda Tepp, Library of Congress 219

SESSION G: Improving Human Interfaces

Moderator: Joseph Psotka, National Institute of Education 224

Users of software documentation face many practical problems that can be

overcome by a proper design of the human interface. This session will

deal with several interface characteristics designed to make documentation
friendlier, more useful, and of higher quality.

Designing Software Documentation for Non-Technical Users

V. Douglas Hines, U,S, House of Representatives 225

Paper and Glass: Graphic Design Issues for Software Documentation
Aaron Marcus, University of California 230

The Comic Book Style of Documentation - Does it Transcent FIPS 38? —
Charles H. Dickson, Jr., U.S, Department of Agriculture

Quality Issues in On-Line Documentation
Joseph Psotka, National Institute of Education 236

Discussant: Michael Feldman, George Washington University 242

Recorder: Patricia Butler, National Institute of Education

JSESSION H: Quality Assurance for Documentation

Moderator: Virginia C. Walker, U,So Department of Energy 246

No matter how good standards are, they are not useful unless they

contain measurable criteria which can contribute to a quality product.

The papers in this session touch upon several approaches to quality

assurance of documentation.

1 X

Page

Auditing Systems Documentation
Richard J. Thompson, Chemical Abstract Service 247

Use of the User's Manual as a Quality Control Tool
Caroline S„ Levenson, Edition, Inc. 256

Requirements Documentation - A Management-oriented Approach
Herbert Hecht, SoHaR, Inc. 265

Discussant: John R. Gabriel, Argonne National Laboratory 274

Recorder: Elisabeth F„ Mullen, JEM Associates 279

4:00 Pom. BREAK

4:15 p.m. - 5:30 Pom„ CONCLUDING SESSION 281

Each session moderator will present a summary of the session's
findings and recommendations o This provides an opportunity for all

participants to hear about the results of all sessions„ The session
moderators and discussants will also serve as a panel to answer
questions from the audience.

5:30 p.m. ADJOURNMENT

X

NBS FIPS Software Documentation Workshop, March 3, 1982

Welcoming Remarks

James H. Burrows

Director Institute for Computer Sciences and Technology
National Bureau of Standards
Washington, D.C. 20234

James H. Burrows, Director of the Institute for Computer
Sciences and Technology, welcomed participants to the Software
Documentation Workshop. His remarks emphasized the need for
software documentation by many users throughout an organization
and throughout the software development and maintenance process.

Keywords: documentation needs; FIPS; software management.

On behalf of the Institute for Computer Sciences and Technology (ICST),
I am pleased to welcome all participants to the Software Documentation
Workshop. ICST has responsibility under the Brooks Act to develop standards
and guidelines for the more effective management and use of automatic data
processing (ADP) by the Federal Government. One particularly critical area
of focus is that of software development and maintenance. To assist agencies
in this area, ICST has issued Federal Information Processing Standard (FIPS)

publications, reports, and guides for software documentation. Several of

these documents are quite recent, and some have been available for some
time. We are continuing to identify the user's needs for additional guidance
and help in the software documentation process, and we plan to issue additional

products in the future.

The fact that this workshop is so well attended suggests that many of you
agree that software documentation is needed for more effective use of soft-
ware resources and that software documentation processes must be improved.
I believe that software documentation is vital to the software development
and maintenance process, that it is needed throughout the software planning
and development cycle, and that it is needed by many people throughout an

organization.

No longer is the development of software a one person process. Today most
programs are large ones, especially administrative applications, and files
are often shared by many people.

Software documentation helps to bring discipline to an ADP activity.

It is useful in planning and managing resources, in implementing audits and

evaluations, and in planning and implementing computer security procedures.
Software documentation also provides continuity to an ADP activity as personnel

and needs change. We have all had experience with a program that disappears
or stops working when the programmer who developed it leaves. This is costly
and inefficient. Another reason why software documentation is needed is to

promote common understanding and expectations about the software both within
the organization, and, if the software is purchased, between the buyer and

the seller. Documentation helps to define what is expected and to verify

what is delivered. Further, software documentation provides flexibility
within an organization by enabling people to move from one job to another,

and to make efficient use of their training.

1

The individual entrepreneural developers of software certainly need documen-
tation because property rights in copyright and patent right cases are difficult
to prove without it. And in the context of the strength of the U.S. software
industry, I believe that good documentation is essential to the ability of

U.S. companies to compete in international markets.

Software documentation is needed throughout the software life-cycle, starting
with the software planning process, and continuing through many stages to serve
different users and changing needs. Software documentation is the management
trail that lets the software developer and the manager know where they are

in the development of a system.

As for who needs software documentation, I believe that the entire organi-
zation does -- planners, developers, managers, testers, trainers, maintainers,
operators, and users. The number of people involved varies with the size of

the systems. Single user microcomputers may have only one person who needs
documentation, and that is often part of the system itself. Hov/ever, for

very large systems such as military and airline reservations, formal documen-
tation is essential, and the potential users are numerous.

It is clear that documentation is a necessary, but not sufficient, factor
in a well-run and disciplined activity. No engineering discipline exists
without documentation; it provides a time-ordered check list to prompt attention

to the right things at the right times. Documentation is not a single process
for a single user, but a broad-based process that serves different needs and

different users. ICST is especially interested in helping Federal agencies
identify their needs for documentation and find ways to achieve it.

I wish you a successful workshop and hope that you make progress in

addressing this most important issue. We look forward to helping the Federal
Government use the ideas and the information that develop in this workshop.

2

Charge to Workshop

by

Albrecht J. Neumann

Institute for Computer Sciences and Technology
National Bureau of Standards

We are meeting today under the auspices of the Institute for Computer Sciences and

Technology to discuss software documentation guidelines. To put our efforts in context,
I would like to say a few words about the Institute, the Workshop structure, about
software documentation, and guidelines.

The Institute

This workshop is sponsored by the NBS Institute for Computer Sciences and Technology.
This organization was created as a consequence of Public Law 89-306, dated October 30,

1965, which is also known as the "Brooks Act". Under this law NBS is responsible for:

-- providing scientific and technological consulting and advisory
services to Federal agencies,

— developing uniform Federal automatic data processing standards; and,

-- undertaking necessary research in the sciences and technologies of automatic
data processing computer and related systems.

During the past 15 years almost 100 Federal Information Processing Standards
publications (FIPS PUBs), including standards and guidelines, have been published by

ICST. Some of the guidelines we will discuss today have been published in this series.
As a matter of policy these guidelines are being reviewed at certain intervals. One
guideline which is scheduled for review in the near future is FIPS 38 (Guidelines for
Documentation of Computer Programs and Automated Data Systems).

Several papers will deal with FIPS 38. Any proposals for new guidelines will be

candidates for publication as a FIPs.

Workshop Design

Now I would like to say a very few words about the structure and design of today's
meeting. In planning for today's activities we had several options. We could have

planned to have a series of lectures, or a series of document reviews by small groups.
We instead planned for parallel sessions to provide maximum exposure of ideas, to a

large number of people, hopefully eliciting a large number of comments. Since most of

the papers will appear in the proceedings you will have an opportunity to read the

material at your leisure and at your own pace. We have asked the authors to discuss the

highlights of their papers, and have asked the moderators to plan for maximum audience
interaction.

We today are discussing Software Documentation Guidelines .

A few comments are in order to define a little more precisely just what is meant

by this term. Software covers a broad concept: it includes not only computer
programs, but also descriptions and specifications of programs, i.e., documentation
or programs, as well as documentation of system functions and instructions for

people which are needed to run computer programs. Also included are data used

for program and system operation.

3

Similarly Documentation covers a rather broad area: While computer programs
provide instructions to machines on how to solve specific problems, documentation
provides a communications medium for people. It is prepared to provide
information on why computer programs were prepared, how they are to be

designed, what the systems are expected to do, how to interpret processing results,
how systems are to be operated, and how they are constructed so that they may be

used again, modified, extended, and used by others. Documentation poses a host of

problems

.

What are some of the documentation problems?

The producer of documentation is faced with a host of technical problems.
Documentation serves as a communications medium between a variety of people
during the development and operation of a software system. Various document
types, addressing different audiences, must be consistent with one another and

integrated into an overall management methodology. Documents must be correct
at each instant of time and at the same time must incorporate changes, must be

easy to update, and must be available when needed. Documents must be easy to

use. With all these constraints, documents must be producible on a timely, cost-
effective bases.

Analyses of system problems have surfaced shortcomings directly attributable to

documentation, or the lack of it:

Millions of dollars have been wasted because of poor user requirements
specifications

,

Systems were not usable because of lack of system documentation.

Systems were found to be not maintainable because of lack of system
documentation.

Funding for needed documentation was not provided.

Also, some of the problems related to documentation can be traced to lack of
management interest, support, and control related to software documentation.

and so on . . .

Why do we need guidelines?

It has been shown that intelligent use of guidelines can provide great economic and
social benefits, and can solve major problems in systems development, operation,
maintenance, and re-use.

Similarly it has been shown that lack of guidance has led to waste of millions of
dollars, time, and resources.

Why are FIPS software documentation guidelines useful? They provide for
generally understandable communications media which support project
management, product development, operations and maintenance, transfer and re-
usbility of computer programs. Thus guidelines can save both money and time in

all these efforts.

Why do we have this workshop?

I now would like to review the rationale for this workshop:

4

Existing Information

There are many guidelines and standards in existence which have a bearing on

software documentation. They were developed by professional organizations, the
American National Standards Institute, government organizations, and the
International Standards Organization, to name a few.

Many software users are not familiar with these guidelines and standards, but users
need to know about their existence. We will discuss some of these existing
standards and guidelines today.

Knowledge about guidelines alone, however, is not enough. Users need to know how
to use guidelines , and use them intelligently. In some areas there is a lack of
guidelines and new ones may need to be developed. In other areas there is an

overabundance of guidelines which often conflict with one another; here direction
needs to be provided to decide which guideline should be used.

We will discuss experiences of users with some of the guidelines, discuss pitfalls in

application, misuse as well as useful experiences.

New Guidance

There will be need for new guidelines. Our technology is expanding rapidly and new
guidelines will be needed to save money, time, and human resources, and to provide
proper documentation when needed. The need is to provide high quality software
systems, based on quality documentation. The need is to eliminate waste--and to

increase productivity.

Research in support of standards development

And finally there is need to do preliminary analyses and to do some real research,

to determine needs, impact of proposed standards, balance costs and benefits, and

determine development priorities. In addition, many technical problems still need

solution.

Therefore:

As we discuss software documentation guidelines -- both existing and proposed
guidelines -- we should -- individually and collectively, authors, moderators,
discussants, records, and all other participants -- critically review the presented

papers and the ensuing discussions and ask the following questions:

In connection with existing standards and guidelines;

Is the guideline or standard discussed useful; can it be improved? How can it be

improved? Can we cite economic or other benefits of its use? What guidance can

be given to users to make it more applicable, useful, and effective?

In connection with proposed guidelines:

Does the topic under discussion have elements which could help to achieve economic or
social benefits? What would these benefits be? - Should a guideline be developed?
How could it best be developed?

5

In connection with applicable research;

What analyses should be performed in support of guideline development?
Who should perform these analyses: What results are expected?

Charge to this workshop:

To summarize the reason for the workshop -- and the charge to this group:

Considering existing documentation guidel ines . let us make specific recommendations on
their applicability, use, benefits, and possible improvements, including advice and
suggestions as to their usability. Let us make recommendations for specific changes,
additions, deletions.

Considering new or proposed guidelines, let us make specific recommendations on their
applicability, use, benefits, and possible improvements, including advice and

suggestions as to their usability. Let us make recommendations for specific changes,
additions, deletions.

Considering new or proposed guidelines, let us identify new areas where they might be
useful, and make specific recommendations on what, how and when t) document.

Considering analysis and research let us identify directions for research which might
lead to new approaches to software documentation and make specific recommendations.

It is hoped that this workshop will be the beginning of a series of steps which will
lead to major improvements in software documentation. This, in the broader context,
should eventually lead to improvements in software engineering which will reduce system
costs and improve system quality and software productivity in the Federal Government.

Measured on a larger scale, our efforts should support economic progress of our
industry, improve productivity, and support our national growth as well as our
international commitments.

6

SESSION A: Applying Documentation Standards - Case Studies

Moderator: Charles H. Dickson, U.S. Department of Agriculture

The papers highlight various problems encountered by software groups both inside and outside
the Federal government as they have attempted to cope with the array of presently existing
software documentation standards.

7

NBS FIPS Software Documentation Workshop, March 3, 1982

User Experience and Compatibility in Documentation Standards
A Summary

Betty F. Maskewitz

Engineering Physics Information Centers (EPIC)

Oak Ridge National Laboratory (ORNL)

This paper reviews existing guidelines for documentation of scientific
computer programs or data libraries and outlines the essential elements for

facilitating exchange of the software. Selected case studies will be made
in which accepted standards were followed from the programming stage through
documentation, and an analysis of user experience.

Keywords: Documentation standards; Software compatibility; User experience.

1. INTRODUCTION

The problem of computer software inter-

change is one that has long plagued computer
users. Converting a computer program from
one computing environment to another is

frustrating, tedious, time consuming and

costly. The problem is compounded when
documentation is inadequate or unavailable.
Early informal efforts by individuals who
recognized the importance of software docu-

mentation to facilitate exchange resulted in

the formation of several standards groups

under varied sponsorship. One such group,

developed under the auspices of the American
Nuclear Society's (ANS) Mathematics and

Computation Division (M&CD), is today a sub-

committee (ANS-10) of the Society's Stan-

dards Committee. This standards effort,
aimed at scientific computing applications,
is the one with which I have been most
closely associated. Several standards to

facilitate interchange were developed by

ANS-10 over the last 20 years.

In the early 1960s we were very cau-

tious in our approach to standardization.
The name we adopted (STICE) has long lost
its identity, but we pronounced it "sticky."

"We took upon standccrdization effort
as a two-edge sword. While it has
great potential for cutting through
costly duplication^ it has equal
potential for cutting off further
development. This dilemma is
particularly acute in the area of
computing. On the one hand, stan-
dardization could reduce the tre-
mendous expenditures of money and
manpower required for the creation
of computer programs by increasing
the utility of each of them. On the

8

other handi experimentation with many
different languages and systems must
he permitted and encouraged if we are
to close the gap between hardware
development and our ability to use
it effectively

.

"Docimentation, however, is one area
in which recommendations for minimum
standards should he made. In the

past3 documentation has been directed
primarily to the person who prepares
input for the program. This type of
documentation does permit the program
to he used effectively at the origi-
nating installation but is generally
not sufficient if the program is to

be used by others. It is feasible,
however, for documentation to be of
material help to a programmer in
another installation who is incor-
porating the program into a new
operational environment. To this

end the quantity of documentation
must he increased over that normally
supplied. It should certainly
include not only the report directed
toward the user but also source
language comments and installation
reports.

"

The above premise, part of the foreword
of the first proposed standard promoted by

STICE, appeared in the first draft circu-

lated for comments. [1] It was entitled,
"A Code of Good Practices for the Documen-
tation of Digital Computer Programs."
Adopted as ANS-STD. 2-1967, it was revised

and reissued as American National Standard
ANSI N413-1974 [2] and is now again in the

revision process. During this same period
progress was also made in parallel comple-
mentary standardization efforts.

2. USER EXPERIENCE AND COMPATIBILITY

My long involvement in the standardiza-
tion process has had profound influence on

all my professional activities. The ORNL
Radiation Shielding Information Center (RSIC)

has always treated computing technology in

its subject coverage in the same manner as

any other valid technology, insisting that
it must be well documented, open to critical
examination and to modification, and avail-
able for general use. The first and most
important criteria, it must be documented.

RSIC had two favorable elements in pro-
moting standardization: a specialized user
community that needed RSIC's technology
resources and a monthly newsletter. We've
come a long way. The examples I've chosen
to support the premise that standards make

a difference are taken from the RSIC
experience.

Monte Carlo methods for forecasting the
behavior of radiation in diffusing through
matter has been used as a research tool

since the advent of large digital computers.

It is a complex tool, and its use is more an

art than an exact science. Human judgment
is an essential element. The early practi-
tioners of the art believed it impossible to

document. Transmittal to other than the

developers followed only after a one-to-one
apprenticeship of days and/or weeks.

My ORNL division invested many man-

years in programming Monte Carlo techniques
in what was meant to be a reactor research
tool. Without documentation, the end result
remained unused by other than the developers.

Using preliminary drafts of a set of guide-
lines for documentation to facilitate ex-

change (vintage 1963-1965), the developers
were encouraged to document their modular
Monte Carlo code system, 05R. To test their
efforts, we featured 05R [3] in a seminar-
workshop at ORNL in 1965 and, by invitation,

at the OECD Nuclear Energy Agency's Computer
Program Library at Ispra, Italy, in 1966.

The international radiation transport com-

munity accepted 05R as the Monte Carlo code

to use for at least 10 years. The code
package was disseminated to more than 400

requesters, the heaviest action in RSIC in

the late 1960s. The computing technology
was obsoleted by later development in 1977.

The documentation of the Monte Carlo pro-

cesses is still requested.

A similar experience in high energy
physics can be cited with the National

Bureau of Standards (NBS) Center for Radia-

tion Research's Monte Carlo code system for

electron and photon transport. Documented
in 1968 using available guidelines, [4] a

seminar-workshop in 1959 with 53 attendees,
disseminated 158 times (1968-1982) all over
the world, ETRAN today is used in the nature
of a standard in its area of application.
It has, of course, been modified (code and
document) many times in early usage, less
so as time passed. It was last shipped in

February 1982.

Another example of standardized software
documentation is that represented by the
discrete ordinates codes of Los Alamos
National Laboratory. The documentation of

the two-dimensional, multigroup, transport
code systems, TRIPLET [5] and TRIDENT [6] so

explicitly follow early ANS-10 guidelines
as to be a prototype of the standard. The
abstract, the theory, the guide to user
application, and programming information
sections are each directed toward a specific
audience. Just as important, standardized
programming practices were also followed.

Documentation, although important, is

not the only factor in facilitating exchange
of computing technology. Programming prac-
tices, [7] program design with user consider-
ation [8] in mind, verification, and ease of
modification are important elements and each
can be improved through standard practices.
Standards can be used to promote effective
utilization and enhance reliability of

computer programs in any application area,

not just the scientific.

There exist several sets of guidelines
for the documentation of scientific computer
programs. Good documentation promotes under-
standing, reduces duplication of effort,
eases conversion to different computer
environments and aids modification for ex-

tended applications. Good documentation is

needed to facilitate effective usage, trans-

fer, conversion, and modification of com-

puter programs. Good documentation is

essential for implementation and effective

use of programs within installations other

than those in which they are developed.

I was recently involved in the valida-

tion of energy-economy models used in

predictive calculations for the DOE Energy

Information Administration's annual report

to congress. As usually happens, the first

serious problem area was related to inade-

quate or nonavailability of documentation

of the models. I was asked, at some stage

of the validation effort, to review the

several documentation standards efforts and

suggest guidelines for the modelers to

f0 1 1 ow

.

A brief comparative review was made of
FIPS PUB- 38, "Federal Information Processing
Standards (PIPS)" publication of February
1976 entitled "Guidelines for Documentation
of Computer Programs and Automated Data
Systems" and ANS-10. 3/ANSI N413-1974 "Stan-
dard on Guidelines for the Documentation of
Computer Programs" and its 1982 revision;
and ANSI/ANS-10. 5-1979, "Guidelines for Con-
sidering User Needs in Computer Program
Development." The result of the study is

appended.

The RSIC experience in promoting soft-
ware standards points to several conclusions.
The first of which suggests that we can and
should cooperate in this important task.

3. CONCLUSIONS

Either or all of the aforementioned
guidelines, if followed reasonably closely,
would produce better documentation. The
fault, then, is not in the guidelines but

in the failure of code developers to con-

sider documentation as an important function.
Code development evolves in phases from the

time that an idea to create the software
occurs through the time that that software
produces the required output and, beyond
that, to the time that there is extensive
usage in a wide variety of applications
with resulting feedback to a software main-
tenance group. Four phases apply to the
software life cycle: initiation, develop-
ment, operation, and continuing maintenance
until it is no longer used. The documenta-
tion of the software should evolve through
the same phases. If the documentation
develops as the code develops, draft copies
should be available during the test stage
and continue through the operation and
maintenance phases, updated as needed. By

the time the code will have achieved
"public domain" status, the documentation
should be current. It follows that any
contract let for code development should
include as a vital part of the action plan
the necessity to document the code
development.

Documentation preparation, therefore,
should be treated as a continuing effort,
evolving from preliminary draft through
changes and reviews, through the documenta-
tion and software delivery, and to subse-
quent updates indicated by user feedback.

There are at least four essential
parts to the documentation of computer code
systems: 1) the program abstract, directed
to the potential user; 2) the application

information (user's manual), directed to
the individual concerned with the execution
of the program to obtain results for his

application; 3) the problem or function
definition, directed to those concerned
with the mathematical models and algorithms
employed in the program; and 4) the program-
ming information, directed to the programmer
concerned with the implementation, mainte-
nance, and modification of the program.

The above, which should outline the
content of the documentation, can be one
all-inclusive document for a simple code
system or up to four separate volumes for
a complex system.

A sampling was made of the experience
of an information analysis center (RSIC)
which treats scientific computing technology
in the same manner as any other valid scien-
tific information, i.e., open to critical
examination, widely used, frequently changed
to reflect the changing state of the art,
and documented following published standards.
The 20-year history of the center in which
the use of documentation and other standards
were vigorously promoted records tangible
evidence that the use of standards makes a

significant difference in utilization and
increased usage serves to advance the state
of the art.

Selected case studies were presented
in which it was obvious that standards were
followed in the original documentation of
the code development. It has been amply
demonstrated that compatibility with modern
software technology and methodology can be

maintained by frequent documentation and

program review, and resultant updates made
through the "open code/data package" concept
described below.

Validation of any computing technology
in a rapidly changing technological environ-
ment, is a continuous process and necessar-
ily requires the dynamic interaction of

several elements. RSIC leaders have pio-

neered in related work and have been cited

by their peers as having materially ad-

vanced the state of the art in the field by

developing and following procedures and
techniques designed to promote a standard-
ized product with consequent quality
assurance. The "open code/data package"
has been the concept through which RSIC has

promoted standards. "Open" codes (models/

computer programs) and data libraries are
those which become wel 1 -documented, closely
scrutinized by the industry at large,

widely used and frequently modified, i.e.,

open to the same critical examination given

to any valid scientific information. The
concept is realized when the developer, the
center, and the user collaborate to assess
and improve the state of the art. Positive
feedback and this close inter-relationship
results in changes that are reflected in

the "open code/data package" as updated
(improved) versions. Dissemination of the

packages with a training and consultant
service promotes wider usage with consequent
feedback to the Center. As long as there is

an interest in the problem area, the code
package continues to grow in use and effec-
tiveness. The concept serves to promote
standardized methods with consequent quality
assurance.

The process begins and ends with
documentation standards.

7. American Nuclear Society Standard,
ANS-Std. 3-1971, "Recommended Program-
ming Practices to Facilitate the Inter-

change of Digital Computer Programs,"
April 1971, published by the American
Nuclear Society.

8. American National Standard, "Guidelines
for Considering User Needs in Computer
Program Development," ANSI/ANS 10.5-1979
American Nuclear Society, Hinsdale, IL.

This work is jointly sponsored by the

U.S. Nuclear Regulatory Commission under
Interagency Agreement 40-548-75, the Defense
Nuclear Agency, and the U.S. Department of
Energy's Office of Energy Technology under
contract W-7405-Eng-26 with Union Carbide
Corporation

.

4. REFERENCES

1. Nuclear Engineering Bulletin, Volume
4-1, September 1966, pp. 1-8 (A

Publication of the American Nuclear
Society).

2. American National Standard, ANSI N413-

1974, "Guidelines for the Documentation
of Digital Computer Programs," June

1974, published by the American Nuclear
Society.

3. Coveyou, R. R. , Sullivan, J. G. , Carter,

H. P., Irving, D. C, Freestone, R. M.

,

Jr., and Kam, F. B. K. , "05R, A General-
Purpose Monte Carlo Neutron Transport
Code," Oak Ridge National Laboratory
report ORNL-3622, February 1965.

4. Berger, M. J. and Seltzer, S. M.

,

"ETRAN: Electron and Photon Transport
Programs," National Bureau of Standards
reports 9836 and 9837, June 1968.

5. Reed, Wm. H. , Hill, T. R. , Brinkley, F.

W., and Lathrop, K. D. , "TRIPLET: A

Two-Dimensional Multigroup, Triangular
Mesh, Planar Geometry, Explicit Trans-

port Code," Los Alamos Scientific
Laboratory report LA-5428-MS,
October 1973.

6. Seed, T. J., Miller, W. F. , Jr., and

Brinkley, F. W., Jr., "TRIDENT: A Two-

Dimensional, Multigroup, Triangular
Mesh Discrete Ordi nates, Explicit
Neutron Transport Code," Los Alamos
Scientific Laboratory report LA-6735-M,

March 1977.

11

APPENDIX

GUIDELINES FOR DOCUMENTATION
TO FACILITATE INTERCHANGE OF DIGITAL COMPUTER PROGRAMS

Betty F. Maskewitz
Oak Ridge National Laboratory (ORNL)

There exist several sets of guide-

lines for the documentation of computer
programs. Good documentation promotes

understanding, reduces duplication of

effort, eases conversion to different

computer environments and aids modifi-

cation for extended applications. Good

documentation is needed to facilitate
effective usage, transfer, conversion,

and modification of computer programs.

Good documentation is essential for

implementation and effective use of

programs within installations other

than those in which they are developed.

The following definitions are ap-

plicable specifically to this memoran-

dum: (1) Algorithm. A well-defined
procedure or process for the solution

of a problem to a specified degree of

accuracy in a finite number of steps.

(2) Benchmark Problem. Both a well-
defined problem and corresponding solu-

tion, endorsed by a professional society

or other recognized technical entity that
can serve as a validated reference. (3)

External Data Files. The data files

which exist prior to execution or after
completion of a computer run. (4) Com-
puter Installation Environment. The

computer hardware devices and software
support that are utilized by a computer
program and affect its design and opera-
tion. (5) Code Package. All computer-
readable and printed material necessary
for transmitting and implementing a pro-
gram (or model) in a different computer
installation environment than that in

which it was designed.

A. DOCUMENTATION GUIDELINES

There are at least four essential
parts to the documentation of computer
code systems: 1) the program abstract,
directed to the potential user; 2) the
application information (user's man-
ual), directed to the individual con-
cerned with the execution of the program
to obtain results for his application;
3) the problem or function definition,
directed to those concerned with the

mathematical models and algorithms em-
ployed in the program; and 4) the pro-
gramming information, directed to the
programmer concerned with the implemen-
tation, maintenance, and modification of
the program.

The above, which should outline the
content of the documentation, can be one
all-inclusive document for a simple code
system or up to four separate volumes for
a complex system.

1 . Computer Program (Model) Abstract

The abstract provides a summary of
the capabilities of a computer program
(model), or code package, and the require-
ments for implementation. The abstract
should be concise, but convey sufficient
information to permit the reader to assess
the applicability of the program to his

needs and the effort required to make it

operational. It should include a brief
statement of: (a) program identification:
name, descriptive title, and information
necessary to uniquely define the current
version; (b) description of problem or

function; (c) method of solution: math-
ematical techniques, procedures, and nu-
merical algorithms; (d) auxiliary routines
or external data files required for utili-
zation; (e) limitations imposed by the
mathematical model or computer facilities;
(f) identification of computer(s) on which
the program has been successfully execu-
ted; (g) information to enable a user to

estimate computer execution time for a

typical application; (h) programming lan-

guages; (i) operation systems: software
system and versions utilized; (j) a list
of the computer hardware required for
utilization; (k) the names and addresses
of the individual (s) or group currently
responsible for the code model package;

(1) references; (m) material available:
the contents of the code package and the

procedure for obtaining this material.

12

2. Application Information (user's
Manual

)

The User's Manual should be suffi-

ciently detailed to permit effective use

of the program (model) and yet concise
enough to serve as a referral document
for preparation of input data and in-

terpretation of results. It should in-

clude general description including a

synopsis that conveys the nature of the

problem solved, defines the processing
tasks performed, and describes the

methods and procedures employed. It

would be useful to schematically display
the flow of the calculations.

2.1. Program Considerations . De-

tailed information should be given on the

following: (a) function of each major
program option; (b) alternate paths which

may be dynamically selected by the program

from tests on calculated results; (c) re-

strictions on the range of values of var-

iables; (d) the dimensions of data arrays;

(e) dependence of data storage require-

ments on problem input parameters; (f) the

values assigned to constants built into

the program; (g) restart and recovery pro-

cedures; (h) programmed diagnostics and

their causes; (i) any man-machine inter-

actions; (j) information to estimate exe-

cution time; (k) any special forms of

output; e.g., microfilm, cathode ray tube

display.

2.2. External Data Files . External

data files should be described as follows:

(a) outline the general contents and or-

ganization of each external data file;

(b) relate the usage of data files to

the execution of the program; (c) refer-
ence available auxiliary programs which
create, modify, or edit these files;

(d) reference sources of fixed or perma-

ent -data.

2.3. Input Data . General and spe-

cific considerations should be given to

input data. Generally, one should de-

scribe: (a) special input techniques
and requirements; e.g., blank field

treatment, order of items, field de-

lineation; (b) the handling of consec-

utive cases (giving conditions of data

retention or reinitialization for the

next case); (c) the general conventions
governing default values.

Specifically, for each input vari-

able one should give variable name.

description or definition, format, dimen-

sional units of variable, and the default
value if appropriate.

The operating system control commands
(cards or statements) required to execute

the program should be given with an indi-

cation of interdependence with input op-

tions and date files.

2.4. Output . The program output
should be described with relationships
shown; e.g., edited output to input op-

tions and output to appropriate equations.
Any normalizations of results should be

described and associated dimensional units

listed.

The physical problem and associated
data files should be described and the

input data and results presented.

2.5. Sample Problems . The following
should be considered in selecting sample
problems: (a) choose a benchmark problem
or a well-defined example; (b) exercise a

large portion of the available programmed
options; (c) use only a reasonable amount
of computer time.

The following should be considered
in presenting the edited output: (a) pro-

vide representative output for the options

exercised (detailed output can be trans-

mitted on tape); (b) present results of

key items in concise form; (c) indicate
precision of results.

Report eomputeif^ execution time for the

sample problems giving central processor
time, peripheral processor time and elapsed
(clock) time, and channel use applicable
and available.

3. Problem of Function Definition

The problem or function definition
information should convey a thorough under-

standing of the theoretical and mathemati-

cal foundations, referencing the open lit-

erature where appropriate. It should de-

fine the problems solved, describe the

mathematical model employed, and document

the computational algorithms and numerical

techniques implemented in the program

(model). It should specifically include a

comprehensive description of the problem

solved or of the data processing functions

performed. The description of the physical

theory in terms of a mathematical model

should be reasonably self-contained.

13

Sources for the model and the mathemati-

cal formulations should be referenced.

Sufficient detail is needed to permit a

user to judge the suitability of the

model for application to a particular

situation. Assumptions should be noted

and information given about limitations.

3.1. Algorithms and Numerical

Techniques . The computational algorithms

used to obtain numerical solutions of

mathematical equations should be de-

scribed and references to algorithms

and numerical techniques provided. The

precision of results obtained by impor-

tant algorithms and any known dependence

on the particular computer facility

should be described. Unusual features

of techniques used should be described.

For iterative solutions, the use and

interpretation of convergence tests and

recommended values of convergence cri-

teria should be included. For proba-

bilistic solutions, the precision of

results having a statistical variance

should be discussed.

3.2. Data Sources . Background
information about source, contents, and

use of data libraries should be provided.

4. Programming Information

The programming information is

directed to the individual responsible
for implementing the program on his

computer, modifying or extending it to

meet local needs, or converting it to a

different computer environment.

Reference may be made to appropri-
ate items described in other sections
of the program document. Give further
information as necessary, to explain
the programming details. The citing
of computer-produced documentation that
is generally available may complement
traditional documentation. Examples
of such computer-produced documentation
are: a listing of the source program
that contains carefully composed com-

ment cards, a cross-reference dictionary
of subroutine names and entry points,
and flowcharts of the program logic.

4.1. Source Program . The source
program description should include:
(a) identification of the source lan-

guage{s) of the coding; (b) a flowchart
showing the overall program structure
and logic, and detailed flowcharts
where appropriate; and (c) an indication

of known areas of dependency upon the local

computer installation support facilities.

Detailed information should be given

as follows: (a) define the role and func-

tion of the main program and each subpro-
gram (identify argument lists and their
use); (b) for a particular subprogram,
indicate those routines which call it and,

in turn, those subprograms it may call;

(c) relate the problem variables and

constants to the program mneomics; (d) de-

scribe shared storage assignments; e.g.,

COMMON in FORTRAN; and (e) describe in

detail the functions performed by machine-
dependent subprograms that are unique to

this program.

4.2. Data Files . The computer-ori-
ented details of temporary and external

data files should be provided: (a) speci-
fy the names, usage (input, output, or

scratch), structure, mode and data elements
of each data file; and (b) discuss program
procedures related to. the use and mainte-

nance of data libraries and files, giving
data file retention and allocation require-

ments.

4.3. Hardware and Software . Logical

devices used should be enumerated and the

use of each device and any associated data
blocking schemes described. The contents
and format of the information resident on

each device should be identified.

The computer installation environment
in which the model is normally executed
should be described as follows: (a) list

the machine configurations on which the

model has been tested successfully; (b)

enumerate the main memory storage require-

ments, the amount and type of auxiliary

storage (drum, disk, data cell, tapes) and

the peripheral equipment (punch, printer,

plotter); (c) identify any special hardware

utilized; e.g., clock, on-line communication

channel

.

In addition, the software requirer.ients

should be given: (a) identify the operat-

ing system, language processors, and asso-

ciated subroutine libraries invoked by the

model, citing the manufacturer's appropri-

ate versions and releases; (b) describe
known deviations from the manufacturer's
supported software that are required by the

model; e.g., local mathematical and utility
routines, and other installation-dependent
software.

14

4.4. Programming Considerations .

Certain programming considerations are

important for successful implementation:

(a) explain the system-control commands
required to execute the program; (b)

document the overlay or segmentation
scheme if one is used; (c) describe
the storage allocation and data-manage-
ment procedures; indicate the problem-
dependent nature of the memory require-

ments; discuss program alternatives
which affect data storage and use of

data buffering; e.g., variable dimen-

sioning; (d) discuss the restart, re-

covery, and successive case capability.

B. CODE PACKAGE TRANSMITTAL FORMAT

The code package is the aggregate
of card decks and printed material as-

sociated with a computer program (model),

including an abstract of the complete
code package for publicizing availa-
bility. The package should include:

1. Computer-readable material
written on magnetic tape as separate
files: (a) source (main) program in

the form of card image records; (b)

any auxiliary code used to generate
input for the main program or analyze
results; (c) any external data librar-
ies; (d) input data for sample prob-
lem's); (e) system control cards for
execution of the program; (f) output
from running the sample problems in

line-printer format.

2. Printed Materials: (a) master
tape list describing each file in (a)

and how each is written on tape; (b)

documentation of the complete code
package; (c) abstract of the code
package (in standard format) for pub-
lication.

C. VERIFICATION/VALIDATION RECORDS

Initial verification of the code
system is normally done by the code
developers and the results documented
in the original report (see item A).

Validation is normally a separate
effort, independently done and re-
ported. As validation results be-
come available, they should also be

included in the code package, as de-
fined in item B. These records should
include: documentation - published
results of findings, audit trail on
data used, and record of experience
gained from running benchmark or other
calculations.

NBS FIPS Software Documentation Workshop.

March 3, 1982

Systems Development Methodology
and Documentation Practices

Louis J. O'Korn

Manager, Systems Development
Chemical Abstracts Service

The approach Chemical Abstracts Service (CAS) has taken to prepare and

manage the full range of software documentation will be described. For each

development stage this presentation will summarize the deliverable items of

documentation, specific standards and procedures guiding the documentation
process, and specific tools supporting the preparation and management of

documentation.

1. INTRODUCTION

All methodologies are based on the assumption that you can analyze a process and

identify a consistent set of tasks that must be performed in a particular order to com-

plete the process. Similarly, in systems development, the methodology attempts to predict
the tasks that must be performed to design, develop, and implement a computer system. All

effective systems development methodologies recognize that there are actually two types of

activities that must be performed to build and operate a computer-based system:

0 Activities to create the proposed system. These include interviewing users about
proposed system requirements, documenting objectives and constraints of the
proposed system, designing overall system flow for the proposed system, coding and
testing programs, and so forth.

0 Activities to manage the system building process. These include tasks for plan-
ning, organizing, and controlling systems development projects.

The Chemical Abstracts Service (CAS) systems development methodology draws from both
these areas. This paper identifies the tasks required to build a system. It describes
the phases of the CAS system life cycle, specific deliverables, and guidelines for each
subphase. The project management policies, procedures, and deliverables required to plan,
organize, and control the project activities necessary for building computer-based systems
are not addressed in this paper.

16

NBS FIPS Software Documentation Workshop.
March 3, 1982

2. SYSTEM LIFE CYCLE

At CAS, system life cycle activity is described as fitting into one of four broad
phases: System Initiation, System Design and Development, System Implementation, and
System Operation.

The objectives of the System Initiation phase are to identify the purpose and
description of the system and the needs for development resources, to fully document user
requirements, to generate a general approach for the proposed system, to study alternate
design strategies, and to recommend the best approach for the development of a particular
system. This may involve breaking the system into individual components or subsystems
each of which would follow the system life cycle.

The next step, System Design and Development, resolves all design features of the
proposed system. To do so, all input, output, data base and internal processing aspects
of the design are developed by the project team, technically reviewed within Research &

Development (R&D) and reviewed by operations and user personnel. Once this review is

completed, all approved features are ready for development and are not subject to further
design modification without formal review and approval at the design changes. The next
objective of this phase is to develop the detailed design and to transform the design into
functional system components through program design, coding, and testing.

The third phase of the system life cycle is System Implementation, which includes
preparing a system test plan, conversion plans, and user manuals, conducting the system
test, performing necessary conversions, releasing the system to data processing opera-
tions, creating live files, training users, and beginning operations. The final objective
of this phase is to secure formal acceptance of the new system from the user group.

Finally, during System Operation, the objective is to maintain an efficient operation
of the system, evaluate it, and make changes as additional requirements are identified.

While these four phases are useful in broadly visualizing a project, they are too

general to serve as a basis for planning, scheduling and controlling the work effort.

They are further divided into a number of subphase:

Phase 1 - System Initiation

Project Initiation

User Requirements Definition

System Definition

Phase 2 - System Design And Development

Preliminary Design

Detail Design

17

NBS FIPS Software Documentation Workshop.
March 3, 1982

Program Development

Phase 3 - System Implementation

Implementation Planning

System Testing

Operations Start-Up

System Acceptance

Phase 4 - System Operation

3. SYSTEM INITIATION

3.1 Project Initiation

Activity in this subphase is directed toward translating a requested project into a

brief Project Initiation Description. Prepared by the Development Project Manager and

system requestor, this description gives the name of the project and the user departments
concerned and details the project's purpose, scope, benefits, dependencies, background,
preliminary development forecasts, and schedules.

If the Project Initiation Description is approved by R&D and the requesting division
management, a project then enters the User Requirements Definition subphase. When a

proposed system is intended to supplement or replace an existing system -- either manual
or automated -- the project team begins by reviewing the operation of the current system
and assessing its merits and shortcomings. Activity then focuses on determining the
users' requirements for the new system, working closely with the user staff. The results
are rigorously documented to guide subsequent design and development tasks.

3.2 User Requirements Definition

The User Requirements Document represents the key input to the subsequent design
stage because it is a definitive statement of the functions to be performed and outputs to
be delivered by the system as seen by the user. Essentially, it is a playback: the result
of considerable dialogue between the analyst and the user regarding the functional
specifications of the system. It is important to note that the user can be the eventual
system user, a user-appointed representative, a management-appointed task force, or a new
venture team; the specific approach is determined on a project-by-project basis.

^

The User Requirements Document includes an elaboration of data element requirements,
identification and description of required algorithms, clarification of policy with its

known impact and implications, and definitions of important concepts. It includes func-
tional flows only as needed to illustrate the above material and clarify interfaces with
existing systems. Generally, this document will be co-authored by the analyst and the

18

NBS FIPS Software Documentation Workshop.
March 3, 1982

user, or a user representative, and will be subject to review and approval by the user and

R&D management.

3.3 System Definition

Once the user requirements are approved, the system enters the System Definition
subphase, where the user requirements are used to prepare a general design of the new

system. The project team identifies and evaluates as many design alternatives as practi-
cal while ensuring that enough alternatives have been considered to respond to critical
needs. Criteria for evaluating the alternatives might include such factors as anticipated
system benefits, number of features supported, development and operation costs, or techni-
cal feasibility. Before proceeding to the next phase, the project team examines the
design alternatives and the criteria used to make a final evaluation and recommends an

approach for developing the system. The proposed system is set forth in a System Descrip-
tion which is a user-oriented document describing a proposed approach, alternative
approches, and evaluation criteria. In addition, a Cost/Benefit Analysis may be incor-
porated into the System Description or provided as a separate document. The proposed
approaches must be approved by R&D and user management.

4. SYSTEM DESIGN AND DEVELOPMENT

4.1 Preliminary Design

Completion of the three System Definition subphases marks the beginning of the System
Design and Development phase. Its first subphase. Preliminary Design, focuses on design-
ing and documenting a preliminary version of the proposed system. The tasks performed
during this subphase include preparation of an overall system flow, design of data base

content, identification of the various subsystems, creation of narrative descriptions of

systems operation, and description of system inputs and outputs. Most importantly, the
preliminary design reflects the users' processing requirements for the new system. The
user staff is involved in review of the preliminary design to interact with the design
process and ensure all requirements are included.

The project leader prepares the Preliminary Design Document, which includes a summary
of features, system architecture, flow and narrative function descriptions, data defini-
tion summary, transaction summary, report summary, functional responsibilities, inter-
faces, performance estimates, etc. This document is the basis for a technical design
review within R&D to ensure soundness of the technical approach, and an in-depth func-
tionality with all users to assure that all requirements are satisfactorily met. Included
as separate documents, or as sections in the Preliminary Design documentation, are updates
to the User Requirements and Cost/Benefit Analysis. The Preliminary Design requires the

approval of R&D and user management, and provides guidelines for subsequent technical
development in the Detail Design subphase.

19

NBS FIPS Software Documentation Workshop.

March 3, 1982

4.2 Detail Design

Activity in this subphase is devoted to designing detailed versions of every systems
component identified in the preceding subphase. Major tasks include preparing and

documenting the detailed report layouts, designing all input forms and screens, identify-
ing the final data base structure and content, designing controls for all manual and

computerized aspects of the operation, file backup and recovery procedures, data entry
procedures, online dialogs, etc. Included as separate documents or as separate sections

in the Detailed Design documentation, are updates to the User Requirements and

Cost/Benefit Analysis.

The entire system features reflected in Detailed Design are now intensively reviewed
by the system users. This user review marks a major milestone in the project, because all

design elements approved here will become permanent features of the system. Once all the
problems have been resolved, changes in design during subsequent subphases will be for-
mally documented and require final approval by R&D and the user management. If during the
Preliminary or Detailed Design subphase a serious design flaw is identified, it may be

necessary to recycle through various subphases to reconsider aspects of the approach
taken.

4.3 Program Development

It is essential that application programs be designed to take maximum advantage of
sophisticated hardware, software, systems and capabilities. In this subphase, the struc-
ture of schedules, programs, and modules is developed, documented, and thoroughly reviewed
by qualified technical personnel. Program design produces program structure which is

reviewed through walk-throughs. Program structure is converted into functional components
through program design, coding, testing, and documentation. Programming is performed in

accordance with corporate standards and policies. During testing, emphasis is placed on

rigorous preparation of a test plan describing all anticipated program responses to test
situations, and when testing commences, test results will be compared to these test plan
predictions, thus providing an objective measurement of requirement delivery. All test
results will be thoroughly reviewed to ensure that system components are operating satis-
factorily. This subphase produces a completed operational program, program documentation,
and operations documentation.

5. SYSTEM IMPLEMENTATION

5.1 Implementation Planning

The System Design and Development phase and System Implementation phase overlap at
this point in the development cycle. Implementation Planning begins immediately after
completion of the Detailed Design subphase and runs parallel to the Program Development
subphase. The subphases overlap in this way so implementation can begin immediately upon
completion of program testing. Included in this subphase are tasks to develop detailed
conversion plans, system testing plan, training schedules, and supporting materials.
Tasks are also performed to develop many of the user manual materials for subsequent

20

NBS FIPS Software Documentation Workshop.
March 3, 1982

implementation training and system operation. During their review of these products, the

users are required to commit themselves to training and conversion schedules as set forth
in the implementation plans.

5.2 System Testing

During the System Testing subphase, tasks are performed to assemble programs into
subsystems and to integrate these subsystems into a working system. Work begins with the
creation of extensive test scenarios and test data is then prepared to simulate these
situations. Operations Documentation is compiled, reviewed and finalized. The systems
test is conducted in accordance with the test plan. As with the program test, system test
results are compared with the test plan predictions to ensure that the system is operating
properly. As part of the systems test, the users conduct an acceptance test to verify
that their specifications have been met.

5.3 Operations Start-Up

This subphase marks the transition of the system from "in development" to "opera-

tional" status. Here, tasks are performed to finalize operations documentation, data

entry documentation, user manuals, schedules, etc. All documentation is reviewed with
appropriate user/operations groups to facilitate the turnover and start-up processes.
Various user and operational areas certify that the documentation meets company standards
and that the system is ready to begin routine operation.

Tasks are then oerformed to finalize implementation schedules. The users are given
manuals describing external procedures, and are thoroughly trained to use their new sys-

tem. Finally, files are set up or converted to support ongoing system operations.

5.4 System Acceptance

After a system becomes operational, the project team is responsible for monitoring
operations and assisting the users wherever problems are encountered. If a new system was
developed to replace an older system, the two may be run in parallel until all parties are

satisfied that the new system is functioning correctly. At the end of the parallel opera-
tions and before the old system is retired, users are "required to formally certify that
their training, documentation, and the new system itself satisfy the original require-
ments. At this stage, all project documentation is transferred into permanent storage and

an evaluation is made of the project on the basis of observed strengths and weaknesses.

6. SYSTEM OPERATIONS

With the acceptance and routine operation of the system, staff maintain installed
software and make minor enhancements as necessary. Documents produced during this phase
describe problem resolution procedures e.g. abnormal program completions, corrections

21

NBS FIPS Software Documentation Workshop.
March 3, 1982

actions, condition-causing problems, requests and documentations for minor system enhance-
ments, and documentation of program module changes.

7. SUMMARY

There is a wide variety of documentation produced during the CAS system life cycle.

The earlier section summerizes activities performed and key deliverables for each sub-

phase.

To aid the staff in preparation of these documentation items, each item has suggested
contents, specific staff responsible for preparation, and specific staff responsible for

review and approval. It must be recognized that there are suggested documentation items

to identify critical documentation requirements and achieve a consistent CAS scheme. For
a particular system, the specific documentation items to be prepared will be proposed by

the project leader, and the documentation package may require additional documentation
items, the combination of several of these items, an expansion of an item, change in

format, etc.

CAS has a separate operational unit responsible for the administration of computer
system and data base documentation in support of CAS development, maintenance, and opera-
tional activities. The data base function controls the authoritative record and inventory
of CAS files, their definition and interrelationships. As part of this data base respon-
sibility, this unit's services include registration of data elements and data sets,
recovery and reorganization of system files, management of the file archiving process,
management of tape and disk resources, and analysis and consultation on data base perfor-
mance.

The computer system documentation function manages the master record of computer
system and program documentation. It stores the complete inventory of documentation,
maintains a historical change record, provides reference library services, processes all

program changes, and controls updates to production software libraries.

22

NBS FIPS Software Documentation Workshop, March 3, 1982

Experience in Application
of

Software Documentation Standards

Wi 1 li am Bryan
Stan Siegel

CTEC, Inc.

This paper summarizes the authors' recent experience applying soft-

ware documentation standards contained in MIL-STD-483, MIL-STD-1679,
and DoD STD 7935. 1-S (and its non-DoD counterpart FIPS PUB 38).
Several software documentation problem areas are discussed. One
problem area is redundancy -- the requirement to put the same material
(in different form or degree of detail) in two or more documents in

the same set. Not only does this redundancy increase project costs
and lengthen schedules, it also greatly complicates the life

cycle maintenance of the documents. A second problem area is the
telescoping of test documents in FIPS PUB 38 and DoD STD 7935. 1-S.

In these two standards, test procedures and test plans are included
in the same document. If test procedures are written concurrently
with the test plan, customer modifications to the test plan may
partially invalidate the test procedures. A final problem area is

that of tailoring software documentation requirements. Software
documentation standards should permit sufficient tailoring to cope
with project size and complexity without vitiating the documents.

The paper includes recommendations for improvements to software
documentation standards.

Keywords: Product assurance; Software maintenance; Testing;

Traceabi 1 ity; Visibility

1. INTRODUCTION

The past few years, the authors have performed software product assurance services
for both in-house and external software development projects. Product assurance
entails, in our view, the integrated performance of the following four disciplines:

the assessment of whether a software product conforms
to a pre-specified standard

the assessment of whether a software product logically
follows from its predecessor software products and is
congruent with the software requirements

the assessment of whether a software product satisfies
its requirements through testing in a live or nearly
live environment

the set of procedures for visibly, traceably, and
formally controlling software products throughout the
software life cycle

Performing software product assurance services clearly involves the use of software
documentation standards. This use is not connected with the actual development of
software and its associated documents, but rather is concerned with the utilization of
standards as a tool to assess the successful development of software products.

Quality assurance -

Verification & validation -

Test & evaluation -

Configuration management -

23

Our work in software product assurance has exposed us to various software
documentation standards and given us experience in their use as product assurance
tools. From this experience, we have observed a number of problems in the use of the
software documentation standards. In this paper, we address three of these problems ~
(1) redundancy among documents, (2) the telescoping of test documents, and (3) the
tailoring of software documentation requirements.

In the balance of this paper, we first present a summary of our recommendations
regarding software documentation standards. Then we present in turn each of the three
problems stated above. We close the paper with our conclusions based on our analysis of
these three problems.

2. SUMMARY RECOMMENDATIONS

Based upon our experience with various software documentation standards, we make
the following recommendations:

a. Eliminate redundancy among the documents specified by a software documentation
standard.

b. Stress in software documentation standards the need for continual maintenance of
the documents produced.

c. Modify FIPS PUB 38 and DoD STD 7935. 1-S to specify that two pre-test documents,
a Test Plan and Test Procedures, be sequentially produced.

d. Modify software documentation standards to require substantial conformance to

their format and content specifications, while allowing tailoring and scoping of
the various documents to match project size and complexity.

3. REDUNDANCY AMONG DOCUMENTS

In the range of document types specified by FIPS PUB 38 [1] and DoD STD 7935. 1-S

[2], considerable redundancy is specified. The existence of this redundancy is

specifically addressed and explained in both standards. One reason that redundancy is

provided is to make the documents "stand-alone" with a minimum of need for
cross-referencing (FIPS PUB 38, paragraph 2.3; DoD STD 7935. 1-S, paragraph 1.3.4). That
is, the basic assumption seems to be made that the reader of a document does not have
ready access to other documents produced during a software development project, and
possibly may never have read them. In this circumstance, each document must be as
complete and detailed as is possible, and must accurately reflect the state of the

software at the time of document publication.

This form of redundancy is particularly evident in the Functional Description (FD),

System/Subsystem Specification (SS), and Program Specification (PS) sequence found in

FIPS PUB 38 and DoD STD 7935. 1-S (see Table 1). In the content guidelines of the latter
standard, explicit reference is made to paragraphs in preceding documents where related
material is found, coupled with statements that "changes. . .from the next higher order
[i.e., irmiediately preceding] document will be explicitly identified" (see, for example,
the content guidelines for paragraphs 2.2.1 and 2.2.2 in Figure 3-04 on page 3-33 of DoD
STD 7935. 1-S). Such statements imply that a given document (say, an FD) may or may not

be accurate once a successor document (say, an SS) has been published. Where and to
what extent a predecessor document may be inaccurate is not evident to a reader. A

further implication here is that a given document is not maintained once a successor
document is published.

It should be noted that 100% redundancy does not exist among these documents. Each

document has certain unique sections and paragraphs not found in its immediate
predecessor. Thus, from a project viewpoint, the documents are not truly
"stand-alone." A reader wishing to become familiar with a project should read the
latest document in this sequence, but must realize that he is not accessing all the

24

Table 1. Redundant Paragraphs Among Several Documents
Specified by DoD STD 7935. 1-S

Functional
Description

System/Subsystem
Specification

Program
Specification

3.1.1
3.1.2
3.2

2

2.1

2.2.1

2

2.1

2.2.1
2.2.2
2.2

2.3

3

2.2.2

4

2.2

2.3

3

4.1

4.2

4.3
4.4

3.1

3.2

3.3
3.4

3.5

4

3.1

3.2
3.4
3.5

4

4.3.1
4.3.2
4.3.3

4.2
4.3

4.4

pertinent information on the project. Whether this process is satisfactory to him
depends upon his purpose in reading about the project.

This redundancy in FIPS PUB 38 and DoD STD 7935. 1-S has had a long history. As

indicated in Kurihara et al [3], FIPS PUB 38 was derived from DoD Manual 4120. 17M [4].

The foreword of DoD STD 7935. 1-S states that it supersedes the same manual. The basic
format and content guidelines of all three of these standards are nearly identical.
However, the DoD manual was not an original document, being based on, and almost
identical with, a Navy Department instruction which, in turn, was almost a direct copy
of an ADP documentation standard issued by the Naval Command Systems Support Activity
(NAVCOSSACT — now named NARDAC) in 1966. [5] This original standard was designed to be

used in the environment in which NAVCOSSACT developed software. In this environment,
military tours of duty for users and buyers approximated the development cycle of

software (i.e., about three years). In many cases, the originator of a request for a

software project would be rotated in his military duties and would no longer be with a

command when the end-product software was delivered. Managers at all levels monitoring
software development projects faced similar rotations. In such an environment,
stand-alone documents were a necessity.

Today the concepts of this original standard provide guidelines for a much broader

community, one which encompasses the entire federal government. For the majority of the
members of this community, the correlation between changing buyers and users and the
software development cycle does not necessarily exist. Thus, stand-alone documents
generally are not required. For this broader community, the redundancy specified in

FIPS PUB 38 and DoD STD 7935. 1-S unnecessarily causes problems through the life cycle of

a software project. This life cycle includes the period of maintenance of the software

as well as its development. Typically, the maintenance of software includes the

correction of latent errors discovered in the operational software and the enhancement
of the software to produce new or modified capabilities. This maintenance activity is

hampered by the redundancy in these two standards, for, as we subsequently explain, the

redundancy limits the visibility and traceability of the software, which are necessary
ingredients for effective software maintenance.

This limitation in visibility and traceability is evident from consideration of two

observations made in preceding paragraphs: the documents produced under these standards

are not truly stand-alone, and once produced, are not maintained. The only reliable

document in a series is the most recent one. If previous documents are not consulted,

visibility of the non- redundant part of those predecessor documents is lost, which may

25

have considerable impact on maintenance activities. On the other hand, consultation of

the predecessor documents may have an unfavorable effect on software maintenance, since

the documents are of questionable reliability. Traceability through the sequence of

documents is impaired or destroyed.

The aforementioned objections could be overcome by maintaining all of the documents

in the sequence, so that each one is always up-to-date and thus reliable. But such an

endeavor greatly increases documentation costs.

A strawman document termed a Comprehensive Document (CD) has been suggested as a

general approach to revision of FIPS PUB 38. [3] The CD would be a data base
(maintained current) of all information relevant to the definition, design, coding,
testing, operation, maintenance, and modification of the system being documented. In

this concept, the principal software documents (e.g., an FD or PS) would be regarded as

extracts from the CD data base. The CD approach has many noteworthy benefits, but also

has a potential weakness in its application: the publication of the principal documents
as extracts from the CD data base might result in a situation identical to that created
by the FIPS PUB 38 redundancy. For example, the FD, SS, and PS might all contain the

current CD paragraph on, say, system functions. Since they are published over a period
of time, and since change is endemic to software projects, each document might contain a

different definition of system functions. On the other hand, if the documents extracted
from the CD data base were not redundant (for example, system functions might only be

extracted for the FD), then the problem arises as to how to promulgate changes to

elements of the CD data base. One solution to this particular problem would be to
maintain and republish each extracted document when changes occur; another would be to
publish the CD and changes to the CD rather than publish extracted documents. Further
consideration of this strawman document should definitely consider this potential
problem in order to avoid continuation of the difficulties caused by the deliberate
redundancy specified in FIPS PUB 38.

4. TELESCOPING OF TEST DOCUMENTS

Both FIPS PUB 38 and DoD STD 7935. 1-S provide guidelines for two test documents —
a Test Plan written during the design and programming stages, and a Test Analysis Report
written at the end of the test stage. The purpose of the Test Plan is "to provide a

plan for the testing of software; detailed specifications, descriptions, and procedures
for all tests; and test data reduction and evaluation criteria" (FIPS PUB 38, paragraph
1.4.9). The purpose of the Test Analysis Report is "to document the test analysis
results and findings, present the demonstrated capabilities and deficiencies for review,
and provide a basis for preparing a statement of software readiness for implementation"
(FIPS PUB 38, paragraph 1.4.10). The Test Plan is the sole test document preceding the
testing of the software; the Test Analysis Report is the sole test document following
the testing.

In the environment at NAVCOSSACT referred to earlier, where the
progenitor of FIPS PUB 38 and DoD STD 7935. 1-S was created, this test
documentation schema was useful and satisfactory. NAVCOSSACT developed
software and a Test Plan concurrently. When development of the software
code was completed, NAVCOSSACT personnel went to the user site, conducted a test, and
submitted a Test Analysis Report. The user and the buyer (more properly, in that
environment, the sponsor) had no involvement with development nor approval of the
testing process.

In the broader community served by FIPS PUB 38 and DoD STD 7935. 1-S, users and
buyers tend to be more involved in the testing process. The Test Plan generally is
submitted to the buyer and user well before testing begins and is approved by the user
and/or buyer before any testing is conducted. If the Test Plan does not meet the
buyer's approval, it must be revised until the buyer and seller can mutually agree on
Its contents. In this environment, the monolithic Test Plan called for in FIPS PUB 38
and DoD STD 7935-1. S is not satisfactory.

26

The problem with the Test Plan is that it is too comprehensive: it contains not

only the plans for testing of the software code, but also the detailed procedures for

conducting all tests. If, when the Test Plan is submitted for approval, the buyer

objects to the planned testing approach, not only must the plan portion of the Test Plan

be revised, but part (or possibly all) of the test procedures must also be revised. In

essence, it is generally not economically justifiable to expend resources on creating
test procedures until test plans have been approved.

In MIL-STD-1679 [6], three pre-test documents are identified and separate Data Item

Descriptions are defined for each document: (1) DI-T-2142 for test plans, (2) DI-E-2143
for test specifications, and (3) DI-T-2144 for test procedures. MIL-STD-1579 specifies
that all test plans, specifications, and procedures shall be subject to review and

approval by the procuring agency. MIL-STD-1679 implies a sequence in producing these
three documents. The sequence is made more explicit in the Data Item Descriptions. The
development of three separate pre-test documents appears to be more cost effective than

the development of a single one as specified in FIPS PUB 38 and DoD STD 7935. 1-S. Yet

the cost effectiveness is not guaranteed: in a recent project, the authors' company was
tasked to produce Test Plan and Test Procedures documents in accordance with
MIL-STD-1679, with both documents due the same day} By destroying the sequential nature
of these documents, the procuring agency specified a requirement identical with that of
DoD STD 7935. 1-S. In the project cited, through negotiations with the procuring agency,
the delivery dates of these two documents were shifted so as to make them sequential.

When the use of FIPS PUB 38 or DoD STD 7935. 1-S is prescribed for a project, the

authors' company invariably produces a Test Plan in which the section on test

descriptions (Section 4 in FIPS PUB 38 and Section 5 in DoD STD 7935. 1-S) states that
detailed test procedures will be separately and subsequently produced. These procedures
are then developed following approval of the Test Plan by the procuring agency. In this
fashion, wasted effort producing unnecessary or undesired test procedures is avoided.
This is a practical solution to the problem of telescoped testing documents. It would
be preferable to modify these two standards to provide guidelines for a Test Plan and a

separate Test Procedures document.

The various governmental software documentation standards vary widely in the degree
of flexibility afforded to the documentor in using the standards.

At one extreme are MIL-STD-483 [7] and MIL-STD-1679 which are relatively inflexible.
MIL-STD-483 states the following in Appendix VI (Computer Program Configuration Item
Specification), Section 60.4:

All paragraphs in this appendix preceded by the designation "Note:" are for

guidance only. All other sections of the appendix are requirements for the
preparation and control of computer program specifications. Contents of the

specification shall be arranged in accordance with the format and paragraph
headings described herein. Deviations from the requirements of this appendix
require approval of the procuring activity.

The appendix contains four notes, all indicating that additional material or

references can be included in a specification. The appendix also contains the following
four paragraphs specified as optional for inclusion in a CPCI Specification:

5. TAILORING OF SOFTWARE DOCUMENTATION REQUIREMENTS

CPCI Specification
Paragraph Number Title

Part I, Section 6

Part II, Paragraph 3.7.3
Part II, Paragraph 3.11
Part II, Section 6

Notes
Data Base Location Requirements
Program Listings Comments
Notes

27

An of the remaining 71 paragraphs and sections for a CPCI Part I and Part II

Specification are required by MIL-STD-483,

MIL-STD-1679, in Section 6, specifies that, if the procuring agency desires to

order data that it has had created through work tasking, it must use the pertinent Data
Item Descriptions (DIDs) from a list of 17 of them. Each of these DIDs states that the

document it pertains to shall be in accordance with the DID's content and format
instructions. These DIDs do not contain optional paragraphs, other than some
appendices. Only the DID for a Software Quality Assurance Plan (DI-R-2174) implies that

non-applicable subjects and items may be omitted. The only flexibility provided under
MIL-STD-1679 is whether a document should or should not be included in a Contract Data
Requirements List.

An impact of this lack of flexibility might be a reduction in the number of

documents produced for a project. In a survey of large aerospace firms primarily
developing software for the federal government, Lehman [8] reported that development of

over nine different document types was specified on the average for projects of $20

million or more, while development of only six different document types was required on

the average for projects of less than $1 million. (Document types in this survey
included both source code listings and object code listings and tapes; these two*

document types were the ones most frequently required for projects.) The requirement

that a project use an inflexible documentation standard might be a possible explanation

of these results. The cost of creating a document under an inflexible standard is less

than linear with respect to project size. That is, the creation of a document under

such a standard costs only slightly less for a small project than for a large one. In

this circumstance, the number of documents to be produced on a small project might be

reduced to keep documentation costs in perspective.

In the other direction, FIPS PUB 38 and DoD STD 7935. 1-S provide considerable
flexibility to the documentor. Paragraph 3.3.2 of DoD STD 7935. 1-S allows any paragraph
or subparagraph of a section to be omitted and additional paragraphs to be freely
added. In practice, this provision allows a documentor to substitute a completely
different partition in any given section, a partition for which no standards or
guidelines on content exist. A document that uses only the section titles prescribed in
DoD STD 7935. 1-S is in conformance with that standard. Indeed, the authors have audited
documents which met standardization requirements in just such a fashion.

FIPS PUB 38 offers essentially the same or greater flexibility as does DoD STD
7935. 1-S. But FIPS PUB 38 is a set of guidelines, not a standard. A software
documentor implicitly has the option of not following a set of guidelines. The section
on flexibility in FIPS PUB 38 merely makes this freedom explicit. However, as stated in

FIPS PUB 38, documentation provides information to support the effective management of
ADP resources and to facilitate the interchange of information. Adherence to the
guidelines enhances the likelihood of achieving these goals. Offering the software
documentor the license to completely depart from the guidelines vitiates the program
that produced the guidelines.

Documentation standards with flexibility intermediate between the two extremes
represented by current standards would be very beneficial. The standards should permit
sufficient tailoring of the format and content of the documents to cope with project
size and complexity without vitiating the documents. Then the production of all the
document types or some minimal subset of them could be required for all projects, with
each document type tailored as appropriate for the project being documented.

6. CONCLUSIONS

The software documentation standards considered in this paper were MIL-STD-483,
MIL-STD-1679, DoD STD 7935. 1-S, and FIPS PUB 38. Based on our experience with this
sample, we offer the following conclusions:

1. A tradeoff exists between making each document in a documentation chain
stand-alone on the one hand, and maintaining visibility and traceability

28

using this chain on the other hand. If each document is to be
self-contained, visibility and traceability are generally cost-prohibitive to
maintain throughout a project's life cycle. If, on the other hand, no
overlap among documents exists, then traceability is difficult to establish
(i.e., the links in the chain do not interlock and are tangent to one another
at best).

2. Again, for purposes of maintaining traceability, a document once produced
should be maintained (i.e., kept up-to-date). In the standards in our
sample, this document maintainance aspect is not emphasized (and is, at best,
implicit)

.

3. Some of the standards do not take cognizance of the reality that before
software is tested, a test plan should first be formulated specifying a
testing approach , and then step-by-step procedures detailing this approach
should be formulated. FIPS PUB 38 and DoD STD 7935. 1-S call for a single
pre-test document that combines planning and procedure writing into a
concurrent exercise. Since test procedure development is generally an
extremely labor intensive activity, performing test planning and procedure
writing concurrently can be an extremely profligate activity if the testing
approach in the plan does not meet buyer/user approval.

4. Up to a point, a standard for a document should be viewed as a checklist of

items to be addressed in the document. Some discretion, however, should be

used in applying the checklist. Blind adherence to the checklist can lead to

a document that obfuscates rather than clarifies. In the other extreme,
keeping section headings but ignoring the basic intent of the items in the
checklist makes a mockery of the standard. A documentation standard should
be viewed as something that ignites the process of writing a document. It

jogs the mind into action, stimulates the creative processes, and bounds them
with guidelines that should be followed as reason and project circumstances
dictate.

7. REFERENCES

1. "Guidelines for Documentation of Computer Programs and Automated Data Systems,"
FIPS PUB 38, National Bureau of Standards, February 16, 1976.

2. "Automated Data Systems Documentation Standards," DoD Standard 7935. 1-S, Department
of Defense, September 13, 1977.

3. Kurihara, T., Redwine, Jr., S.T., and Zaveler, S.A., "Observations on Documentation
Standards Revision: FIPS PUB 38 After Four Years," Software Engineering Standards
Application Workshop, August 18-20, 1981, San Francisco, CA, IEEE Computer Society
Press, Los Alamitos, CA, 1981.

4. "Automated Data System Documentation Standards Manual," DoD Manual 4120. 17M,

Department of Defense, December 29, 1972.

5. "Programming Documentation Standards and Specifications," NAVCOSSACT Instruction
5230.9, Naval Comnand Systems Support Activity, August 1, 1966.

6. "Weapon System Software Development," Military Standard MIL-STD-1579 (NAVY),

Department of Defense, December 7, 1978.

7. "Configuration Management Practices for Systems, Equipment, Munitions, and Computer

Programs," Military Standard MIL-STD-483 (USAF), Notice 2, March 21, 1979.

8. Lehman, John H., "How Software Projects Are Really Managed," Datamation , Vol. 25,
No. 1, pp. 119-129, January 1979.

29

NBS FIPS Software Documentation Workshop
March 3, 1982

Case Studies, Management Guidance
and Quality Criteria

for
Software Docmumentation

by

James N. Orton
Software Documentaton Manager,

ALQ-131 and TWS Projects

During the past decade increasing demands have been put in acceler-
ating fashion upon the software documentation function in the form of (1)
the increasing complexity and scope of radar systems software
applications, (2) the increasing information requirements of an increasing
variety of Government software documentation standards and specifications,

and (3) increasing Government attention to enforcing contractor
fullfillment of these requirements.

Westinghouse is attempting to meet these demands by developing

(1) Standardized yet non-stultifying approaches to software
documentation in acceptance of today* s reality of
dynamically proliferating and changing Government software
standards and specifications;

(2) Automatic docimientation tools utilizing word processor and
computer systems operating initially apart but eventually
in concert;

(3) A data base, built up from accumulating software
documentation experience, designed both to develop overall
documentation quality criteria and to minimize the
documentation startup effort for future projects
anticipated to relate in varying degrees to present
project s;

(4) Management techniques for putting this documentation
process into effect using the most cost-efficient yet
ego-sustaining division of labor between the software
designer and programmer on the one hand, and the
"information specialist" or document format designer on the
other.

These ideas will be explained and evaluated in the harsh light of
experience over the past year on two Westinghouse radar systems Software
documentation projects.

30

steps Toward a Solution

• standardization

• Automation

• Data-Based Experience

• "Creator/Documentor Interface" Management

Standardization

• Interpretation of Standards and Specifications

- MIL-STD-483 (1970 & 1979)

- MIL-STD-490

- MIL-STD-1679

- DID's

• Document Format Specifications

31

Automation

• Flowchart

• Data Description

- Internal
- External

• Set/Use Matrix (Inter-CPC or Inter-Subprogram)

• Data Itenn Cross Reference

- Internal
- External (I/O)

• Document File Management (WP)

Data-Based Experience

• Document Format Specification Files

• Document Files

32

"Creator/Documentor Interface" Management

• The Creator (S/W Designer, Programmer) is

- Responsible for Content

- Indispensable to Documentation Effort Success

• The Documentor ("Information Specialist") is

- Responsible for Standards/Specs Interpretation

- Responsible for Format/Information Presentation

Part of a Service Organization

• To S/W Engineering
• To Project Management

• Both Should Work Together, With Complete Mutual Under-
standing, From Day One

The Real World

• TWS Project

• ALQ-131 Project

• ASPJ/CPMS Project

33

TWS Project (AF Single-CPU ECM System)

• Documents: CCR CI, CPM, CSR, DPFS, DS, MM, PS, SDD,
TER, CSTP, UM, VDD

• Standards/Specs: Mi!=Std»483 (1970), Mi!'Std-490, DlD's

• Techniques:

- Document Format Specs

- Automation of Flowcharts (Annotation Language/Autoflow
Adaptation)

- Word Processor File Library Initiation (DSF's, Docu-
Documentation

ALQ-131 Project (AF Double-CPU
ECM System)

• Documents: CCR CPS, CPDP, DS(3), IS, PS(3), SR, TR, UM,
VDD(3)

® Standards/Specs: MihStd-483 (1979), Mii=Std"490, DlD's

• Techniques:

- Document Format Specs

- Automation of Flowcharts, Data Descriptions (Internal),

Set/Use Matrix, Data Item Cross Reference (Internal and
External)

- Word Processor Library Expansion (DFS's, Documents)

- Management (Centralized)

34

ASPJ/CPMS Project (Two Navy Multiple-CPU

ECM Systems)

Documents: IDS(2), PPS(2), PDS(2), PDD(2), DBDD(2), PPD(2),

CPTR CPTS(2), CPTPr(2), CPTR(2), CM, VDD(2),

CPIN Req (2), SDP

• Standards/Specs: Mil-Std-1679, Mil-Std-490, DID's

• Techniques:

- Document Format Specs

- Automation of Data Descriptions (Internal), Set/Use

Matrix, Data Item Cross Reference (Internal and

External)

- Word Processor Library Expansion (DFS's, Documents)

- Management (Centralized)

Conclusion

• [Sometimes,] "I'd rather be in Philadelphia."

- W.C. Fields

• [Nonetheless,] "Well begun is half done."

- Poor Richard's Almanac

(or equivalent)

35

Experiences in Software Standard Selection
And Application - A Case History

Thomas L. Hannan and Alice A, Wong

Federal Aviation Administration
Washington, DC

This paper presents the findings of analyses conducted by
the Systems Research and Development Service of the Federal
Aviation Administration regarding the applicability of exist-
ing software standards to the development and implementation
of the Air Traffic Control Advanced Computer System. A brief
description of system requirements, acquisition methods, and
standardization objectives is presented with a description
of the standard review activities and resultant findings.
Preliminary conclusions based on these findings are described,
and the issues pending resolution are identified.

Keywords: Software standards; Selection criteria; Advanced Computer System

1. ADVANCED COMPUTER SYSTEM

The Air Traffic Control (ATC) System is a complex system incorporating navigation,
communication, surveillance, and automation facilities, equipments, and personnel. The
Advanced Computer System (ACS) will be the major automation component of the ATC system
and will provide the ATC specialist the data and information required for planning and
control actions. In addition to being complex, the ACS is critical. As the ACS is

comprised mainly of software, it is the concern about this software that drives the
search for means to insure its integrity and improve its maintainability over the system's
life cycle.

1.1 Requirements

ACS software requirements encompass functional, performance, and interface aspects of the
system. The software must perform radar data processing, weather data processing, air-
craft tracking, flight plan data processing, graphic and tabular presentation, and system-
sustaining operations. It must interface with a variety of both long-range and short-
range aircraft and weather surveillance equipment , a variety of associated control facil-
ities and user equipment, and a large number of ATC operations and supervisory personnel.
The software must be reliable, maintainable, and adaptable to a wide variety of geographic
configurations, air traffic density and service profiles, and evolutionary procedural con-
cepts.

1.2 Acquisition

The ACS, including its software, will be procured on a competitive basis involving
multiple-year, multiple-contractor solicitations spanning a relatively long time frame.

Each of these aspects adds a dimension of complexity to the acquisition. Requirements
must be uniformly communicated, provide a common evaluation basis, and facilitate discrim-
ination among offerings. System engineering, verification and validation, development and
integration activities must be carefully coordinated. System products must be assimilated
into a common operational inventory, technology evolution must be accommodated, and pro-
gram continuity must be maintained.

36

1.3 Standardization Objectives

Having defined the requirements and identified the constraints, it remained to formalize
the plan and institute the procedures needed to provide assurance that it will be carried
out. Procedures were sought that would:

• Assure Adequacy of the software with respect to the specified requirements,
• Contain Risk of the software development efforts within acceptable limits.
• Promote Economy of both the development and operation of the software.
• Assure Interoperability of the software with other system components.
• Promote Adaptability of the software to environmental differences and evolutionary

change.

Selection and application of existing software standards were to be accomplished in light
of their individual contributions to these objectives.

2. STANDARDS REVIEW ACTIVITIES

2.1 Approach

To formulate the needed set of software standards, a sequence of studies was conducted.
First, the areas in which software standards application was documented were surveyed.
Second, available standards within these areas were identified and collected. Third,

standards were evaluated with respect to the specified objectives; the most appropriate
standards were to be selected; and tailorings were to be devised to integrate them into a

consistent package.

2.2 Application Areas

Within three major areas (Project Management, Software Development, and Test and

Reliability), several categories of standards, were identified. Table 1 indicates the

areas, their respective categories, and the objectives addressed by each category of

standard.

3. FINDINGS

Existing standards do not comprise a complete, consistent set of procedures which satisfy

the needs of the ACS effort. Three attributes of the standard set identified as being

most appropriate are worthy of note: (1) Varying Objectives—attributable to originating
source; (2) Varying Level of Specificity—attributable to a lack of elementary principles,

and (3) Unaddressed Major Areas—attributable to the lack of concurrence among current

practitioners

.

