NATIONAL BUREAU OF STANDARDS REPORT

8138

CAPACITY TESTS OF FOUR REMOTE AIR-COOLED REFRIGERANT CONDENSERS

Manufactured by Kramer Trenton Company Trenton 5, N.J.

by

C. W. Phillips

to
Mechanical Engineering Division
Quartermaster Research and Engineering Command
Natick Laboratories, U. S. Army
Natick, Mass.

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications, including assistance to industry, business and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Central Radio Propagation Laboratory Ionospheric Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also seven series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, Technical Notes, Commercial Standards, and Simplified Practice Recommendations.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington, D.C., 20402.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

1003-20-10435

December 5, 1963

8138

CAPACITY TESTS OF FOUR REMOTE AIR-COOLED REFRIGERANT CONDENSERS

> Manufactured by Kramer Trenton Company Trenton 5, N.J.

> > by

C. W. Phillips Mechanical Systems Section Building Research Division

to

Mechanical Engineering Division Quartermaster Research and Engineering Command Natick Laboratories, U. S. Army Natick, Mass.

IMPORTANT NOTICE

NATIONAL BUREAU OF ST for use within the Government. and review. For this reason, the whole or in part, is not author Bureau of Standards, Washingto the Report has been specifically

Approved for public release by the subjected to additional evaluation Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.

ss accounting documents intended listing of this Report, either in e Office of the Director, National the Government agency for which opies for its own use.

U. S. DEPARTMENT OF COMMERCE NATIONAL BURFAU OF STANDARDS

CAPACITY TESTS OF FOUR REMOTE AIR-COOLED REFRIGERANT CONDENSERS

MANUFACTURED BY
KRAMER TRENTON COMPANY
TRENTON, NEW JERSEY

by C. W. Phillips

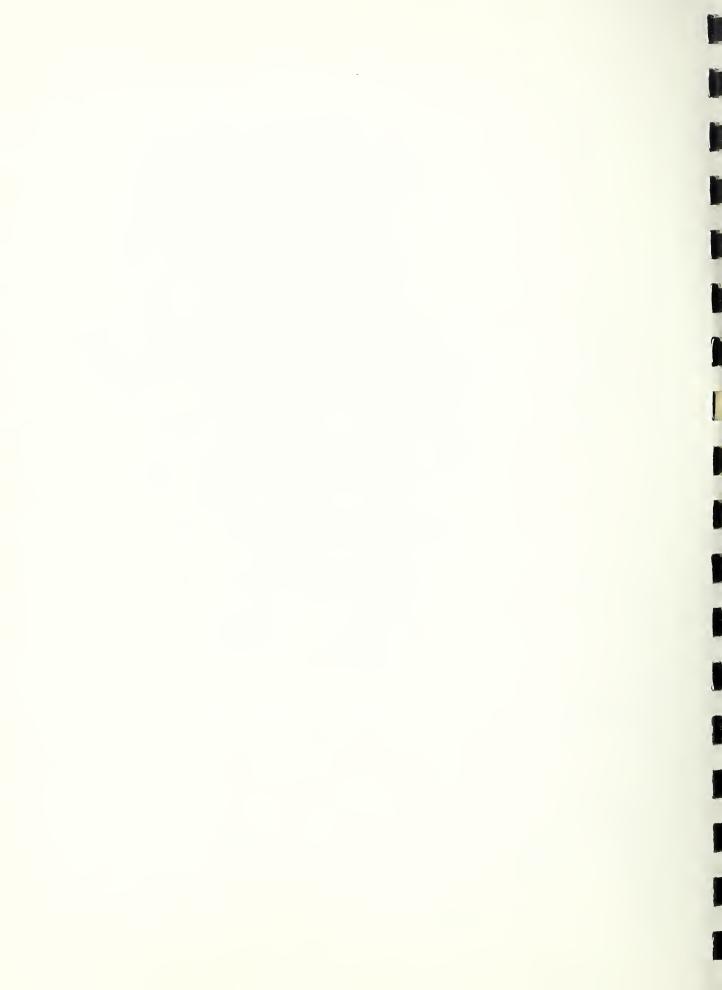
1.0 Introduction

This report presents results of capacity tests of four remote air-cooled refrigerant condensers, of three sizes and three classes listed in "Purchase Description, Condensers, Air-Cooled, for Use with Dichlorodifluoromethane (F-12)", dated March 22, 1957 All four were manufactured by Kramer Trenton Company, Trenton, New Jersey.

The four condensers were:

Specimen No. 1 Size A Class 1 Copper Tubes, Aluminum Fins NBS Test No. 134-57

Specimen No. 2 Size B Class 3 Aluminum Tubes, Aluminum Fins NBS Test No. 145-58


Specimen No. 3 Size B Class 2 Copper Tubes, Copper Fins NBS Test No. 146-58

Specimen No. 4 Size C Class 1 Copper Tubes, Aluminum Fins NBS Test No. 150-58

Specimen No. 1 was procured under contract No. DA 19-129-QM-827, and the other three were procured under contract No. DA 19-129-QM-1013.

1.1 Background

This report is the final report of several presenting test data on the performance of a number of air-cooled refrigerant condensers. The study was resumed in July 1959 following a period of inactivity for fiscal reasons. Results of previous tests in the series have been presented in NBS Reports 6378, 6401, 6420, 6670, and 7760. Apparatus

designed and constructed specifically for this work was originally patterned after a then proposed ASRE Standard, PS-2.4. During the time the test project was inactive, the proposed ASRE Standard PS-2.4 was modified and adopted as ASHRAE Standard 20-60, 'Methods of Testing for Rating Remote Mechanical-Draft Air-Cooled and Evaporative Condensers". It should be noted that ASRE (American Society of Refrigerating Engineers) and ASHAE (American Society of Heating and Air-Conditioning Engineers) merged in 1959 to form ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers). The primary change between ASRE PS-2.4 and ASHRAE Standard 20-60 affecting this test series was the substitution of a low side refrigerant calorimeter for the airside psychrometric measurement of heat rejection. In reactivating the project, the air-side psychrometric measurement was retained, and the original test system evaporator was modified to function as a low-side refrigerant calorimeter. For some tests a separate low-side refrigerant calorimeter was used. The use of a turbine-type electronic flowmeter for determination of liquid refrigerant flow rate was retained as the primary flow rate method.

Neither ASRE PS-2.4 or ASHRAE Standard 20-60 established requirements for minimum or maximum subcooling of the liquid refrigerant leaving the condenser. Failure to control the degree of subcooling to as low a positive value as possible, and certainly failure to condense completely, will result in unsuitable comparisons of different test condensers. QMR&E Purchase Description, "Condensers, Air-Cooled for Use with Dichlorodifluoromethane (F-12), dated March 22, 1957 does not specify either minimum or maximum degree of subcooling. Military Specification MIL-C-23122, "Condensers, Air-Cooled, Refrigerant-12", dated December 27, 1961 specifies a minimum subcooling of three degrees F, and no maximum. All tests described in this and previous reports in this study were made with condensation of all of the refrigerant (indicated by a clear sight glass at the condenser outlet) and with subcooling less than five degrees F in most cases and less than 10.5 degrees F in all cases.

ASRE PS-2.4 included Standard Rating Conditions; ASHRAE Standard 20-60 does not. QMR&E Purchase Description, "Condensers, Air-Cooled for Use with Dichlorodifluoromethane (F-12)" dated March 22, 1957, set forth the following capacity requirements, at an entering saturation refrigerant temperature of 135°F and 25°F temperature difference between the entering air (110°F) and entering saturation refrigerant temperature (135°F) for the four sizes of condensers:

Size	Α	22,300	Btu/hr	(Min.)
Size	В	35,600	Btu/hr	(Min.)
Size	C	46,000	Btu/hr	(Min.)
Size	D	57,000	Btu/hr	(Min.)

Capacities have been determined at these conditions and also at the following conditions as suggested in ASRE PS-2.4:

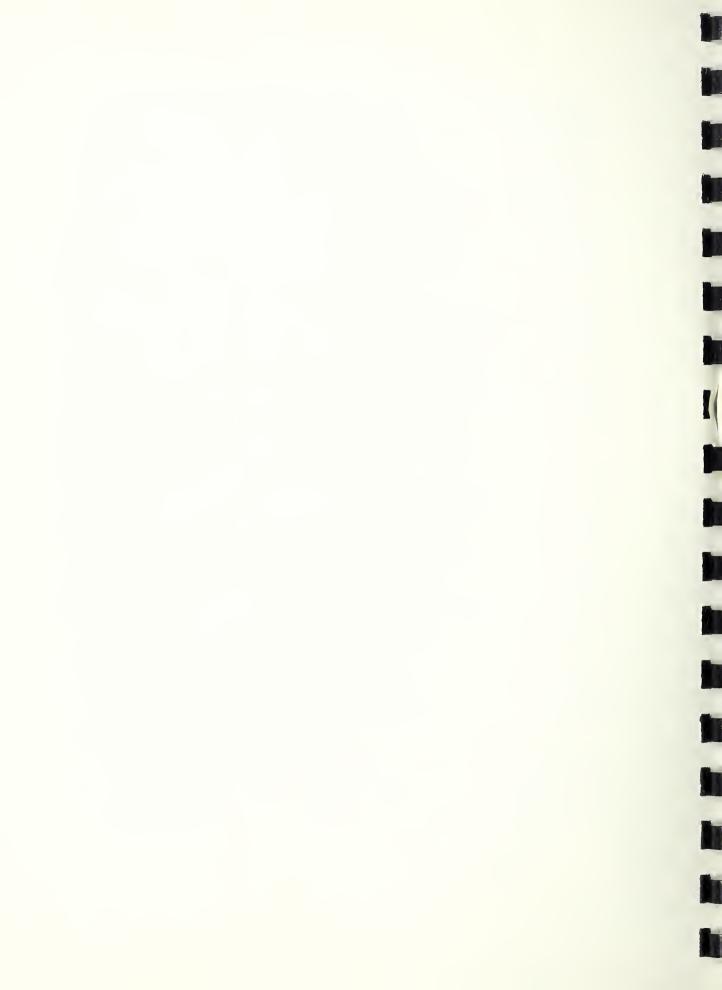
	<u>High Rate</u>	Low Rate
Dry bulb temperature of air entering unit	95°F	95°F
Wet bulb temperature of air entering unit	75°F ± 5°F	75°F ± 5°F
Dry bulb temperature of ambient air	95°F	95°F
Saturation temperature of dry re- frigerant vapor entering condenser Actual temperature of dry refrigerant	130°F	105°F
vapor entering condenser	195°F ± 10°F	170°F ± 10°F


Other relevant document changes occurring since the original implementation of these tests include Military Specification MIL-C-23122, "Military Specifications for Condensers, Air Cooled, Refrigerant-12", adopted December 27, 1961, and proposed Military Standard "Condensers, Air Cooled, Refrigerant," (FSC 4130).