3.1 Varying Objectives

The National Bureau of Standards, the American National Standards Institute, and the

Department of Defense constitute the primary sources of standards identified. Each source

addresses a different audience from a different perspective with a different terminology.

The result of attempting to combine them is to incur a significant "normalization" effort.

3.2 Varying Levels of Specificity

Four types of standard documents are identifiable; definitions, exposition, recommenda-

tions, and requirements. Firm definitions or expositions of elementary principles are

noteworthy by their absence. Recommendations and requirements exhibit a tendency to

cluster in the more "mechanical" categories, and vary widely in level of detail. Require-

ments appear to be based less on demonstrated efficacy than on personal preference.

37

STANDARD OBJECTIVE

Adequacy Risk Economy Int eroperab il ity Adaptability

rKUJtLi MAJNIALrJirlrLlNi

Life Cycle Definition X X X
Configuration Control X X X

Document at ion X X X
Human Factors X X X
Simulation X X
Miscellaneous X X

SOFTWARE DEVELOPMENT

Languages
Programming
Data Bases
Computer Communication
Med ia
Hardware/Software Interface

TEST AND RELIABILITY

Quality Assurance

Reliability /Maintainability
Test/Test Documentation
Terminology

TABLE 1: Objectives of Software Standards

3-3 Unaddressed Major Areas

Adequate standards for representing software requirements, software designs, and actual
code were not identified. No guide to the applicability of a given representation to a

given application was identified, and no standard for a given representation appeared to

have universal agreement. Reliability and maintainability standards were not identified
although candidate techniques exist.

4. CONCLUSIONS

A complete, consistent set of standards is needed, but is currently not available. To

use an incomplete set would be to risk the value of those that were used, and to use an
inconsistent set would be to incur unnecessary costs at best. At first glance, it would
appear that a monumental effort would be required to resolve the problem.

Upon further thought, however, it becomes clear that creation of a total set of standards
covering everything from general life cycle definition to detailed coding standards is

not what is needed. Careful examination reveals two distinct classes of standards; stand-
ards with a "capital S", and standards with a "small s".

• "Standards." These define mandatory requirements based on universally accepted
principles. They should be limited to the specification of "what" should be done
rather than "how" it should be done. They should address product attributes of form,
fit, or function. They should be durable. They are in the domain of the purchaser.
Currently, they are "meta-standards" that require compliance with a specific "stand-
ard" (small s) to be negotiated.

38

XX X

X X X

X X X

X

X X

X XX
X X

X X

X X

X

• "standards." These define specific alternate instances which satisfy the require-
ments of "Standards" (capital S). They should specify in detail "how" a require-
ment is to be met. They should address process methods and procedures. They should
reflect the most appropriate technology. They are in the domain of the seller.
Currently, they are recommended practices generally integral to a development
organization's preferred way of doing business.

This view is consistent with generally accepted specification practices and also appears

in keeping with the intent of the Federal Information Processing Standards produced to

date.

From the purchaser's perspective, then, what is needed is a complete and consistent set

of "Standards" that cover the generic needs of system development aspects such as

quality assurance, documentation, and training. It would seem to be the function of the

competitive marketplace to produce successively better "standards" that satisfy these
needs

.

In the preparation of each type of standard, care should be taken not to infringe on

the realm of the other type. "Standards" should not dictate specific techniques at the

expense of innovation. Similarly, "standards" should not be promoted as requirements
for the same reason. There is a place for a "Standard" for design documentation and

there is a place for a "standard" for program design language; they should be kept in

their respective places.

Finally, in the preparation of standards, especially "Standards", efforts should be

expended in alleviating the deficiencies already noted. Parochial sources of standards
should agree on common objectives; they should at least agree on a common terminology.
Standards should be based on principles; empirical if not elementary. Standards should

have the concurrence of those affected; buyers and sellers alike. We cannot, each of

us, continue to pursue our own individual paths and hope to successfully meet the

challenges of the future.

REFERENCES

Hecht, H., ATC Computer Replacement Program Software Standards Guidebook , U.S. Dept.

of Transportation, Federal Aviation Administration, Systems Research and Development

Service. Volumes 1, 2, and 3, Washington, D. C.
,
February 1981.

Proceedings, Software Engineering Standards Application Workshop . IEEE Computer
Society. IEEE Cat. No. 81 CH1633-7, San Francisco, August 19-20, 1981.

39

SESSION A: Applying Documentation Standards

Summary of
Findings and Recommendations

R. J. Gavin
Federal Deposit Insurance Corporation

The papers presented during this session highlighted various problems encountered by soft-
ware groups both inside and outside the Federal government as they have attempted to cope
with the array of existing software documentation standards.

Documentation preparation should be treated as a continuing effort, evolving from the
preliminary draft through changes and reviews to software delivery, with subsequent updates
indicated by user feedback. If the documentation develops as the code develops, by the
time the code is completed the documentation will be current.

A. Existing Standards

Existing guidelines provide some good "how-to" approaches to the preparation of basic
software documentation. The participants in this session indicated areas in which
these approaches could be improved:

1. Many expressed a general lack of awareness as to what software guidelines are
currently available. Therefore, a significant segment of the users are reinventing
the wheel instead of utilizing software guidelines which are already in existence.

2. FIRS PUB 38 guidelines discuss ten basic documents. There is, however, significant
redundancy between the various documents in a set. This redundancy could be

reduced while still retaining the necessary informational content for project
auditing, analysis, or update.

3. The current software guidelines do not adequately address system security or

interactive applications. The emphasis is on batch systems with discrete input

and output.

4. Participants in this session expressed the desire for some guidance regarding the

relevance and appropriateness of the different documents to widely divergent types

of applications software.

B. New Standards

A consensus developed that new guidelines should be created to address the areas of:

1. All phases of software system life cycles.

2. System maintainability, reliability, security, and testing.

C. Analysis and Research

Speakers and attendees discussed several areas for additional research and development;

1. The implementation of documentation for the automated office.

2. The rapid advance of user-developed-and-implemented software.

3. Guidelines for testing and verification of software documentation.

4. Use of new technology and automated support tools for documentation preparation and

maintenance.

40

Conclusions

The users represented in this session have applied existing FIPS software documentation
guidelines with mixed results over uniformly long periods of time. They expressed keen

interest in the next steps in the development of software documentation standards and
are much aware of the dangers inherent in the spread of undocumented software.

41

NBS FIPS Software Documentation Workshop, March 3, 1982

Session B: Documenting for Operation and Maintenance

Introduction

Charles L. Gerhardt

UoSo Department of Agriculture

The National Bureau of Standards describes the software life cycle as consisting of three
general phases. During the Initiation phase, the objective and general definition of the
requirements for the software are established. During the Development phase, the software
is maintained, evaluated and changed as additional requirements are identified. These
phases and their definitions are arbitrary but they are adequate for discussing the process
of software development.

FIPS Publications 64 and 38 present in detail, documentation content guidelines for the
Initiation and Development phases respectively. There are no documentation content guide-
lines for the Operation phase. Is there a need for documentation guidance for this phase?
The General Accounting Office report entitled Federal Agencies' Maintenance of Computer
Programs: Expensive and Undermanaged (ASMD-81-25, February 26, 1981) presents the results
of a survey of over 400 governmental data processing installations. This survey indicated
over 50% of software maintenance results from modifications or enhancements required to make
the software perform more in the user function. Federal agencies spend millions of dollars
annually on computer software maintenance and it is during the Operation phase that sound
management, including documentation of software modifications and enhancements, must
continue.

The papers presented in this session describe how FIPS documentation guidelines have been
adapted in a governmental agency; present an approach used to document modifications of a

commercial software product; point out the unique documentation requirements of on-line,
real-time systems; and propose specific documentation content guidelines for the Operation
phase of the software life cycle.

42

NBS FIPS Software Documentation Workshop,
March 3, 1982

The Development and Implementation
of Uniform ADP Documentation

Standards at FAA

Harvey P. Kaplan

Department of Transportation
Federal Aviation Administration
Office of Management Systems

This paper chronicles the ex-
periences of the Federal Aviation
Administration (FAA) in tailoring
uniform documentation standards to
the guidelines contained in FIPS
PUB 38. The end product which
emerged from this effort was an
agency directive which defines re-
quirements for technical documents
produced during the development of
all approved automated data sys-
tems. The directive consists of
twenty three specific document con-
tent standards defined as documen-
tation elements. These documenta-
tion elements are further arranged
into documentation categories
which are guidelines for packaging
the elements. This paper also de-
scribes the approach employed in

developing the standards, signifi-
cant benefits accruing from the
use of the standards, and con-
cludes with a summary of conclu-
sions and additional needs which
were a direct result of uniform
documentation standards.

Keywords: Documentation categor-
ies; Documentation elements; Uni-
form documentation standards; User
guide documentation standards;
User involvement.

I. INTRODUCTION

The Federal Aviation Administration
(FAA) has long recognized the vital impor-
tance of sound documentation practices in
the operation of it's data processing facili-
ties. The issuance of FIPS PUB 38 in 1976
coupled with major decisions regarding
agency software and hardware systems height-
ened the requirement for uniform documentation
standards. The FAA has been a long standing

advocate of FIPS PUBs in conjunction with
its own ADP Standards Program. However, an-

alysis of FIPS PUB 38 quickly revealed that
a further translation was required in order
to introduce a meaningful document to the
FAA ADP community. Accordingly, the thrust
of this effort centered on tailoring FIPS
PUB 38 to the practical needs of FAA, while
still retaining its structure and intent.

The purpose of this paper is to de-
scribe FAA's experiences in developing uni-
form documentation standards; highlighting
major benefits of documentation standards;
and concluding with findings, advantages,
and recommendations.

II. SUMMARY RECOMMENDATIONS

A comprehensive set of documentation
standards is essential to the management of

any ADP system. System documentation provid-
es the chief means by which personnel re-

sponsible for the design, implementation,
use, and operation of a system communicate
with each other.

The benefits which accrue to a large,

geographically dispersed organization such

as the FAA are significant in terms of

efficient use of hardware, software, and

personnel resources. Documentation standards
enable document orginators to prepare their
material according to a preset logical for-
mat. The documents produced will be familiar
to others in the organization and designed
to meet common needs.

The quality of system software and

applications programs is also enhanced by

standardized documentation. Applications
which are operated at multiple facilities
become more transferable from one facility

to another. Duplication of effort among fa-

cilities is thereby minimized since standard
documentation promotes a general awareness
of the applications available throughout the

organization.

Finally, good ADP documentation prac-

tices facilitate personnel training since

both the standards and resultant documents

provide an excellent source of training

material. The resulting shorter learning

times tend to minimize the impact of trans-

fers or other ADP personnel turnovers.

III. TECHNICAL DISCUSSION

The success of the overall effort
hinged on gaining acceptance and receiving
cooperation from key personnel dispersed

43

throughout FAA's 14 ADP facilities. In

order to achieve this goal every effort

was made to seek involvement and participa-
tion from personnel who would ultimately
be the users of the documentation standards
or be responsible for their completion.
Both formal as well as informal lines of

communication were established throughout
the duration of the project.

Since most facilities had some form
of existing documentation, one of the first

tasks was to complete an in-depth review
of the current standards and adopt those
that were appropriate for consideration.
One of the significant challenges during
this phase of the project was to develop
standards which strike the proper balance
between flexibility and uniformity. The
standards also had to reflect a sensitivity
to the requirements of FAA's regional of-

fices so their responsibilities would not

be subordinated to unnecessarily rigid con-

trol s

.

It has been FAA's experience that stan-
dards are not self-implementing, but re-

quire a participative role on the part of

the users. Therefore, no effort was spared
to maximize the communication between all

parties involved in the effort. Formal

coordination was utilized at appropriate
stages of project development. Where signi-
ficant conflicts arose, compromises were
reached to the satisfaction of affected
offices. At all times an atmosphere of

open and candid communications was main-
tained.

The product which emerged embodied the
concepts established during the project
approach phase. Thus, the nature and extent
of documentation required during each phase
of system development vary, depending on

the scope, complexity, and type of system
being documented. Four levels of documenta-
tion were established to accommodate these
varying requirements. This concept permits
flexibility in documentation requirements,
thus eliminating burdensome documentation
for simple, less complex systems.

Document content standards defined as

documentation elements provide specific re-

quirements concerning the documentation of
an automated data system. The FAA stan-
dards prescribe up to twenty three of the
following documentation elements:

1. Documentation Check List
2. System Description
3. Program Description
4. Functional Flowchart

3

5. Prnrp«;s Flnwrhart
6. Proaram Flowchart
7. File/Data Base Decription
8. Input Document Definition
9. End Product Definition

10. Data Element Description
11

.

Data Grid
12. Center /Rea i nn Tntprfarp
13. Job Control
14. System Run Information
15. Data Collection and Preparation
16. Peripheral Process Guide
17. Distribution fiuidp

18. User Job Initiation Prnrpdiirp*;

19. Output Review and Resubmission
20. Remote Processing
21

.

System Test Procedure
22. Evaluation of System Test Results
23. Glossary of Terms

The documentation elements are further
arranged into the following documentation
categories:

1

.

System Design Specification
2. System Documentation
3. Program Documentation
4. Computer Operating Documentation
5. User's Guide
6. System Test Plan
7. Data Element Documentation
8. Distribution Guide

Concurrent with distribution of the
approved directive, a videotape training
presentation was prepared which enhanced
understanding of the documentation stan-
dards.

IV. CONCLUSIONS

The FAA has reaped numerous benefits
from utilization of uniform documentation
standards. Most prominent of these include
an increased awareness of software sharing,
eliminating duplication of effort, minimiz-
ing work disruption created by personnel
turnover, providing an excellent source of
training material, and contributing to the
overall efficiency of it's data processing
facilities. In addition, several favorable
by-products emerged.

Faced with austere staff levels, the
FAA has placed increasing reliance on con-
tractual support. The documentation stan-
dard directive has proved to be a useful
measure in determining contractually produc-
ed documentation. FAA contracting officers
normally require that the directive be
cited in the statement of work for software

44

development efforts. Thus, it has provided
an excellent source of documentation re-

quirements for both contractor and FAA, at

the negotiation stage, thereby eliminating
any ensuing misunderstandings. The reaction
from contractors has been overwhelmingly
positive. Several have even suggested they
intend to adopt FAA documentation require-
ments for their own internally developed
systems.

A post evaluation of the uniform docu-
mentation standards led to the development
of user guide documentation standards.
Though addressed in the former document,
increased emphasis on distributed data pro-

cessing systems and growing reliance on

user interaction dictated the need for a

separate directive. The user guide stan-
dard represents a logical extension of the
earlier effort. The documentation contained
in this directive is geared to support
non-ADP personnel who interact with ADP
systems.

In retrospect, if there is a single
dominant quality which characterized the

success of producing uniform documentation
standards, it was strong communications.
By their very nature, standards are not

appealing to the recipient. However, when
it is demonstrated that an honest and sin-

cere effort is being made to incorporate
each organization's thoughts in developing
standards which can make their job more
efficient and orderly, a productive re-

lationship is established. This rapport can

be a source of meaningful achievements and

should be regarded as a valuable asset.

45

NBS FIPS SOFTWARE DOCUMENTATION WORKSHOP, MARCH 3, 1982

SUPPLEMENTAL DOCUMENTATION
OF MODIFICATIONS TO SOFTWARE PRODUCTS

ON SMALL TO MEDIUM SIZED SYSTEMS

BY HENRY A. LEWIS

DCD COMPANY/DIVISION OF BORG ENTERPRISES

Supplemental Documentation of Modifications to Software Products on Small to Medium
Sized Systems is designed to provide a simple structure for analyzing proposed modifica-
tions, documenting development, and archiving pertinent project documents. This method
is supplemental to existing documentation procedures. The system approach is to keep the

method basic and straightforward while highlighting such historicaly troublesome areas as

development plans, future referencing, and audit concerns.

SOFTWARE PRODUCTS; SUPPLEMENTAL DOCUMENTATION

1. INTRODUCTION

The following paper describes the method of documenting enhancements to established software
systems. The purpose of this method is to provide a consistent pattern of analyzing proposed
modifications, documenting development progress, and archiving pertinent project documents. The
methodology is designed to provide a simple structure for documenting the development and
implementation of enhancements to an existing system. The system is assumed to be fully documented
in its own right, whether a privately developed program or a marketed software product. This method
is supplemental to existing documentation for such programs and products. Although enhancements
are viewed through predefined phases or categories, necessary attention is given to project develop-
ment, archival documentation, and company audit concerns. In terms of new systems implementation,
it is conceivable that this straightforward approach will find applicability for shops not having formal
implementation and documentation procedures as yet. In such cases, the shop will find it necessary to

elaborate on the basic method to form a company's complete software documentation procedure.

2. DESIGN CONSIDERATIONS

The Methodology for Supplemental Documentation of Modifications to Software Products on Small to

Medium Sized Systems (SDMS) developed as the need to modify formal software products became
necessary. Such products have their own documentation. However, no method was available for

developing and implementing modifications to the products. The lack of such an approach identified

an urgent need. SDMS was designed for the ongoing software environment. It is intended to document
modifications to existing systems. The approach is to keep the method basic and straightforward while

highlighting such historically troublesome areas as project development plan, future referencing, and
audit (control) concerns. This method is not intended to replace established documentation
procedures, but is supplemental in nature. It is designed to complement current procedures. However,
where no procedures exist, this approach (with certain additional mandatory inclusions) offers a viable

framework for custom system implementation and documentation.

Software products are designed to appeal to a sufficiently large enough market to justify their original

development costs. Consequently, it is their nature to be somewhat broad having a generalized solution

to the problem they address. A company that wishes to implement such software products must either

keep their current systems in place to the point where the product takes control, or modify their

existing systems, or modify the product itself to accommodate the necessary requirements of the

company. During these periods of review, close examination is often given to the company's existing

system with an eye toward improvement. Where company changes are needed, company procedures
are modified. Where systems analysis identifies no necessary changes, the proposed product is

evaluated for applicability to present methods. If the product is sufficiently different from current
procedure, it is recommended that modifications to the product remain close to the original product
design. The final form of the system undoubtedly reflects compromises from both sides. But the

rationale is that any modification to the software product today is a maintenance task tomorrow.

SDMS provides not so much a concise method as a comfortable framework from which to analyze a

proposed need for product modification, describe how, what, and when the change will be, and retain

permanent records of the developments once completed. The simple structure offers ample latitude

for existing procedures and individual initiative while providing a consistent development procedure.

3. PROCESS DESCRIPTION

The user recommends a change to MIS by completing the REQUEST section of the Project
Implementation form (PI) (Exhibit A). This section describes in general terms what the enhancement
consists of. PI is submitted to MIS development for consideration. Requests are assigned consecutive
project numbers. An initial review of the request is conducted by MIS to determine reasonableness.

46

PROJECT IMPLEMENTATION

ACTION

ORIGINATED BY

PROJECT NO

DATE

REVISION

DESCRIPTION OF MODIFICATION

IMPACT ON CURRENT ENVIRONMENT

IMPACT ON COSTS & SCHEDULES

REVIEWED BY DATE

ACCEPT () REJECT () REASON FOR REJECTION

DEVELOPMENT

ANALYSIS

FEASIBILITY

PRELIMINARY REVIEW ASSIGNED TO

DESIGN

PROGRAMMING

EVALUATION

IMPLEMENTATION

POST- IMPLEMENTATION AUDIT

INTERIM REVIEW ASSIGNED TO .

TECHNCAL REVIEW ASSIGNED JO

PI
REQUEST

RFOIIFRTFn RY HATF

DESCRIPTION OF CHANGE

REASON FOR CHANGE

j3 -0

m X
< O
0?

O
z

m
o

CONTROL

FORM COMPLETION _

INDEX ENTRY _

COMPUTER LISTINGS _

ATTACHED DOCUMENTS—

PACKAGE TRANSFER _

VERIFICATION

DEVELOPMENT APPROVAL

IMPLEMENTATION APPROVAL

REFERENCE

ATTACHMENTS

47

MIS responses from this initial review are recorded in the ACTION section of the PI. The project is

approved for analysis and feasibility, or disapproved with sufficient reason.

SDMS consists of a project-oriented documentation base. Each request is viewed as a unique

modification except in cases where new enhancements add to or obsolete existing modifications. In

such cases, project number revision levels are incremented, or are signified inactive, respectively.

SDMS control derives from the PI. This central, uniform document summarizes the development
process, and provides basis for maintaining a standard set of documentation for all enhancements.
This document highlights the development plan and cross-references additional documents. Project

implementations are assisted by this consistent approach to the development process through the

common PI reporting format.

Project development is planned by MIS. PI allows for describing a project in seven categories. Based

on the size of the modification and/or standard company procedures, these categories are given more
or less attention as the situation dictates. The development process is defined by these phases-

Existing company development procedures may require additional, more definitive documentation.
These phases represent a basic logical progression in development thinking.

3.1 Analysis

User requirements are defined. Interviews are conducted to determine project requirements. A
preliminary review is held with users to discuss findings. Project definition is reworked as

required.

3.2 Feasibility

Reasonability of project per operational and/or economic considerations is examined. Pertinent
information is gathered and analyzed. The impact of modification per operation and/or cost

concerns is documented.

3.3 Design

Design specifications are established. Project specifications are provided with necessary support

documents. An interim review is held with programming support to clarify design specifications.

3A Programming

Modifications are coded and tested. Programs and procedures are coded per design specifica-

tions. Flowcharts and logic narratives are included as required.

3.5 Evaluation

Project results are evaluated. A technical review of project is held with programming support.

Project goals are compared to results. An evaluation is held with a user review board. Attention

focuses on project objectives. Review board either recommends implementation, resubmits

project to design and programming phases, or decides against implementation.

3.6 Implementation

Implementation plans are established. A firm implementation plan is developed. Plan is

presented to users for approval. Implementation schedule is reworked as required.

3.7 Postimplementation Audit

A postimplementation audit is conducted to determine the modification's overall effectiveness.

Results are published to management.

PROCESS EVENTS

This section summarizes a typical series of events comprising the development process.

't.l Project Action/Preliminary Review

The PI is submitted to MIS development. Development assigns a project number and the ACTION
section is completed. This includes the reason, a description, and the impact of the modification
on current environment. Additional support documents such as written requests, impact
statements, etc., are referenced in the reference section and attached to the form.

Development Approval/Project Plan

The project is approved for development by MIS management. A plan is established including

review and completion dates, assignments, and a brief description of each phase of activity. The
PI works as a reference document during analysis, feasibility, and design of the project.

Supporting documents generated during these phases are referenced on the PI and attached.

48

Design/Interim Review

An interim review with programnning support is conducted during the design phase to clarify

project goals and to identify conflicts between planned design and coding limitations.

^A Programming/Technical Review

Development releases the PI to programming support for coding and testing. Mandatory
contributions from programming activities are computer listings of pertinent procedures and
program compilations. These are referenced on the PI and attached. Programming support
releases the PI to development during evaluation. Overall project goals and test results are
reviewed by analysts with programming support from a technical perspective.

1^.5 User Evaluation/Implementation

Development presents project results to the review board for evaluation. The review board is

comprised of user groups and MIS management. Implementation follows a favorable review and
appropriate approvals.

it.f) Document Package Creation/Backup

Projects are recorded in one of two indices—one indexing nonimplemented, the other imple-
mented (Exhibit B).

The attachment of all supporting documents referenced on the PI is verified. The originals and
duplicates of the PI and all attachments are brought together as document package and backup,
respectively. The original is retained in MIS local files. The duplicate is archived off-site.

Proper assemblage of the packages is verified by a second party.

1^.7 Postimplementation Audit

Several months after implementation, an audit of the modification is done. Project goals are

reviewed for the effectiveness of modifications, and any subseqent problems are examined and
documented. Audit results are included in the document package, and published to management.

5. PR03ECT IMPLEMENTATION FORM

5.1 Request Section

The REQUEST section identifies the individual requesting a change or modification and the date

of the request. A description of the change from the user's perspective is given, and a statement
summarizing the need for change.

5.2 Action Section

The ACTION section identifies the individual originating the project and the date of the

origination. MIS personnel are responsible for project number generation and control. A project

number and any subsequent revision is assigned. A description of the modification views the

change from a technical perspective. Effects on the current environment are highlighted. The
request is examined to determine what specific library elements and data files would be altered

by enhancements. The degree of the change is given in terms of lines of code changed or added.

Dynamic procedural impacts are also described. A formal impact statement may be required. If

so, it is identified in the REFERENCE section. Any impact on costs and schedules is described.

The individual reviewing the request is identified and the date of the review. The review either

accepts the request for development, or rejects it. If rejected, sufficient reason is given.

5.3 Development Section

The DEVELOPMENT section describes the goals of each particular phase or category of the

development process. Tentative completion dates and specific deliverables are given for each.

Responsibility for the three mandatory reviews is assigned. Possible inclusions at each point

might be:

Analysis - Statement of project scope, system surveys, and analyses of

project requirements.

Feasibility - Feasibility studies.

Design - System schematics, job stream descriptions, design narratives,

and file layouts.

Programming - Flowcharts, and logic narratives.

Evaluation - User evaluation reports.

49

Implementation Detailed implementation schedule.

Postimplementation - Audit report.

5A Control Section

The CONTROL section identifies proper PI completion, respective Project Number Index entry,

mandatory inclusion of computer compilations and procedure listings, attachment of all

referenced documents, proper assemblage of the document package, and the reverif ication of the

foregoing by a second party. Verification is signified by initialing. Development and
implementation are each approved by MIS management.

5.5 Reference Section

The REFERENCE section identifies by name each document referenced and attached throughout

the development process to form the document package.

6. PROJECT NUMBER INDEX FORM

The Project Number Index includes an entry for each project number/revision level occurrence. The
date of the entry, plus libraries, elements, element types, and number of lines changed or added is

given. The individual logging the entry is identified along with a brief description of the modification.

It is recommended that the Index be stored on disk, and that retrieval consist of two or three reversing

formats as the MIS function has need.

7. GENERAL CONSIDERATIONS

7.1 Document Package

Control of modification documentation derives from the PI. Pertinent supporting documents are

logged in the REFERENCE section of the PI. This group of documents represents the Document
Package. Contents vary from project to project. However, a certain number of mandatory
inclusions are necessary. They include program compilations and procedure listings. It is

recommended that design narratives describing basic system flow be provided for anything
beyond minor modifications. The comprehensiveness of the Document Package is determined by
the impact of enhancements to the existing environment. All attachments are identified by a
PROJECT DOCUMENT stamp.

PROJECT DOCUMENT
PROJECT NO REV
DATE TOTAL PGS

SUBMITTED BY
.

Shops using this methodology as their documentation base should require as mandatory inclusions

such things as analysis and design narratives, feasibility studies, system schematics, file layouts,

logic narratives, and detailed implementation schedules.

7.2 Composition of Project Number

Some thought should be given to the method of assigning project numbers. It is recommended
that the composition of the project number be comprised of three parts. The first portion to

represent the application affected by the modification. The second portion to represent
sequential numbering of projects, and the third portion to represent subsequent revisions to

projects.

AP 101 01

REVISION LEVEL

CONSECUTIVE NUMBER

APPLICATION CODE

The composite project number of the above example is APIOIOI. This allows for grouping by

application and permits distinct filing for each revision level.

50

7.3 PARALLELING ACTIVITIES

The development process requires the timely participation of all involved. The PARALLELING
STRUCTURE/LEVEL/PHASE diagram (Exhibit C) illustrates this process of coordination between
each function and phase, and how they coincide with the SDMS methodology.

8. CONCLUSION

The SDMS methodology adopts a simple, straightforward approach to the development of modifications

for software products. It has potential as the basis for complete system documentation. However, its

primary thrust is as a supplement to existing documentation. Design concerns consist of maintaining

method simplicity and a supplemental nature to the scheme. Practical problems occurring during the

implementation of changes are reviewed. A general framework rather than a concise formula is

established for identifying control points within the development process.

The process is divided into seven categories: Analysis, Feasibility, Design, Programming, Evaluation,

Implementation, and Postimplementation Audit. Each category is described and a typical series of

development process events is presented. The movement of forms and supporting documents plus

various approvals and reviews is described. The use of two forms is discussed in detail. The Project

Implementation (PI) form serves as the control document for the whole of SDMS. The Project Number
Index simply indexes the many projects.

Several general considerations are discussed including the formulation of a Document Package, a

suggested composition for the project number, and a diagram illustrating dynamics of development

process interplay.

PROJECT NUMBER INDEX INDEX DATE

PROJECT
NO

REV DATE LIBRARY ELEMENT
1

TY
1

LN
1

E
2 2 2

E,

3 3 3
LOGGED BY DESCRIPTION

saa

51

<

it-
o >
UI lU

z- ai
•

> ?
>. . .

<
z
1 5

PARALLELLING
STRUCTURE/LEVEL/PHASE
H A LEWIS

1-

o

o <
a. -1
Q. a.

5: a

52

NBS FIPS Software Documentation Workshop, March 3, 1982

Operations Documentation Standards --

Online, Real-time Versus Offline, Batch

Deborah A. Harman

OCLC Online Computer Library Center, Inc.

Dublin, Ohio 43017

The FIPS 38 content guidelines for the Operations Manual should include or

expand four topics important to real-time processing: hardware configuration;
start-up, shutdown, and performance monitoring procedures; error messages; and

non-routine procedures.

Keywords: Documentation; Operations manual; Real-time system.

1. INTRODUCTION

The operations documentation developed for an offline, batch system must be somewhat
different from that developed for an online, real-time system. Offline, batch processing,
besides being the simplest and cheapest form of processing, also requires far less operator
training and support than does real-time processing. Real-time systems are installed to

satisfy users' needs for immediately updated information. [1] While some errors and reruns
can be accommodated in a batch environment, the users' total dependence on the system in a

real-time environment makes any service disruption i ntol erabl e.[2] Operators must be

prepared, both through training and documentation, to respond immediately to real-time
processing problems.

This need for operator responsiveness to ensure real-time system availability is not

adequately addressed in FIPS 38. Specifically, the content guidelines for the Operations
Manual should be revised to include or expand the following topics:

. Hardware configuration

. Start-up, shutdown, and performance monitoring procedures
Error messages

. Non-routine procedures

2. OCLC'S OPERATIONS DOCUMENTATION

2.1 Batch and Online System Documentation at OCLC

Some of the same weaknesses found in the FIPS 38 Guidelines have been revealed in the

documentation prepared for the operators of the OCLC Online System. Our experience in

evaluating and revising this documentation is offered here in the hope that it may save

others, creating documentation for an interactive system, some time and expense.

53

OCLC provides bibliographic resource sharing and support services to over 4,400
terminals in 5,000 libraries throughout the United States, Canada, Mexico, and Great

Britain. Through the OCLC telecommunications network, lilDraries can access and update a

data base consisting of eight million catalog records. Shared use of OCLC's online data

base relieves libraries of the necessity to perform many manual, labor-intensive tasks and

helps libraries to reduce rising costs and to improve services. Because of the importance
of system availability and response time to its member libraries, OCLC carefully monitors
the performance of the Online System.

Not surprisingly, OCLC places far greater emphasis on the documentation prepared for

its online processing than on that prepared for its batch operations. Not that OCLC's batch
operations are trivial; each week, the Production System generates, among other things, 2.5

million catalog cards for shipment to libraries. However, standards for batch operating
procedures are only now being developed, and the batch documentation itself exists in a

variety of forms (including notes and memoranda). An i nterdi vi si onal effort is underway to

address batch documentation problems. In contrast, OCLC has prepared, for the Online System
operators, an enormous volume of material — the Systems Operations Reference Manual (SORM)
-- 450 pages in length.

2.2 The Operations Manual Questionnaire

The Systems Operations Reference Manual , originally released in 1979, is revised
quarterly by the Documentation Department of OCLC to reflect software, hardware ,. and

procedural changes affecting the Online System. Late last summer, wondering whether our
revision efforts might be better directed, we prepared a questionnaire posing for evaluation
32 specific statements about the manual's completeness, accuracy, content, organization,
style, and format. This questionnaire was distributed to 70 holders of the SORM.

It was encouraging to learn from the responses to the questionnaire that the holders of

the SORM were actually using it; in fact, most of the computer operators indicated that they
were referring to the manual on a daily basis. However, the evaluative responses to the
questionnaire were less than enthusiastic. Initially, it seemed impossible to form a

revision plan to resolve all the problems noted by the respondents to the questionnaire.
Finally, by selecting only statements to which over half of the respondents had expressed
strong agreement or disagreement, we were able to identify those aspects of the manual
requiring immediate attention. Unfortunately, the major problem area was the material
itself; respondents indicated that the information in the SORM was, in some cases, outdated
and, in general, incomplete. Specifically, they suggested the following topics for
inclusion or expansion in the manual:

Overview of the OCLC Online System
. Online System Responsibilities by Position and Organizational Unit

Hardware Description and Operation
Recovery Procedures
Problem Detection and Resolution
Emergency Priorities
Safety and Security Procedures.

2.3 Addressing Problems in OCLC's Operations Manual

The problem of outdated information, though serious, is not difficult to resolve.
Auditing current practices in the Data Center against documented procedures should identify
specific items requiring correction in the manual. Better control procedures, to verify
that revision material is prepared as system changes are implemented, will also help to keep
the SORM' s content current.

However, the problem of incompleteness will be costly to resolve, since eventually it

will necessitate the total reprinting of the manual. Among the topics suggested for
expansion, only the last two -- Emergency Priorities and Safety and Security Procedures —
are not included at all in the current manual. Althougli these topics are covered in the
corporate standards manual, they do need to be detailed specifically in terms of Data Center
operations, and will, therefore, be added to an administrative portion of the manual.

54

The remaining topics require more emphasis and detail than presently offered. This
will necessitate not only adding new material, but also reorganizing existing information.
For example, all error messages are now listed with their page references at the end of the
SORM, but the explanations and appropriate operator responses for the messages are scattered
throughout the text of the manual. A computer operator may need to flip from one section of
the manual to another to understand clearly what a given error message means and what he

should do about it. An obvious first step in revising the manual is to place all the
information concerning the messages in a single appendix. Similarly, recovery procedures
and instructions for detecting and resolving problems are located in several sections of the
manual. Separate, clearly defined sections -- Performance Monitoring Procedures and
Restart/Recovery Procedures -- will be added.

3. CONCLUSIONS

3.1 OCLC's Documentation and FIPS 38

The needs expressed by OCLC's Online Operations staff are typical of the needs of all

operators working in a real-time system environment. The FIPS 38 content guidelines, to

some extent, imply the inclusion of such topics as those listed by the users of OCLC's
manual. However, these topics must be identified separately and highlighted as part of the
Operations Manual to ensure the availability of this information to operators when they need
it. Careful consideration of operators' needs in advance of publication will reduce the
need for major subsequent revisions.

3.2 Hardware Configuration

FIPS 38 should be revised to specify a discussion of hardware as part of the Operations
Manual. Possibly, in a batch environment, no detailed discussion of hardware is necessary;
where the same or similar equipment is likely to be used for all processing, vendor
documentation may be enough. However, online systems typically have multi-vendor hardware
configurations, and, when problems arise, response time may well be dependent on the
operator's understanding of the equipment. In an online, real-time system, there is also no

batch job ticket to indicate to the operator which machines are used for running any given
program. Therefore, Hardware Configuration should be added to the OVERVIEW Section, as

paragraph 2.1, with the subsequent topics renumbered accordingly, e.g., 2.2 Software
Organization. The discussion factors for the 2.1 Hardware Configuration paragraph need not

be very different from those suggested for the discussion of Equipment in the other document
types. The following guideline for discussion factors might provide useful background
information to operators:

Identify the equipment required for the operation of the system. Describe
any significant operating features, such as the function and use of

lights, switches, and keys. Relate the hardware to specific processing
functions or applications. When appropriate, provide a diagram showing
functional relationships between mainframes, communications controllers,
and peripheral devices.

3.3 Start-up, Shutdown, and Performance Monitoring Procedures

FIPS 38 should also be revised to specify system start-up, shutdown, and performance
monitoring procedures. These procedures should be included as separate paragraphs for

discussion in Section 3, DESCRIPTION OF RUNS. Start-up, shutdown, and monitoring procedures

can be viewed as types of runs, but in an online, real-time environment, they may also be

the only clearly identifiable routine jobs, and thus merit special attention. The complex

sequence of operator actions required for system start-up and shutdown and the importance of

timely problem detection also suggest that specific mention (as paragraphs 3.1, 3.6, and

3.7) is appropriate in the content guidelines.

55

3.4 Error Messages

A list of all error messages should be added to the end of Section 3. This list could

be organized in any way appropriate for the particular system, but should include such

information as:

an explanation of the error message;
. identification of the process or program generating it;

. an indication of its severity;

. action or response required of operations personnel.

Consolidating this information tovwrd the end of the Operations Manual would make it

more accessible to operations personnel and could result in less downtime. The list creates

some redundancy in the contents of the Operations Manual, in that it repeats messages
included in the Run Description. However, the potential benefits of such a list outweigh

the inconvenience of maintaining duplicate information.

3.5 Non-Routine Procedures

Section 4 of the content guidelines should be expanded to emphasize the control

responsibilities of operations personnel. The following outline suggests one form such an

expansion might take:

4. NON-ROUTINE PROCEDURES

4.1. Emergencies and System Failures.
Identify types or causes of potential system failures and
emergencies. Define for each the responsibilities of

operations personnel. Include such information as the
features and operation of safety/security devices; emergency
priorities; and problem reporting procedures.

4.2. Switchover to a Back-up System.
Describe any available back-up systems and the conditions and

procedures for their use.

4.3. Turnover to Support Groups.
Describe the conditions and procedures for transferring
responsibility for operation of the system to appropriate
support groups, such as maintenance programmers, computer
engineers, network control analysts, testing and installation
staff, etc.

Although some of this information might be more pertinent in an administrative manual,
including it in the Operations Manual would ensure its availability to computer operators.
Content guidelines reflecting the need for safety, security, and contingency procedures
should minimize the occurrence of disasters and the time required to recover from them.

3.6 Benefits of Revised Content Guidelines

The four revisions to the Operations Manual, outlined here, stress the need for
increased understanding and awareness on the part of operations personnel in an online
system environment. As Guldentops has observed, "Operating online systems often becomes a

tedious and boring job needing few interventions and little initiative, but requiring
constant al ertness. "[3] Although actual operating tasks become simpler, the required
knowledge and skill level necessary to ensure high system performance become more complex.

Attention to the needs of the operations audience — both batch and online -- should
result in better system performance and fewer documentation revisions.

56

4. REFERENCES

1. Schaeffer, Howard, Data Center Operations (Englewood Cliffs, N.J.: Prentice-Hall,

1981), p. 284.

2. Catania, Salvatoria C, "Designing an Efficient On-Line System," Auerbach
Information Management Series (Pennsauken, N.J.: Auerbach Publishers, 1977),
Portfolio No. 3-10-04, p. 2.

3. Guldentops, E., "Computer Audit and Control," Infotech State of the

Art Report : Computer Audit and Control , Series 8, No. 8, (1980), p. 100.

57

NBS FIPS Software Documentation Workshop, March 3, 1982

Documentation for Operation Phase

of Systems Life Cycle

Robert A. Larson

USDA, Forest Service

This paper is on software documentation requirements during the Operation Phase

of automated systems life cycle in the Forest Service. Implementation of these
requirements was started in 1978. This encompassess some five thousand programs

in a distributed/dispersed environment. The Forest Service has a systems

management process covering the systems life cycle which includes this phase.

This process has been implemented in our national and field offices with

significant success.

The documents to be presented come from the Forest Service Systems Management
Manual and Automated Systems Management and Documentation Handbooks. This paper
covers the document contents, associated experiences and future plans for

managing software in the Operation Phase.

1. INTRODUCTION

The Forest Service, U. S. Department of Agriculture, has primary responsibility for
protection and management of this nation's forest resources. There are three operating
divisions: one is charged with the management of approximately 187 million acres of

federally-owned National Forests, a second promotes forestry on state and private lands,

and a third is a research arm. The Forest Service is comprised of 9 National Forest
Regions, 2 State and Private Forestry Areas, 8 Research Stations and a Forest Products
Laboratory. Each Region has from 13 to 20 National Forests and each Forest has from 4 to

6 Ranger Districts. In total there are 123 National Forest offices and 653 Ranger
District offices within the Forest Service.

Forest Service management is delegated to the lowest appropriate level. It is essential
that computing resources be provided to all organizational levels and that these
resources be prudently managed. The central host computer used by the Forest Service is

a UNI VAC 1100/84 located in Fort Collins, Colorado. The Forest Service also has

computing and word processing facilities, including stand-alone facilities, located in

the National Headquarters, Region, Area and Station offices, most Forests, and many
Ranger Districts. There is a wide variety of outside computer usage through contracts
and cooperative agreements with major universities. Most of the in-house facilities
communicate with or through the host computer and range from non-intelligent terminals to
full size computers. These facilities provide for the development and use of over 5000
programs in a distributed/dispersed environment.

In 1976 the Forest Service created a new Systems Mangement organization as the result of
a study having input from management, users, and computer specialists. Three areas of
need identified and emphasized in that study were for systems standards, documentation
requirements and improved systems management. The Forest Service successfully
implemented a systems management process covering the total systems life cycle in 1977.

Some standards and guidelines had been drafted by both in-house resources and
consultants, but had not been implemented prior to January 1977. This material along
with FIPS PUB 38 and DOD's Documentation Standards were used in developing the Forest
Service documentation handbook. The work was accomplished through workshops and the use
of personnel detailed from field units on specific project assignments to assure field
input. Management and technical staffs at all organizational levels reviewed the
completed work and it was published in November, 1978.

58

This paper presents Forest Service documentation requirements for the Operation Phase of
the Systems Life Cycle. Several existing systems have been brought into the management
process and into compliance with standards using these requirements.

Documentation is a key software mangement tool where both management and data processing
facilities are widely dispersed. Our management process uses this documentation to

support management and technical reviews throughout the systems life cycle (Figure 1).

2. RECOMMENDATION

There is a need for consistent Government-wide guidelines and standards covering
documentation requirements in all phases of the systems life cycle. Currently only the
Initiation and Development Phases are covered by FIPS PUB's. There are strong
indications that FIPS PUB 38 needs to be updated. The Forest Service is in the process
of updating their documentation requirements for all phases including the Operation Phase.

The purpose here is to present Operation Phase documentation, how it is being used and

its effectiveness. The recommendation is that similar requirements or quidelines could
and should be applied Government-wide at an early date. The Forest Service documents,
after inclusion of proposed improvements, could be used as a starting point for
development of a FIPS PUB Guideline for Operation Phase Documentation.

3. DISCUSSION

The Operation Phase starts immediately following formal system acceptance by users and

management. The first step is full implementation following an approved Implementation
Plan . It is preferred that a system be certified prior to this, but this has not always
been possible. Completion of the Operation Phase occurs with a management decision to

remove, replace or extensively modify the system. In the event of replacement or

extensive modification the system should cycle back to the Initiation or Development
Phase.

The documentation requirements have not seen as much use as anticipated, but what the
Forest Service has seen is quite promising. Some of the improvements needed will be

covered later in this discusssion. The primary software management documents involved
with this phase are as follows:

1. Automated Systems Certification
2. Problem Report/Modification Request

3. Periodic Review and Evaluation
4. In-depth Review Plan

5. In-depth Review and Evaluation

These documentation requirements have assisted the Forest Service in cleaning up their
libraries, bringing systems up to standard, reducing maintenance and improving the

quality of existing systems.

The Project Acceptance document which is signed prior to implementation does not assure

that the system is certifiable. In fact, in most instances there is still significant
work to be done prior to certification. It does provide assurance that the system is

acceptable and has the approval of management to be fully implemented. Management can

then allow a reasonable time frame to meet the certification requirements while

implementation is progress. There are few certified systems to date, but the Automated

Systems Certifications (Figure 2) was not required for new systems until about a year

ago. This document and other modifications were a result of attempting to assure

compliance with Departmental and Forest Service requirements. There has been a fair

start towards doing just that.

59

The Problem Report/Modification Request (Figure 3) with associated procedures and

requirements were placed in effect about the same time as the certification document.
This is a record of problems and modifications and the appropriate action taken. Prior
to this there were complaints of problems reported and modifications requested for which
there was no apparent response from the system support staff. Some were legitimate, some
were not, but there was no documented evidence one way or the other, if this document
has done nothing else, it has improved communications between the end users and the
support staff.

Other maintenance procedures and documents may be used, but they must first be approved.
Also, the alternative requirements and procedures must be included in the user and
maintenance manuals. With this direction there has been noted improvement of systems
maintenance records including the documentation of changes. Much more needs to be done
but it is a good start. More people are now getting involved and are looking for further
improvements.

One problem in the past was obsolete, undocumented and low usage programs in our
libraries. To deal with this a requirement was established for periodic (minimum of once
per year) review of all systems. With this a Periodic Review and Evaluation document
(Figure 4) was developed and mandatory review criteria identified. This document was
only partially successful, but it served to point out things to look for in existing
systems.

The Forest Service is now looking at modifying the periodic review requirements and

associated documents. This will involve partially automating the process by providing an

annual report showing computer resource utilization, summary of problems and modification
requests, and support staff comments for each system. This review will not require
interviews or significant user involvement. Most of the burden of preparing this report
falls on the systems support staff.

Based on a current need or the results of a periodic review, management may request an

in-depth review. This review covers many of the same criteria as acceptance testing with
heavy involvement of the developer, user, and management personnel. This review also
looks at current needs and the system environment. An in-depth review may replace a

periodic review.

The extensi veness of an in-depth review and the significance of resources utilized for
that review requires an approved In-depth Review Plan (Figure 5) prior to the review.
Upon completion of the review, an In-Depth Review and Evaluation Report (Figure 6) is

presented to management. Management's decision at this point will be to (1) remove the
system, (2) approve continuance, (3) approve modification, or (4) approve replacement.

This review has been effective in bringing existing systems into the management process.
It has also created a management awareness that was not there before.

The Forest Service is currently looking into simplifying the process for review of
smaller systems. To date, primary usage has been on large systems with identified
problems or potential modification requirements.

This completes coverage of all of the required operation phase documents except for the
review criteria. The review criteria are key to the pilot test, periodic and in-depth
reviews and to system certification. Some users would like simple criteria like "does it

run", but there is more to it than that. Major review criteria categories are identified
in Figure 7. Figure 8 contains an example of detailed criteria for one category. Other
systems dependent or management specific criteria may be added to this list for any of
the reviews. Certification or recertif ication of a system requires full compliance with
the mandatory pilot test criteria.

60

At the time these requirements were established there was very little reference material
available or experience to draw from. FIPS PUB standards or guidelines would have been

used if they had been available. The wheel should not have to be re-invented. Any NBS
efforts to publish standards, guidelines, procedures, covering this segment of the data
processing area should be supported. The sooner they can do this the better, easier and

more cost effective it will be for all concerned. There should also be more flexibility
and a faster release of new material and updates. Several standards and guidelines in

the past have been obsolete before they were published.

4. CONCLUSION

Forest Service Operations Phase documentation requirements are far from perfect.
However, they provide a good basis from which to start. With their past experience and

that of others, the Forest Service hopes to significantly improve their requirements in

this phase of the systems life cycle.

To effectively develop and implement data processing standards and guidelines it takes a

concerted effort by management, developers and users. Without management backing many
individuals will not read or use the material although it is to their benefit and that of

the organization. Even with management backing the implementation process can be slow

and sometimes painful.

As stated at a recent standards workshop, the six E's (Establish, Educate, Encourage,

Enforce, Evaluate, and Enhance) are required for successful implementation and use of

standards and guidelines. The weakest areas are Education and Encouragement. This is

often due to insufficient resources such as people and money to do it effectively.

Everyone is familiar with Establish and Enforce. In fact, so familiar that the need for

emphasizing Evaluation and Enhancement is overlooked . The Forest Service anticipates
Enhancement to the periodic reporting process and documentation in the near future. With

that to be more effective, they are planning to improve on the Education and Encouragment
of their staffs and management.

61

62

AUTOMATED SYSTEM CERTIFICATIONS

SYSTEM NAME

SYSTEM-ID (3-Chdr.)

In addition to the approvals which have been given to the development
stages for this system, the following specific certification are
documented for the system record:

TECHNICAL ASSURANCES

The accuracy of modeling assumptions and the algorithms of the

system are deemed to be appropriate. Assurances that all applicable
national standards and security requirements have been met are

hereby provided.

SYSTEM CERTIFICATION

Certification of the adequacy of security requirements (such as:

FSH 6609.33, OMB Cir. No. A-71), National Standards Compliance,
Modeling Assumptions, algorithms, and documentation is hereby

provided.

Director, Support Staff Date

Associate Deputy Chief for Administration Date

Figure 2

63

U.S. Department of Agriculture

Forest Service

AUTOMATED SYSTEM PROBLEM REPORT/MODIFICATION REQUEST

(Instructions Reference FSM 6620)

PART I - REQUESTING UNIT

1 . Originator's Name 2. Unit 3. Date

4. Address (Include City, State, and Zip Code)

5. System Name 6. System \D (3 characters)

7. Type of Request (X appropriate box)

1 1
Problem or Error Suggested Modification

1 1
Information Only

8. Description

9. Materials Attached

PART II - SUPPORTING UNIT

1. Evaluator's Name 2. Date of Evaluation

3. Evaluation

4. Estimated Cost

5. Action Taken

6. Actual Cost

7. Action Taken By Date Action Completed 9. Date Returned to Request-
ing Unit

FS-6600-2 (1/80)

Figure 3

64

PERIODIC REVIEW AND EVALUATION REPORT

Contents

SECTION 1 GENERAL INFORMATION

1.1 System Identification
1.2 Responsibility
1.3 Background
1.3.1 References
1.3.2 Attachments

SECTION 2 REPORT

2.1 Overview of Review and Evaluation
2.2 Recommendations
2.3 Review Procedures
2.4 Evaluation Criteria and Findings

Figure 4

IN-DEPTH REVIEW PLAN

Contents

SECTION 1 GENERAL INFORMATION

1.1 System Identification
1.2 Responsibility
1.3 Background
1.3.1 References
1.3.2 Attachments

SECTION 2 REVIEW AND EVALUATION PLAN

2.1 Overview of Plan

2.2 Activity Schedul

2.3 Resource Requirements
2.3.1 Personnel
2.3.2 Other

2.3.3 Cost
2.4 Evaluation Criteria

Figure 5

65

IN-DEPTH REVIEW AND EVALUATION REPORT

Contents

SECTION 1 GENERAL INFORMATION

1.1 System Identification
1.2 Responsibility
1.3 Background
1.3.1 References
1.3.2 Attachments

SECTION 2 REVIEW AND EVALUATION REPORT

2.1 Overview of Findings
2.2 Recommendations
2.3 Alternatives
2.4 Qualification of Original Evaluation Criteria

2.5 Summary of Findings
2.6 Evaluation Criteria and Detailed Findings

Figure 6

MAJOR EVALUATION CRITERIA CATEGORIES

I. MANAGERIAL

A. Functions of the Model for Forest Service Management
B. Management by Objectives Operation
C. Process Interfaces

D. Decision Utility

II. OPERATIONAL

A. Documentation
B. Cost of installation and operation
C. Training

D. System Performance
E. Data Storage and Handling
F. Hardware Requirements

III. TECHNICAL

A. Analytical Aspects
B. Systems Design and Programming
C. Systems Maintenance

Figure 7

66

EVALUATION
TYPE v

P T P R I R

I E E E N E

EVALUATION CRITERIA GUIDELINES L s R v 1 V

0 T I I D I

T 0 E E E

D W P W

I T

C
LI
H

II. OPERATIONAL

D. System Performance

1

.

Meets the specified needs of intended M M M
users at all levels.

2. Predetermined runstreams used are M M M
sufficient, minimizing need for new
or special runstream generation by
the user.

3. Users at all levels support the M M M
systems approach and are satisfied
with the performance of the system.

4. All functions of the system are M M M
performed in a cost effective manner.

5. Required input forms are easily M M M
understood by users and can be

completed with minimum effort.

6. Required input forms minimize data M M M
entry efforts.

7. Systems generated reports are M M M

readable and easily understood by

users.

8. Include other performance functions lA 1 n lA

identified for the system being
evaluated.

1/ NA = Not applicable lA = If applicable M = Mandatory

Figure 8

67

NBS FIPS Software Documentation Workshop, March 3, 1982

A Proposed Guideline for Documentation of Computer

Programs and Automated Data Systems for the Operations Phase

Thomas M. Kurihara, CDP

U.S. Deoartment of Transportation
Office of Information Systems and Telecommunications Policy

This paper presents a proposal for the third publication of a set of Federal

Information Processing Standards (FIPS) publications describing the documen-

tation content guidelines for computer programs and automated data systems

for the operations ohase. The proposed guideline is necessary to complete

the work begun by FIPS Task Group 14 and is in resoonse to the General

Accounting Office Report to the Congress of October 8, 1974, "Improvement
Needed in Dacumenting Computer Systems."

Keywords: Documentation, Federal Information Processing Standards (FIPS),

Operations Phase, Computer Programs, and Automated Data Systems

1. INTRODUCTION

1. 1 Proposal

This paper presents a proposal to prepare and publish a guideline for documentation of
computer programs and automated data systems for the operations phase. The purpose of the
guideline is to describe the content guidelines for each document type needed during the
operations phase of a software life cycle. Federal Information Processing Standards(FIPS)
Publication 38, "Guidelines for Documentation of Computer Programs and Automated Data
Systems, "(1) covers the document types orepared during the development phase o* a software
life cycle; and FIPS Publication 64, "Guidelines for Documentation of Connuter Programs and
Automated Data Systems for the Initiation Phase, "(2) covers the document tynes prepared
during the initiation phase of a software life cycle.

1.2 Need

The General Accounting Office (GAO) in 1971(3) and in 1974(4) cited the need for
improved documentation of computer systems. In particular, GAO cited increased costs of
operations and weakened management controls resulting from inadequate documentation of
computer systems. The author believes that the publication of documentation "ontent
guidelines for the operations ohase will assist managers, users , auditors, ana software
support staff to establish and document post-implementation review functions and control
changes to operational computer systems.

1.3 Interest

In 1977, the FIPS task Group 14 Chairperson requested an affirmation of interest in
further task force work and recommendations for specific document types and content
guidelines from task group members. The majority of respondents cited an interest and
need for a post-implementation review document, project development notebook, and standards
and procedures manual. Of the document types most frequently mentioned, only the post-

68

implementation review document is included in this proposal.

1.4 FIPS Task Group 14 Plans

The Chairperson of FIPS Task Group 14 included in the scope and program of work for

1978 the development of documentation content guidelines for the operations phase. Because
of th time required to complete the work on the draft FIPS Publication 64 and the

subsequent disbanding of FIPS task groups, no work was started. The scope and program of
work recommended were:

Scope: To develop additional documentation content guidelines for documentation of

computer software during the operations phase. Include for considera-
tion the documents resulting from the user acceptance of comouter programs
and automated data systems, requests for changes to operational systems
and related data bases, post-implementation reviews and audits, per-

formance measurement and evaluation, and conversion studies for data,
computer programs and automated data systems.

Program of Work:

t survey current policies and practices of Federal executive agencies
for documentation in the operations phase, including the use of
automated documentation aids and productivity improvement tools

• assemble representative examples of documentation content guide-
lines, forms, and procedures that can be used as a starting
point for the task group work

• develop a FIPS publication promulgating content guidelines similar
to and supplementing FIPS Publications 38 and 64; consisting of

Part I - Documentation within the Software Life Cycle

Part II - Documentation Considerations

Part III - Content Guidelines for Document Types.

1.5 Standards Workshop Recommendations

In the summer of 1980, members of the Washington, D.C. metropolitan area Federal ADP
Users Group (FADPUG) Special Interest Group on ADP Standards and Quality Assurance
(SIGSTD/QA) organized a workshop to review FIPS Publication 38. The result of the workshop
sessions was "A Proposed Documentation Standard Based on a System Decomposition and
Information Base Approach," authored by Mr. Saul Zaveler.(5) The workshop details were
reported in a paper presented at the Software Engineering Standards Applications Workshop,
August 18-20, 1981, in San Francisco, "Observations on Documentation Standards Revision:
FIPS Pub 38 After Four Years. "(6) The proposed guidelines preparation should include
consideration of the recommendations and concerns developed during the SIGSTD/QA workshop
on the approach taken to prepare FIPS Publication 38 and its contents and structure.

69

2. RECOMMENDATIONS

2.1 Document Content Guidelines

The document types included in the guidelines should be a documentation record of

management, development staff, and user activities during the operations phase, and should

include the post-implementation review document, change control document, and performance

evaluation document.

2.2 Documentation Standards Manual

The documentation content guidelines issued by the National Bureau of Standards (NBS)

as FIPS and those issued as part of Reports on Computer Science and Technology , NBS Special

publication 500-nn series such as the "Computer Model Documentation Guide," NBS Special

Publication 500-73,(7) should be consolidated into a software engineering documentation

standards manual

.

3. Guidelines for Documentation of Computer Programs and

Automated Data Systems for the Operations Phase

3.1 Scope

Computer programs and automated data systems evolve in phases, from when an idea to

create the software emerges through the time that software produces the required results.

Many different terms are currently used to identify these phases and the stages within the

phases. Three phases were described in FIPS Publication 38--initiation , development, and

operation. FIPS Publication 64 addresses content guidelines for the initiation phase;

FIPS Publication 38 addresses content guidelines for the development phase. The proposed

FIPS publication addresses the operations phase.

3.2 Stages and Key Activities

The operations phase can be divided into stages, for example:

OPERATIONS PHASE

ACCEPTANCE
STAGE

OPERATION
STAGE

MODIFICATION
STAGE

RECERTIFICATION
STAGE

TERMINATION
STAGE

user acceptance
report*

change control d

post-implementat

strategic ADP pi

user acceptance
report*

1

1

performance measurement and evaluation document

—

1

1an 'II 1 1

*part of the post-implementation review document

70

3.3 Proposed Guideline Contents

The proposed content guidelines are not intended to be a complete set of document types

which should be determined by the consensus of the working group. The proposed content
structure is consistent with that of FIPS Publications 38 and 64.

Part I - Documentation within the Software Life Cycle

Part II - Documentation Considerations

Part III - Activities of the Operations Phase

Part IV - Document Type Content

A. Post-implementation Review Document

B. Performance Measurement and Evaluation Document

C. Change Control Document

D. Strategic ADP Plan

Part V - Glossary

Part VI - Documentation and Review Methodologies and Aids

4. POST- IMPLEMENTATION REVIEW DOCUMENT

4.1 Purposes

The purposes of the post-implementation review are to examine a delivered and accepted
software system and determine adequacy of the technical design, development process,
operational performance, cost, and user satisfaction; to assess periodically, e.g., annually,

its overall usefulness; to plan major modifications; and to plan for system termination.

4.2 Scope

The scope of the review is an assessment of the successes and shortcomings of project
performance and system performance. Users, software development staff, operations staff,
and auditors are involved. Key considerations include user acceptance, system development
processes, lessons learned, operating efficiency, achievement of expected benefits, and
goal setting procedures for system expectations.

4.3 Objective

The objective of the post- implementation review is to determine whether:

t preliminary studies were complete and realistic

• implementation progressed according to plan

• original cost/benefit analysis projections were accurate and are

as projected

• operations, documentation, and system products are adequate

• system performance and schedule expectations were realistic and
are being realized

71

• changes and modifications were adequately handled and change
control procedures have been implemented

• the system is of value in supporting organizational mission

needs.

4.4 Content Guidelines
£

The proposied content guidelines include those subject areas that might be reviewed for

adequacy. '

Section 1. GENERAL INFORMATION
Summary
Envi ronment
References

Section 2. MANAGEMENT SUMMARY
Requi rements
Objectives
Assumptions and Constraints
Methodology
Evaluation Criteria
Recommendations

Section 3. GENERAL EVALUATION
User Acceptance
Completeness of Preliminary

Studies
System Products and Data
Systems Documentation and

User Procedures
Security and Accountability
Performance measurement and

Eval uation
Operations and Facilities
Lessons Learned

Section 4. FEASIBILITY STUDY AND IMPLEMENTATION
Current Costs and Benefits
Projected Costs and Benefits
Explanation of Differences

Section 5. SYSTEM DEVELOPMENT PROCESS
Description of System Management

and Development Process
Problems Encountered and Solutions
Lessons Learned

Section 6. USER PARTICIPATION PROCESS
Description of User Involvement in

System Management and Development
Process

User Acceptance Procedures
Problems Encountered and Solutions
Lessons Learned

Section 7.

Section 8.

STRATEGIC ADP PLANNING PROCESS
Description of Planning Process for
Near-Term and Long-Term

Resource Requirements

POST-IMPLEMENTATIO^
STEERING COMMITTEE

REVIEW REPORT TO

5. PERFORMANCE MEASUREMENT AND EVALUATION DOCUMENT

5.1 Purpose

The purpose of the performance measurement and evaluation is to compare software system
performance measures and the results of performance measurement and evaluation activities

with established criteria and expected results.

5.2 Scope

The scope of the document covers the results of planned and scheduled software system
performance evaluations during the operations phase using established criteria and proce-
dures. The results of the evaluation activities assist organizations in'making decisions
during the operations phase related to strategic planning, resource allocation, utilization,
system modifications, operations, recertifi cation, and termination.

5.3 Objective

The General Services Administration (GSA) in November 1978 published "Management
Guidance for Developing and Installing an ADP Performance Management Program. "(8) The
objective of the GSA program is to improve the effectiveness of ADP systems. Because the
program is primarily oriented toward hardware systems, additional management guidance is
needed for software systems.

72

5.4 Content Guidelines

The proposed content guidelines include those major areas applicable for performance
measurement and evaluation.

Section 1. GENERAL INFORMATION Section 5. REVISED EVALUATION CRITERIA AND
MEASURES

Section 2. MANAGEMENT SUMMARY
Section 6. RECOMMENDATIONS

Section 3. MEASUREMENT METHODOLOGY
Appendices - Details of Performance Measure-

Section 4. EVALUATION OF MEASUREMENT DATA ments and Analysis

6. CHANGE CONTROL DOCUMENT

6.1 Purpose

The purpose of the change control document is to establish an orderly, manageable
process for identifying changes, classifying changes, evaluating the impact of changes, and
approving the changes to modify operational software systems.

6.2 Scope

The scope of the document includes a description of organization, activities, and pro-
cedures for change control and the documentation required to manage and control changes to

software systems effectively. Implementation of changes resulting from performance measure-
ment and evaluation activities and conversion studies may be included under change control
activities.

6.3 Content Guidelines

The proposed content guidelines include those major areas applicable to change control

Section 1. GENERAL INFORMATION

Section 2. CHANGE CONTROL POLICIES

Section 3. APPLICABILITY AND IMPLEMENTATION
POLICIES

Section 4. CHANGE IMPACT ANALYSIS METHOD

Section 5. CHANGE CONTROL DOCUMENTS
Change Identification
Change Control
Status Accounting

Section 6. GLOSSARY

Appendices - Change Control Organization,
Procedures and Forms

6.4 Related Standardization Activities

The Electronics Industries Association and the Institute of Electrical and Electronic

Engineers are involved in standardization acitivies for data management and configuration
management in Department of Defense contracting activities.

7. STRATEGIC ADP PLAN
SYSTEMS

7.1 Purpose

The purpose of the plan is to document the strategic automatic data processing planning
activities which coordinate systems planning, systems development, systems acquisition, and

system operations. The activities and resulting plan show what operational and planned
software systems support mission needs and how available and expected resources are alloca-
ted in the time period covered by the plan.

73

7.2 Scope

The scope of the ADP plan includes the software and hardware systems needed to run the

software, people, dollars, and facilities needed to plan, develop, acquire, manage, and use

computer-based information systems. The plan should include information resulting from
planning activities at each organizational level.

7.3 Content Guidelines

The proposed content guidelines include those major areas applicable to strategic
planning.

Section 1. GENERAL INFORMATION Section 7. CONCEPT OF OPERATIONS
Development

Section 2. MANAGEMENT SUMMARY Acquisition
Systems Operation and Management

Section 3. PLANNING POLICIES User Involvement

Section 4. PLANNING METHODOLOGY Section 8. ALLOCATION OF RESOURCES

Section 5. ORGANIZATION MISSION NEEDS Appendices - Details of Studies, Analysis,
and Resource Allocation

Section 6. TECHNOLOGY ASSESSMENT

8. CONCLUSION

Well written documentation does more than describe the programming language code. It

communicates information about:

t intended purpose and use of software systems

• transformation of requirements into a design for development of
a software system

• development process

• performance criteria and expected changes

t controls for data and for operation of the software system

t limitations, constraints and assumptions

• user acceptance criteria and acceptance procedures

• operation for auditing and verification of software systems.

FIPS Publications 64 and 38 describe the document content guidelines for the initiation
and development phases. Another FIPS publication is needed to communicate information about
the activities related to the operations phase.

A final note: Documentation standards and guidelines should be developed after the
management, technical, and user activities are described. Once these activities are
described and are accepted as good, uniform practices to be followed for developing
reliable, hi qh-quality software, the documentation content guidelines will become more useful
as an aid for effective communications. With the FIPS for the management, technical and
user practices, documentation standards and guidelines will be more valuable to the Federal
community. Since there appears to be very little emphasis on defining uniform practices in

software development, the development of software documentation content guidelines is needed
to encourage better communication about software systems during the operations phase.

74

9. REFERENCES

1 Federal Information Processing Standards Publication 38, National Bureau of Standards,
Washington, D.C., February 15, 1976, 50 pages.

2 Federal Information Processing Standards Publication 64, National Bureau of Standards,
Washington, D.C., August 1, 1979, 54 pages.

3 The Comptroller General of the United States, Report to The Congress, "Case Studies of
Auditing in a Computer-based Systems Environment," Washington, D.C.,
June 1971.

4 The Comptroller General of the United States, Report to The Congress, "Improvement Needed
in Documenting Computer Systems," Washington, D.C., B-115369, October 8, 1974,

46 pages.

5 Zaveler, Saul, "A Proposed Documentation Standard Based on a System Decomposition and

Information Base Approach," National Bureau of Standards Software Documentation
Workshop, March 3, 1982, Gaithersburg, Maryland, March 1982, 6 pages.

6 Kiirihara, T., Redwine, S.T., Jr., and Zaveler, S., "Observations on Documentation
Standards Revision: FIPS Pub 38 After Four Years," Institute of Electrical and
Electronic Engineers, Proceedi ngs--Software Engineering Standards Application
Workshop, August 18-20, 1981, San Francisco.

7 National Bureau of Standards Special Publication 500-73, "Computer Model Documentation
Guide," Reports on Computer Science and Technology, National Bureau of Standards,
Washington, D.C., January 1981, 56 pages.

8 General Services Administration, "Management Guidance for Developing and Installing an

ADP Performance Management Program," General Services Administration, Automated Data
and Telecommunications Services, Washington, D.C., November 1978.

75

NBS FIPS Software Documentation Workshop, March 3, 1982

Session B: Documentation for Operation and Maintenance

Synopsis of Discussion

Nancy Mae Bonney
'

Dynamac Corporation

The following comments were made by audience participants:

We only need general guidelines, like a checklist of items that system developers
should not overlook. Because of the rapidly changing ADP environment (e.g., personal
computers, user-oriented languages, etc.), specific standards for on-line user-driven
systems might be obsolete before they were published. Perhaps the situation has to

'crystallize' for a while longer. -- Carol Uri, Federal Communications Commission.

Most of the comments and presentations were geared to business systems or on-line
business applications. There is a great need for software documentation and

maintenance procedures for on-line machine control, distributed process control and

interactive systems. -- John Maupe, U.S. Postal Service.

Research is needed in presentation syle and in writing style. The results should be

applied as an addendum to each documentation content guideline issued in the FIPS
program. Writing style and presentation must consider management needs, audience,
document type, and application. We need more than the GPO Style Manual

.

Tom Kurihara,
U.S. Department of Transportation

I still fail to comprehend how a single universal standard can be all things to all

people. It would seem that documentation content guidelines must be developed in-house
for a specific group of users. Standards are of course necessary, but must be

developed toward unique environments. — Anonymous

FIPS PUB 38 guidelines for the Users Manual, Operation Manual, and Program Maintenance
Manual should provide a recommended documentation structure and content that allow for
the manuals to be easily maintained over the system's lifetime. Currently, amendments
to the users manual turn out to be quite large because of the documentation structure.
Also, the user community now needs different types of manuals: a management type, a

terminal instructions type, and in some cases, a distributed processing type for field
users. -- Carolyn Cowden, Calculon Corporation

Documentation should be targeted to 'user levels' in the next publication of the FIPS
documentation standards. -- Charles R. Cooke, U.S. Department of Health and Human
Services

We need to distinguish between system management (operation phase) and project
management (development phase). These are quite different. We need to maintain the
documents produced in the development phase in the operation phase (e.g., the
Operations Users Manual, and Maintenance Manual). We need to have in-code (in program)
documentation developed during the development phase and updated during the operation
phase. Program technical documentation is more beneficial (maintainable) when in

actual program code. — Michael A. Regardie, U.S. Navy Recuriting Command

76

We should follow all the recommendations presented, and be aware of:

1) On-line vs. batch (environments).

2) Computer operator vs. the terminal operator as users.
3) User operation must be broken down also into; a) clerical, b) data entry, c)

management, d) other. — F. Colison, Defense Logistics Agency

I definitely recommend a separate guideline for the operation phase. Such a document
should address the areas of:

a) Change/modification process (software).
b) Ongoing life of User and Operations guides.
c) Multiple user audiences.

Basically, I recommend something similar to the content guidelines proposed by T. M.

Kurihara. — Rod Smart, U.S. Department of the Interior

I agree with Mr. Kurihara's recommendations to address different modes of operation and
different audiences but in a combined publication of FIPS PUBS 30, 38, and 64. The
addition of hardware configuration and error message documentation in the revision
would be very helpful also. — Bonita Condon, National Institutes of Health

FIPS PUB 38 should be expanded to cover the operation phase, but I would stress the
idea of using it as a guide. The audience must be the primary consideration. Cathy
Mason, Calculon Corporation

Other points were made during the session discussions, including:

- Will management support quality documentation considering its potential cost?

- Following FIPS PUB 38 as a rule will not result in quality documentation.

- From the users' standpoint, the documentation is either usable or not; whether it

meets FIPS guidelines is a different issue.

- Documentation as well as programs must be tested; this is one way to determine
the quality of documentation.

- Will change control work in urgent situations? If standard change control is

bypassed in urgent situations, how does one make sure the appropriate procedures
are followed after the fact?

- Standards have frequently been developed so that they are easy to implement and

maintain, rather than useful to the user audiences.

- Each government agency should develop their own standards based on FIPS
documentation guidelines; telling a contractor to "use FIPS PUB 38" does not

provide enough guidance.

- The FIPS documentation publications are guidelines only, and are not a substitute

for good management decisions about system documentation.

77

The conclusions of the session indicated:

- the necessity for management and personal commitment for quality documentation,
- the FIPS PUBS are content guidelines, not standards,
- we must write to the audience,
- the coverage of the existing FIPS documentation guidelines needs to be broadened,

and
- a revision and combination of FIPS PUBS 64 and 38, to include documentation

guidelines for the operation phase, would be useful and appropriate.

78

NBS FIPS Software Documentation Workshop, March 3, 1982

SESSION C: Tools for Improved Documentation

Introduction

Moderator: Raymond C. Houghton, Jr.

Institute for Computer Sciences and Technology
National Bureau of Standards

In this session, there is a discussion of a good cross section of the types and
applications of documentation tools. It includes tools that are currently available for
application. It includes tools which address documentation issues for specific phases
of the life cycle or for multi-phases of the life cycle. More important, the tools
discussed cover the entire life cycle from requirements specification to code
maintenance.

The first paper by S. Lee Henry provides a good introduction to the issues
associated with the effects of technology on documentation and more important, on
documentation standards. This discussion leads nicely into the specific tool coverage
of the next four papers.

A. Malhotra (et. al.) brings back a familiar phrase that was once assigned to

COBOL, that of "executable documentation". This paper, however, discusses a language
that allows its user to work at a much higher level of abstraction. This higher level

does bring us closer to the problem domain and consequently may actually bring us closer
to "executable documentation".

T. C. Ting shows us that documentation can also be a subject of academic interest.

He discusses a tool currently under development at the Worcester Polytechnic Institute
that integrates documentation development into the earlier phases of software
development.

Bruce Blum shows us how a system can maintain documentation throughout the life

cycle. His system has the advantage of addressing a very specific application area,

thus making it possible to automate much of the development and maintenance process.

Finally, Linda Lawrie discusses a "real world" tool that generates documentation
from user-embedded conmients and the code itself. An important issue that she brings out

in her paper and that brings us back to the theme of the conference is that

documentation standards can be cumbersome when they are applied to documentation
systems. It is important for documentation standards to be flexible so that they do not

stifle technological progress.

79

NBS FIPS Software Documentation Workshop, March 3, 1982

State-of-the-Art Documentation
What is it?

How does it Affect Documentation Standards?

S, Lee Henry

American Management Systems, Inc.

"State-of-the-art", when applied to documentation, describes a process as

well as a product. State-of-the-art documentation is accurate, usable and easy to

update. It conserves effort in the design, programming and maintenance of
computer systems. This paper discusses the effects of software technology on

current documentation format and content standards and suggests procedural
guidelines which aid in the preparation and maintenance of state-of-the-art
documentation

.

Keywords: Procedures; Guidelines; Software; Compatibility

1. INTRODUCTION

Software documentation is written to protect the investment made by system designers
and programmers. Anyone who weighs the cost of documentation against the savings it

produces in system modification and user training, recognizes that documentation is an

integral part of software development. In addition, state-of-the-art documentation makes it

possible to better centralize development efforts, reduce programmers' workload, facilitate
testing and maintain a clearing house of current information during system development and
maintenance. The state-of-the-art of documentation has, therefore, come to have several

important requisites.

One is that it must be cost-effective to produce. The cost of documentation should be

proportional to the cost of programming. It is not unusual for the amount and type of
documentation to be included in software contracts. This places a very real limit on what
can be spent producing it.

Another is that it must be accurate. Good documentation can give a good system the
competitive edge it needs in the software marketplace. In addition, with the rapid turnover
in data processing personnel, documentation often is relied upon to transmit information
from one employee "generation" to the next.

Lastly, and never leastly, it must be usable. Information must be in a format such
that it is easy to find and readable. Principles of human engineering applied to
documentation suggest that document formats be standardized, levels of detail be closely
matched to the need of the intended audience and figures and charts be used profusely.

80

2. CURRENT TOOLS

Current software tools make it possible to adhere to format standards and increase the
cost-effectiveness, accuracy, and usability of documents. The technology itself offers a

great deal of compatibility with current FIPS guidelines for document format and content.
Although differences between the tools may dictate some elements of format, each offers
extremely important advantages.

Word processors allow straight-forward control over the format of documents through the
"what you see is what you get" approach. Setting up page formats, tabs, margins, etc. is

visually re-inforced as the text image is transformed on the screen.

Text editors, on the other hand, take the "set it up and run it through" approach. The
formatting commands are imbedded throughout the text, and the resultant text is available
after processing. Most text processors automatically number sections as well. Some can
create tables of contents and indexes.

What all text and word processors have in common, of course, is the obvious advantage
of being able to modify a document without the need for messy or tedious manual correction.

It is sometimes possible to interface these tools with sophisticated output devices --

such as laser printers and phototypesetti ng equipment -- enhancing the attractiveness of
documents at reasonable cost.

Automatic documentation programs, on the other hand, are an entirely different kind of
tool. They use the software itself as input and vary greatly in the kind and amount of data
they produce. Some supply information on the files used by the software while others draw
flowcharts. By extracting information from the program being documented, they help to
ensure the utility of the resultant documentation.

The use of word processors, text processors, automatic documentation tools and
computer-controlled output devices requires technical competence with text processors and
file handling utilities as well. In order to reduce the complexities and cost of developing
standard documentation and extracting information from the software, standard procedures
should be developed that are commensurate with standards applied to the development of

software

.

3. SUGGESTED PROCEDURAL STANDARDS

3.1 Notation Conventions

Notation conventions add clarity to software documentation. Whether one is marking the
difference between user-entered and system-generated data on a terminal, or noting required
and optional parts of syntax, notation conventions convey a lot of information to a user in

a brief format.

Current tools provide several means with which notation conventions can be expressed.
Upper and lower case conventions can be maintained, bold-face and regular type can often be

used, or the absence and presence of underlining can make the distinction.

Whatever convention is decided upon should be used consistently and should be one that

can be expressed within the document file itself, rather than one which requires manual
"fixes" later. The advantage that text and word processors have over manual methods of
documentation production is that commands which "carry" the information concerning the

upper/lowercase, type-face or underlining convention can be part of the document file. This
makes it possible to modify the documentation without having to rethink the examples or
syntax descriptions.

81

3.2 Inclusion of Working Examples

Another of the benefits of software-based documentation is that it permits the user to

imbed tested examples (commands, inquiries, command files, JCL, etc.) into documentation
without having to enter them manually. This saves a lot of effort, especially if it only
takes a single command to pull the example into the text of the document. It also
guarantees the accuracy of the document. Little is more discouraging to a new user than to
try an example from the document and find out it doesn't work.

3.3 Standard Sections

Just as examples can be inserted into a document file, standard sections, such as

notation conventions, terminology, or system overviews, can be prepared separately and
imbedded in any document which requires them.

Standard sections strengthen the apparent relationship between documents in a "package"
and make each of the documents more self-contained.

3.4 Software and Documentation Update Procedures

Updates to existing documents should also follow standardized procedures. One of the

first and most important of these is a wel 1 -publ ici zed cycle for documentation updates,
coordinated with software releases or some annual period.

Standard procedures for filing and fixing "bugs" in both the software and the

documentation can be used to simplify and control the process of modification. Problems
should be submitted on standard forms which make it easy for a user to clearly identify the

problem he is having. He should know what kind of data to submit with the form, know where

to send it, and expect to get feed-back from someone responsible for program maintenance.
One procedure for using current tools for this update cycle is to set up a special data base

for "action items". This allows the problem spots to be randomly surveyed. Specific
problems an be routed to those responsible for fixing the software or modifying the
documentation. Reports can be routinely distributed to inform everyone involved of the

current status of the software. Further, action items can be prioritized to add managament
control over the modification of both software and documentation. When problems are fixed,
a copy of the original form can be returned to the person v/ho sent it in. This encourages
those who give the system its most thorough test to keep the development and maintenance
groups informed of its performance.

3.5 Back-up and Archival Storage of Documents

The use of text processors also requires development of standard procedures for back-up
and archival of document files. A system crash or user error cannot be allowed to destroy
weeks of work. Documents can be backed up to tape, disk or diskette depending on the system
being used. Documents can then be restored from backup copies if current files are damaged.

OCR scanning further permits documents which are printed in OCR type-face to be
re-entered from hard-copy.

3.6 Documentation Specialists and the Software Team

State-of-the-art documentation involves a coordination of programmers and writers in a

"team" effort. Techniques used in the devel opnlent , testing, and maintenance of software
often parallel those used in development, testing, and maintenance of documentation. The

documentation specialist should, therefore, be a member of the software development team,
familiar with the tools at his disposal.

In addition, the more familiar he is with the software, the more likely he will be able
to serve as a source of current information during planning and development. Documentation
that is produced during development can serve as an important means of information transfer
and a way of reliably capturing decisions which are made as well as those that still need to
be made.

82

3.7 Internal Documentation During System Development

Programmers, at the same time, should always be required to document their work.

Flowcharts, logic diagrams and tables should be produced whenever possible. These shortened
versions of system information can be re-used as figures or appendices in the final
documentation when appropriate.

Throughout system development, the growing body of documentation should be available to
documentation specialists, programmers and management. It can be used to monitor progress
and review development goals.

3.8 Testing the Documentation

Another important advantage of the sophisticated documentation specialist and his role
in the software development team is that he can "test" the documentation by applying what is

written. This, of course, provides a further test of the system too. It helps to ensure
the integrity of the document and guarantees that the writer has the proper "slant" on the
system.

4. CONCLUSION

The software-based production of documentation can greatly improve its accuracy,

maintainability, and, often, its attractiveness -- so much so that it is becoming more the
rule than the exception in the software industry. Production of state-of-the-art
documentation, however, requires additional control over costs and production procedures

which parallel that applied to the development of software.

83

NBS FIPS Software Documentation Workshop, March 3, 1982

The EAS-E Approach to Documentation.

A. Malhotra, H.M. Markowitz and D.P. Pazel

IBM Thomas J. Watson Research Center,

P.O. Box 218, Yorktown Heights, N.Y. 10598

ABSTRACT: EAS-E is a programming language integrated with a database management system that is

under development at the IBM Thomas J. Watson Research Center. This paper discusses the EAS-E
approach to program documentation. EAS-E programs consist of high-level operations on entities,

attributes and sets. The syntax has been designed to be compact and readable. This paper compares

EAS-E programs to programs in PL/I-DL/I and PL/I-SQL and shows that EAS-E programs are

shorter and have much less non-problem-related code. Thus, they can be viewed as "executable

documentation".

Keywords: English-Like, Self Documenting, Programming Language

1. INTRODUCTION

EAS-E (pronounced EASY) is an interactive programming language integrated with a database management system

that is under development for VM/370 at the IBM Thomas J. Watson Research Center. EAS-E provides a full-screen

input/output facility through an interface with DMS/CMS (6), a non-procedural facility for "browsing" the database

(12), and a report generator. The EAS-E database management system (9) is capable of efficiently supporting very

large databases stored on multiple DASD extents. It supports locking, detects deadlocks and protects the integrity of

the database against hardware and software crashes. In this paper we shall only concern ourselves with the features

that make EAS-E programs compact and readable. These are discussed below:

A. The Entity, Attribute and Set (EAS) Model. The application or system to be implemented is analyzed in terms of the

Entities, Attributes and Sets that determine its status at a given point in time. In section 3.2 we show that a wide

variety of data structures are either special kinds of sets or are almost immediately expressible as EAS structures. The
simplicity of the basic concepts makes it possible to document the EAS status of a system or appUcation in a simple

manner.

Programs generate and maintain this status. They consist of higher-level operations on entities, attributes and sets.

Since the statements of the program relate directly to the concepts used in analyzing the application or system, their

intentions are usually quite clear.

B. Powerful Integrated Commands. The program statements operate on entities, attributes and sets. For example, they

may create an entity, assign values to its attributes, file it into a set, and later find it on the basis of these attributes.

These high level commands are translated by the EAS-E software into lower level operations that communicate with

the database manager, search and maintain set structures, etc. Thus, the programmer works in terms of higher level

concepts and need not be concerned with low level details like the management of pointers in data structures. EAS-E
is an integrated language in that the programmer refers to entities in main storage and in the database in exactly the

same manner. This simplifies programming and also makes programs more compact.

C. English-Like Syntax. The commands that specify the operations on entities, attributes and sets are written as

English-like sentences. This makes them easy to read and understand by non-programmers as well as programmers.

We shall show that, despite EAS-E's English-like syntax, EAS-E programs are more compact than equivalent

programs in other languages.

It has become clear that program documentation that is produced separate from and in addition to the executable code

does not work. It does not get updated when the code is updated, particularly under time pressure, and is usually out

84

of date and misleading. We believe that the compact, English-like EAS-E programs are self-documenting and obviate

the need for program documentation.

Section 2 discusses the HAS model and a simple method of documenting EAS structures. Section 3 discusses some

features of the EAS-E language. Section 4, on Integrated Language, compares EAS-E with two leading database

languages. In these comparisons we are primarily interested in the size and the understandability of the source code.

We shall show that the EAS-E programs are compact because several functions are taken care of by system software

instead of being coded by the programmer.

2. THE EAS MODEL

Webster's Unabridged Dictionary (second edition) defines an entity as "that which has reality and distinctness of

being either in fact or for thought ..." In an EAS-E representation, it is usually some "thing" (account, check, job) of

the real world to be represented in the database. The attributes of an entity can be considered to be its properties or

characteristics. At any instant in time an attribute has at most one value or it may be undefined.

In EAS-E, as in SIMSCRIPT (7) and DBTG (3) , a set is an ordered collection of zero, one, or more entities which is

owned by some entity. To illustrate: each account owns a set of current transactions, i.e., checks and deposits which

have occurred since the last monthly statement. Thus, the account for John Smith owns one such set, that for Mary
Jones owns another such set, etc. In general, we say that each account owns its current transaction set. Accounts may
also own a set of old transactions, outstanding loans, etc.

An entity may have any number of attributes, own any number of sets and belong to any number of sets. An entity

can both own a set of a given name and belong to a set with the same name. These general facilities allow more

specialized structures, such as trees and networks, to be expressed more or less trivially within the general framework

of entities, attributes and sets. This is discussed in section 3.2. A more detailed discussion of the power of the EAS
formalism can be found in (11).

During the systems analysis phase the design team should decide on the Entities, Attributes, and Sets that are needed

to describe the status of the system. These should be documented, preferably in the manner shown below. Once this

is done, event programs can be designed to alter the EAS status as necessary^.

Exhibit 1 documents the EAS structure of a system that keeps track of JOBs of different types. JOBs consist of

TASKs which, in turn, may be made up of SUBTASKS. The responsibility for these JOBs is delegated to GROUPs
which are subdivided into AREAs.

The EAS structure is documented in a columnar fashion. The first column contains the names of the entity types in

the system. Each entity type is followed by a list of its attributes in column two. Columns three and four contain the

names of the sets the entity type owns and belongs to respectively. To the right of column four is a space for

comments.

The format of exhibit 1 is recommended for documenting database and main storage EAS structures but the structures

have to be defined by translating this information into English-like definitions. We are, however, working on a facility

that will allow the user to define EAS structures directly with a format similar to this.

3. THE EAS-E PROGRAMMING LANGUAGE

Since the status of an application or a system is described completely in terms of the entities, attributes, and sets in

existence at any point in time, events can change status in only a limited number of ways. They can:

• Create or destroy entities.

• Assign or change attribute values.

• File or remove entities from sets.

Commands for the above actions have an English-like syntax. For example:

CREATE A TASK
DESTROY THE TASK CALLED T2
LET PRIORITY(TASK) = 5

FILE THIS TASK IN JOB.TASKS
REMOVE THE FIRST TASK FROM JOBS.TASKS

+ The acronym EAS-E comes from Entities, Attributes, Sets and Events

85

Entity

JOB

Attribute Owns Belongs

TASK

JOB_NUMBER
JOB_CUSTOMER_NAME
JOB_DESCRIPTION

JOB TASKS

TASK_AREA_NUMBER
TASK_DESCRIPTION
TASK_JOB_NUMBER
SUBTASK OWNER

SUBTASKS
SUBTASKS
JOB_TASKS
AREA TASKS

Comment

Text variable
Text variable
Text variable
Tasks of the job

Alpha variable
Text variable
Text variable
Identifier variable
Tasks can both own
and belong to subtasks

AREA

GROUP

AREA_NAME
AREA_NUMBER
AREA TYPE

GROUP_NAME
GROUP NUMBER

AREA TASKS
GROUP AREAS

GROUP AREAS

Text variable
Alpha variable
Integer variable
Tasks of the area

Text variable
Alpha variable
Areas of the group

Exhibit 1 : An Example EAS Structure

Thus, EAS-E programs, which are collections of such commands, can be read like English prose. Note that the

commands must conform to a predefined syntax, they cannot be written in free English, but the syntax has been

designed to make their intentions clear and unambiguous.

We will illustrate features of the EAS-E language by examples''' from the first application system developed using

EAS-E: a rewrite and extension of the Workload Information System of Thomas J. Watson's Central Scientific

Services (CSS). CSS consists of about 100 craftsmen who do model shop, glass work, electronics, etc., for Thomas. J.

Watson's scientists and engineers. The old Workload Information System, written in PL/I and assembler, was difficult

to modify or extend. The EAS-E version duplicated the function of the old system: it read the same weekly inputs

and generated the same outputs. It achieved this with about one-fifth as much source code as the old system. It also

showed an even greater, but difficult to quantify, advantage over the old system in terms of ease of modification and

extension. The system has now been extended to accept certain inputs and provide certain outputs on-line rather than

batch.

3.1 Understandable Syntax

Exhibit 2 is a routine from the CSS system whose function is, as it says, to start a new page and print a heading. This

routine is called in the printing of several different reports. The START NEW PAGE statement is self-explanatory.

The seven lines (including the blank seventh line) following the PRINT 7 LINES... statement are printed during

run-time just as they appear in the source program, except that the first variable, PAGE.'V (automatically maintained

by EAS-E) is printed in place of the first grouping of ***s, the second variable TITLE is printed in place of the

second groupings of *s, etc. Though the routine is without comment, its action should be clear to anyone.

The PRINT statement in exhibit 3, slightly simplified from its CSS version, prints 3 lines containing the specified

variables and expressions in the places indicated in the three form lines (last 3 lines of the exhibit). These lines will

print data under the headings of exhibit 3.

The example of a FIND statement reproduced in exhibit 4, including the IF ONE IS (NOT) FOUND statement that

usually follows a FIND, finds the job in CSS JOBS with the specified job number. In fact, the FIND statement

The complete syntax is available in (8).

86

Exhibit 2:

ROUTINE TO START_NEW_PAGE_AND_PRINT_HEADING
START NEW PAGE
PRINT 7 LINES WITH PAGE . V , TITLE , SUBTITLE , DATE , AND WEEK THUS . . .

CSS Information System Page ***
Central Scientific Services

:|c :|c :|c :|c :|c :|c :|c :|c 3|c :ic 3|c * * * 4: :|c 3|c !|: Ik :ic :|c * >|c >|c 9|t * I): * ^ ^ 1c)|c :(c :(c i|c :tc ^ :|c :fc :|c * **

CSS CSS DEPT CHARGE ENTRY COMPL ESTIMTPRCDNG TOTAL TIME CUSTOMER NAME
AREA JOB NUM TO DAY DAY WEEK TIME RMNING /AREARESP.

RETURN END

Exhibit 3:

PRINT 3 LINES WITH TASK_AREA_NUMBER, JOB_NUMBER, JOB_DEPT_NUMBER,
JOB_PROJ_NUMBER, TASK_ENTRY_DATE , TASK_COMPL_DATE , TASK_ESTIMATED_HOURS

,

INHOUSE_HOURS_FOR_WEEK, TASK_INHOUSE_HOURS+TASK_VENDOR_HOURS

,

TASK_ESTIMATED_HOURS - TASK_INHOUSE_KOURS - TASK_VENDOR_HOURS ,

JOB_CUSTOMER, JOB_DESCRIPTION , TASK_EST_VENDOR_HOURS

,

VENDOR_HOURS_FOR_WEEK ,
TASK_VENDOR_HOURS

, TASK_ASSIGNEE_NAME , AND STAR THUS

Exhibit 4:

FIND THE JOB IN CSS_JOBS WITH JOB_NUMBER = PROPOSED_JOB_NUMBER
IF ONE IS FOUND. . .

CALL REJECT (| JOB ALREADY EXISTS WITH SPECIFIED JOB NUMBER . |)

RETURN
ELSE. .

.

permits much more generality than is illustrated here, while retaining its readability if entity, attribute and set names

are chosen with care.

The meaning of the FIND statement should be clear even to a reader without training in EAS-E. In general we have

tried to design the EAS-E syntax to be self-documenting. A number of people without EAS-E training have

commented on the clarity of the EAS-E source program for CSS, though it has very few comments (but carefully

chosen names).

3.2 Sets as Standard Data Structures

In an experiment conducted by one of the authors (10), subjects were asked to design a program to be implemented in

a higher level language that would retrieve information from three files in response to certain specified types of

queries. Each of the eight subjects designed a different data structure to hold the information in main storage. If the

designs were to be implemented, programs would need to be written to initialize each data structure and manage the

pointers for all the operations on it.

We argue that the set facilities in EAS-E can be used to provide a large variety of data structures. These structures

can be used by the programmer without having to initialize them and maintain their pointers. This is taken care of by

routines automatically generated by EAS-E. The programmer merely thinks in terms of FILE and REMOVE
operations.

For example, a stack is merely a LIFO (last-in-last-out) set. Stack operations can thus be implemented by FILE and

REMOVE statements on a LIFO set. Similarly, queues and pipelines are FIFO (first-in-first-out) sets. A tree can be

composed by defining an entity called a NODE that owns a set called LINKS and also belongs to a set called LINKS.

The tree can be generated by creating NODES and filing them into LINKS of other NODES.

4. INTEGRATED LANGUAGE

Traditionally, programming languages work with database objects by imbedding a database language within the host

programming language. For example, a PL/I or COBOL program that works with IMS (4) contains explicit calls to

87

the database language for database functions. To work with System R (1) the program contains statements in a

special database language called SQL. In these cases, the database language can fetch, create, delete and update

database objects while the host language takes care of manipulating the objects in main storage.

EAS-E is organized quite differently. The same language can be used to work with database entities as well as main

storage entities in an entirely equivalent manner. In general, database and main storage variables can appear

anywhere they make logical sense in any statement — READ, WRITE, LET, IF, FOR EACH, etc.

Integration of host and database language shifts the burden of interfacing the host language to the database language

from the programmer to the EAS-E system. This eliminates a great deal of the non-problem-related code that clutters

up traditional programs and makes them difficult to understand. To illustrate this reduction in coding, we compare a

typical PL/I program that works with an IMS database and a PL/I program that works with SQL with equivalent

programs in EAS-E.

4.1 Structure of a PL/I Program Working with IMS

We discuss below the structure of a PL/I batch program which retrieves data from a detail file to update a master

data base. In EAS-E such a program would consist of only a few lines. Let us assume that the detail file consists of

entities of type DETAIL. The update program would then have the following structure:

FOR EACH DETAIL DO
FIND THE MASTER WITH ...
CALL UPDATE(DETAIL,MASTER)

LOOP

The FOR EACH statement brings each DETAIL entity in turn from the database. The FIND statement brings in the

appropriate MASTER entity. Changes made to the database by the UPDATE routine are made permanent when the

program ends.

To compile this program it would by necessary to precede it with the statement:

DATABASE ENTITIES INCLUDE MASTER AND DETAIL FROM . . •

This would cause the definitions of MASTER and DETAIL, which would also be stored in the database, to be brought

in and used to generate the the object code.

In IMS database objects are called segments. The example program works with segments of type MASTER and

DETAIL. These segments are stored in separate data bases. Access to IMS databases is provided by making calls to

DL/I (Data Language I) to Get, Insert, Delete or Update a specific segment. The call has the structure:

CALL PLITDLI(parm-count, call-function, db-pcb-name, i/o-area [, ssa ...]);

The parameters of the call are discussed in Exhibit 5 below. Exhibit 6 illustrates in outline form the fundamental

parts in the structure of the PL/I batch program. Exhibit 7 is the explanation of the program shown in exhibit 6.

Exhibits 5, 6 and 7 are all taken directly from (5)

The skeleton program displayed in exhibit 6 is comprised of three kinds of statements. First, there are the declarations

that set up the parameters to be used in the calls to DL/I (2, 3, 6). These are necessitated by the relative inflexibility

of the call. There is no need to set up such parameters in an EAS-E program.

The second set of statements sets up the communication with DL,/I (1, 4, 5, 11, 12). The equivalent function is

provided in an EAS-E program by the DATABASE ENTITIES INCLUDE statement. In addition to retrieving the

definitions of the entities to be accessed at compile time it also causes the compiler to include in the object program

the instructions required to establish contact with the database and to test the return codes from requests to the

database manager.

The third part of the skeleton program consists of the actual calls to the database management system (7, 8, 9, 10).

What is not illustrated is the control structure that must surround these calls to check the return codes and take the

requisite actions. After an DETAIL is processed the program must jump back to the call that brings the next detail. If

the last DETAIL has been processed it must terminate. Here again, EAS-E, being an integrated language, simplifies

matters for the programmer. The FOR EACH statement fetches each entity of a given type (or, as we shall see later,

entities in a given set) from the database. Main storage operations to be performed on the entity are specified in the

body of the statement.

4.2 A PL/I Program Working With SQL

We now discuss a PL/I program working against System R (1,2) a more modern database management system. As we
shall see, the difficulties of interfacing to the database management system have been mitigated but a certain amount
of non-problem related code is still necessary. The PL/I-SQL program shown in exhibit 8 has 20 lines. The
equivalent EAS-E program shown in exhibit 9 has 6 lines.

88

parm-count

The first parameter is the address of a four byte field containing the number of other parameters that are in

the list.

call-function

The second parameter contains the address of a four character field that contains the DL/I code for the

function to be performed.

db-pcb-name

The third parameter is the address of a program communication block (PCB) that is used for communication

between DL/I and the application program. There is one PCB, which is contained within the PSB [Program

Specification Block], for each data base being processed.

i/o-area

The I/O area address is the fourth parameter in the call statement. The I/O area is an area in the

application program in to which DL/I puts a requested segment or from which DL/I takes a designated

segment The area must be as long as the longest segment to be processed. ... Segment data is always

left justified within a common area. Because of the structuring of PL/I, i/o-area must be the name of a fixed

length character string, an area, a level 1 in a structure, or an array. If the user wishes to deal with

substructures or elements of an array, he should use the DEFINED or BASED attribute.

Example:

DECLARE 1 INPUT_AREA
2 KEY CHAR(6),
2 FIELD CHAR(84);

ssa

The addresses of one or more segment search arguments (SSAs) are the final parameters in the call

statement. When an application programmer requests DL/I to perform data base functions, it is frequently

necessary for him to identify a particular segment by its name and the names of all parent segments along

the hierarchical path leading to the desired segment.

These values do not appear directly in the call statement argument provided to DL/I. Instead, an SSA name
is given that points to an area in the user's program that contain the actual SSA values.

The SSA may consist of three elements: the segment name, the command code, and a segment qualification

statement. The segment name provides DL/I with enough information to define the type of segment. The

command code is optional and provides specification of functional variations applicable to the call function.

... The segment qualification statement is optional and contains information that DL/I uses to test the value

of the segment's key or data fields within the data base to determine whether the segment meets the user's

specifications.

A segment qualification statement is composed of three parts: a segment field name, a relational operator

and a comparative value.

An unqualified SSA is built using a 9 byte area with the segment name occupying the leftmost 8 bytes and a

blank in position 9 [A qualified SSA consists of a field with the segment name in the leftmost eight

bytes directly followed by a segment quaHfication statement.]

The qualification test is terminated as soon as a segment type that satisfies the qualification test is found in

the data base. This procedure continues for all SSAs in a DL/I data base call until the desired segment is

found.

Exhibit 5: Parameters in Calls to DL/I

89

REF. /* */

NO. /* ENTRY POINT */

/* */

1 DLITPLI: PROCEDURE (DB_PTR_MAST , DB_PTR_DETAIL

)

OPTIONS (MAIN)

;

/* */

/* DESCRIPTIVE STATEMENTS */

/* */

DCL DB PTR_MAST POINTER;

DCL DB PTR_DETAIL POINTER;

DCL FUNC_GU CHAR (4) INITCGU ')
;

DCL FUNC_GN CHAR (4) INITCGN ')
;

2 DCL FUNC_GHU CHAR (4) INITCGHU ')
;

DCL FUNC_GHN CHAR (4) INIT ('GHN '
) ;

DCL FUNC_GNP CHAR (4) INITCGNP ') ;

DCL FUNC_GHNP CHAR (4

)

INIT ('GHNP')

DCL FUNC_ISRT CHAR (4) INIT('ISRT')

DCL FUNC_REPL CHAR (4

)

INIT ('REPL')

DCL FUNC_DLET CHAR (4) INIT ('DLET')

DCL 1 QUAL SSA STATIC UNALIGNED,

3 2 SEG_NAME CHAR (8) INIT ('ROOT ') ,

2 SEG_QUAL CHARd) INITC (') ,

2 SEG_KEY_NAME CHAR (8) INIT ('KEY '),

2 SEG_OPR CHAR (2) INITC =')
,

2 SEG_KEY_VALUE CHAR(6) INIT('vvvvvv'),

2 SEG_END_CHAR CHARd) INIT (')
'

) ;

DCL 1 UNQUAL_SSA STATIC UNALIGNED,

2 SEG_NAME_U CHAR (8) INIT ('NAME ') ,

2 BLANK CHARd) INITC ');

DCL 1 MAST_SEG_IO_AREA,

4 2

2

2

DCL 1 DET SEG_IO_AREA,
2

2

DCL

2

1 DB_PCB_MAST BASED (DB_PTR_MAST)

,

2 MAST_DB_NAME CHAR (8)

,

2 MAST_SEG_LEVEL CHAR (2)

,

2 MAST_STAT_CODE CHAR (2)

,

5 2 MAST_PROC_OPT CHAR (4)

,

2 FILLER FIXED BINARY (31,0),

2 MAST_SEG_NAME CHAR (8)

,

2 MAST_LEN_KFB FIXED BINARY (31,0),

2 MAST_NO_SENSEG FIXED BINARY (31,0),

2 MAST_KEY_FB CHAR (*)

;

DCL 1 DB PCB_DETAIL BASED (DB_PTR_DETAIL)

,

2 DET_DB_NAME CHAR (8)

,

2 DET_SEG_LEVEL CHAR (2)

,

2 DET_STAT_CODE CHAR (2)

,

2 DET_PROC_OPT CHAR (4)

,

2 FILLER FIXED BINARY (31,0),

2 DET_SEG_NAME CHAR (8)

2 DET_LEN_KFB FIXED BINARY (31,0) ,

2 DET_NO_SENSEG FIXED BINARY (31,0),

2 DET_KEY_FB CHAR (*)

;

DCL THREE FIXED BINARY (31,0 INITIAL(3)

;

DCL FOUR FIXED BINARY (31,0 INITIAL(4)

;

DCL FIVE FIXED BINARY (31,0 INITIAL (5)

;

DCL SIX FIXED BINARY (31,0 INITIAL(6)

;

Exhibit 6: Structure of a PL/I Program With DL/I Calls

90

/*

/* MAIN PART OF PL/I BATCH PROGRAM
*/

*/

7

8

•

CALL PLITDLI (FOUR , FUNC_GU , DB_PCB_DETAIL

,

DET_SEG_IO_AREA,QUAL_SSA)

;

•

CALL PLITDLI (FOUR , FUNC_GHU , DB_PCB_MAST

,

MAST_SEG_IO_AREA,QUAL_SSA)

;

9

•

CALL PLITDLI (THREE , FUNC_GHN , DB_PCB_MAST

,

MAST_SEG_IO_AREA)

;

10

•

CALL PLITDLI (THREE , FUNC_REPL , DB_PCB_MAST

,

MAST_SEG_IO_AREA)

;

1 1

•

RETURN;
END DLITPLI

;

1 2 PL/I LANGUAGE INTERFACE

Exhibit 6 (Contd.): Structure of a PL/I Program With DL/I Calls

System R supports relational data structures. Relations can be considered to be tables with each tuple (row) of a

relation being a collection of attributes in a given order. The example application program shown in exhibit 8 is taken

from (2). It updates the salary of some of the employees whose records are contained in a relation called EMP. Each
row of EMP refers to a particular employee and stores the EMPNO, DEFT, SAL, RATING and possibly other

attributes. Statements that start with "$" are SQL statements.

The first line of the program contains its name and specifies that it has one argument: XDEPT. The SQL statement on
line 2 declares the main storage variables XEMPNO, XDEPT, XSAL, XRATING and XRAISE. Subsequently these

variables, referred to as $XEMPNO, $XDEPT, etc., can be used in SQL statements.

The SQL statement on lines 3 to 7 defines a cursor called CI which consists of the EMPNO, SAL and RATING
attributes of tuples in the EMP relation that meet the condition DEPT = $XDEPT. The remaining part of the

program processes CI, one tuple at a time, by moving the EMPNO, SAL and RATING attributes into $XEMPNO,
$XSAL and $XRATING respectively. The $OPEN statement on line 8 readies the cursor for processing and binds

the value of $XDEPT. The DO WHILE on line 8 starts a perpetual loop whose scope is terminated by the END
statement on line 17. Within this loop the $FETCH statement moves the attribute values from the current tuple of

the cursor into the appropriate main storage variables. The raise is then computed and stored in $XRAISE. The
$UPDATE statement on line 14 stores the new value of the SAL attribute in the current tuple of CI.

Line 1 1 tests the return code from the $FETCH and jumps out of the loop when the cursor is exhausted. The
$CLOSE statement closes CI and the program ends.

4.3 Equivalent Programs in EAS-E

The function performed by the program in Exhibit 8 can be performed by the single EAS-E statement:

FOR EACH EMPLOYEE WITH DEPT = XDEPT
LET SALARY = . . .

This brings each employee in turn from the database into main storage and tests whether its DEPT attribute equals

XDEPT. If this is so, it updates its salary as specified. The database modifications are made permanent when the

program ends.

For compilation, the above statement must be preceded by:

DATABASE ENTITIES INCLUDE EMPLOYEE FROM • • .

Bringing all the entities of a given type into main storage and processing those that meet given conditions is exactly

equivalent to processing a relation in a relational database. In a network database we can be more efficient. If the

selection criterion is one that is commonly used, such as employees within a department, then the EMPLOYEE
entities should be filed into sets owned by the DEPARTMENT entities. With this structure, only the EMPLOYEES in

the particular department are brought into main storage.

91

The following explanation relates to the reference numbers along the left side of [Exhibit 6].

1. This is the main entry point to a PL/I batch program. After the DL/I control program has loaded and

relocated the PSB for the program, it gives control to this entry point. The FSB contains all the PCBs
used by the program. The entry point statement of the batch program must contain the same number of

names in the same sequence as there are PCBs in the PSB.

2. Each area defines one of the call functions used by the PL/I batch program. Each character string is

defined as 4 alphameric characters, with a value assigned for each function Other constants may be

defined in the same manner. Standard definitions could be stored in a source library and included using a

%INCLUDE statement.

3. A structure declaration defines each SSA used by the problem program. The unaligned attribute is

required for SSA data interchange with DL/I. The SSA character string must reside contiguously in

storage. Assignment of variables to key values, for example, could result in the construction of an invahd

SSA if the key value has the ahgned attribute.

A separate SSA structure is required for each segment type accessed by the program because the

key-value fields should be different. Once the fields other than key-value are initialized, they should not

have to be altered.

A 9 byte area should be reserved for use as an unqualified SSA. Before issuing an unquaUfied call, a

segment name is moved into this field.

4. The segment I/O areas are defined as structures.

5. One level 1 declarative ... describes as a structure the data base PCB entry for each input or output data

base. It is through this description that a PL/I program may access the status codes after a DL/I call.

6. This statement is used to identify a binary number (fuUword) that represents the parameter count of a call

to DL/I. ...

7. and 8. These are typical calls to retrieve data from a data base using a qualified SSA.

Prior to execution of the call the SEG KEY VALUE field of the SSA must be initialized if a fully

qualified SSA is required. For a call using an unqualified SSA, the segment name field must be moved to

one of the 9-byte UNQUAL_SSA areas.

Immediately following the call the status code field of the PCB must be checked to determine the results

of the call. ...

9. This is a typical call to retrieve data from a data base using no SSA. This call is also a HOLD call for

subsequent delete or replace operation.

10. This call is used to replace data in a data base with data from a PL/I batch program.

11. This RETURN statement causes the batch program to return control to DL/I.

12. [A language interface module must be link-edited to the program to provide a common interface to

DL/I. The specific module used and the procedure for link-editing depend on the operating environment.]

Exhibit 7: Comments on The PL/I-DL/I Program Structure

92

1 PAYRAISE: PROC (XDEPT)

;

2 $DCL (XEMPNO, XDEPT, XSAL, XRATING, XRAISE)

;

3 $LET CI BE
4 SELECT EMPNO, SAL, RATING
5 INTO $XEMPNO, $XSAL, $XRATING
6 FROM EMP
7 WHERE DEPT = $ XDEPT;
8 $OPEN CI

;

9 DO WHILE ('1' B) ;

10 $FETCH CI

;

11 IF SYR_CODE-i=0 THEN GO TO WRAPUP;
12 /* COMPUTE XRAISE BASED ON
1 3 XSAL AND XRATING */
14 $UPDATE EMP
15 SET SAL = SAL + $XRAISE
16 WHERE CURRENT OF CI ;

1 7 END

;

1 8 WRAPUP

;

19 $CLOSE CI

;

20 END PAYRAISE;

Exhibit 8 : An Example PL/I Program With SQL statements

Exhibit 9 shows an EAS-E subroutine that updates the salary of all employees in a given department. It uses a FOR
EACH statement which is a little different from the one used in the above example: it processes all the entities in a

set rather than all the entities of a certain type.

Exhibit 9:

ROUTINE PAYRAISE (XDEPT)
DEFINE XDEPT AS A REFERENCE VARIABLE
FOR EACH EMPLOYEE IN EMPLOYEES (XDEPT

)

LET SALARY = . . .

RETURN
END

For compilation, the above subroutine would have to be preceded by

DATABASE ENTITIES INCLUDE EMPLOYEE AND DEPARTMENT FROM . .

.

Let us now discuss the actions caused by the above program in more detail. The DATABASE ENTITIES INCLUDE
statement specifies that the program will be working with the database entities EMPLOYEE and DEPARTMENT. In

addition, it declares EMPLOYEE and DEPARTMENT as reference variables which can be used to point to

EMPLOYEE and DEPARTMENT entities in main storage. During compilation the definitions of EMPLOYEE and

DEPARTMENT are brought from the database and the information contained in them is used to generate object code

that can manipulate their attributes in main storage.

The DEFINE statement defines XDEPT as a local reference variable. When the routine is called, XDEPT must refer

to a database entity of type DEPARTMENT. The next statement, FOR EACH EMPLOYEE IN

EMPLOYEES(XDEPT), instructs the compiled EAS-E program to have the reference variable "EMPLOYEE" point

in turn to each member of the set called EMPLOYEES that is owned by the DEPARTMENT pointed to by XDEPT.
This statement could be followed by an arbitrary number of selection phrases (such as the WITH... phrase in the

example above) that would instruct the executing program to test the EMPLOYEE and make sure that it met specified

conditions. For each EMPLOYEE thus selected, the program would update the SALARY attribute in the manner

specified.

5. SUMMARY

This paper has discussed the Entity, Attribute and Set model and described a simple method of documenting the EAS
status of a system or application. It has also discussed the EAS-E language and compared its facihties with other

languages from the point of view of compactness and readability. We have shown that EAS-E programs are much

shorter than equivalent programs in other languages and contain much less non-problem-related code. Since the

powerful, English-like commands in EAS-E programs accurately mirror the steps taken by the programmer to solve

the problem, EAS-E can be thought of as executable documentation.

93

6. REFERENCES

1. Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Eswaran, K.P., Gray, J.N., Griffiths, P.P, King, W.F., Lorie,

R.A., McJones., P.R., Mehl, J.W., Putzolu, G.R., Traiger, I.L., Wade, B.W., and Watson V., System R: A
Relational Approach to Database Management., ^CM Trans. Database Syst., 1, 2, (June 1976), 97-137

2. Blasgen, M.W., System R: An Experimental Relational Database Management System, Lecture Notes. IBM
Research, San Jose, May 19, 1979.

3. CODASYL Data Base Task Group Report, Available from ACM, New York, NY, April 1971.

4. IBM Corporation, Information Management System/3 60, General Information Manual, Prog Prod 5734-XX6,
GH20-0765 06061

5. IBM Corporation, Data Language/I Disk Operating System /Virtual Storage: Application Programming Reference

Manual, Prog Prod 5746-XXl, SH12-5411-4

6. IBM Corporation, Virtual Machine/3 70 Display Management System for CMS: Guide and Reference, Program

Number 5748-XXB File No. 5370-39 SC24-5198-0

7. Kiviat, P.J., Villanueva, R., & Markowitz, H.M., The SIMSCRIPT II Programming Language., Prentice Hall,

Englewood Cliffs, NJ, 1969

8. Malhotra, A, Markowitz, H.M., & Pazel, D.P., The EAS-E Programming Language., RC 8935, IBM T. J. Watson

Research Center, Yorktown Hts., NY 10598.

9. Malhotra, A, Markowitz, H.M., & Pazel, D.P., EAS-E: An Integrated Approach to Application Development, RC
8457, IBM T. J. Watson Research Center, Yorktown Hts., NY 10598. ACM Trans. Database Syst., To appear.

10. Malhotra, A., Thomas, J.C., Carroll, J.M. & Miller, L.A., Cognitive Processes in Design, Intl. Jrnl. Man-Machine

Studies, 12 2, (Feb. 1980), 119-140

11. Markowitz, H.M., SIMSCRIPT, Encyclopedia of Computer Science and Technology, Belzer, J., Holzman, A.G. and

Kent, A. (eds.). Marcel Dekker, New York, 1979, pp 79-136. Also RC 6811, IBM T. J. Watson Research Center,

Yorktown Hts., NY 10598

12. Markowitz, H.M., Malhotra, A, & Pazel, D.P., The ER and EAS Formalisms for System Modeling, and the

EAS-E Language, RC 8802, IBM T. J. Watson Research Center, Yorktown Hts., NY 10598.

94

ADD: An Automated Tool For Program Design and Documentation

T.C. Ting*

Worcester Polytechnic Institute

An approach which integrates the activities of software design and documenta-
tion is proposed, described, and discussed. An automated tool called ADD which
uses a data dictionary system is suggested to support this approach. The unified
approach not only offers solutions to some of the important documentation problems,
but it provides a structured means for better program design and coding. Program
design process is enhanced and guided by a structured "design template". Program
design documents: are generated automatically to serve as "blueprints" for program-
ming. The use of a "program coding template" provides a structure for coding.
Program module interface conditions are automatically generated and controlled
from the design specifications. Program modules are tested by using the pre-
designed and stored test data to certify their correctness.

The structure of the tool is illustrated. How the automated tool may be used
and the benefits of such an automated tool are discussed.

Keywords: Automated tools, program design, program documentation, program docu-
ment standardization, program testing, software engineering.

*The author is also a part-time computer scientist at the Institute for Computer
Sciences and Technology, the National Bureau of Standards. This paper was not

prepared while on official duty and it does not reflect any official position of

the National Bureau of Standards.

1. INTRODUCTION

Studies of large computer software systems have identified several major problems.
One of the most serious concerns is the sad state of computer software documentation
(GAO 1974), The literature reports many suggestions and recommendations on the contents,
methods, and formats of software documentation (Brewer 1976, Gey 1973, Gass 1979). Stan-
dardized software documentation procedures and formats have been adopted by many organiza-
tions including the Federal Government (NBS 1976, 1980). However, the problem remains.

The author is a strong believer that in order to yield a good software product, the
software documentation activities must be integrated into the whole software development
process. Program documentation is an active part of program development. It should not be

treated as a passive task of simply recapturing the descriptions of an already developed
program. Good program design leads to good documentation. Good documentation contributes
to good design.

An organized and structured program design, together with straightforward program im-

plementation techniques, can immensely ease the documentation task (Gey 1976). Dijkstra
stated that good programming recognizes how to avoid unmanageable complexity (Dijkstra 1975).
A well -structured top-down design decomposes a large and complicated problem into multiple
units of comprehensible and manageable subproblems and sub-subproblems. These sub-divided
units can be organized into program modules. These modules are the basic building blocks
for the program and they can be individually designed, implemented, and tested. The pro-

posed approach with an automated tool supports the structured program design and implementa-
tion.

This paper reports and discusses the concepts of the automated program design and docu-
mentation approach. Four types of software documents are necessary for a software system.

These documents are prepared for management, users, operational personnel, and programming

95

analysts. However, the documentation discussed in this paper concerns only the type of
documents for program analysts. These documents are used in assisting program design, im-

plementation, and maintenance.

An automated program design and documentation tool called ADD, Automated Design and
Documentation, is suggested and illustrated. ADD uses a data dictionary and program design
and coding templates. It provides a means for the designer to have an organized and struc-
tured approach for program design. The results of this approach not only provide a set of
comprehensive program documents, but produce a good program design.

ADD automatically generates program structural and flow diagrams, and individual pro-
gram module description sheets. These documents can help the designer to verify the design,
and they serve as "blueprints" for programming. A program coding template is used to help
in setting up a structure for programming. Important program module interface conditions
such as input and output variables are automatically generated from the design which is

stored in the data dictionary. The validity of the implementation is checked automatically
and any conflict must be resolved between the designer and programmer. Test data provided
by the designer are part of the program documentation and they are used to certify the pro-
gram during the program testing and maintenance stages.

One of the most difficult problems of software documentation is the ever-changing en-

vironment of a software system. The high rate of software maintenance activities and pro-

gram patches make any existing software document quickly out-of-date. One of the major
benefits of ADD is to reduce this problem. The organization and structure of the tool are

presented and discussed. The benefits of the proposed approach and the automated tool, ADD,
are discussed.

2. PROBLEMS OF SOFTWARE DOCUMENTATION

Documentation is an area of the software engineering field where the professional pro-

gram analyst is not very competent. Almost no one has had the actual opportunity to learn

to document. First of all, university computer science curricula have never paid any

serious attention to program documentation. A large number of software packages have been
produced by universities from student and faculty research and development projects. These
software products have greatly contributed to computer software advancements. However,
software documents for these products are almost non-existent or too poor to be useful.

Students are usually taught to code. Emphasis is often misplaced on the programming lan-

guage instead of design and programming techniques. Not much stress is laid on program de-

sign and documentation. Due to the classroom environment, usually only small, simple and

trivial program exercises can be assigned. These assignments often do not justify applying

a rigid program development methodology. Students usually work alone with no requirement
to cooperate with others. In many cases, instructors discourage or even prohibit students

working cooperatively on programming assignments. Student programs are often required to

run only once for some arbitrarily selected sets of data for grading purposes. Under such
circumstances, no incentive is given to the design and to the documentation of the program.

Documentation is usually treated as an add-on task to the software development project.

Software development staff are often assigned to a new project immediately after the pro-

gram is running and before the documentation has been completed. Frequently, time pro-
vided for documentation is not sufficient. Many program documents are unverified as to

their completeness and correctness. The importance of the documentation is considered only

as an afterthought whenever some difficulties have occurred during the program maintenance
stage. It is very difficult to convince the management and project development staff that
without the completion of program documentation the project has not been completed. The

problem is compounded by the fact that many software development methodologies consider
documentation activities separately from the program development. Documentation is

usually done after the program has been completed.

The most difficult problem of program documentation is the ever-changing software
environment. Continuously changing program requirements or computing facilities makes it

very tough and laborious for software maintenance personnel to keep software running
smoothly. Frequently, a program has to be modified for whatever the reasons may be. The

96

numerous program patches make any existing program document quickly out-of-date. The
document is often not immediately updated. It is very difficult for the busy maintenance
staff who is under pressure to fix the program to consider concurrently changing the pro-
gram document. Poor documentation causes the maintenance personnel to be even busier.

The continuing proliferation of novel hardware devices, programming languages, and add
itional applications complicates further the task of software design and documentation. It

is difficult to formulate any documentation standard and procedure that can really work.

Automation of program design and documentation offers some possible solutions to some
of the above mentioned problems.

3. PURPOSES AND TYPES OF SOFTWARE DOCUMENTATION

Generally speaking, four types of software documentations are needed for different
purposes (Gass, 1981). They are prepared for user's, operational personnel, management, and
program analysts.

User documentation is a medium which provides for communications between the user and
software designer. It provides users with instructions for using the system, such as de-
scriptions on the contents and forms of input and output of the software. Ideally, it

should provide answers to all of the user's questions concerning the use of the system.

Operational documentation specifies requirements and steps necessary for operating the
software. It is prepared for the operational personnel including data preparation, data
entry, security and integrity checking, just to name a few.

Software documentation for management is a general statement of the conceptual design
of the proposed system (prepared for management decision-making). It specifies the func-
tional and performance requirements of the system and resources required for the develop-

ment and later operation of the system such as personnel, financial, and computing re-

sources. The final document is the basis for the development of the system.

This paper discusses mainly the software documentation for the program analyst. We

will refer to this type of documentation as program documentation. It describes the de-
tailed design and implementation of the program. It provides technical descriptions for
the program. It has a set of functional specifications. It defines all input and output
for the whole program as well as its: subprograms. It lists the test data and their ex-

pected results. It provides detailed descriptions on all data files and records. It

specifies the environment under which the program is to operate.

Program documentation assists the technical staff to develop and to maintain programs.

It is a record of the program design and implementation, and it is a technical reference to

the program.

4. SOFTWARE DEVELOPMENT AND DOCUMENTATION

Software documentation activities are the integral part of software development.

Documentation activities are involved in every stage of the software development life cycle
problem definition, system design, programming, testing, and maintenance. Software docu-

mentation keeps a formal record of the results of each major software development step.

Good software documentation imposes a structured approach on the problem definition.

It helps in defining the problem in terms of the input, output, and functions of the pro-

gram. It keeps track of the process of problem decomposition during the design phase. It

helps to organize the multiple levels of subproblems into program modules. It offers a

structure for systematic design of each program module including the functional specifica-
tion, input and output variables, data files, the logical steps to transform from input to

the desired output, and the necessary testing data and their expected results.

Software documents generated during the design phase are, in fact, the "blueprints"

97

for coding. The program listings are the program implementation documents which describe
the actual programs in a chosen programming language.

Program design and implementation documents are the natural products of the software
development life cycle. Program documentation enhances the program development process for
better design and better implementation of the program, when the emphasis is on the design
but not on coding. Software development includes software documentation. Software docu-
mentation is an integral and inseparable part of the software development task.

During the software maintenance stage, program documents are obviously essential. Any
modification made to the program must immediately be recorded into the document so that
the document is always an accurate and correct description of the program.

5. AUTOMATION OF PROGRAM DOCUMENTATION

The software profession has successfully automated many systems for others. It has
not, however, been too successful for itself. Program documentation is one of the areas in

which automation may be fruitful. The software profession needs automated documentation
tools for enhancing software development. Among the four types of software documentation,
program documentation is probably the best candidate for immediate automation.

This section discusses the proposed approach and ADD. The overall organization and
involvement of ADD is illustrated in Figure 1.

5.1 Use of Data Dictionary System for Recording Program Design Specifications

A data dictionary system has demonstrated its usability in data management (Lefkowitz,
1977). This paper presents a new approach by using the data dictionary system in program
design and documentation. In a top-down program design process, the problem to be solved
by the proposed system is functionally decomposed into smaller subproblems. These de-

composed units are organized into many interrelated program modules for implementation.

Two types of modules are involved: terminal and drive modules. These [nodules are hier-

archically organized in a program tree diagram which expresses the hierarchical relation-
ship of modules by functional decomposition. Modules can also be represented in flow dia-

grams to show the process flow pattern of the program. These program modules are the
basic building blocks for the program.

For each program module, the designer analyzes the functional specifications, and de-

termines the input and output variables, the major logical steps to transform from input
to output, the names of other modules called by this module for performing the functions,
the test data and their expected results. A data dictionary system can be used to store
these design specifications. The following categories of information are stored in the

data dictionary:

Name and type of module
Functional specifications
Input and output variables
Names and descriptions of data files
Names and other program modules called by this module
Major logical steps of the process
Test data and their expected results

5.2 A Program Design Template

A program design template is proposed to assist the designer for entering program
module design specification. It provides a structure so that the designer can proceed with
the design in an organized and systematic manner. It helps the designer to completely
specify each program module area by area. Areas to be specified are discussed below.

5,2,1 Name and Type of Module

The name of the module is assigned by the designer using the established naming

98

User

Problem
Def inition

Con sultat ion
Program

Designer

Program
Structure

Program
Flow

Program
description

Sheet

Design
Specification

Design
Verification

Program
Design

Con sultat ion

Design
Template

Design Document f
Information

Storage

Generation

Data
Dictionary

design
NIodif ication

Ma intenance
Staff

Partial
Program

Generatio

Programmer

Program
Verif icatior

Hlman Activities

Test
Results

Automated Activities

Figure 1. ~ The Organization of ADD.

99

convention or standard adopted by the organization. The type of module is specified, and

it may be one of the following:

A block
A PARAGRAPH
A PROCEDURE
A Macro
A REMOTE block
A function subprogram
A subroutine subprogram

The above is an example and it is by no means a complete list.

5.2.2 Functional Specifications

The functions to be performed by the module should be described in English or in

mathematical logic. It is desirable that a single, meaningful, but not too trivial, func-
tion is to be performed by a program module.

The designer must specify the major processing steps by using the pseudo code. Only
the main ideas of approaches are required. An example of the functional specification is

provided in Figure 2.

FINDING ROOTS OF h QUADRATIC EQUATION.

INPUT VARIABLES ARi: A,B, AND C. THE RESULTS MAY BE:
1. NO ROOTS
2. ONE REAL ROOO'
3. TWO REAL ROOTS
4 . TVJO COMPLEX ROOTS

MAJOR STEPS:

INPUT

IF A=0
THEN IF B=0

THEN NO ROOT
ELSE ONE ROOT (ONERT)

ELSE IF B**2 LESS THAN 4AC
•vnrr, two roots (tv;okt)
ELSE TWO COMPLEX ROOTS (COMPRT)

Figure 2. — An Example of the
Functional Specification.

100

5.2.3 Input and Output Variables

For each program module, the designer must clearly specify the input and output
variables. This is one of the most important module-to-module interface conditions. The
following information must be provided:

Name of each variable.
Type of each variable.

Order of the input and output variables appears on the argument list,

a common block, or an I/O data structure. If a named common
block is used the name of the block, along with names of
variables in desired order, must be specified.

Initial and range of values, if any, for each input and output
variable.

Coding scheme, if any, for each input and output variable.

5.2.4 File Names and File Descriptions

Data files commonly accessed by different program modules must have their file des-
criptions stored in the file description modules in the data dictionary. (File modules are
identified by their respected file names.) Each file description module includes detailed
information on the file name, file organization, file protection methods, data records and

their their descriptions, etc.

5.2.5 Other Modules Called by the Module

The designer must specify the names of those modules which are called by this module.

5.2.6 Test Data and Their Expected Results

Based on the functional specifications, the designer should design a complete set of

test data. For each data group, the expected results should be provided. Additional
testing conditions, if any, which are necessary for testing the robustness of the program
module should also be provided. The error handling conditions or error return codes
should be specified.

5.3 Automatic Generation of Program Design Documents

Information of each program module stored in the data dictionary can be automatically

scanned to produce a set of program structural and flow diagrams. Individual program

module description sheets can also be generated. These software design documents are the

bases for programming. They can be treated as "blueprints" to the program.

5.3.1 Generation of Program Structural Diagram

The tree-like program structural diagram can be generated by scanning the names of

modules called by other modules. The designer may use this diagram to verify the functional

decomposition of the program.

The designer can modify the design. An updated program structural diagram can be re-

generated without much difficulty. An example of the structural diagram is provided in

Figure 3.

101

OUADRT

ONERT

I I

I
I

I
TWORT

I

I I

I

j
COMPRT

I

Figure 3. --- An Example of the
Generated Structural Diagram.

5.3.2 Generation of Program Flow Diagrams

Program flow diagram for each program module can be generated by scanning the pseudo
code. Pseudo code consists of only two types of statements: decision and processing
statements. It is not too difficult to develop a software package which can generate flow
diagrams from pseudo code.

Flow diagrams can describe processing logic at different levels of abstraction. At
the top of the program structure, the flow diagram reflects the function of the whole pro-
gram in a highly abstract form. It may contain only several simple decisions for activating
several major sub-program modules. However, at the lowest level, the processing logic of a

small terminal module is described. Such a module should have only a simple function to

perform. The generation of such a flow diagram may not even be necessary. However, it

should not be difficult to produce such a diagram. In a well -structured and modularized
design, if such a logic at the terminal module level is too complicated to describe, further
decomposition is then necessary. An example of the flow diagram is illustrated in Figure 4.

102

INPUT

A=0

?

INO

B**2-4AC>0 *»

* *
**

'no
I

I

I

I*******

*****'*

Figure 4. -- An Example of the

Generated Flow Diagram.

103

To flowchart or not to flowchart is a controversial issue. Some people deny the need
for flowcharting, while others may consider flow diagrams necessary. It may be a good rule

of thumb that at the terminal module level if it didn't require a flow diagram to code the

module, it doesn't need a flow diagram. However, at the higher level, it needs a flowchart
to keep track of what the designer is doing. The logical sequence of program modules must
be made clear so that correct assumptions are made.

Flow diagrams or pseudo codes are useful to the designer. The logical processing se-

quences can be verified without worrying about the details in actual programming. These
automatically generated diagrams help the designer to carry out the top-down design of the

program. The designer need not consider the burden of producing these diagrams.

Program flow diagrams can assist the programmer in coding the program module into what-

ever the chosen programming language may be. When coding at the terminal module level, the

programmer may exercise his or her own discretion in the implementation of the function.

However, at the higher level, the drive module may require the process to follow a certain
sequence as designed, since several modules may be involved to perform the function in a

particular order. These program modules may be implemented by several programmers, and they

must work according to the design.

The flow diagram helps the program maintenance staff. They can use these diagrams to

understand on what the coded program listings are based,

5.4 Generation of Program Module Description Sheets

Program module description sheets can be automatically generated by simply printing out
the sorted information in a preselected format. These description sheets can be used along
with the structural and flow diagrams to provide detailed specifications for each program
module. Some of the information described below have particular significance.

An example of the program module description sheet is provided in Figure 5.

5.4.1 Interface Conditions Between Program Modules

The module-to-module interface conditions can be clearly specified. On each program
module description sheet, the input and output, the modules called, and the data files are
detailed. This information is vitally important to the program development, especially
when a large program is involved.

5.4.2 Program Testing and Test Data

To insure that each module performs as it is expected, a wel 1 -designed test data set
must be provided. These data are developed by the designer. They are used to check the
program implementation. During the maintenance phase, after each modification of the pro-
gram, all modules involved must be tested by using these pre-designed and stored test
data. These tests can insure to some degree that the modification is valid and no addi-
tional bugs have been introduced. This is obviously an important task. However, such a
task has not been handled very well by many data processing organizations. Often, several
bugs will be introduced after a simple modification to the program. New test data can be
introduced if necessary, and they should be stored with the other test data in the data
dictionary.

5. 5 Other Design Aids

Other design aids such as cross references of various kinds can also be generated from
the data dictionary. Details of this area have not been carefully investigated at this
time. They will be reported in our forthcoming papers.

104

NAME OF THE MODULE: QUADRT

TYPE OF THE MODULE: SUBROUTINE

SPECIFICATIONS:

FIND ROOTS OF A QUAURATIC EQUATION

INPUT VARIABLES ARE A,B,C. THE RESULTS MAY BE:
1. NO ROOTS
2. ONE REAL ROOT
3. TWO REAL ROOTS
4. TWO COMPLEX ROOTS

MAJOR STEPS:

INPUT

IF A=0
THEN IF 8=0

THEN NO ROOT
ELSE ONE ROOT (ONERT)

ELSE IF B**2 LESS THAN 4AC
THEN TWO ROOTS (TWORT)
ELSE COMPLEX ROOTS (COMPRT)

OUTPUT

INPUT AND OUTPUT VARIABLES:

VARIABLE VALUE COPING
NAME DESCRIPTIONS TYPE INIT MIN MAX SCHEME

A INPUT VARIABLE REAL
B INPUT VARIABLE REAL
C INPUT VARIABLE REAL
RT ROOT OF BX+C=0 REAL
RTl REAL ROOT ONE REAL
RT2 REAL ROOT TWO REAL
IMl IMAGINARY ONE REAL
IM2 IMAGINARY TWO REAL
IND RESULT INDICATOR INTEGER 0=NO ROOT

1=0NE ROOT
2=TW0 ROOTS
3=C0MPLEX

DATA FILES:

OTHER MODULE CALLED:

ONERT, TWORT, COMPRT

TEST DATA AND EXPECTED RESULTS:

A B C RT RTl RT2 IMl IM2 IND
0.0 -5.0 2.0 -4.25 -5.75 2

4.0 4.0 2.0 -0.5 -0.5 1.0 1.0 3

0.0 2.0 4.0 -.05 1

0.0 0.0 5.0 0

Figure 5. -- An Example of the Program
Module Description Sheet.

105

5.6 A Program Coding Template

A program coding template is suggested for use by the programmer in the implementation
of the program. The program coding template can be implemented within the "Editor". Dif-
ferent types of program coding templates are necessary for different programming languages.

The template is designed to assist the programming staff to avhieve a better structured

and better documented program listing. Furthermore, program module interface conditions
can be generated automatically from the design to allow better control and better implemen-
tation.

The template is activated by the programmer at the time when the program is to be
created. It will ask the programmer to identify the program and program module. Basic
information concerning the program module will then be obtained automatically from the

data dictionary. The information includes the following:

Name of the module.
Specifications of the module. This information will be placed as the sequences

of comment statements at the beginning of the program listing.

Input and output variables. An argument list, or any named or unnamed COMMON
block, which contains the variables in their preselected names and order,

is automatically generated. All declarative statements necessary to

declare the input and output variables according to their types and

initial values are generated, A set of comment statements which describe
input and output variables is also generated.

File names and descriptions. The names of the files to be accessed by the
module and their file descriptions are provided. The file description can
be obtained from the file description module in the data dictionary.

A list of other modules called by this module.

A list of references which indicates where the design documentations of the

module can be obtained. The design specifications of the module may be

requested by the programmer from the data dictionary. This includes program
structural diagram or the portion of the diagram, and flow diagram of the

module. The descriptions of those modules which are called by this module
can also be provided.

The programming coding template automatically sets up the basic structure of the pro-

gram listing. Important information concerning the module interface are provided

automatically. The vital module interface conditions are controlled and documented by the

template according to the design.

An example of the editing process is illustrated in Figure 6.

6. ADVANTAGES OF USING ADD

The use of ADD has several advantages. It integrates documentation with program de-
velopment activities to produce better designed, structured, and documented programs,

6.1 Integration of Program Design and Documentation Activities

The use of ADD insures that the program documentation and program design activities
are inseparable. ADD provides a structured and systematic approach to design and implements
the program. It assists the designer to completely specify the necessary design parameters.
It provides an automated tool for the designer to verify and to refine the design. It

helps the designer to organize the design works and to document the final design.

ADD provides the programming staff with the basic program structure and basic design
specifications for implementing the program. The important program module-to-module inter-
face conditions are generated automatically from the design. Other design information is

referenced and documented within the program listing. The automatically generated program
documents provide a complete set of design specifications which can be used as "blueprints".

106

The pre-selected test data not only are well designed, but they are permanently stored for
use whenever a program test is required.

SUBROUTINE QUADRT (A, B, C, RT, RTl , RT2, IMl , IM2, IND)
*********************** it -k-kie ** -k ie ie-k ********* it -k * -k** -tc-k * if -k ***** *

c
C FIND ROOTS OF QUAURATIC EQUATION
C
C INPUT VARIABLES ARE A,B,C. THE RESULTS ^4AY BE:

C 1. NO ROOTS.
C 2. ONE REAL ROOT.
C 3. TWO REAL ROOTS.
C 4. TWO COMPLEX ROOTS.
C
Q** *** *

c
C A INPUT VARIABLE
C B INPUT VARIABLE
C e INPUT VARIABLE
C RT ROOT OF BX+C=0
C RTl REAL ROOT ONE
C RT2 REAL ROOT TWO
C IMl IMAGINARY ONE
C IM2 IMAGINARY TWO
C IND RESULT INDICATOR CODING SCHEME 0=NO ROOT
C 1=0NE ROOT
C-' 2=TWO ROOTS

C 3=COMPLEX
C
Q* ***

REAL A,B,C,RT,RTl,RT2,IMl, IM2
INTEGER IND

THEN statement
ELSE statement

Figure 6. Interactions with a

Programming Template.

107

Changes to program modules can be recorded without much difficulty. Updated program
documents can be regenerated at any time. An impact analysis can be quickly and auto-
matically performed during program maintenance. For Sample, when a change to an input or
output variable is made, a scan on the stored information in the data dictionary can be
activated, and all those modules or files affected can easily be identified.

6.2 Enforcement of Programming and Documentation Standards

ADD helps the program development project management to enforce the adopted programming
and documentation standards and conventions. It provides a means to establish unified
naming conventions for assigning variable names, and names for files, records, and program
modules. It establishes the standards for program documentation and program listing. It

provides a basis for establishing standard testing procedures.

6.3 Automated Program Document Generation

ADD can generate program design and implementation documents automatically. The pro-

gram document updating problem is, therefore, reduced.

6.4 Program Validation

ADD provides an automated means for validating the program with its design. During
the implementation and maintenance stages, any difference on the module interface condi-
tions between the actual implementation and the design can be detected by checking the

program listing with the design. The checking can be automated. The designer and pro-

grammer must resolve the conflict before the program is permitted to run. The pre-
selected and stored test data along with the program specifications is another means to

validate the program implementation.

7. CONCLUSIONS

ADD integrates the program design and program documentation activities. This approach
not only helps in providing better documented programs, but it also enhances the program
design. Program design and implementation documents can be automatically generated without
adding additional burdens to program designer and programmer.

The programming and documentation standards can be better enforced. Structured pro-
gram design, implementation, testing, and documentation can be easily established. The
validity of the program can be better verified.

ADD depends on the availability of an automated data dictionary and an on-line program
editor. Additional software is necessary to generate the necessary documents. Software is
also needed to assist in program testing and to verify the validity of the implementation.
Further research and development efforts are necessary to optimally implement the proposed
concepts and tool. Detailed design and implementation of ADD are scheduled to be reported
in our forthcoming papers.

108

REFERENCES

Boehm, B.W., McLean, R.K., and Urfrig, D.B., "Some Experience with Automated Aids to the
Design of Large-Scale Reliable Software", IEEE Transactions on Software Engineering,
March 1975.

Brewer, G.D., "Documentation: An Overview and Design Strategy", Simulation and Games,
Vol. 7, Mo. 3, 1976.

Cornelia, P. A., Computer Software Documentation, Goddard Space Flight Center, Greenbelt,
Maryland, January 1973.

Denning, Peter, "Smart Editors", CACM, Vol. 24, No. 8, August 1981.

Dijkstra, G.W., "Craftsman or Scientist?", Proceedings of the ACM 1975 Annual Conference,
San Francisco, California, April 17-18, 1975.

Feiler, P. and Medina-Mora, R., "An Incremental Programming Environment", Technical Re-
port CMU-CS-80-126, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, PA, April 1980.

GAO, Improvement Needed in Documenting Computer Systems, U.S. GAO Report No. B-115369,
U.S. Government Printing Office, Washington, D.C., 1974.

Gey, F., Professional Levels of Computer Program Documentation, Computer Science and Ap-
plied Mathematics, Lawrence Berkeley Laboratory, Berkeley, California, June 1976.

Gass, S.I., Computer Model Documentation: A Review and An Approach, NBS Special Publica-
tion 500-39, U.S. Government Printing Office, Washington, D.C., 1979.

Gass, S.I., Hoffman, K.L., Jackson, R.H.F., Joel, L.S., and Saunders, P.B., "Documentatior

for a Model: A Hierarchical Approach", Communications of the ACM, Vol. 24, No. 11,

November 1981.

Henderson, P., and Snowdon, R.A., "Some Design Criteria for Program Development Tool",
University of Newcastle, Great Britain, August 1973.

IBM, HIPO: Design Aid and Documentation Tool, IBM, Poughkeepsie, NY, April 1973.

Lefkowitc, H.C., "Data Dictionary Systems", Q.E.D. Information Sciences, Inc., Wellesley,
MA, 1977.

NBS, Guidelines for Documentation of Computer Programs and Automated Data Systems, FIPS

Publication 38, U.S. Government Printing Office, Washington, D.C., 1976.

Plagman, B.K., "Data Dictionary/Directory System: A Tool for Data Administration and

Control", Auerback Information Management Services - Data Base Management, No. 22-

01-02, Auerbach Publishers Inc., Pennsauken, NJ 1977.

Stevens, W.P., Myers, G.J., and Constantine, L.L., "Structured Design", IBM Systems

Journal, Vol. 13, No. 2, 1974.

Teitelbaum, R., "The Cornell Program Synthesizer: A Tutorial Introduction", Technical

Report TR-79-381, Computer Science Department, Cornell University, Ithaca, NY,

July 1979.

Teitelbaum, R., and Reps, T., "The Cornell Program Synthesizer: A Syntax-directed Pro-

gramming Environment", Technical Report TR-80-421, Computer Science Department,

Cornell University, Ithaca, NY, May 1980.

Teitelman, W., "The INTERLISP Programming Environment", IEEE Computer, April 1981.

109

NBS FIPS Software Documentation Workshop, March 3, 1982

An Approach to Computer Maintained Software Documentation

Bruce I. Blum

The Johns Hopkins University
Baltimore, Maryland 21205

The use of text processors to manage documentation is quite common in data
processing facilities. Consequently, much of the software documentation is

produced in this manner. Unfortunately, we are not realizing the full potential
of automation in the production of the documentation required for the different
phases of the life cycle. This paper shows how one system is being designed
to meet the documentation needs of the various users in a cost-effective way.
The system was developed for a specific class of application - the moderate
sized Information Management System (IMS). However, the approach is readily
transportable to other application areas.

Keywords: Computer maintained documentation; Documentation requirements;
Integrated design and documentation.

1. IMS DOCUMENTATION REQUIREMENTS

We define an IMS application as one which is data base oriented, uses off-the-shelf
hardware and software systems, has no real-time demands beyond those associated with user

interaction, and is limited to simple control logic which can be implemented as a closed
algorithm or a decision table. A moderate sized IMS requires from 1 to 20 man-years of
initial development and has a useful life of 5 or more years. Typical IMS applications
have more than one class of user in an organization; most commerical and medical informa-
tion systems are examples of this type of system.

Figure 1 illustrates the general processing flow associated with the development of
an IMS. The Application Environment is the user's "real world." The implementation
process begins with the formalization of the system requirements in the Descriptive
Environment. The functions of the resultant descriptions are:

• To feed back to the user (sponsor) what the system is to do.
• To supply the detailed designer a set of specifications which he can

translate to an implementable solution.
• To provide a foundation for the final system documentation required by

the users, e.g., operations manual, introductory descriptions, etc.

As segments of the description are completed, they are transformed to unambiguous
specifications in the Design Environment and finally an executable product in the
Implementation Environment. The latter is run in the System Operations Environment. Once
the system becomes operational, the design and implementation details are of little
interest to the user, and hence their documentation is not shown. Life cycle support for
a completed system is managed by a process called system maintenance. Since software does
not wear out, system maintenance involves (1) correction of previously undetected errors
and (2) expansion or modification of the operational system. The figure shows this as a

feedback loop which must go through each of the development (and documentation) processes.

Using this model of the IMS life cycle, five users of the system documentation can be

identified.

• Sponsor. Requires high level, descriptive materials which define the key
design decisions and requirements in terms of the Application Environment.

110

SYSTEM MAINTENANCE

APPLICATION ENVIRONMENT

SYSTEM USE

DESCRIPTIVE

ENVIRONMENT
SYSTEM DOCUMENTATION

DESIGN

ENVIRONMENT

IMPLEMENTATION
ENVIRONMENT

SYSTEM OPERATIONS ENVIRONMENT

DEVELOPMENT OPERATION

Figure 1

A Model of the System Life Cycle

• Designer. Requires materials which are both descriptive and highly specific.

His documents communicate between designer and sponsor, designer and

programmer, and among designers. They also provide a history and reference

to be used by the author.

• Programmer. Requires highly detailed and specific information which will

allow the translation of the input document into executable code. Note that

if the design is directly translatable, this step and the need for a

programmer (rather than designer) is eliminated.

• User. The needs of the user vary according to the user's involvement with

the system. It may range from general introductory text to detailed scenarios.

• Operator. The operators' manual will vary in contents according to the

system; it is always required.

Other specialized users of software documents are involved in functions such as system

test and configuration control. For clarity, they are not considered here.

Figure 2 presents a matrix of documentation user by phase in the development life

cycle. This paper presents a document development philosophy which meets the different

and changing needs of each reader in a cost-effective manner.

Ill

AUDIENCE

System Phase Sponsor Designer Programmer User Operator

Preliminary Design v x
Design XX X
Code/Test X X
Operational Use XX XX
Maintenance* XX XXX
*Maintenance involves all of the above steps.

Figure 2

Document Requirements Matrix

2. THE TEDIUM APPROACH TO SYSTEM DEVELOPMENT

TM
The Environment for Developing Information and Utility Machines (TEDIUM) is a tool

designed to implement and maintain IMS applications. The organization and philosophy of
TEDIUM have been described elsewhere [1,2,3]. For the purposes of this paper it will be

sufficient to familiarize the reader with some key characteristics of the system.

TEDIUM provides a comprehensive environment for the development of an IMS. It begins
in the Descriptive Environment by supporting the designer in (1) the documentation of the

requirements and (2) the decomposition of the requirements into a data-process flow using
structured analysis techniques. An example of how this is done is illustrated with an

appointment system example [2].

Once the initial design documentation is available, TEDIUM provides an application
oriented specification language which fully defines the implemented units, i.e., the
programs. Three types of specification are supported:

• Data base schema. TEDIUM uses a relational model with relations called
"tables." Each table is decomposed into "index elements" and "data elements."
All elements are variable length; multiple index elements are allowed. A

special data type called text manages both text and format commands.

• General formatting rules. Every program is partially defined by a "frame"
which defines the formatting rules to be used, e.g., is this an interactive
device, what should the heading and foot lines for each page be, etc.

• Specific functional descriptions. Each program has its functionality uniquely
defined by a program specification. Some specifications have been generalized
(e.g., file management functions), others are described using the TEDIUM
language.

TEDIUM generates executable programs from these specifications. Thus, there is no

traditional programming in TEDIUM. Design and implementation involve the creation of
readable specifications which establish the users' requirements and the detailed processes
to satisfy them.

To illustrate how TEDIUM is used to implement an IMS, consider a hospital locator
system. The first step is to describe the requirements. A single level outline of the
requirements might be:

1. Enter Patients into the Locator
2. Query the Locator by Location
3. Query the Locator by Patient
4. Discharge a Patient
5. Transfer a Patient

112

6. Print a Midnight Census

After further analyses, this outline is modified and expanded. Requirements which might

not be initially obvious are added (e.g., maintain a dictionary of hospital locations).

Each item in the outline is then described in text, and a requirements statement is

printed for sponsor review.

After these requirements are accepted, the designer translates the requirements
(what is to be done) into a process-data flow design (how it is to be done). Definition of

the data base and processes is done in parallel; there are no simple maps from the require-

ments to the process or data descriptions.

The definition of both processes and data groups continues by using the same outline

approach. The process outline might combine requirements 1, 4 and 5 into a single process

called Maintain Locator File. A single level outline of the processes might be:

1 . User Menu
2. Maintain Locator File

3. Display Census for a Location
4. Display Patient Location
5. Print a Midnight Census

The single level outline of the data groups might be:

1. Locator File

2. Patient Index to Locator File

3. Patient Identification
4. Locator Identification

Again, in each case the outline is expanded and descriptive text is added. The audiences

for this descriptive text are both the sponsor and the implementor/maintainor.

Figure 3 shows the three major classes of documentation text and the links among them.

REQUIREMENTS

PROGRAMS TABLES

Figure 3

TEDIUM System Definition Tree

113

At the lowest level, the processes are linked to the programs which will be implemented;
the data groups are linked to the tables (i.e., relations) which define the data model.
Each program, in turn, is defined as a Frame (i.e., general set of formatting rules) and a

minimal specification. The minimal specification is the least amount of information
required to define what a program is to do. These specifications average 14 lines while
the programs generated from them are 5 to 20 times longer [1]. The tables are defined in

a schema which includes a data dictionary. Both the specification and schema entries have
an initial block of descriptive text which describes their function or purpose.

Figure 4 contains a schema for the LOCATE table. In the short notation, this is

LOCATE PATIENT LOCATOR

This table serves as the inpatient locator. It is
organized bv unit and contains onlv the patients who
are currently in the hospital.

INDEX TERMS :

LOC LOCATION CHARACTER <5)

This is the standard hospital unit identifier.

NAME PATIENT NAME VARIABLE LENGTH (31)

This is the patient name in the form lastffirst
truncated to the first 31 characters.

HNO HISTORY NUMBER CHARACTER (7)
PATTERN 7N

This is the standard 7 di^it history number,

DATA TERMS :

ADMDAT ADMISSION DATE DATE (8)
ROLE IN TABLE IS DEFAULTED TO TODAY

This is the date that the patient was admitted
to the hospital.

BED BED NUMBER VARIABLE LENGTH (5)
ROLE IN TABLE IS MANDATORY

This is the bed number within a hospital unit.

EDSDAT ESITIMATED DISCHARGE DATE DATE <8)
ROLE IN TABLE IS OPTIONAL

This is the estimated date for patient discharge.
It is normally modified each day during the last week
of stay and is used for discharge planning and census
p ro j ec ti on .

Figure 4

Sample Table Schema

114

written

LOCATE (LOC , NAME , HNO) =ADMDAT , BED , EDSDAT

Since the data are stored in alphabetical index order, the table provides an index by
patient name for each hospital location. The term HNO is included to provide uniqueness
in the event of two patients with the same name in the same unit. (This is for illustration
only, since a hospital will not assign patients with similar names to the same unit).

A minimal specification for the program to admit a patient (i.e., generate an entry
in LOCATE) might be:

Input LOC
Call SETHNO
Input ADMDAT
Input BED
Input EDSDAT
Put entry in LOCATE

Input is a command which prompts for the element using its dictionary name (e.g., "LOCATION"
for the element LOC), checks the input for validity and stores the correct data. It also
accepts the "?" as a help prompt. The designer may supply a help message; the default is a

printing of the data dictionary definition as shown in Figure 4. The program SETHNO
prompts with ENTER NAME OR NUMBER, processes the input, adds new patients to the patient
identification tables, and always returns with NAME and HNO set. Put writes the completed
entry into the data base.

The process of design and implementation with TEDIUM, therefore, involves the
description of the problem in a structured text outline followed by the definition of the

data model and programs with the TEDIUM specification tools. Programs are generated from
these specifications and tested in a rapid prototype environment [1]. All text, specifica-
tions and linking information are available online.