2.0 Test Apparatus and Procedures

The test apparatus and procedures used were similar to those used for tests previously reported in NBS Reports 6378, 6401, 6420, 6670, and 7760, except as modified to conform generally to ASHRAE Standard 20-60, "Standard Methods of Testing for Rating Remote Mechanical Draft Air Cooled or Evaporative Condensers."

Tests were run in general conformance with requirements of ASHRAE Standard 20-60. A few points of non-conformance are discussed.


- 1. The requirement in Section 4-2 of $\pm 0.1^{\circ} F$ accuracy of absolute temperature measurements is unrealistic for normal laboratory-quality measuring systems. $\pm 0.2^{\circ} F$ is more realistic, and test results reported were based on measurements approaching this degree of accuracy.
- 2. ASHRAE Standard 20-60 requires two simultaneous determinations of refrigerant flow rate as the means for determining performance. Tests reported here compare a psychrometric "air-side" measurement with a simultaneous refrigerant flow rate measurement by an electronic turbine-type flowmeter. On each run at least these two independent determinations of capacity were made. On some of the runs, the evaporator in the test circuit was adapted and instrumented to serve as a low-side refrigerant calorimeter to provide

- a third measurement, in direct comparison with the turbine-type liquid refrigerant flowmeter determination made in all runs. On some runs a separate secondary refrigerant calorimeter was used to provide the comparison with the flowmeter.
- 3. ASHRAE Standard 20-60 does not establish requirements for maximum or minimum subcooling of the liquid refrigerant leaving the test condenser. In fact, only by inference does it require that all refrigerant vapor entering the condenser must be condensed. Tests reported were all run with minimum subcooling. The desired subcooling was controlled by means of an adjustable flow valve at the receiver inlet.
- 4. A printing error in ASHRAE Standard 20-60 in the formula for determination of q_c , condensing heat rejection, resulted in a lack of guidance for this somewhat arbitrary calculation. Based on ASRE PS-2.4, it was assumed that q_c should be based on the enthalpy difference between the entering refrigerant vapor (at P_{2c} , t_{2c}) and refrigerant liquid at saturation temperature corresponding to the inlet pressure (P_{2c}) . Note further discussion under "Data and Results".

The three independent measuring systems can be described briefly:

- 1. Air-side or Psychrometric. The test condenser was mounted in one end of an insulated air duct apparatus installed in a test room with ambient temperature, and humidity controlled at the specified condenser entering air conditions. The air was drawn through the condenser by a selected fan discharging at atmospheric pressure in a chamber large enough to simulate free discharge. The air was drawn out of this chamber through a long radius nozzle by means of an auxiliary blower which discharged into the surrounding room temperature and humidity controlling apparatus. Condenser heat rejection capacity was determined by measuring air quantity and enthalpy change and correcting for fan motor energy input.
- 2. Liquid Refrigerant Flowmeter. The subcooled condensed liquid refrigerant was metered by means of a totalizing (integrating) electronic turbine-type flowmeter, and heat rejection capacities were determined from refrigerant mass flow and enthalpy change.
- 3. Low-Side Calorimeter. Liquid refrigerant flow was determined by means of measurement of the enthalpy change in the refrigerant and the energy (heat) required to evaporate the refrigerant in an insulated, metered, electrically heated evaporator using one or the other of two low-side calorimeters. One was the original

tube-type evaporator equipped with immersion electric heaters, modified to operate as a dry system primary calorimeter by installing electric energy meters, thermocouples, and better insulation. Although this calorimeter was satisfactory for the larger size condensers producing liquid refrigerant flow rates greater than about eight pounds per minute, its over-all accuracy was not considered suitable for useful comparison at lower flow rates, particularly below four pounds per minute. The probable reason for this was failure to accurately determine calorimeter heat leakage at the lower evaporator temperatures occurring at the lower flow rates. A secondary refrigerant calorimeter constructed for a previous study was used for the one Size A condenser (Specimen No. 1) included in this report.

Figures 1 through 8 show certain features of the test apparatus and instrumentation.

- Figure 1. Schematic drawing of complete measuring apparatus.
- Figure 2. Inclined gauges and manometers for air pressure measurements, totalizing counter for refrigerant liquid flowmeter, barometer, hot and cold temperature reference baths. Switch box (lower left) controlled position of auxiliary blower inlet damper.
- Figure 3. Wet- and dry-bulb thermocouple grid at test condenser air inlet.
- Figure 4. Auxiliary blower (left) and inlet damper control motor. Blower is at exit end of air duct apparatus.
- Figure 5. Condensed refrigerant liquid line leaving test condenser (right). Pressure tap (right), sight glass (center), and thermocouple well (left) are part of measuring system for determining temperature and degree of subcooling of leaving refrigerant liquid. A mixer (Fig. 12) was installed between the condenser and sight glass for most runs.
- Figure 6. Test system refrigerant pressure gauges and precision galvanometer type potentiometer.
- Figure 7. Instruments for measurement of electric energy, current and voltage, and relative humidity.

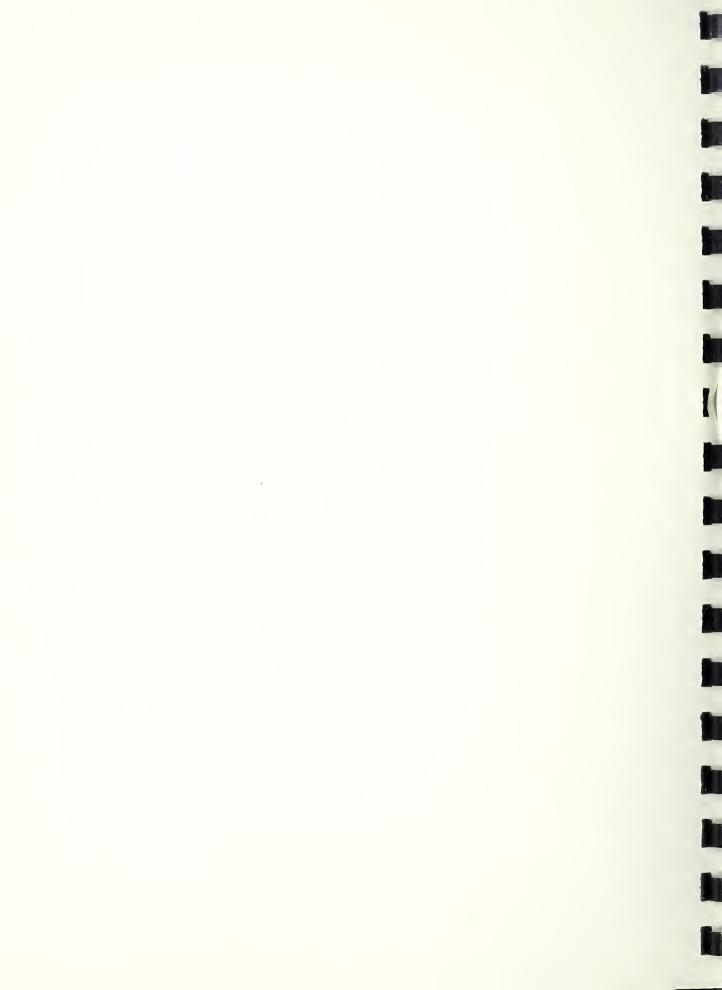
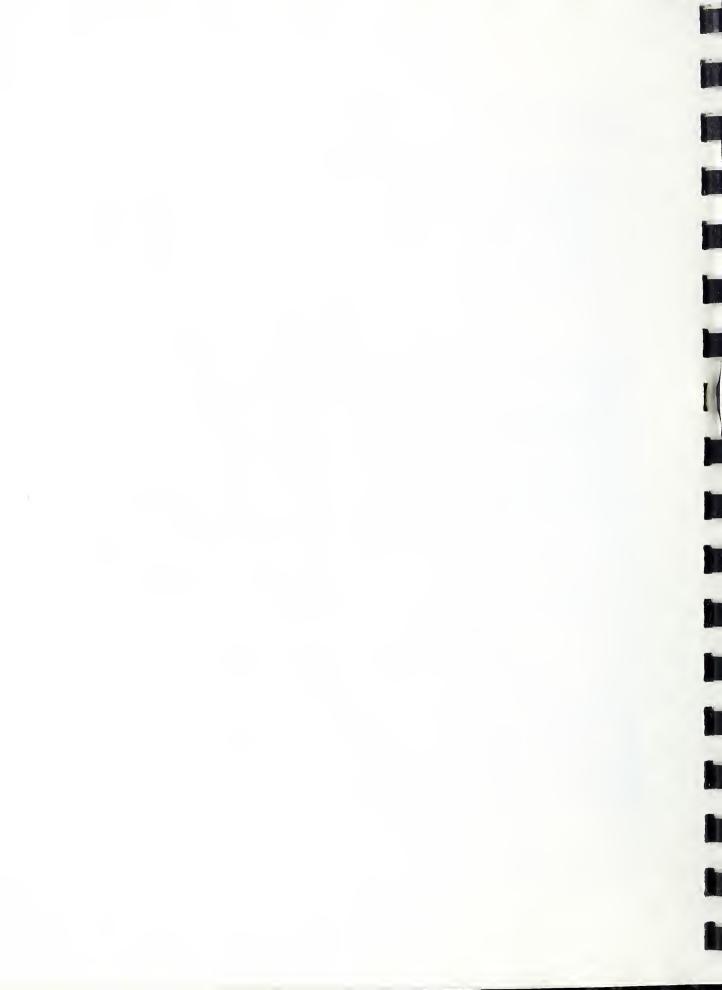
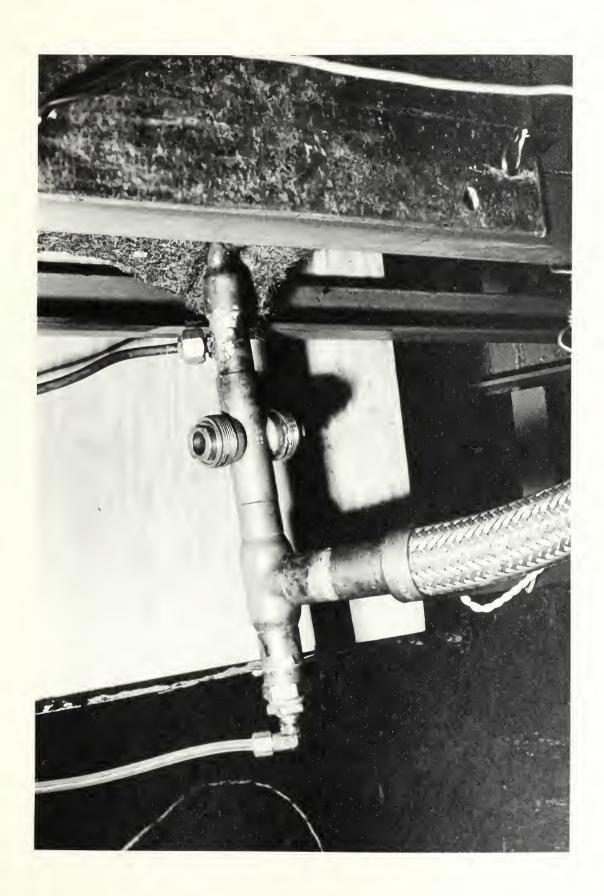
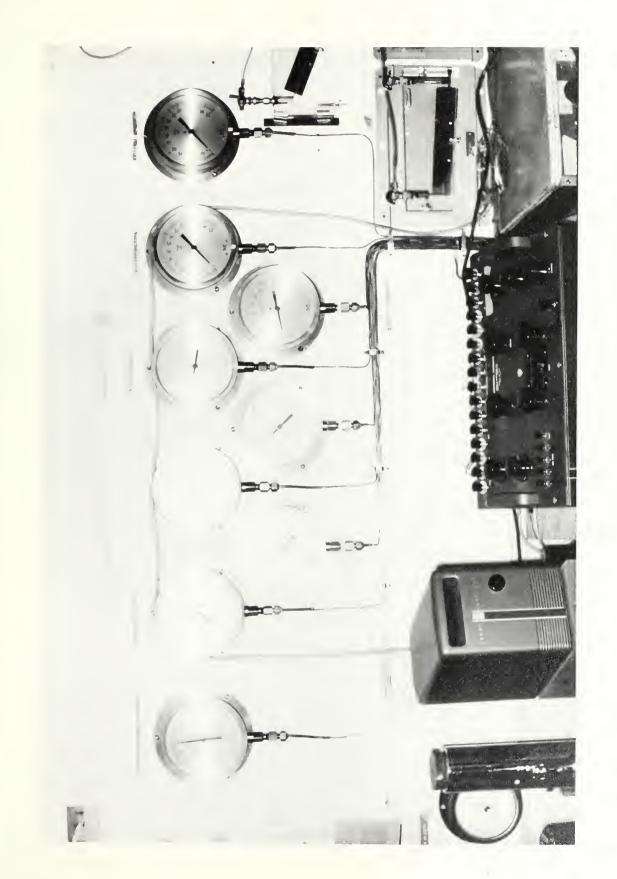
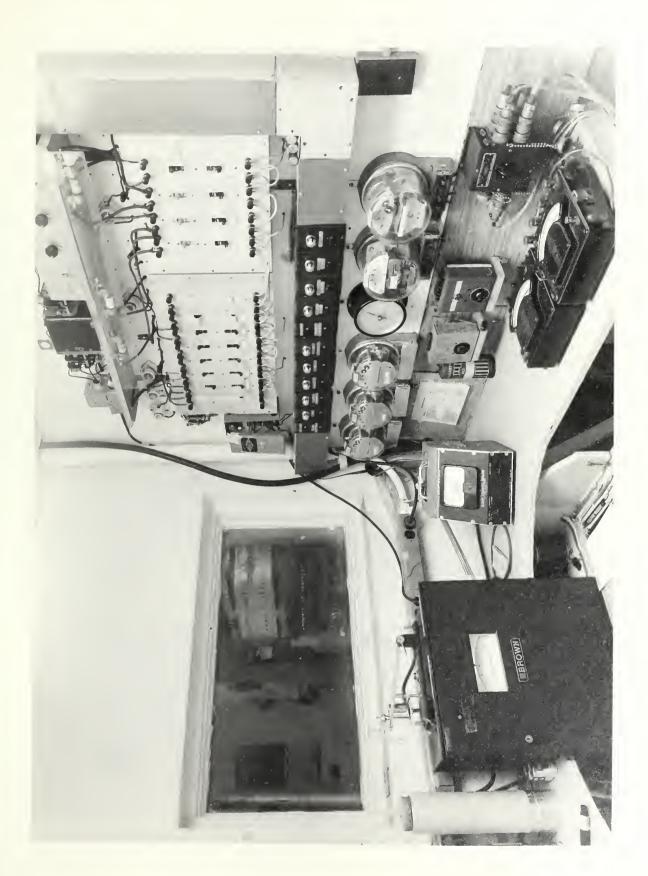