3. THE TEDIUM APPROACH TO DOCUMENTATION

TEDIUM is a set of programs generated by TEDIUM. Thus, the preparation of

documentation for an application is seen as an IMS application. All requirements, processes
and data group text is stored as tables managed by the TEDIUM programs. To illustrate,
the requirements are stored in two tables:

REQ(REQID)=REQNM,REQTX
REQL(REQID,REONO)=LREQID

REQ is the table which defines the requirement text. The index (REQID) is a short,

variable length identifier. REQNM is the requirement name and REQTX is the text descrip-

tion. (The text data type calls the TEDIUM text processor for all text input and editing

functions.) For example, we might use

REQID="ENTER"
REQNM="ENTER PATIENTS INTO THE LOCATOR"
REQTX="The system must enter patients into its locator file. By this it is

meant that "

Note that the text avoids phrases such as "the system shall." This allows use of the

requirements text in a wide range of documents throughout the life cycle.

The second table, REQL, establishes a tree structure for the requirements. REQNO is a

number which sequences this node among those nodes directly linked to REQID. LREQID con-
tains the value of a REQID in REQ. For example, the following entries in REQL

REQL("ENTER", 10)= "ENTER. NEW"
REQL("ENTER" ,20)="ENTER. OLD"

conform to the outline

115

ENTER PATIENTS INTO THE LOCATOR
NEW PATIENTS
RETURNING PATIENTS

The links between text groups are described in table pairs to provide bidirectional
linkage. For example, to link requirements and processes we use

REQPRO(REQID,PROID)
PROREQ(PROID,REQID)

Links to the schema and specifications provide access to their text documentation. These
are defined in

TID(TID)=TNAME,TTX
SID(SID)=SNAME,STX
FID(FID)=FNAME,FTX

for tables, specifications and frames respectively. The element NAME is a 30 character
short name, and TX is a block of descriptive text which describes the functionality or
use of the item identified. Finally, within a specification there are links to the optional
help text (i.e., response to a "?" input).

All documentation of a TEDIUM application is created from this data base. To manage
this, one additional set of tables is defined for requirements, processes and data groups.
For requirements it is

REQT(REQID,REQUS)=REQLV,REQFM

where REQUS is the user who would be interested in this block of text; REQLV is a level of
importance with 1 being the greatest and 10 indicating details of little general interest;
and REQFM contains formatting instructions such as eject a page, do not print the heading,
follow with the full tree for this node, etc.

With this table, one can now create documents. For example, a system overview might
be:

Print all requirements with REQUS= "general " and REQLV less than 3.

A Users' Manual for the patient locator function as one application in a total hospital
information system might be:

Print a title page with "Users' Manual, Patient Locator Functions"

Print "Introduction" as all requirements with REQUS="general " and REQLV=1

Print "The Patient Locator" as all requirements in the "LOCATE" tree with
REQUS="general " or "user" and REQLV between 2 and 5

Print "General Instructions" as all processes in the tree "GEN" (This is a

general set of instructions for the use of all TEDIUM generated systems.)

Print "Locator Flow" as processes in the tree "LOCATE" with PROUS= "general

"

or "user.

"

Print "Data Dictionary" and print outline of "LOCATE" data groups with linked
tables. Follow with an appendix containing all the table schema.

The same document may be described more briefly as: User Manual for "Patient Locator
Functions" using requirement node "LOCATE," process node "LOCATE" and data group "LOCATE."

A final level of detail can be produced for the users' manual by processing the
specification and its help messages. For example, the program to enter a patient might be

documented by:

116

(Lead in text from the process tree)
"The system will now prompt:

LOCATION"
(Help message text)
"The system next prompts

ENTER NAME OR NUMBER"
(Help message text from program GETHNO)

Each of the above documents is directed to users and designers. The availability of
all text and specifications in a data base also provides an information resource for those
responsible for the implementation and maintenance of the application. TEDIUM supports
online (and printed) access to the following:

• Text data by node or tree
• Table definition and the data dictionary
• Specifications for programs and frames
• Cross-reference of data element by table and use (index/data)
• Cross-reference of programs (calls/called by)
• Cross-reference of programs with tables and vice versa (reads/writes)
• Hierarchical relationships among programs (a tree structure showing how

programs are called.)

Since all of these outputs are generated directly from the data base, they always accurately
reflect the current application design.

4. CONCLUSION

This paper has briefly (1) presented a model which describes the kinds of documentation
required for an information management system, (2) shown how the text and specifications for
such an application can be managed in the design environment, and (3) illustrated how the
resultant design data base can create the necessary formal system documentation.

Two types of documentation were identified: (1) material to be distributed to sponsors
and users and (2) design information required for implementation and maintenance. The

former is always printed; the latter is always available online. The computer stored data
base is the primary source and reflects the most current documentation. Given the proper
discipline for configuration control, changes to the system will be entered into the

documentation, and updated documents can be created with minimal effort. Since the lower
level, implementation oriented documentation is derived directly from the specifications,
it will always accurately reflect the current design.

The system discussed (TEDIUM) has been in operational use for about a year in a MUMPS
prototype. The main thrust in its use has been rapid prototyping and system development.
It provides the work environment for a group of ten programmers. Several major systems
which have been developed or converted with TEDIUM are now in operational use [4,5]. The
documentation for these systems is being managed as described above.

Still, some disclaimers are in order. TED-IUM is not yet available for export. The

approach to documentation is in a trial stage, and we are learning. Only a limited class

of applications is being considered, and the problems of multiple versions and releases

have not been addressed. Nevertheless, we are convinced that the concepts presented offer
an integrated, workable methodology for inexpensively eliminating that ever present
problem: missing or inaccurate documentation.

117

5. REFERENCES

1. Blum, Bruce I. A Tool for Developing Information Systems. (Eds.)) H. J. Schneider
and A. I. Wasserman, Automated Tools for Information System Design and Development,
1982, North-Holland Publishing Company,

2. Blum, Bruce I. and C. W. Brunn. Implementing an Appointment System with TEDIUM.
Fifth Annual Symposium on Computer Applications in Medical Care, Washington, D.C.,

November 1-4, 1981.

3. Blum, Bruce I. Program Generation with TEDIUM, An Illustration. Trends and Applica-
tions 1981, National Bureau of Standards, Gaithersburg, Maryland, May 28, 1981.

4. Blum, Bruce I. and R. E. Lenhard, Jr. An Oncology Clinical Information System,
Computer Magazine, November 1979, p. 42-50.

5. McColligan, Elizabeth E. , Bruce I. Blum and C. W. Brunn. An Automated Core Medical
Record System for Ambulatory Care, 1981 SAMS/SCM Joint Conference, Washington, D.C.,

October 30 - November 1, 1981.

118

NBS FIPS Software Documentation Workshop, March 3, 1982

Automated and Automatic Documentation

Linda K. Lawrie

U. S. Army Construction Engineering Research Laboratory
Champaign, Illinois

Software documentation standards should reflect the evolution of software
engineering. Moreover, future progress In software development should be
expected and allowance for progress should be Incorporated In documentation
guidelines

.

Systems such as the Automated Documentation System may serve as prototypes
for producing automated documentation. Both Increased productivity and cost
savings can be expected from requiring meaningful documentation.

Kej^ords: automated documentation; documentation standards; Internal
documentation; software engineering;

1. INTRODUCTION

During a recent review of documentation standards ([1], [2], [6]), two deficiencies
seemed apparent: 1) the documentation requirements have little relevancy to scientific and
engineering software development efforts; 2) software engineering has evolved beyond scope
of current standards. These two deficiencies result in loss of programmer productivity, in

increased code rewriting — in general, in decreased cost benefits of the software. This
paper will examine these two deficiencies and propose possible solutions.

2. SUMMARY RECOMMENDATIONS

This paper recommends creation of 'flexible' documentation standards. Because of the
rapid evolution of software engineering, current procedures and practices may have an
effective lifetime of less than five years. Improved productivity can result when the

programmer views the documentation standard as effective and useful.

This paper further recommends automation of the software documentation, whether from
well commented code or from text editing processors. This machine-readable documentation
should form part of the complete software package. The preceding actions can result in

Increased productivity by allowing the programmer to document and update on the same
hardware. If the major portion of the documentation is contained within the source code,
then many kinds of documentation reports may be automatically generated.

In general, substantial cost savings — particularly labor costs — can result from
adoption of these recommendations: programmer productivity increases may result from
Improved motivation; effective software life may be extended.

119

3. DEFINING THE PROBLEM

1) The documentation requirements have little relevancy to the actual workings of

engineering software. It seems obvious that documentation should aid the understanding of

the software and how the software operates. Most documentation standards seem to require
only superficial details — file names, record layouts, etc. ([1], [2], [6]) These
requirements may be applicable to typical batch oriented COBOL environments used in most
financial and business applications, but do not apply to some of the Fortran environments
used in scientific and engineering applications. Further, the documentation standards do

not easily lend themselves to detailed explanations of complicated software.

What are the 'record layouts' in a system where graphic input (e.g. joystick,
digitizer, light pen) are used? Likewise, how does one describe 'record layouts' for

English-like language interfaces processed using formal grammars? Even though these kinds

of systems may not presently form a majority of the software developments, these kinds of

systems (interactive, graphic input, user-friendly interfaces) are the trend of the

immediate future.

Vlhen trying to document one of these systems according to the standards, programmers
become discouraged when the specifications don't appear to apply. Perhaps some recognition
of these kinds of systems (e.g. interactive, flexible input requirements, etc.) would aid

usage of the documentation standards. Also, recognizing that software requirements do

evolve would enhance documentation standards.

2) Software engineering has evolved beyond the scope of the standards. This statement
is true regardless of the language — COBOL or Fortran. Current software is being
developed and used on multi-programming, often interactive hardware. User-friendly
interfaces are being required. Thus, the standard documentation requirements of frequency
of runs seem useless. Frequency of runs — anytime the user wishes — are not as

important as when these frequencies were required for computer resource scheduling.

Superficial knowledge of the software may be sufficient after the software is placed
into production, but the software development manager, as well as the software maintenance
programmer, needs far more detailed knowledge about the actual code. Comments placed into
well written code (internal documentation) will aid the maintenance programmer as well as a

development manager. To enhance productivity, it would be nice if these well commented
routines could be used to satisfy post-implementation documentation requirements.

As the evolution of software engineering progresses, the manager and user are becoming
more cost-accountable (i.e. like other departments). Software development is being
scrutinized for cost benefit, timeliness, and effective life. Users, likewise, are
becoming more sophisticated both in specifying reasonable desires and in recognizing usable
software products. Thus, more importance is being attached to management and user
knowledge of developing software; managers and users also need to know what the code does
— though not necessarily at a detailed level.

Internal documentation — well commented code — can solve most of these requirements;
external documents need only be used for overviews and more detailed descriptions. If

internal documentation can be used to produce readable documents, comments will be
considered almost automatic documentation.

Originally, scientific processors were merely number crunchers; text processing —
user manuals, documentation, etc. — was written/dictated by programmers and then typed.
Typing has since turned into word processing, typically on different hardware than used for
software development. This divergent hardware seems less necessary now that most
scientific processors have good text editors and text processing programs.

Rather than the redundancy of having software documentation on separate hardware, it

would be cost beneficial to have the programmer produce the documentation on the
development hardware — ideally, internal to the code itself.

120

A. POSSIBLE SOLUTIONS

4.1 Usable and Automated Documentation

Any possible solutions must emphasize 'usable' documentation. These solutions must
also be cost beneficial — or they won't be enforced. The documentation audience —
manager, user, and maintanence programmer — should be satisfied with the result. Many
problems can be avoided by the use of structured programming enhanced with mnemonic
variable name usage. Structured programming will help produce good code because of its

emphasis on modular design. Guidance has begun to appear for using structured progranming
[3].

Automated production of documentation reports will also help, particularly if these
reports can be produced directly from the source code(s). Then, new reports can easily be

produced whenever changes occur in the code. Also, the documentation will then be wherever
the source code is found. This automation seems most easily done by commenting code;
external documentation can focus on less changeable items of the software — purpose,
overall techniques.

4.2 The Automated Documentation System

Rather than theorizing about such a system, I can tell you about one that already
exists. The Automated Documentation System (ADS) [4] was developed at the Construction
Engineering Research Laboratory (CERL) to provide high quality documentation of Fortran
source code(s).

The Automated Documentation System (ADS) is a computer program and user procedure
designed to facilitate management of the development of software and the production of

final documentation for Fortran programs. The ADS system can be used in two ways. 1) At

any point during development of the software, the status of the development process can be

determined by the application of the ADS program to the source code under development.
Flow charts and internal documentation are summarized for the project manager. 2) After
the software is complete, external documentation can be produced from the internal
documentation by running the ADS program.

The ADS program is written in Control Data Corporation (CDC) Fortran extended, and can
be used on CDC 6000/7000/170 series computers with few or no modifications. The source
code is non-proprietary.

The Automated Documentation System (ADS) can be viewed as a prototype of the necessary
systems for obtaining good documentation. Similar methods could be used for COBOL, Pascal,
ADA, and other languages. ADS relies on special comments placed into the Fortran source,
stores these comments along with other, compiler provided information on software data
files, and retrieves and reformats this information from these files for specialized
reports. The ADS user — programmer — can choose from 20 different sections for
documenting his code (e.g. PURPOSE, METHOD, VARIABLE DICTIONARY, FLOW, etc.). Compiler
supplied information includes number of lines of code, routines used by a routine,
variables and their types, etc.

The software project manager can specify which sections are to be used in a developing
software system. When top down design is employed, a system similar to the ADS Stub

Generator [5] can be used to enforce the manager's requirement. However, meaningful
documentation — the documentation accurately representing the purpose of the software —
implies a careful review process. Thus, the reviewer (manager or user) needs to check the

documentation for meeting the 'standards' requirements and to review the documentation for

content

.

121

An example application of ADS to the ADS main program can be viewed in Figure 1.

LOGICAL FLOW.

CALL INITIALIZATION ROUTINES (ADINIT, FHINIT, PINIT)
WHILE NOT EOF(REFFL) DO [SOURCE CODE PROCESSING]

PROCESS REFERENCE MAP FOR A ROUTINE
SCAN SOURCE CODE FOR CURRENT ROUTINE
PROCESS DOCUMENTATION FOR CURRENT ROUTINE

END [SOURCE CODE PROCESSING]
PERFORM USER INPUT COtlMANDS [TITLE, PRINT, DRAW, ETC.]

PERFORM END-OF-JOB PROCESSING

FILES USED IN ADSDOC ARE ~
DEBUG INPUT INVBK INVFL MASBK MASFL
OUTPUT REFFL RPTOUT SRCFL TIMES

THIS MAIN PROGRAM HAS APPROXIMATELY 112 NON-COMMENT LINES.

IT WAS WRITTEN IN FORTRAN 66.

Figure 1. Excerpt of ADS documentation.

ADS Reports can be retrieved for any combination of sections, routines, and common
blocks. These reports can be read by anyone, if the comments are meaningful; no one will
have to sift through the Fortran code to understand the software. These reports can be

produced at any point in the software development and can provide the manager and user with
crucial information about development progress. Several kinds of reports currently exist
in the system — reports of documented ADS sections for routines, reports of documented ADS

sections for common blocks, and a 'tree report' — static calling structure from any
specified 'root' module.

4.3 ADS Examples

Though space limitations do not allow complete examples of ADS outputs to be shown,

some excerpts from ADS inputs and outputs may be useful. The retrieval user communicates
with the ADS program using simple English-like commands:

TITLE SOFTWARE IN PROGRESS;
REPORT IGUIDE=TITLE, PURPOSE, USAGE, FORMAL PARAMETERS;
PRINT NARROW (IGUIDE) FOR ALL ROUTINES;
DRAW TREE;
END;

The Automated Documentation System program places information on the documentation
files from the TITLE and REPORT command. It retrieves the necessary documentation records
for the PRINT command; and it draws the static calling structure of all main programs in
this example DRAW command.

Again, the programmer places special comment cards into the Fortran source code.
These comment cards, together with the information provided by the Fortran compiler
reference map, create the documentation record. For an example of ADS output produced by
the compiler reference maps, refer to Figure 2.

122

ROUTINES CALLED BY AVGR ARE ~
TRACER

INTRINSIC FUNCTIONS CALLED BY AVGR ARE ~
lABS

COMMON BLOCKS CALLED BY AVGR ARE ~
DEBUGR SUMCOM COMMAR COMMDEF

THE ROUTINES WHICH CALL AVGR ARE —
PRNTSUM

Figure 2. Fortran Reference Map produced documentation.

For an example of typical ADS output produced from the special comment cards, refer to

Figure 3. Tree reports may be 'drawn' starting at any module and continuing for a user
specified depth. An example of the two top levels of ADS itself can be viewed in Figure 4.

TITLE

.

AVGR - AVERAGING ROUTINE

PURPOSE.
AVGR CALCULATES AN AVERAGE AT THE REQUESTED REPORT FREQUENCY (INTERMITTANT AVERAGE)
OR A GRAND AVERAGE AT THE REQUESTED REPORT FREQUENCY+1 (I.E., DAILY FOR AN HOURLY
REPORT) BASED ON THE INPUT CODE, AND ZEROES OUT THE APPROPRIATE INTERNAL SUM BUFFER.

USAGE.
CALL AVGR(CODE,VARTYP, BUFFER, LTH)
ENVIRONMENT —
THE INTERNAL FLAGS DESIGNATING WHICH ARITHMETIC OPERATIONS ARE ALLOWED ON EACH

VARIABLE MUST BE SET PRIOR TO A CALL TO AVGR.
IF THE REPORT WRITER LANGUAGE AND PARSER ARE USED ALL OPERATIONS ARE ALLOWED ON

ALL VARIABLES INPUT. THE VARIABLES AND THEIR ALLOWABLE OPERATIONS MAY
ALTERNATELY BE SET WITH A CALL TO INITV.

THE INPUT DATA BUFFER MUST ALSO BE FILLED WITH HOURLY DATA AND/OR 'SPECIAL' OR
'NODATA' FLAGS FOR EACH VARIABLE REQUESTED FOR THE CURRENT REPORT BEFORE EACH CALL.
THIS IS ACCOMPLISHED BY A CALL TO 'SETID' FOR EACH USER-SPECIFIED ZONE, SYSTEM OR
PLANT NUMBER (ID) IN THE REPORT THAT REQUESTS RPTFLE DATA, AND BY A CALL TO

'RDFILES' EACH HOUR TO RETRIEVE THE DATA FOR ALL REQUESTED VARIABLES.

VARIABLE DICTIONARY FOR ROUTINE AVGR

FORMAL PARAMETERS.

BUFFER - 1-DIMENSIONAL ARRAY IN WHICH RESULTS OF AVERAGE ARE RETURNED.

CODE - ACTION CODE FOR AVERAGING (NEGATIVE CODES ALSO ZERO BUFFER)
1= PERFORM AN INTERMITTANT AVERAGE, STORE RESULT IN INTERNAL BUFFER
2= PERFORM A GRAND AVERAGE, STORE RESULT IN INTERNAL BUFFER
-1= RETURN CURRENT INTERMITTANT AVERAGE FROM INTERNAL BUFFER
-2= RETURN CURRENT GRAND A\?ERAGE FROM INTERNAL BUFFER

LTH - LENGTH OF BUFFER

VARTYP - RECORD TYPE OF DATA TO BE AVERAGED
(1=Z0NE, 2=SYSTEM, 3=PLANT, 4=SYSTEM ZONE)

Figure 3. Comment produced documentation

123

To ensure meaningful documentation, these reports are used in structured walk-thrus of

code and in meetings with users and managers. Reviewing this documentation for compliance
with development standards and for completeness of meaning becomes the responsibility of

the managers and users. Using these reports also eliminates the tendency of programmers to

say 'the code is self-documenting'. Of course, these reports cannot substitute for code,

but they do provide a common ground for discussions, changes, etc. When implementing
changes, the programmer need only update the routines /common blocks changed, and rerun ADS;
software documentation files will be updated to reflect the changes.

ADSDOC
|_ADINIT
|_DTFTN

I
|_RDCDC4

I
|_RDCDC5

I
|_RDLINE

i_FHEND
|_FHINIT
|_PINIT
|_PREPARS_

I
|_CDPARS

|_RPTMON
|_DELCMD
|_DRACMD
|_HELCMD
|_PRTCMD
|_RPTCMD

I
TITCMD

Figure 4. A TREE report showing user specified depth.

Certain documentation reports may not easily fit into the 'internal' comment
structure. These kinds of reports usually deal with overall views of the software or

intricate interactions of several routines, programs, etc. For these cases, one can still
produce the document in machine-readable form using a text processor and carry these
documents as part of the software. Thus, all the available documentation about the
software would be available as one package.

4.4 Automated Documentation System Usage

The Construction Engineering Research Laboratory developed the Automated Documentation
System to meet documentation needs of users. ADS has been used in several systems produced
at the Construction Engineering Research Laboratory since December 1978. Retrofit
documentation of several large systems has also been accomplished using the special
comments required by ADS. In particular, the Building Loads Analysis and System
Thermodynamics (BLAST) program — approximately 100,000 lines of Fortran source code —
that has been installed on 40 different sites uses the ADS commenting system. Producing
the documentation for BLAST, then, is merely a matter of executing the ADS program against
the BLAST documentation files. In the case of the BLAST system, ADS is being used
primarily in program maintenance.

However, several other users of ADS at CERL have been using the ADS system primarily
as a system development tool. These users have found the automated reports will help them
identify mis-typed variable names, as well as provide indications of module completeness.

124

4.5 Status of the Automated Documentation System (ADS)

The ADS system periodically undergoes some revision primarily to respond to new needs
of its users. The system is somewhat prototype (though used productively) since the code
exists primarily for Fortran and on Control Data Corporation hardware.

Moving ADS to new hardware requires some code revisions and creating reference map
decoding routines for the new hardware's Fortran compiler. Obviously, a portable Fortran
code scanner that produces the kind of information used by ADS (e.g. externals, intrinsic
functions, variable-common mapping) would aid conversion to new hardware.

Using ADS for languages other than Fortran would be more difficult. For example, many
of the terms used in ADS are not applicable to COBOL (e.g. lack of common blocks,
subroutines not widely used). However, the basic concept of ADS — storing documentation
on files for later retrieval — could be applied to many source languages.

5. CONCLUSION

Documentation standards must be applied to a wide variety of software systems.
Originally, software was used in batch oriented, single programming environments. However,
present and future software will be used in interactive, multi-programming environments.
Thus, any documentation standard must be flexible in its requirements.

The need for meaningful documentation exists throughout the software life cycle.

Software development managers need to be able to easily assess the progress of development.
Users need to be able to assure themselves that they are getting the product that meets
their needs or desires. Maintanence programmers need to have system documentation readily

available and easily revisable.

The Automated Documentation System (ADS) system was developed to meet these needs at a

specific installation (the Construction Engineering Research Laboratory — CERL). Tools
like ADS may also meet the needs of the documentation standards community.

6. REFERENCES

[1] DoD Standard 79365. 1-S, Automated Data Systems Documentation Standards , 13 September
1977.

[2] TB 18-111, Army Automation Technical Documentation . January 1979.

[3] TB 18-103, Army Automation Software Design and Development , January 1980.

[4] Lawrie, Linda, The Automated Documentation System ^ User Manual , Cerl Technical Report
E-147, February 1979, 83 p.

[5] Lawrie, Linda and Baugh, Jean, Automated Documentation System (ADS) Stub Generator;

Description and User Instructions , Cerl Technical Report E-167, October 1980, 35p.

[6] FIPS Pub 38, U. S. Department of Commerce / National Bureau of Standards, 1976 February
15.

125

NBS FIPS Software Documentation Workshop, March 3, 1982

SESSION C: Discussion

H. Hecht

SoHaR, Incorporated

Currently available tools permit partial automation of document
generation. Thereby, they reduce cost and schedule, provide standardization
of format, and improve the quality of the resulting product. Tools can help
in three areas of document preparation: collecting information, establishing
the format, and in presentation to the user. The authors of this session
covered all three areas as is shown in the following table.

DOCUMENTATION AREAS SERVED BY TOOLS

AREA

Information
Content

Format

EXAMPLES

Variables dictionary, program flow, etc.
Copies of actual program use

Pre-arranged sequence of topics

Mandatory declarations

Presentation Screen format
Text editing and formatting

AUTHOR

Lawr ie
Henry

Ting
Lawr ie
Malhotra
Blum

Ting
Henry

The authors recognized limitations of current use and the methodology
associated with their use, including:

* Difficulties in devising tools for general purpose documentation. The most
successful tools were dedicated to a single application area.

* The full benefit of tools can be realized only if there is strong
management support and follov/-up.

* Current methods address primarily user and maintenance manuals.

Looking into the future, one may expect greater emphasis on interactive
documentation. Menu-driven input, supplemented by HELP routines, is already
widely used and reduces the dependence on user manuals. Screen presentation
of fully documented source code, possibly structured at several levels of
detail, may supplant much of the material currently included in maintenance
manuals. Techniques that permit simultaneous interactive display of programs
and associated data structures promise to be particularly helpful for program
development and maintenance.

A hopeful sign is that the academic community may be taking some
interest in documentation as evidenced by Ting's paper. That paper
recognizes that there is a close relation between good program design readily
understood documentation. This emphasizes that documents prepared for human
understanding and programs prepared for use in the computer are complementary
representations of the same information processing activities. Deficiencies
in either one will usually degrade the other.

126

NBS FIPS Software Documentation Workshop, March 3, 1982

Session Summary: Tools for Improved Documentation

Sheila E. Frankel

National Bureau of Standards
Gaithersburg, Maryland

This session proposed the use of software tools in documentation development as a

promising solution to some of the problems plaguing traditional program documentation-
expense, limited usefulness of the final product, and the problem of keeping the documenta-
tion current as the project changes. It was agreed that part of the problem is that docu-
mentation is developed and maintained separately from the program. This is the case whether
it is written in parallel with program development or whether it is done as a follow-up
effort.

Linda Lawrie suggested another problem— that documentation standards and methods have
remained static, while the technology of program development, or software engineering, is

constantly changing and evolving.

One =»pproach to help mitigate these problems is the use of automated documentation
tools. Tnese tools can make the development of documentation part and parcel of the pro-
gramming development process. Several different approaches to the use of tools have been

suggested.

Ashok Malhotra's approach is the development of a high-level programming language that
is easy to understand and, thus, self-documenting. In the EAS-E system, by integrating this
language with a DBMS, a new entity has been created—executable documentation.

T. C. Ting's ADD system integrates program design and documentation. It imposes order
on the design documentation through the use of a template. This information, together with
pseudo-code and test data, is used to create structure charts and flow diagrams, which in

turn can be used in the program development and validation.

Bruce Blum has suggested reversing the customary process of developing Information

Management Systems. His TEDIUM system allows the developer to specify system requirements
in terms of format, function and processes, and from these executable programs are generated.

Linda Lawrie follows the customary procedure of program development, but, in her ADS
system, the documentation is either contained within the program or automatically generated

through program analysis.

Ray Houghton presented the idea of including different types and levels of on-line doc-

umentation in an interactive program. He used as an example a system developed by Nathan

Relies and Lynne Price that was demonstrated at a recent tool fair co-sponsored by NBS (See

NBS Special Publication 500-80). This system enables the user to specify precisely the

information and the level of detail he needs, and not to be distracted by receiving too much

or too little information in response.

127

Lee Henry suggested that, once the documentation effort is integrated into the softwar
development process, not only do we need standards for the contents of documentation, but
for the processes and procedures of documentation development as well. She also suggested,
as an addition to the program development team, a documentation specialist, who would be

involved in all aspects of the software design.

These systems represent differing views of automated documentation— programs as docu-
mentation, programs generating documentation, documentation generating programs, and
executable documentation as part of a program. In conjunction with all of these approaches
those documents that are not an integral part of the program can be produced using text
editors and word processors. Herb Hecht summed up by stating that surveys have shown that
documentation tools are well -liked by programmers.

However, two reservations were expressed with regard to this promising approach to

documentation. Herb Hecht commented that fully automated documentation is not yet feasible
Human intervention is still needed to disclose general intent and patterns in the programs.
In addition, all of the participants admitted that their systems had limitations. All of
these systems are either prototypes, are available only on specific machines, or are suit-
able only to specific types of systems or applications. Frequently, tools are incompatible
with other tools available on the same system.

A concern expressed by several members of the audience was whether tool usage to aid o

replace the programmer would further increase the distance between software developers and

users. Several of the panelists responded that the major part of a programmer's time is

currently spent on "housekeeping tasks." The tools can take over these tasks— by removing
them from the programmer's domain (Blum), hiding them from the user (Ting), or eliminating
the distinction between specifications and programs (Malhotra). This allows the programmer
to concentrate on the functional part of the program, and on identifying and satisfying the
users' needs.

An additional theme was repeated a number of times. In order to capitalize on any of

these advances in documentation development, management must become committed to the

necessity of documentation as an inseparable part of the software development process.

This session demonstrated that, through the use of automated tools, documentation
development can be a dynamic process, reaping all the benefits of the new advances in

technology.

128

NBS FIPS Software Documentation Workshop, March 3, 1982

SESSION D: Do Existing Standards Work?

Alfred R. Sorkowitz

U.S. Department of Housing and Urban Development

Introduction

ADP systems are recognized as evolving from initial concept to final operation. This
evolution is called the life cycle and is characterized by several major events or mile-
stones which delineate the life cycle phases of the system. These milestones provide the

means of measuring, evaluating, and thereby controlling the progress of the development
effort. It is recognized that there are many different terminologies to identify the

phases and the associated documentation.

In February 1976, the National Bureau of Standards issued the Federal Information Proces-
sing Standards Publication (FIPS PUB 38): "Guidelines for Documentation of Computer
Programs and Automated Data Systems" (February 15, 1976). This document presents detailed
content guidelines for ten document types generally prepared during the Development Phase.

This was followed in 1979 with FIPS PUB 64 "Guidelines for Documentation of Computer
Programs and Automated Data System for the Initiation Phase (August 1, 1979).

Taken together, these two FIPS PUBS are the first attempt at a government-wide Documenta-
tion Standard and today are widely used within the Federal ADP Community.

a . Initiation Phase

During the Initiation Phase, the objective and general definitions of the

requirements are established. Feasibility studies, cost benefit analyses and

other documents, determined by agency procedures and practices, are developed.

b. Development Phase

The Development Phase is broken down into four stages; Definition, Design, Pro-

gramming, and Test.

The DEFINITION stage defines the functional and performance requirements needed to

initiate the design as well as to confirm that the completed software will meet

the objectives. These functional Requirements define what the software must do

rather than how it is to be done.

During the DESIGN stage, the System and Program Specifications are developed.

These are detailed specifications of the internal construction of the software,

for use by programmers who will implement the design.

During the PROGRAMMING stage, program language statements or "code" is produced

that meets the Design Specifications. Program or Unit Testing also takes place

during this stage.

During the TEST stage. System, Integration and Acceptance Testing takes place

according to a Test Plan prepared in a previous stage.

c. Operation Phase

During the Operation phase, software is maintained and enhanced as additional

requirements are identified.

129

Sufficient experience in the use of these documentation standards now exists, and
it is appropriate to stop and evaluate the present standards. Therefore, the
title of this session "Do Existing Standards Work"? The focus is on how these
standards can be modified to be responsive to new initiatives as well as new
methods and procedures for preparing the required documents.

Ronald Thies in his paper "Documenting System Security" addresses the new emphasis
on System Security as a result of 0MB Circular A-71 TM No. 1, "Security of Federal
Automated Information Systems." The paper presents an approach to documenting
system security which provides for the threading of security throughout the
documentation life cycle. The approach requires that security requirements are
thoroughly described in the Functional Requirements Document and that security is

specifically addressed as it applies to each of the subsequent documents.

It is interesting to note that these changes have successfully been accomplished
within the FIPS PUB 38 framework.

Traditionally, documentation is prepared by the developers. Personnel working on

System Requirements prepare the Requirements documentation. System Designers
prepare the Design Documentation, etc. Patrick 0' Conor and Samuel Redwine
described an environment where for unique reasons this method didn't work. In

their experience in establishing a technical writing organization for the purpose
of preparing ADP software documentation.

The final paper in this session by Robert Hegland is entitled "An Overview of the
Department of Defense Automated Data Systems Documentation Standard - an adaptable
standard." It briefly describes the DOD standard, which is very similar to FIPS

PUB 38 and in fact was used as a point of departure by the intergovernmental team
that developed the NBS Standards.

130

NBS FIPS Software Documentation Workshop, March 3, 1982

Documenting Systems Security

Ronald G. Thies

Systems Specialist, Standards and
Quality Control Staff

Office of ADP Systems Development
U.S. Department of Housing and Urban Development (HUD)

This paper presents an approach to documenting
system security which provides for the threading
of security throughout the documentation life
cycle. The approach requires that security
requirements are thoroughly described in the
Functional Requirements Document and that security
is specifically addressed as it applies to each
subsequent document. Its structure provides for
the convenience of security reviews necessary to
attain system certification. To describe the
approach, revised security sections were prepared
for the Functional Requirements Document,
System/Subsystem Specification, Test Plan, and
Test Analysis Report which are described in the
current FIPS PUB 38 (1).

1. INTRODUCTION

1.1 Background

With the issuance of 0MB Circular A-71, Transmittal
Memorandum No. 1, Security of Federal Automated Information Systems,
on July 27, 1978, and subsequent guidance from NBS, 0PM, and GSA

(3) (4) (5) (6), documentating system security is being viewed
with a new perspective in Federal Government. Operating agencies
must now consider documenting system security an integral part
of the development process not only for the very sensitive but for

all systems. The old assumption that "a system is non-sensitive
unless specifically designated sensitive" must now be replaced
with the assumption that "a system is sensitive unless specifically
designated non-sensitive." In other words system security must be

addressed and documented at the outset of the development process
to determine: (a) the degree of sensitivity to place on the system
and (b) the amount of effort to devote to the development and

documentation of appropriate security safeguards.

131

The documents in the current version of FIPS PUB 38 (1)

address security in somewhat general terms. Agencies using this

publication as their primary documentation standards will have

to augment its coverage of security to assure that specific security
requirements are adequately described in the Functional and Data
Requirements Documents and that appropriate safeguards are described
and evaluated in the subsequent documents. It is important that
improved coverage of system security be included in the forthcoming
revision to FIPS PUB 38 (1). This improved coverage should be

structured so that it provides for the security reviews necessary
to attain system certification, a specific requirement of 0MB Circular
A-71, Transmittal Memorandum No. 1 (2).

1.2 Purpose

The purpose of this paper is to present an approach to

threading security throughout the documentation life cycle. It is

hoped that this approach or a similar approach will be considered
in the next revision of FIPS PUB 38 (1).

1.3 Scope

This paper contains proposed security sections for the Functional
Requirements Document, System/Subsystems Specification, Test Plan, and

Test Analysis Report which are described in FIPS PUB 38 (1). Preceding
each proposed security section is a brief narrative explaining the
rationale behind its content. Determining the sensitivity of a system,
and conducting and documenting a risk analysis (5) of a system are
pre-requisites to the preparation of the FIPS PUB 38 (1) documents
and are not covered in this paper.

1.4 Limitations

Documentation of system security in most cases cannot be isolated
in a single section of a document. It is not intended that all security
details be documented under the separate security sections presented
in this paper. These security sections serve to remind the authors of
the importance of security and provides for the summarizations of all

security considerations as applied to a particular document type.

Length limitations for the papers precluded the author from
presenting proposed security sections for all ten documents described
in FIPS PUB 38 (1). Four documents, which best demonstrate the
threading effect of security, were selected for presentation in this
paper.

132

2. PROPOSED SECURITY SECTIONS

2.1 Functional Requirements Document (FRD)

As pointed out in FIPS PUB 73 (6), Section 6.1, security
requirements must be adequately defined before software development
can proceed. Therefore, heavy emphasis has been placed on the
security requirements in the FRD, making that document the
cornerstone for building security safeguards into the resulting
system. A proposed security section for the FRD is shown in Figure 1.

It is intended that the current Section 5 of the FRD, Development
Plan, be changed to Section 6.

5. SECURITY.

5.1 BACKGROUND INFORMATION. Provide background information
which reflects on the sensitivity of the application.
Include justification for the degree of sensitivity
placed on the system such as, conformance to the
Privacy Act of 1974, protection of critical decision
making information, preservation of fair competition
in the private sector, protection of saleable
information, etc.

5.2 CONTROL POINTS, VULNERABILITIES, AND SAFEGUARDS.
Provide a description of each control point, the

vulnerabilities at the control point, and the

safeguard requirements to reduce the risk at the

point to an acceptable level.

5.2.1 Control Points. Describe the points in

the system where there is a defined
vulnerability which requires specific
safeguards. A control point can be located

at any interface where data move between

two administrative, physical, or technical
entities. Control points should be

considered in three broad categories: input,

process, and output.

a. Input Control Points

(1) Source Origin. Identify where
input data will be collected,

prepared, and entered to the

system.

Figure 1. Proposed Security Section for the FRD

133

Figure 1. Cont'd

(2) Source Backup. Identify where
source data will be collected,
stored, and/or destroyed after
input to the system.

(3) Data Entry. Identify the personnel
positions and the terminals
that will be permitted to perform
data entry, update, and corrective
actions.

(4) Error Correction. Identify
the points where data input
errors will be detected, reported,
and corrected.

b. Process Control Points.

(1) Accuracy and Completeness.
Identify the points in the
processing cycle where the
system should notify the user
that input data has been accepted
and/or that the requested processing
has been completed.

(2) System (Programmed) Interfaces.
Identify the points in the
processing cycle where data

are to be internally passed
or retrieved to or from other
systems.

c. Output Control Points.

(1) Production. Identify personnel
positions and terminals that
are permitted to receive output.

(2) Distribution. Identify the
steps and personnel positions
involved in the distribution
and disposition of computer
output products.

134

Figure 1, Cont'd

5.2.1.1 Vulnerabilities. Describe the vulnerabilities
at each control point identified in 5.2.1. A

vulnerability is a design, implementation, or
operational condition inherent in the
application or system which lends itself to
error and/or loss or compromise of information.

5.2.1.2 Safeguards. Describe the safeguard
requirements at each control point to
reduce the vulnerabilities to acceptable
levels. Consider at least the following
areas:

a. Administrative Safeguards. An
administrative safeguard is defined
as any procedure that requires
management oversight; i.e., requires
supervision to assure compliance.

(1) Personnel. Identify which
personnel positions will require
security clearances because
of their association with the
proposed system.

(2) Distribution. Describe any
requirement for a variance from
standard distribution procedures.

(3) Constrained User Environment. Describe
any requirement to limit operation
of the proposed system to certain
terminals or periods of the
day.

(4) Collection and Preparation. Describe
requirements for the proper control
of collection, preparation, and
backup of input data.

(5) Access/Permission. Describe
procedural and safeguard of lists
of personnel authorized to access
and approve change requests for the
system.

135

Figure 1. cont'd

b. Physical Safeguards. Physical safeguards
are defined as any physical means that
limit access to data; i.e., locked rooms,
vaults, card/key access, and locked doors.

(1) Dedicated Equipment. Describe any
requirement for dedicated equipment
to aid in maintaining system security.
This may include storage media as

well as processors or terminals.

(2) Storage and Protection. Describe
requirements for onsite and offsite
storage and protection of materials
(programs, data, documentation, etc.).

c. Technical Safeguards. Technical safeguards
are defined as any automated process that
assures appropriate processing; i.e.,

passwords, audit trail reports, etc.

(1) User. Describe any requirement
for managing user access.

(2) Process Safeguards. Describe the
need for any unique data validation
procedures which may provide added
integrity.

(3) Describe any unique automated output
report labeling requirements to be

imposed on the system.

5.3 SYSTEM MONITORING AND AUDITING. Describe user
requirements for the production of an audit
trail including automated reports or journals
necessary to monitor the system.

5.3.1 Journalizing (Event Recording). Describe the
journalizing requirements for the system.
Journalizing is the recording of selected events
as they occur within the system and provides the
basis for monitoring the processing and

use of data and the use of computer resources.

136

Figure 1. Cont'd

a. Triggering Criteria. Describe
the conditions (functions, events,
dates, times, unusual circumstances,
etc.) which will trigger the creation
of an entry on the automated journal.

b. Identification Information. Describe
the identification information,
external to the application system,
such as date, time, system or function
ID, user name, terminal ID and location
etc., to be recorded in the journal
entry.

c. Application data. Identify the
application systems data to be
recorded for each type of journal
entry.

d. Investigation. Describe the procedural
and management requirements for
review and follow-up of the journal.

5.3.2 Audit Trail. Describe any additional user
requirements for an audit trail. These
requirements include such values as total
transactions processed by location and time;

total records added, updated, and deleted by
location and time; and various dollar totals.
As an example, financial accounting systems
must comply with GAO requirements for an

audit trail from source documents through the
system to outputs.

137

2.2 System/Subsystem Specification

The threading effect of security in the System/Subsystem
Specification is accomplished through backward reference to the FRD.

A proposed security section is shown in Figure 2. Note that in

paragraph 5.2 of Figure 2, all security requirements defined in the
FRD must be addressed. It is intended that Subsection 3.4 be deleted
from the current document and be replaced by a separate Section 5

covering security. The current Section 5, Program Specifications,
would then become Section 6.

5. SECURITY

5.1 SECURITY REQUIREMENTS. Summarize the overall
security and privacy requirements imposed on

the system/subsystem.

Include:

a. Privacy Act Compliance.
b. Data Security.
c. Data Integrity.
d. Access/Update Authority Controls.
e. Privacy Act Disclosure Accounting.

If no specific security requirements are imposed
on the system, state this fact.

5.2 SECURITY SAFEGUARDS. Describe or summarize
the security safeguards included in the systems
design and how they satisfy the security requirements.
If a safeguard has been described as an integral

part of the system logic in other sections
of this document, reference should be made
to the appropriate sections. When appropriate,
identify the individual programs in the system
which are involved in satisfying a particular
safeguard requirement. All safeguard requirements
described in Section 5.2.1.2 of the FRD should

be addressed in this section as follows:

a. Administrative Safeguards. An administrative
safeguard is a procedure that requires
management oversight to assure compliance.
Describe the administrative safeguards
which have been included in the systems
design. If an administrative safeguard
falls outside the systems design, describe
any assumptions made about the safeguard
and how the designed system will interface
with the safeguard.

Figure 2. Proposed Security Section for the System/Subsystem
Specification

138

Figure 2. Con't.

b. Physical Safeguards. Physical safeguards
are defined as any physical means that limit

access to the data; i.e., locked rooms, vaults,
and card/key access. Describe the physical
safeguards which have been designed into
or are required by the system. If a required
physical safeguard already exists or the
responsibility for its implementation falls
outside the application system development,
describe any assumptions made about the
safeguard and how the system will use the
safeguard.

c. Technical Safeguards. Technical safeguards
are defined as any automated process that

assures appropriate processing, controls
access to the data, or provides audit trail

information. Describe where and how technical
safeguards are to be implemented in the system.

139

2.3 Test Plan

It is important that testing of all security capabilities
be included in the test plan. The proposed security
section, shown in Figure 3, requires that all security
requirements and capabilities described in previous
system documents be addressed, even if they are excluded
from testing.

5. SECURITY

5.1 SECURITY SAFEGUARD TEST DESCRIPTIONS.
Summarize the security safeguard requirements
imposed on the system and specifically identify
the test(s) described under Section 4 of this
document which will demonstrate the ability of

the system to satisfy each security safeguard
requirement. Identify required safeguards
which cannot be tested within the scope of

this test plan. Provide an explanation
concerning the responsibilities for testing
these safeguards or why testing is not

necessary. All security safeguard requirements
described in Section 5.2.1.2of the FRD and/or
Section 5.2 of the System/Subsystem Specifications
should be addressed in this section. If security
requirements, functions, and tests have been
listed under Sections 3.1.1, 3.1.2, and 3.1.3
of this document, reference should be made
to those sections.

Figure 3. Proposed Security Section for the Test Plan

140

2.4 Test Analysis Report

To support system certification, a requirement of 0MB Circular
A-71, Transmittal Memorandum No. 1 (2), it is necessary in the
Test Analysis Report to break out security in a separate section.
This will allow for easy review of the report to determine if

the system meets previously established security requirements.
A proposed security section is shown in Figure 4.

5. SECURITY

5.1 SECURITY TEST SUMMARY. Summarize the security
capabilities which were included in the systems
test and itemize the specific security deficiencies
detected during the conduct of the test. The
results of the individual tests, system findings,
and a thorough analysis of deficiencies along with
recommendations have been covered in Sections 2,

3, and 4 of this document. The portions of these
sections which specifically address systems
security should be referenced in this section.
If no deficiencies were detected during the
systems test, state this fact.

5.2 SECURITY TEST ANALYSIS. Based on the results
of the systems test, provide a statement
concerning the adequacy of the system to meet
overall security requirements as described
in Section 5 of the FRD and Section 5 of the

System Test Plan.

Figure 4. Proposed Security Section for The Test Analysis Report

141

REFERENCES

(1) National Bureau of Standards. Guidelines for Documentation
of Computer Programs and Automated Data Systems;
1976 February 15; FIPS PUB 38.

(2) Office of Management and Budget. Security of Federal
Automated Information Systems; Circular A-71, Transmittal
Memorandum No. 1.

(3) General Services Administration. Federal Property
Management Regulations; Security of Federal ADP
and Telecommunication Systems; August 11, 1980;
41 CFR Ch. 101.

(4) Office of Personnel Management. Federal Personnel
Manual System, Personnel Security Program for Positions
Associated with Federal Computer Systems; November
14, 1978; FPM Letter 732-7.

(5) National Bureau of Standards. Guideline for Automatic
Data Processing Risk Analysis; 1979 August 1; FIPS
PUB 65.

(6) National Bureau of Standards. Guidelines for Security
of Computer Applications; 1980 June 30; FIPS PUB 73.

142

NBS FIPS Software Documentation Workshop, March 3, 1982

USING FIPS PUB 38: A PRACTICAL EXPERIENCE

Patrick O'Conor
Science Management Corp.

ABSTRACT:

The paper describes the exper-
ience of the authors as they estab-
lished a technical writing organi-
zation for the purpose of preparing
computer software documentation
with the FIPS PUB 38 Guideline.
The evolution of the documentation
group within the corporate context
is presented along with the methods
that were developed for the prod-

uction of documentation. The per-

vasive way in which the Guideline
influenced the operation and con-

formation of the group's procedures
is discussed. Problems the authors
encountered with the use of a stan-
dard derived directly from FIPS PUB
38 and the solutions evolved to

counter them are shown.

Keywords: Documentation; Structured
Interview; Technical Writing; Doc-
umentation Guidelines; Documenta-
tion Procedures; Case Study; Doc-
umentation Organizations.

PREFACE:

The authors organized a technical
writing group for the purpose of preparing
computer systems documentation within a

medium sized company whose principle product
is computer systems software and services.
Much of the software built by the company
was subject to requirements to be documented
according to the U.S. Dept. of Energy 78-6

Documentation Standard, a derivative (almost
verbatim) of the FIPS PUB 38 Guideline. We
will describe the development difficulties
encountered, and the detailed documentation
methodology as it evolved. The paper will

show the pervasive way in which the standard
influenced the formation, and operating pro-

cedures of this technical writing group.

The group was judged to be highly suc-

cessful as was evidenced by verbal and writ-
ten expressions of satisfaction from its

clients, and by issuance of praise from

Samuel T. Redwine, Jr.

MITRE Corp.

higher management. Problems of quantity and
quality in using FIPS PUB 38 for the pro-
duction of computer systems documentation
had to be solved, and due to techniques des-

cribed in this paper, this group was able
not only to produce technical documentation
at substantially reduced costs, but also to

free scarce systems staff personnel for
roles in which they were better suited and
util ized.

1. THE STARTING POINT:

In the late summer of 1979 one of the
authors (S.T.R.) became the new manager of a

forty person systems staff providing con-
tract systems and programming support to the

Energy Information Administration (EIA) for
a variety of users in the Dept. of Energy
(DOE).

He found the following situation: the

systems staff had grown from less than ten

to forty persons performing a dozen concurr-
ent, independent projects under four project
managers. The contract, a task order type,

called for separate budgeting and scheduling
for each task order. Documentation for the

systems produced under each task was requir-
ed to conform to EIA documentation stand-
ards. The EIA Standard (referred to by its

issuance number 78-6) is a typographically
poor copy of the FIPS PUB 38 Guideline.

Much work had been done on a code

first, document later basis. This had fre-

quently resulted in documentation being
omitted altogether. When the author first

began to manage the group, no examples of

good documentation prepared by the systems

staff and using the guideline could be found

despite a sincere search effort. This
search had included the client organization
that had mandated the use of the standard.

Despite this, documentation was found to be

of great importance to DOE client opinion

since it was the most visible evidence of

the existence of their systems. Lack of

documentation, and bad documentation, had

been a frequent cause of complaint against

DOE technical managers by the DOE clients

for whom the applications were developed.

143

It therefore formed a major (perhaps the

single largest) determinant of client
perception of corporate and systems building

competance.

Identification of the need for the

technical writing group arose from the in-

ability of our systems staff personnel to

prepare documentation according to the DDE

Standard. This inability to cope with the

Standard came from two sources; the lack of

writing ability among the systems people,

and the lack of understanding they had in

trying to interpret the Standard. The typ-

ical response of the systems people when
confronted by the need to prepare manual

s

using the Standard was to complain of its

paradoxical imposition of requiring specific

rubrics to be used which were themselves
subject to interpretation. Parkinson's Law
was much in evidence in this, and systems
staff were loath to expend creative energy
in the direction of documentation, indicat-
ing most often that theirs was a higher

mission in life, i.e. programming and sys-

tems analysis.

Using the 78-6 Standard often required
determining what the Standard meant. Even

knowledgeable systems people who were well

acquainted with the vocabulary used in 78-6

were at a loss to understand its intentions.
Most of the systems staff could not write
readable English in any event, and most pro-

ject managers spent extraordinary amounts of
overtime editing and rewriting. But, the

project managers themselves were not pro-

fessional writers or editors. The documen-
tation efforts thus produced were not only
very poor, but were being written with the

company's most expensive resources. Their
documentation efforts impacted their systems
development activities and were contributing
to major delays.

2. EARLY HISTORY:

The beginning of the technical writing
group occured when it was recognized that
the efforts of the systems people were
fruitless in this activity. A technical
writer was recruited largely to off-load the
burdens of our project managers. The person
hired, while familiar with data processing
and a sound writer, had no experience writ-
ing D.P. documentation or with the DOE 78-6
Standard. This single technical writer
could not begin to meet the large demand for

documentation manuals. Training, role guid-
ance, and an organized relationship with the
systems personnel were not provided. This,
and the unrealistic demands of our project
managers created difficulties for the

writer. All of the project managers demand-
ed technical writing time on arbitrary
schedules which were typically an order of

magnitude too short a time frame to allow
production. They dismissed in an offhand
manner any suggestion that this caused diff-

iculties or that documentation was a rigo-
rous aspect of the computerized environment
demanding respect in its own right.

A few weeks after the hiring of the
technical writer, a Quality Assurance (OA)

Manager (author P.O'C.) was brought on staff

to address software quality issues, estab-
lish QA in the systems staff environment,
and to bring better order to the process of

systems construction. Initial OA efforts
were aimed at the creation and installation
of programming standards, and the procedures
involved in processing systems task orders
from DOE clients. This led to QA review of
systems staff products including documenta-
tion. These reviews pointed to the need for
reform of the management approach to docu-

mentation production and also to reform of

the quality of the documentation which was

still larqely being produced by the systems
staff.

A second technical writer was recruit-
ed. It was clear however, that more sweep-
ing changes were required in the production
of documentation. This was punctuated by a

particular task: the "Lloyds Shipping Index
System" (LSIS) which entered the local
corporate mythology as the "Lloyds Crunch".
(The Lloyds of London Insurance organization
supplied certain information for DOE data

bases on oil tanker traffic.) The project
had slipped several due dates, generated
copious amounts of overtime, and had created
gross image problems for us with respect to

our client.

The LSIS system had been finalized and

the documentation for it, which had been
produced by the systems staff, was presented
for quality assurance review less than three
days before the scheduled delivery date.

The documentation proved to be disastrously
poor; and was made all the more pitiable
given the agonized overtime labor of the

systems personnel that had been used to pro-

duce it. Most rubrics were marked "not
applicable", while others had incoherent
single sentence explanations that seemed to

bear little reference to the definition for

the rubric in the DOE Standard.

144

An embarrassing renegotiation with the
client on the due date and a massive effort
on the part of the QA manager and technical
writer were required to prepare a completely
new set of manuals. The result was an acc-
eptable deliverable that solved the critical
situation created by the Lloyds task, and
provided the first fledgling example of what
our 78-6 Standard documentation should look
like.

During the strenuous effort involved
in producing the Lloyds documentation on an

extremely tight, last chance schedule, re-

solve developed among the participants and
management not to repeat the mistakes of the
past. The QA manager prepared a long memo
proposing a new approach to the preparation
of documentation employing a separate tech-
nical writing group organized on a par with
the systems staff. The memorandum presented
cost, organizational, and quality arguments.
The response of our higher management was
skeptical approval, and we began to recruit
writing staff and move toward a better
documentation production approach.

Documentation improvement efforts re-

quired not only internal changes, but also
client education. The client personnel in-

volved in the different development tasks
had varied backgrounds ?nd many had never
seen good Standard documentation in their
federal environments. Most wanted less
documentation than was required by the con-
tractual necessity to conform to the DOE
Standard. They did not want to pay for it

and had a philosophy that every dollar not
spent on programming was wasted. Substant-
ial pursuasion efforts were required.

3. DOCUMENTATION PRODUCTION:

There are several key concepts in our
production methodology. We do not employ
technically trained writers (i.e. prog-
rammers) to prepare technical documentation.
We have developed and tested in practice a

set of simplistic, almost mechanical, tech-
niques to aid in the production of stand-
ardized manuals; and have provided these
"tricks" to people with demonstrated writing
ability. The "tricks" and the people have

in turn been embedded in a distinct, con-

trollable, documentation production pro-
cedure. Overall the results were striking.
We achieved an order of magnitude increase
in the productivity factor for documenta-
tion. We also freed many systems staff

labor hours, and this directly resulted in a

marked decrease in systems due date slipp-

ages, and other problems.

The fundamental premise underlying our

approach is specialization of labor. It

proposed,

"let systems staff build systems,

and let writers write documentation."

The common sense of this proposition qiven
our experience with having programmers write
documentation was inescapable: it was a

gross mistake to force the systems staff to

write manuals since they disliked writina,
did not comprehend (or wished to comprehend)
the 78-6 Standard, and could not write
English in any event.

3.1 The Documentation Organization:

The organization was composed of five
technical writers reporting to a senior
technical writer. The group was olaced
under the QA Manager who also functioned as

the Documentation Manager. This organ-
ization had two noteworthy features. One is

the position of the aroup under the Quality
assurance function. The second is the ex-
istence of a senior technical writer in

addition to the group manager. The group's
organization under quality assurance imposed

a great concern for the quality of the doc-

umentation products. This was true not only
of the mechanical aspects of documentation
quality, but was extended with special em-

phasis to the writing: the English itself.

Finding itself with the necessity of prod-

ucing written products, the QA function was
determined that no one would ever have a

legitimate opportunity to complain of poor
quality documentation. Rigorous require-
ments for writing, review and rewriting were
imposed. The group's de facto motto became,

"rewrite is a way of life."

The role of the senior technical
writer emerged as an administrative nec-

essity. The demands of scheduling, review
and rewrite, record ^eeping, olanninq and

estimating required that one of the writina
staff be given an administrative role in

addition to writing duties in order to shift
time demands from the QA/Documentation Mana-

ger. This was also part of a goal in train-

ing to ensure that an additional person knew

how to perform the production scheduling and

other adminstrative functions for the group
in the absence of the principal manager.
The staff of the technical writing group

never exceeded seven persons. There was

little need for further suborgani zati on

.

However, we recognize that separating docu-

145

mentation management from QA would provide
desirable organizational independence during
reviews.

The people who comprised the technical

writing group had diverse backgrounds, but

several obvious common characteristics.
Their professional diversity spanned from

public administration to english literature,
their personal diversity from genealogical
research to macrame' , but their commonali-
ties were few and easily identified. They

were al 1

;

0 intelligent and well

educated,

all had graduate degrees, or had attended
graduate school. One had a Phd. They could

all;

0 wri te wel 1 at the

outset,

and their writing improved from an initially
high standard with limited training time, on

the job practice and writing review. With a

single happenstance exception;

0 none had any training or

experience in computer
systems, all expressed
skepticism about their
ability to succeed in

the role of technical
wri ter

.

0 All were aggressive, and

were eager to try, and

to learn.

In the setting that developed for doc-

umentation there were particular require-

ments that arose for the role of the docu-

mentation manager. The role of this manager
demanded that he possess writing skills, be

able to recognize good writing from bad, and

be able to identify writing talent in

others. The manager's duties included;

0 Evolution of the
procedures (performing
systems analysis on the
methods of producing
documentation)

,

0 Writing staff training,

0 Review, and rewrite,

0 Writing staff
recruiting,

0 Documentation cost
estimating,

0 Production scheduling,
and

0 Maintenance of

intracompany rela-

tionships related to the

production of documents
by interfacing with
systems staff.

The utilization of non- technical per-

sonnel to write computer systems materials
requires that they have easy and immediate
access to someone who can explain concepts
and provide daily guidance on technical
matters. It is a key point of productivity
to recognize that only one such person is

required: not all members of the writing
staff must be, or should be, systems ex-

perts. Simple dollar/word cost efficiency
precludes such an approach. It is not an

absolute requirement that the systems expert
in the writing group also be the group's
manager, although it was the case in this

instance, and worked well.

3.2 The Documentation Process:

A step by step procedure was thouqht '

out for the process of preparing docu-
mentation according to the 7R-fi Standard.
The utilization of non- technical personnel
for writing of this type required that a

standard in outline form be employed. Had

it not been that a standard was contract-

ually required, or if none were available,
it would have been necessary to create
standard outlines due to the nature of the

documentation process we developed. It

would not have been possible to routinize a

production procedure, perform meaningful
cost estimates, or gather proper statistics
if the product had not been standardized.

The standard to be used may be arbi-

trarily chosen, but meaningful comparisons
and planning are only possible among pro-

ducts of similar conformation. The methods
that were evolved for the gathering of tech-
nical information for the preparation of

text were only usable if guided by a de-

tailed outline of the required information.

The 78-6 Standard provided such an outline.

We found, in our prior adverse experience,
that writers cannot gather material or cor-
rectly organize it, without the guidance of
adequate documentation standards.

Our principal method of gathering
technical material for preparation of

146

manuals is the "Structured Interview". The
structured interview consists of tape re-

cording verbal discussions of the systems to

be documented during interview sessions
guided by the manual outlines provided in

the Standard. The technical writer as
interviewer quizzes a systems staff inter-

viewee by reading and discussing the rubric
definition from a copy of the standard out-

line in a conversational manner. The inter-

viewee is asked to discuss in his own words
the information called for in each rubric.

The interview proceeds, rubric by rubric

until the basis for a complete manual is

recorded.

Even the most complicated systems
rarely took more than a single, forty to

sixty minute interview per manual. This was

found to be adequate for the production of

most manuals. The verbal communications

skills of the technical writers and systems
staff varied, and this impacted the time re-

quired. Interviewing was not a mechanical
process, but was subject to the nuance of

meaning of each rubric in the Standard.

Moreover, the interpersonal skill of the

interviewer influenced the quality and

quantity of the information obtained. The

involvement of systems staff consisted of;

participating in these interviews, providing

miscellaneous supplementary materials such

as flow chart sketches, and reviewing draft

manuals for the accuracy of technical con-

tent. The net result was that systems staff

spent nearly all of their time on systems

work.

of sequential search capability by physical

sequence of taped rubric numbers aides the

writer in finding and reviewing interview

material. The tape cassettes form a record

that is reviewed as many times as needed by

the technical writer. The technical writers

would listen to these structured tapes, ab-

sorb and digest the verbal material, and

then prepare a first draft.

Another key concept in the process of

preparing technical manuals was the realiza-

tion that there are different types of Eng-

lish. In this context there are three

types; -spoken English, ordinary prose
English, and technical prose English. The

main function of the technical writer is to

be a converter of verbal English, as found

on the stream of consciousness tape record-

ings, into ordinary prose, and then via

rewrite, into technical prose.

The process of writing a standard FIPS

PUB 38 manual was broken down, into a seq-

uence of thirteen discrete steps. Each step

consists of an activity having duration in

time which is marked by its completion date.

Each step is performed by a single individ-

ual who is held responsible for its on- time

completion. The steps are;

Activity Responsible
Person

1. Structured Interview Tech Writer

2. First Draft Writing Tech Writer

The invention of the structured inter- 3.

view took advantage of several human traits.

It was found that even the most introverted 4.

staff member loved to talk about the clever-

ness he had built into his COBOL, or TSO

CLISTs. In the process of verbalizing, the 5.

natural order of ideas concerning the system

would flow out: each idea queues up the next

in its natural sequence. The tape recorder 6.

faithfully captures this "stream of consci-

ousness" and the outline from the Standard 7.

gives it directly the rough form of a verbal

FIPS PUB 38 manual . 8.

The device of employing a tape record- 9.

er also frees the mind of the interviewer

from the tedious business of note taking,

ensures that nothing is missed, and allows 10,

the writer/ interviewer to listen in detail

to what is being said. The technical writer

announces each rubric from the Standard out- 11,

line by name and number prior to the dis-

cussion of the topic so that the tapes are

automatically organized into the format of

the final written product, and a rough form

First Draft Typing

Content Review

1st QA Review

Draft Revision

Revision Typing

Proof Revisions

1st Del i very to

Client

Revisions Per

CI ient

2nd QA Review

Secretary

Systems
Staffer

QA/Document-
ation Manager

Tech Writer

Secretary

Tech Writer

Tech Writer

Tech Writer

QA/Document-
ation Manager

147

12. Revision Secretary
Typing/ proofing

13. Final Delivery Tech Writer.

This sequential, breakdown of the pro-

cess formed the basis for the system of man-

agement controls devised to guide the pro-

duction of documents. Only two forms are

needed for management control. The first is

the "DOCS PLAN", (see the figure). This

form is used for; estimating, production
scheduling, production tracking, and cost
statistics recording. Space is provided at

the top of the form for recording qualita-

tive parameters of the system being documen-

ted. The second form needed is a simple

calendar resource matrix arraying each tech-

nical writer and other production resources
versus the business date. The calendar
matrix is used to allocate technical writer
staff time to projects in process.

A DOCS PLAN form is kept for each

project and has space for the ten FIPS 38

manuals as well as a Task Management Plan,
and non-standard documents, for example
proposals. One calendar resource matrix is

kept for the technical writing group as a

whole for all work in process. The calendar

resource matrix is the integrating control

mechanism by which the writing activities
for many separate projects are coordinated.
Maximizing the use of resources requires
that project scheduling be coordinated
across all projects. Production schedules

are prepared as many months in advance as is

necessary for demand to allow for proper
workload planning, and staff recruiting.

Use of the DOCS PLAN form allows the

compilation of reliable statistics on the

resources required for each set of manuals.
These statistics have been very useful in

the preparation of documentation cost est-

imates, and in production scheduling. No

project that has ever been processed using

these methods has ever exceeded its budget
or missed even a single, intermediate step

production date, much less a client deliv-
erable date. This can be attributed to

copies of the production schedule being
provided to the persons who were to be held

responsible for each step. The due dates

established are for small steps that are

individually coordinated with the person's
other activities, and the staff hours
allowed for each activity are based on well

accepted empirical data. Further, each
individual in the production process is

asked to review the production schedule for

reasonableness, and is qiven the opportunity
to request revisions in the schedule prior
to being held responsible for it.

Project production scheduling has been

found to be facilitated by early participa-
tion of the technical writing staff and man-
agement in each systems project. Where re-

sources for technical writing are constrain-
ed by staff limitations, and there are many
projects competing for those resources then

"1st day" participation by the documentation
manager is indispensable to smooth opera-

tions.

3.4 Quality Review and Rewrite:

Reference to the production steps
shown above reveals that six of the thirteen
steps are quality assurance in nature. Re-

views are performed by the project systems

staff, the QA/Documentation manager, the
technical writers and the client. During

each review rewrite occurs. This rewrite is

performed only by the writing staff based on

marginal comments by reviewers. This is in

recognition of our premise to specialize
staff roles, and on negative experiences
with having the systems staffers attempting

to perform rewrite. During its lifetime the

technical writing group has never had a

manual rejected by a client, nor even had

any serious negative comments.

During the training of our technical

writers we communicate that rewrite will

always occur and that it should not be con-

sidered as being critical or threatening in

nature. Rewrite is viewed instead as being

a part of the necessary process of corporate

writing.

3.5 Transition Activities:

The documentation group did not come

into existence immediately after the writing

of the memorandum that suggested the effi-

cacy of creating such a group. Nor did the

operational procedures, the concepts under-

lying the procedures, or an understanding of

how the Standard would shape the evolution
of these things. In this section we will

describe how the documentation group grew up

and transitioned from pre-group approaches

into something capable of producing good

quality, FIPS 38 manuals, in a manner akin

to an automobile assembly line.

Higher management made no objection to

the foundational proposition, but expressed
skepticism about the ability of third party
technical writers to document systems that

they had not programmed themselves. It was

148

DOCS PLAN Syston Statistics Kelated to "nMsiHi Occai

aC No:

SfC Proj. Wjr:

9C Tech. Diri

novt. rtjr:

Status As ofi

Data Planned;

Heport/Plan Byt

Task SUirt Datei

Bat. Canpl. Datei

Act. Caipl. Date I

(ESl\ OATC / per. DATE / EST. IIOUHS / ACT. HOURS)

No. of OCCOL ^ajrctmt

Ho. of OUBOL Source Uunoui

No. of anWAXaJR HACZoai

No. of SUPEHVmftJH Llnosi

ito. of ISO cuarsi

H3. of T90 CUST Utmui

1*1. o' nata Bets <>^ Bysi

Mo. Of UtllltlcBi

Ho. Of JCL UnsBt

How SyHtoD? ,of Rtflcdaling?

Im Formal D»« Uaed? (clxcle «hl<A)

S3K AWfiAS TOTAL HAMC4 OUilM! OthoT

How H0/iy Piogmners Aaali^ntxl?

Prorjranner Hourt flut:

Task Plan

Func. Req. Doc,

Datd Reik]. Doc.

Type let pjntent
QW
St OA

Review RevlBlomRevljlona ^liverv Per CUml BodU.

TO
nevl slcna 2nd OA Pypo

DOCS PLAN

TotAl Est. Hours

T^tal Act. Hours

Two Page Documentation Planning Form

149

a subtle but important point that higher
management allowed the technical writing
group to form, but did not make a clear,
affirmative decision to do so, nor did they
provide aggressive support in the intra-
company growing pains that arose as the

writing group developed. This caused un-

necessary and exaggerated difficulties with
other managers. It was only much later (6

to 8 months) that higher management gave

recognition to the formation of the writing
group as a key factor in achieving a turn-

around in issues of systems quality and

client satisfaction; as well as an order of

magnitude decrease in systems development

problems.

Substantial care was taken in the pro-

cess of recruiting the technical writing
staff. Many more applicants were inter-

viewed than the number of available posi-

tions. We recruited over a period of sever-

al months in response to our mid term sched-

uling needs as indicated by our resource

matrix. All applicants were required to

submit writing samples as a demonstration of

their ability. The writing sample was the

most important aspect of the screening
process. We found that any form of writing;
school papers, letters to the editor, etc.

were adequate to guage the applicant's writ-

ing prowess. Misrepresentation of credent-

ials was discovered to be common. Once an

applicant had passed initial screenings all

references were carefully verified.

The group was small enough to allow

for individual daily counselling on writing
style, systems concepts, rubric definitions,
and production procedures. Formal classroom
sessions were held infrequently due to pro-

duction needs, and were confined to funda-

mental computer science concepts. The
learning curve was rapid for the people we

selected. All were productive within a two

week time frame. Three months of experience
was enough for each writer to perform the

role with full independence and productiv-
ity.

4. FIPS PUB RECOMMENDATIONS:

Daily experience with FIPS PUB 38 and
its derivative, DOE 78-6, leads us to make
several recommendations concerning the prag-
matic aspects of using standards. Stand-
ards, if they are to be living things, used
broadly and thus serving their purpose, must
be proletarian in approach, not lofty and
understandable only by those with ten year
DP backgrounds and advanced degrees. They
must also be flexible enough to serve a

broad range of applications. And, they must

be exDlicit, or perhaps it would be better
to say that they should have a minimal

amount of vagueness that gets in the way of
ordinary folk trying to use t^em.

4.1 Proletarian Useability:
Provide a Tutorial

;

Improve Rubric Definitions:

We found that having been mandated
with the use of the 78-6 Standard we only
had available a copy of FIPS PUB 38, and a

copy of the 78-6 Standard (which had been

retyped by DOE EIA from FIPS PUB 38) upon

which to base our actions. We had to estab-
lish for ourselves how the Standard was to

be related to the production of documenta-
tion. Our early experience showed that it

was insufficient to merely hand a potential

author a copy of the Standard and command
the creation of a set of manuals. We pain-
fully learned that even very capable writers
were incapable of employing the Standard

without the benefit of daily training and

guidance in its interpretation, and in its

implied process.

The most frequent question asked by

our writers during the initial months was,

"What does this rubric mean?" Sometimes
even the long term DP veterans who were
managing the technical writing group found

this very hard to answer. In the process of

providing the answers to our staff's ques-

tions it is clear that we were redefining
the Standard for the exigency of the moment.

I.e., we were confronted with the situation

of not what does the Standard mean, but

rather what did we say that it meant. Sub-

stantial amounts of personnel dollars were

involved, and firm decisions had to be made
concerning the Standard's requirements, or

else we would have suffered the costs that

vagueness directly created in additional
rewrite and reduced quality of written com-

munication.

We see this as a flaw in the Guide-

line, not as an aspect related to its
attempted flexibility. We found the Stand-

ard to be very hard to use, and it is clear

that this causes it not to be used as widely
as it might. We would not have used it had

we not been contractually required to do so.

We would have devised our own outlines.

This leads us to make two recommend-

ations on the point of usability; (1)

provide a tutorial as a supplement to FIPS

PUB 38 containing recommended guidelines on

the use of the Guideline in the production

process of preparing manuals; and (2) pro-

vide improvement in the definitions of the

150

rubrics in the Guideline itself (better dev-
eloped, more elaborate, and more clearly
worded). It is clear that the writers of

FIPS PUB 38 went too far in the direction of

flexibility and generality at the expense of

useable clarity.

4.2 Redundancy:

FIPS PUB 38 describes a ten manual

set. Much of the material in this set is

redundant; e.g. the general information
sections, much of the data base description
material, and other information is common in

all manuals of the set, or is found under

many rubrics. This is inappropriate for

most application systems of small and mod-

erate size (i.e., the vast lion's share of

the project count). This tends to encourage

"xerox machine" authorship which contributes
nothing to the usefulness of documentation.

The Guideline should be revised to

permit, as an option for more modest sys-

tems, that the ten manuals be considered as

chapters in a single manual wherein the mat-

erial which is now redundant would appear

only once. An alternative outline should be

given as a second part to the Guideline

which shows the rubrics for a single manual

documentation approach with chapters that

correspond to the concepts for each of the

current manuals in the Guideline. This

would have the effect of encouraging the

application of the Guideline to smaller
systems with a concomitant reduction in the

cost of documentation.

4.3 Documenting Interactive Systems:

We have found that the current version

of the FIPS PUB 38 Guideline is very awkward

for use in documenting systems which are

partially or wholly interactive in nature.

FIPS PUB 38 has a consistent batch flavor

throughout notwithstanding that specific
references to batch processing are not
found. We recommend that the Guideline be

revised with a view towards the interactive

systems case.

4.4 Propagation of the Guideline

In addition to the comments on the

content of the Guidelines our experience

leads us to make recommendations concerning

the establishment, propagation, and use of

the next generation of the Guidelines. The

new guidelines will be at least as much an

act of innovation as it will be one of codi-

fying existing practices; as much a problem

of technology transfer as one of regulation.

The use of the new guideline will become a

contractual reouirement for a very Tarqe

segment of the systems industry and there-

fore carries substantial cost implications

for the government if these aspects are not

addressed in the guideline itself.

Accordingly, the establishment of the

next generation of FIPS documentation guide-

lines will not (we think), consist of adopt-

ing an existing standard as was FIPS PUB 38.

Since significant innovation must necessar-

ily be involved, consideration should be

given to prototyping, trial-use periods,
major experimental application work, beta

testing, or other such methods in addition

to the normal draft, review and ballot pro-

cess. We in the computing profession should

be aware that it is very difficult to get a

major product correct the first time it is

released. Actual performance may frequently

vary from our expectations in surprising

ways. It is therefore appropriate to anti-

cipate a review and rewrite cycle for the

new guidel ine.

Propagation of the .new guideline
should not consist simply of publication,

and an introductory workshop, but should

include a broader range of technology
transfer aids over the lifetime of the

guideline. Our experience does not point to

all the things that should be done, but it

does point to a number of needs and suggests

a partial set of answers.

Among the types of introductory
assistance that a guideline needs are; ini-

tial demonstrations of feasibility, detailed

explanations of the guideline, and particu-

larly examples. One such approach is found

in the IEEE Atlas Language Standard and its

accompanying book of good practices.
Another example may be seen in the "systems

development methodologies" offered by some

commercial documentation products.

A key point of our experience is that

a set of rubrics with content definitions is

not enough no matter how clearly written

they may be. Guidance is needed on all the

essential components of documentation pro-

duction including; process, planning and

control, estimation, and quality assurance.

All of our recommendations point to a need

for an expansion of the products and serv-

ices provided by NBS if good documentation

is to be a normal occurrence rather than an

exception.

151

NBS FIPS Software Documentation Workshop, March 3, 1982

An Overview of the Department of Defense
Automated Data Systems Documentation Standards-

an Adaptable Standard

Robert R. Hegland

Department of the Navy
NARDAC WASHINGTON DC[1]

This paper describes the contents of the Department of Defense Automated
Data Systems Documentation Standards (DoD Standard 7935 .l-S). This standard
is currently being used by the Army, Navy, Air Force, several defense agencies,
and by the Organization of the Joint Chiefs of Staff. A slightly different
earlier version served as the point of departure for a federal documentation
guideline which was published in 1976. In addition to describing the standard,
this paper will discuss some of the management and technical options that may
be used while still conforming with the standard.

Keywords: DoD standard. Management options. Document types

1. INTRODUCTION

The Department of Defense (DoD) documentation standard [2] is widely used, has a proven
successful record of use, and is flexible enough to be used across the wide range of hard-

ware and software types used in DoD. The last printing, to satisfy specific user requests,
was for over 35,000 copies. It is used by Army, Navy, Air Force, Marine Corps, the Office

of the Joint Chiefs of Staff, the DoD agencies and also by the contractors that support

them in various development efforts. It was intended for the documentation of management
information systems but has been successfully applied to other types of systems. Many
federal and commercial organizations have also obtained copies. It is used for documenting
large and small systems. It is used for documenting systems installed at only one site and
those installed at many sites.

2. BACKGROUND

2.1 Need for a Standard

When the predecessor of this standard was developed in the mid 1960's, it was to

satisfy the requirements of an environment where several different computer sites were to

receive the same software but each site wanted different documentation delivered with the
software. Since this documentation would have been very expensive to develop and to
maintain, a decision was made to develop a standard that would satisfy the information
requirements of the different sites but would also allow the users sufficient flexibility
to satisfy their actual unique needs that had originally caused them to request different
documentation. During the development of that standard and throughout the several revisions
to it, there have been several principles that have been followed by the people involved in
maintaining it. Some of these are listed below.

a. Necessary user extensions of the information to be documented must be allowed.

b. The management options and types of flexibility that a user of the standard can
exercise in adapting the standard to a particular environment while still meeting the intent
of the standard should be discussed in the standard.

c. There should be enough information detailed in the standard to give the person who
is trying to follow the standard a good understanding of what the document should contain.

152

d. The standard should not use terms or phrases that are unique to current philosophy
or techniques, such as structured programming, top-down design.

e. The standard must not be limited to specific hardware or software.

f. The use of computers or word-processing equipment to produce the documentation
should neither be required nor prohibited.

g. Locally-developed forms should be allowed.

2.2 Terminology

There are three terms that are used herein that need a brief explanation. A "project"
is considered to be a development effort that begins with the identification of a need to

write a computer program, such as a payroll system, and extends through the necessary
analysis and design to programming, testing and placing the program into an operational
environment. The size of a "project" varies widely but the standard discusses a way to

determine how much documentation is needed for projects of different sizes. The standard
outlines ten "docioment types" that specify what "object documents" should contain. The
"document type" is one of the ten documents outlined in the standard, such as a Users Manual
or Program Specification. An "object document" is a document that describes a particular
project and discusses how, for example, the payroll system is to be designed (Program
Specification) or how the user is to use the payroll system(Users Manual).

2.3 Development of the Standard

This standard was developed initially to serve a limited but diverse audience. Subse-
quently, others beyond that audience found that they could also use it. Copies were made
available to many organizations and groups and eventually a modified version became a DoD
standard. At each step during the development process different committees reviewed the
standard and made changes to ensure that it would be useful to the groups that they repre-
sented. While it has not lost its original integrity, it has been improved by the contri-
butions of each of the people who have been involved in its development. It also has
provided the basis for several other uses. One individual copied large parts of it, added
some other information, and published it as a paperback documentation standard. It was
also the primary point of departure for the development of the NBS FIPS Pub 38 [3] that
was adopted as a federal guideline in 1976. FIPS Pub 38 has the same document types but
their description has been condensed. Essentially the same life-cycle example is also used.

In addition to the evolutionary modifications that occurred as the standard was adopted by

different groups, there is a DoD task group charged with responsibility for reviewing and

improving the standard as well as with responding to any reported problems in its use. In

other words, this is a dynamic standard that is maintained to keep up with the state-of-the-
art while not limiting it to any particular group of users.

3. STRUCTURE OF THE STANDARD

The standard is a relatively small document of about 150 pages and is prepared using a

standard typing format rather than by typesetting so that it looks like the object documents

that will be produced from using the standard. This makes the writing process somewhat

easier for the authors of the object documents. The standard is made up of three parts

which include the information described in the following paragraphs.

3.1 Part 1-General

This part Includes short sections on the purpose, scope and objectives of the standard

as well as a description of its organization.

3.2 Part 2-Document Development Guidelines

This part includes a discussion of how the standard is intended to be used, how to plan

the preparation of documentation, and other items that the manager of a development effort

should know about the standard and about documentation in general before writing the first

153

word of an object document. This part also includes a discussion of how the various stan-
dard document types can relate to the development life cycle of an application development
effort. The example of a life cycle that is included is generalized, is not a standard
itself, and is shown for illustrative purposes only. A discussion of the purpose* and
general contents of each of the different document types is then presented. There is also
a discussion of the options that need to be considered in using the standard. These
include the relationship of project complexity to the document types needed to support a

particular development effort, how to measure project complexity, and how to decide which
of the ten document types are needed for that project; the sizing of documents and the

sections within each document type; how to tailor the document types for specific imple-
mentations by the addition or deletion of paragraphs, sections, and other information that
is called for in the standard; and the use of graphic charts and forms.

3.3 Part 3-Docuraent Standards

This part of the standard includes the ten different document types. Each document
type is presented in a way that allows it to be removed from the overall standard for use

by the person or group preparing the object document. The paragraph numbers and titles in

each document type are exactly as they should be in the object document except as may be
modified by the application of an allowable management option. Within each of the para-
graphs is a detailed narrative description of the type of information that should be
included in the object document. Many of the paragraphs in the document types also have
"shopping lists" of items that may be appropriate to discuss in the related paragraph of

the object document. That document may present the required information in a narrative,
in a figure, or on a form. If a figure or form is used, the standard paragraph number and
title must be used but the short narrative text can simply refer to the appropriate figure
or form. In a few cases there are examples of figures that can be used to support the text
but these usually are avoided in the standard since most sites have their own forms or

their own techniques for presenting figures.

4. USING THE STANDARD

4.1 The Document Types and Life Cycle

Figure 1 shows a generalized life cycle and how the ten document types in the standard
relate to the phases and stages shown. The transition from one phase to another is usually
not as sharply defined as might be interpreted from the figure. The purpose of the document
types should be apparent from their placement in the life cycle and from their titles. Even
though the standard specifies the contents of ten document types, all ten are seldom
produced on a project. The number of document types needed to support the development
effort depends on the complexity of the project, on the experience level of the developers
and users, on whether or not the developers have worked in the application area where the

program is to be developed, and on other managerial and technical considerations.

Mi ss ion Ana lysis/

Project Initiation
Concept

Deve lopment

Def i n i t i on and

Des
I
gn

System Development
Deployment and

Operat ion

Stage
Def i n i t ion Des i gn Development and

1 ntegra t i on

FD-Functionol Description
RD-Data Requirements

Document
SS-System/Subsystem Speci f ication

'PS-Program Specification
DS-Data Base Specification
Up^-Usors Manual

OM-Computer Operation Manual

MM-Program Maintenance Manual
PT-Test Plan

RT-Test Analysis Report

Figure 1. The ADS Development Life Cycle Related to Document Preparation and Use.

154

4.2 Project Complexity and Document Types

The standard provides a guideline for determining what documents may be needed for a
particular project. There are 12 factors listed including span of operation, criticality,
and programming languages used. Each has a possible weight of from l(for a weight indi-
cating limited or easy) to 5 (for extensive or hard). When the assigned weights from 1 to

5 are added up for each of the 12 factors, the total is used to enter a table that shows
which document types should be written for that project. For most projects of an "average"
size and complexity five object documents are usually prepared. The developmental environ-
ment may allow fewer or may require more. This is a very generalized guideline to which
good technical and management judgment must be applied before deciding what document types
will actually be written.

4.3 Audience

Different sites sometimes feel that their organization is unique and so can't use
standard documentation. For example, at some sites data retrievals are performed by a

manager from a terminal in the working area; at other sites the retrievals may be made
by a maintenance programmer. The basic retrieval set-up for the manager might be in a

manager's handbook at one site and in a maintenance manual at the other site. Such
arbitrary structures would obviously make a standard impossible. To avoid the problem and
encourage standards, the DoD standard is oriented toward satisfying the audience by the
function that the audience is performing. Regardless of whether the retrieval is. being
executed by a manager, a programmer, or by a computer operator, the function being per-
formed is one of a user of the data and should therefore be documented in a Users Manual.

4.4 Redundancy

Redundancy is a much discussed topic in writing documentation standards. DoD users
have performed studies on the DoD standard to identify any unnecessary redundancy and have
found little. What is necessary redundancy? One type is the introductory material needed
to identify the purpose of the system, list related documentation, etc. That information
serves as "boilerplate" for each object document. Other types of necessary redundancy are

"apparent redundancy" and "evolutionary redundancy" both of which are discussed in the DoD
standard and which are not undesirable if handled properly.

Apparent redundancy occurs when two document types discuss what appears to be the same

information, such as "input" which is discussed in both the Users Manual and the Computer
Operation Manual. The information included in the object document should, however, be

different for each audience. The user needs information about the structuring of the data
input while the operator needs to know how many card decks and tapes to use.

Since project development can cover a long period ot time, the standard allows for

including information that has changed since the last document was published. For example,
there may have been new equipment acquired that must be discussed in a paragraph dealing
with environment since the original, planned description of the environment in the

Functional Description. If there has been no change to something that has already been
documented and if that document is available to all recipients of the new, updated
document, the paragraph can simply refer back to the older document for the information
that is still current.

4.5 Document Sizing

The standard provides some guidance to the authors of object documents in terms of

planning the overall size of object documents. The standard can be used to write an object

document of any document type that might be 100 pages or 500 pages in length and both might

conform to the standard. The manager of the project development effort must make it clear

to the development staff whether a large or small document is to be written. The tendency

to overdocument can be just as bad and as expensive as the tendency to underdocument . In

addition, the standard specifies the approximate percentage relationship of each of the

sections in the document to the overall page total of that document. This is only a

general guide but does help to establish what sections of each document type need to have

the primary emphasis.

155

5. CONCLUSION

Much work has been done in recent years on documentation standards. The DoD standard,

from its high degree of acceptance, seems to have bridged the gap between undue rigidity
and a totally flexible standard. It has proven itself to be an adaptable standard that can
be modified by local managers to meet their needs, is maintained by a committee responsive
to general user needs, but is still a standard that provides a useful structure to authors
of technical documents. As more tutorial and menu selection systems are written, the
standards will need to be reviewed to ensure that these design philosophies can be accommo-
dated in the existing structure or the structure will have to be modified to allow for them.
There is still a need to provide the many audiences of the documentation of a project with
object documentation that is concise and useful in helping them perform their functions and
with documentation that will support the sharing of software.

6. REFERENCES

[1] This paper represents the views of the author and not necessarily the policy of NARDAC
WASHINGTON DC or any other Navy command. An earlier version of this paper was reviewed
and endorsed by the Information Processing Standards for Com.puters (IPSC) 0061 committee
which maintains the standard.

[2] Department of Defense Automated Data Systems Documentation Standards 7935. 1-S, Office of

the Assistant Secretary of Defense (Comptroller) , Directorate for Automation, Policy,
Technology, and Standards, 13 Sep 1977, available from NTIS, Springfield, VA 22161 for
$7.50(item PB 272-600)

.

[3] Federal Information Processing Standards Publication #38 of 1976 Feb 15, Guidelines for

Documentation of Computer Programs and Automated Data Systems published by the National
Bureau of Standards.

156

NBS FIPS Software Documentation Workshop, March 3, 1982

SESSION D: Do Existing Standards Work?

Elizabeth C. Weinberger

U.S. Department of Health and Human Services

Summary

Although documentation standards exist (i.e., FIPS PUBs 38 and 64), there are inade-
quacies within the standards, problems with the way the standards are applied, and often
a failure to use the standards. In this session, the panelists and audience discussed
various problems with documentation and several ways to reduce such problems.

Ronald Thies began with a discussion of one inadequacy of the current standards which do
not contain sufficient security documentation. Due to the increased emphasis on security,
particilarly with the issuance of 0MB Circular A-71 , there is a need for specific security
documentation to be included throughout the system's life cycle. Mr. Thies' presentation,
"Documenting Systems Security," included detailed examples of security provisions to be
ad^ed at four different stages of documentation: 1) Functional Requirements Document,
2) System/Subsystems Specification, 3) Test Plan, and 4) Test Analysis Report,

The audience raised a significant question about the potential danger of detailing the
system's vulnerable points and identifying the safeguards for each of these vulnerable
points. This practice could result in system abuse or misuse. The audience suggested that
detailed security documentation have a very limited distribution. Mr. Thies said this
isn't such a problem, because although the vulnerable points and safeguards are identified
in the security documentation, the specifics of each safeguard are not provided. For
example, if a certain vulnerable point in the system required a code to be entered as the
safeguard, the actual code would not be part of the documentation.

The second presentation, "Using FIPS PUB 38: A Practical Experience," related how a change
in the documentation process, while using the existing standards, greatly improved the
quality and timeliness of systems documentation. Patrick 0' Connor and Samuel Redwine, Jr.

were both employed by a particular company which was experiencing poor documentation
products, programmer resistance to doing documentation, management concern over using
expensive data processing personnel to write documentation rather than do more programming,
and problems in meeting schedules and budget restraints.

The solution was relatively simple. After a major crisis which required a complete re-

writing of documentation in an extremely short period of time, the company's top management
realized the importance of doing good documentation and raised it as a priority. They then

decided to relieve the system staff of this burden and created a division of labor. "Let

systems staff build systems, and let writers write documentation." The company hired a

technical writer and later expanded by establishing a group of technical writers. They
established a process for documentation whereby the technical writer interviewed the

systems staff, using a tape recorder and a FIPS 38 checklist.

The changes were dramatic. The technical writers produced solid documentation products,

and were less expensive than the data processing personnel. The success generated an

improved attitude about documentation and reinforced it as a company priority. And,

most important, schedules and budgets were routinely achieved.

The audience had many comments and questions about using technical writers to write

documentation. Many commentors echoed the success of this practice, at the Department of

Energy and the Navy. Some audience members believed the technical writers should receive

data processing/systems training, whereas others strongly disagreed, saying that such

training was costly, time consuming and resulted in mid-priced technical writers leaving

to seek higher paying data processing positions. The panelists were quite insistent that

157

the only qualifications for a good technical writer were to be smart, write well and be

an "eager learner." This was a key point of the presentation. The panelists claimed that
contrary to the belief that a non-technical person can not write such a manual, and can
write it well I

The final presentation by Robert Hegland compared the provisions of FIPS 38 with the Depart-
Department of Defense's Automated Data Systems Documentation Standard. According to Mr,

Hegland, DOD's standard provides more descriptive prose and more examples of documentation
than what FIPS 38 provides. Although the DOD standard is quite useful as a general purpose
standard and is flexible for the user, the weakness of the standard is that it does not

address the newest technology, and does not adequately detail documentation of interactive
systems.

In closing, the panelists and audience agreed that the National Bureau of Standards needs

to revise FIPS 38 to make it more usable, clearer, easier to understand, and more of a

tutorial aid. They suggest that NBS remove the redundancy within the standard, provide
examples, and detail the entire documentation process rather than providing just an outline
of documents. The new standard should be innovative, allow for prototyping and field

testing, and address documentation for interactive systems.

158

NBS FIPS Software Documentation Workshop, March 3, 1982

Session E: Proposals for Documentation Standards

Moderator

:

Trudy Grieb, Hadron, Inc.

Discussants

:

Edward W. Hurley, Hadron, Inc.

Samuel T. Redwine, Jr., The MITRE Corp.

Recorder: Andrea F. Papilion, Hadron, Inc.

Introduction : In the past, documentation standards have been of very little net value to

the audience of documentation (management, project leaders and project staff) and to the
authors of documentation. What new approach is needed to produce a new, better set of

documentation standards?

The papers in this session proposed approaches to documentation standards for the purpose of

overcoming problems encountered in using current -- often inconsistent, sometimes conflict-
ing and awkward -- documentation standards.

The first paper. Proposed Approach to Standards for Documentation of Projects and Systems
Based on Actual Requirements, Trudy Grieb, Hadron, Inc., provides an overview of the
problems that need to be addressed and possible approaches to solutions.

The second paper, Microcomputer Systems Users Need Better Documentation, Richard A. Bassler,

The American University, provides a discussion of problems and vital recommendations for

producing better documentation for microcomputer users.

The third and last paper, A Proposed Documentation Standard Based on a System Decomposition

and Information Base Approach, Saul A. Zaveler, U.S. Air Force, provides an important
proposal to treat the subject of documentation with the same respect and the same concepts
of decomposition as those used for the software being developed. The paper also states that

considerations for content should be separated from considerations for format and

organization.

159

NBS FIPS Software Documentation Workshop, March 3, 1982

Approach to Standards for Documentation
of Projects and Systems

Based on Requirements of the Users of Documentation

Trudy Grieb

Director, Information Systems Technology
Hadron Incorporated
Vienna, Va. 22180

This paper addresses questions about and possible solutions for the docu-
mentation of information processing systems and the projects which are the
vehicles for creating these systems. This paper (1) defines the problems and
requirements of the documentation of projects and systems; (2) evaluates existing
attempted solutions (i.e., current documentation standards), and (3) proposes a

tested and proven approach to new Federal Government documentation standards
based on actual requirements.

Keywords; documentation standards, information processing system standards,
project management standards.

1. INTRODUCTION

In the past, documentation standards have been useful to only a small degree and have
created unnecessary problems. The purpose of this paper is to: (1) point out the major
problems with the past approaches to documentation standards, (2) define the general

requirements for documentation standards, and (3) propose a new, promising approach to

documentation standards that will be useful to the readers/users, to technical personnel,
and to managers, without creating unnecessary problems.

The scope of this discussion includes:

o Projects for information processing systems;
o Information processing systems;
o Documentation for users, line management, project management, and technical

personnel

.

The intended audience of this paper consists of senior level systems analysts, project

leaders/managers, standards analysts/developers, and managers, who are responsible for

systems analysis, development, and project management personnel.

2. PROBLEMS

Existing documentation standards for information processing systems are inadequate due

to a number of major problems.

2.1 Lack of Context

All existing documentation standards are based on an assumed and/or implied set of

concepts and System Life Cycle Methodology (SLCM). Therefore, the assumed SLCM is not

clear, and cannot be properly used in the development of a project plan which should include

a clear plan and definition of all documentation to be produced. All documentation is

produced in the context of a project plan, which is usually different from the one implied by
the documentation standard. The authors of documentation then are forced to resolve the
conf 1 icts.

160

Further, the methodologies implied by the documentation standards are usually incom-
plete, unclear, and/or incorrect. Some of the most common and popular concepts on which
most methodologies are based are not workable.

As a result, the current documentation standards do not meet the requirements of the
readers/users of the final documents.

2.2 Awkward and Arbitrary Standards

Without a clear, complete SLCM, the developers of documentation standards are handi-
capped. They need the SLCM as a context for the development of documentation standards.
Standards developed without a SLCM are based on arbitrary assumptions and are awkward to

fol low.

2.3 Lack of Guidance and Definitions

Most documentation standards do not provide sufficient explanations of what informa-
tion is needed. Part of such explanations must be the clear, complete definitions of terms
used in the standard. Another part must be descriptions and examples of required informa-

tion content.

2.4 Excessive Rigidity

Many documentation standards that have been used over the years are very rigid. They
require strict outlines, titles, headings, numbering systems and formats. They do not

permit adaptation based on the project and system being documented. They also tend to place
primary emphasis on format instead of information content.

3. REQUIREMENTS

The primary requirements of the users/readers of project and system documentation are:

3.1 Control by Upper Management

Upper management must be provided with necessary and sufficient information for

decision-making and control.

3.2 Project Management

The Project Manager and project team members must have information which will assist
them in achieving the purpose and objectives of the project with efficiency, high produc-
tivity, and products of high quality.

3.3 Progress Information

Upper management, project management, and the users must have timely progress informa-

tion about the project and the system.

3.4 Means of Communication

The Project Manager and project team members must have an effective means of communica-

tion about the project and all components of the system.

3.5 Quality and Productivity

Upper management, project management, project team members, and the users need high-

quality products and high levels of productivity as well as cost-effectiveness.

161

3.6 Modern Technology

All personnel concerned with the project and system need to have the standards and
final system (including documentation) in harmony with and responsive to modern technology,
as appropriate. Modern technology impacts all phases of the system life cycle (SLC),
including the project management approach, the system, and the production/distribution of
documentat ion.

3.7 The User as the Customer

The end-users of the system need instructions and descriptive information that will
allow them to understand their system and to use it as easily and effectively as possible.
They need to have their documentation written and presented in a form and language that they
can understand without having to learn about computer and communications technology.

k. CHARACTERISTICS AND RESULTS OF GOOD DOCUMENTATION STANDARDS

Useful and helpful documentation standards must have certain essential characteristics
to meet the requirements stated in Section 3 and must avoid the problems stated in Section 2.

^.1 Information Appropriate for Management

Documentation standards should provide for non-technical summary documents which
crystal ize the major points to be considered and which state the decision(s) requ-ested of
management. Such documents will allow management to be informed and to make timely
dec i s ions.

h.2 A Context for Document Standards

Documentation standards should be based on a generic, functional, standard SLCM which,
in turn, was designed to implement general policies and to meet organizational objectives
and goals. Such a standard SLCM provides the required context now lacking and therefore,
would allow development of meaningful, helpful, and easy-to-use documentation standards.

A. 3 Information for Progress Reporting

Documentation standards should encourage a "document-as-you-go" approach, rather than
after the fact. This will allow information to be captured as it becomes available and at a

time in which it can meet most progress reporting requirements. This approach will also
provide for more effective and reliable communication among project team members in the
performance of their work. As a result, project team members will be documenting for their
own benefit, as well as for the benefit of management and users.

h.k Room for Technology

Documentation standards should reflect applicable modern technology. Such standards
will encourage, rather than restrict, the use of modern technology in the design of systems
and in the production/distribution of documentation. Again, this will increase productivity
and qual i ty

.

4.5 Appropriate Documentation for End-Users

Documentation standards should describe, teach, and demonstrate the non-technical,
straight-forward, user-oriented presentation and language of user documentation. Because
very few authors have produced practical, easy-to-understand user documentation, as much
guidance as is practical should be included. The resulting increase in quality of user
documentation will allow users increased effectiveness of their systems with less effort on
their part in learning to use them. In turn, this will encourage increased productivity and
decreased costs for the user.

162

A. 6 Clear and Thorough Explanations

Documentation standards should provide clear and thorough explanations of the informa-
tion requested and why it is requested. Examples should be used freely. This will (1) make
the standard easier to use, (2) will teach the inexperienced author what is required, and

(3) will permit the standards to be applied in a wide variety of situations and projects.

^.7 Flexibility

Documentation standards should be designed to be enforced at a general level but should
be flexible at a detailed level. The standards should not impose an awkward, rigid
structure on all documentation that is to be produced.

5. CONCLUSION

The realm of project management, SLCM, procedures, and standards can be compared to the
body of a dog. When the documentation standards are the only standards/guidelines that are
fully developed and implemented, "the tail is trying to wag the dog". Of course, the dog has
great difficulty making progress this way. However, when a SLCM (including concepts and
terms) is defined and implemented in its own context of project management policies, the dog
has a chance. With appropriate procedures implementing both the SLCM and the documentation
standards (and other necessary standards), the dog may actually reach a pre-defined goal

efficiently and effectively.

6. RECOMMENDATIONS

The following recommendations are made for the development of documentation standards.

6.1 Provide a Context

First, develop and test a total System Life Cycle Methodology (SLCM) (including a

Glossary of Terms) to serve as the context for documentation standards. An SLCM defines
what processes, inputs, and outputs are required in a relatively complex project. Such a

context and definitions of terms will minimize the usual conflict between what people do to

perform their assigned tasks and the informat ion they document about the process they use

and the output they produce.

6.2 Define Information

Second, develop and test outlines of the k i nd of information required by the users/
readers of the documentation. In the context of an SLCM, it is possible to develop and

distribute workable outlines of information required in each written output. Feedback and

discussions will allow the authors of these outlines to test and correct their contents and

scopes. Do not include formatting standards at this point in time.

6.3 Describe Information

Third, develop, write and test explanations of the information required (including a

glossary of terms) in each part of each required document. These descriptions must provide

useful guidance to the personnel who use the standard to produce their documents.

6. A Develop Criteria

Next, develop evaluation criteria to be used in reviewing the final documents to be

produced by all personnel who will use the standards. These criteria (1) will inform the

authors what is expected, and (2) will permit an objective review of the final documents by

third parties of the final documents.

163

6.5 Develop Format Guidelines

Finally, develop standards for the organization and format that are required and/or
desired in the final documents. Again, this provides guidance to the authors of the final

documents.

6.6 Justifications

The justifications for these recommendations are that documentation standards
developed in this manner:

o Meet the requirements of the users of the standards
o Simplify the process of following the standards
o Decrease misunderstandings and associated morale problems
o Increase productivity
o Decrease costs

o Increase the quality of final documents.

164

RECORDER'S COMMENTS

1. Approach to Standards for Documentation of Projects and Systems, Based on Requirements
of the Users of Documentation, Trudy Grieb

1.1 Summary of Discussions

This paper presented a systems view of documentation, including requirements, goals,
context, and overall functions. It is important to look both at what the documentation is

doing now and what it will do in the future.

The question was raised by the discussant as to whether FIPS Pub. 38 should be revised
incrementally or whether a radical new approach should be taken. The audience voted about
evenly, but pointed out that a middle ground might also be effective.

There are three basic ways to develop documentation in the context of a system life cycle: a

thorough approach within the life cycle, prototyping, and a do-it-yourself by the user.

The meaning of documentation includes getting to know what the system is or does. The
definition of documentation can range from an extensive manual describing or instructing on

a system down to the simple prompts of a program or the code itself. We need to think in

terms of a large scale view.

The object of producing standards for documentation is to define a content and format that
will make the user happier; but we get little feedback from users on what they want. We
develop standards for people producing a system; yet in the past we didn't care how we could
make their jobs more palatable.

We are looking at both general project standards and documentation standards. Should these
kinds of documentation and standards be separated? We may not know how to produce general
standards for all kinds of projects. When documenting a project, we want to know about it

while we are doing it. When documenting a system, we need a method of keeping the documenta-
tion up to date over the life of the system.

1.2 Summary of Questions

• Q: How would the speaker redesign FIPS Pub. 38, and would there be more or fewer

reports in the index?

A: In redesigning FIPS Pub. 38, a context should be provided. The number of reports

is not significant, but the number of sections or bodies of information available

at the end of a project or system development is significant. The reports that

work best for each project, in harmony with the standards and in context of the

project, are the answer.

• Q: Are we talking about a definition of a reasonable basis of theory of what

documentation should be?

A: Yes. We also need to define concepts proven to work versus those that are

popular but don't work. The new standards should be based on those concepts that

do work.

• Q&A: The speaker agreed that the development of standards should be treated as just

as much of a project as the development of software.

165

NBS FIPS Software Docimentation Wbrkshop, lyferch 3, 1982

A PropDsed Docunentation Standard Based on a
Syston Deccmposition and Information Base ^^proach

Saul A. Zaveler

Air Force Data Services Center [1]

A proposal is made for revision of FIPS 38 with regard to viewpoint and content.
The viewpoint suggested is that system deccmposition (into components, functions,
subsystans, actions, or events) serve as the principal basis of document organiza-
tion, and that the principal document types all have similar informational
requirements but differ in degree of detail . Ihe informational requirements
specify a data base from vSiich the docunents are derived. The principal content
changes are: identical paragraph nunbering for similar information in all docu-
ments; provision for interactive systems, and provision for docunention of project
management matters.

REWORDS: Documentation, Docunentation Standards, Ttop-Down, System Deccmposition,
Software Engineering, FADPUG.

1 . INTRODUCTION

1.1 This paper proposes a replacemeait for FIPS 38 [2], "Guidelines for Docunentation of
Ccmputer Programs cind Automated Data Systems." The intent is to revise FIPS 38 so that
it would be better suited to modem methods of system developnent, and to the docunenta-
tion of interactive and real-time systems.

1.2 The Federal ADP Users Groi^, Special Interest Group on Standards and Quality
Assurance (FADPUG/QA) conducted a study, in the suniner of 1980, on the deficiencies of
FIPS 38. One result was a skeleton strawman standard vhich would serve as the basis of
a revised FIPS 38. The study was conducted at the invitation of A. J. Neunann of
NBS/lCST. The author of this paper participated in the study and had a principal role
in the formulation of the strawman. A discussion of the study has been published [3].

1 . 3 The author has revised and developed the strawnan into an actual docunentation
standard for experimental use in his organization. This paper reports on that standard.
However, the opinions expressed in this paper are those of the author, and are not
necessarily those of his employer, or of any other component of the U.S. federal govern-
ment.

1 • 4 The proposed standard covers the Functional Description (FD) , System/Subsystem
Specification (SS), Program Specification (PS), Operation Manual (OM) , User's Manual
(UM) and Nfeintenance Manual (M^) . It also covers or references the requirements of the
Test Plan, Test Analysis Report, Data Requirements Docunent, and the Data Base ^aecifi-
cation. (These documents are defined in FIPS 38.) It also provides for project
management information and for additional types of documents.

2. SIJMMARY OF RECOMMENDATIONS.

Revise FIPS 38 along the lines suggested by this paper and the draft Docunentation Stan-
dard vhich it discusses. System decomposition should be the basis of organization of
all prescribed documents. Information requirements should be separated from information
display requirements. Provision should be made for docunentation of project management

166

NBS FIPS Software Doconentation Vforkshop, March 3, 1982

requirorients

.

Basis for recanmendations : FIPS 38 is hostile to moraem methods of system development
and to documentation of interactive systems. This observation is based on personal and
organizational experience and on the EADPUG/QA report cited above. The recanmendations
vd.ll obviate these problems in an effective and enduring manner because they are compa-
tible with a wide variety of system development methodologies, yet do not prescribe any.
Docunents produced from the proposed standard will be more usable than those prescribed
by FIPS 38.

3. GENERIC RECOMMENDATIONS

The recanmendations discussed below are key features of the proposed standard, ffowever,

they are abstracted from the standard and presented generically. (Standard-specifc mat-
ters are discussed in Section 4 .) They are all based on personal and organizational
experience and on the FADPUG/QA report.

3.1 Separate, at least conceptually, the information content requirements from the
information display (actual document) requirements. The required information items can
be regarded as elements of a database, the "Ccmprehensive Information Base" (CIB) .

Information should be created, captured and collected separately from its display. All
docunents produced according to the standard are printouts of part or all of the CIB.

Reasons

:

(a) Eltijiiasizes ccmpatibility with a wide variety of syston development metho-
dologies and life-cycle models. The order in which the elonents of the CIB are updated
is determined by the methodology and life-cycle model used, not by their arranganent in
the resulting documents.

(b) Simplifies the documentation effort. The act of updating a database is

more palatible to many programmers than is the act of producing an entire docunent.

(c) Facilitates documentation in step with the development effort, since only
a few itans need to be entered into the CIB at any one time as development progresses.

(d) Facilitates flexibility. It should be recognized that documentation
standards prescribe reference documents. Other types of documents may be needed with
arrangements of information different fron that prescribed. The concept of the CIB
permits easy correlation between non-standard documents and the information require-
ments prescribed by the standard.

3.2 Recognize that all documents produced according to the standard have similar infor-

mational and organizational requirements; they differ primarily in degree of detail.

3.3 Organize information in all docunents along a system decomposition (compDnent)

orientation. Inputs, outputs, dialogues, staff actions, and other items should be
clearly aligned with the components to which they pertain.

Reasons

:

(a) System decomposition along component lines such as functions, actions,

events, or sub-systems is characteristic of modem methods of systom development. This

is true v*\ether analysis is done along functional or data-driven lines.

167

NBS FIPS Software Dociinentation Wbrkshop, March 3, 1982

(b) An action or event orientation facilitates the understanding (for design,
use, and operation)
of interactive systems.

(c) The segregation of inputs and outputs fran components or functions in the

FIPS 38 docunents make preparation and use of the documents and implanentation of sys-
tems from them very difficult (for all but the rarely occurring single function sys-

tems) . The FIPS 38 organization reflects a hard\Aare orientation which is rarely of pri-
mary concern to the elucidation of the system being docunented and implanented.

Hardware should form the basis of docunent organization only v*ien it forms the basis of
the components.

(d) Facilitates systems analysis. If documentation is done in step with the
developement effort, the need for further analysis and the types of questions that
should be asked are made very clear through this organization.

3.4 Broaden the scope of the input and output requirements of FIPS 38 to include com-

mand, edit and other languages to be developed by the implementers; dialogue and tran-
sactions; function keys and special hardware; interactive graphics; and text processing.

Input and output are too cut and dried for the interactive and real-time worlds; the
other categories are quite necessary to facilitate and simplify the documentation
effort, and increase understandability.

3.5 Encourage graphics in documents such as function charts, data flow diagrams, Gantt
and pert cliarts, Petri net diagrams, decision tables, finite state transition diagrams,
and system and logic flow charts

.

3.6 Provide for validity of the document. Each document should have provision for dis-
cussion of its testing against the actual system being developed or in operation.

3.7 Provide for discussion of management considerations, or reference to program
development and configuration managanent plans.

3.8 Provide linkage to Test Plans and Results of Tests. Such references should appear
in all functional areas and anyvA^ere else v*here the validation of the system is criti-
cal -

4. SYNOPSIS OF PROPOSED STANDARD

4.1 The individual items of required information (the data elonents of the CIB) are
called "docimentation topics," and each begins with a prescribed paragraph nuriber and
title.

4.2 The docunentation topics fall into four broad categories called "sections." Section
1 deals with general information, section 2 deals with management matters, and sections
3 and 4 describe the system requirements. It is frequently convienent to regard a sys-
tem as made up of components (also called functions, subsystems, actions, events, etc.).
Section 3 is used to provide an overview of the system and an enumeration of its com-
ponents. Each ccmponent is described in detail in section 4. Section 3 may also be
used to provide information common to many components. If there is an active database
administration role associated with the system being doconented, then it is suggested
that the data items be discussed in detail in section 3, and enumerated v^ere appropri-
ate in section 4. The goal of maximim understandability should determine v^here informa-
tion is placed, if the standard permits a choice of section or documentation topic. If

168

NBS FIPS Software Docunentation Wbrkshop, March 3, 1982

the canponent approach is not used then section 4 my be anitted.

4.3 Paragraph nimbers are of the form
< section or sub-section n\jnber> :<topic nijnber>

(jcrnponents, sub-sections, and topics are all nanbered in the manner in which paragraphs

are nanbered in FIPS 38. (E.g. "3.4.5") Top-level conponents have level-one paragraphs
(i.e. just positive integers). Sub-ccmponents have level-two paragraphs, etc. For

exanple, if ccmponent 3 has 2 subcanponents , they WDuld be nai±)ered 3.1 and 3.2. (Zero

is also acceptable as a top^-level ccmponent nariber.)

4.4 Sections 1, 2, and 3 have no subsections. Section 4 has a subsection for each ccm-

ponent enimerated in section 3. Section 4 subsections are nanbered thus:
4. <ccmponent nariber

>

4.5 The types of information to be provided for the system as a v>hole and for each of
its conponents are the same. Hence the topic naribers for section 3 and each sub-
conponent of section 4 are identical

.

4.6 The table below enanerates the docanentation topics in the order in v^ich they are
to appear in all documents prescribed by the standard. (They appear in order of
increasing paragraph nariber.) Shown are the paragraph naribers and titles and recommen-
ded applicability. As a miniman it is recommended that topics denoted by an "m" be
applicable; however, it is highly reconmended that topics denoted by an "x" eilso be
applicable. For each docanentation topic, the standard provides guidance on vhat infor-
mation should be provided for each document (such as the FD, SS, etc.) . Hovever, such
guidance is for the conpleted finalized docanents; the standard encourages production of
docanaitation in step with development. This may result in production of incomplete
versions of the docanents. The docanents would be finalized at the end of the develqp-
moit effort.

Docanentation Topics and Their ^^plicability
F S p U 0 M
D S S M M M

m m m m m m 1. GENERAL INFORMATION.

m m m m m m 1:1. Identification

.

m m m m m m 1:2. Purpose of this Docanent.
m m m m m m 1:3. Validity of this Docanent.
m m m m m m 1:4. Surtmary.

1:5. Background

.

X X X X X X 1:6. Related Projects.
X X X X X X 1:7. Definitions, Acronyns, and Abbreviations.
X X X X X 1:8. References

.

m m m m m m 2. MANAGEMENT.

m m m m m m 2:1. Key Personnel.
X X X X 2:2. Assumptions, Constraints, and Prerequisites.
X X X X 2:2.1. User Obligations.
X X X X 2:2.2. Developjer Obligations.
X X X X 2:2.3. Resource GDnmitments

.

X X X X 2:2.4. Test Oatmitments.
X X X X X 2:3. Change Control

.

169

NBS FIPS Softvore Docunentation Wbrkshop, March 3, 1982

Docunentation Topics and Their Applicability
F S P U 0 M
D S S M M M

Only the topic numbers are shown for sections three and four.

m m m m mm 3. SYSTSyi-WIDE or GLOBAL INFOPMATION.

4. DXAL, CCMPONEOT, or SUBSYSTEM INFORMATION.

m in m m m m : 1. Oveirview.

m m m rn m : x.i. rune Lj-Ons • L"-Lt.emaT_xvexy : ucmponem_s or oUDsysuems j

X X X X X : 1.2. Logic.

X X X X X : 1.3. Data Flow.
X X X m m m : 1.4. Operation.
X X X m m m : 1.4.1. Timing.

m m m : 1.4.2. Run Logic.
X X X X X X : 1.4.3. Error Conditions, Failure Contingencies.
X X X X X : 1.5. Performance

.

X X X X : 1.5.1. ^^>plicable Standards.
X X X X : 1.5.2. Test and Verification Criteria.
X X X X X : 1.5.3. Tolerances.
X X X X : x.D.'i. rxexnjxxit.y •

X X X X X X ; 2. Inputs, Outputs, and Products.
X X X X X : 2.1. Data Items
X X X X X : 2.2. Data Bases.
X X X X X : 2.3. Records

.

X X X X X ; 2.4. Files.
X X X X X X ; z . D . rorms

.

X X X X X X : 2.6. Reports

.

X X X X X X ; 2.7. Publications

.

X X X X X X : 2.8. Graphics.
2.9. Other Inputs, Qatputs, and Products.

X X X X X 3. Interfaces.
X X X X X 3.1. Languages

.

X X X X X 3.2. OGStmands and Dialogues.
X X X X X 3.3. User Hardv^re

.

X X X X X 3.4. Graphics.
•3.5. Other Interfaces.

m m m m m m 4. Operating Environment.
X X X m m m 4.1. Sites.
X X X X X X :4.2. Hardware
X X X X X :4.3. Support Software.
X X X X X X : 4 . 4 . Telecommunications

.

ra m m m m m :4.5. Security and Privacy.
X X X X X X :4.6. Controls.

:4.7. Additional Requiran.ents

.

X X m m :5. Programmining Considerations.
m m :5.1. Languages, Operating System, and Suppox-t Software.
m m :5.2. Location of the Source and Object Code.
m m : 5 . 3 . Etogram Design Logic

.

X X :5.4. Design of Representations

170

NBS FIPS Software Documentation Mbrl<shop, March 3, 1982

Documentation Topics and Their ?^plicability
F S P U 0
D S S M M

M
M

XXX
XXX

X
X

X

X

X

X

X

X

X

5.5. Coding Conventions.
5.6. Interaction with Operating System.
5.7. Testing

,

5.7.1. Test Plan [alternatively. Plan of Test]
5.7.2. Results of Tests.
5.8. Storage Requiranents

.

5.9. Mditional Discussion.

5. NOTES AND REFERENCES

[1] The opinions in this paper are those of the author and not necessarily those of the
Air Force Data Services Center. Corespondence concerning this paper should be addressed
to the author at P.O. Box 7541, Washington, DC 20044.

[2] U.S. Department of Commerce, National Bureau of Standards; "Federal Information Pro-
cessing Standards (FIPS) Publication 38, Guidelines for Documentation of Ccmputer Pro-
grams and Automated Data Systems"; Springfield, VA; National Technical Information Ser-
vice; February 15, 1976; 55pp.

[3] T. Kurihara, S. T. Redwine, Jr., and S. A. Zaveler, "Observations on Docunentation
Standards Revision: FIPS Pub 38 after Pour Years," IEEE Computer Society, Software
Engineering Standards T^plication Vforkshop Proceedings, August 18 - 20, 1981, San Fran-
cisco, California, 1981, pp 70 -76.

6. ACKNCWIEDGEMENTS
The author appreciates the conments fron T. Kurihara, S. T. Redwine, A. J. Neunann, and
p. Powell, as well as those fron his colleagues at work.

7. ccM:njsioN
Modernization of FIPS 38 is needed and is feasible as suggested by this paper.

171

RECORDER'S COMMENTS

3. A Proposed Documentation Standard Based on a System Decomposition and Information Base;

Approach, Saul A. Zaveler.

3.1 Summary of Discussions

There is an analogy between documentation and software. We can learn how to structure
documentation from how we structure software.

The Parnas method of applying software structuring principles to documentation was
discussed. Parnas supports two principles in particular:

• Information hiding -- if it's likely to change or if no one else needs to know about
it, hide it away.

• Separation of concerns -- if items are not similar, don't put them together.

Parnas' software requirements and design documents were listed. The discussant then asked
the speaker whether the Parnas approach fit in with the speaker's approach. The speaker
replied that the type of standard he is proposing is compatible with Parnas as well as with
the many others he had enumerated. The information is similar, but it is organized
differently with different terminology.

The second discussant commented that we have heard some very specific considerations
relating to the need to revise FIPS Pub. 38. It seems that, implicit in the method of

divorcing the display requirements from the information collecting requirements, is the
answer to an earlier question on getting usable documentation. Documentation will be more
palatable if the producers can update as they go along, without worrying about how it will

appear later in the display.

It may be difficult, while defining the requirement, to also define the functions. In fact,
functional requirements breakdowns may not be appropriate, especially for higher levels of

documentation. The current standard doesn't tell what to document first, only what is left
out.

3.2 Summary of Questions

• Q: There are many overlapping, even contradictory standards, within the Government.
Can these be coordinated?

A: One way to resolve the severity of major conflicts is to define requirements to

be met by the standard until they become very clear, then the solution becomes
apparent. To solve the problem of coordination, develop a reference model first,
then develop the standards in subparts that will fit in the total picture.

t Q: What about standards for large, decentralized systems?

A: The guidelines and standards for small systems are a subset of the large. If you
create a set of standards that encompasses the larger system, the smaller system
will have less complex requirements. Develop subset standards of big systems so

they represent the small and medium, then develop samples for each (small, medium
and large) to use as teaching tools.

• Q: Does it pay to document a small system?

A: Most organizations have a threshhold of time and money below which documentation
is not required. This is based on the assumption that the software can be

rewritten with less cost. However, lack of documentation makes data unacces-
sible, and this approach may be a self-fulfilling prophecy: if you don't
document, you will have to do it over the next time.

172

MODERATOR'S COMMENTS

Based on the papers presented, questions raised, answers and discussions, the following
conclusions/recommendations were reached during this session:

1. Why do we need documentation?

To know what the documented product does, how, and for whom. Without this informa-
tion, the product (software, procedures, system, etc.) may be lost. The level of

documentation must be cost effective. The user of the product must be able to

understand and use the product easily. If there is management involved (usually,
except for user-owned microcomputers), the documentation must allow management
information for planning, accounting, control, etc.

2. What should be the process of developing better documentation standards?

To develop such standards, the systems (project) approach should be used throughout
the process. Emphasis should be placed on coordination, overall applicability, and

consensus

.

3. What should be the characteristics of better documentation standards? (See the first

paper for more details.)

Documentation standards must be stated in a conceptual project context; they must be

adaptable to each project/system's situation; they must be complete and thorough with
ample definitions and guidance for the authors; they must be manageable and based on

what is known to work. They must also assist the authors in providing documentation
that is organized, logical, objective, tailored to the reader/user, clear, concise,

and that contains all of the information needed and nothing else.

4. How should documentation standards assist in the production of documentation?

They should provide guidance for context, concepts, terms, content, and format. They

also should encourage the use of state-of-the-art approaches and tools available for

documentation. (See Session C for more details.)

5. Who should produce documentation?

The standards should be written for technical writers, who should produce the final

documentation and who may or may not have any experience in computers, programming,

systems development, implementation and operation.

173

NBS FIPS Software Documentation Workshop, March 3, 1982

Microcomputer Systems Users Need Better Documentation

Richard A. Bassler, PhD, CDP, CDE

Professor of Computer Systems Applications

Center for Technology and Administration
College of Public Affairs

The American University

Washington, DC 20016

From the initial pioneering days of microcomputers, documentation has been the

weak link between use of the machines and the vast number of potential users. Many of

the microcomputer hardware and software suppliers of the early days are now
sufficiently large and financially healthy enough to be able to spend resources toward
communication with users. The success of the microcomputer has attracted large

computer manufacturers to the marketplace. Large manufacturers such as IBM and Xerox

are likely to make sure that the user will have documentation that is usable. With the

proliferation of microcomputers, user's groups have created a form of documentation
that is verbal. This mutual aid made microcomputing survive, if not flourish, during its

infancy days of less than adequate documentation. Third parties such as publishers have
moved in to fill the void in documentation. Rapid expansion and survival within the

micro industry may well depend on the quality of the documentation furnished.

Keywords: beginning computer users; documentation; hardware systems documentation;
large computer manufacturers; microcomputers; periodical literature and documentation;
software documentation; user's groups; verbal documentation.

1. INTRODUCTION

Microcomputers have a unique place in the hierarchy of computing. Arriving on the scene only

recently, they have opened up a totally new marketplace for the industry. Along with this new
marketplace comes a new class of computer users. These new users are not sophisticated

computerists. It is more likely that they do not ever want to become really knowledgeable about
computers and computing. They want to use the cheap computer power of this technology for their

applications instead of learning the technology.

l.I The Early Days

The first microcomputers were typically in kit form. Most popular of these were the Altair

series of computers, a combination which really was the prime mover in getting microcomputers
into the hands of hobbyists. Potential users would buy a collection of parts, usually unidentified in

plastic bags, and a few sheets of documentation as assembly instructions. Early pioneers were a

brave lot, and most of them were ham radio operators or other folk who had some experience with
either hardware or software. The next stage in this evolution was the arrival of more sophisticated

kits with some software, such as the Processor Technology series of SOL computers and the IMSAI.
These microcomputer systems eventually were delivered in assembled form. As a result, the number
of nontechnically oriented users began to increase rapidly.

174

Documentation for these systems began to show improvement. The manual for the SOL 20 (1)

was an example of attempts to produce adequate documentation. Although it was still oriented
toward the kit builder, it did have sufficient information in it to make it tolerably useful to the
sophisticated user. The manual was not indexed, and the user v/as at the mercy of using a
sequential search to find any particular item.

1.2 Current Systems

Recent microcomputers, such as the OSBORNE 1, have user's manuals directed toward the
user with little experience. For example, the OSBORNE 1 User's Reference Guide (2) states in its

introduction that:

The OSBORNE 1 has been designed to make you more productive in your professional
life. If you are a typical OSBORNE 1 owner, you will probably never write a computer
program; you do not have to in order to use this computer. In fact, you can discard the
traditional concept of computers. Your OSBORNE 1 will perform a multitude of tasks
for you. You simply instruct the computer by having it play a program on a diskette,

much as you would instruct your stereo system by playing a record or cassette tape. In

fact, learning to use your OSBORNE 1 computer is no more complex than learning to

use a stereo system.

This is an indicator of the marketplace that the current crop of microcomputer manufacturers
is aiming at. IBM, Xerox, V/ang, and most other large vendors have also fielded small computers
aimed at this burgeoning new arena for the sale of large volumes of computer -systems. It turns

out that the process of using any computer is a little more complex than Osborne suggests. If the

whole movement toward mass use of microcomputers is to be truly successful, a great deal of

attention needs to be paid to the documentation of both hardware and software.

2. HARDWARE SYSTEMS DOCUMENTATION

2.1 Trend toward Improvement

Many of the hardware manufacturers who cater to the microcomputer market have been
paying attention to the needs of their potential customers. Well, almost. There is still a long way
to go before the documentation for hardware will be really useful to the users who do not want to

be technicians.

One example of such improvement is in the documentation for the Diablo 1650 word processor

printer. This paper was printed on such a printer/terminal driven by a state-of-the-art
microcomputer. The author has struggled with these two manuals for over a year. The
documentation for this printer, available in 1979, is in two books. The first of these, the Product

Description (3), and the other, the Maintenance Manual (k), were written for the technically

oriented person. The casual user could not fathom what was included and could not begin to use

the devices from these manuals. They are useful to technicians, but only to those familiar with the

manuals. The lack of an index inhibits really good usage.

Later Diablo machines were delivered with an operator's guide (5) that was written for the

technically unsophisticated user. It describes how to use the external features of the machine in

terms that most \VP operators can fathom. Although this was a step forward, the newer operator's

guide would be more usable with an index. Of course, in its 25 pages, one could not find the

detail that was in the 500 pages of the earlier manuals. The complete manuals are still available

for those who want to get into the details and advanced features of the printers.

2.2 Hope for the Future

With the arrival of the IBM Personal Computer (6) and the Xerox 820 (7) computer, it is

hoped that the large computer manufacturers will apply their experience in dealing with many
levels of consumers toward developing documentation to make their small computer systems usable

by a wide variety of users. Failure to do so will result in slowing the forward movement toward
the exploitation of this potentially huge marketplace.

175

The idea that these computers will be sold through unusual (for computers) marketing
schemes, such as IBM in Sears Roebuck stores, means that the instructions for use must be clear

and understandable. For those machines sold through computer stores such as Computerland, more
help would be available from the store staff to aid the buyer.

3. SOFTWARE SYSTEMS DOCUMENTATION

3.1 The Early Days

An early effort in large-volume software documentation consisted of six manuals that

described the features of the CP/M operating system. CP/M is today the preeminent microcomputer
operating system with almost all microcomputer manufacturers offering it as their standard
operating system or as an option. Where CP/M is not furnished by the vendor, it is sometimes
available from a third party software supplier. The original six manuals (8) could be kindly

described as virtually unreadable by the less experienced. Jargon of the microcomputerists
abounded. Terms were undefined in the document or for that matter anywhere else. The final blow
was that no index to these documents was furnished.

When a user has considerable help from other users, it is possible to understand what the

manuals are describing. This form of tutorial by other microcomputer enthusiasts was the true form
of documentation of the early systems. This method of communication often exists today. There is

really no substitute for the "hand holding" method of learning to use a microcomputer system.

3.2 MutUcd Aid and Verbcil Documentation

The microcomputer user's group has emerged as a viable way for an individual to understand

the use and peculiarities of any system. In fact, it might be viewed as a forum of verbal
documentation. Experience is passed on to the newcomers entering a group of microcomputer users.

Every city has such groups. They are usually formed around a background of some common
denominator. In the Greater Washington, DC area, there are user's groups built around the CP/M
operating system and the Apple, Radio Shack TRS80, and Osborne microcomputers. Nationally, the

CP/M User's Group distributes a wide variety of public domain software in magnetic form. Many of

the local user's groups perform a secondary distribution service by making several thousands of

programs available.

Help in using these software packages is needed. The documentation, if any exists, is usually

poor. By seeking help from others who have implemented such packages, one may be able to make
use of the programs. Also, there is a learning experience connected with this sharing that is

invaluable.

3.3 Software Vendors' Attention to Documentation

In recent years, there has been a noticeable improvement in the documentation of application

software for micros. Some of the larger vendors have attempted to produce manuals and user's

guides that are readable and understandable by a typical user. For example, a reference manual for

the Radio Shack TRSDOS (Disk operating system) (9) is rather good. It is a carefully typeset,
printed manual, with attractive illustrations and enough white space to make it readable. The
manual begins with an elementary overview of the hardware connected with this particular
operating system. Each feature of the OS is explained in careful detail, and it would be expected
that most users would understand what is being explained. There is even a three-page index to the
manual. This will help in finding reference items. Documentation for other systems such as the

Apple and the Heathkit computers has improved.

3A Publishers' Attempt to Fill Void

With all the problems about the CP/M operating system documentation, it is surprising how
long it took for the publishing industry to come to the rescue. At this writing there are at least

176

four 1981 books explaining how to get the most out of the CP/M operating system. Typical of
these, and probably the easiest to use and most comprehensive, is Thom Hogan's book (10) on how
to use CP/M. This is clearly written and has an elementary introduction for the beginner. It

explains much of what is covered in the original CP/M manuals. Even experienced users are
learning from this book and reaching an understanding of what they have been doing.

Besides covering operating systems, publishers are helping to fill the void in documentation
for several computer languages. Several books about Microsoft BASIC are available. CBASIC2 is the

subject of a volume (11) devoted to more extensive examples about the syntax and use of the

language than were furnished by the vendor.

It. SOFTWARE FROM THE PUBLIC DOMAIN AND THE PERIODICAL LITERATURE

'^.l User's Group Software Documentation

When software is passed on through informal user groups, typically the documentation is

passed on in a simple manner. It will probably consist of user instructions on how to run the
program. If there is some user interaction to the program, it may be possible to run the program
without help. Frequently, the source code, if furnished, will contain enough remarks to make it

possible to fathom. This is fine for the experienced user, but the beginner is usually lost without

some help from more detailed user documentation.

All software that is shared by user's groups is really not in the public domain. Much of it is

pirated commercial software. The documentation for these programs frequently is a multi-generation

xerographic copy that may or may not be readable. Part of the blame for the extensive piracy of

software, passing in the name of "sharing," is caused by the inability of the potential users to

really know whether a program will run on their system and whether it will do the tasks expected
of it. Some users of this class of software rationalize their pirating with the explanation that they
are "testing for evaluation" in their user environment. Some intend to, and do, buy legitimate

copies when proven useful in their own system and application.

'^.2 Programs in the Periodical Literature

All the journals that have sprung up in the microcomputer area in the past few years are

publishing programs of virtually any type. Some are well documented, others are not. Editorially,

these journals have a long way to go to achieve the quality desired. Frequently programs are

published that simply will not run as listed in the journal. Later editions of that journal will have
corrections listed in the letters to the editor. Of course, one can write off to an educational foray

the experience in trying to get some of this software to work.

Some of the code written for these journals is written in the style of a few years ago, when
micro memory was expensive. Today, when 64K memories are the norm for serious users, BASIC
programs written in a style to save on memory usage are unacceptable. Writing clearly documented
programs that are readable to the user is more important than trying to save bytes in internal

memory usage. Progress is being made along these lines.

5. DOCUMENTATION STANDARDS FOR MICROCOMPUTER SYSTEMS

5.1 Consumerism in the Software Marketplace

The best way to get better documentation for microcomputers is through consumer action.

When potential buyers have good evaluations of available software io pass judgment on the quality

of the vendor-supplied documentation, then resistance in the marketplace would take care of the

poor cases. The periodicals are beginning to pay attention to the quality of vendor documentation

in their reviews of both hardware and software. InfoWorld regularly reviews both hardware and

software that is available in the marketplace. Documentation is one of the five criteria for

177

evaluating a software package. The ratings assigned are poor, fair, good, and excellent. A recent
review (12) involved a Hewlett-Packard hardware and software package called Business Assistant.

The documentation for this system was rated excellent. The reviewer comments:

Hewlett-Packard has resisted the temptation to which most CP/M compatible
hardware suppliers have succumbed. The HP-125 comes with a totally rewritten and
indexed manual for CP/M. Gone are the traditional set of seven Digital Research
manuals that you must read in parallel to comprehend them. This feature alone is nearly

worth the price differential between the 125 and less expensive systems.

The reference manual is well written and explains exactly how things work in the

HP-125 implementation of CP/M rather than employing the traditional approach of

supplying a few scant notes and the Digital Research CP/M Alteration Guide. (12)

In a buyer's market, the consumer is a powerful force. With the low price of microcomputer
systems and their related software, the only way to survival is through volume. No longer can a

software or hardware vendor expect to capture the development cost of a software package in the

first few sales. Competition is fierce in the microcomputer field. The user with a CP/M-based
system can select from a dozen excellent word processing packages. The one that furnishes the

best documented user instructions and that can accomplish all the tasks of the application will win.

The user can easily evaluate the quality of the documentation. Manuals for virtually every micro
software package can be purchased separately from the software for evaluation purposes.

5.2 Need for Experts in Communicating

Computer documentation in general, and for the microcomputer in particular, is too important
to be left to the computer expert. What is needed is a whole new generation of experts on
communicating technical ideas in the language of the user. We can no longer expect that the user

of com.puters will learn the language of the technology. There are many potential users who have
no computer background and no desire to attain this expertise. The documents furnished with micro
software will be the determining factor in the consumer acceptance of any software package.

5.3 Importance of Index

Few, if any, microcomputer manuals have been indexed until recently. Reviewers have
complained about the absence of indexes, or of indexes of poor quality. Virtually every book in the

author's library is indexed except for many of the micro applications manuals. The task is not

difficult if done by someone with experience. Having a workable index or not in a manual may
make the difference between survival and disaster for a micro vendor.

5A Testing the Documentation

The documentation must be tested in the user arena. No longer will it be acceptable to pass

it along in the office to see if all the technical jargon is correct. Tests must be made with the
users who will have to cope with the foibles of the documentation. They must be allowed to pass

along com.ments and suggestions that must be listened to and incorporated in the documentation
before the final versions are published. Frequent revisions must be made to correct the problems
discovered though use. The cost of this must be part of doing business in this high-volume arena.

CONCLUSION

Early microcomputer systems were notable for the poor quality and quantity of their

documentation. The industry has recently begun to recognize the need for quality documentation
oriented toward the mass market of microcomputer buyers. Possibly the survival of the

microcomputer industry, and certainly its growth, will be affected by the recognition of this need.
Quality documentation can come only from putting communication experts on the task. Hardware
and software advances were brought about by putting design and engineering experts to work on the

task. The future looks bright and exciting.

178

7. REFERENCES

1. Sol Systems Manual, 6200 Hollis Street, Emeryville, CA 9^^608, Processor Technology
Corporation, 1976, 700+ pages (pages numbered within chapters), not indexed.

2. OSBORNE 1 User's Reference Guide, 26500 Corporate Avenue, Hayward, CA 945^15,

Osborne Computer Corporation, Undated (presumably 1981), 225+ pages (pages numbered within

chapters), not indexed, table of contents without page numbers.

3. Series 1650 Word Processor Printers and Terminals, Product Description, Preliminary,
Document Number 90^^02-00, 3190 Corporate Place, Hayward, CA 9'f5't5, Diablo Systems, Inc.,

March 1979, 200+ pages (pages numbered within chapters), not indexed.

if. Series 1640/1630 Printers and Terminals, Maintenance Mcinual, Preliminary, Document
Number 90^^13-00, 3190 Corporate Place, Hayward, CA 9't5't5, Diablo Systems, Inc., 3uly 1979,

300+ pages (pages numbered within chapters), not indexed.

5. Series 1650 Word Processor Terminal Operators Guide, Document Number 90'f05-02, 2'f500

Industrial Boulevard, Hayward, CA 9't5'f5, Diablo Systems Incorporated, July 1980, 25 pages,

not indexed.

6. Lemmons, Phil. "The IBM Personal Computer: First Impressions," BYTE, Volume 6, Number
10, pp. 26, 28, 30, 32, 3^^, October 1981.

7. Maggie Cannon. "Major Manufacturers Eye World Market for Small Computers,"
InfoWorld, Volume 3, Number 20, p. 51, October 5, 1981.

8. Digital Research CP/M Documentation Version lA (six volumes):

I. An Introduction to CP/M Features and Facilities, 35 pages;

II. CP/M Assembler (ASM) User's Guide, 22 pages;

III. CP/M Dynamic Debugging Tool (DDT): User's Guide, 19 pages;

IV. CP/M System Alteration Guide, 23 pages + appendices;

V. CP/M Interface Guide, 38 pages;

VI. ED: A Context Editor for the CP/M Disk System: User's Manual, 17 pages.

Box 579, Pacific Grove, CA 93950, Digital Research, 1976, not indexed.

9. TRSDOS & Disk Basic Reference Manual, One Tandy Center, Fort Worth, TX 76102, Radio

Shack, a division of the Tandy Corporation, 1979, 200+ pages (pages numbered within

chapters), indexed.

10. Hogan, Thom. Osborne CP/M User Guide, 630 Bancroft Way, Berkeley, CA 9^^710,

OSBORNE/McGraw-Hill, 1981, 283 pages, indexed.

11. Osborne, Adam, Gordon Eubanks 3r., and Martin McNuff. CBASIC User Guide, 630

Bancroft Way, Berkeley, CA 9'f710, OSBORNE/McGraw-Hill, 1981, 215 pages, indexed.

12. Milewski, Richard A. "The HP- 125 Business Assistant from Hewlett-Packard," InfoWorld,

Volume 3, Number 20, pp. 37-39, October 5

1981.

179

RECORDER'S COMMENTS

2. Microcomputer Systems Users Need Better Documentation, Richard A. Bassler

2.1 Summary of Discussions

The problems of documentation for microcomputers are an illustration of "we learn from our
mistakes -- we have learned how to do these mistakes well." If we knew how to produce good
manuals for minicomputers and mainframes, we would know how to produce good ones for micros.
Since micros are bought by the user, the microcomputer market may assume a leading role in

forcing us to do a better job of documentation.

A tongue-in-cheek comment was made that the manuals are the real thing. The hardware is

merely an attempt to meet the manuals. A number of extensive disclaimers were read to

support this view.

2.2 Summary of Questions

• Q: How can we incorporate standards for micros into the classic type of develop-
mental systems? Are they two separate problems?

A: Yes. This documentation is for naive users.

• Q: Do you have any proposed standards for documentation of microcomputer applica-
tion programs and systems?

A: Documentation must be approached each time on a unique basis. It must be

comprehensible and understandable to the naive user.

180

Session F: Enhancing Software Sharing

INTRODUCTION

Lenore S. Maruyama, Moderator

Network Development Office, Library of Congress
Washington, D.C.

This session considers different aspects of software sharing which, in a broad
context, encompasses the use of software created by persons or organizations outside
one's inmediate institutional affiliations. Because of the increasing importance of
software sharing in all sectors (public/private, for-prof it/not-for-profit) , standards
and standardized techniques have been or are being developed to facilitate the sharing
process.

In a recent report. An Assessment and Forecast of ADP in the Federal Government
(published by the National Bureau of Standards based on research conducted by
International Data Corporation) , it was estimated that the Federal government spent about
$559 million on software in 1979. (1) These expenditures were categorized as follows:

$117 million (21%) Systems Software

66 million (12%) Utility Software

376 million (66%) Applications

Of the $117 million spent for systems software, about 53% ($62 million) had been spent on
internally developed software; of the $66 million for utility software, 50% ($33 million)
had been spent on internally developed software; and of the $376 million for appli-
cations, 83% ($312 million) had been spent on internally developed software. These
figures are important not only in terms of the standards and standardized techniques
being discussed in this session but also for the entire software sharing process which
has the potential of saving the Federal government (and others) substantial amounts of
money

.

The first three papers address various information-gathering techniques. "Effec-
tive Bibliographic Standards for Computer Software: Improved Documentation and the Need
for 'Title Page' Equivalents" by Sue A. Dodd presents bibliographic procedures on how to

identify and describe a computer program and proposes the inclusion of a user header
label to record the necessary bibliographic information. Ms. Dodd is an associate
research librarian in the Social Science Data Library at the University of North
Carolina, and following several years of active involvement in the area of bibliographic
control for machine-readable data files, she has compiled a cataloging manual for

machine-readable data files. "Standards for Bibliographic Control of Machine-Readable
Data Files" by Lenore S. Maruyama describes standards in the area of automated biblio-
graphic control, including a new format for machine-readable data files, and reviews the
elements in FIPS 30 for software summaries as well as proposes a new standard for numeric
data files. Ms. Maruyama is a senior information systems specialist in the Network
Development Office of the Library of Congress, and in addition to her involvement with
numerous automation projects at the Library, she has compiled seven MARC (machine-

readable cataloging) formats, the most recent being the one for machine-readable data
files. In "The Computer Program Abstract as Software Documentation," Margaret K. Butler
discusses the development of the recently completed American National Standard for Com-
puter Program Abstracts and its role in software sharing. Mrs. Butler is a senior

computer scientist at Argonne National Laboratory and director of the National Energy
Software Center. She has participated in standards work as a member of the ANSI X3 SPARC
(Standards Planning and Requirements Committee) and chaired Technical Committee X3K7 on

Computer Program Abstracts.

181

The remaining three papers present techniques that are intended to facilitate the
sharing process. "An Integrated Machine-Readable Data Documentation System" by Richard
C. Roistacher describes the use of a text formatter to manipulate machine-readable text,
including the preparation of documentation. Mr. Roistacher is a research associate at
the Bureau of Social Science Research in Washington, D.C., and his major research
interests are in the areas of social science computing and data analysis and the social
and organizational effect of computer networks. (Although Mr. Roistacher 's paper has
been included in these proceedings, he was not able to present the paper at the work-
shop.) In "Compilation of Bibliographic Data Element Dictionaries," Madeline M.
Henderson describes a project in progress to standardize techniques to compile a data
element dictionary for all elements used in processing Federal documents. Mrs.

Henderson, now a consultant in information management, analysis, and assessment, had been
manager of the ADP Information Analysis Project in the Institute for Computer Sciences
and Technology of the National Bureau of Standards until her retirement in 1979.
Finally, "Capital Games: the Problem of Compatibility of Bibliographic Citations in Data
Bases and in Printed Publications" by Hans H. Wellisch discusses the problems of convert-
ing data from bibliographic files to references or footnotes in monographs or journals
because of differing capitalization practices in the latter. Mr. Wellisch is a professor
in the College of Library and Information Services at the University of Maryland, and his
major interests include subject indexing, the linguistic aspects of information science,
the physical planning of libraries, and the history of library and information work.

REFERENCES

(1) Gray, Martha Mulford. An Assessment and Forecast of ADP in the Federal Government .

Washington, Institute for Computer Sciences and Technology, National Bureau of
Standards, 1981. p. ix, x. The author explains that these figures were derived by
analyzing software spending patterns for the U.S. general purpose computer popula-
tion and, by extrapolation, estimated for the Federal government.

182

MBS FIPS Software *Documentati on Workshop, March 3, 1982

Effective Bibliographic Standards for Computer Software:
Improved Documentation and the Need for "Title Page" Equivalents

Sue A. Dodd

Institute for Research in Social Science
University of North Carolina

Bibliographic control over computerized information has slowly been
evolving within the library and information science profession during the
last decade. A major landmark that helped to focus increased interest in
bibliographic control of computerized information was the inclusion of
Chapter 9 on machine-readable data files (MRDF) in the second edition of
the Anglo-American Cataloguing Rules (AACR2). Publication of these rules in
1978, coupled with a number of other events, including the compilation of a

MARC (MAchine Readable Catalog) format for MRDF provided some important tools
for establishing bibliographic control over the proliferation of data files
and computer software. General purpose computer software must be properly
identified with sufficient bibliographic data elements to be processed in
turn by librarians and information scientists, converted into catalog
records and data abstracts, and finally integrated into existing automated
retrieval systems. This paper presents procedures on how to identify and
describe a computer program and is directed at those government producers
who have the responsibility for providing descriptive information on available
Federal software, and for seeing that such information reaches its intended
audience.

Bibliographic control; Bibliographic standards; Computer software; Documentation
standards; Machine-Readable Data Files (MRDF)

1. INTRODUCTION

The Federal Software Exchange Program was established in 1976 by General Services Ad-
ministration (GSA) to promote Government-wide sharing of common use software owned by

Federal agencies. In order to provide for a centralized unit for information on available
software, GSA established the Federal Software Exchange Center (FSEC) at NTIS. The vechicle
for Federal software information and dissemination is the Federal Software Exchange Center
Catalog . It contains software abstracts covering numerous application areas on programs
that are written in a broad range of computer languages for a wide variety of hardware. The
source of information for the abstracts is the Federal Information Processing Standard Soft-

ware Summary (FIPS Pub. 30). According to Government regulations (FPMR 101-36.1068 and 101-

36.169), before a Federal agency can obtain a Delegation of Procurement Authority (DPA) to

acquire software from commercial sources, it must screen available Federal ADP resources by

reviewing the Federal Software Exchange Center Catalog . Even with these regulations and in-

formation gathering procedures, it is commonly observed that available government-produced
software programs are seriously underutilized both inside and outside of government. This

condition is most often attributed to the lack of adequate information about and access to

available software. Notable symptoms of the problem include:

-- confusion and exasperation in trying to locate and acquire
computer programs within the Federal government

-- insufficient information on the most recent version or editions

of government-produced software
— published catalogs quickly becoming out-of-date with long time

periods between updates or new releases of catalogs
-- no standardization across agencies except for the Federal Infor-

mation Processing Standards (FIPS) of the National Bureau of

Standards which are often "observed only in the breach" -- in

addition, such forms are often completed by persons not directly

involved with the development of the program being described
-- waste in government spending due to a duplication of effort; new

software programs are being budgeted and developed when similar

programs already exist within the Federal government

183

While all of these problems cannot be solved by a singl

e

solution, many can be allev-

iated by adhering to the recently formulated bibliographic standards for machine-readable
data files (MRDF), [1] which includes computer software; by integrating these standards into
existing documentation; and by converting this information into a centralized automated on-

line retrieval system. The process of developing an efficient information retrieval system
must include the development and enforcement of standards governing bibliographic descriptions
of computer programs and their accompanying documentation. Bibliographic control over computer-
ized information has slowly been evolving within the library and information science profession
during the last decade. A major landmark that helped to focus increased interest in biblio-
graphic control of computerized information was the inclusion of Chapter 9 on MRDF in the

second edition of the Anglo-American Cataloguing Rules (AACR2). Publication of these rules in

1978, coupled with a number of other events, including the compilation of a MARC (MAchine
R^eadable C^atalog) format for MRDF provided some important tools for establishing bibliographic
control over the proliferation of data files and computer software. Not unlike an author who
is asked to follow standard descriptive rules for identifying his unique creation, and not
unlike publishers who have established among themselves standard publishing practices for
identifying their publications, government agencies should agree to follow accepted biblio-
graphic practices for describing and documenting computer software. General purpose computer
software must be properly identified with sufficient bibliographic data elements to be pro-

cessed, in turn, by librarians and information scientists, converted into catalog records
and data abstracts, and finally integrated into existing automated retrieval systems. This

paper presents procedures on how to identify and describe a computer program and is directed
at those government producers who have the responsibility for providing descriptive informa-
tion on available Federal software, and for seeing that such information reaches its intended
audience. The individual descriptive data elements required to establish bibliographic identity
for data files and programs are outlined. Immediately following are instructions on how to

prepare "title page" equivalents (both internal and external).

2. DATA ELEMENTS TO IDENTIFY SOFTWARE

Conceptually, data elements for computer software can be broken down into at least six
levels: those needed to identify a program Ce.g. bibliographic elements); those needed to

describe the contents of a program (e.g. descriptive summary or abstract); those needed to

classify a program (e.g. appropriate classification codes, indexing, or subject descriptors);
those needed to access or use a program (e.g. physical and technical characteristics, compu-
ter compatibility, peripheral requirements); those needed to analyze or operate a program
(e.g. citation of documentation, related publications); and those needed to archive or
maintain a program (e.g. agency records pertaining to the development, use, and storage of
the program). Only the selected data elements necessary to identi fy a computer program will

be discussed here, but the reader is referred to other publications [2] dealing with other
descriptive levels including how to compile an abstract.

Titl

e

. A formal computer software title should be distinct from a data set name or
other computer-related working names. Acronyms should be avoided, but if used, they should
be explained in the secondary title or subtitle. For example:

TRMETS: Trace Metals Analyses

With existing technology for keyword or full-text retrieval, any descriptive words contained
in the title take on added significance. Consequently, a titles for software should be de-

scriptive of the major functions or contents they are describing.
Authorship . Give the full name of author(s), programmer(s) , or corporate body (govern-

ment agency) responsible for the intellectual content of the software. For multiple authors,
give proper name order.

Statement(s) of responsibility . Statements of responsibility relate to persons or cor-

porate bodies responsible for intellectual content; to corporate bodies from which the con-

tent emanates; to personal or corporate sponsorship; and to personal or corporate responsi-
bility for the performance or development of a work. For books, statements of responsibility
include authors, editors, writers of prefaces or introductions, illustrations, etc. For com-

puter programs, statements of responsibility are used for authorship, but also for contribu-
ting roles played in the creation or development of the program. Since many of the tasks

associated with program development may be contracted out to another party, responsibility
statements may be used to indicate the relationship of the work to persons or corporate
bodies that would otherwise not be known. Example:

Developed by the Center for Advanced Computation, University
of Illinois for the Office of Land Information and Analysis,
National Aeronautics and Space Administration (NASA)

184

Edjtlon, A program edition occurs when there are major changes in the programming
statements, a change in the programming language, or other significant changes. Editions
for programs are usually designated in terms of "version," "release" and "level." Each
signifies to a potential user that new routines, or other enhancements have been made to
the program. Examples:

Version 5.20 or Level 3.4

In both examples above, the term "release" is implied but not stated. If it were stated, it
would be "version 5, release 20" or "level 3, release 4."

Producer . A software producer is defined as that person or corporate body with the
overall administrative responsibility for bringing the program into existence.

Place of production . Give the complete address (as judged appropriate) for the place
of production. The place of production is defined as the "main office" or the location used
as part of the formal mailing address. For example, the place of production for a program
produced at the Bureau of the Census is:

Washington, D.C.

not

Suitland, Md.

Name of personal or corporate producer . Give the personal or corporate producer of the
program. In citing the appropriate organization or person responsible for the production of
the program, indicate the full organizational title and affiliation as appropriate.

Date of production . Production date for a software program is defined as the date the
file became operational in machine-readable form for analysis and processing.

Distributor . A program distributor is defined as that organization which has been
designated by the author or producer to reproduce copies of a particular program. If a

distributor is not cited, it is assumed that the author or producer is fulfilling this
function.

Place of distribution . Give the complete geographic location of the place of distri-
bution, including address, zip code and telephone number.

Name of personal or corporate distribution . Give the personal or corporate name of the
distributor of the program.

Date of distribution . The distribution date for a program is defined as the year the
program became available for wide distribution to the public or to other agencies. If the
distribution date is not different from the production date, then it is not given.

Series title . A program series title is the collective title under which a program
is issued as one of its parts. Like a monographic series for printed material, the program
file conterpart may be defined as a number of separate program files issued successively and
related in subject, purpose, and form. They are usually produced by the same organization,
but may have separate and distinct titles. Such program-defined series should carry a

collective title and be placed on the title page of the accompanying documentation,

3. "TITLE PAGE" EQUIVALENTS FOR SOFTWARE

Internal title page . Optimally, a "title page" equivalent should be part of the pro-

gram itself. An internal title page would be totally file-specific and could not easily be

lost or separated from the program it is describing. Upon receiving a program stored on any

type of data carrier, the recipient could arrange for the "title page" equivalent to be

printed out or displayed on a video/CRT screen. The resulting descriptive information would

reveal the program's bibliographic identity and any relevant information pertaining to its

edition.

Internal user file labels . The ANSI X3. 27-1978 - Magnetic Tape Labels and File

Structure for Information Interchange provides magnetically recorded labels for the pur-

pose of identifying files. Although limited to magnetic standard-labeled tape files, an

option in the standard establishes a User Header Label (UHL) in which space adequate for a

"title page" equivalent for computer software is available.

185

A UHL consists of the following fields of eighty character records:

CP Field Name L Content

1 to 3 Label identifier 3 UHL

4 Label Number 1 "a" character

5 to 80 Reserved for User
Appl i cation 76 "a" characters

Legend
CP - character position in the label. Field name - reference name of the field.
L - length of the field (number of characters). Content - content of the field
as appropriate, "a" - An "a" character is any one of the set of digits 0, 1, 2,

... 9, the uppercase letter A, B, C, . . . Z, and the following special charac-
ters: SP :"%'()*+,-./:;=? <>

A completed set of UHLs representing a "title page" equivalent for a software program is

given below:

UHL 1 SYMAP: Synagraphic Mapping System. Conceived

UHL 2 and Developed by Howard T. Fisher, Technological

UHL 3 Institute, Northwestern University, version 5,20

UHL 4 Produced by the Laboratory for Computer Graphics

UHL 5 and Spatial Analysis, Harvard University, Cambridge,

UHL 6 Mass. , 1975.