Fig. 1

Fig. 2


Fig. 4



Components of condenser test circuit including com-Figure 8. pressor, vertical liquid receiver, primary dry system calorimeter evaporator (in plywood enclosure, top), and various accessories for controlling and measuring refrigerant temperatures, pressures and flow. pressure gauges (center) indicate pressure drop across liquid line flowmeter(s) directly above gauges. vertical liquid receiver was located near an outside door, and during cold weather was influenced by frequent and excessive changes in ambient temperatures not experienced during earlier tests. These temperature changes interfered with control of subcooling. A water coil was formed around the receiver, with water flow controlled by receiver refrigerant pressure and the entire assembly insulated as shown, eliminating the effect of ambient temperature changes. Water-cooling the receiver also facilitated pump down of the refrigerant when changing test condensers.

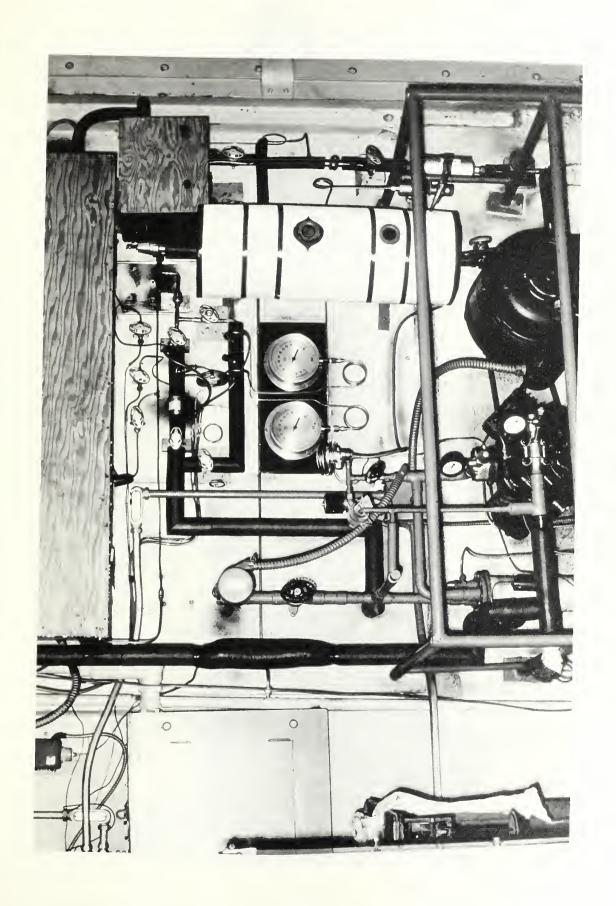
Figure 9. Secondary refrigerant calorimeter.

Additional details concerning apparatus will be found under "Data and Results".

3.0 Data and Results

Each condenser was studied at three different sets of standard conditions as previously described. Each test required control of refrigerant inlet temperature and pressure, air inlet temperature and pressure, air outlet pressure and refrigerant subcooling. Although each condenser was supplied with its own fan and fan motor, tests were made using a selected military standard fan and fan motor conforming to the fan air delivery vs. static pressure requirements of the purchase description. Figure 10 shows the three fan types and two motors used for the series.

Figure 11 shows the typical construction of the tube and embossed plate fin assembly used in all of the condensers covered in this report. Note the 5/32-in. open slots between alternate pairs of tube openings. In manufacture, the end of certain of the return bends of the nominal 3/8-in. o.d. serpentine tube coils used for all condensers covered by this report were flattened, the coils then inserted in the fin assembly and then expanded hydraulically. This operation reopened the flattened return bends and also expanded the tubes into the fin collars extruded from the fins. Final expanded diameter of the tubes was somewhat larger than 3/8 in., approximately 0.39 in. The determinations of primary, secondary and total surface areas were based on the following conditions:



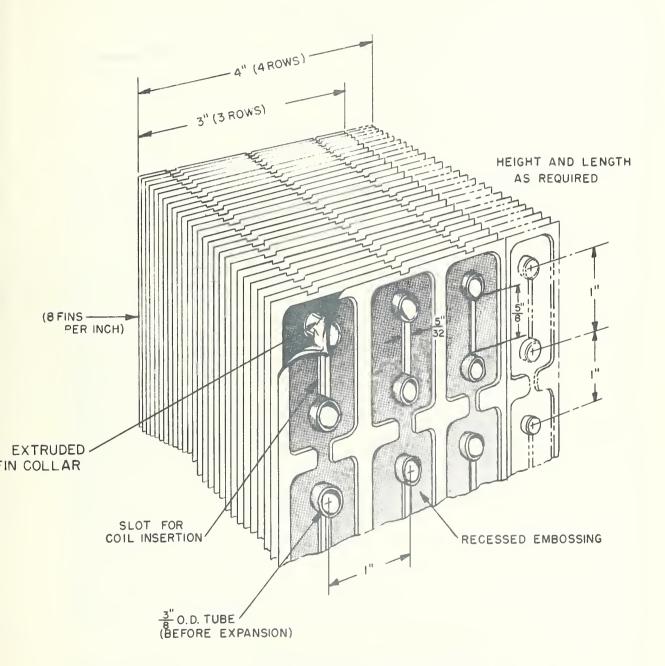


Fig. 9

TYPICAL FIN AND TUBE ASSEMBLY

Fig. 11

	Ţ
	,
	- 6
	7
	4
	7
	7
	j
	-

- 1. Primary area = Number of tubes x length x π x diameter minus area covered by fins based on fin thickness. Fin collars were ignored. Tube outside diameter was taken arbitrarily as 0.375 in.
- Area of open slots and tube openings was deducted from total fin area.
- 3. End sheets and tube area through and beyond end sheets and exposed fin edges were not included.

In an earlier report (NBS 6670) of tests of two condensers also manufactured by Kramer Trenton Company area was determined on slightly different basis in that (1) primary area = total tube area in the finned width, and (2) secondary area was not corrected for insertion slot area.

Figure 12 shows a mixing device which was used in the condenser outlet line for all tests except two covered in this report. One of these two tests was included for comparison; the other was conducted prior to construction of the mixing device.

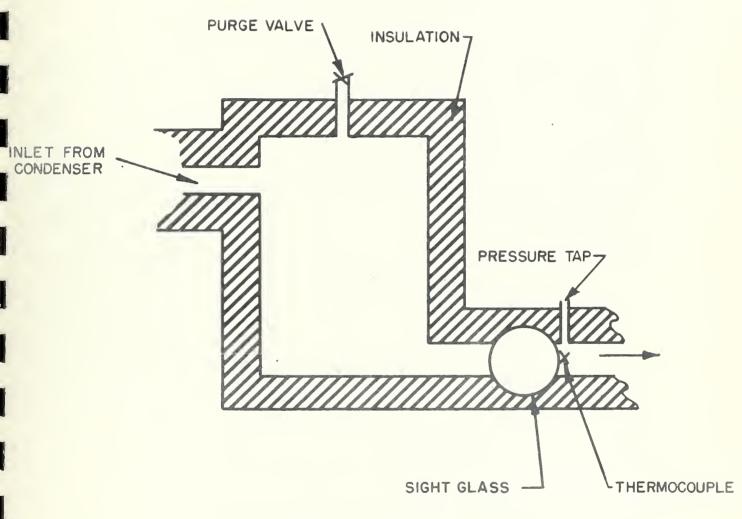
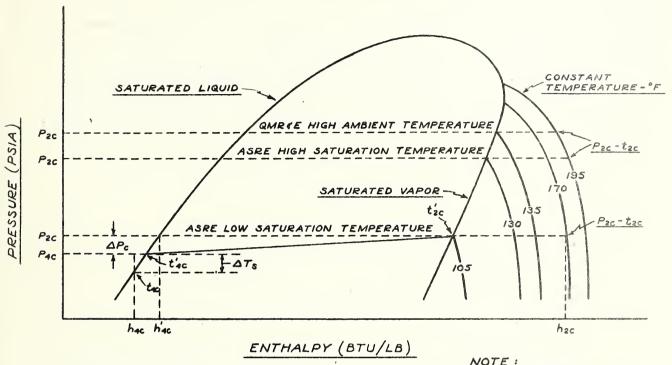

Figure 13 shows, schematically, the features of the mixer, which consisted of an insulated cylinder of 5-in. diameter, about 6 in. high, with the inlet about $1 \, 1/2$ in. from the top and the outlet at the bottom. During initial tests of one of the condensers in this report, a clear sight glass in the refrigerant liquid line leaving the condenser was not obtained with pressure-temperature relationships observed at the sight glass of less than 4.0 degrees of indicated subcooling. perature measurements of the last return bend in each row indicated the possibility that one or more rows were passing some uncondensed vapor while the other rows were passing subcooled liquid. After the mixer was added, satisfactory agreement of subcooling was obtained between the sight glass and the pressure-temperature relationship of the refrigerant at the sight glass. Because the mixer was well insulated, it functioned adiabatically and did not increase the total heat exchange of the condenser. A comparison test with and without the mixer in the circuit indicated agreement within 0.9 percent, a difference smaller than the ability of the apparatus to provide a precise comparison. These comparative observations are included in the discussion of test results obtained with Specimen No. 2.

Figure 14 is a pressure-enthalpy diagram for dichlorodifluoro-methane (Refrigerant 12) on which the three sets of rating conditions used for the tests in this report are shown. Symbols used in the Tables of Test Results are identified on this diagram.



CONDENSER OUTLET MIXER ASSEMBLY

Fig. 13

PRESSURE - ENTHALPY DIAGRAM NO SCALE

NOTE:
LABELED IN ACCORDANCE
WITH ASRE PS 2.4

CONDENSER SPECIMEN DIAGRAM

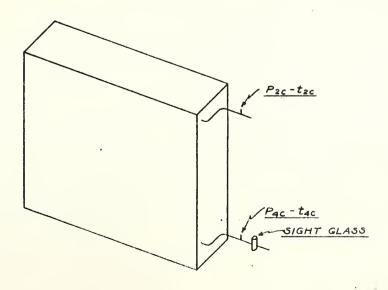
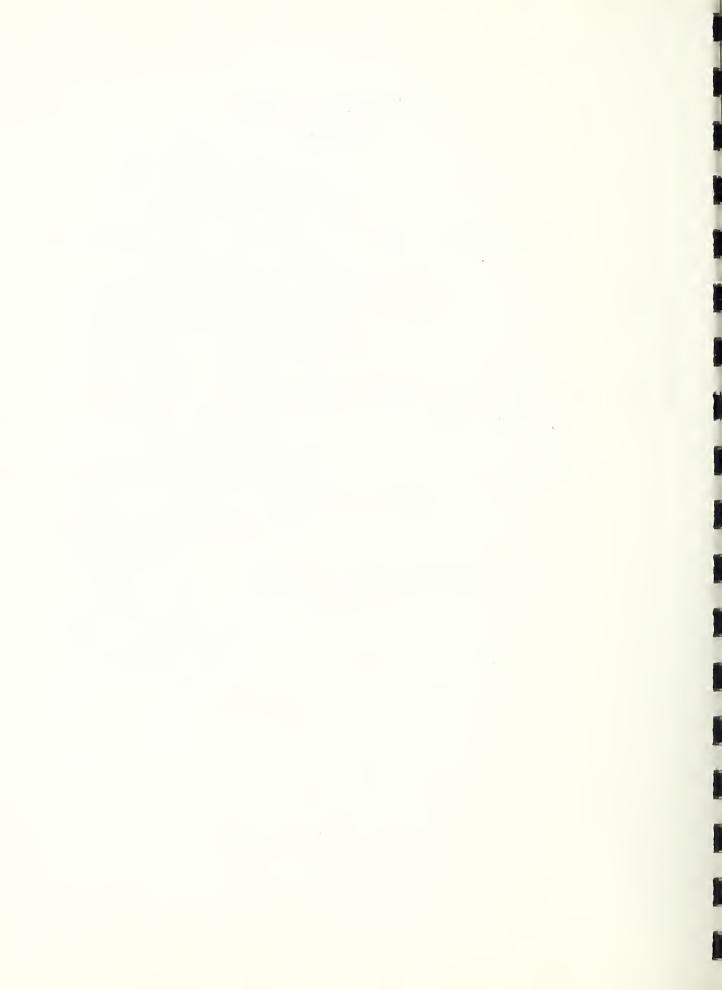



Fig. 14

Photographs and schematic drawings of the four condensers tested are presented in Figures 15 to 23. Dimensional and material data and test results are summarized in Tables 1 to 8.

In each table of test results, Items 1 through 6 are specified test conditions and the corresponding observed conditions; Items 7 and 8, are performance observations based on air-side measurements; Items 9 through 12 are performance observations based on refrigerant-side measurements; and Items 13 through 23 are ratings derived from both sets of measurements. Two additional ratings, Items 24 and 25, have been added for further comparison. They are:

Item 24. Btu per (ft²)(°F)(hour)

Item 25. Btu per (ft²)(°F)(CFM)(hour)

where:

 Ft^2 = total surface area of the condenser in square feet

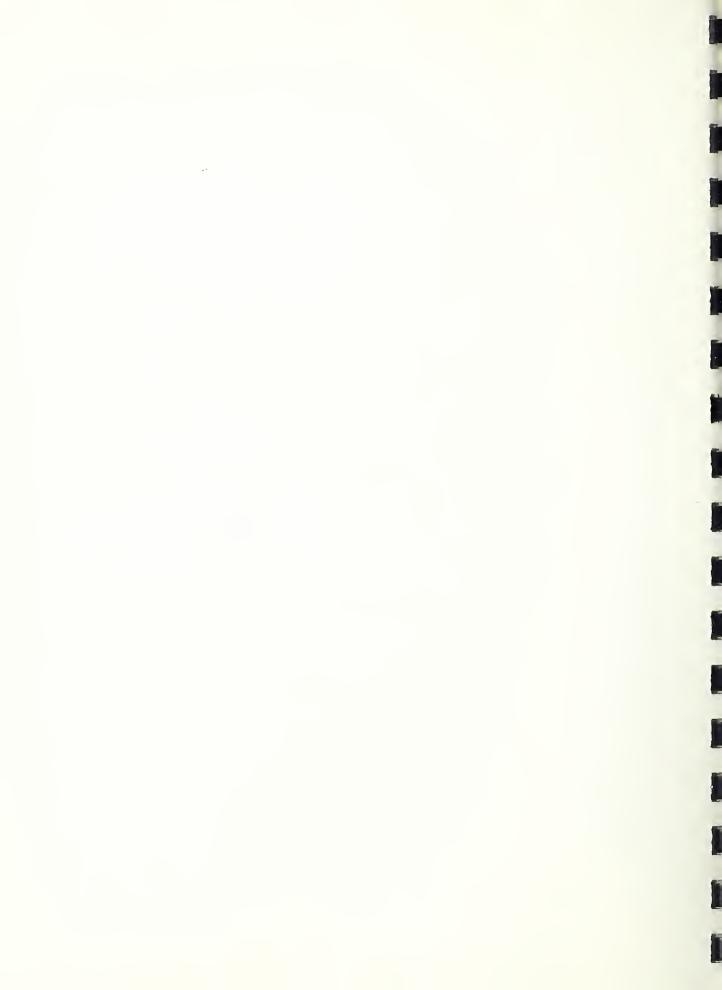
°F = log mean temperature difference, refrigerant to air

CFM = air flow rate, std.