User applied information - characters 5-80

Label number - 1 character - position 3

Label identifier - 3 characters - position 1-3

Such information once recorded should be copied without change when the program is recorded
on another tape. Information thus supplied should apply to the identity of the file and not

to its physical characteristics. Once supplied by a program producer, the information should
not be tampered with -- like the title page of a book, it should remain constant,

From the point of view of bibliographic control of computer software, the use of an
internal user label or its equivalent is essential. Motion pictures have title and produc-
tion credits incorporated at the begining of the picture frames, and sound recordings have
permanent external labels providing bibliographic identification. However, at this stage of
their development, computer software lack any i nternal /external information or "title page"
equivalent sufficient to identify the distinguishing features of specific titles, editions,
and production credits.

One problem surrounding the use of internal labels is compatibility. Different compu-
ters use different labeling devices that are often not compatible. How problematic such
labels will prove to be when considering the tranfer of a program from one computer system
to another is difficult to determine. There is also the question of how easily such a label
could be bypassed by a system which does not read labels at all or only a particular type
of label. Thus the intent of internal user labels to record the equivalent of a title page
on the file itself is a useful goal, but it is unclear how quickly such a system of docu-
mentation will take hold. It is hoped that appropriate parties such as the National Bureau
of Standards or the American National Standards Institute will review this problem and make
relevant recommendations. Perhaps this workshop could serve as the initial forum on this
probl em.

186

External title page . The alternative to an internal "title page" equivalent, is to

rely on the title page of the accompanying documentation to adequately describe the associ-
ated program. However, program producers must keep in mind that title pages compiled as

part of the program's accompanying documentation must serve a dual function -- that is, the
information must be sufficient to identify the printed documentation, the program being
described, and the institutional origins of both. Unlike the program it is describing,
documentation can be functionally independent. A program on the other hand, connot be

implemented without the aid of some type of documentation -- and the linkage between the
two must be maintained. One current practice that provides this linkage is an introductory
statement at the top of the documentation's title page indicating that the work being de-

scribed is a user's guide or manual to be used in conjunction with the program and that the
information on the title page pertains both to the computer software and its documentation.

Edition statements for the program must be distinguished from edition statements per-

taining to the program's documentation, The program file's edition statement precedes the

producer statement of the title page, while the edition statement pertaining to the program's
documentation follows the program's producer statement, normally at the bottom of the title
page Cfigure 1) [3],

4. CONCLUSION

What does it mean for the user when there are no effective bibliographic standards for

documenting computer software? A prospective user of government-produced software faces many
problems related to identifying existing program resources. These problems exist in part

because bibliographic standards for computer software are not yet enforced. Bibliographic
control consists of standards and consistent methods for listing titles, editions, and for

naming organizations responsible for producing them. Without these standard procedures, no

coordinated system of information services can be created for computer software. Uniform
procedures should be developed for the entire Federal System, and these procedures should

reflect existing bibliographic standards both for programs and their documentation. Agencies
must devote special attention to the problems of adequate bibliographic descriptions and

"title page" equivalents for those general purpose computer programs that they have a mandate

to share with other agencies,

REFERENCES

1. American Library Association. Anglo-American Cataloguing Rules . 2nd ed. Chicago:
American Library Association, 1978, 203 pp.

Dodd, Sue A. Cataloging Machine-Readable Data Files: An Interpretive Manual (mimeographed).
Chapel Hill, N.C.: Institute for Research in Social Science, University of North
Carolina, 1981 , 396 pp.

Library of Congress. Machine-Readable Data Files: A MARC Format . Final Draft.

Washington, D.C.: Network Development Office, Library of Congress, June 1981.

2. Dodd, Sue A. , op. cit.

Roistacher, Richard C. A Style Manual For Machine-Readable Data Files and Their
Documentation . Washington, D.C.: Bureau of Justice Statistics, U.S. Department
of Justice, June 1980. Report No. SD-T-3, NCJ-62756. For sale by the Superintendent
of Documents, U.S. Government Printing Office.

United States. Office of Federal Statistical Policy and Standards, Technical Papei" No,. 3 :

Procedures for Preparation of Abstracts of Public Use Statistical Ma"chihe"TReadab1e"

Data Files . Washington, D.C; Office of Federal Statistical Policy and Standards,

Department of Commerce (Draft), December 1980.

3. This figure of a proposed title page for computer software was compiled by the author,
and does not reflect the actual title page of the SYMAP manual produced by Laboratory
for Computer Graphics and Spatial Analysis at Harvard University,

187

(User's Guide for Computer Software)

SYMAP: Synagraphic Mapping System

Conceived and Developed

by

Howard T. Fisher

Technological Institute - Northwestern University

version 5.20

Produced and Distributed

by

Laboratory for Computer Graphics and Spatial Analysis

Graduate School of Design - Harvard University

1975

User's Guide 5th edition
Revised, October 1975

Revised, May 1976
Revised, September 1979

User's Guide Prepared by James D. Dougenik, Applications
Programmer and David E. Sheehan, Computer Cartographer

Harvard University 520 Gund Hall 48 Quincy Street Cambridge, Mass. 02138

Tel : (617) 495-2526

Figure 1: Suggested Title Page for Computer Software Documentation

188

NBS FIPS Software Documentation Workshop, March 3, 1982

Standards for Bibliographic Control of Machine-Readable Data Files

Lenore S. Maruyama

Network Development Office, Library of Congress
Washington, D.C.

As a prelude to a review of certain standards in the FIPS series, standards in

the area of automated bibliographic control are described, the most important being
the American National Standard for Bibliographic Information Interchange on
Magnetic Tape (ANSI Z39.2). This standard format structure for machine-readable
bibliographic data has been implemented by different bibliographic applications,
and the implementation by the library community, exemplified by the series of
formats known as MARC (Machine-Readable Cataloging) that were developed by the
Library of Congress, is discussed. The most recent format developed is one for

machine-readable data files (MRDF) . The analysis and review performed as the format
was being compiled have resulted in questions being posed about the elements
included in FIPS 30 (Software Summary for Describing Computer Programs and Automated
Data Systems) and in a suggestion for a new standard to cover numeric data files.

Keywords: ANSI Z39.2; Bibliographic control; FIPS 30; Format structure; Machine-
readable cataloging; Machine-readable data files; MARC; MRDF; Numeric data files;

Software summary.

1. INTRODUCTION

In recent years, the importance of machine-readable data files or MRDF as an infor-
mation resource has been recognized, largely because of economic factors. Costly dupli-
cative efforts, ranging from writing new software for an accounting application to
collecting and creating machine-readable statistical data on persons with Spanish sur-
names, can be avoided if one knew, in the first case, that numerous software packages are
available commercially and are listed in trade product directories; in the second case,

that such a statistical data file is compiled and distributed by the U.S. Bureau of the
Census and is listed in the bureau's Directory of Data Files .

Bibliographic control in a library environment involves the "functions necessary to
generate and organize records of library materials for effective retrieval." (1) By
removing the word "library," this definition becomes more generalized, and it is within
this broader framework that one can categorize the tasks involved in compiling the
inventories or directories mentioned above as bibliographic control.

The purpose of this paper is to provide an overview of the standards associated with
automated bibliographic control and the application of these standards at the Library of

Congress to aid other institutions in their efforts to bring MRDF under bibliographic
control as well as to relate this experience to a review of a Federal Information
Processing Standards (FIPS) publication. Documentation is not discussed separately here

because it is assumed to be an integral part of creating a machine-readable data file.

2. SUMMARY RECOMMENDATIONS

In connection with FIPS 30 (Software Summary for Describing Computer Programs and

Automated Data Systems) , questions were posed as to how certain elements were used and

suggestions made for addition of other elements:

189

o Would it be useful to know the name of the person who wrote the software? Or the

name of the organization, agency, or unit?

o Would it be useful to know for what agency the software was written, as in the case

of contractual work?

o Are the software types, i.e., automated data system, computer program,

subroutine/module, sufficient to describe the program being submitted? Or sought?

o Are the technical details, i.e., computer manufacturer and model, computer opera-

ting system, programming language (s), number of source program statements, computer

memory requirements, tape drives, disk/drum units, and terminals, sufficient when

looking for programs to acquire? Do users look for programs by these categories,

e.g., programs written for an IBM 370 in OS?

o Would a thesaurus be useful in supplying keywords? In looking for programs of a

certain type?

o Are there other kinds of data that should be provided to facilitate exchange or

sharing of software?

Other activities in the federal government are leading toward standardization of

elements to describe numeric data files. Development of a new FIPS for description of

numeric data elements, taking advantage of the experience from the effort coordinated by

the Office of Management and Budget, is needed.

3. STANDARDS FOR AUTOMATED BIBLIOGRAPHIC CONTROL

This section does not attempt to describe all existing standards for automated
bibliographic control but instead discusses the ones having a significant effect on
information processing. Actually, the impact of these standards has been far-reaching
not only in this country but also abroad and in the public/private and for-profit and
not-for-profit sectors.

3.1 Format Structure for Machine-Readable Bibliographic Data

The development of the American National Standard for Bibliographic Information
Interchange on Magnetic Tape (ANSI Z39.2) took place in the late 1960s. The standard
consisted of a format structure that facilitated the implementation of certain capabi-
lities, such as providing a vehicle for the exchange of records so that only one set of

conversion programs would be necessary, transcribing variable length data fields and
variable length data records, being independent of any one manufacturer's hardware, and
being independent of any single programming language. When the standard was first issued
in 1971, these capabilities were considered innovative. Even with the considerable
changes that have taken place in the computer industry and the data processing field from
that time to 1979 when the standard was revised and reissued, these capabilities can
still be viewed as moderately difficult to provide.

The structure consists of three components: the leader, the directory entries, and
the variable fields. These are summarized below to give the reader an idea of the
processing that would be involved when handling records using this structure (2):

Leader ; A fixed field, twenty-four characters in length, occurring at the beginning of
each record and providing parametric information for the processing of the record. Some
of the parameters include the following:

Record Length: A five-digit decimal number equal to the length of the record,
including the record length and the record terminator.

Status: A parameter indicating the relation of the record to a file, e.g., new,
revised, or deleted.

190

Type of Record and Bibliographic Level: Two parameters used together to specify the
characteristics and to define the components of the record. For example. Type of
Record = Printed Language Material; Bibliographic Level = Serial.

Indicator Count: A parameter whose value in the form of a decimal digit is the
number of indicators associated with each variable data field.

Identifier Length: A parameter whose value in the form of a decimal digit is the
length of the delimiter plus the data-element identifier (s) used within the record.

Base Address of Data: A parameter whose value in the form of a five-digit decimal
number specifies the character position of the character following the field termi-
nator of the directory, where the origin is the first character of the leader.

Entry Map: A set of parameters specifying the structure of the entries in the
directory as follows:

Length of the Length of Field Portion of Each Directory Entry

Length of the Starting Character Position Portion of Each Entry

Length of the Implementation-Defined Portion of Each Entry

(The tag is assumed to be three digits in length.)

The other positions in the leader are either reserved for future use or are reserved
as implementation-defined positions.

Directory : A series of fixed fields or entries providing an index to the location of the
variable fields within the record. The entries consist of the following:

Tag: Three alphabetic or numeric basic characters. Tags whose first two characters
are zero specify the control fields; other tags specify data fields.

Length of Field: The length in the form of a decimal number of the variable field to

which the entry corresponds, including the field terminator and any indicators. See
also Length of the Length of Field Portion in the Entry Map above.

Starting Character Position: The character position, in the form of a decimal
number, relative to the base address of data of the first character in the variable
field referenced by the entry. The first character of the first field following the
directory is numbered 0. See also Length of Starting Character Position in Entry
Map above.

Implementation-Defined Portion: If present, contains information relative to the
variable field referenced by the entry. See also Length of Implementation-Defined
Portion in Entry Map above.

Variable Fields : Fields whose length is determined for each occurrence by the length of

data comprising that occurrence. There are two kinds of variable fields:

Control Fields: Variable fields containing parametric or other data which may be

required for the processing of the record and being specified by tags beginning with
two zeros. Control fields are comprised of data and a field terminator; they do not

contain indicators, delimiters, or data-element identifiers.

Variable Data Fields: Containing bibliographic or other data not intended to supply

parameters for the processing of the record. May include indicators, delimiters,

and data-element identifiers, as well as data and a field terminator.

Indicators: A one-character data element which is associated with a data field

and which supplies additional information about the field. When indicators are

191

present, they are the first data elements in the field. See also Indicator

Count in the Leader above.

Delimiter: Symbol that is used as an initiator, separator, or terminator of

individual elements in a variable data field.

Data-Element Identifiers: When used, each identifier should b^ preceded by a

delimiter, and each identifier should precede the data element it identifies.

See also Identifier Length in the Leader above. The delimiter and data element
identifier are combined to form a symbol used to initiate and identify data
elements in a variable data field.

Field Terminator: A character used to terminate each variable field in the

record. For the last data field, the field terminator is followed by a record
terminator

.

The structure embodied by Z39.2 has been adopted for different bibliographic appli-
cations, including those of the library community in this country and abroad and the

scientific and technical community under the auspices of the Committee on Scientific and

Technical Information (COSATI) whose format specifications are used by the National
Technical Information Service, the Defense Documentation Center, the National Aero-
nautics and Space Administration, and the Dept. of Energy in their distribution of

machine-readable records describing (mostly) technical reports and citations to journal
articles. The library implementation of Z39.2, exemplified in the formats developed by

the Library of Congress, is described in the following section.

At this point, it is important to note the reason for different bibliographic
applications and hence, different implementations of the standard format structure. The
library community in this country and in several other countries such as the United
Kingdom, Canada, and Australia follows a set of rules and guidelines known as the Anglo-
American Cataloguing Rules . NTIS, DDC, NASA, and DOE follow the COSATI Rules for

Descriptive Cataloging. The tags and the contents of the fields, therefore, differ
substantially as shown below:

COSATI Format

220 Unclassified Title
240 Classified Title
260 Subtitle

Library Format

245$a Short Title
245$b Subtitle
260$a Place of Publication
260$b Publisher
260$c Date of Publication

Even with these differences, the task of processing bibliographic records is simplified
by the use of the standard format structure. When one considers the number of different
bibliographic files that have to be processed by the commercial data base vendors (i.e.,
Lockheed, System Development Corporation, and Bibliographic Retrieval Services) , the
availability and application of such a standard have had tremendous implications.

Subsequent to its adoption by the American National Standards Institute, the format
structure was submitted and adopted as a standard by the International Organization for
Standardization as ISO 2709. A footnote here in terms of the relationship between ANSI
Z39.2 and the Federal Information Processing Standards (FIPS) : In the early 1970s, work
had been started to incorporate the standard format structure into the FIPS series.
There were, however, many objections raised by certain agencies because of a misunder-
standing as to the relationship of the format structure to internal formats (the struc-
ture was for communications purposes only) , the use (optional) , and the scope of the
records created using the format structure (dependent on the particular application,
i.e., libraries were using it for books, serials, films, etc., and the users of the
COSATI format were including technical reports and journal articles) . In any event, the
agencies that would have adopted the FIPS guidelines had already adopted and implemented
the ANSI Z39.2 standard so the matter was dropped.

192

3.2 Other Standards

The distribution of machine-readable bibliographic records in the standard format
structure was begun by the Library of Congress in 1969 and was probably one of the first
major uses of the American National Standard Code for Information Interchange (ASCII)

.

To provide the capability of representing all roman-alphabet languages and the romanized
forms of nonroman-alphabet languages, the basic ASCII set of 128 characters was expanded
to 180 characters by expanding the ASCII 7-bit code to an 8-bit code for 9-track tape
users and contracting it to a 6-bit code for 7-track tape users. (The latter option was
discontinued recently.) It should be noted that this developmental work had been taking
place at a time when obtaining printouts using both uppercase and lowercase alphabetic
characters was not easy. Shortly thereafter, IBM began offering a print train with the
library character set as an off-the-shelf item. In recent years, several different CRT
terminals have been developed with the capability of displaying the library character set

in addition to COM (computer-output-microform) and photocomposition devices that can
produce "printed" output with the full character set. Progress, however, has been much
slower for languages in nonroman alphabets, both in terms of standard character sets and
display/printing devices.

Other standards that were important in the development of the library applications
included codes for country, states, and languages and representation of dates. Where a

standard existed, it was adopted. In other instances, the library community worked with
other agencies, which included the National Bureau of Standards because of its FIPS
series, to develop the standard.

4. LIBRARY OF CONGRESS IMPLEMENTATION

In the preceding section, it was mentioned that the library community had developed
an application for the standard format structure. This work had been initiated by the
Library of Congress and has been referred to as MARC for machine-readable cataloging. In

actuality, the Library had begun this effort as early as the mid-1960s and played an
instrumental part in developing the format structure as a standard. The fact that the LC

work on a series of formats preceded the development of the standard has caused some
confusion in that the MARC formats developed by the Library of Congress are thought to be

synonomous with the format structure ANSI Z39.2. This section describes the development
of the MARC formats at the Library as well as the circumstances and the requirements
being addressed in these efforts and the effects of these considerations on the format
for machine-readable data files.

4.1 Development of LC MARC Formats

The MARC formats, as an implementation of ANSI Z39.2, were developed by the Library
of Congress as part of a documentation package for a subscription service to distribute
cataloging information in machine-readable form. This distribution process was a contin-

uation of a program begun in 1901 for the Library to sell 3x5 cards containing cataloging
information to the nation's libraries and was considered a major milestone in the pro-

gress of library automation. The formats and the dates of their publication or imple-

mentation include the following: books (1969) , maps (1970) , serials (1970) , films

(1971), manuscripts (1973), music (1976), and authorities (1976). Compilation of a

format for machine-readable data files is in process.

From 1969 when the distribution service for cataloging information in machine-

readable form was begun to the present time, the Library of Congress has created and

disseminated over 2 million MARC records. When the service was first started, most of

the subscribers could be categorized as individual library systems. Since then, the

total number of individual subscribers has not increased dramatically, but the total

number of users affected by the MARC service has been affected because of the following

developments: the establishment of bibliographic utilities (organizations operating

online computer facilities and maintaining large bibliographic data files to assist

libraries in their bibliographic control activities) ; new services taking advantage of

the availability of MARC records offered by commercial vendors, many of whom did not

193

exist before the advent of MARC; and bibliographic agencies in other countries offering

various services to libraries in their own countries using the MARC records.

These developments have made the format maintenance process considerably more com-

plicated. The formats have to reflect the changing requirements in the area of biblio-
graphic control, but any changes made now have to be weighed in terms of their cost
(particularly for the subscribers to the distribution service) as opposed to their
perceived benefits. In addition, these developments have caused the MARC formats to
become truly "interchange" in nature because institutions other than the Library of
Congress are able to create their own machine-readable records and are in a position to
transmit or distribute them to others. To perform these tasks, these other institutions
depend heavily on the format specifications and other guidelines provided by the Library
of Congress, and these agencies, therefore, have a vested interest in the formats pro-
duced by the Library.

4.2 Development of MARC MRDF Format

The MARC format for machine-readable data files is unique among its companion
formats in that the Library of Congress has taken the responsibility to develop the
format but has no expectation of collecting MRDF and placing them under bibliographic
control in the near future. In other words, cataloging records for MRDF would not be
originating from the Library of Congress. This would place the burden of identifying new
requirements or changes in the format on the outside users.

In compiling this format, the Library followed a procedure instituted with the
compilation of the earlier formats to appoint a working group of experts to assist with
the work. Their expertise was heavily weighted toward statistical data files, partly
because it was in this area from which most of the interest in bibliographic control was
originating. The review process, however, was extensive throughout the library and
information communities and entailed sifting and merging comments that were often contra-
dictory from librarians who knew nothing about machine-readable data files, librarians
who knew the MARC formats but nothing about MRDF, MRDF experts and data archivists who
knew nothing about the MARC formats, and several other combinations.

Because bibliographic control of MRDF is still in its infancy, the process of

identifying elements to be included in the format was not an easy one. The products
(e.g., directories, data inventories, etc.) issued by agencies like the Bureau of the
Census, the Geological Survey, the National Technical Information Service, or the
national laboratories under the Dept. of Energy were consulted. During the review
process, questions were raised about many of the elements derived from the inventories
and directories, and these will be described in greater detail in the following section.
There was, however, one problem that should be mentioned here. Machine-readable data
files have been viewed, at least in the library world, as .a single form of material when
in fact they consist of at least four types (numeric files, text files, computer pro-
grams, representational, including graphic) and even more when one considers sub-
categories or combinations of these types. Each type of file has unique requirements
that are not shared with the others. For example, information about the kind of computer
system or memory requirements is essential to have for software but is usually un-
important for statistical data files. We had considerable difficulty in communicating to
the library and information communities the needs of all types of MRDF users within the
framework of a single document that was coherent to everybody.

5. RELATED FIPS ACTIVITIES

The analysis performed as part of identifying elements needed for bibliographic
control of machine-readable data files has raised certain questions concerning standards
issued in the FIPS series. This section discusses these problems with regard to FIPS 30
(Software Summary for Describing Computer Programs and Automated Data Systems) and
proposes a new standard for numeric data files.

194

5.1 FIPS 30

This standard was used during the compilation of the Library of Congress MARC format
for machine-readable data files to assist in identifying elements needed to describe
software. Questions were posed, from a library orientation, as to how certain elements

were used; in addition, it was felt that other elements that are usually provided as part

of the cataloging process might also be useful for this standard.

o Would it be useful to know the name of the person who wrote the software? Or the

name of the organization, agency, or unit?

o Would it be useful to know for what agency the software was written, as in the case
of contractual work?

o Are the software types, i.e., automated data system, computer program,
subroutine/module, sufficient to describe the program being submitted? Or sought?

o Are the technical details, i.e., computer manufacturer and model, computer opera-
ting system, programming language(s), number of source program statements, computer
memory requirements, tape drives, disk/drum units, and terminals, sufficient when
looking for programs to acquire? Do users look for programs by these categories,
e.g., programs written for an IBM 370 in OS?

o Would a thesaurus be useful in supplying keywords? In looking for programs of a

certain type?

o Are there other kinds of data that should be provided to facilitate exchange or

sharing of software?

5.2 Need for New FIPS

Under the aegis of the Statistical Policy Division, Office of Information and
Regulatory Affairs, Office of Management and Budget (formerly the Office of Federal
Statistical Policy and Standards, Dept. of Commerce) , activities have been proceeding to
identify public-use data files available from federal agencies. These activities have
culminated in the issuance by the National Technical Information Service of a Directory
of Federal Statistical Data Files . The efforts involved in compiling this directory are
described in a recent article by J. Timothy Sprehe of the Statistical Policy Division.

(3)

One of the results of this activity has been a proposed directive from 0MB for use by
federal agencies involved in creating and distributing statistical data files. With a

tentative title "Directive for Standardized Abstracts of Public Use Statistical Machine
Readable Data Files," it would appear to be a logical starting point for a FIPS publi-
cation. Of particular interest is the fact that the proposed directive (and the direc-
tory compiled from data supplied by this directive) emphasize the use of bibliographic
standards to facilitate the merging of these data with other bibliographic resources.

6. CONCLUSIONS

Bibliographic control is not an end in itself and cannot operate in a vacuum. With
budget cuts, the sharing of resources, in this case of software, will probably accelerate
in the next few years. It will be important not only to provide the necessary data to

describe the software but also to be aware of the tools available that list software that
could be exchanged or acquired. Workshops like this one are essential to bring the two

players together: the creators of the software and the documentation and the outside
users of the software and documentation. The creators will continue to create software
and documentation to meet their own needs but with the knowledge that if they follow
standards, they will facilitate the sharing process. Users of the (acquired) software
should also be able to communicate their needs and problems in connection with the

195

packages they receive and the usefulness of the data provided in announcing software
availability.

7. REFERENCES

(1) Dataflow Systems. A Glossary for Library Networking . Washington, Library of
Congress, 1978. 34 p.

(2) American National Standard for Bibliographic Information Interchange on Magnetic
Tape . ANSI Z39. 2-1979. Revision of ANSI Z39. 2-1971. New York, American National
Standards Institute, 1979. 12 p.

(3) Sprehe, J. Timothy. "Implementing a New Federal Data Access Policy." Statistical
Reporter , 81-12, 475-79, September 1981.

196

NBS FIPS Software Documentation Workshop, March 3, 1982

The Computer Program Abstract as Software Documentation*

Margaret K. Butler

National Energy Software Center
Argonne National Laboratory

The computer program abstract, while not universally accepted as a form of
software documentation, has long been recognized as a necessary reference docu-
ment by the computer user community. Users have banded together in cooperative
organizations with like computing environments, common disciplines, or a shared
need for particular applications software, to promote the use of computer pro-
gram abstracts as a means of publication, program exchange, and software devel-
opment cost savings. Compilations of program abstracts have been adopted to
describe the contents of computer program libraries and to market the software
industry's products.

In 1981, publication of an American National Standard for Computer Program
Abstracts was approved, lending an air of respectability to the abstract's claim
to a place in the software documentation family. This paper first seeks to
define a computer program abstract and to point out its distinguishing features.
Then, users and proponents of computer program abstracts are identified, and
prior standardization efforts are reviewed, followed by a discussion of the
development of the American National Standard.

Keywords: Computer program abstracts; Software documentation; Standards;
Information systems.

1. INTRODUCTION

In most dictionaries you will find among the various definitions attributed to the
noun abstract , something similar to the following:

"a summary of a statement, document, speech, etc; that which concentrates in

itself the essential qualities of anything more extensive or more general, or
of several things; essence"

It is in this sense that the term computer program, or software, abstract has been
applied to the form of software documentation discussed in this paper. A computer program
abstract is a computer program summary, software documentation which conveys to the reader
the essential qualities of the computer program, such as the nature of the information-
processing functions performed or the physical problem solved and the computing environ-
ment required.

To better understand the position the abstract fills in the software documentation
line, a number of characteristics peculiar to the computer program abstract are listed

below. The abstract —

• functions as an introductory or "awareness" document. It is usually the reader's

initial contact with the software.

• is the documentation most frequently overlooked by the author or software develop-

ment project.

• is often omitted from the documentation requirements specified by the sponsor, or

funding organization.

*Work performed under the auspices of the U. S. Department of Energy.

197

• is the primary concern of computer user organizations and government programs dedi-
cated to "software sharing" and "technology transfer." Compilations of abstracts
serve as reference catalogs to computer program libraries and software collections.

• appears routinely in the guise of a product announcement or description from compu-
ter manufacturers and software houses. In addition, catalogs of abstracts and soft-
ware directories are marketed as information service products and reference volumes.

• is, by definition, a concise document readily transformed into machine-readable
documentation.

• functions as a reference document. Its main purpose is to provide its readers, a

segment of the computer user population, with sufficient information about the compu-
ter program for them to judge the appropriateness of the software to their needs and
available resources. When compilations of abstracts are stored as computer data-
bases, retrieval is improved by indexing and use of automated search strategies.

2. USAGE

Use of the abstract as a form of software documentation has been promoted for the most
part by three categories of computer user organizations and the software and service compo-
nents of the computer industry. The first category of user organization is the computer
manufacturer's users group, typified by IBM's SHARE and Digital Equipment Corporation's
DECUS. Computer program abstracts first found favor with these organizations. In 1954,
when IBM set up an IBM 650 Program Library at its World Headquarters in New York City, all

IBM 650 installations were encouraged to submit locally-developed software accompanied by an

abstract describing their contribution. A year later when SHARE, the first computer users
group, was formed by a group of IBM 701 users, one of its first acts was to establish a for-
mal program exchange for its members with abstracts describing each program. As additional
computer users groups came into existence, the other manufacturers agreed to staff and main-
tain similar program exchange facilities and to publish abstracts describing the contributed
software, realizing the potential benefits of such information to their marketing operations.
The importance of user-group exchange efforts has declined over the years with the "unbun-
dling" of hardware and software, the emergence of a viable computer software industry, and
the shift from predominantly scientific and engineering applications in a free-exchange,
research and development setting to mostly commercial applications in a proprietary
business environment.

The second category of computer user organizations consists of government agencies
and contractors. The Atomic Energy Commission (AEC) and its successors - the Energy
Research and Development Administration, the Nuclear Regulatory Commission, and the

Department of Energy (DOE) - are in this class, along with the National Aeronautics and

Space Administration (NASA), the National Technical Information Service (NTIS), and the
General Services Administration (GSA). The AEC in 1955, in what was probably the earliest
government action to promote software sharing, published a compilation of abstracts of

available digital computer codes for nuclear reactor problems [1]. The agency and its

successors have been publishing abstracts of agency-developed software ever since in the

interest of software sharing and the elimination of redundant development costs. In

1960, the Argonne Code Center, a software exchange and information center, was created to

handle the publication of abstracts and the maintenance and dissemination of nuclear
reactor codes. The Center has since been renamed the National Energy Software Center
(NESC), handles DOE-developed software, and the abstracts, in machine-readable form, have

been added to the DOE Technical Information Center's RECON system.

In 1966, NASA established COSMIC, a center for the dissemination of NASA-developed
software, at the University of Georgia. Government use of computer program abstracts
was dominated until the seventies by the activities of these two centers and the AEC's
specialized Radiation Shielding Information Center at Oak Ridge National Laboratory. Then
in 1974, the Department of Commerce's NTIS, which is charged with making the results of
federally-sponsored research and development available to the public, began to include
abstracts of federally-generated machine-readable data files and software along with the

abstracts of agency reports it publishes. Since 1977, NTIS has also published for the
GSA the Federal Software Exchange Program catalog, which contains abstracts of the

198

federally-produced common-use software available to federal agencies, and state and local
governments under that program.

Professional societies, trade associations, and other special interest groups, such as
the American Nuclear Society, the Society for Computer Applications in Engineering, Plan-
ning, and Architecture, and the Quantum Chemistry Program Exchange make up the third
category of user organizations who have endorsed the use of the abstract. As early as 1956,
the Nuclear Codes Group (NCG), an organization which later became the Mathematics and
Computation Division of the American Nuclear Society, adopted a standard abstract format
for the use of its members, and in 1959, the NCG published a collection of their abstracts
in the Communications of the Association for Computing Machinery [2]. A supplementary
listing appeared in the same periodical the following year [3].

As the computer software industry developed, product announcements, computer program
abstract catalogs, and software directories became a popular means of marketing the software
vendors' wares. They appear, too, as products in their own right - the offerings of
publishing and information service firms, such as International Computer Programs, Datapro
Research Corporation, and Auerbach Publishers.

3. STANDARDIZATION

The initial computer program abstract standard was included in a computer program
documentation standard developed by a study group composed of members of the American
Nuclear Society's Mathematics and Computation Division. This group, identified as the
STICE Committee for STudy In Cooperative Efforts, started out in mid-1965 to write a com-
prehensive documentation standard for scientific and engineering applications software.
Because of a general reticence to impose too detailed and costly a documentation require-
ment on the program author and the developing installation, a significant fraction of the
resulting Society standard was devoted to the computer program abstract [4].

In May of 1968, having explored standardization of computer program libraries at the

behest of the Council of the Association for Computing Machinery, the Joint Users Group
(JUG) Program Library Committee submitted a proposed standard to the American National
Standards Committee Z39 on Library Work, Documentation, and Related Publishing Practices.
Their proposal, "Field Headings and Codes for Machine-Sensible Computer Program
Descriptions," was based on conventions defined for the submittal of program descriptions
to the JUG Program Library Catalog [5]. The proposal was referred to SPARC/DOCN, an ad hoc

Committee on Documentation set up under the X3 Standards Planning and Requirements Commit-
tee (SPARC) to study the need for and the feasibility, cost, and benefits of developing a

national standard on program abstracts. As part of their study SPARC/DOCN designed a

questionnaire to solicit the opinions of selected members of the data processing community.
On the basis of the survey responses and the committee's deliberations, a suggested
scope and program of work for an X3 standards development project on computer program

abstracts, along with recommendations that a new technical committee be formed to develop

the standard and that the JUG proposal be viewed as only one of a number of models to be

considered, were transmitted to SPARC in late 1971. However, it was not until early in

1974 that Project 211 on Computer Program Abstracts was approved by the American National

Standards X3 Committee on Computers and Information Processing, and it was September 1975

by the time Technical Committee X3K7 was able to start work.

During the 1971 to 1975 period, while little progress was made in the X3 arena, an

extensive revision of the American Nuclear Society's documentation standard prepared by

the Society's ANS-10 subcommittee was adopted as an American National Standard [6], and

the leadership role in the federal government's ADP standards program was assumed by NBS

and its Institute for Computer Sciences and Technology [7]. Federal Information

Processing Standards (FIPS) Task Groups were organized to assist the NBS in the develop-

ment, adoption, and implementation of needed standards. One of these, FIPS Task Group 14,

assigned the task of developing standards and guidelines for the documentation of indi-

vidual computer programs, automated data systems, and information processing systems, was

given as its first priority the documentation of abstracts. The Task Group developed a

standard software summary form, together with instructions, for describing computer programs

and automated data systems for identification, reference, and dissemination purposes. The

form and instructions appeared as a FIPS publication, FIPS Pub 30, dated June 30, 1974 [8].

199

The Committee spent many meetings refining the list of information items to be included
in the standard and defining their content. A division of the list into "required" and
"optional" items was investigated, as was the concept of a mini-abstract, or subset, to
facilitate machine storage, search, and retrieval. Upon examination, because of the diverse
needs specific to various segments of the computing community, both the mini-abstract concept
and the rigorous classification of "required" versus "optional" items were abandoned. In-
stead, committee members agreed to the use of standard headings and a common set of items.
Broad definitions were drafted for many items in an effort to encompass most of the
frequently-expressed needs. The more parochial needs remaining were accommodated by
allowing supplementary information items.

The sequencing of information items was discussed both in relation to the order in

which items are defined in the standard and to the positioning of the supplementary items.
A standard ordering is desirable from the user point of view, particularly when abstracts
from a number of sources are being consulted. Several ordering methods were considered,
such as library search techniques and classification schemes. The positioning of supple-
mentary items in relation to the standard items was debated. It was recognized that while
interspersing supplementary items would permit grouping of related information, all stand-
ard items must precede supplementary items for uniformity. Omissions of information are
then readily apparent, and supplementary information is easily recognized.

In September of 1977 the sixth draft of the standard, containing the 24 information
items shown in Table II, was circulated to over 500 identified users of computer program
abstracts for review. Ninety-six of the reviewers responded with suggestions, praise, and
criticism. All of the comments received were considered during subsequent X3K7 meetings.

Table II

DRAFT 6 INFORMATION ITEMS

1

.

Category 9. References 17. Operating System
2. Keywords 10. Programming Language 18. Related and Associated Software
3. Identification 11. Program Type 19. Communications
4. Abstract Date 12. Program Size 20. Material Available
5. Program Status 13. Processing Modes 21

.

Acquisition
6. Program Date 14. Timing 22. Distribution Restrictions
7. Narrative Description 15. Hardware 23. Contact
8. Method of Solution 16. Storage Requirements 24. Responsible Organization

A number of changes in the standard resulted from these discussions. The final docu-
ment approved by the American National Standards Institute (ANSI) on March 9, 1981 con-
tains just 22 information items; items 19 and 22 of the sixth draft were dropped and the
definitions of other items expanded to include that information. The titles "References"
and "Material Available" were modified to "Bibliographic References" and "Program Material
and Support Available," respectively, to more specifically identify their intended contents.

The order in which the items appear was revised slightly; "Bibliographic References" was

placed in the position formerly filled by "Communications." Then, in 1978, the Committee
decided to add an Appendix containing an abstract for a scientific application, and one
for a business application, to illustrate use of the standard. Later, a third abstract
for a computer manufacturer's software product was included to represent the software
industry environment.

Copies of the computer program abstract standard have been available from ANSI since
August of 1981. Upon adoption of the standard by the producers of computer program ab-

stracts, the abstract should win acceptance as a form of software documentation, and when
accepted, hopefully, two of the abstract characteristics presented in the Introduction can

be changed to show the abstract —

• is the documentation most frequently prepared by the author or software
development project.

• is always included in the documentation requirements specified by the sponsor,

or funding organization.

200

At its first meeting, X3K7 reviewed the scope and program of work assigned the project
and discussed the existing standards. Endorsement of the FIPS summary guideline, or a modi-
fication thereof, as an X3 standard was considered. To ensure that the standard proposed
would accommodate the needs of the entire computing community insofar as practicable, the
committee decided to collect and study the computer program abstracts in current use. A

letter was sent to over fifty organizations and firms, known to produce abstracts or soft-
ware summaries, requesting samples of their abstracts together with author's instructions or

related material pertinent to the committee's needs. Sample abstracts were obtained from
46 producers; 29 of these were government sources. Seven examples were supplied by pro-
fessional societies or other special interest organizations; five came from commercial firms
and five from computer user groups.

Data taken from these sample abstracts were analyzed to measure the importance attri-
buted to various information items by the abstract producers, to identify the headings, or

titles, most frequently associated with the different information items, and to ascertain
the applicability of the items to the four environments represented in the study. To do

this, the titles, or headings of all of the information items used in the 46 sample ab-

stracts were transcribed into machine-readable form and aggregated into 53 canonical head-

ings, so that the number of occurrences of each heading could be tabulated as a measure of

the importance of the associated composite information item. This did not encompass, how-

ever, those instances in which the information item was included as secondary information
(i.e., subsumed under another title and different canonical heading). Those occurrences
were tabulated separately. Table I shows the number of both primary and secondary
occurrences for the abstract information items studied by X3K7.

Table I

IMPORTANCE OF ABSTRACT INFORMATION ITEMS MEASURED BY FREQUENCY OF OCCURRENCE

Titi

e

Primary Secondary Title

Available Material
Category
Cost
Data Base or

Data File

Date:

abstract
program or revision
other

Documentation
Hardware:

general
computer
disk/drum
memory
peripheral

s

printer
punch
reader
special

tape units
terminal

Identification:
general
abbreviated name
name
number

Input and Output
Keywords
Language

14

23 4

11 2

4 1

10 1

10 2

8 1

17 3

13 1

28 4

2 3

13 3

9 1

1 2

1 1

1 1

4 3

3 2

1

3 1

18 6

37 4

23 4

13 5

6 3

36 6

Method:
general

accuracy
error information
math, functions
restrictions

Miscel laneous
Narrative
Organization:

general
author
contact
instal lation

user
References
Security

Classification
Size
Software:

general
associated
operating system
processing mode
unusual features
usage
type

Space for
Organization Use

Status
Testing
Timing
Version

Primary Secondary

11 3

2 4

5 1

7 3

17 4

8

46

31

30
15 4

10

7

12 3

9 1

22

18 1

19 4

14 5

2 1

7 2

9

6 1

7 1

14

2 4

13 1

10 8

201

It is suggested that the ANSI X3.88 Computer Program Abstract be considered as a

replacement for the present FIPS Pub 30. The format of the ANSI standard is more
flexible. Additional information items identified as important to the abstract-user
community are included, such as "Method of Solution," "Timing," "Related and Associ-
ated Software," and "Bibliographic References," and documentation of more detail is

encouraged in other items, particularly in regard to the specific material available
and the means of acquiring that material.

4. ACKNOWLEDGMENTS

Project 211 covering the development of American National Standard X3. 88-1981 was
carried out by ANSI Technical Committee X3K7, which I chaired over the five-year
development period. Committee members who were major contributors to the effort and
primarily responsible for the activities described in this paper are LaVon Boisen,
Elizabeth George, Michael Landes, Helen McEwan, Betty van Gelderen, and Keith Wheeland.
Grace Krause provided the secretarial assistance, technical typing skills, and
diligence required to prepare the paper for publication.

5. REFERENCES

1. Radkowsky, A., Brodsky, R. A., Bibliography of Available Digital Computer Codes for
Nuclear Reactor Problems, AECU-3078, October 1955.

2. Nather, V., Sangren, W., Reactor Code Abstracts, Communications of the Association
for Computing Machinery, 2, 1, 6-32, January 1959.

3. Nather, V., Sangren, W., Reactor Code Abstracts, Communications of the Association
for Computing Machinery, 3, 1, 6-19, January 1960.

4. American Nuclear Society Standard, ANS-STD.2-1 967, A Code of Good Practices for the

Documentation of Digital Computer Programs.

5. B. R. Faden, Computer Program Directory, New York, N.Y., Joint User Group (JUG) of

the Association for Computing Machinery, 1971.

6. American National Standard, ANSI N413-1974, Guidelines for the Documentation of

Digital Computer Programs.

7. National Bureau of Standards, Federal Information Processing Standards Index, FIPS

Pub 12-2, December 1, 1974.

8. National Bureau of Standards, Software Summary for Describing Computing Programs and

Automated Data Systems, FIPS Pub 30, June 30, 1974.

202

An integrated Machine-Readable Data Documentation Systen

Richard C.

Bureau of Social
Washington

Roistacher *

Science Research

, DC 20036

The text fornatter can serve as a powerful tool for manipulating text of all
types. Techniques are described for using a single body of machine-readable text to
generate questionnaires, data dictionaries, data editing materials, and archival
documentation for machine-readable data files.

' Keywords: Data documentation; text formatters.

1. TEXT FORIIATTIIIG PROGRAIIS

An indirect text formatting program with a macrocommand facility and the ability to

link to high-level language subroutines can be used as the basis of a generalized
documentation system. Although the University of British Columbia's Format program is used
in the implementation described here, any other formatter with the necessary characteristics
will do equally well.

1.1. Indirect text formatters

An "indirect" text processor is one which accepts as input a file containing text and
formatting commands, and produces an output file of formatted text. An indirect text

formatter can be contrasted to a "direct" or "what you see is what you get" formatter, vjhich

produces formatted text as it is entered. (Direct formatters are seen only on micro
computers or dedicated word processors.) An indirect text formatter has botVi global and

local commands. An example of a global command in Format is "width 65", which sets a text

line width of 65 characters from the point of invocation to the end of the document or to

the next "width" command. An example of a local command in Format is "/I/", v/hich indicates
that a new line is to be started at that point. Unlike many indirect text processors.
Format does not require that local commands be in any particular position in the input line,
llany text formatters require that all command operands be on a line by themselves.

1.2. I lac rOS

Format allows the definition of macro commands with substitution of up to ten

parameters. An example of a macro command with an argument is "|h2" which generated the

heading for the first section of this paper. The macro is defined

/w612m/ |count(h2)|. /C/|par.l| /nC/ 1 contents (
|

par . 1 | , 1

)

An example of the macro's invocation is

lh2('Text formatting programs')

The expansion of the macro puts the definition into the program's input stream with the

text argument substituted for the parameter string in the definition. The macro starts a

new page if less than six lines remain on the current page ("v/6"). If not at the top of a

page, it skips two lines ("12"), begins centering ("m"), prints and then increments a

counter named for the heading ("
| count (h2)

|

.") . The macro then prints the argument

converted to upper case ("C"), turns off uppercase conversion and centering and starts a

paragraph ("Omp"). Finally, the macro makes an entry into the table of contents.

*The author was unable to present this paper at the workshop.

203

An integrated Machine-Readable Data Documentation System

1.3. Functions

Although the syntax of a Format function call is similar to a macro invocation, a

function is quite different in definition and operation. Host format functions are compiled
FORTRAN subroutines which are dynamically loaded at execution time. The contents function
builds a queue, each of whose elements is a macro containing the text, the current page
number, and a number indicating the level of indentation of the contents item. At the end
of the document, the contents queue is fed into the input stream and expanded to yield a

table of contents. The ability to load FORTRAN subroutines allows for an almost arbitrarily
great expansion of the text formatter tjhile maintaining its or"-ginal syntax. Built-in
format functions include such things as calls to the systc;m time and date routines, a

variety of alphabetic and numeric counters, and stack utilities such as tables of contents
and indices

.

1.4. Libraries

Document processors usually have both built-in and user-supplied libraries of macros
and functions. The ability to handle multiple libraries is helpful, in order to define
alternate expansions of macrocommands

.

2. IIACRO AND FUNCTION USAGE

The original use of macros was as a shorthand, to avoid the repetition of long strings
of commands in recurring items such as headings. It is certainly easier to type "|h4" than
the long string of commands and function calls. In addition, a set of macros imposes a

stylistic discipline. A well chosen set of macro names allows an easy transition between
related syntactic forms. Thus, although a level three heading nay be quite different in

syntax from a level four heading, the manuscript change from one to the other is simple and
straight forward

.

Finally, and most important, the invocation of the macro can be separated from its

definition. The American Psychological Association uses four levels of heading which differ
in capitalization, centering, etc. Otn^r learned societies employ different conventions,
e.g., the numbered paragraphs used in this paper. In most cases, the logical structure of a

document is independent of the stylistic conventions used in its publication. Thus, the

arbitrary macro names "|hl", "|h2", "|h3", and "|h4" can be expanded according to any manual
of style. In cases where a stylistic format does not allow four levels of expansion, two
levels which are to be merged may simply share the same definition. The object is to

eliminate the need for editing the original document. The output format is determined by
the library of macro and function definitions supplied to the text formatter at the time the

document is processed.

3. FILE DOCUIIENTATION IN SURVEY RESEARCH

A significant portion of the Bureau of Social Science ResearcVi's work is in survey
research. The basis of a data file is usually a' questionnaire. The questionnaire is

developed by the principal investigator, who usually seeks help from the field staff and tVie

coding staff in developing question formats, coding schemes for responses, and the skip
patterns. Prior to the development of the system described here, the questionnaire was

typed by hand or produced on a word processing system. Host questionnaires are designed for

keying from the original instrument, rather than for transcription to coding sheets. In

some cases, open-ended responses must be converted to numeric code before keying, but in

most cases record position numbers and missing data codes (for blank responses) are printed
in the right margin of the questionnaire. In most cases, the questionnaire went through
several drafts before being submitted to computing services for the assignment of record
position and missing data information.

204

An integrated llachine-R.eadable Data Documentation System

3.1. Data dictionaries

BSSR processes most of its survey data files V7ith OSIRIS IV, a hierarchical data
management and statistical system developed at the University of Michigan. OSIRIS IV, like
all modern data management systems, requires that data be defined by a machine-readable
dictionary. Usually, the writing of a dictionary description v;as deferred until the
questionnaire had been sent to the printer. A computing specialist used a paper copy of the
questionnaire as a guide for keying a file giving each data items identifier, name,
location, v/idth, T.iissing data indicators, etc.

3.2. Editor's codebook

" llaiiy questionnaires contain open-ended items which are coded after the interviev;, but

prior to keying. A question such as "Uow do you spend your spare time?" may have more than
one answer and may include responses whicVi are entirely unforeseen at the time the

questionnaire v;as designed. In such cases, a set of blank lines is printed on the

questionnaire and eight to ten columns allocated in the record. The expectation is that

there will be no more than 95 categories of answer and that no one V7ill mention more than
four or five activities. The actual allocation of the columns into variables is done after
the coding scheme has been establislied . The occasional occurrence of responses requiring
more than the allocated space results in some extra v7ork to add one or more data items to

the end of the file. Usually, the editing codebook v/as constructed by cutting and pasting a

questionnaire into a question-per-page format.

3.3. Analysis and codebook

Once the file has been cleaned and scales and indices constructed, it is passed to the

analyst. The analyst usually uses an abbreviated codebook containing only the variable
identifiers, labels, and category values and labels. The statistical system produces a

formatted version of the machine-readaole dictionary vjhich is most often used as the

analyst's codebook.

3.4. Archival user's guide

An increasing number of statistical files are converted to an archival or public use

form. Such archival files require a summary form of documentation whicVi will relieve

secondary users of the necessity of consulting a file's primary users. An archival user's

guide usually contains an account of the project's adjectives and history, a history of data

collection and file processing activities, and a codebook for the machine-readable data

file.

Tlie archival codebook contains the complete text of questions and values, labels, and

explanatory text for categories. Vilien possible, an archival codebook also contains

frequency accounts for each category of a discrete variable and means, variances and ranges

for continuous variables. A variety of systems has been used for the production of archival

user's guides. In some cases, tlie machine-readable dictionary can be augmented with

additional text to produce such a document. However, in most cases, user's guides are

produced de novo with typewriters or word processing systems.

4. THE BSSR INTEGRATED DOCUIIEIITATION SYSTEM

The integrated documentation system began as a set of macro definitions and functions

for the formatting of questionnaires. A limited set of syntactic forms was devised and a

set of Format macros was developed to produce those forms. Formats counting functions, as

v/ell as some especially written functions were used so that all seriation is done by the

document processor. Thus, question numbers, category values, and record locations are all

supplied by the document processor. Questions may be inserted, deleted, or moved about at

will while maintaining complete integrity of seriation.

205

An integrated Machine-Readable Data Documentation System

Figure 1 shows a fragment of a questionnaire manuscript; Figure 2 shows the fragment as

formatted by the document processor. All seriation has been produced by Format. Tlie

thirteenth use of the "|q" macro has produced question 13 in the questionnaire. The
categories have been numbered serially from 1. The "|col" function indicates that one

column is to be allocated for the result and that a missing value is to be entered as "9".

Since question numbers are not known until execution time, questions referred to in the text
are given labels, which the formatter resolves to question numbers. In this case, the

question is labelled "A9" and has skips to questions "A14", "A37", and "C31". In the

printed questionnaire, all labels have been resolved to question numbers.

|q(A9) On most political matters, do you consider yourself:
IcskipCLiberal' ,A14)

I cskipC 'Moderate
'
,A37

)

I ccont(' Conservative ' ,C3I) |col(l,9)

Figure 1: A questionnaire manuscript fragment.

13. On most political matters, do you consider
yourself:

Liberal (SKIP TO Q. 21) 1

Moderate (SKIP TO Q. 28) 2

Conservative (CONTIIIUE WITH Q. 14) 3 18/9

Figure 2: Symbolic labels resolved and manuscript formatted.

4.1. Data dictionary description

The questionnaire formatter contains much of the information needed for defining an

entry in the data dictionary, e.g., location, width, and missing data code. The

questionnaire manuscript was augmented v;ith a number of functions needed for the production
of dictionary information. Figure 3 shows the fragment from figure 2 augmented with a short
variable name, a second missing data code, a file identifier, and a reference number.

|dict('Liberal or conservative') |dmd2(4) |did(CDS) | drefno(1014)
|q(A9) On most political matters, do you consider yourself:
IcCLiberal' ,

,A14)

|c('Moderate'
,
,A37)

I

c('Conservative ',,,C31) |col(l,9)

Figure 3: Questionnaire manuscript augmented v;ith dictionary information.

Figure 4 shows a line of the set-up for the OSIRIS data definition program. This setup

is used to define the field in the data record which will hold the information from question
13. The output from the dictionary definition program is a machine-readable data dictionary
for the questionnaire data file. The dictionary allows OSIRIS IV and other statistical
systems to read the data file, take appropriate action to cope vjith missing data, and label

the output of analysis programs.

VAR=14 NAME='Liberal or conservative' C0L=18 WIDTI1=1 REF1IO=1014 -

MD1=9 MD2=4 IU='CBS' L=' 1 =Liberal , 2=Moderate , 3=Conserva

'

Figure 4: OSIRIS IV dictionary description record
generated from the manuscript fragment.

206

An integrated llachine-Readable Data Documentation System

The dictionary information not explicitly supplied in the manuscript defaults to
commonly used values. The variable number is incremented by one for each succeeding line of
variable identification. All defaults can, of course, be overridden by explicit entries in
the manuscript. Figure 5 shows the same fragment formatted as part of an archival user's
guide. [1] The statistical system was used to generate a file of frequencies v;hich is merged
with the codebook to produce the printed frequencies to the left of the category labels.

V14 Reference: 1014
Liberal or conservative File I.D.: CBS
Location: IC Width: 1 Numeric character
Hissing Data: EQ 9 OR GE 4

On most political matters, do you consider yourself:

405 1 Liberal
437 2 Moderate
331 3 Conservative
42 4 Hissing data

Figure 5: Manuscript expanded into user's guide.

4.2. Further extensions

We plan to produce a macro library which will format the manuscript for input to an
information retrieval system. system. For this extension, the manuscript would be
augmented with a "|keyword" function with retrieval keywords as arguments. The function
would be ignored in the formatting of the questionnaire and would be printed in the usual
keyword format for the user's guide. The keyword function would be appropriately redefined
to provide proper input to the information retrieval system.

5. COST AND SCIIEDULItlG BENEFITS

The original purpose of the documentation system was to save time and effort in the
preparation of questionnaires. Satisfactory results were obtained in the first use of the

system, when multiple versions of a 325-question instrument were prepared. The original
version of the questionnaire required six weeks for preparation, (including time for

debugging of the formatting system). Preparation time for successive versions went from one

day to four hours.

An unforeseen effect of the system was to relieve the data processing section of some

of its time pressure. Usually, slack in the schedule is consumed during the earlier phases
of the project, with most of the extreme rush occurring during computing, analysis, and

writing. As the system developed, it became clear that the use of an integrated
documentation system was improving the vjork flow throughout the questionnaire and file

construction process. Variable and category labels, as well as dictionary information,

could be inserted at the tine the questions were drafted, thus moving dictionary definition

work several months forward. The use of an integrated system also made questionnaire
authors aware of problems which might arise during file definition and construction. The

system yields savings in time and labor, production of better questionnaires and files, and

a beneficial redistribution of the work sequence.

207

An integrated llachine-Readable Data Docuiaentation System

6. IMPLICATIONS FOR STAIIDARUIZATION

The work described here has implications for three kinds of standardization. that of

content, output format, and input format.

6.1. Standardization of content

Standardization of content is the most difficult of problems, because it must be

applied anew to each new work. To require a "complete and concise abstract" is only to hope

that the author will v;rite such an abstract this time, just as last time. Some items of

content are constrained by technical factors. Codebooks produced by the system described
here may not include variable names, but all will have field locations and widths, for
without such items, the system cannot produce even an empty codebook. It is possible to

attempt the enforcement of content standards by technical means. A documentation system
might forbid the use of strings of blanks as variable names, or might require that an
abstract contain at least 240 non-blank characters. (The reader's speculations as to the

efficacy of such restrictions are as least as good as mine.) lly feeling is that

standardization of content can be enforced within a contractual relation, but not
necessarily within a community.

6.2. Standardization of output format

Since the output format is entirely imposed by the documentation system, the format of

all automated documentation is, ipso facto , standardized. Tlie problem of standardizing an
output format thus reduces to one of convincing those vjith responsibility for documentation
systems to support a standard format. Once written into a documentation system, tVie

standard format is automatically imposed on the authors of documentation.

6.3. Standardization of input

Ttie input and output of a documentation system are equivalent in content, but differ
greatly in form. The question therefore arises as to whether a standard format should be

imposed on the input to documentation systems, lly feeling is that such standardization
efforts would be unduly restrictive and would be ignored. Text processing languages are

being developed at a great rate. People are developing new text processing procedures and
languages, v/hich they will promulgate with a fine disregard for standards and restrictions.
The time for standardization of text processing languages has not yet arrived.

The lack of a standard for text processing languages is ameliorated by the relative
ease with which a manuscript file in one language can be translated to another language.
Since all formatting information is in a regular form, there is usually little difficulty in
writing a procedure which will do much of the translation work. Translation beyond the
power of a straight forward program usually involve differences in the capabilities of the

source and target documentation systems. Tlie resolution of such differences usually
involves a considerable editorial toucn.

7. REFERENCES

1. Roistacher, R. C. A style manual for machine readable data files and their
documentation. Washington, DC: U. S. Government Printing Office, 1980.

208

NBS FIPS Software Documentation Workshop, March 3, 1982

Compilation of Bibliographic
Data Element Dictionaries

Madeline M. Henderson

Consultant, Bethesda, Md.

Under sponsorship of the National Technical Information Service (NTIS),
a project has been started to compile a data element dictionary (DED) encom-
passing all the bibliographic data elements used in the processing of Fed-
eral documents. These elements include those used in the abstracting-
indexing type of processing done by the four major reports-processing agen-
cies (NTIS, Department of Defense, Department of Energy, and National Aero-
nautics and Space Administration), plus those used in the library-type of

cataloging done by the Government Printing Office, with the Library of Con-
gress, based on the family of MARC formats. The purpose of such a DED is

two-fold: first, to provide to the reports-processing agencies a too], to

guide their consideration of possible further standardization to achieve
greater compatibilities and improved cooperative processing among themselves;
and secondly, to provide to them and their library counterparts a mechanism
by which to explore productive avenues of cooperation and interfacing. This
DED is one of several similar efforts now underway or recently completed;
the formats used and the experiences gained should be usable by other efforts,
perhaps through preparation of guidelines.

Keywords: Bibliographic data; Data element dictionary; Guidelines.

1. INTRODUCTION

The data element dictionary, as defined in this paper, is a compilation of descriptions
as to the meaning, contents, and rules for use of the units (elements) specific to a par-
ticular data base. The dictionary catalogs and defines the data elements; it does not lo-

cate the data within the organization's computer system nor process information about data

entities and associated data processing functions. In this paper, the data element diction-
ary is a more narrowly-defined management tool than the data dictionary system for which the

Institute for Computer Sciences and Technology has proposed guidelines [1] and a standard

[2]. However, the dictionary can serve as one step in the process of improving data manage-
ment and therefore deserves consideration for preparation of user guidelines.

1.1 Purpose of Current Project

At the present time, four Federal agencies — the Department of Defense's Technical In-

formation Center (DTIC) , the National Aeronautics and Space Administration's Scientific and

Technical Information Facility (NASA/STIF), the Department of Energy's Technical Information

Center (DOE/TIC) and the National Technical Information Service (NTIS) — perform the major

tasks in the bibliographic processing of the technical reports emanating from Federally-

conducted or -sponsored scientific and technical research and development activities. The

processing involves recording the pertinent data identifying the reports, abstracting and

indexing the salient information contained in the reports, and recording the means by which

the reports can be obtained from one or more of the above-mentioned agencies.

The four agencies have developed computer-based systems to process the reports pertinent

to their own mission responsibilities, and to produce various forms of documentation services

based on them: printed abstract bulletins and indexes, machine-readable data bases, special-

ized alerting services and bibliographies, etc. The computer services are unique to each

agency in terms of specific hardware and software, but the exchange of bibliographic infor-

mation among them is based on the ANSI Standard Z39. 2-19 71 (updated in 19 79) format for bib-

liographic information interchange on magnetic tape.

209

That ANSI standard has been implemented in two major formats — that employed by the

reports-processing agencies identified above (the COSATI implementation) and that used by li-
braries in sharing cataloging data across a family of special formats (the MARC formats).
These two systems have much in common but many fundamental differences — the philosophy
underlying each implementation is specific, imbedded in its own community of users, based on
years of practice, and well-nigh immovable against change or casual modification.

Given this environment, a project to develop a data element dictionary encompassing both
philosophies, i.e., both sets of data elements, seems to fly in the face of prudent activity.
But the communities agree that now is a good time to examine and evaluate the interfaces be-
tween these two philosophies/systems, as well as the characteristics of the systems them-
selves.

Dating back to 19 78, the possibility has been discussed of developing a data element
dictionary (DED) of the data elements, with subsets of codes and rules, used by the reports-
processing agencies, with the purpose of Investigating needs for better standards and proto-
cols so as to contribute to lowering the costs and increasing the speed and efficiency of

Federal reports-processing operations. Present procedures of the four agencies need to be
reviewed with a view to determining the feasibility of formulating a network concept and the
impacts and benefits of such a concept on each agency and the user community.

More recently, the possibilities have been extended to include the data elements of the
library community's cataloging operations. Recent developments in computer processing of

bibliographic data have included cooperation in inputting that data and more extensive on-
line access to the resulting files of data. These developments have been particularly suc-
cessful in the library community. The analysis of elements in a DED for reports-processing
should be undertaken, it is felt, in light of the successful activities underway or projected
in the library community, in order to improve the interfaces and interactions between these
two segments of the total information processing community.

The current project, then, seeks to compile a DED encompassing all the data elements
used in the processing of Federal documents: the abstracting- indexing operations of the
four agencies plus the library-type cataloging done by the Government Printing Office (GPO)

.

The purpose of such a DED is not only to provide the four agencies a tool to guide their
consideration of possible improved cooperative processing among themselves, but also to pro-
vide them and the library community a mechanism by which to explore productive avenues of

cooperation and interfacing.

1.2 Relation to This Meeting

The Institute for Computer Sciences and Technology (ICST) has initiated discussions of

a standard for data dictionary systems (DDS), defined as computer software "used to record,
store, and process information about an organization's significant data and associated data
processing functions." [1] A fully developed data dictionary for an organization is defined
in ICST's prospectus for a standard [2] as a catalog of the organizations' data resources
but also "a computer data base that fully documents its data collection, processing, hand-
ling, and dissemination activities." The DED efforts described here do not constitute as

extensive a management tool as the DDS of concern to ICST; however, the DED can benefit from
the same considerations as to data standardization and control.

The DED can help the agency (or agencies) whose data are described to "reduce redundant
data collection and to improve the utility of existing data resources." [2] The DED will
highlight similar data elements and suggest actions to improve effectiveness and reduce costs
in redundant data gathering.

Standardization of the data elements unique to each agency and of those used across all
the systems can improve the collection and sharing of data among agencies and systems, par-
ticularly between the two types of systems or philosophies as described earlier. A DED can
assist efforts to develop acceptable standards as appropriate to the overall bibliographic
processing effort.

210

The DED, as is true of a DDS, can assist in the definition of new systems or, even more
importantly, during the upgrading of existing systems. The DED can be useful in determining
the effect of proposed changes in the total operational environment.

From these factors, it is apparent that a DED as defined here is an important component
of a DDS as defined in ICST documents. As such, the DED will benefit from efforts to define
data element sources, descriptions, and pertinent rules for usage within the bibliographic
data processing communities, leading to guidelines for a tool for improved management of com-
puter files and data bases within and by that community.

2, CURRENT DEVELOPMENT EFFORTS

In the process of defining and establishing the project described above, to compile a
dictionary of the bibliographic data elements used in the processing of Federal documents
by two parallel but separate processing systems, a number of related efforts were examined.
Their experiences and directions were valuable in guiding the design and initial activities
in the current project.

2.1 DTIC Uniform Data System

Of particular interest was the data element dictionary compiled by DTIC in its develop-
ment of a uniform data system. As noted in the preface to the published dictionary, DTIC
currently "maintains four separate information banks that operate independently of each other
yet contain parallel information." [3] The DTIC technical report-processing system as pre-
sently operational is one of the systems to be included in the NTIS project. DTIC's objec-
tive in compiling its DED is to provide capability of standardized access to all like data;
for this purpose, standardization of data entry, application, and retrieval are required.
Such standardization and the restructuring of the individual data bases to achieve a uniform
system makes a specific data element required in one data base available for use in another,
if appropriate.

The DTIC data element dictionary was seen as an authoritative document to define the

elements and their specific uses, to serve as a communication link between system designers
and users, and to provide an effective management tool for DTIC's information systems.

The stated purposes of this dictionary paralleled those of the NTIS-sponsored project,

at least in part: to define the data elements used in several information banks which are

independent of each other and yet basically similar in purpose and content, to serve as a

communication link among those responsible for the individual systems and those who use them,

and to provide a useful tool for the managers of the individual systems in reviewing their

unique system characteristics and for their collective consideration as to possible stan-
dardization and community activities.

Of course, DTIC started out with the avowed intention of standardizing across the sepa-

rate systems for purposes of cost effectiveness and efficiencies; the NTIS project offers

only the means to consider possible standardization for purposes of further cooperative

activities — which can lead to improved effectiveness and efficiency as a long-range goal.

The format of the DTIC dictionary has proved useful to the current project, as has its

list of descriptive units for each data element.

2.2 UNESCO Data Element Directory

Another pertinent effort is the UNESCO-sponsored compilation of lists of data elements

in six formats used for the computer-based exchange of bibliographic data between/among

national bibliographic agencies. [4] The purpose of the document is to provide a tool to

facilitate analysis to determine which data elements in the various formats are sufficiently

similar as to prove hospitable to standardization and which are not amenable to such stan-

dardization, either because recording practices differ too widely or because an element

exists in one format and not in another.

211

One comment in the introduction to the document is particularly pertiijent to all similar
data element compilation efforts, including the current project: "An examination of this
document will be sufficient to assure the reader that the analysis of existing data elements,
and the arrival at a single set of elements for the Common Communication Format, will not be
an easy task." However, the first steps must be taken and the analyses attempted, in order
to accomplish whatever agreements might be possible.

Again, the format of this DED and the list of descriptors about each data element were
particularly useful in the design of the current project. Experience in the UNESCO study has
proved, for example, the value of an index to each system's list and an overall index to the

compilation. Originally it had been thought that providing comparable information in an iden-
tical format would be sufficient to facilitate comparison and analysis. However, variations
in terminology make it difficult to know where (or even whether) to find related data elements
in the separate lists.

2.3 Archival and Manuscript Records Dictionary

A project currently underway, sponsored by the Society of American Archivists, involves
the compilation of a dictionary of data elements for more than 20 archival and records hold-
ings systems. The list of information about data elements collected includes descriptors
about the data element itself, plus descriptors about the system in which the data elements
operate: system limits as to number of characters per record, for example, number of fields
per record, length of field, etc. These characteristics were needed, it is said, because
the purpose of the data element dictionary is to provide means not only for standardizing
the data elements themselves but also for exchanging data among the systems.

Most of the participating organizations chose to report about their data elements in

machine-readable form, following a data collection form developed for the project. The data
were "recorded in a simple word processing/file management system on an in-house mini for

report generation purposes," according to the project manager.

This project represents a more extensive data gathering activity, across more files,

than the others described above; however, the number of descriptors about the data elements
is similar to that of the other efforts.

2.4 The NTIS-Sponsored Project

The purpose of the project, to compile a data element dictionary for the bibliographic
data used in processing Federal documents, has already been described. The effort at this
time involves the development of the data gathering form and the definition of machine re-
quirements as to format and recording media. The computer system at GPO has been offered
for the collection of descriptions about the data elements and for the generation of the

total compilation and accompanying indexes, as well as specialized sub-reports such as nu-
meric listings of tags used, for example. The computer system at DTIC has also been offered;
at this time details on specific machine requirements are being compared and resolved.

The descriptors to be recorded about each data element in each system represent a com-

bination of those already used in the various efforts described above. More descriptors
about the elements themselves will be recorded than were used in the DTIC and UNESCO ven-
tures, but fewer items about the computer systems will be captured than in the archives pro-

ject.

The current project differs also from some of the other efforts in that the data ele-
ments will be identified, defined, and recorded by each of the participating agencies rather
than by a centralized activity. This decision is based on the feeling that the need to so

identify data elements will be a useful exercise for the system managers. The DED project
at Defense has already been described; NASA/STIF has just initiated a review of its data
entry procedures, so the DED effort will complement that program also.

212

3. POSSIBILITY FOR GUIDELINES

The NTIS-sponsored project to compile a data element dictionary of the bibliographic
data elements in the processing of Federal documents represents one example of a number of
similar efforts. These constitute a recognition by system managers of the value of compil-
ing and reviewing a system's data elements in a structured manner. As noted by ICST, "agen-
cies are striving to reduce redundant data collection," because of increasing costs of labor-
intensive data handling. In addition, a DED can support the development of data standards,
so that data collected for one purpose can serve another as needed by various activities.

Review of the current project and the related efforts described above can lead to
guidelines about the bibliographic data elements which should be described, the extent of
descriptions about each element which will yield valuable information for management de-
cisions, and the type of machine processing of the descriptions which will produce the most
effective tools to aid in making those decisions.

For example, the guidelines would define the bibliographic data elements which should
be captured for any individual system for which a dictionary is to be compiled. Further,
the guidelines would list the minimum number of descriptive items which should be recorded
about each bibliographic data element in order to compile a dictionary of such elements:
name of the element, narrative definition, rules for use of the element, source (i.e.,
system in which it is used), character set permissible, tags/indicators used with the
element, etc. Some nine of these descriptive items have been defined for all four current
efforts described above.

The guidelines would also describe the steps in machine processing to yield the most
useful dictionary: designation of fields to be used in preparing indexes to the dictionary
listing, which items are best input in fixed length fields and which must be allowed
variable length input, and the format found most useful in both the dictionary entries and

the indexes to the dictionary.

Development of guidelines is best done through appropriate standards-setting bodies
such as ANSI Committee Z-39 on Library and Information Sciences and Related Publishing
Practices. If such guidelines are completed, they could be offered simultaneously as FIPS

Guidelines for Federal use.

It needs to be said again that the DED is a step in the process of improving data
management; the DED can guide system managers about internal operations and cooperative
activities with other systems. But the decisions as to data standards, for example, are
a step beyond the compilation of a DED. What is suggested here is preparation of guidelines
for the compilation step only.

Further standardization procedures will not be easy to accomplish. The existing sys-
tems represent a major investment of resources in hardware and software, in procedures and
processes, in products and services that exist and fulfill the mission-required responsi-
bilities of the agencies. To talk of changing those systems to meet community-imposed
standards causes grave concern, and rightly so, on the part of the system managers. As
noted in the ICST documents, the utility of a given capability for a sufficiently important
segment of the community, in view of known constraints, must be determined before standardi-
zation efforts can be successfully undertaken.

This becomes especially important when the suggested standardization encompasses two

distinct system types or philosophies about the bibliographic processing of Federal
documents. There is a tendency to fear being subsumed or "swallowed up" by one approach or
the other. This fear has been expressed, in particular, about the abstracting- indexing sys-
tems of the four reports-processing agencies because of the more pervasive cataloging sys-
tem and numerous MARC-based formats used by the library community.

213

4. CONCLUSIONS

What is needed, then, to sustain the momentum toward improved efficiencies and effec-
tive coordination is to complete the compilation of the dictionary of bibliographic data
elements used in processing Federal documents. That effort itself will help the individual
system managers to recognize the current status of their data elements and may suggest
changes or modifications for the individual systems.

The compilation, further, will point up similarities and differences in the handling of

common data elements and may suggest areas for discussion and compromise leading toward im-

proved efficiencies in the overall procedures for bibliographic processing. One projection
calls for the five systems to try to reach agreement and standardization for handling a set
of core data elements common to all systems, so that initial processing of Federal documents
can serve the different needs of the individual systems for specific products and services.
Thus sharing of bibliographic input can result in sharing of information resources, with
accompanying savings and improved timeliness for users of the systems.

5. REFERENCES

[1] Federal Information Processing Standards Publication (FIPS PUB) 76. Guidelines for

Planning and Using a Data Dictionary System. Washington, D.C. , U.S. Dept. of Commerce,
National Bureau of Standards, 19 80 August 20, lOp.

[2] Institute for Computer Sciences and Technology, Prospectus for Data Dictionary System
Standard, NBSIR 80-2115, Washington, D.C, U.S. Dept. of Commerce, National Bureau of
Standards, September 19 80, 19p.

[3] Kuhn, Allan and Melissa L. Young, Compilers, Data Element Dictionary; DTIC Uniform Data
System, DTICH 4185.8, Alexandria, Va. , Defense Logistics Agency, Defense Technical Infor-
mation Center, April 1980, 551p.

[4] Simmons, Peter, Compiler, Data Element Directory, Paris, Unesco General Information
Programme, 19 79, 1400p.

214

NBS FIPS Software Documentation Workshop, March 3, 1982

Capital games: the problem of compatibility
of bibliographic citations in data bases and

in printed publications

Hans H. Wellisch

College of Library and Information Services
University of Maryland

Bibliographic citations taken from the major databases cannot be used in
their original form for publication in most American journals because of
editors' capitalization practices. These are based on rules invented a

long time ago that run counter to normal English orthography and are based
merely on tradition. They have no justification from a linguistic point
of view, and may even make titles ambiguous. The relevant American
Standard ANSI Z39.29, based on the International Standard ISO 4, allows
two different styles for titles of monographs or serials, but only one

—

normal orthography—for titles of articles or papers. Most major data-
bases also use normal English orthographic rules for titles, but some
render titles in all capitals, a practice which may also be detrimental
to rapid exchange of bibliographic data among different media. While
printers may display titles any way they like, journal editors and data-
base producers should adhere to the commonly accepted orthographic stand-
ard (followed also by the Library of Congress) , namely capitalization of

only the first word and all proper names or acronyms in a title. This
would make it possible to transmit bibliographic data for references or

footnotes directly from a database without time-consuming and error-prone
re-editing for capitalization.

1. INTRODUCTION

The generation and display of bibliographic data in databases as well as in conventional
printed publications suffers at present from a complete lack of uniformity which is due to

three different conditions of standardization;

(a) the existence of a multiplicity of standards which are either overlapping, mutually

contradictory, or applied in sometimes quite different ways by the producers of re-

corded information;
(b) a lack of standards, resulting in idiosyncratic rules and solutions of certain prob-

lems ; and

(c) the persistence of obsolete quasi-standards , invented by unknown people on their own

authority, sometimes in a distant past, when they were geared to publication methods
and patterns that have now themselves become entirely obsolete.

Condition (a) has been very well analyzed and summarized in two papers [1, 2] which unfort-

unately appeared in rather out-of-the-way or limited-distribution publications, but deserve

close study by anybody interested in international standardization of bibliographic data.

Condition (b) will be discussed at and perhaps ameliorated by the results of this workshop.

Here, I wish to address only one seemingly minor or even trivial aspect of condition (c)

,

namely the capitalization of words in titles of monographs, serials, and individual artic-

les and papers (the latter forming the vast majority of all bibliographic references in

data bases) . I was recently made aware of the adverse effects of quasi-standards pertain-

ing to capitalization when I had to write a review article, referring to a large number of

books and articles. Many of the references came from searches performed on several data-

bases, both printed and electronically accessible. Most titles in the printed sources as

215

well as in computer printouts were displayed in normal English orthography, i.e. only the
first word and proper names or acronyms were capitalized. References found 4.n library cat-
alogs, all written in the style of the Library of Congress, also followed the same pattern.
But when the manuscript was submitted to the editor, every single reference had to be re-
worked manually so as to conform to arcane rules of capitalization followed by the journal.
This was a boring, tedious, time-consuming, and entirely meaningless and illogical task. I

asked myself: is this not a terrible waste of time and energy, expended only to satisfy the
whims of people now long since dead and forgotten who dreamed up rules of capitalization in
the horse-and-buggy age? Is it really necessary or useful to do this now that bibliograph-
ic data can be generated at one focal point, transmitted electronically to one or more data-
bases, displayed at will in any desired configuration on CRT screens, transformed into print-
outs and retransmitted, perhaps using one's own home computer linked by telephone lines to a

receiving word processor or similar device in the editorial office of a journal?

2. PRESENT RULES OF CAPITALIZATION

To answer this question objectively, it is necessary to examine the rules on which present
American editorial practices are based. Most American editors follow the rules of the
Manual of style of the University of Chicago Press, the latest edition of which appeared in

1969 [3]. This code of practice essentially preserves rules of orthography and in particul-
ar those of capitalization that can be traced to the early days of the century and perhaps
even further back in time. The relevant rule, 7.123 Cap-italization , stipulates:

Capitalize the first and last words and all nouns, pronouns, adjectives, verbs, adverbs,
and subordinate conjunctions. Lowercase articles, coordinate conjunctions, and preposi~
tions, regardless of length, unless they are the first or last words of the title or sub-
title. Lowercase the to in infinitives.

The anonymous authors of this edict do not tell us (a) why any words other than first ones

and proper names must be capitalized, just because they happen to be title words, contrary
to normal English spelling rules; and (b) why articles, coordinate conjunctions and preposi-
tions are being demoted to second-rate status, as it were. Indeed, nobody, not even the

editors of the Manual, seems to know the answer, because in every American style book (and

their number is legion) the same or similar rules are stated, but they are never justified
as to the specific function they are to fulfill. It is just that the rule is on the books
"because we have always been doing it this way".

As an aside, it should be noted that the dichotomy between coordinate and subordinate con-
junctions by no means exhausts the several categories of conjunctions distinguished by tra-
ditional grammarians, such as copulative (which seems to be only a fancier version of coor-
dinate, the standard example being the word and), correlative (.neither^ nor), adversative
(but, however), illative {therefore, thus), and temporal {when), all of which are expected
to be known and duly capitalized or not, as the case may be, by writers, editors, typeset-
ters and proofreaders. The fact of the matter is that the classification of words in trad-
itional grammars goes back to the eight classes of words listed in the Teohne grarrmatike , a

Greek grammar written by Dionysius Thrax (1st c. B.C.) whose authority was never challenged
until the advent of modern linguistics. There are no such rigid classifications of words,
neither for Classical Greek nor for modern languages, much less are there "unimportant"
words, because just the so-called "function words" (among which are the poor conjunctions
and prepositions) are those parts of speech that make meaningful communication possible,
especially in English which has shed almost all of its inflectional devices, and relies in-

stead on syntactical position of words.

The author of the well-known Manual for Writers of term papers, theses and dissertations [4]

Kate L. Turabian, also of the University of Chicago Press, follows the same rules but adds

some intriguing and even more arcane provisions, no doubt to enhance the "scholarly" flavor
of term papers and theses, the contents of which often fall woefully short of being either
scholarly or scientific. In her rule 4:5 we are told that in "scientific fields", capital-
ization of title words should be "kept to a minimum" (no reason given) , but in the humani-
ties and in "most of the social sciences" (no indication which of these do or do not quali-
fy) the "rules given in the following paragraphs" are to be followed; those rules are a more
elaborate recapitulization of those in the Manual of style. In the chapter on "Scientific
papers", rule 12:9 shows two examples of citatiors in which title words are not capitalized.

216

That would seem to be in accordance with what was stated earlier in rule 4:5. However, in
rule 12:17 we are told that the style of some additional examples follow that of "the lead-
ing publications in the several fields" (again, without naming them; only the author knows
what, in her infallible opinion, are "leading publications", others need not know— they only
have to accept meekly Turabian's pontifical dogma). The "fields" are exemplified by citat-
ions of works pertaining to anthropology, physiology, psychology, chemistry, mathematics,
and physics; of these, it seems, chemistry and physics are not quite as scientific as the
others, because the examples from these two fields do capitalize book titles, whereas the
rest do not. Turabian does not tell us what is de rigeur in, say, astronomy, geology, bio-
logy or other scientific fields, so writers of theses in those areas are left to fend for
themselves

.

The only American Standard that addresses the question, MSI Z39. 29-1977, Amerioan National
Standard for bibliographia references [5], is not unambiguous. For titles of monographs and
serials its section 4.7.3 Capitalization gives the option of either capitalizing the first
word of a title and each significant word thereafter (without specifying what is "signifi-
cant") , or to capitalize only the first word and proper names; for "analytic-level titles"
(which means articles, papers, etc.) however, only the second rule is to be followed. All
of this is based on the provisions of the International Standard ISO 4-1972, Doovmentation—International code for the abbreviation of titles of periodicals [6].

Finally, the country's central cataloging agency, the Library of Congress, invariably uses
regular English spelling for titles of monographs and serials in its catalogs, a practice
automatically followed by all libraries as well as by the bibliographic databases.

Thus, the picture of chaos in the rendering of titles in bibliographic references as pract-
iced in the United States is complete. Here, it must be mentioned that most British printers
and editors long since abandoned special rules for capitalization of titles which appear
both as headings of articles and in references and footnotes in normal spelling. Needless
to say, this introduces yet another element of diversity into the practices of bibliographic
citation.

3. DISPLAY OF TITLES IN DATABASES

The display of bibliographic data in hard copy by various database producers also follows
different paths. Here, we encounter another dichotomy, namely the display of titles in

normal English orthography, i.e. upper- and lowercase letters, as opposed to display in

ALL CAPITALS. A brief check of some of the major databases revealed the following picture:
Biological Abstracts ^ Chemical Abstracts ^ Index Medians ^ Public Affairs Information Service,
and all H.W. Wilson indexes (the latter available only in printed form) present titles in

normal orthography; Engineering Index, ERIC Resources in Education, and all ISI services
print titles in ALL CAPITALS. Needless to say, a title printed in the latter style must be

entirely restructured before it becomes acceptable to an editor of a journal, regardless of

its capitalization practices. For this reason alone, database producers should abandon the
practice of printing titles in ALL CAPITALS. Other weighty arguments against this practice
are the following; (a) research into legibility has shown that anything written in ALL CAPS

is more difficult and time-consuming to read than text in upper- and lowercase [7]; (b) ti-

tles often contain abbreviations or acronyms which, if all are written in uppercase, tend

to "disappear" among the words of a title or may be misread, e.g. IN may be the word "in",

the symbol for Indium, the zip code for Indiana, or the abbreviation of inch^ (c) the mean-
ing of a title may be affected by obliterating the distinction between common words and

proper names, e.g. "The restoration of old Egyptian mummies" is not the same as "The restor-

ation of Old Egyptian mummies", and "Simple basic data files" does not mean the same as

"Simple BASIC data files"; (d) chemical elements cannot be properly identified by their

symbols, e.g. Co is not the same as CO; (e) diacritical marks used in the writing systems

of foreign languages cannot be shown when ALL CAPS is being used, while it is at least pos-

sible (though normally neglected by American printers) to provide these important marks

which may affect the meaning of a word, e.g. the German Mohren and Mffhren mean Moors and

carrots, respectively, and the Swedish f&r and far mean sheep and father. Although the con-

text will often make it clear what is meant, there is still room for ambiguity and error.

If typographical diversity in the hard copy presentation of bibliographic data is desired,

the names of authors may be printed in ALL CAPS (as is already the practice of some data-

217

bases and abstracting and indexing services). This is much less subject to possible error
and misinterpretation than the complete capitalization of titles, although the problem of
diacritical marks in personal names and acronyms as parts of corporate names still remains.
Thus, wholesale capitalization should be avoided as far as possible, and different typefaces
should be used instead, where feasible.

4. CONCLUSION

At a time when interchangeability and compatibility of bibliographic data are more important
than ever because of the ease with which data can be transmitted electronically from an ori-
ginator to various different storage media, and from any point on the globe to any other
point—do we really have to submit to the chaotic conditions outlined here, imposed on the
community of authors by unknown persons who arrogated to themselves the prerogative to dic-
tate which English words, when appearing in a title, should or should not be "dignified" by
capitalization? The answer is clearly "no".

Of course, we cannot and should not tell printers and graphic designers how to display
titles of articles in journals. What we should be concerned about is the rendering of such
titles in bibliographic control tools such as bibliographies, catalogs, lists of references,
footnotes, and any other secondary recording of titles, and the most effective way of trans-
mitting and exchanging such data, once they have been captured in machine-readable form,
without the need for any restructuring of their orthographical form,

I hope that I have shown that, far from being minor or trivial, the graphic rendering of

titles in database output versus their display in printed form (that is, in journals, bib-
liographies and lists of references) is indeed a problem. In the past, before the advent of

centralized storage of bibliographic data in databases, this may have been merely an innocu-
ous game played by editors, but it is now becoming a nuisance and an obstacle to rapid com-
munication of data. Fortunately, it is also a problem that is amenable to an easy solution,
not requiring allocation of funds or costly changes in equipment. It just needs some common
sense, a readiness to cooperate and adherence to an already existing and accepted standard.

The gnomes of Chicago have played their games of irrational and idiosyncratic capitalization
for too long. The time has come to terminate such games, the rules of which rely on the

nebulous authority of "time-honored practices". Thus, editors should follow the normal
rules of English orthography which are the commonly accepted standard of written communicat-
ion, following the example of most of their colleagues on the other side of the Atlantic, as

well as that of the Library of Congress. As to database producers, it seems that none or

only a few of them are following the archaic practices of editors, although they do have at

least two different typographical practices for hard copy printout. They should also adopt

the standard of normal English orthography for titles presented in hard copy, to make such

presentation uniform, standardized, and easily legible.

REFERENCES

1. Cathro, Warwick S. The upheaval in bibliographic exchange standards 1974-1984.
Australian Library Journal 16 (May 1980): 59-68.

2. Dierickx, Harold. State of the art of standardization of bibliographic data elements.

(In: International aoaess to aerospace information. Teohniaal information panel's
specialists' meeting held in Athens, Greece, 17-18 October 1979. Neuilly-sur-Seine

:

AGARD, 1980, p. 4=1-4=7. (Conference proceedings no. 279 / AGARD)

)

3. A manual of style. Chicago: University of Chicago Press, 1969.

4. Turabian, Kate L. A manual for writers of term papers, theses, and dissertations . 4th ed.

Chicago: University of Chicago Press, 1973.
5. American National Standard for bibliographic references . New York: American National

Standards Institute, 1977. (ANSI Z39. 29-1977)
6. Documentation—International code for the abbreviation of titles of periodicals . Geneva:

International Organisation for Standardisation, 1972. (ISO 4-1972)

7. Paterson, D.G. ; Tinker, M.A. Readability of newspaper headlines printed in capitals and

lower case. Journal of Applied Psychology 30 (1946): 161-168.

218

Session F: Enhancing Software Sharing

DISCUSSION

Linda Tepp, Recorder

Cataloging Distribution Service, Library of Congress
Washington, D.C.

The speakers were joined by two discussants, Joel Lipkin, King Research, Inc., and
Alan Wenberg, National Technical Information Service. Mr. Lipkin is a Senior Research
Associate at King Research, with primary responsibility in the area of data processing.
Among his more recent activities is heading the team working on the logical design for
the Dept. of Energy's data resources directory. Mr. Wenberg is a staff member of the
Office of Data Base Services at NTIS, where his group is responsible for identifying
available software, accessioning and distributing machine-readable products, providing
technical assistance to users, and operating the Federal Software Exchange Center for the
General Services Administration. Linda Tepp, the recorder for this session, is a library
information systems research analyst in the Cataloging Distribution Service of the

Library of Congress. Formerly, she was a program analyst in the Copyright Office of the
Library.

The discussion began with Ms. Dodd's paper in which she suggested that the user
header labels could be a useful option to implement. Ms. Maruyama posed the question as

to whether this would be a practical point to consider and whether this could become a

FIPS standard. Mr. Wenberg said that as far as he was concerned personally, user header
labels would be very useful. Overcoming user resistance, however, would be the biggest
problem because in distributing software and data files, approximately five to ten
percent of users ask NTIS to avoid labels.

As a historical footnote, Mr. Wellish commented that the first books produced during
the forty to fifty years after the invention of printing did not have title pages. Such
things did not exist because manuscripts did not have title pages. It took quite some

time before the printers of that time realized that it might be useful to have some kind
of general label or announcement up front that would tell readers, first the author, then
the title, and even when and where the book was printed— information that was normally
relegated to the end of a manuscript as it still is in Japanese books today. Since data

bases, historically speaking, have just been born yesterday, it may also take a few

decades until the producers of data bases or other such documentation begin to understand
that the people who invented the printed book came up with some clever innovations,

namely title pages. Ultimately, title pages in data bases may become commonplace.

An attendee from the Control Data Corporation said that user header labels sound

like a very good idea as long as they don't interrupt the current labeling facility and

they're carefully implemented so that they don't produce any more resistance. Since Mr.

Wenberg has already mentioned some user resistance to labeling and it took the industry a

long time to get where it is with labeling, he would prefer having what we have now rather

than winding up with less.

Mrs. Butler said that the real problem with labels has always been that they weren't

easily portable from one type of hardware to another. Also, the fact that seme of the

files are binary data files has created difficulties. She mentioned another issue that

came up when standard labels were being debated. ASCII is the only character code that

has a standard, so the user header label has to be an ASCII standard label. Many data

files that are interchanged, however, are not in ASCII character code.

Ms. Dodd added that she was well aware of the problems involved in using this

particular option and the resistance on the part of computer facilities, but somehow, the

219

spirit or the intent has to be manifested, possibly in another way. She raised the
question as to whether this is the only option available to us now, and because it is
being resisted and not being used, what could be an alternative? She asked if there
exists some other kind of standard or labeling device or title page equivalent that could
be incorporated in the file itself because it's extremely important to have this in terms
of maintaining some kind of control or data base management. Mr. Wenberg suggested that
one possibility might be to create a small file in front of the actual data file or
program file that is being interchanged. It would be a separate file in front of the data
file; it would not be the first record in the file. Ms. Dodd said that such a proposal
had been made in the past and agreed that it probably deserves more attention.

Mrs. Butler brought up another point that a distinction should be made between tapes
for tape-resident files and tapes for transmitting data. The latter is merely like
mailing a parcel. Most people who are using the data files are not using them from tape
but from another resident device. She also expressed a need for something inter-
changeable besides tape pretty soon.

The next major discussion point concerned FIPS 30 (Software Summary for Describing
Computer Programs and Automated Data Systems). In response to a question from Ms.
Maruyama, three attendees (two from the National Technical Information Service and one
from Calculon Corporation) indicated that they are actively using FIPS 30.

The papers presented by Ms. Maruyama and Mrs. Butler addressed the need to revise
FIPS 30 to meet changing bibliographic requirements and to reflect the new ANSI X3.88
standard for computer program abstracts. Mr. Lipkin suggested that before deciding what
should be included in FIPS 30, a question should be asked as to why you want to obtain
someone else's software. In addition to putting the software up on your machine or using
their data base management system, there may be some other things that you would want to
do with someone else's software, which might necessitate describing attributes that had
not been considered up to this point. For instance, you might want to take someone's
module and look at it in terms of an algorithm and implement a certain capability. You
might want to look at a system design as implemented. Or, you might want to copy a piece
of the software or modify an existing system. These factors might require different
kinds of material as part of the software documention. Perhaps we've been talking mainly
about whole systems, such as transporting a circulation system or a data base management
system, but the possibility for sharing individual modules does exist although this area
has not been addressed at any great length.

In answer to Ms. Maruyama' s question as to whether this would be appropriate for

FIPS 30, which consists of the program abstract, as opposed to FIPS 38, which is the
software documentation itself, Mr. Lipkin said this probably relates much more to FIPS
38. ADA as a language, for example, provides this sort of capability for documenting
packages—small modules which could be considered a library of data packages that could
be shared. Mrs. Butler added that FIPS 30 does include the capability to describe
modules as well as entire systems.

The next discussion point considered whether a standard comparable to FIPS 30 should
be developed for machine-readable data files. Ms. Maruyama mentioned in her paper that
the Office of Management and Budget had issued a directive in an attempt to standardize
some of the elements related to statistical data files. Although certain agencies are
mandated to follow this directive, it doesn't have quite the same clout as the FIPS
standards.

Ms. Dodd said that the directive is very close to what Mrs. Butler had described in
her paper for software. The elements in the directive start with the bibliographic
citation for the data file and then go into identification number, summary, geographic
and time coverage, technical characteristics, and so on. The standard should not be
limited to computer software, so it would be a good idea to extend it to other types of

files. She recommended that such an action be considered.

220

An attendee questioned whether the Paperwork Reduction Act doesn't mandate a certain
degree of this. With far greater usage and sharing of government data, how will the
establishment of standards be affected. Is the Act already affecting standards? Mrs.
Henderson mentioned in this context that a federal information locator system (FILS) is
being established which is supposed to be a file of descriptions of data collections—not
a description of the data themselves but the existence of a data collection. She hoped
that the people who are developing FILS are adhering to FIPS standards if they apply.

Mr. Lipkin said that one of the preliminary reports on FILS was devoted to the
subject of their own data element element dictionary for describing government data
files, so he surmised that they're developing their own data element dictionary. In
effect, Mrs. Henderson continued, they're trying to compile a dictionary of all data
elements found in all of the files so that one would be able to find a particular data
element in certain files across the whole government. Mr. Lipkin also mentioned that
FILS was not limited to machine-readable data files but was focused mainly on government
reporting requirements. A related project attempts to do the same thing specifically for
machine-readable data.

The last discussion topic involved Mrs. Henderson's paper on the possibility of
developing guidelines or standards for compiling data element dictionaries for biblio-
graphic information. An attendee from the Dept. of Energy's Technical Information Center
said that the discussion, thus far, has concentrated on data elements, standards for data
elements, and incorporating ANSI X3.88 into FIPS 30, all of which seem to be applicable
for computer software and perhaps for numeric data. He asked Mrs. Henderson if she was
referring to a data element dictionary that merges bibliographic data and software.

In response to this question, Mrs. Henderson said that in talking about a data
element dictionary, she attempted to relate that effort to data directory systems (DDS) ,

for which the Institute for Computer Sciences and Technology has generated guidelines and
proposed a FIPS standard. One of her former colleagues reminded her that software
documentation or program documentation is a different problem and is handled by a differ-
ent part of the institute from systems documentation where the DDS belongs. She still
contended, however, that enhancing software exchange can also include the data that the
software carries. As such, it is a management tool that is part of management's total
arsenal of tools to improve, maintain, or make more effective its computer-based systems,
particularly for bibliographic data processing.

The audience may have been misled by her mentioning the study of interaction among
the four computer systems of the four major reports-processing agencies as the first step
toward sharing data. The data element dictionary project could help to determine what
data ought to be shared.

The attendee from the Dept. of Energy said that his interest in this matter stemmed
from his attempts to move NTIS from a data element concept for bibliographic data to a

similar approach for software. In this context, Mr. Lipkin reported that several of the

data dictionary packages available now allow you to record information about program
modules, or systems, as well as about files and record interrelationships among numeric
and bibliographic files, and the software processes. Fran his perspective, this is one
of the really important advances because it allows you to maintain documentation in

synchronization with maintenance and development information that might be collected in

the process of changing a module and updating the dictionary record. That's one method
to keep your documentation current. In response to a comment that there might be

confusion here between bibliographic data elements and software data elements, Mr.

Lipkin said that although they are different, they do interact. If you change your
files, you will also want to be certain that the programs that process the files are

recompiled. The integrated dictionaries provide the capability to monitor the fact that

you have recompiled your program before you try to run it against the file. It forces you

to good practices.

Mr. Lipkin also summarized the project that he is presently working on, which is

somewhat related to the FILS project. For the Energy Information Administration (EIA) of

221

the Dept. of Energy, a data resources directory is being developed which is, initially,
a description of all the data collection systems within the department—about 160
systems. The forms are described in the context of bibliographic terms and data collec-
tion frames. Data elements within the management system are also included, and enforce-
ment for any modifications is handled by the fact that the same system is used by EIA to
get forms approved by the Office of Management and Budget (0MB) . In other words, if a new
form is desired, that information is input into the system and output as a report for 0MB.
The system also allows managers to find out what information they could collect on these
forms. The system is being expanded to machine-readable data files and to publications
in an attempt to create a linkage between the two "files" and to include descriptions of

major software packages which access the files. What is being attempted is to develop an

environment where someone can manage EIA as a data processing system, consisting of over

160 systems, over 100 publications, and thousands and thousands of machine- readable data
files.

222

Session F: Enhancing Software Sharing

SUMMARY

Lenore S. Maruyama, Moderator

Network Development Office, Library of Congress
Washington, D.C.

As seen from the Discussion portion of this session, there was considerable dialog
among all the participants (speakers, discussants, audience) on the papers presented, and
it is hoped that the exposure to the different aspects of software sharing has stimulated
thinking in this area. The conclusions listed below, however, include only those that
might lead to further action by the National Bureau of Standards in the near future:

• Although there was general agreement on the usefulness of a user header label to

record bibliographic information describing a machine-readable data file, the over-
all discussion indicated that there may be too many difficulties (some perceived but
many real) to overcome that might prevent its acceptance and implementation. One
alternative suggested was to create a separate (small) file in front of the data
file to carry this information instead of carrying a user header label.

• The consensus of the group was that FTPS 30 (Software Summary for Describing
Computer Programs and Automated Data Systems) should incorporate the new elements
from the American National Standard for Computer Program Abstracts (ANSI X3.88)

.

• FIPS 30 should be expanded to cover numeric data files, or a new FIPS should be

compiled to handle these files. This work should be based on the directive issued

by the Office of Management and Budget concerning statistical data files.

223

SESSION G: Improving Human Interfaces

Moderator: Joseph Psotka, National Institute of Education

Users of software documentation face many practical problems that can be overcome by

proper design of the human interface. This session will deal with several interface
characteristics designed to make documentation friendlier, more useful, and of highe
quality.

224

NBS FIPS Software Documentation Workshop, March 3, 1982

Designing Software Documentation for N on - tec h n i c a 1

Users

V. Douglas Mines

House Information Systems
U. S. House of Representatives

FIPS PUB 38 provides guidelines for "automated systems"
documentation, which includes "User Manuals." The target
audience for this documentation -- "non-ADP professionals" --

represents an increasing proportion of software users.
Documentation for this group should contain the basic
information described in FIPS PUB 38, and should meet broad
standards of clarity, completeness, accuracy, and
ease-of-use. In addition, five specific design techniques
are recommended: (1) emphasize procedures for using the
software; (2) organize documentation by system function; (3)
provide specific and complete examples; (4) develop
documentation in two phases, with programmers writing initial
version to be modified by user support specialists; and (5)
Incorporate documentation into user training.

key words: automated data systems, user manuals

1. INTRODUCTION

Historically, software documentation has been written
primarily by programmers for programmers. It has involved
one programmer telling other programmers what his or her
software did, how it did it, and why it did it that way.

With the widening use of on-line data bases,
electronic messaging (mail) systems, and other office
automation applications, the population of software users has
broadened to include many individuals who are not full-time
data processing professionals: managers, accountants,
engineers, office workers, and a host of other professions.
Each year, these users increase in number and become a more
important audience for software documentation.

Hence, "user manuals" -- that class of documentation in

which programmers talk, not to other programmers, but to

225

non-technical software users -- become progressively more
imporant in many ADP environments. From the point of view of
the software developer, this documentation is a key
determinant of the acceptance and usefulness of the software.

The U.S. House of Representatives is a data processing
environment in which software documentation for non-technical
users is particularly important. HOUSE INFORMATION SYSTEMS
(H.I.S.), the computer service group for the House, supports
9 on-line data bases, 2 scheduling systems that require data
entry, an electronic mail system, a text processing system,
and a variety of more specialized systems. There are about
3000 accesses to H.I.S. computer systems distributed to users
in Washington DC and across the country; the vast majority of
these users are not data processing professionals.

Under these conditions, the quality of user-oriented
software documentation is a crucial consideration, and
consequently significant attention has been paid to its
development. This paper describes a set of simple design
principles which have evolved as H.I.S. has attempted to meet
the challange of producing high quality user-oriented
documentation.

2. RECOMMENDATIONS FOR CONTENT

Of the content areas for User Manuals outlined in FIPS
PUB 38, "procedures and requirements" is of greatest interest
to non-technical users. Experience has shown that non-ADP
professionals have only passing interest in "general
information" about the software and technical characteristics
of the "application." Moreover, when dealing with a

geographically dispersed user population, information about
performance and equipment is difficult to summarize in a form
that will hold the interest of non-programmers.

2.1 RECOMMENDATION ONE: The content of user manuals should
emphasize procedures and requirements.

Our first design principle is that the content of user
manuals should focus primarily upon procedures, i.e., how to
use the software. General information about data base
structure and other features of the software should br
provided. However, non-ADP professionals are primarily
interested in using the system, and the bulk of the
documentation should focus upon telling them how to do so.

3. RECOMMENDATIONS FOR FORMAT

There is general agreement that all software
documentation should be clearly written, easy to use,
accurate, and complete. As most of us are painfully aware.

226

much of it isn't. But even if software documentation is
clear enough to meet the needs of programmers, it still might
not meet the needs of non-programmers who are not accustomed
to working with computer systems.

Documentation is more understandable to
non-programmers when the software is described as the user
sees it -- as a set of functions that are performed in
accordance with a predetermined set of system commands. The
key to good user manuals, then, is to (1) list and describe
the functions, and (2) list and provide examples of the
commands or responses that cause the functions to be
performed. In short, the documentation describes what the
software does and how it does it. Hence, our second and
third design rules.

3.1 RECOMMENDATION TWO: Documentation should be organized by
function as understood by the user.

Software documentation is usually organized in terms of
commands or other program design parameters; this is
reflected in tables of contents that list commands and page
references, without telling the reader what the commands
accomplish functionally.

Instead, it is recommended that documentation be
organized by function, making it as clear as possible to the
user what the system can do and the commands necessary to do
it. For example, in systems using STAIRS software print
specifications are set under the browse command. It is more
meaningful to have a section in the documentation entitled
"setting print specifications" than to have one entitled "the
browse command." Whenever possible section headings and the
table of contents should reflect system functions that the
user understands.

Organizing documentation by function has added benefits
in environments such as ours where a non- techni cal user might
work with five or six different software packages. It turns
out that the basic functions of on-line data bases are
surprisingly consistent. Users sign-on. select data base
subsets, set output formats, perform searches, print or save
queries, then change data base subsets or sign-off. There is

more variety across text and word processing systems, but a

small number of generic functions can be identified here as
well. Users create a document, set format (tabs, margins,
page length, etc.), enter and edit text (involving cursor
movement and edit commands), print and store documents.

When user manuals are organized by function, there is

more comparability across documentation and more transfer of
learning from one on-line system to the next or from one word
processor to the next. This makes each system and manual
more valuable.

227

3.2. RECOMMENDATION THREE: Provide at least one specific
example of each system function or command, showing both the
"user" and "system" responses.

FIPS PUB 38 reflects the fact that "input formats" are
the key element of the procedures and requirments of
automated data systems. In on-line data bases and other
interactive systems, software usually allows for a system
prompt, to be followed by a user entry (usually a command or
parameter), followed by a system response (usually output
data answering the user query). Documentation should provide
specific examples of how this sequence would look for each
major system feature.

This approach makes it easy to provide users with the
information discussed in PUB 38: input length, sequence,
vocabulary, punctuation, etc.

4. PROCEDURAL RECOMMENDATIONS

The final recommendations concern procedures for
creating and distributing documentation.

4.1 RECOMMENDATION FOUR: Develop software documentation in
two phases.

Documents should be developed in two phases. First,
the applications programmers and analysts who write the
software create a technically-oriented, detailed, and
complete guide to the software. This document includes
system design philosophy, a description of data base
structure and parameters (if applicable), and listings of
special commands, features, default options, etc.

In the second phase, user support personnel (such as
training specialists) take this document as a starting-point
for the software documentation targeted to the end-user.
This second- i tera ti on produces the user manual that is
released to non-ADP users. H.I.S. refers to these as "how-to
manuals."

4.2 RECCOMENDATION FIVE: Use the documentation during
training.

Most software packages designed for non- techni cal users
are supported with training, often in a formal classroom
context. Frequently, software documentation is handed out at
the end of these sessions or, if distributed earlier, is not
refered to during training.

A better approach is to distribute the documentation at
the beginning of training and use it as the basic reference;

228

this way, users learn to use the documentation as well as the
system itself. In other words, classes teach both how to use
the software and how to use the documentation. This
seemingly trivial point has enormous practical implications
for increasing the sophistication of inexperienced software
users.

5. CONCLUSIONS

At one point in the evolution of data processing,
software documentation was written by programmers for
programmers. Today many large installations and software
vendors who create software used by non-programmers are
encountering new audiences and are discovering the importance
of the once humble user manual. This paper has recommended
ways to design this type of documentation so as to maximize
its contribution to the success of a software package.

229

NBS FIPS Software Documentation Workshop March 3, 1982

Paper and Glass:

Graphic Design Issues

for Software Documentation

Aaron Marcus, Staff Scientist

Computer Science and Mathematics Department
Lawrence Berlceley Laboratory, 50B-3238
University of California

Berkeley, California 94720

1. Introduction

Most programs and their supporting documentation pass
through many stages of development, use, and mainte-
nance. These software documents may appear offline

on paper or video. They may also appear online

displayed on a paper or glass-faced terminal. These
documents communicate their contents to the reader
primarily through alphanumeric symbols. These pages or

screens of information must effectively communicate
intentions, states, structures, and processes. While
good conceptual organization and verbal editing are

crucial to effective communication, a third component,
the graphic design of these documents, has been
neglected.

Graphic design is the discipline concerned with the
communication of informational, emotional, and aesthetic

content through the manipulation of typography, sym-
bolism, illustration, color, spatial organization, and tem-
poral sequencing. [1] Certain professionals in this

disipiine are concerned primarily with the communication
of complex information through the design of charts,

maps, diagrams, and other technical documents.
Knowledge from these professionals and their literature

can be applied to the task of designing the graphic

presentation of software documentation which now
faces builders, users, and managers of computer sys-
tems. Graphic designers usually are not involved in set-

ting up conventions, standards, and specifications for

producing software documentation. In order to educate
the information specialists and computer scientists who
normally rely upon their own limited expertise, this arti-

cle focuses on the typographic principles of information

oriented book or document design drawn from the pro-

fessional literature and from the author's own experi-

ence as a graphic designer of computer-based docu-
ments [1 ;2;4].

The software documentation interface between the

human being and machine is in the context of the per-

son using a computer system and in the person building

or maintaining a computer system. Elsewhere the author

has termed these the inter-faces and the inner-faces

of computer systems. [2] Basic principles of selecting

visual signs and their attributes (such as their location,

size, and boldness) for presentation on both paper and
glass can enhance the legibility of software documen-
tation as well as its readability, i.e., its appeal or

friendliness.

2. Typographic Aspects of Graphic Design

The design task concerns determining a relatively high

degree of fit among the different requirements of the
components of every communication interface:

Graphic design principles have been utilized in

redesigning the interface for an information manage-
ment system and for prototypes of typographicly
enhanced textual programs. These principles are
explained and examples of typical formats are shown to

indicate the nature of improvements.

the sender (the machine or user)

the medium (the display device)

the receiver (the user or machine)

the message (the information content).

By means of the position, color, size, grouping, and tem-
poral sequence of visual signs such as alphanumerics

and symbols, the graphic designer must convey the
usual facets of a software documentation system: con-
tinuous prose (e.g., help messages and lengthy expla-

nations), interrupted prose (e.g., error messages, sys-
tem status reports, examples), and tables or lists (e.g.,

source code, menus, data dictionaries).

Typographic design begins with a concern for the
design of individual symbols. In many current display

systems there is relatively little control over symbol
design. A limited hardware set of characters is often

used to display alphanumerics and other symbols.

Because many terminals and printers currently operate
with fixed-width characters, many of the principles

given below are oriented toward this situation.

In online display, there is often little control over symbol
design; it is likely that the standard medium for interac-

tion may be a display showing 24 lines of 80
alphanumeric characters each. The use of reverse
video, italic, or levels of brightness can not always be
assumed. Even if these means of visual emphasis are

not used, other approaches are available. For example,
there can be a strong reliance on a horizontal line of

hyphens to highlight certain titles or to separate divi-

sions of the frame.

Even within severe limitations, attention to graphic

design principles can improving the effectivenes of

software documentation. Consider the use of all upper
case words, a typographic approach which much docu-
mentation utilizes. The fixed width of the letters are

often created by a 7x9 or similar dot matrix. In such
conditions lower case letters with occasional capitals

are more legible. Research shows [3, 35] that not being

able to perceive word shapes (as is true for words set

in upper case characters only) may slow reading speed
by as much as 13%. Because line printers and terminals

often have little space between lines in comparison to

normal textbook typography, lower case letters are

particularly important in providing visual space between
lines of type and thereby improve legibility. In interac-

tive situations, lowercase typography for machine mes-
sages and for the echoes of user input should be used
whenever possible. When all capital settings are used,

they should be used to highlight a restricted set of pri-

230

mary content elements, e.g., the main title of a frame or

the module in which a prompt occurs.

3. The Grid

As for the design of a traditional printed book page, the
graphic designer of software documentation must con-
sider the visual field, the terminal screen or the printed

page, as an entity whose proportion, size, and distance
from the viewer are important to the design of informa-

tion. Information is presented in conceptual frames of
pages or screens. To assist the overall organization of

elements within the frame and consistency from frame
to frame, a reference grid of a few horizontal and verti-

cal lines should be determined to locate certain

standard positions for elements such as titles, prompts,

etc. One of the most important functions of the grid is

to establish certain basic divisions of the frame. The
grid should establish one or more major columns of text

of approximately 60 characters in width.

For fixed-width character printers or terminals, one sim-

ple approach to frame design is to use two primary

locations: a single major column lying between charac-
ter positions 21 to 80 and a special position at charac-

ter position 1 for all secondary matter, such as subti-

tles for explanatory text or user input for textually

oriented command and control interfaces. For subtitling,

the reader can easily scan the overall structure of the

document; for interfaces, the user's input and the

machine's responses are visually distinct. Primary tab

settings of 10 characters each and a secondary set

every 5 characters can help divide the entire visual

field into regular, modular units. Selection of upper or

lower case alphanumeric characters and a grid influ-

ence other aspects of the typographic design, viz.,

character spacing, word spacing, line length, justifica-

tion, line spacing, and the overall spatial structure of

the frame.

4. Words, Lines, and Parrigraphs

in stituations in which character width is constant and
letterform design is quite simple, word spaces are rela-

tively large and lines of text tend to fall apart into a

loose collection of alphanumerics. Wherever possible

the typographic design approach stresses the need to

keep words that belong together close to each other in

word, line, and paragraph groupings. For example, only

one word space is sufficient after a period in continu-

ous prose to separate the end of one sentence and the

beginning of the next. The graphic design approach

also seeks to emphasize clear spatial groupings over

the entire visual field in order to make distinctions of

content. At the same time these spatial groupings are

limited in their variation so that there is an overall

visual consistency or rhythm within and between
frames.

A typical oversight in most textual displays is using

text lines of too great a width. Normally there should be

approximately 40-60 characters per text line (about

10-1 2 words) [3, 29]. Research has shown [3, 33]
that unjustified (unequal length) text lines are just as

legible as justified text. In the case of fixed width

characters, justification usually means that large gaps

of empty space appear between words in order to

achieve equal width text lines. These large spaces

interrupt eye movement and impede reading. Especially

for interrupted text, typographic design calls for unjus-

tified paragraphs. This design feature has the added
effect of making character positio^ 21 visually the

most important in the frame. An implied vertical line of

the beginnings of text lines appears at this position.

This becomes the location for many key words, text line

beginnings, etc. The reader quickly develops the habit

of scanning this location for most beginnings of informa-

tion.

In fixed character width, fixed interline spacing situa-

tions, the space between groups of lines has limited

variation. Whenever possible one should avoid any
spacing larger that a single line skip. This may be used
between paragraphs, line clusters, individual sets of

menu prompts, user responses, etc. In this way a max-
imum number of text lines per frame can be utilized.

Note that the horizontal line made of hyphens can
replace a skipped text line and does not add another
line to the already limited number of lines in a frame.

5. Tables and Lists

A major design principle is to limit the amount of varia-

tion wherever possible. This applies especially to tabu-
lar settings for tables and lists. In the case of fixed

character-width situations, the most important words or

word groupings are placed at or near (i.e., before or

after) the tab setting at the 21st character position.

All tables and lists require headings to describe the
contents in general and to identify the parts if there

are many. These titles should not scroll off the screen
or disappear from continued pages; they should be
regenerated as needed so that each frame includes

sufficient titles to be comprehendable. All horizontal

positioning of tables and lists is governed by the desire

to keep codes, page numbers or other symbol groups

close to the items to which they refer and to allow easy
scanning down and across items.

6. Examples
The principles outlined above are embodied in two sets
of accompanying examples. One set involves

redesigned formats for the low resolution online inter-

face [4] to an information management network which
accesses very large geographic databases [5]. The
other set arises from prototype redesigns of textual

programs for display on high resolution terminals or

printers. A comparison between old and new versions

will clarify how earlier designs for frames were faulty

and inconsistent. Improvements in the newer versions

should be obvious. The examples appear in the accom-
panying Figures.

7. Conclusions

Most of the changes in the documentation formats have
been relatively easy to implement within the software.

These redesign features are more than a 'cosmetic'

facelift to the system. By carefully considering not

only what to show, but also when, how, and why to

show it, a better understanding of the functionality of

the system emerges in the minds of the builders and

ultimately in the minds of the users of the computer

system.

Many of the changes in design constitute working con-

ventions rather than carefully proven standards. How-

ever, in the case of the first set of examples, many of

231

the changes corresponded to recommendations of an

independent critique of the system [6, 54-55]. In the

second set it is also clear from informal discussions

with users and implementors of computer systems that

changes brought about by consideration of typographic

design principles have made clear improvements that

programmers as well as users can readily perceive. As

these design principles and specifications for new
documentation standards are more completely deter-

mined, they can be embodied in a graphic design manual

[7]. This manual could assist future builders of docu-

mentation modules to maintain a consistent, high quality

inter-face or inner-face for the computer system.

Acknowledgements
This work was supported by the Applied Mathematical

Sciences Research Program of the Office of Energy

Research, U.S. Department of Energy, under contract

W-7405-ENG-48. The author also wishes to ack-

nowledge Dr. Ronald Baecker, President, Human Comput-

ing Resources, Toronto, with whom the author

developed the textual program visualization and Mr.

Richard Sniderman of Human Computing Resources, who
helped write some of the typesetting macros for that

visualization.

References
1. Marcus, Aaron, "Computer-Assisted Chart Making

From the Graphic Designer's Perspective," Computer
Graphics. 14:2, 1980, 247-253.

2. Marcus, Aaron, "Graphic Design and Computer Graph-

ics", Industrial Design, March/April 1982, in press.

3. Rehe, Rolf F., Typography: How to Mal\e it Most Legi-

ble, Design Research International, Carmel, Indiana,

1974.

4. Marcus, Aaron, "Designing the Face of An Interface,"

IEEE Computer Graphics and Applications 2-A
,
January

1982, 23-26ff.

5. McCarthy, John, et. al., "The Seedis Project: A Sum-
mary Overview", Publication 424, Lawrence Berkeley

Laboratory, September 1981.

6. Bleser, Terry, Peggy Chan, and Mei Chu, "A Critique

of the SEEDIS User Interface," Report GWU-llST-81-

04, Department of Electrical Engineering and Computer
Science, The George Washington University, Washing-
ton, D.C., March 1981.

7. Marcus, Aaron, "A Graphic Design Manual for Seedis",

in preparation.

Rgure 1 a: Undesigned Command Menu Descriptions

Frame
Within the Computer Science and Mathematics Depart-
ment of Lawrence Berkeley Laboratory, the author (who
has a professional background in graphic design) has
begun to apply the principles of information-oriented

typographic design to the redesign of the interface for

a large experimental geographic information manage-
ment system called Seedis [5]. The interface for

Seedis has gone through several stages since its

genesis as a series of stand-alone batch programs in

1972, particularly as it expanded its functional capa-
bilities. The current version of Seedis operates in an
interactive VAX/VMS environement with a textual (i.e.,

essentially alphanumeric) interface. Seedis permits a
relatively computer-naive person to examine data dic-

tionaries, extract data from databases, to aggregate or

disaggregate data between different levels of detail,

and to display the selected data as a labeled table, dot

matrix chart, pie chart, line chart, bar chart, or

area/symbol choropieth map. In the Figure, note the ille-

gibility of all capitals in comparison to upper and lower

case and the interrupted list of command definitions.

Figure 1 b: Designed Command Menu Descriptions

Frame
The command menu description frame appears when the

user types a question mark at any decision point, i.e., if

there is some confusion about the proper response to

the immediately preceding prompt. Note the organized

appearance of text groups, the order of text elements,

the use of rules, lower case, and specific tab settings.

The full screen width is equivalent to 80 typewritten

characters in width. Information on global commands is

introduced in the very first information to the user. The
standard form of the menu-prompt identifies the module

(all capital letters) in which the user is currently

working and the appropriate commands at this point.

Note the use of the standard tab settings at position 1

and 21 and the consistent use of standardized verbs
to describe the input commands. Global commands are

separated from local commands appropriate to the par-

ticular decision point. The list is labeled to aid identifi-

cation of its component parts.

232

?

TYPE ONE OF THE FOLLOWING COMMANDS...
? FOR THIS LIST OF COMMANDS
HELP FOR HOW TO GET HELP
MORE TO SEE NEXT SCREENFULL
TABLE FOR THE TABLE OF CONTENTS
<N> FOR PAGE <N>
• <COMMENT) TO ENTER A COMMENT IN THE LOG
DATA <SEOUENCE LETTERS > SELECT DATA CODES
CANCEL <SEQUENCE LETTERS) CANCEL DATA CODES
FOR X <C> SUBSTITUTE C FOR X IN DATA CODES -

ALSO XX XXX XXXX Y YY YYY YYYY
REVIEW LIST DATA SELECTIONS MADE SO FAR
SAVE SAVE DATA SELECTIONS AND RETURN
QUIT CANCEL DATA SELECTIONS AND RETURN
READY

DATA: <line letter (3)>, table, <page number), CR
: ?

Input Description

<line letter (s)) select one or more data elements by line letter
table display table of contents for this database code
<page number) display a particular page
CR (carriage return) display the next page

? list avalable commands in this menu
help describe data element selection
show display table of contents for this database
review list current data element selections and history
cancel delete current data element selections for this database
quit return to database selection menu

DATA: <line letter (s)), table, <page number), CR

233

READY
MON ITOR . SEED I S . HELP

.

INTRODUCTION TO SEED IS

The three major processes in SEEDIS are:

AREA: define a geographic study area (composed of states,
counties, or census tracts)

DATA: select data appropriate to the geographic study area
chosen. For example, for a study area consisting of a group
of states, only state level data, and not county or tract
level data, are appropriate.

DISPLAY: manipulate and display the data in table, chart, graph,
and/or map form.

Normally AREA, DATA, and DISPLAY are performed in the order
given. However, once the geographic study area is defined (AREA),
one may alternate between DISPLAY and the selection and
extraction of additional items in DATA.

TYPE MORE TO SEE NEXT SCREENFULL
TYPE ? FOR A LIST OF COMMANDS

help
SEEDIS: area, data, display, profile

USING SEEDIS

LBL's Seedis is an experimental information system that
includes integrated program modules for retrieving, analy-
zing, and displaying selected portions of geographically
linked databases. Program modules in Seedis include:

area select geographic area (level and scope of analysis)
data select, extract, enter, or transform data
display manipulate and display data in tables, maps, and charts
profile produce standard socio-economic reports for selected areas

Normally Area, Data, and Display are used in the order
given. However, once the geographic study area is defined
in Area, you may alternate between Display and
the selection, extraction, or entering of additional items
in Data.

SEEDIS: area, data, display, profile

Figure 2a: Undesigned Help Messages Frame
Note the long lines of text, the clutter In the last para-

graph caused by clumps of all capital words, the gaps
in word spacing caused by justification, and the mix-

ture of small indentations with centered headlines.

Figure 2b: Designed Help Messages Frame
Help messages are a standard one frame page descrip-

tion. Note the use of standard tab settings, unjustified

text, the use of all capital headline together with

hyphen line, removal of all capital keywords (replaced

by exdented words, i.e., positional emphasis), and the

use of second person in English language style. Further

frames of information are available on the four key
words listed.

Figure 3a: Undesigned Textual Program
This figure presents a typical C program in an elemen-

tary typographic form using fixed-width characters of a

single size and typeface with limited horizontal spacing

variation. There is little typographic hierachy. The pro-

gram is more readable than those presentations that

use all-capital typography and multiple commands per

line, but there are still ways in which it can be made
more readable.

234

(o ni a (^^ u
u ^ o
Qj F OJ J
rii D «-» m fo

O C3 1/1 »H ^
Oi a

4-» ^
O fO fO QJ (0

xi a *- o
0) *-> «-»

M ft^ \
ro <a
a a

K '0 JJ
to -r*

E 1/1 oi

* * »

« C5 O *
rt fn t-'i »-* -4 i\iJ rj W (JH(J ,1,

"1 X i- O Uf i: o
\/ -t: ^3 C5

i- 2 £-t 1/1 OJ
QJ -.-> ^
Tj QJ Qj QJ ^
*-H ^ .,^ — a xi o
(jVt<4-«(|-< U -^OTJ
n Qj tit QJ >—

I

-rH TZi

It it It *C o

o p.— o,
o

flgli fi 11 :|j :f s III l|4|

o

u

CM
QJ

Q

fi S S

.§1
a

^
^ 5; 5. o

a c

till
o S.S a

II 5|

E c C Si

S Q O C

flQ O

i|o5-

50-
IS o

o t >S1
c5 * c '*

3 C C C

1
Si 5
•e o s

2 ^ i! u
2 ^ 3-^ 3

1.. 1.

"of 2
o S

^1 -g 3
D. -O - ft J3

, a -o
|3

5 ^a-S
8= -5

ill

c fa

R i.

a = S £ T3

£ O -o
J;

I E 8 5 £

i 1 1 1 i

1 ii I-
- Is ; 5

^f^l i S
s - c E

I S! 1 8
5

3 " < a J
3 > . —

^ i £ a I =

Figure 3b: Designed Textual Program
This figure siiows a prototypical black-and-wliite visu-

alization tliat would require a iiigli resolution bit map
display terminal or a very higli resolution hardcopy dev-
ice. Tlie actual image was generated in Times Roman
type using a computer-controlled phototypesetter, a

rcire but not unheard of hardcopy device. This image is

one of a series of experimental prototype frames for

offline or online documentation that illustrates the full

potential of a graphic design aproach to textual pro-

gram visualization. The image was designed by the
author and Dr. IRonald Baeclcer with Mr. Richard Snider-

man of Human Computing Resources Corporation. Spatial

location, typographic symbol hierarchies, figure-field

enhancements, indexes, abstracts, etc., are combined
to create a clear, consistent, explicitly structured

frame that is legible and appeaing to the reader, based
on a limited number of disussions with programmers who
have viewed but not used this presentation.

235

NBS FIPS Software Documentation Workshop March 3, 1982

Quality Issues in On-line Documentation

Joseph Psotka , Ph.D.

National Institute of Education
1200 19th St. N. W.

Washington, D. C. 20208

With the increasing use of microcomputers in all areas, the
computer is taking on aspects of an appliance that only needs
instructions to set up and then starts to work. This makes
on-line documentation an important area for research.
Suggestions are made here for the human factors aspects of
on-line documentation, including a metaphor for guiding novice
users; abbreviated menus for expert users; error messages that
are polite; HELP statements that do not erase the current
display; interfaces that respond to natural language statements;
and input-output devices that make use of general skills.
Although this view of documentation exceeds traditional print
perspectives , it may be necessary to see documentation as part of
the structure of a program when it goes on-line. These issues are
discussed within the context of an educational software authoring
system

.

Keywords: On-line documentation, Human Interface, Authoring

1. INTRODUCTION

On-line documentation is becoming increasingly possible and
increasingly necessary. It is becoming possible because
microcomputers are appearing as dedicated machines that are used
primarily for one function rather than as general purpose
computers. As Heines (1981) has phrased it, the personal
computer or microcomputer has begun to take on the distinctive
characteristics of an appliance. This means, in part, that the
users of the computer are much more naive about computers than
traditional users , and they may have attitudes shaped by the use
of other appliances, like refrigerators and television sets, that
lead them to expect it to work in certain ways. In particular,
they may expect (and perhaps deserve) to have the training and
documentation incorporated right into the running of the system.
This raises human engineering problems whose solution are only
vaguely visible at this time.

Note: The views and opinions in this paper are those of the author,
expressed in a personal capacity, and do not necessarily reflect the policy
of the National Institute of Education, Office of Educational Research and
Improvement

.

236

This article is structured by using a functional analyses that examines
the needs of an authoring language from the perspective of its three major
users: the author (s), the teacher, and the student. Each of these users has
their own set of needs in using the computer, but the needs all combine in
the sense that training and documentation must be made a part of the system,
if the authoring language is really to be useful. By examining how
documentation might be made part of a educational software authoring system
in detail, general characteristics of on-line documentation may become more
apparent. Some of these general issues are raised in the first, overview
section

.

2. GENERAL ISSUES

2.1. Overview

Writing software for education (usually called courseware) is a highly
labor intensive enterprise, like teaching itself. An authoring language that
would allow teachers to write the programs is needed to reduce courseware
costs, increase quality, and widen the range of materials available. The
authoring system should also allow the software to be run on a variety of
machines (increasing transportability). Therefore it needs to be used by
teachers who want to use others' courseware. Finally, it should interact
with the student to help him use the courseware written by the teachers.
Thus, the authoring system needs to deal with many novice users who may have
no detailed conception of what a computer is, nor what its limitations are.

2.2 Overall Metaphor

Novice users will come to the system with expectations that derive from
their past experience in doing similar things. These intuitions need to be
used carefully to make the system easier to learn and document. For the
authors, a guiding metaphor might be developed that used their experience in
writing a book, with its various activities of gathering material, writing
content, illustrating, editing, publishing, proofing, and rewriting. For the
teacher, the appropriate metaphor might be to see the authoring system as a
novice teacher that needs help and supervision. For the student, the
appropriate metaphor might be to see the authoring language as a teacher's
aid, to provide audiovisual displays, adjust the lights, and provide
additional exercises and explanatory material. Each user should have a
metaphor that makes it easier to learn the system.

2.3 HELP Access

HELP functions are common to many systems, but they usually are quite
subordinate to separate documentation that really describes how the system
works. If documentation is really to be made on-line, then HELP functions
must be reconceptuali zed to provide more detailed and useful information to
novices users who have not read external documentation. Aside from general
orientation metaphors and descriptions, and prompts about what to do next,
the HELP functions may also need to simulate certain activities so that the
novice can step through the function and obtain information about how the
process should be conducted in some optimal way.

Current approaches to help functions have some severe shortcomings. One
general feature of HELP functions I have used is that they require addressing
a menu or a directory that forces one to leave the active display or
workspace. A novice, in particular, cannot be expected to remember the exact
characteristics of his work leading up to the problem. Even experienced
users may have this problem. At the very least a windowing technique should
be used to leave the display more or less intact while displaying the HELP
information as well. This feature is even more important when the HELP
function has to simulate a particular activity while the user is actually
engaged in that activity. With a split screen or window that provided

237

carefully prepared illustrations of a function, while the user could
actually carry out the function, training and documentation could reach a
level of efficiency that might be comparable with live instruction by
teachers and experts.

2.4 ERROR messages

Error messages are one of the most discouraging and problem filled areas
of documentation. The error messages I have encountered are both
discourteous and uninformati ve . Messages like "OPERATION ABORTED" leave me
with the feeling that I may have just participated in a sleazy and illegal
procedure. Of course, these messages are intended for experts and other
cognoscenti , but on-line documentation may mean that novices will encounter
these obscure comments more often. This seems to a fairly good reason for
integrating these Error messages with the larger body of HELP functions that
are available. The error message might recommend which HELP function to
use. Even if documentation is not on-line, it would seem to be a very
useful thing to have error messages refer to page numbers in a documentation
manual that could provide some timely assistance.

2.5 Personalizing Assistance

Much documentation is written in a very impersonal style. There are some
indications that this style is inappropriate when documentation is on-line.
Users have a very strong tendency to anthropomorphize their interactions
with computers: they tend to think of computers as another human being.
Computer programs are beginning to take this forceful tendency into account
by personalizing interactions. Computers will often ask for a user's name
and respond with that name in providing information. It is my judgment as
well as others' (c.f. Nickerson , 1981) that this superficial personalization
may carry some heavy costs as well as benefits. For instance, it encourages
users to think that computers are smarter than they really are. But in
terms of on-line documentation, this kind of personalization is probably
necessary

.

Providing help and assistance is something that always needs to be done
gracefully, especially when it comes from an inanimate object. Terse error
messages are no way to soothe someone's frustration at being unable to
complete a task smoothly. So personalization should be carried more deeply
into sensitive social interaction. Liberal use of thank you, sorry, and
please is probably highly appropriate. It would probably be wise to adapt
the documentation style to the user's style; on such characteristics as
politeness, longwindedness , and directness. But this is taking us a little
beyond the scope of this paper.

2.6 Natural Language

Artificial intelligence and psycholinguistic research has made
significant strides toward developing methods for natural language
understanding in computers. It is not unreasonable that this research might
soon find applications in on-line documentation. This is particularly
important for novice users of the systems. It is probably most important
for structuring HELP functions. There are also functional alternatives to
the implementation of complex systems for natural language understanding.
One alternative is to compile a complete list of the questions that novices
tend to ask about a particular system. This approach has been implemented
by Ford (1982) at Johns Hopkins with checking account and library indexing
programs. The limitation to this approach lies in the memory capacity of
the computer. This is a significant limitation, but complete language
understanding is not the objective of this approach. A limited
understanding can still be very useful for novices.

238

3. SPECIFIC REQUIREMENTS

3.1 Overview

Documentation of an authoring system must take into account situations
that may arise in producing software for instruction. It is not clear that
these are general issues, although some aspects may be applicable to the
documentation of a large variety of programs.

3.2 Defining the User

In order to individualize on-line documentation and make it optimally
functional, it is important to define the purposes the software is to serve
for a particular user. In an authoring system, the documentation should
first assess whether the user is a teacher, student, or courseware writer.
Not only should specific software functions be tied to this assessment (so
that a student cannot change the answers , for instance) but the
documentation should be keyed to this assessment too. If a metaphor is
being used to make the software functions more comprehensible, then the
on-line documentation should be phrased in that metaphor.

In an authoring system there will be many kinds of teachers and students
using the system. To some extent their characteristics cannot be predicted.
But there will also be a large number of different courseware writers , and
these can be more easily predicted and described. For instance, there will
be instructional experts, programmers, media specialists, cognitive
scientists, and graphic designers. The documentation should support the
demanding characteristics of each professional.

Defining the user also means defining the expertise of the user. A
simple menu may be the most efficient information that an expert can have,
but a first-time user may well need very lengthy explanations and examples
to demonstrate specific functions. Defining the user can therefore be a
very complicated exercise, but a very important one. There is very little
in this world that is as frustrating as asking for a HELP function that
gives messages that are not very helpful. Of course it can be unhelpful in
many ways: for instance, it can provide information I already know, or it
can provide information that I do not understand. Both are frustrating.
The best kind of documentation would provide information that I need before
I know enough to ask for it. It seems to me that this should be possible,
if the needs and knowledge of the user are carefully defined beforehand.

3.3 Defining the Structure

It is not enough that documentation should help someone use the system,
it should also make the user expert. In part, this can be done by defining
the user, and if he is a novice, providing instruction that makes him more
expert by training and education. However, the system documentation should
also help structure the system product so that the final result has expert
characteristics. It is difficult at this point to distinguish tetween
system function and documentation, but this will be an ongoing difficulty of
distinction in any on-line documentation system.

Since documentation is integrated with system training and performance;
the more thorough the integration the more difficult it will be to draw a
line between system function and documentation. Since an authoring system
is designed to produce more software, the documentation should provide a

natural encouragement of good design practices like structured programming,
and object-oriented code. Portions of courseware will be reusable in

different implementations, and modular construction will make the transfer
of frequently used portions more convenient. Similarly, documentation will
need to provide advice about how to make the software more tansportable , so
that it can be implemented on a wide range of currently available machines.
These are only a few of the structural characteristics that documentation
can help achieve.

239

3.4 Defining the Feedback

An authoring system that responds to the needs of a student actually
using the educational software will require feedback and analysis systems
that go far beyond the traditional requirements of HELP functions. A
student will always need access to a real teacher, who can answer a question
like "What did I do wrong?". However, some level of machine tutor will also
need to be built into the system. Intelligent coaching can be added in many
ways. At a primitive level, a trace of the sequence a student followed can
provide some meaningful feedback. At a more complicated level, the system
can analyze the errors a student made to try to find consistent errors or
"bugs" in thinking (Brown & Burton, 1978; Feurzeig, Horwitz, & Nickerson,
1981). On-line documentation at this level will require very sophisticated
understanding of a student's needs in order to explain how to use an
intelligent tutor like this. Clearly, this kind of documentation will grow
in complexity with the increasing level of understanding that a student has.
The documentation itself will become part of the individualized instruction.
One of the most important aspects of this documentation may well be the
growth in self-knowledge that it promotes.

3.5 Defining the Input/Output

One of the most difficult and important aspects of effective instruction
lies in the appropriate selection of input and output devices appropriate to
a particular activity. With the large number of devices currently available
(keyboard, joystick, lightpen, digitizer, mouse, and voice input; printer,
videodisc, plasma, graphic, music and voice output) documentation of these
possibilities has become particularly complex, especially if the
documentation is designed to make the process more efficient and effective
by providing timely advice. The complexity of this documentation can be
suggested by examining just one of these areas: graphic display. Just
imagine the difficulty of introducing novice users and documenting the
following functions:

o Multiple type fonts available at full speed for screen display;
o Two-dimensional objects made up of points, line segments, circular

arcs, and spline curves are able to be translated, rotated, dilated,
contracted, and stretched anisotropically

;

o Three dimensional graphics can be used to isolate components, compute
areas and volumes, and demonstrate multidimensional functions;

o Animation can occur in real time;
o Complicated, high resolution displays can be retrieved on-line from

videodiscs and ROM packs or bubble memory modules;
o Graphics packages for bar and pie charts and graphs are available with

3-D display capabilities.
The enormous capabilities that computers bring with them to almost every

function of instruction, like these display capabilities, place a heavy
burden on documentation. It is a burden that may well be possible to carry
only if the documentation is on-line and integrated into the system's
function

.

4. CONCLUSION

4.1 This paper has presented a brief overview and suggestions for
incorporating human factors considerations into on-line documentation.
These suggestions include a guiding metaphor for each user; integrating HELP
functions into the error messages for training purposes; personalizing
interactions and making them conform to the rules of good conversation;
using natural language protocols, particularly with novices; and providing
useful, system-initiated feedback and information that reduces the enormous
complexity of the tasks. These suggestions were discussed within the
context of an educational software authoring system, but the discussion was
intended to be general and apply to many computer systems.

240

An additional and very important point that needs to be raised in

conclusion, especially in the hope of stimulating further discussion, is
that this paper has not begun to address the complicated problems of
potential relations between on-line documentation and print documentation.
It should be clear that this has not been an argument for replacing all
hard-copy with on-line documentation. There is probably a need for both.
On-line documentation is designed for users at work on the computer, but
clearly students and others will do work at home or in other ways removed
from the computer, where hard-copy and manuals are clearly cost-effective.
Just because information can be presented on-line does not necessarily mean
that it should be. The particular uses that each serves best still need to
be thought out carefully, and need to evolve in response to the changing
circumstances of computer use.

REFERENCES

Brown, J.S., & Burton, R.R. Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 1978, 2, 155-192.

Feurzeig, W, , Horwitz , P., & Nickerson , R.S. Microcomputers in education.
B.B.N, report No. 4798, prepared for the National Institute of Education,
1981.

Ford, R. Human engineering problems of the person-computer interface. A
paper presented at a meeting of the Software Psychology Society, 1982.

Heines , J. M. The personal computer as an appliance. Problem I: Integrating
training and documentation. A paper presented at the International
Conference on Cybernetics and Society, 1981.

Nickerson, R. S. Why interactive computer systems are sometimes not used by
people who might benefit from them. International Journal of Man -Machine
Studies. In Press, 1982.

241

MBS flPS Software Uocumentati on Workshop. March 3. lyB2

Improving the Quality of User-Level Documentation
Remarks on Four Workshop Papers

Michael B. Feldman

Department of Electrical Engineering and Computer Science
School of Engineering and Applied Science

The George Washington University
Washington. DC 2UUb2

The four papers in this session are an interesting group. Further, the session

itself is interesting in that it is devoted to a discussion of user documentation in

a workshop whose primary purpose has been to consider problems in develjoper or

maintainer documentation.

Ty^es of Users and User Doc^u^mentati^on.

Let me first uistinguisn some types of documentation by making an analogy with

trie dutuiiiobi le. 1 know of at least five different major kinds of documentation

associ ated wi th cars:

0 Design drawings, made up by the designer but not detailed enough to build

the car from;

0 Shop drawings or blueprints, from which the (subsystems of) the cars are

actually built;

0 Mechanic's guides, or 'shop manuals" which enable a professional mechanic
to repair or maintain the vehicle;

0 Repair books intended for the amateur mechanic, which do not detail repairs

too delicate for the do-it-yourselfer to attempt;

0 Driver's manual, written in lay terms, which tells how to operate but not

repai r the automobile.

In general, this workshop has been concerned with documentation analogous to
the first four types, intended for people designing, building, maintaining, and
repairing programs. The present session is -- happily — concerned chiefly with
documentation analogous to that in the last category: documentation for people
usi^nj programs.

Now let us limit the scope of the discussion a bit by considering only users of

i nteracti ve programs or systems (this is not very limiting since most programs are
interactive these days anyway). In the research we have been doing, we have found
it convenient to divide these users into five groups:

0 Computer professionals like programmers or console operators;

242

0 Trained operators in routine environments, like bank tellers, airline
reservati oni sts, data-entry clerks or word-processor operators;

0 Trained operators in high-risk or complex environments, like power-plant
operators, air traffic controllers or military command/control operators;

0 Casual users, like attorneys or congressional staff using on-line retrieval
systems, professors writing papers on word-processors, or lay persons using
automated teller machines;

0 Uata analysts like statisticians or financial analysts: the so-called
"powerful minds using powerful tools".

With the possible exception of the third category, a typical interactive system
may have users in all of the classes, and at different levels of expertise. It is

thus clear that we face a non-trivial problem in organizing documentation to suit
the special needs of each class-

Can Programmers Understand User Uocumentati^on?

Experience also shows that technically-trained computer specialists do not
intuitively know how to prepare documentation for any of these groups. It is a

common saying that programmers don't like to document -- even for each other -- but
what is left out is that we often don't give them training in how to document, or
even in understanding the class of users for whom they're documenting.

I am reminded here of a group of experienced programmers responsible for a

paycheck-writing system in a data processing service bureau I once worked for. When
asked what their product was. they responded "programs", and were quite taken aback

when we assured them that their product was "paychecks", and that the client was not

concerned whether those checks came from a computer or a quill pen. only that they

were delivered on time with the right numbers on them! This bit of

consciousness-raising did help to put them on the track to understanding who their

users and their customers were.

In the university, while we do not usually have "real" users for whom the

students are producing programs, we do have some very real carrots and sticks,

called grades, that we can apply to make certain that our teaching about

documentation is taken to heart. Indeed. I and many of my colleagues assign as much

as 5U% of a project grade to the quality of maintainer and user documents. When

exposed to goou examples of documentation, carefully taught now to prepare them, and

given immediate positive and negative feedback about the results, even programmers

can learn how to do it.

Comments on the Session Papers.

Douglas Hi nes has given an interesting presentation on user-document

preparation in the House of Representatives. His experience shows that involving

the technical person to write the first draft of a document, then a representative

of the user to refine it, pays off handsomely.

Further, he makes a good point in noting that documentation has often not been

used in training new users; it is clear that incorporating the user documents into

user training helps the users to learn their way around the documents at the same

time they're learning their way around the system. This is important.

243

i nad hoped to hear more discussion aoout on-1 i ne documents in the House.

Kieir retrieval systems appear to be really modern and interactive from the start;
I'm thus a bit surprised that there is so much emphasis on paper documentation.

I'louern research on interactive systan development suggests that the right

"hooKs" to on-line documentation need to be integrated at desjg^n ti_nie; I hope to

see more of this notion applied in the government information systems of the future.

It is not in the least to denigrate the fine work done by Hines and his

colleagues to note that papers such as this were being written ten and fifteen years
ago. Quite the contrary, it is clear that the need for papers liKe this is still

great; users are not yet satisfied with the quality of their documentation. Hines'

work is then evidence of the persistence of a knotty problem.

I have attended a number of talks by Aaron Marcus, for audiences varying from a

small research group (my own) to several huge conferences. Every time I see his

visuals, hear him talk, or read his papers, 1 am intellectually challenged anew. As

a dyed-in-the-wool computer specialist, I am always amazed at how little I really
know of the world of graphic presentation (indeed, how little we in computing know
collectively about that world).

Marcus' work in interpreting graphic arts to computer professionals — and

computers to graphic artists — is very important in this era of relatively
inexpensive but powerful graphic displays, and in an era of increasing concern about
the human factors of user interfaces and the usability of user documentation. His

position as a working member of a group building interactive systems is a good
example of the steps enlightened technical managers can take to improve the visual

quality of their systems, and thus their acceptability to the user communities for

which they are intended.

The university research group 1 direct with my colleague James Foley — a

world-class computer graphics expert -- is working on tools to improve the quality
of user interfaces, including on-line documentation. The group has been exposed
several times to Marcus" teaching, and their very adept incorporation of many of his

recommendations into their own system designs is good evidence that hard-core
programmers can easily learn to apply good graphic design principles for use even on

simple alphanumeric terminals or teleprinters. I hope to see much more of this

"technology transfer" between computer people and graphic-arts people in the future.

Charles L)i ckson has given us another example of the benefits of cooperation
between computer specialists and people with other talents -- here cartoonists -- to
produce big improvements in the quality of documentation.

From the comic-book manuals designed for semi -1 i terate World War II draftees.
Dickson has taken us to IBM's experiment with comic-book manuals for some of their
researchers who are very literate indeed. If a comic book style can make learning
to use a new piece of equipment fun, or will encourage users to read their
documentation, then by all means let us experiment more with it. The success of The
Fortran Coloring Book by Roger Kaufman in introducing college students to the ins
and outs of this widely-used programming language serves to emphasize the potential
that is there.

Dickson's comment that documentation standards ought to be more encouraging to
those wishing to experiment with less conventional styles deserves careful
consideration by the committees which draft these standards.

Finally. Joseph Hsotka has given us a provocative glimpse into the world of the
behavioral scientists and their thoughts on how to incorporate sound human factors
into on-line documentation.

244

As we move increasingly into a world of interactive computer systems used by
people who are not computer experts, on-line documentation will become a key issue.
Indeed, it has become clear from recent research that the separation between on-line
documentation and the on-line system itself is unwarranted. More and more, on-line
documentation is an i ntegral g^art of the system itself, and needs to be carefully
considered from the very earliest stages of design of the system.

Psotka's comments about the unhelpful ness of "HELP" are especially important;
so are his remarks about current systems' forcing the user to abandon the context of

his problem to request HELP. Every system designer should take a long look at the
recent developments in the field of so-called "personal work stations' like the
Xerox Star, to get iaeas about how on-line assistance can be incorporated into the

dialogue through windowing and context retention.

For detailed discussion of this and related problems, the reader is directed to

the recent book Software Psychology by Ben Shneiderman, and to the classic work The

Psychology of Computer Progr ammi ng oy berald ^^einoerg.

nummary .

Mil in all tnis is a fascinating and provocative group of papers, uur

attention has been very effectively focussed on several of the many important issues

in user aocunientation. There are a lot of suggestions here to take to heart.

245

NBS FIPS Software Documentation Workshop, March 3, 1982

Session H: Quality Assurance for Documentation

Introduction

Virginia C. Walker

Quality Assurance Division
Office of Statistical Standards
Energy Information Administration

Department of Energy

Documentation and its quality is often predictive of the quality of the system that it

purports to document. This session approached quality assurance for documentation from
several directions, remembering that to perform quality assurance measurement, one must
have in mind quantitative and qualitative criteria.

In times past, there has been general concensus that people could agree what a document
ought to contain, via the checklist or table of contents approach, but how to

universally decide whether a document was good or bad remains elusive. Documentation
could be ascertained to be good, or bad, on a case by case basis, but the reasons why
it was good or bad were equally hard to describe.

In this session, the measurement of documentation quality was approached from several
directions. Richard J. Thompson described an effort to evaluate the documentation at

the Chemical Abstract Service; Caroline S. Levenson of Edition, Inc. described her

firm's experience in preparing user documentation for a varied clientele and relevant
,

aspects common to them; and Herbert Hecht of SoHaR, Inc. proposed a management tool for
successful achievement of requirements documentation. Then John R. Gabriel of Argonne
National Laboratory provided some general observations on documentation standards.

Participants in this session agree that the production of good documentation is not an

incidental byproduct of software development; concentrated effort must be given to

achieve a useable result, one which takes into account human factors and the realities
of continued change.

246

NBS FIPS Software Documentation Workshop.
March 3, 1982

Auditing Systems Documentation

Richard J. Thompson

Manager, System Records
Chemical Abstracts Service

Chemical Abstracts Service was an early proponent of and has a continuing
commitment to standards and guidelines for data processing documentation.
Recently, the organization performed an audit to assess the state of health of
its system documentation and to determine its current effectiveness in a techni-
cal environment which did not exist when standards were first put into effect.
The audit process, findings and analyses are presented as one company's set of
experiences. It is hoped that these experiences will serve to stimulate others
in examining their own systems documentation activities.

1. INTRODUCTION

Over a period of time, any system can become less efficient as it undergoes internal
change, or takes incremental steps to track its external environment. At some point, a

comprehensive audit of the current system and its environment needs to be performed to
gain a new overall perspective to act as a benchmark for future improvements.

Chemical Abstracts Service (CAS) introduced extensive changes to its system documen-
tation practices in 1972: A central library was formed to process and store computer
system documents and to control changes to system libraries, content and delivery require-
ments were revised, and the Standards Committee was charged with the review of all new
documentation requirements.

During the next eight years, CAS systems had progressed from a batch environment
using a single, large-scale computer to a distributed, online data base orientation. The

central library made similar technical advancements to modernize its internal processes in

capturing the increased volume and varied types of system and program documentation. But
in the transition, central library emphasis shifted to the operating level of documenta-
tion (versus general system level) needed for proper change control. At the same time,

the role of data-oriented documentation became more active as the needs for greater file

and database integrity materialized. Related database functions also matured which added

new components to overall system documentation in addition to individual systems applica-

tion.

247

NBS FIPS Software Documentation Workshop.
March 3, 1982

Given these evolutionary changes, CAS management requested an audit to examine and assess
the present state of EDP systems documentation. Implied in this overall objective was an

assessment of the following characteristics of system documentation:

0 Identity and purpose of system documents.

0 Compliance of actual practice with CAS documentation standards.

0 Documentation quality in terms of coverage, accuracy, currency, timing, and
utility.

0 Effectiveness of documentation with respect to cost and demands on the time of
design and maintenance staff.

2. BACKGROUND

2.1 Scope of Documentation Activity

It's estimated that 25 staff equivalents are routinely involved in the generation and
administration of CAS systems documentation. The central administrative function supports
the activities of 150 analysts and programmers as well as operations and user staff. The
documentation inventory involves approximately 200 systems, 12,000 modules, 8000 files and

3000 data elements. The administrative system was first established to be a storage point
for system documents and as a focal point for program change control. It has since grown

to provide a wide range of related functions which include library reference services,
maintenance of program libraries, data base records, physical tape and disk management,
file reorganization, recovery system design and operation, archive management and other
recording and consultive services.

The current cost of systems documentation at CAS is almost equally divided between
generation and administration of records. The cost of document administration has
incrased marginally over the years with the addition of newly centralized functions. The
cost of document generation is based on management's commitment to allocate 10% of all

project development work for documentation tasks, and thus will vary directly with the
number of staff involved in project activity.

2.2 Internal Documentation Guidelines

The CAS Data Processing Standards and Procedures Manual is the major reference for

guiding the preparation and control of documentation. Documentation and other topics in

the manual are regularly reviewed by a Standards Committee composed of technical and
supervisory staff.

In addition to the Standards and Procedures Manual, lectures on standards and
documentation are available on video tape and are mandatory sessions for systems develop-
ment programmer trainees. The standards lecture provides a general orientation on the

248

NBS FIPS Software Documentation Workshop.
March 3, 1982

reasons for standards at CAS, how to use the Standards Manual, how to locate forms and
procedures, and an introduction to the standards committee and Central Library activities.
The bulk of the documentation lectures emphasize techniques for making comments on list-
ings.

All training programs are required to be documented and are regularly reviewed by
Programming Groupleaders. Other documentation guidance and assistance for more
experienced staff is on an informal peer basis.

Guidance is more adequately provided for detailed operating-level documentation
(through training sessions, specific attention to forms, standards and procedures in the
manual) than it is for general -level systems documents. The content of these
general -1 evel documents (user requirements, conceptual design, system summary, and user
manuals) tends to be flexible and thus reflects the general guidelines and suggestions for

topic content appearing in the manual.

3. THE AUDIT PROCESS

3.1 Audit Scope

The documentation examined in the audit is that associated with the development,
operation, maintenance, and use of CAS computer systems. The itemized list of specific
documents is lengthy, but in general it included systems and program documents, data base

and run documents, and user and operating manuals. Collectively, these items constitute

the CAS systems documentation end product. Control type documentation was addressed only

to the extent that it contributed to the analysis of the documentation process. Thus,

such items as project management/control documents, forms, logs, and transfer documents

involved in the process of preparing the systems documentation end product were not

treated extensively in the audit.

3.2 Audit Staff

The audit team included representatives from the systems development, operation,

maintenance, and records areas of the organization.

Groupleaders from the Systems Development and Research Departments were also involved

in audits of individual systems. Project Leaders reviewed the results of these audits and

approximately 100 staff from 18 development, operating, and using departments participated

in a survey of documentation usage.

249

NBS FIPS Software Documentation Workshop.
March 3, 1982

3.3 Audit Method

Exploratory work was first conducted with R&D department and division management and
an independent consultant to outline the purpose and scope of the documentation audit, and
to develop and clarify sub-objectives. A detailed work plan was generated as a result of

these meetings.

The CAS Data Processing Standards and Procedures Manual was reviewed to identify the
items which constitute the systems documentation end product. This step developed a

working control list of documents against which individual systems were audited.

Seven systems were audited for compliance against the control list. Auditors with
various systems experience and perspective also reported on the quality, completeness,
timeliness, and accuracy of the individual systems. Results were then discussed with the
relevant project leaders. The systems selected included in-process and production sys-
tems, large and small, online and batch, and other varying characteristics to provide a

reasonable sample for observing differences in documentation results.

Two hundred survey questionaires were issued to staff in 18 CAS departments to deter-
mine the predominant reasons for using documentation, the frequency of access of various
documents, and the availability and utility of systems documentation in general.

Audit staff also collected other pertinent data to describe the scope of the documen-
tation activity at CAS, its costs, and staff involvement; to generate critiques of various
processes; and to collect suggestions for improvement.

4. AUDIT FINDINGS

Overall findings of the 1980 documentation audit indicate that the current CAS system
of preparing and maintaining documentation still adequately serves the system development
and operations process. The areas needing improvement focus on more prompt delivery of

general level documentation produced during system development (vis-a-vis more specific
operating documents). The survey also revealed how documents are most used by staff and,

therefore, pointed the way in which improvements should be installed to gain the most
benefit in terms of document utility.

4.1 Individual System Audits

Documentation audits were conducted on seven CAS systems. The systems characteris-
tics varied as to development and production status, online and batch, 370-based and

distributed, long and short development periods, and systems developed and documented by

different R&D organizational units.

250

NBS FIPS Software Documentation Workshop.
March 3, 1982

The audits revealed no documentation deficiencies that were peculiar to a given type
of system. Each system had most of the specified documentation; but most systems were
missing documents that the Standards Manual said should exist. (Note: "missing" is
defined as not deposited in the Central Library).