Items 1 through 12, 17, and 18 are observed test results, corrected for gauge calibration, etc. Items 13 through 16 and 19 through 25 are values which have been converted from observed test conditions to standard conditions. Item 13 is the converted average of Items 8 and 12. Item 14, "Condensing Heat Rejection", includes desuperheating of the entering refrigerant vapor. Item 14 was determined using the following equation:

$$q_{cR} = F(h_{2c} - h'_{4c})$$

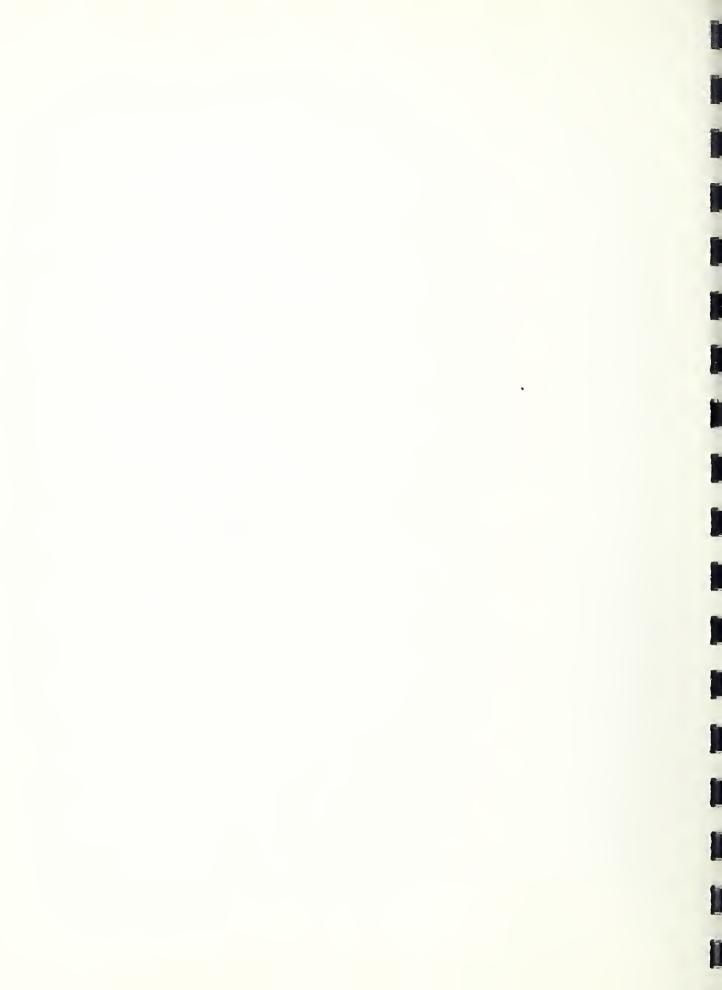
where q_{cR} = condensing heat rejection, Btu per hour F = factor, $\frac{q_{tR}}{q_{tr}}$

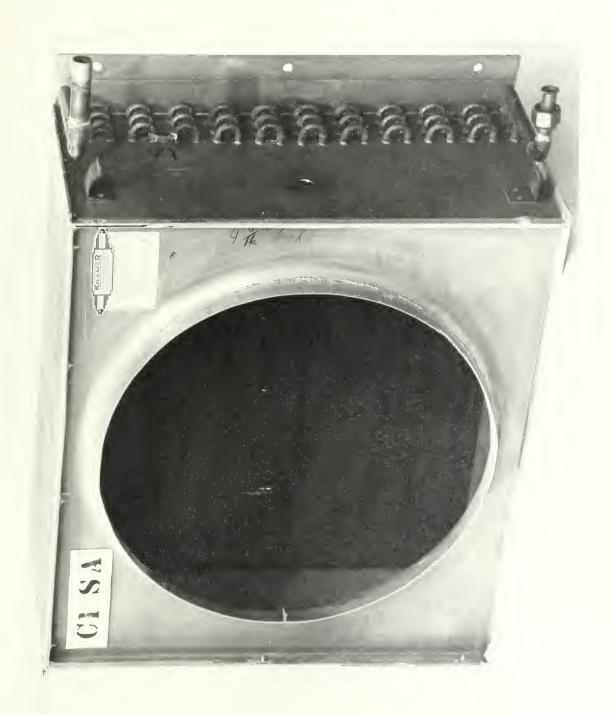

 h_{2c} = enthalpy at P_{2c} , t_{2c} , Btu per pound

 h'_{4c} = enthalpy of saturation at P_{2c} , Btu per pound

qtR = total heat rejection, Item 13, Btu per hour

qtr = total heat rejection, Item 12, Btu per hour


It will be noted that this method arbitrarily assumes that all condensing occurs at the inlet pressure.



For all tests reported, the agreement between capacities determined by the air-side or psychrometric method and the flowmeter method was closer than 7 percent, and for all tests except two, the agreement was closer than 4 percent. Agreement for all QMR&E High Ambient Temperature tests was 3.5 percent or less.

Specimen No. 1 was a Size A, Class 1 Condenser, NBS No. 134-57. Figure 15 is a view of this condenser which had copper tubes and aluminum fins. Note the straight line vertical parallel tube rows typical of all condensers in this report as further indicated in Figure 11. Each plate-type fin in this condenser was the full height of the condenser. Figure 16 and Table 1 give dimensional data, and Table 2 presents test data for Specimen No. 1. For this specimen, confirming refrigerant flow rate determinations were made using the secondary refrigerant calorimeter shown in Figure 9. These measurements are given in Item 9 in Table 2, to the left of each of the flowmeter measurements listed in the three main columns of data. Specimen No. 1 was the only condenser in this report tested with the secondary refrigerant calorimeter. Difference between the two flow rate measurements was 3.7, 5.8, and 3.6 percent for the three tests in Table 2. At the QMR&E High Ambient Temperature test, the capacity was 21440 Btu per hour, 96.2% of the requirement of 22300 Btu per hour.

Specimen No. 2 was a Size B, Class 3 Condenser, NBS No. 145-58, with aluminum tubes and fins. The finned portion was formed in two sections, the top section 22 in. high, the bottom section 11 7/8 in. high. There were 215 fins in the top section, 219 in the bottom. Figure 17 is a view of Specimen No. 2. Figure 18 and Table 3 give dimensional data and Tables 4 and 4a present test data for this condenser. Refrigerant test connections to the aluminum manifolds were made using a commercial epoxy resin after difficulty was experienced in attempts to use aluminum solder. Comparative tests were made at the QMR&E High Ambient Temperature condition with and without the mixer (Figures 12 and 13) in the condenser outlet line. Table 4 lists the performance with the mixer and Table 4a gives the test results without the mixer. The total heat rejection, respectively, for the two OMR&E High Ambient Temperature conditions was 34340 and 34640 Btu per hour, an agreement within 0.9%. Confirming refrigerant flow rate determinations were made using the modified dry system primary calorimeter. The agreement between the two flow rates was 0.6, 16.7, 0.1, and 0.6 percent for the four tests in Tables 4 and 4a. The calorimeter flow rates are shown in Item 9 to the left of each main column of test data. As discussed under "Apparatus and Tests", the agreement was satisfactory for all tests except the ASRE Low Saturation Temperature Test, in which the flowmeter indicated

CLASS

K

SIZE

134-57

S S

NBS

ERAMER TRENTON

Fig. 16

CONDENSER SPECIMEN No. 1

MFR. KRAMER TRENTON		SIZE - A
NBS NO. 134-57		CLASS - 1
ITEM	PROPERTY	REMARKS
	COIL TUE	SE CHARACTERISTICS
I MATERIAL	Copper	
2 NUMBER OF ROWS DEEP	3	
3 NUMBER OF TUBES HIGH	22	
4 NUMBER OF CIRCUITS IN PARALLEL	3	
5 NUMBER OF TUBES PER CIRCUIT	22	
6 TUBE DIAMETER, O.D., IN.	3/8	nominal, see text
7 TUBE WALL THICKNESS , IN.	0.025	approx.
6 TUBE RETURN BEND DIAMETER, O.D., IN.	3/8	nominal, see text
9 GAS INLET CONNECTION DIAM., O.D., IN.	5/8	increased to 7/8"
10 LIQUID OUTLET CONN. DIAMETER, O.D., IN.	5/8	
II VERTICAL TUBE SPACING, IN. S	1	
12 PRIMARY SURFACE AREA , SQ. FT.	12.4	
	COIL F	IN CHARACTERISTICS
I MATERIAL	Aluminum	
2 TYPE OF FIN	Plate	Embossed, slotted
3 FIN SPACING , PER INCH	8	
4 FIN THICKNESS , IN.	.011	·
5 SECONDARY SURFACE AREA, SQ. FT.	145.4	
	′	
		OIL DIMENSIONS
I FINNED HEIGHT, IN. K	21 7/8	
2 FINNED WIDTH , IN. F	24 3/4	190 Fins
3 FINNED DEPTH, IN. V	3	
4 COIL HEIGHT, IN. H	21	
5 COIL WIDTH , IN. W	27 1/4	
6 COIL DEPTH, IN. D	2	
7 COIL DEPTH, OVERALL, IN. N	10 5/8	
8 FACE AREA, SQ. FT.	3.8	
9 TOTAL SURFACE AREA, SQ.FT.	157.8	
		CONDENSER DIMENSIONS
I WIDTH, OVERALL, IN. A	30 1/8	
2 WIDTH, SHROUD, IN. B	24 7/8	
3 HEIGHT, IN. C	22 1/8	
4 DEPTH, IN.	11	
S BELLMOUTH ORIFICE DIAMETER, IN. X	18 3/8	
6 BELLMOUTH RADIUS , IN. R	3/4	

CLASS - 1	QMR & E HIGH AMBIENT TEMPERATURE	CONDITION	AIR FLOW RATE CFN	PREE	29.92/ 29.75	109.9	9.06	109.9	134.9	195.5	METHOD	2040	. 21090	FLOW METHOD	5.963 5.758	7.0	7.6	21780	S	21440	1 20990	450	. 1780	0.15	174	0.00	. 1729	7 7 7 7	0	12.06	0.00391
- A CL	ASRE OW SATURATION TEMPERATURE	JBSERVED CONDITION	AIR FLOW RATE CFM	FREE	29.80		5 78.4	95.0	ci.	,0 168.3	AIR FLOW ME	> 2010	7330		907 1.803	8.0	4x. 4.0	7310	RATINGS	7180	0902	.120	1840	0.15	130	1	578.9		45.49	3.893	5.294
SIZE -	LOW		0,0	105	29.92	95	75 #	95	105	170					L.9		S MAX														
	R E URATION RATURE	OBSERVED CONDITION	FLOW RATE CFM	FREE DISCH.	29.31	95.2	79.5	95.2	129.7	194.2	METHOD	2060	29520	FLOW METHOD	7,841	4.0	5.7	30630	TINGS	31430	30540	890	1820	0.15	176	1	2535	216.2	199.2	17.27	7.413
No. 134-57	ASRE HIGH SATURATION TEMPERATURE		AIR		126		19 H			±10	AIR FLOW		,	REFRIGERANT	8,130		MAX.		RAT												
NBS			01/01/0	200		95	751	95	/30	195		2	H	RE	5		,0/	11		H	H	H	2	0	7.5	0	<i>y</i>	և	lı.		
		gton -3		٠	Pab "Hs	tae .F	t'se 'F	tae °F	2C F	7° 55		Gad CFM	9 tc BTUH		r Ibfmin	APc PSI	ATS OF	ger BTUH		ger BTUH	9CR BTUH	gse BTUH	R CFM	Pas "H20	P+m WATTS	BHP	BTUH/SF	BTUH/SF	BTUH/SF	втин	(CFM)
MFR. KRAMER TRENTON	AIR CIRCULATING EQUIPMENT AND REFRIGERANT USED	FAN MFR. TOTTING		ITEM		90	90	MPERATURE OF	VAPOR t	REFRIGERANT VAPOR			6. TOTAL HEAT REJECTION 9		9. REFRIGERANT FLOW RATE W.	747	G OF LEAVING	EVECTION		13. TOTAL HEAT REJECTION 9	14. CONDENSING HEAT REJECTION 9	15. SUBCOOLING HEAT REJECTION Q	16. AIR FLOW RATE	17. EXTERNAL RESISTANCE	16. FAN MOTOR POWER	19. FAN BRAKE HORSEPOWER P	20. HEAT REJECTION PER UNIT B			HEAT REJECTION PER CFM	24. " " , BTUH/SF(°F) 25. " " , BTUH/SF(°F)

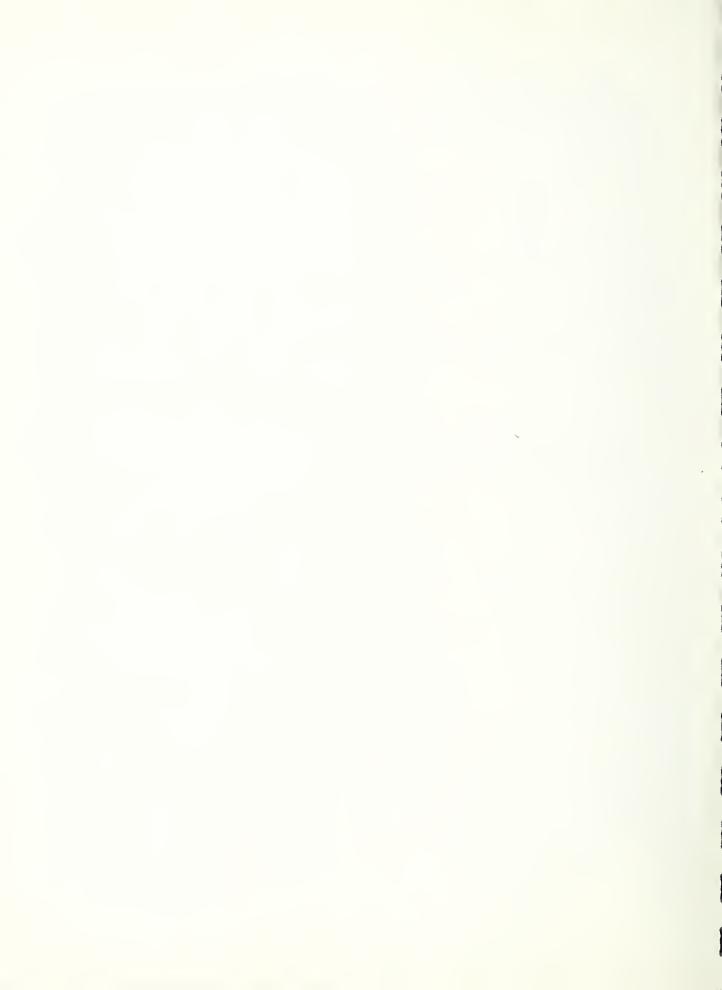
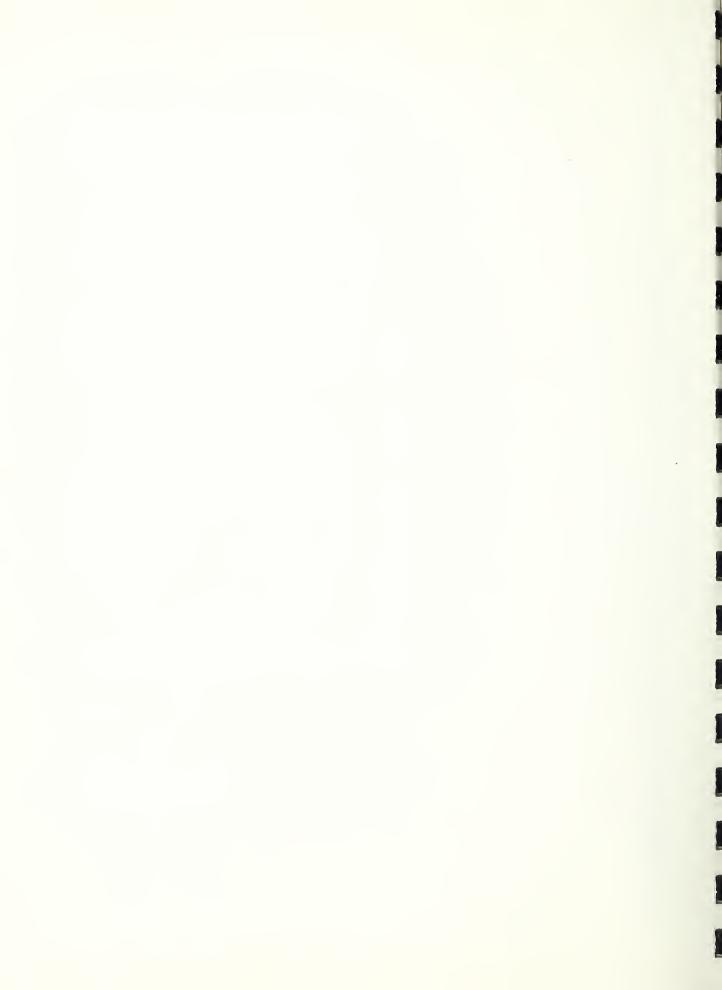
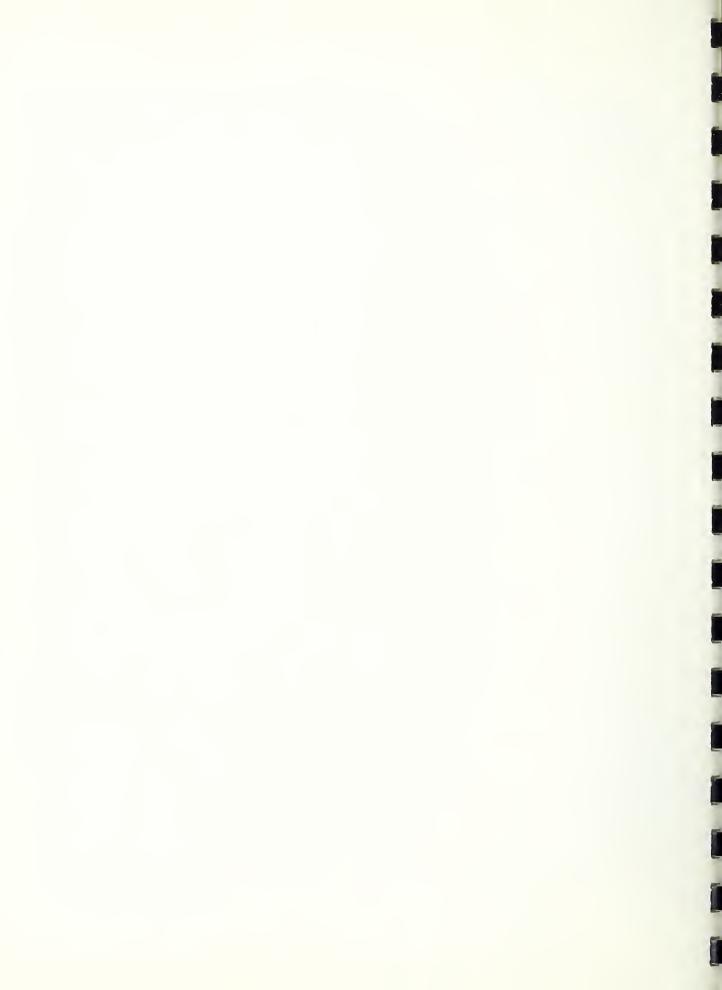