The audits could not determine why any given system had relatively more comprehensive
documentation, or more prompt delivery than another system. Highly visible projects with
high development priority might be expected to have more complete and higher quality
documentation. Yet, the chances seem to be even that full documentation will or will not
be delivered. The only conclusive pattern is a lack of consistency in controlling the
delivery of documentation.

4.2 Documentation Survey

4.2.1 Is Documentation Used?

The survey found that all the documents generated within the development, operating,
and using range were being used. It was also found, not unexpectedly, that, di fferent
groups of people used some documents more than others. Analysts and Managers mentioned
the system description and program documentation most frequently; programmers overwhelm-
ingly favored the module listing and Data Base Documentation; and users mentioned user
manuals and the system description. In the composite group of 94 respondents, each of the
8 classses of documents received between 51 (run doc) and 70 (DB doc) mentions.

4.2.2 What is Documentation Used For?

One might expect that the original purpose of having documentation at all would
correspond with staff's reasons for using it now, and this purpose would be to run a

system or to make changes to it. It turns out that "changing the system" and "system
orientation" are the leading reasons (a tie) why staff use documentation. "Operating the

system" fell behind (by 60%) such choices as "designing new systems," and "debugging;" but

ahead of "generating their own documentation."

Although the users need documentation to operate the system (60% of the respondents
said so), they also need it for debugging, orientation, changing the system, and gener-

ating documentation. This interest indicates a larger scope of technical activity in the

CAS user community than previously experienced due to the rotation and migration of data

processing staff to user groups.

4.2.3. Which Documents Are Used Most Frequently?

The indisputable answer to this question is the module listing. This is based on

responses to the question, "How often (expressed in percentages) do you access each of

these documents?" Analysts and Managers use the System Description, and then the listing

most often. Listings are by far the most accessed document for programming use. The user

manuals and run documentation are the significant references for users. Weighted accesses

251

NBS FIPS Software Documentation Workshop.
March 3, 1982

for the composite population show that the listing leads all documents by a wide margin;
the remaining documents are in a narrow access range with user manuals on top.

The audit team noted that the utility of the listing has become more important since
module documentation was recently incorporated into it via standard comments. This fea-
ture is also expected to improve the currency of that documentation.

4.2.4 Does Documentation Satisfy Needs?

Given a choice of "never/usually/always," the predominent opinion of staff is that
documentation usually meets their needs. There were many qualified responses to this
question ("usually, but ... "), and half the staff offered specific suggestions for adding
to, deleting or expanding various documents. From these and other general comments, the
audit team interpreted the response as an overall satisfaction with the existing documen-
tation, but that staff feel there is a definite need for improvement.

Listings and data base documents received the highest marks in relevancy for staff
needs. The system description, program and module documentation received the lowest.

General comments reflected the opinion that there is little confidence in the currency or

accuracy of this general level documentation.

At least half the time, staff go to some other person for help in answering their
questions. This occurs in cases where documentation can't be found, or doesn't address a

particular question. The source most often named was the "system expert," then the
"user," then the code itself. Programmers preferred to ask other programmers or refer to

the code, while the "users" main source of reference was a programmer.

4.2.5 What References Are Used in Preparing Documentation?

None of the respondents relied on any single source of help in generating their own

documentation. Analysts and Managers and Programmers most often used the Standards Manual

and existing system documentation for help; Users relied on other documentation and peers.

In the composite sample, references were cited in the following order: other documenta-
tion, Standards Manual, peers, supervisor, no help needed (even these respondents checked
a second source - usually the Standards Manual or other documentation), and training
classes.

4.3 User Documentation

In conducting the audit, team members expected more vocal complaints about user
documentation than were actually received from users. But, users sided with other staff
in expressing major concern with the currency of other documentation as well as user doc.

Audit results were revealing in that users have the same functional reasons and
access the full range of documents much as their analyst and programmer counterparts do.

252

NBS FIPS Software Documentation Workshop.
March 3, 1982

This reflects a greater degree of staff experience and more project participation and
which in turn indicates a larger scope of technical activity than expected in the CAS user
community.

In addition to the several systems cited for which user documentation is

non-existent, User's prime concerns were as follows:

0 More detail is needed, completeness of run documentation and flow charts.

0 The need for more user-oriented documentation and less computer jargon.

0 Better coordination of changes.

0 Identification of document authors and purpose of changes.

0 Better documentation of computer reports.

0 Removal of redundant or useless data.

5. ANALYSIS AND RECOMMENDATIONS

The recommendations of the audit team dealt directly with ensuring an improved level
of currency of system documentation. It was recognized that the currency problem had many
attributes. Documentation could be missing (from the Central Library), incomplete, lost,

late and/or inconsistently revised.

In fact, one of the major symptoms of poor currency observed in the audits was that
detailed operating and data base level documents were not consistently reflected in the
more general systems and program documents. As a result, programs and data sets currently
in use for a system were reflected in operating level documents but were not identified in

the system. There were also instances where system A used copy code from system B and was
unaware of subsequent changes to system B. Some detailed changes were observed which
altered the logic of a program or function of a system, but documentation was not revised.

Specific recommendations were made to correct several administrative and control

faults which contributed to the currency problem.

5.1 A Separate Documentation Manual

The CAS Data Processing Standards and Procedures Manual is a major reference source
for guiding the preparation and control of documentation. Documentation gets extensive
treatment in the Manual, but specific procedures are scattered and imbedded in other
dominant topics. Given the level of indexing and cross-referencing in the manual, it

becomes necessary to leaf through the Manual for a thorough and complete understanding of

the subject. There are also many ambiguities in delivery requirements, document intent,

audience, and responsibility for preparation.

253

NBS FIPS Software Documentation Workshop.
March 3, 1982

A separate manual has been proposed for comprehensive treatment of the whole spectrum
of documentation activity. This will sharpen the focus on the topic, become a single
authoritative guide for training, and an ongoing reference.

5.2 Standardized Composition and Terminology

Elementary controls are being established which will eliminate problems caused by
inconsistent use of terminology and document composition. For example, system documents
delivered to a central function may use different titles. Further, they may be packaged
in notebooks with still different labels. As a result, documents sometimes cannot be

recognized for what they are. Positive statements will be used in following outlines,
since it can't be determined if gaps in documents are a result of omission or commission.
Other composition faults include the lack of dates or author names; missing tables of
contents, bibliographies, and reference lists; shortcut methods (e.g. "see REFAID") which
are not explained; and forward references (e.g. "see (other) Program X for halt log")

which may not exist or may have been changed independently.

5.3 Unified System Document

A system's documentation becomes fragmented when there is no single storage point

which collects all the information on a system and when existing documents are organized
for ease in internal use or for individual department convenience. The Central Library
itself will file module listings, program documentation, run documentation, data elements,
run procedures, etc. in different areas. Pertinent system memos and reports may exist in

other department files. Detailed run documentation, data set definitions, and file
recovery procedures are processed and stored in still other organizational units.

This may not be a major cause for concern with knowledgeable staff available in-house
who know what to expect in systems documents and where to go to find the missing pieces.
However, it becomes a significant problem when it is necessary to transfer all written
systems knowledge out of house to colleagues, archives, or users. With each occurrence,
there is a non-trivial amount of staff time expended to: 1) identify what belongs to the
system, 2) where to cut off the successive system/program dependencies, and 3) collect
the information.

To correct this situation, CAS is reviewing its document delivery criteria for sys-
tems development and will emphasize the use of a single systems notebook which will

include an inventory checklist of related documents, consistent use of bibliographies,
standard nomenclature, and references.

5.4 Document Delivery Controls

General level documents generated during the system development process are typically
delivered much later than system installation. Operating level documentation (data base
and run documentation) is normally current because of its forms-driven processing, produc-
tion involvement, and machine level control. The central Library may merely accept and

254

NBS FIPS Software Documentation Workshop.
March 3, 1982

file documents that are delivered without any attempt to determine or enforce what should
be delivered. Any of these factors prevent the Library from guaranteeing any level of
integrity of system documentation.

CAS plans to continue to enforce documentation requirements for production software
changes. Unless proper documentation is submitted, the job will not run: there is no

appeal. Periodic audits for missing documentation will also continue. A standardized
form of documentation checklist will be reviewed by Project Leaders and Managers for
individual applications systems. The checklist will be used by the library to determine
what documents should be delivered. A collection of checklists will form the basis for
total inventory of CAS systems documents.

5.5 Document Trace Procedure

To some extent, the overall documentation environment will continue to be fragmented,
and staff will still rely on their experience and knowledge of what data base reference
aids exist or what information is contained in listings and program libraries. The audit
team has proposed a written guideline which prescribes how to identify, trace., and collect
the pertinent documents of a system. The trace procedure will describe common procedures
of document administration and specify (e.g.) how to identify modules called by other

modules, what Data Base or general purpose utilities are needed to run the system in

question, where to find and how to use inventory lists and references which are located
in other physical areas.

6. MANAGEMENT ENVIRONMENT

A final point worth mentioning is that no documentation function can ever expect even

a near perfect document compliance and currency environment without strong management

support. CAS is continuing its commitment to quality documentation by implementing the

recommendations proposed in the audit and incorporating them with the results of a paral-

lel effort to review and analyze the systems development methodology and its deliverable

documents.

CAS expects that in implementing these improvements, it will be in a better position

to support such new advances in its technical environment as Programmers Workbench,

UNIX-based systems, office automation and electronic transfer of information.

255

NBS FIPS Software Documentation Workshop, March 3, 1982

Use of the Users Manual as a Quality Control Tool

Carol ine S. Levenson

Edition, Inc.

The preparation of user documentation should be viewed as a quality
control task. In this task, a documentation specialist reviews the
developed system, its user interfaces, and operatinq procedures to
verify that all functions are integrated oroperly and that user reauire-
ments have been met. However, to serve as a quality control vehicle,
the Users Manual standards prescribed by FIPS PUB 38 must be modified
to stress the user's information needs rather than the system's internal
components.

Keywords: Quality control; Quality control tool; Users Manual; System
Verification, User information.

1. INTRODUCTION

Computer documentation is usually the last task to be performed in a system
development effort. While this is not ideal, it is a very real situation and can be used
to advantage if the documentation orocess is used as a nualitv assurance or control task.

This paper discusses how the Users Manual in Federal Information Processing
Standards (FIPS) Publication 38 (FIPS PUB 38) [1] could be used, with some modifications,
as a guideline for this tvpe of auality control. In this discussion, the current Users
Manual contents are evaluated* and changes are sugaested.

2. RECOMMENDATIONS

The following are recommendations for changes to the current Guidelines for user
documentation:

1. One or more Users Manuals should be prepared for any new system to describe
the overall use and intent of the system and its products as well as all

system interfaces and reauired procedures. Regardless of size, any system
is a failure if its user(s) can not understand and effectively work with
it and its data products.

2. The Users Manual should not be a restatement or cooy of information presented
in previous documents (e.g., Reouirements and Specifications) in the system
life cycle.

3. A documentation special ist(s) who has not been responsible for hands-on
development work should be assigned the task of preparing the Users Manual(s)
This person should be free of the assumptions and built-in oartiality that

exist for members of the development team and, thus, could review the svstem
from a ouality control perspective.

4. In developing user documentation, the documentation specialist nerforms a

quality control function by verifying that the user's reouirements were
fulfilled by the developed system and that the procedures (e.g., data entry,

report analysis, and operations) for user interaction are correct and can be

carried out efficiently by the designated user renresentati ves . This veri-
fication process should be thorough to be meaningful and may entail a wide

variety of activities, such as (1) interviews with the user to review expecta

tions and requirements and to determine the availability and skill levels of

256

NBS FIPS Software Documentation Workshon, March 3, 1982

persons who will interface with the svstem and (2) detailed wal k-throughs of the
procedures with existing test data or other specially prepared data.

3. THE QUALITY CONTROL FUNCTION

3.1 General

Documentation is currently considered a reoortina task in which the development
team passes along the information it has gained durino the system life cycle. The drawback
to this involvement in both development and documentation is that the develooment team is

usually too familiar with the system and can not divorce itself from a development per-
spective. Also, a conflict of interest could arise if accented svstem specifications are
found to have incorrectly translated user reauirements or were not undated with channes in

those reauirements. Conseauentl y , the development team can not review what it has done
with impartiality for documentation or ouality control purposes. This is especially true
with user documentation, which would require the development team to steo out of its
natural role and "think like a user."

Documentation can and should be more than a recordina of the development team's work
to date. It should be a final aooraisal of the completed product and a description of how
it fulfills all of the user's requirements, as well as a description of the internal system.
It also should be prepared by a documentation specialist, who, like his counterpart in

industry, is "outside" of the development team and checks the svstem to verify that expected
capabilities, functions, and characteristics do indeed exist. This check can be as

straightforward as comparing the developed svstem against Reauirements Documents and
System Specifications or as extensive as performing a series of wal k-throuahs of developed

system procedures, interfaces, and products. In the latter of the two efforts, the

documentation specialist is transformed into a mock user and simulates the "live" situa-

tions and problems with which the ultimate user and svstem must cope.

As discussed by the General Accounting Office (RAO) in a report to Connress on the

problems of computer software development contracts [2], systems are often designed and

developed hastily with inadequate or no testing and documentation. This leads to the

unfortunate result that the users, who most often are the ones paying for the development

effort, are left with inadeauate systems or systems that they can not or do not know how to

use. Modification of the Users Manual guidelines and the use of a documentation specialist

to perform the quality control function should improve the quality and usability of

developed systems and reduce the development team's post-implementation level of effort.

3.2 Documentation/Quality Control Tasks

The main activities of the documentation specialist in preparing user documentation

and performing quality control should be to:

t Review existing documentation (e.g.. Functional Reauirements Document and

System/Subsystem Specifications).

• Interview all user groups that will interface with the system plus selected

development team members (as necessary).

• Review all svstem output for desired format, usability, and data auality.

t Check program code as necessary to obtain suDoorting information, such as

calculations performed, validation criteria, error messages, and general

processing characteristics.

• Prepare procedures for user interface points, including at least data

preparation (completion of input forms), data entry, error correction, output

distribution, and output analysis.

257

NBS FIPS Software Documentation Workshop, March 3, 1982

A11 of the above activities are necessary for good user documentation, because thev
look at system aspects that are visible to the user. In order to evaluate procedures that
have been developed for the user, the documentation specialist must identify with the user,
not the development team, and perform all involved steps. In so doing, he is the original
integrator of the entire processing scheme and can decide whether or not all user
requirements have been satisfied.

4. USE OF USERS MANUAL AS DUALITY CONTROL TOOL

4.1 Scope

The prescribed Users Manual in FIPS PUB 38 contains detailed information on the
system software so "the user organization can determine its applicability and when and
how to use it." This quotation from FIPS PUB 38 points out the main difficulty with the
Users Manual standards both in terms of educatina the user and in performing system
qual ity control

.

The goal of the Users Manual should be to show the user how the system is applied,
including when and how, rather than providing him with the information from which the
when and how can be derived. This information is aathered and verified by the documentation
specialist from his detailed review of the system and all developed user procedures.

The Users Manual should be an outgrowth, not a repeat, of the Functional Requirements
Document. However, parts of this document often are copied and transferred to the Users
Manual without review or verification. Also, one Users Manual usually is not sufficient to

cover all unique user groups and their information requirements and procedures in detail.
A separate Users Manual should be prepared for each major interface point/user group or set
of unique procedures. However, the FIPS PUB 38 Users Manual as it now stands is a general
management overview instead of an individualized document for different user groups.

Each user group must understand its specific role in the processing scheme and must

be given detailed instructions to follow or the entire system, though perhaps 100 percent
code perfect and efficient, will not succeed. User ignorance, distrust, and misunderstand-
ing are definite causes of many system failures and must be circumvented by improved user
documentation.

The following paragraph describes the FIPS PUB 38 Users Manual and discusses what
changes are necessary to better address user needs and serve as a guideline for quality
control of the system. Tables 1 and 2 should be reviewed in conjunction with this

discussion, because they show the current content outline for the Users Manual and compare

the current guidelines with proposed changes.

4.2 Review of Users Manual Sections

4.2.1 General Information Section

The first section of the Users Manual is a synopsis of the system and its applica-

tion by the user. Unfortunately, the prescribed contents do not emphasize the crucial

difference between this and the general information sections in other FIPS PUB 38 documents

and specifications.

Because of this similarity, this section is often copied from other existing

development documents, even though the intent of this manual should be user- rather than

development-oriented. This section should tell the user why the system exists and why he

needs it as well as how the system will helo him to do his job better. This is far

different from simoly summarizing the "application and general functions of the system" as

is prescribed in FIPS PUB 38.

258

NBS FIPS Software Documentation Workshop, March 3, 1982

TABLE 1

FIPS PUB 38 Users Manual Contents

SECTION 1. GENERAL INFORMATION

1.1. Summary
1.2. Environment
1.3. References

SECTION 2. APPLICATION

2.1. Description
2.2. Operation
2.3. Equipment
2.4. Structure
2.5. Performance
2.6. Data Base
2.7. Inputs, Processing, and Outputs

SECTION 3. PROCEDURES AND REQUIREMENTS

3.1. Initiation
3.2. Input

3.2.1. Input Formats
3.2.2. Sample Inputs

3.3. Output
3.3.1. Output Formats
3.3.2. Sample Outputs

3.4. Error and Recovery
3.5. File Query

Comparison of Current and Proposed User Manual Guidelines

TABLE 2

CURRENT GUIDELINES PROPOSED GUIDELINES

1. GENERAL INFORMATION

1.1 S umma ry

Summarize application and general function
of software.

Summarize information needs solved by system
and describe user interfaces and uses of
system products.

1.2 Environment

Identify user organization and computer
center where software is installed.

Identify user organizations and eauipment
used in system interaction; also summarize
computer capability, location, and availability,
as well as contacts for solving equipment and

related problems.

259

NBS FIPS Software Documentation Workshop, March 3, 1982

TABLE 2

ComDarison of Current and Prooosed User Manual Guidelines (Continued)

CURRENT GUIDELINES PROPOSED GUIDELINES

1.3. References

List of project authorization, existing Same content as current guidelines,
project documentation and reference docu-
mentation, and FIPS oubl ications

.

2. APPLICATION

2.1.

Description of when and how software is used
and unique support provided to user organi-
zation, including purpose of software,
capabilities and operating improvements
provided, and functions performed.

2.2.

Description of operating relationships of
functions described in Paragraph 2.1. Also,
security and privacy considerations and flow
charts or descriptions of input/outout are
provided here.

2.3.

Description of equipment on which software
can be run.

2.4.

Show software structure and describe role of

each component in operation of software.

2.5.

Describe performance capabilities of soft-

ware, including quantity of input/output,
response time, processing time, error rates,
and qualitative information about flexi-
bility and reliability.

2.6,

Descri ntion

Same content as current guidelines, except for
more emphasis on user information needs rather
than software. Also, an Application section
should be prepared to address each specific
user group separately in different manuals.

Operation

This area should be renamed "User Interface"
to describe input/output interfaces rather
than software functions and processing. As

with all Apolication section paragraphs, it

should address each user grouo individually.

Equipment

Overview of the equipment used by the user

in interfacing with the system as well as

detailed instructions on use of this equipment.

Structure

If this area is to be included in the Manual,

it should be put at the end of the manual,
since it is system-oriented information.

Performance

Description of interface work cycle, starting
with initiation of data through analysis and

use of data products. Also schedules for

work cycle stages. Ideallv, this area should

be a subset of 2.2, Operation. However,

system-oriented information, such as that

covered by ctirrent Guidelines can be imnortant

and could be included in one system-oriented
section at the end of the manual.

Data Base

Description of data files being used by Same as current guidelines, but including

system and the purpose of each file. information on update, backup, and other

functions related by the data base. This
section should be at the end of the manual

260

NBS FIPS Software Documentation Workshop, March 3, 1982

TABLE 2

Comparison of Current and Proposed User Manual Guidelines (Continued)

CURRENT GUIDELINES PROPOSED f^UIDELINES

2,7. Inputs, Processing, and Outputs

Description of inputs, flow of data through This area should be eliminated, since 2.2,
processing cycle, and resultant outputs. Operation, should include this information.
Also relationships among inputs and outputs.

3. PROCEDURES AND REQUIREMENTS

3.1.

Description of step-by-step procedures used

to initiate processing.

3.2.

Definition of requirements for preparing
input data and parameters

.

3.3.

Definition of reauirements relevant to

each output.

3.4.

List of error codes or conditions nenerated

by software and corrective action taken by

user.

3.5

Detailed instructions for initiating,

preparing, and processing query of data

base wherever applicable. Also instructions

for use of terminal if necessary.

Initiation

Description of actual completion of any source

documents, including both data content and

coding and processing flow.

Input

Since 3.1, Initiation, covers the preparation
of the input data, this area should cover the

actual procedures for data entry. These pro-

cedures must be step-by-step details of what

the user must do to enter data and what the

system will respond with, if applicable. If

error correction is not elaborate, it should

be included in this area instead of 3.4,

Error and Recovery.

Output

Same content as current guidelines, but with

emphasis on analysis of data content and use

of data.

Error and Recovery

This area should follow 3.2, Input, immediately

or, in the case of basic correction of input

data, should be included in 3.2. The content

is similar to the current guidelines, but

emphasizes procedures for error correction

and recovery before listing error codes and

detailed corrective actions.

File Query

Same content as current guidelines, but

instructions for use of terminal should

have been described in the Input area. Thus,

the content should reference basic instructions

in that area while stressing only ouery-related

instructions here.

261

NBS FIPS Software Documentation Workshop, March 3, 1982

The following bulleted items describe suggested chanaes in terms of the major
questions that a user wants answered in this section.

• Why. This should be answered by 1.1, Summary. It should tell why the
system is being developed, which, generally, is to help the user to do his
job faster and more efficiently or productively.

• How. This should be a description of the major functions and caoabilities of
the system dIus a reiteration of the authorizina publications or documents in

1.3, References. However, to eliminate the need for uodatina due to changes in
the documents covered in 1.3, references to, rather than summaries of, such
documents would be preferable.

• When and Where. These questions should be answered by 1.2, Environment, which
should be more than an identification of user groups and the comouter center.
It should provide the timeframe (e.g., quarterly, monthly) of a processing
cycle and pinpoint the individual user groups involved in the function or
interaction being documented.

This section should also describe the major user interface points in general
terms and describe how these interfaces are achieved (e.g., online terminals,
batch processing, and remote printout and delivery).

4.2.2 Application

This section presents an overview of how the system is used. Currently, it combines
all user groups into one composite user and tries to describe the duties and processing
schedules of this fictitious user.

The Application section should be divided into separate sections with appropriate
information for each user grouo mentioned in the General Information Section (as revised).
Or, if user groups are distinct enough and the interaction procedures warrant it, each user
group should be addressed in a separate manual entirely. If the FIPS PUB 38 standards were
changed to prescribe one Users Manual for each distinct group, such as the day shift of a

keyounch division or the budget analysts within an accounting department, this section
would address each subaroup within the major user group.

Other recommended changes for this section are described in the following bulleted
i terns

.

t Section 2.2, Operation. This subsection of the Users Manual should be renamed
"User Interaction" (or "User Interface"), because it should describe the input

and output interfaces rather than the operation of the software. The user,

after all, is most concerned with what he must give the svstem and what he

gets back from it (and other users). He is secondarily interested in how the

system functions in receiving and producing data.

A graphic illustration of the user processes providing the innut and the

system and related processes producing the output would be very useful here.

In addition, expected quantities, timeframe, and a description of the normal

processing cycle are very important to the user and should be included in

this section.

® Section 2.3, Equipment. The equipment used by the user may include online

terminals or require the establishment of procedures for interaction with the

equipment. These should be outlined here and detailed in Section 3, Procedures

and Requirements. For example, users may never have used online terminals

before and the Users Manual must tell them how to do so as well as how to work

with the application software. It also must tell the user about equipment-

related considerations, such as who to call if equipment fails or if the

application software is "down." Indeed, it should help the user become

262

NBS FIPS Software Documentation Workshoo, March 3, 1982'

knowledgeable enough to resolve minor eouipment problems himself and to at least
try to determine whether a oroblem is software or hardware caused. This is

very important to making the user independent of the development team and con-
fident that he knows somethino about his system and equipment.

• Section 2.4, Structure. This section should be placed adiacent to Sections
2.6 and 2.7, since they all relate to system functions and renui rements . (How-
ever, if proposed chanqes to 2.7 are accepted, that section will no longer
exist.

)

4.2.3 Procedures and Reoui rements

This section presents information about "initation procedures and preparation of

data and parameter inputs for the software." This is reasonable, but it does not take
the user far enough. The user needs to know how to initiate processina (includino creatine
source documents and entering data into the system), but also needs to know how to analyze
any system feedback (such as errors and general system-related information) and how to

understand his output. Although these items are covered in the bodv of the section,
their lack in the overview points out again the need for makina the Users Manual more
user-ori ented

.

Specific changes suggested for this section are described in the following bulleted
items

:

• Section 3.1, Initiation. The majority of this section should follow the

discussion of system input (Section 3.2). However, an overview of the aeneral

processing flow, such as a flow chart or other visual depiction, plus a brief
narrative should be left here.

f Section 3.3, Output. The main change to this section is the need to emphasize

how the output data is used. For instance, Section 3.3.2.C describes some

characteristics of the sample report, but it does not describe any inter-

relationships of reports or the use of calculations or formulae in oroducina

the data values. Also, the definition of the sample report does not stress the

overall meaning and use of the output, which is very important when many types

of outputs are being produced for the same user. Also, output formats (3.3.1)

without meaningful data are useless. The definition of output contents and

format should accompany the sample reports.

• New Sections. An additional section is needed to describe computer-related

capabilities or requirements associated with the input and output of the

system or the user's interaction with the system. Examples are the procedures

for obtaining general system information (e.g., system messages and processing

queue information), maintaining a logging system for input, and distribution

of output to the user.

Also, appendices of error messages and correction procedures and data code

tables should be included in the Users Manual. A glossary, wherever possible,

would also be helpful to the user.

NOTE: If the appendix approach to providina error messages and correction

procedures is used, it should be for situations where the number of error

codes is voluminous and would be too bulkv to include in the middle of

the manual in Section 3.4.

5. SUMMARY

Although the current FIPS PUB 38 ouidelines prescribe a Users Manual with a great

deal of information, they do not provide it in a manner that is appropriate for the system

user. Indeed, much of the information itself is about the workings of the system rather

263

NBS FIPS Software Documentation Workshop, March 3, 1982

than how the user can work with the system. Therefore, the current guidel ines need to be
rewritten to cater to the user's information needs. Bv imorovina the aualitv of information
that is supplied to the end user, a revamped set of Guidelines should increase the usability
of systems and thereby ensure that the user nets what he pays for.

The prenaration of the Users flanual is a task best suited to an individual who is

not responsible for developina any part of the system to be documented. This individual is

the documentation specialist, who must identify with the user and be able to document all

procedures, however small, that must be performed by the user in interactina with the system
In documenting these procedures, the documentation specialist must simulate the user
environment and thoroughly check each procedure to ensure that it as well as the system has
been developed properly and answers the user's stated needs.

The assignment of the documentation soecialist to the task of preparing the Users
Manual enables the documentation orocess to become more than a recording of facts and
procedures. It enables the process to serve as a Quality control on the system, user
interfaces, and procedures. This quality control effort has not been adequately addressed
by the data processing community. However, the marriage of the user documentation and auali
control efforts into a single task makes this function more feasible, while increasing the
accuracy of the documentation itself.

6. REFERENCES

1. National Bureau of Standards, U.S. Department of Commerce, Guidelines for
Documentation of Computer Programs and Automated Data Systems , FIPS PUB 38,

U.S. Department of Commerce, Washinoton, D.C., February 15, 1976, 55 p.

2. U.S. General Accounting Office, Report to Congress: Contracting for Computer
Software Development -- Serious Problems Require ^^anagement Attention to Avoid
Wasting Additional Millions , U.S. General Accountinq Office, Washinoton, D.C.,
November 9, 1979, 84 p.

264

NBS FIPS Software Documentation Workshop March 3, 1982

REQUIREMENTS DOCUMENTATION - A MANAGEMENT ORIENTED APPROACH

H. HECHT

SoHaR Incorporated
Los Angeles, Ca I I f orn I a

ABSTRACT

The needs of post-design software life cycle phases are not
met by present requirements documentation, and It is
suspected that large economic losses are thereby being
incurred. Requirements documentation Is not being kept
current. It is frequently too detailed, and the format
Inhibits use by the management levels that most need It In
the later phases. To overcome these obstacles, a
hierarchical structure for software requirements
documentation is proposed that (a) limits the size of each
volume so that It can be easily handled and read, (b)
addresses specific Information needs at each management
level, and (c) Is easily maintained. The hierarchical
documentation Is supplemented by a single volume that
contains general project Information. Both the structure
and the content of suitable documentation are described.

Key Words: Requirements documentation, software management, software
maintenance, software requirements.

1. INTRODUCTION

In the course of a survey of software tool usage conducted for the National Bureau of
Standards, software developers were asked the question "What are the major software problems
In your environment?" Of 17 Individual problems Identified In response to this question,
the largest number, seven related to requirements, and the next highest category was
maintenance for which four problems were mentioned CHECH813. The participants Involved In

this survey were too few to permit very conclusive statements to be formulated. However, It

must be surmised that requirements and maintenance together (and these are related, as will

be shown) are Indeed high on the list of problems that beset the software community.

The detailed complaints voiced In the requirements area were that requirements are not

stated In a form suitable for software development (this will hardly come as a surprise),
that they are not kept updated after the initial design phase, that even had they been
current, the documents are not In a format useful for maintenance organizations, and that
the most pressing questions that arise In later life cycle stages are not addressed. The

maintenance problems mostly related to the fact that the available documentation was too
detailed to provide the needed overall perspective for personnel who have not participated
in the original development — read: lack of requirements documentation.

The larger manifestations of the problems voiced In the survey are familiar to most software

managers responsible for large systems:

Inability to Improve the performance of a frequently used module because no one Is

certain why obviously Inefficient control or data structures, multiple
Initializations of a single variable, and multiple loops for what appears to be a

single Iteration sequence are necessary

265

* the necessity to guess the amount of effort required to achieve a new Interface or
to implement a new function because the time available for furnishing an estimate
does not permit digging Into the detail level (and that is the on I y< one for which
current Information exists)

*the large effort required to develop requirements for a new system that is Intended

to be functionally equivalent to an existing one.

The root cause of these problems Is that most requirements documentation (or what survives

of It after the Initial design phase) is being prepared by programmers for use by

programmers. These documents do not address the needs of managers who have to make
decisions about program redesign, program enhancements, or possible replacement of an entire
software system. Yet, these decisions have very large economic consequences, and the lack

of Information Is very costly. On the other hand, furnishing this Information, if It Is

made an Integral part of the software management process, is quite inexpensive.

The thesis of this paper is therefore to suggest an economical means for Implementing
management oriented requirements documentation that

* supports the needs of the post-design phases
* is easily maintained
* serves as top level of an overall requirements structure.

The purpose to be addressed by the proposed documentation is amplified In the following
section. A specific structure and formats for the new documents are then described, and

suitable interfaces with existing formats for requirements are discussed. It Is believed
that the resulting documentation will be especially suited for medium and large scale
software or total Information processing systems.

2. USES OF REQUIREMENTS DOCUMENTS

The conventional view is that requirements documents are being generated during the
Definition Stage of the Development Phase to guide later efforts in the preparation of

specifications and other Design Stage documents. This constitutes Indeed a major purpose of

requirements documents, and it Is the one addressed by significant studies In the field

IIYEH80, ALF077I1 and by software tools for the automation of requirements documentation
CIEEE77I]. But It Is by no means the only one. Other Important uses for requirements
documents are:

Test Case Generation - Initial and updates

Software Maintenance - identification of possible deletions

Major Modifications - definition of the required changes

Replacement - point of departure for new requirements.

All of these take place late In the Development Phase or after It Is complete. It is

frequently held that at that point in time there Is no longer a need for requirements
documentation since 'more definitive' (really meaning more detailed) reports and
descriptions are available. Although the Importance of requirements documents In later life
cycle phases Is acknowledged In several of the previously cited references and Is the
specific subject of a more recent study [DAVISO], there has been little published on the
format and content of requirements documents that addresses their use In the post-design
period. Because of this neglect, requirements documentation Is not kept current, and this
can have very adverse cost, schedule, and performance Impact on later activities as Is shown
by some examples below.

The generation of at least a portion of the test cases from the requirements document (as

distinct from the specification or program description) facilitates the discovery of

mistakes In the translation of requirements Into the subsequent documents. Under most
current practices the use of the requirements document as a basis for test case generation
uncovers Inadequate updating of the requirements more frequently than It uncovers design or

266

programming errors. Test cases are therefore generated without reference to the
requirements, and an important source of software errors is being neglected In the test
program.

Practically all software contains segments or features that support temporary requirements
such as handling an old file format during the conversion period, servicing obsolete
peripherals that are still used as back-up equipment, or generating data for a function that
will shortly be transferred to another agency. If the requirements document identifies the
temporary nature of these features, the code sections that implement them can be
appropriately commented, and their deletion can be systematically accomplished as part of
future software maintenance. Conversely, If such a designation of temporary requirements Is

not provided, and if later updates do not prune obsolete requirements, the code will soon
become a jungle of unusued, sometimes even Inaccessible, segments which at the very least
cause inefficient use of memory, frequently entail performance penalties, and lead to
maintenance problems.

Major modifications of programs may become necessary because of new legislation, a change In

mission or weaponry in the military environment, or the introduction of new computer
hardware. In all cases the availability of current and succinct requirements documents will
facilitate (a) establishing the scope of the software modification, (b) assigning budgetary
and management responsibilities for the execution, and (c) the integration of the software
changes with correlated activities, such as hardware Installation or a new pattern of report
distribution. Use of existing requirements documents in the management of a major
modification also provides good assurance that the documents will be kept updated as the
modification is implemented. Where requirements have not been kept current, the
modification must be planned on the basis of more detailed documents which are usually not
suitable for use at the appropriate level of management. As a result, there Is much greater
chance that some necessary steps might be overlooked, that there might be inefficient
assignment of responsibilities, and that functions no longer required will be carried over
Into the new version. Moreover, there are seldom adequate resources to generate
comprehensive requirements documentation for the modified version, and as a result a further
deterioration In visibility of requirements, and hence for rational management of the entire
software effort, will have occurred.

The importance of current requirements documents for the existing system In the procurement
of a replacement is often overlooked. Planning for the replacement of a major software
system (frequently coupled with new hardware procurement) can occupy a significant fraction
of the time of senior management. In Federal agencies this task is further compi Icated by

the desire to avoid commitment to a single vendor at a very early stage. As a result,

requirements planning is either carried out in-house (rarely possible because of the heavy
drain on senior staff time), contracted out to a company not eligible to participate In the

procurement (inevitably causing inefficiency In Information transfer), or conducted in

parallel by multiple vendors (with obvious cost penalties). Where the current requirements
of the existing system are not well documented, they are at this point reconstructed in a

process that by Its nature Is extremely Inefficient.

Under current budgetary constraints it seems Incredible that more attention is not being
called to the many cost penalties that arise when requirements documentation Is Inadequate

or not kept current. Yet, this condition is the rule rather than the exception. The

explanation is most likely in the diffuse manner in which the lack of requirements
documentation makes Itself felt. Once the specification Is written, there Is Indeed no

activity that comes to a screeching halt because requirements are inadequate or obsolete.

On the other hand, the effort required to generate good requirements documentation and to

keep it current is easily identified and therefore frequenly avoided. It Is believed that

this effort Is sometimes overestimated, and that current concepts of requirements
documentation address an uncalled for level of detail. These statements are amplified In

the followig section.

3. STRUCTURE OF REQUIREMENTS DOCUMENTS

Because the emphasis In this paper is on the use of requirements documents In the

post-design period, when the need to access them will be sporadic, the following addresses

267

primarily the structure for hard copy versions. If the requirements documents can be kept
resident on a computer, the automated search facilities that will then be available may make
It possible to consider other formats. Again because of the contemplated sporadic use by
personnel who will not necessarily be familiar with the specific software, or who may not be
software professionals at all, the use of specialized requirements languages and of formal
syntax will not be acceptable. Moreover, at the top requirements level (which Is the
crucial one In the present context) these procedures contribute comparatively little to
clarification of a natural language text. On the other hand, the use of decision tables or
of graphics may be helpful supplements to text statements.

Because of the concern with ease of use. It Is desirable to keep Individual requirements
documents reasonably small, say between 25 and 50 pages of text. Obviously, this Is not
sufficient to record the requirements for even a medium size software system at the level of
detail that will support the activities outlined in the previous section. The way out of
this difficulty Is to provide a hierarchy of requirements documents. Thus, the top level

document will contain general requirements levied against the entire system (see Section 4)

and those detail requirements which must be Implemented at the system level, such as
sequencing and abort criteria for the next lower level functions. For all other
requirements, reference is made to the requirements document for the appropriate function.
Two levels of requirements documents will be adequate for many applications; for
exceptionally large or complex systems, three levels might be necessary. The hierarchical
structure also improves the maintainability of the documents as Is explained below.

Downward referencing should be by volume designation only, consistent with the general
principle of Information hiding In hierarchical structures. This also assures that detail
revisions to lower level documents can be made without Impact on the higher level document.
On the other hand, to assure traceablllty of requirements, upward referencing should be very
specific (to the lowest pertinent indentation in the parent document). Through use of a

one-way cross-reference (parent paragraph to descendant paragraph), bound with the lower
level document. It Is then possible to Identify all provisions In a given document that
might be affected by a change in the parent. An example of a top level requirements
structure and the use of forward and backward referencing is shown in figure 1.

It must be realized that the assignment of functions from a single higher level document to
a number of lower level documents Is a des Ign activity. There is frequently considerable
latitude in the partitioning, and hence opportunity for choices that will be questioned at a

later time. A statement of the rationale for the assignment of functions to the Individual
lower level elements should therefore be Included In each parent document.

The structure of each lower level document Is also a design process, frequently tied to an

acknowledged or unacknowledged perception of the implementation. It might be pedantic and

unproductive to require a justification for each subdivision of a document that Is not
directly dictated by requirements at a higher level. However, where a document is

structured after some deliberation, a brief notation of the rationale will be very helpful
for future uses, particularly for those associated with major modifications or replacement.

The hierarchically structured requirements documents can be supplemented by a volume that
contains Information common to the entire project such as definitions, abbreviations, units
of measurement, common file and report formats, and the Identification of the common
hardware environment. Provision of such a volume not only avoids repetition of these items

In each requirements document (and In other software documentation as well) but also
simplifies the updating when any of the common items are changed. A technical report
currently In the draft stage by the American National Standards Committee on Information
Systems (ANSC X3) can be used as a guide in the preparation of the common project
information [ANSCSO].

4. THE TOP LEVEL REQUIREMENTS DOCUMENT

Considerable effort has gone Into defining what needs to be stated In a requirements
document in order to enable the design of a program to render an accurate and efficient
Implementation of these requirements. The previously cited references, particularly

268

VOLUKE 1

SYSTEM REQUIREMENTS
1 . SYSTEM

1.1 REQUIREMENT A [DOCUM. T]
1 .2 REQUIREMENT B [0/3.1]

RE FE RENlf:?'"4'11^ofeAT I ON
1. DEFINITIONS

2. INPUT FORMATS

2.1 INPUT A [DOCUM. P]
2.2 INPUT B [DOCUM. Q]

3. REPORT FORMATS

3.1 REPORT A [DOCUM. R]
3.2 REPORT B [DOCUM. S]

2. SUBSYTEM I (SEE VOL. 2-1

)

2.1 REQUIREMENT A [1/1 .1]

2.2 REQUIREMENT B

I
3. SUBSYSTEM II (SEE VOL 2-2]

|

VOLUFC 2-1

FUNCTION 1 REQUIREMENTS
1 . SUBSYSTEM I

1 .1 REFINE REQ'MT A [1/2.

f

1.2 REFINE REQ'MT B [1/2.2.

2. COMPONENT a

2.1 REQUIREMENT A [2-1/1 .1]
2.2 REQUIREMENT B [0/3.2]

3. COMPONENT b

3.1 REQUIREMENT A [2-1/1.2]
3.2 REQUIREMENT B [0/3.2]

LEGEND

[Y/Z] BACKWARD REFERENCE TO VOLUME Y, PAR. Z

OR TO AN EXTERNAL DOCUMENT

SOURCE THIS

DOCUM. VOLUME

0/3.2 2.2
3.2

1/2.1 1.1

1/2.1 1 .2

2-1/1.1 2.1

2-1/1 .2 3.1

FIGURE 1 - EXAMPLE OF TOP LEVEL REQUIREMENTS STRUCTURE

269

[YEHSOU, provide good summaries of this work and the present contribution Is not intended as
an Improvement in that area. However, even the best documents that are concerned solely
with design do not provide much of the information needed for effective use of requirements
documents in later life cycle phases. This information Includes the authorization for the
project, the specific legislative or administrative orders that It implements, and the
constraints that were considered in the framing of the requirements. Many peculiarities of

large programs arise from these Items but their origin tends to be forgotten. Thus, when
the causes or constraints are later removed, the program elements or structure that
implemented them are allowed to persist, freqently through many revisions and even
rep I acements.

This Is one of the causes, possibly the principal one, of the loss of structure in large
programs to which Belady and Lehman called attention llBELA76l!. From their observations, the
authors coined the 'Law of Increasing Entropy': "The entropy of a system (its
unstructuredness) increases with time, unless specific work is executed to maintain or
reduce it." If the unstructuredness is allowed to Increase, the performance, the
reliability, and the maintainability of the program can all be expected to decrease. On the
other hand, the 'specific work' to clean up a program that has been in service for some time
Is likely to be a major effort. This effort can be reduced by current, complete, and
accessible documentation. In the requirements area, much of the information needed to
maintain programs well-structured (such as the items cited in the preceding paragraph), is

readily available during the early stages of a project and can be recorded at negligible
cost.

For the structure described In the previous section, the top level requirements document Is

the logical place for this Information that usually affects the entire computer system (or

at least the software). For military activities, a format that Is suitable for capturing
most of the pertinent data is the Navy's Operational Requirements Document for Tactical

Digital Systems |lNAVY74l]. An example of a modification of this for use in a more general
environment Is shown in Table 1.

A number of the items In this table are also contained In the Feasibility Study Document
format of FIPS PUB 64 CNBS793. However, they are embedded there In a document that Is

Intended to support the Initiation phase and can not be expected to be kept updated
throughout the software life cycle.

Two characteristics of the above outline deserve specific attention: most of the entries do
not lend themselves to processing by current requirements analysis tools, and many of the
areas covered are not usually of concern to programmers and analysts. Indeed, the top level

requirements document is deliberately management oriented. It is intended to be prepared
under the immediate direction of the management that provides the funding for the entire
system development or procurement, and it is intended to be used by management responsible
for the development of the individual major system segments, by the management responsible
for maintenance, and then again by the management level that funds major modifications and

eventual replacement (this will usually be the same organization that prepared it but most
likely not the same personnel).

5. LOWER LEVEL REQUIREMENTS DOCUMENTS

The second level requirements document usually addresses software at the level at which the
major development effort Is segmented. The divisions can be by type of use (operational,
operations support, maintenance, simulation and training), or by applications served. The

top level document Is fully visible at this stage, and all applicable provisions of the
general requirements identified there should be referenced rather than copied. This
eliminates the need for multiple documentation changes (possibly poorly synchronized or not
carried out completely), when a top level requirement Is changed. Allocations of

requirements are normally identified in the top level document (e. g., allocation of overall
performance requirements to the major segments), but the Implementation of this allocation
and the further allocation to lower segments need to be covered In the second level
documents. Upward referencing must be complete and detailed (to the lowest pertinent
indentation In the parent document).

As mentioned earlier, any refinement of a requirement, and particularly the allocation of

270

TABLE 1 - OUTLINE OF TOP LEVEL DOCUMENT

1. INTRODUCTION I

1.1 Purpose of proposed system and respons i b I I ty for implementation
;

1.2 Authorization for establishing requirements
{

1.3 Leg i si ative requirements implemented
1.4 Administrative requirements implemented
1.5 Internal requirements of Issuer of this document implemented
1.6 Scope of this document
1.7 Operational concepts (number and type of users, etc.)
1.8 Operating modes to be provided for

a. normal operation
b. operation during reduced equipment availability
c. cal Ibratlon or set-up
d. training or simulation
e. post-operational audits

1.9 Support Programs provided or required for
a. program test
b. equipment test
c. personnel training
d. performance monitoring, etc.

2. APPLICABLE DOCUMENTS
2.1 Legislative, administrative, or internal authorizations
2.2 Standards, recommended practices or guidelines for technical aspects
2.3 Documents governing procurement and contracting

3. OPERATIONAL REQUIREMENTS
3.1 General operational requirements (expansion of 1.7)
3.2. N Operational requirements for each of the modes under 1.8
3.3. N Performance characteristics for each mode
3.4. N Accuracy and format requirements for each mode
3.5 Constraints (software & hardware cost, equipment size, portability)
3.6 Interfaces (may be separately stated for each mode)
3.7 Segmentation (time phasing for procurement or initial operation)
3.8 Other Implementation requirements (including security and privacy)
3.9 Requirements for modification and expansion

4. SOFTWARE REQUIREMENTS
4.1 General software requirements (language, file structures, etc.)
4.2.N Specific software requirements for each mode under 1.8, Including

a. reference to next lower level document
b. performance and other requirements allocated at top level

4.3 Software quality requirements
4.4 Overall test requirements (levels, independence of test organization
4.5 Overall documentation requirements
4.6 Rel iabi I ity/aval I abi I Ity/maintainabi I ity reporting requirements

requirements to lower level functions, really constitutes a design activity. As much as
possible of the rationale for these design decisions should be documented, and the second
level requirements document is a suitable repository of such decisions.

For military applications a suitable format for the second level requirements document is

the Function Operational Specification in [NAVY74I]. An example of an adaptation of this
for use In a more general environment is shown in Table 2.

As might be expected, second level documents contain more of the information associated with
the software development process. Many of the requirements listed In Table 2 (particularly
under headings 3. and 4.) are equivalent to those of Sections 3 and 4 of the FIPS PUB 38

Functional Requirements Document CNBS76I1. While these documents thus represent a transition
from the primarily management oriented top level document to the technical software
development requirements, their information content can be more readily supplied by project

271

TABLE 2 ~ OUTLINE OF SECOND LEVEL DOCUMENT

1 . i NTRODUCT I ON

1.1 Purpose of segment and responsibility for Implementation
1.2 Functions served by this segment
1.3 Scope of this document
1.4 Operational concepts for this segment (number and type of users, etc.)
1.5 Operating modes for this segment
1.6 Programs (or major modules) contained In this segment
1.7 Support programs required for this segment

2. APPLICABLE DOCUMENTS
2.1 Parent document
2.2 Technical documents specifically applicable to this segment*
2.3 Procurement and contracting documents specifically applicable*

3. OPERATIONAL REQUIREMENTS
3.1 General (Including allocation of functions to programs)

3.2 Basic operations (operator and user Interactions with the system)
3,3.N Specific operations (for each program)

a. normal operation
b. operation during reduced equipment availability
c. calibration and set-up
d. training or simulation
e. post-operational audits
f. Interaction with support programs

Under each of the above headings, describe Input preparation,
processing, use of output, performance and accuracy requirements,
specific rel labi Ity/aval labi I Ity requirements, and Identification of
actions that must be avoided.

4, E(?UIPMENT REQUIREMENTS
4.1 Minimum equipment requirements
4.2 Optional equipment for Improved performance or further capabilities
4.3 Equipment requirements for expansion

5, INTERFACES
5.1 External Interfaces*
5.2 Interfaces with other system segments
5.3 User Interfaces (human engineering requirements)

6, OTHER REQUIREMENTS
6.1 Software quality requirements (Including availability)*
6.2 Test and validation requirements
6.3 Documentation requirements
6.4 Rel lab 1 1 1 ty/aval I ab 1 1 Ity/mal ntal nab 1 1 Ity reporting requirements*
6.5 Security and privacy requirements
6.6 Requirements for modification and expansion*

7, CROSS REFERENCE (Top level provisions Incorporated In this document)

* This Information needs to be provided only If It differs from that in the top level

requirements document

management than by software professionals, and It Is therefore suggested that they also be
prepared under the direction of a management function.

For very large software systems, a third level of requirements documents may be generated,
primarily In order to keep the page count within a range that permits easy access to the
desired Information. Where the second level requirements documents have been broken down by
applications area, the third level may be divided by type of use (operational, support,
etc), or vice versa.

272

The second (or third) level documents normally serve as inputs to specific requirements
documents for each program to be developed or procured. Their purpose is to describe in

detail the operational and functional requirements to a level of detail suitable for
procurement, including criteria for the evaluation of each requirement. The Navy's Program
Performance Specification [NAVYSO] and the System/Subsystem Specification of FIPS PUB 38 may
be utilized for this purpose.

Beyond their essential role for software development, the second level requirements
documents should provide background information that Is vital for the Intelligent and
efficient use of the software throughout Its operational life. if the information is

recorded as It Is being developed (I. e., directives for planning and development, memoranda
of understanding, etc.), the cost for the documentation Is low. If it has to be retrieved
at a later time, the cost Inevitably rises. After some time the nature of the pertinent
Information becomes lost (no one remembers that the software structure was governed by a

certain memorandum) and the Information becomes completely unavailable. The effort for

restoring structure to a program under these conditions usually exceeds the available
resources, and a completely fresh start becomes necessary.

6. CONCLUSIONS

Requirements documents can provide valuable information for software lifecycle phases that
follow design and Implementation, but current approaches do not meet these needs and It Is

suspected this causes much economic loss. To overcome these difficulties, a hierarchical
structure for software requirements documentation has been proposed that (a) limits the size

of each volume so that It can be easily handled and read, and (b) addresses specific
Information needs at each management level. The hierarchical documentation Is supplemented
by a single volume that contains general project Information, such as definitions,
abbreviations, and report formats. This structure permits economical generation of the
documents, provides traceablllty of requirements, and is easy to maintain because usually a

change can be Implemented by revision of a single document.

REFERENCES

ALF078 l^ack W. Alford, "Software Requirements Engineering l^ethodology (SREI^) at the Age of

Two", TRW-SS-78-12, TRW Systems Engineering and Integration Division, Redondo Beach

CA, inarch 1978

ANSC80 ANSC X3 "Draft Proposed X3 Technical Report, Guide for Technical Documentation of

Computer Projects", Document X3K1 46a, April 1980

BELA76 L. A. Belady and 1^. M. Lehman, "A i^lodel of Large Program Development", I BM Systems
Journal

f vol 15 no 3 pp 225-252, 1976

DAVI80 Alan M. Davis, "Automating the Requirements Phase: Benefits to Later Phases of the

Software Life Cycle", Proc. COI^PSAC'80 , pp. 42-48, October 1980

HECH81 H. Hecht, "Final Report: A Survey of Software Tools Usage", NBS Special Publication

500-82, 1981

IEEE77 IEEE Transactions on Software Engineering . Special Collection on Requirements
Analysis, vol SE-3 no 1 pp 1-84, January 1977

NAVY74 Department of the Navy, "Tactical Digital Systems Documentation Standards",
SECNAV INST 3560.1 , August 1974.

.NAVY80 Department of the Navy, "Program Performance Specification, DI-E-2136A", mJ-09Y,
June 1980.

NBS76 National Bureau of Standards, "Guidelines for Documentation of Computer Programs

and Automated Data Systems", FIPS PUB 38, February 1976.

NBS79 National Bureau of Standards, "Guidelines for Documentation of Computer Programs

and Automated Data Systems for the Initiation Phase", FIPS PUB 64, August 1979

YEH80 Raymond T. Yeh and Pamela Zave, "Specifying Software Requirements", Prpg. IEEE, vol

68 no 9 pp 1077-1085, September 1980

273

NBS FIPS Software Documentation Workshop, March 3, 1982

Issues In Defining Standards for Documentation

ii

J. R. Gabriel

Applied Mathematical Sciences Section
Applied Mathematics Division
Argonne National Laboratory

9700 South Cass Avenue
Argonne, IL 60439

INTRODUCTION

Plato remarked that we are all metaphorically seated in a cave, chained to look only
at the end wall, and seeing no more than the shadows cast by real objects in the sunlight
from the entrance.

The three other papers in this session portray different shadows of the the same
thing clearly and precisely. But the object has more than three dimensions, and I would
like to discuss other projections I have seen over the years. A good standard takes

account of all dimensions, and considers principal axes instead of a single caliper
measurement taken in an arbitrary direction. And because of this, instead of examining
each portrait to remark on mole here and a wart there in the subject, I am going to do a

few lightning sketches from other perspectives.

The first step in understanding what standards for software documentation should be

like is to understand where software, software documentation, and the use of software fit
in the spectrum of human activities at work. This question has been studied by Rasmussen

[1980], who has classified work activities as skill-based, rule-based, and knowledge-
based. Since 1776 the distribution of human work among these categories has changed
greatly

.

Two hundred years ago most work was skill-based: The cabinet maker with his plane,

the shepherd with his sheep made their decisions without conscious application of rules.

The Industrial Revolution mechanised many of these tasks, enabling only the most
expert practitioners of skills to compete with machines. But it brought, instead,
administrative work to manage the factories. This consisted of application of well-
defined rules to easily recognized situations. By 1900 the need for people who could read

rules and write decisions had become vital, and industrial societies were developing
public education systems to provide universal literacy.

Since 1950, computing technology has been gradually making the average rule-based
workers less employable, just as manufacturing technology did their skill-based great-
grandfathers between 1850 and 1900. Nevertheless, many activities remain rule-based, even

when this approach hinders efficiency ~ as it does in the rule-based documentation for
word processors, or when the rules create resentment — as they do among medical staff
used to giving rules rather than having rules imposed on them by software "assistants."

Ironically, although software may be used by people trained in rule-based work, the
task of writing software is knowledge-based. By this I mean that it consists of deter-
mining facts, choosing hypotheses from a "knowledge base," pattern-matching them against
the facts, and acting in ways determined by the results. The same is true of writing
documentation. It is patently ridiculous to write standards in a rule-based style to

Ihis work was supported by the Applied >fetheraatical Sciences Research Program (KC-04-02) of the

Office of Energy Research of the U.S. Department of Biergy.

274

govern this activity. Unfortunately, we do not know how to write standards for knowled;>e-

based activity. If we did, it would be as easy to teach style and semantics as it is to
teach syntax. So much for the broadest brush in the paintbox.

What is a program? It is two things: an art and a contract. As an art it is "sculp-
ture in thought constrained by reality," where correct syntax is necessary, but style and
other more subtle things distinguish good from bad. Good software is art in contract
draftsmanship, just as surely as Frank Lloyd Wright's houses are in brick and mortar. The
architectural model of software leads to the following thought. Building codes set
standards for housing construction. Are there similar functions in a set of standards for
documentation? I am inclined to think not. Obviously, rules like those for Ph.D. theses
about the use of 100% rag bond are ridiculous. Functional rules like "a roof shall be

designed to withstand 150 pounds per square foot of static load, and an additional 100
pounds per square foot of wind load" seem attractive until we realise that, although it is

easy to verify conformity with this standard, functional requirements for documentation
are not verifiable in a way that would clearly stand up in court. I have written
introductions to the use of full-screen text editors for our office staff and was
pleasantly surprised by the success of a knowledge-based document where the knowledge base
was set out with some care at the beginning by examples. But I have no idea whether this

would work with office staffs in general.

Leaving the architectural model, let us look at software as a contract between users

and computer. Before the contract can be drawn, the draftsman and the users must have a

meeting of the minds about what is to be done. This is the requirements document, a "meta

contract" or "meta program." Standards for requirements documents are thus "meta meta

programs" — hardly the subject for rule-based discourse.

After the contract has been drawn, it is like any other legal document —
incomprehensible to the user (but in our case, oddly enough, precisely comprehensible to

the computer, apart from bugs). Therefore it needs an "interpretation" full of "for

instances." This is the set of user manuals, which must meet three needs:

* It must be comprehensible to the user community. In particular, it must present

facts about using the software, not facts from which these may be deduced.

* It must cover all commonly used cases and show the path to higher authority which

can mediate unusual disputes between user and computer.

* Although it need not be precise, it must not be obviously misleading.

So much for the legal drafting and artistic models of software development and use.

COMMENTS

I will now add my own experience to some of the points raised by the other papers in

this session. I think that such comments are worthwhile not only because the ideas are

interesting but because the differences of emphasis help round out a picture of the

process

.

All documentation standards are context dependent. I can maintain the "C" programs

that comprise UNIX with no other documentation than the source code, because Brian

Kernighan will not let in the door anybody who has not read The Elements of Programming

Styles [Kernighan and Plauger, 1978] (a policy that is a meta standard). If, on the other

hand, I am maintaining the load modules of ADVENTURE which run on ray Z80, I need a

document in English to work with the program: The FORTRAN source is virtually

incomprehensible; it seems to have been transliterated by hand or machine from some more

suitable AI language, preserving only the instructions to the computer and omitting any

explanation of the original writer's intent. There are issues here about correctly

matching language to problems, and letting the compiler do the dog work, that suggest

questions about transforming information from one representation to another. These issues

are important; they are also an example of the general process that takes a product from a

requirements document to a program, removing information about the application context and

275

adding information about the target computer system. By and large, documentation should
preserve and extend the application dependent information stripped out of the requirements
by a programmer, and should complement and explain the machine-dependent information
inserted. This information which goes into the document depends on how much applications
information is left in the program, how much more target machine information is needed to
make the program do something desired by a user, and how much the user community may
already be assumed to know.

Discussions of documentation as a QA tool make another important point. If you can't
write a user manual because you can't explain how to use the program, then the program had
better be rewritten by somebody who has at least read Kernlghan and Plauger [1978] . The
writer of user documentation needs the following things:

* No previous experience with the software being documented.

* The ability to explain clearly in writing.

* Means to obtain experience with the system to be documented by running it.

* A clear idea of what the users want the program to do.

* A document written by the programmer, believed to be a user manual, from which
parts of the content of the user manual proper can be deduced.

* Access to the programmer to ask questions and, ideally, enough programming
experience to be able to read and understand the source code.

* Authority to require a review by project management in cases where it seems that

parts of the program should be rewritten.

I have seen the importance of these requirements underscored in my work as Chairman
of the Board of Directors of a small software company (an activity I pursue in my spare
time). We have found a good user manual to be our most effective marketing tool. This

should imply that the Vice President for Marketing is an important ally to the

documentation team. Similarly, the software team should be allies also, because a good
user manual will save them field maintenance. But such allies require an understanding
management, and such management is sometimes difficult to find.

Requirements documentation is important because it is the "draft agreement" between
the users and the computer. If the final product does not meet requirements, and the

need, was not documented there is bound to be a bitter dispute about who pays for
necessary changes. Nevertheless, requirements documents often are not written at all, and
those that are often are not very good. Two of the reasons are discussed below.

* The cost of a requirements document is "money up front." From the user's point of

view this appears unnecessary risk capital, compounded by interest rates as the clock
ticks until the project is finished. Low bidders, who promise to work without
requirements, may seem far more attractive. If you want a customer to pay for a

requirements document, you must be credible about the benefits and your ability to deliver
them, right down to a better-than-average user manual.

Your most powerful marketing tools are horror stories about what happened to projects
that were careless about requirements documentation. On such projects as nuclear electric
generating plants, for example, the costs of slippage late in the project can be as high
as a million dollars a day. Of course, deadlines invariably slip. If you are a good
salesman and your customer is reasonable, you will be able to prepare for this kind of bad
news, before you both sign a contract. (Unfortunately, such things happen only in the

best of all possible worlds.)

* It is difficult to ensure that the requirements document contains the information
needed. Two questions must be answered: "What is it for?" and "Who will use it?" As

answers to these questions change, so too must the requirements document change. Thus a

full requirements document has two parts: one a prospect, which is what we try to write

276

now, and the other a retrospect, which should be — and almost never is — written after
all else is done.

Finally, documentation in general raises an AI theoretic issue. Most of us are
familiar with the model of a finite-state machine which consists of nodes joined by paths,
along which the incoming data stream causes transitions between the nodes. A
generalisation of this seems to me to be a reasonable description of knowledge and, in
fact, is one theoretical foundation for data bases that contain knowledge, i.e., knowledge
bases. It is a set of networks, where all the items at about the same level of generality
form a network that you can wander around using a process (i.e., program) to travel from
node to node. The well-known ADVENTURE game is Just such a network, although the process
there is designed to give you a puzzle to solve rather than a guidebook. If you add to
this network a feature where you can also descend vertically from each node into a network
of more detailed information about that node, and make this feature Indefinitely
repeatable at will, you have a computer-based process that seems to me remarkably like the
human process of mental information retrieval. As you descend into detail about some
particular node, information about other unrelated topics at a higher level becomes less
accessible in much the same way as nonrelated knowledge retires into the background
mentally while we think intensely about one thing.

CONCLUSIONS

The notion of a documentation standard has been developed as a sort of box or pattern
into which documents fit. The nature of the box is not yet properly defined to anybody.
But it does seem close to ideas about representation of knowledge that have been developed
by the AI community since the early 1970's [Woods 1970, Barr and Feigenbaum 1980].

And some things do seem clear. Documentation should meet the needs of several kinds
of users. It should be in modules that can be "strung together," so that the same infor-
mation is not written in several places. The master copy should be machine readable so
that a computer can help with the inevitable updates. There may be several modules
dealing with the same subject at different levels of detail. In such cases cases it

should be easy to travel vertically through a set of more detailed modules, as well as
horizontally from one module to another about something different at the same technical
level. All of these travel processes should be easy to perform in documentation on paper,

and should be facilitated on a computer by an intelligent process that remembers
frequently used paths for any given user. The conqjuter-based travel process should have a

richer set of commands than the one on paper, which is probably restricted to UP, DOWN,

and SIDEWAYS, speaking in metaphorical terms.

A final theoretical issue that seems to me to be important is the idea of "transfor-

mation." A program is obtained by a "transformation" of a "requirements document." The

fact that the transformation is performed by people does not alter the central question of

what information is discarded, what information is added, and what information should be

moved to documentation. In fact, under this model the documentation is just as much a

transformation of the requirements as the program is. The process of writing documenta-
tion consists of transforming the program, the requirements, and the description of the

computing environment into a precis that covers most user needs and is not too heavy to

hold! A standard for writing this precis has its theoretical foundation in a description
of what kinds of knowledge should be preserved by the transformation and how to leave

pointers in the precis to let the user find the material that was not preserved. Covering

all needs is impossible; that is what the manuals for the computing environment, the

customer's detailed procedures, and the program do together. In the case of dispute with

the system not resolved by the documentation, these together with the computer system
itself are the final court of appeal.

277

AN AQCNOWLED^ENT AND A NOTE

The final text of this paper was prepared by Gail Pieper, using the notes from which
I spoke as a draft. This gracious lady has firmly refused a co-authorship^ and so the
following acknowledgment takes its place. Thank you, Gail, for your part in the work here
recorded.

Gail's effort in transforming my recollections into publishable form brought to the
surface some thoughts I had been nursing about the relationship between software and
documentation. Almost twenty-five years ago, when I wrote my first computer programs, it
was a Herculean task to do anything, and explaining it in writing afterwards was trivial
by comparison. Today I look at a large program, part of a research project by three
colleagues which took eighteen months of part-time work for them to write. I do not think
anybody will be able to document the system in detail to display its subtle yet clean and
beautiful architecture without being an expert in several very difficult fields at once.
The effort involved here in programming and documenting will be roughly equivalent,
depending on where you put the tasks of analysis and specification.

This situation may easily become true of most programs. They will still be written
by software artisans. But they will not be used without equal contributions from
"wordsmiths

,

" who have been using syntax and semantics to build perceptions ever since the
first minstrel, long before Aristophanes. The wordsmith's Cask will have been recognised
for what it really is: one leg of a tripod support for a software edifice, the other two

being analytical insight into the problem at hand, and the art of program contract
draftsmanship.

REFERENCES

Barr, A., and F. Feigenbaum, eds. [1980]. The Handbook of Artificial Intelligence ^ Vol.

1, Chapter 3. Stanford: Heuristech Press, pp. 143-222.

Kernighan, B. W. , and P. J. Plauger [1978]. The Elements of Vrogramming Style. 2nd ed.

New York: McGraw-Hill.

Rasmussen, J. [1980]. "The Human as a System Component." Human Interaction with
Computers. Ed. H. T. Smith and T. Green. Academic Press, New York. See also
J. Rasmussen, "The Human Data Processor as a System Component. Bits and Pieces of a

Model," Risoe-M-1722 , 1974; "Notes on Diagnostic Strategies in a Process Plant
Environment," Risoe-M-1983, 1978; "On the Structure of Knowledge. A Philosophy of

Mental Models in a Man-Machine Context," Rlsoe-M-2192; and "Outline of Hybrid Models
of Man and Machine," Monitoring Behavior and Supervising Control, ed. T. B. Sheridan
and H. Johanssen, Plenum Press, 1976; and E. Holnagel, "A Framework for Description
of Operator Behaviour," Rlsoe-N-35-79-NKA/KRU-P2(79)-24.

Woods, W. A. 1970. "Transition Network Grammars for Natural Language Analysis." CACM 13:

591-606; see also W. A. Woods, "What's in a Link?" Representation and Understanding,

Academic Press, 1975, pp. 35-82.

278

NBS FIPS Software Docoumentation Workshop, March 3, 1982

Session H: Quality Assurance for Documentation

Recommendations and Conclusions

Elisabeth F. Mullen

Managing Partner
JEM Associates

Herndon, Virginia

Following the presentation of papers which are included in these proceedings along with
the discussant's remarks, there was a lively discussion among members of the audience
and the panel. A summary of the issues raised, comments, and recommendations follows.

Issues raised by members of the audience included:

1. The relation between the Users' Manual and the Requirements Document: Should the
first draft of the former be done from the latter?

2. Is the Users' Manual needed in order to complete testing?

3. Is there not a need for more than one type of Users' Manual?

4. What is known about the cost benefits of spending money on documentation? Is the
investment returned in easier maintenance or greater reliability?

Comments on these issues included the following:

1. Caroline Levenson commented on the desirability of removing some of the duplication
of effort implied by the current standard.

2. John Gabriel commented that the artificial intelligence community has tried to

address the issue of different requirements for different groups of users and

mentioned that there are some on-line documentation systems which use these ideas.

3. Herb Hecht commented that large systems tend to sink under the weight of their own
changes. Often they must be rewritten because they can no longer be maintained.
This is where a good requirements document is especially important.

4. John Gabriel pointed out the desirability of documenting the history of a system as

well as its use. Examples included unusual origins for system routines and the

need to replace computer systems which are part of systems with life times much
longer than that of the computer hardware.

Recommendations emerging from the session include the following:

1. FIPS 38 does need to be evaluated.

2. Both the content and the context of the Users' Manual need to be reexamined in the

light of current technology.

3. Several different types of users' manuals may be needed depending on the background

and assignments of the users. Differentiating between the requirements of new and

experienced users is desirable. The widely varying needs of the operations staff,

maintenance programmers, and managers who must justify both the operating budget

and the eventual replacement of the system should also be considered in determining

both the number of types of manuals and their content.

279

4. The importance of considering the human interface was mentioned repeatedly, with a

strong emphasis on providing enough flexibility in the standard to allow for some

experimentation with new approaches in this area.

5. The project history may well be a valid subject for a full set of documentation.

6. There do not seem to be any hard facts on the incremental value of documentation,

i.e. is the cost of documentation returned in increased maintainability or

reliability? A study of this might be rewarding in terms of improved quality

resulting from cost justifying the additional budget.

280

NBS FIPS Software Documentation Workshop, March 3, 1982

Concluding Session:

Summary of Findings and Recommendations

Leo Beltracchi

U.S. Nuclear Regulatory Commission

The concluding session of the workshop was moderated by Albrecht Neumann. Each session
moderator of the previous sessions presented a summary of the findings and recommendations
of their session. Comments and recommendations were also made by other members of the
workshop. This provided an opportunity for all participants to hear and comment upon the
findings of the workshop. A brief summary of the concluding session follows.

Alfred Sorkowitz, moderator of Session D, "Do Existing Standards Work?", presented the
results of the session. These were:

1. FIPS PUB 38 is inadequate and should be revised. Examples of the subjects
which need consideration are: software security, non-machine interactions

.

2. To improve software documentation, it was recommended that technical writers be

made a unique part of the design and development team. This would improve the

importance of software documentation and the quality of the final product.

The results of a session survey on the use of documentation standards were also
presented. The results indicated that organizations used in-house standards rather

than a national standard for documentation.

Louis O'Korn of Session A, "Applying Documentation Standards - Case Studies" presented
the results of the session. These were:

1. Existing software documentation standards provide good "How To" guidance. How-

ever, they are inadequate with regards to guidance on interactions by humans with

computers, they are redundant in requirements, and they lack general guidance to

the documenter.

2. New documentation standards are needed for all phases of software. Specific

attention should be given to the operations and maintenance phase of the life-

cycle and to the testing of software in the development phase.

3. More research is needed on documentation aspects for office automation. The

issues of user implemented software, how to verify documentation and automated

support tools for the non-computer professional must be resolved. Means should be

found to publicize existing documentation guidelines, and standards.

4. It was noted a general lack of awareness of documentation standards exist.

5. The need for documentation must be defined in the initial work effort.

Raymond Houghton, moderator of Session C, "Tools for Improved Documentation",

presented the following comments:

1. Documentation standards in hard copy have a tendency to become obsolete after some

time. With a rapidly moving technology they need to be updated frequently, and

must provide for introduction of new documentation techniques.

281

2. Some high level languages also provide human readable information which can augment
other forms of documentation. This should be used in the overall systems develop-
ment and systems design.

3. Documents and documentation are an integral and active part of an overall software
life cycle. Software tools can play an important part in creating better and more
cost effective documentation. Active management support is required and necessary
to achieve these goals.

4. On-line documentation can serve as a "users manual". Split screen techniques can
be used effectively. An integrated system of HELP messages, designed with several
levels of generality also can provide useful user documentation. Interactive
techniques, combined with split screen displays can be used effectively as user
documentation.

5. Fully automated systems to perform user documentation for computer programs are not
yet feasible at this time, and are 5 to 10 years away.

V. Douglas Mines of Session G, "Improving Human Interface", presented the following
resul ts :

1. Computer systems must be made more friendly to users. This will require user
documents tailored to needs of each user audience.

2. New innovative approaches should be investigated to serve information needs of
users, such as the use of color terminals, "comic book style" users manuals, and
on-line documentation.

3. Terminal messages can be used as on-line documentation support for the user.

4. People must be trained to develop better documentation for computer systems.

5. Use software and systems documentation in the training of personnel.

Lenore Maruyama, moderator of Session F, "Enhancing Software Sharing", presented the

following results:

1. Additional elements, such as a header label to record bibliographic information
describing a machine-readable data file are needed.

2. FIPS 30 "Software Summary for Describing Computer Programs and Automated Data

Systems" should be revised and updated.

3. As a tool for management, software sharing facilities can be used to save time and

money.

Trudy Grieb, moderator of Session E, "Proposals for Documentation Standards", presented

the following results:

1. A systems approach is needed to generate documentation. The issue of the cost and

effectiveness of documents in terms of users needs and contract requirements must

be resolved.

2. Documentation standards must be specific and definitive with regards to context,

terms and concepts, but must be flexible to allow cost effective innovations.

3. Lessons learned from poor documentation should be recorded to avoid repeating the

error. Also, the lessons learned from good documentation should be recorded to

provide feedback and guidance to standard developers.

4. Because of the large consumer market, documentation for microcomputers may lead the

effort for standards.

Virginia Walker, moderator for Session H, "Quality Assurance for Documentation",

reported the following results:

282

1. FTPS 38 needs to be revised and updated.

2. Documents must strive to make the human interface with computers an easy one.

3. Management must recognize the role of documents in the life cycle of softv;are

such as the function of configuration control in program design and development.

4. Software documents must not only define what is recorded, but also the reason
why it is recorded.

5. Documents for software must be logically oriented, well structured, and not

fragmented

.

At the conclusion of the summaries by the moderators, Al Neumann asked for comments from
the floor. The following comments represent the major comments from the floor:

1. Electronic mail and teleconferencing can be used to develop standards and guide-
lines for software documentation. These methods allow for the participation of

many people and reduces the need for periodic meetings.

2. We should strive to modularize documentation. Documentation for microprocessors
is modularized and this accounts for its popularity. This concept eases the

organization and control of document generation.

3. The need for documentation must be emphasized. This can best be achieved by

defining the functional basis for the document. Software which does not have

good documentation generally can not be trusted.

Upon termination of audience comments, Al Neumann thanked all participants for their

contributions and then closed the workshop.

283

NBS-T14A (REV. 2-80)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS SP 500-94

2. Performing Organ. Report N04 3. Publication Date

October 1982

4. TITLE AND SUBTITLE
NBS FIPS Software Documentation
Proceedings of a Workshop
Held March 3, 1982, at NBS, Gaithersburg, MD

5. AUTHOR(S)

A. J. Neumann, Editor

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATiONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, Oty. State, ZIP)

Same as item 6.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 82-600600

[^J Document describes a computer program; SF-185, FlPS Software Summary, is attaclied.

11. ABSTRACT (A 200-word or less factual summary of most si gnificant information. If document includes a significant
bibliography or literature survey, mention it here)

These proceedings provide a record of papers and discussions presented at a

workshop held on March 3, 1982, at the National Bureau of Standards. The

meeting was sponsored by the NBS Institute for Computer Sciences and Technology.

In addition to papers presented, the record also provides remarks by discussants

and other participants. The workshop covered a variety of topics pertaining to

software documentation. Topical sessions included: case studies of and reports

on application of existing standards, documentation for operation and maintenance,

tools for improved documentation, proposal for new documentation standards,

enhancing software sharing, improving human interfaces, and quality assurance

of documentation. Sixty-three papers were presented in parallel sessions, and a

summary session concluded the meeting; over 300 persons participated in the

workshop.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

documentation; FIPS; guidelines; program documentation; software

documentation; standards.

13. AVAILABILITY

[X] Unlimited

I I

For Official Distribution. Do Not Release to NTIS

[X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

294

15. Price

$8.50

USCOMM-DC 6043-P80

aU.S. GOVERNMENT PRINTING OFFICE: 19 8 2-360-997/2270

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Supenntcndcnt of Documents,

Government Printing Office,

Washington, D C 20402

Dear Sir:

Please add my name lo the announcement list of new publications lo be issued in

the series National Bureau of Standards Special Publication 500-

Namc

Company

Address

Ciiy Stale Zip Code

(Notification key N-503)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

$18; foreign $22.50. Single copy, $4.25 domestic; $5.35 foreign.

NONPERIODICALS

Monographs— Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks— Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications— Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and

studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-

piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AlP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

lest methods, and performance criteria related to the structural and

environmental functions and the durability and safely charac-

teristics of building elements and systems.

Technical Notes— Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of Ihe

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superiniendeni of Docu-

ments. Government Printing Office. Wa.':hington. DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Services. Springfield. VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended,

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May II. 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Washington, D.C. 20234
Official Business

Penalty for Private Use $300

U.S.MAtL

POSTAGE AND FEES PAID

U S DEPARTMENT OF COMMERCE
COM-215

SPECIAL FOURTH-CLASS RATE'

BOOK

		Superintendent of Documents
	2022-04-16T08:00:32-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