Fig. 17

Fig. 18

CONDENSER SPECIMEN No. 2

NBS NO. 145-58 ITEM PROPERTY REMAR COIL TUBE CHARACTERIST Aluminum Aluminum NUMBER OF ROWS DEEP NUMBER OF TUBES HIGH NUMBER OF CIRCUITS IN PARALLEL NUMBER OF TUBES PER CIRCUIT TUBE DIAMETER, O.D., IN. TUBE WALL THICKNESS, IN. TUBE RETURN BEND DIAMETER, O.D., IN. AND	
COIL TUBE CHARACTERIST I MATERIAL 2 NUMBER OF ROWS DEEP 3 NUMBER OF TUBES HIGH 4 NUMBER OF CIRCUITS IN PARALLEL 5 NUMBER OF TUBES PER CIRCUIT 6 TUBE DIAMETER, O.D., IN. 7 TUBE WALL THICKNESS, IN. 0.025 approx. 6 TUBE RETURN BEND DIAMETER, O.D., IN. 7/8 10 LIQUID OUTLET CONNECTION DIAM., O.D., IN. 11 VERTICAL TUBE SPACING, IN. 12 PRIMARY SURFACE AREA, SQ.FT. COIL FIN CHARACTERIST I MATERIAL 2 TYPE OF FIN 3 FIN SPACING, PER INCH 4 FIN THICKNESS, IN. Aluminum Embossed, slo	
I MATERIAL 2 NUMBER OF ROWS DEEP 3 NUMBER OF TUBES HIGH 4 NUMBER OF CIRCUITS IN PARALLEL 5 NUMBER OF TUBES PER CIRCUIT 6 TUBE DIAMETER, O.D., IN. 7 TUBE WALL THICKNESS, IN. 6 TUBE RETURN BEND DIAMETER, O.D., IN. 9 GAS INLET CONNECTION DIAM., O.D., IN. 10 LIQUID OUTLET CONN. DIAMETER, O.D., IN. 11 VERTICAL TUBE SPACING, IN. 12 PRIMARY SURFACE AREA, SQ.FT. 20.8 COIL FIN CHARACTERIS I MATERIAL 2 TYPE OF FIN 3 FIN SPACING, PER INCH 4 FIN THICKNESS, IN. Aluminum 8 4 FIN THICKNESS, IN. Aluminum 8 0.011	KS
2 NUMBER OF ROWS DEEP 3 NUMBER OF TUBES HIGH 4 NUMBER OF CIRCUITS IN PARALLEL 5 NUMBER OF TUBES PER CIRCUIT 6 TUBE DIAMETER, O.D., IN. 7 TUBE WALL THICKNESS, IN. 0,025 approx. 6 TUBE RETURN BEND DIAMETER, O.D., IN. 7/8 10 LIQUID OUTLET CONNECTION DIAM., O.D., IN. 11 VERTICAL TUBE SPACING, IN. 12 PRIMARY SURFACE AREA, SQ.FT. 20.8 COIL FIN CHARACTERIS 1 MATERIAL 2 TYPE OF FIN 3 FIN SPACING, PER INCH 4 FIN THICKNESS, IN. 0,011	103
3 NUMBER OF TUBES HIGH 4 NUMBER OF CIRCUITS IN PARALLEL 5 NUMBER OF TUBES PER CIRCUIT 6 TUBE DIAMETER, O.D., IN. 7 TUBE WALL THICKNESS, IN. 0.025 approx. 6 TUBE RETURN BEND DIAMETER, O.D., IN. 9 GAS INLET CONNECTION DIAM., O.D., IN. 10 LIQUID OUTLET CONN. DIAMETER, O.D., IN. 11 VERTICAL TUBE SPACING, IN. 12 PRIMARY SURFACE AREA, SQ.FT. 20.8 1 MATERIAL 2 TYPE OF FIN 3 FIN SPACING, PER INCH 4 FIN THICKNESS, IN. 0.011	
3 NUMBER OF TUBES HIGH 4 NUMBER OF CIRCUITS IN PARALLEL 5 NUMBER OF TUBES PER CIRCUIT 6 TUBE DIAMETER, O.D., IN. 7 TUBE WALL THICKNESS, IN. 0.025 approx. 6 TUBE RETURN BEND DIAMETER, O.D., IN. 9 GAS INLET CONNECTION DIAM., O.D., IN. 7/8 10 LIQUID OUTLET CONN. DIAMETER, O.D., IN. 5/8 11 VERTICAL TUBE SPACING, IN. 5 1 12 PRIMARY SURFACE AREA, SQ.FT. 20.8 COIL FIN CHARACTERIST I MATERIAL A Huminum 2 TYPE OF FIN Plate Embossed, slot 3 FIN SPACING, PER INCH 4 FIN THICKNESS, IN. 0.011	
4 NUMBER OF CIRCUITS IN PARALLEL 5 NUMBER OF TUBES PER CIRCUIT 6 TUBE DIAMETER, O.D., IN. 7 TUBE WALL THICKNESS, IN. 0.025 approx. 6 TUBE RETURN BEND DIAMETER, O.D., IN. 9 GAS INLET CONNECTION DIAM., O.D., IN. 10 LIQUID OUTLET CONN. DIAMETER, O.D., IN. 5/8 11 VERTICAL TUBE SPACING, IN. S 1 12 PRIMARY SURFACE AREA, SQ.FT. 20.8 COIL FIN CHARACTERIST I MATERIAL Aluminum 2 TYPE OF FIN Plate Embossed, slc 3 FIN SPACING, PER INCH 8 4 FIN THICKNESS, IN. 0.011	
G TUBE DIAMETER, O.D., IN. 7 TUBE WALL THICKNESS, IN. 0.025 approx. 6 TUBE RETURN BEND DIAMETER, O.D., IN. 9 GAS INLET CONNECTION DIAM., O.D., IN. 10 LIQUID OUTLET CONN. DIAMETER, O.D., IN. 11 VERTICAL TUBE SPACING, IN. 12 PRIMARY SURFACE AREA, SQ.FT. 1 MATERIAL 1 MATERIAL 2 TYPE OF FIN 3 FIN SPACING, PER INCH 8 4 FIN THICKNESS, IN. 3 /8 nominal, see 0.025 approx. 7/8 10 0.025 20.8 10 0.011	
7 TUBE WALL THICKNESS, IN. 0.025 approx. 8 TUBE RETURN BEND DIAMETER, O.D., IN. 9 GAS INLET CONNECTION DIAM., o.D., IN. 10 LIQUID OUTLET CONN. DIAMETER, O.D., IN. 11 VERTICAL TUBE SPACING, IN. 12 PRIMARY SURFACE AREA, SQ. FT. 1 MATERIAL 2 TYPE OF FIN Plate Embossed, slow of the time that the state of the st	
7 TUBE WALL THICKNESS, IN. 0.025 approx. 6 TUBE RETURN BEND DIAMETER, O.D., IN. 9 GAS INLET CONNECTION DIAM., O.D., IN. 10 LIQUID OUTLET CONN. DIAMETER, O.D, IN. 5/8 11 VERTICAL TUBE SPACING, IN. 12 PRIMARY SURFACE AREA, SQ. FT. 1 MATERIAL Aluminum 2 TYPE OF FIN Plate Embossed, slow of the time that the spacing of the second	text
9 GAS INLET CONNECTION DIAM., o.D., IN. 7/8 10 LIQUID OUTLET CONN. DIAMETER, o.D., IN. 5/8 11 VERTICAL TUBE SPACING, IN. S 1 12 PRIMARY SURFACE AREA, SQ. FT. 20.8 COIL FIN CHARACTERIST I MATERIAL Aluminum 2 TYPE OF FIN Plate Embossed, slo 3 FIN SPACING, PER INCH 8 4 FIN THICKNESS, IN. 0.011	
9 GAS INLET CONNECTION DIAM., O.D., IN. 7/8 10 LIQUID OUTLET CONN. DIAMETER, O.D, IN. 5/8 11 VERTICAL TUBE SPACING, IN. S 1 12 PRIMARY SURFACE AREA, SQ.FT. 20.8 1 MATERIAL Aluminum 2 TYPE OF FIN Plate Embossed, slow of the standard process of the	text
II VERTICAL TUBE SPACING, IN. 12 PRIMARY SURFACE AREA, SQ.FT. COIL FIN CHARACTERIST I MATERIAL 2 TYPE OF FIN Plate Embossed, slo 3 FIN SPACING, PER INCH 4 FIN THICKNESS, IN. 0.011	
I MATERIAL I TYPE OF FIN 3 FIN SPACING, PER INCH 4 FIN THICKNESS, IN. 20.8 COIL FIN CHARACTERIST Aluminum Plate Embossed, slo	
COIL FIN CHARACTERIS I MATERIAL Aluminum 2 TYPE OF FIN Plate Embossed, slo 3 FIN SPACING, PER INCH 8 4 FIN THICKNESS, IN. 0.011	
I MATERIAL Aluminum 2 TYPE OF FIN Plate Embossed, slo 3 FIN SPACING, PER INCH 8 4 FIN THICKNESS, IN. 0.011	
2 TYPE OF FIN Plate Embossed, slo 3 FIN SPACING, PER INCH 8 4 FIN THICKNESS, IN. 0.011	TICS
3 FIN SPACING, PER INCH 8 4 FIN THICKNESS, IN. 0.011	
4 FIN THICKNESS, IN. 0.011	otted
5 SECONDARY SURFACE AREA, SQ. FT. 254.9	
COIL DIMENSIONS	
I FINNED HEIGHT, IN. K 33 7/8	
2 FINNED WIDTH, IN. F 27 215 Fins (top	section)
3 FINNED DEPTH, IN. V 3 219 Fins (bott	tom section
4 COIL HEIGHT, IN. H 32 3/4	
5 COIL WIDTH, IN. W 29 3/8	
6 COIL DEPTH, IN. D 2	
7 COIL DEPTH, OVERALL, IN. N 10 5/8	
8 FACE AREA, SQ. FT. 6.4	
9 TOTAL SURFACE AREA, SQ.FT. 275.7	
OVERALL CONDENSER DIMEN	VSIONS
2 WIDTH, SHROUD, IN. B 27 1/2	
3 HEIGHT, IN. C 34.	
4 DEPTH, IN. E 11	
3 BELLMOUTH ORIFICE DIAMETER, IN. X 24 1/2	
6 BELLMOUTH RADIUS, IN. R 5/8 Approx.	*
7/0 Арртох.	



MFR. KRAMER TRENTON			NBS NO.	145-58		SIZE - B		CLASS-	3
AIR CIRCULATING EQUIPMENT AND REFRIGERANT USED			Ħ	A S K SH SATU TEMPER	ASRE HIGH SATURATION TEMPERATURE	LOW SAT	ASRE LOW SATURATION TEMPERATURE	HIGH A	QMR « E HIGH AMBIENT TEMPERATURE
FAN MFR. TOT	Torrington-	ton 4	09		OBSERVED CONDITION	00	SBSERVED	03	OBSERVED
SPEED	1140 0.5 12		010	AIR	FLOW RATE CFM	010	AIR FLOW RATE CFM	010	AIR FLOW RATE CFM
ITEM			200		FREE DISCH.	2005	FREE	2005	FREE DISCHARGE
1. BAROMETRIC PRESSURE	Pab	"H3	29.921		29.95	29.921	29.82	29.92/	29.73
	t ae	٠,	95		95.2	95	94.9	011	109.8
S. WET BULB TEMPERATURE OF	4,2	LL.	75±5		78.6	75±5	76.8		87.8
4. AMBIENT AIR	t ac	LL.	95		95.2	50	6.46	011	
S. ENTERING REFRIGERANT VAPOR	22 7 8	LL.	/30		130.4	105	104.9	135	
6. ENTERING REFRIGERANT VAPOR	£2C	7	195 ≠ 10		191.7	170 \$ 10	166.2		197.6
			AIR	FLOW	METHOD		AIR FLOW	METHOD	
7 NOZZLE AIR AND WATER VAPOR T MIXTURE FLOW RATE	Q ad	CFM			3850		3860		3850
B. TOTAL HEAT REJECTION	9 tc	BTUH		,	47400		12960	,	34610
			REFRIG	REFRIGERANT	FLOW METHOD	REFR	REFRIGERANT	FLOW ME	METHOD
9. REFRIGERANT FLOW RATE	Wr	16/min		12,43	12.36	2.748	3.297	9.235	9,248
10. PRESSURE DROP	APc	PS!			20.3				11.1
II. SUBCOOLING OF LEAVING	ATS	4	10° MAX.			S MAX.	7.6		2.9
12. TOTAL HEAT REJECTION	9tr	BTUH			48260		13510		35440
				RATI	TINGS		RATINGS	VGS	
13. TOTAL HEAT REJECTION	9+8	ВТИН			47570		13230		34340
14. CONDENSING HEAT REJECTION		втин			45760		12930		33320
15. SUBCOOLING HEAT REJECTION	9sR	ВТИН			1810		3.00		1020
16. AIR FLOW RATE	Q	CFM			3340	-	3560		.3360
17. EXTERNAL RESISTANCE	Sed	"H20			0.22		0.22		0.23
18. FAN MOTOR POWER	Ptm	WATTS			478		486		477
19. FAN BRAKE HORSEPOWER	Q	ВНР			1		Cape Cape Supe		-
20. PRIMARY SURFACE AREA	BTU	BTUH/SF			2287		636.3		1651
21. SECONDARY SURFACE AREA	BTU!	BTUH/SF			186.6		51.92		134.7
22. HEAT REJECTION PER UNIT	BTU	UH/SF			172.5		48.00		124.6
HEAT REJECTION PER CFM	BTUH	r	the sale services of		14.23		3.723	:	10.21
" BTUH/SF(·F)	5			0.00		20T.00	0	
•	_	(12))))	J)

1	2
The Party of the P	No.
	SPECIMEN
	SPE
	NSER
	ONDE
	Ü

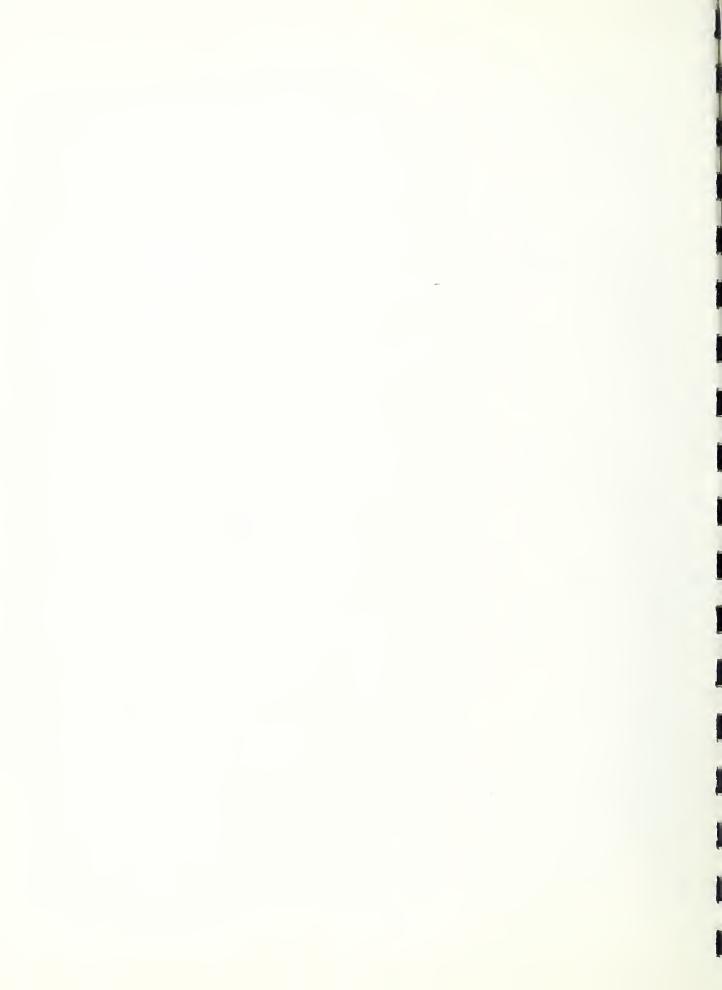
			NBS NO.	No. 145-58		S/2E - B		CLASS- 3	
AIR CIRCULATING EQUIPMENT AND REFRIGERANT USED			H	ASRE HIGH SATURATION TEMPERATURE	ON	LOW SAT	ASRE LOW SATURATION TEMPERATURE	QMR & E HIGH AMBIENT TEMPERATURE	MOIENT
FAN MFR. TOTT	Torrington E-2420-4		09	CONDITION		09	BSERVED	00	OBSERVED
NG -			ONE	AIR FLOW RAT CFM	W	0,0	AIR FLOW RATE CFM	60,0	AIR FLOW RATE OFF
ITEM		,	200	FREE		100 100	FREE	200	FREE
OMETRIC PRESSURE	684	"Hs	29.92/			29.921		28.927	29.57
2. DRY BULB TEMPERATURE OF	tae	4	50			95		011	0,0
3. WET BULE TEMPERATURE OF	t.26	il.	75 £ 5			75 2 5	and the second second		87.4
4. DRY BULB TEMPERATURE OF ANBIENT AIR	496	4.	87 69			k) Ø)		011	110.0
S SATURATION TEMPERATURE OF ENTERING REFRIGERANT VAPOR	£ 2C	ů.	130			105		50	135.2
6. SUPERHEAT TEMPERATURE OF ENTERING REFRIGERANT VAPOR	25.2	4	195 = 10			170 = 10			0.661
			AIR	FLOW METHOD	700		AIR FLOW	METHOD	
NOZZLE AIR AND WATER VAPOR	i de c	CFR							30 m
6. TOTAL HEAT REJECTION	9 60	STUR							34290
			REFRIG	ERANT FLOW	/ METHOD	REFE	FRIGERANT F	FLOW MET	HOD
S. REFRIGERANT FLOW RATE	W	15/min						790 0	0
	AFC	100						a	10
IT SUBCOOLING OF LEAVING	ATS		10 WAK.			5 MAX.			74.0
12. CAPACITY	44	BTUM							35530
				RATINGS			RATINGS	202	V
13. TOTAL HEAT REJECTION	SEE	BTUH							34640
14. CONDENSING HEAT REJECTION	gcR	BTUR							33570
13. SUBCOOLING HEAT REJECTION	9SE	БТИН							1070
16. AIR FLOW RATE	Q	CFM					700 - 70		3360
17. CONDENSER COIL 17. EXTERNAL RESISTANCE	Pas	"H20							0.22
16. FAN MOTOR POWER	Pra	WATTS							777
19. FAN BRAKE HORSEPOWER	Q	ВНР							
20. HEAT REJECTION PER UNIT	BTUH/SF	1/SF							1665
21. HEAT REJECTION PER UNIT	BTUH/SF	13F							125
22. HEAT REJECTION PER UNIT	BTUH/SF	/SF							125.6
23. HEAT REJECTION PER CFM	BTUH	*				1 1000000000000000000000000000000000000			200
" , BTUH/SF(°F)(CFM)	M)							
	-								

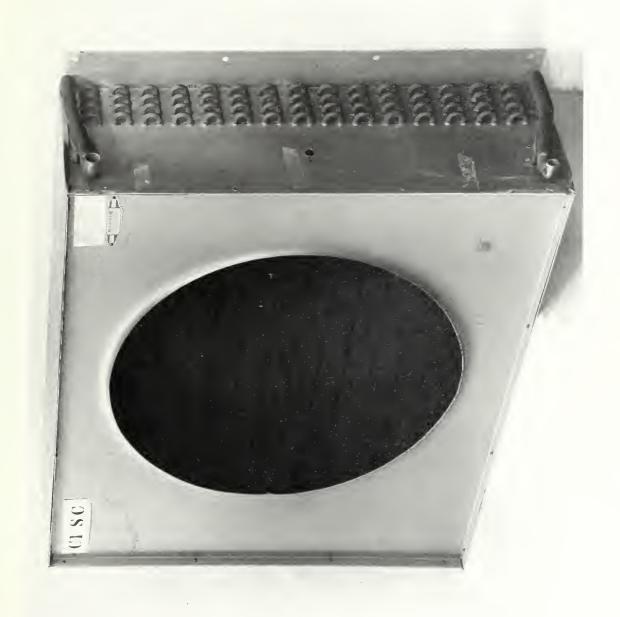
a flow rate of less than 4 pounds per minute. At the QMR&E High Ambient Temperature Test with the mixer, the capacity was 34340 Btu per hour, 96.4% of the requirement of 35600 Btu per hour.

Specimen No. 3 was a size B, Class 2 Condenser, NBS No. 146-58, with copper tubes and copper fins. The fin and tube assembly was as shown in Figure 11, and Figure 19 is a view of this specimen. The finned portion of the condenser was formed in two sections. The top section was 22 in. high, with 211 fins, and the bottom section was 12 in. high, with 212 fins. Figure 20 and Table 5 contain dimensional data, and Table 6 contains test data for Specimen No. 3. Refrigerant flow rate determination, in addition to the flowmeter measurement, was made using the dry system primary calorimeter for the first two tests shown in Table 6. The calorimeter flow rates are listed in Item 9 to the left of each of the first two main columns of test data. Agreement between the two measurements was 1.1 and 13.4 percent, with the poor agreement occuring at a flow rate of less than four pounds per minute. The third test reported in Table 6 was made prior to modification of the system evaporator to serve as a calorimeter. The capacity at the QMR&E High Ambient Temperature Test was 33210 Btu per hour, 93.3 percent of the requirement of 35600 Btu per hour.

Specimen No. 4 was a Size C, Class 1 Condenser, NES No. 150-58, with copper tubes and aluminum fins. The finned portion was divided into two sections. The top section was 22 in. high, with 301 fins, and the bottom section was 9 7/8 in. high, with 308 fins. Figure 11 shows the typical tube and fin arrangement. Figure 21 is a view of Specimen No. 4 showing the fan orifice and manifold end of the condenser. Figure 22 shows the air inlet face of this condenser in an inverted position. Figure 23 and Table 7 present dimensional data, and Table 8 contains test data for Specimen No. 4. Refrigerant flow rate determinations were made using the dry system primary calorimeter in addition to the flowmeter measurements. The calorimeter rates are listed in Item 9 of Table 8 to the left of the flowmeter rates in each main column of test data. Agreement between the two measurements of refrigerant flow rate was 0, 8.1, and 2.1 percent for the three tests. At the QMR&E High Ambient Temperature Test, the capacity was 47,980 Btu/hr 104.3 percent of the requirement.

Fig. 19




CONDENSER SPECIMEN No. 3

MFR. KRAMER TRENTON		SIZE - B
NBS NO. 146-58		CLASS - 2
ITEM	PROPERTY	REMARKS
	COIL TU	BE CHARACTERISTICS
I MATERIAL	Copper	
2 NUMBER OF ROWS DEEP	3	
3 NUMBER OF TUBES HIGH	34	•
4 NUMBER OF CIRCUITS IN PARALLEL	3 -	The state of the s
5 NUMBER OF TUBES PER CIRCUIT	34	
6 TUBE DIAMETER, O.D. , IN.	3/8	nominal, see text
7 TUBE WALL THICKNESS , IN.	0.025	approx.
6 TUBE RETURN BEND DIAMETER, O.D., IN.	3/8	nominal, see text
9 GAS INLET CONNECTION DIAM., O.D., IN.	7/8	
10 LIQUID OUTLET CONN. DIAMETER, O.D. IN.	5/8	
II VERTICAL TUBE SPACING, IN. S	1	
12 PRIMARY SURFACE AREA , SQ. FT.	21.1	
	COIL F	IN CHARACTERISTICS
I MATERIAL	Copper	
2 TYPE OF FIN	Plate	Embossed, slotted
3 FIN SPACING , PER INCH .	8	
4 FIN THICKNESS , IN.	.009011	·
5 SECONDARY SURFACE AREA , SQ. FT.	251.3	
	'	
	A STATE OF THE PROPERTY OF THE	COIL DIMENSIONS
I FINNED HEIGHT, IN. K	34	
2 FINNED WIDTH , IN. F	27 1/8	211 Fins(top section)
3 FINNED DEPTH, IN. V	3	212 Fins(bottom sectio
4 COIL HEIGHT, IN. H	33	
5 COIL WIDTH , IN. W	29 1/2	
6 COIL DEPTH, IN. D	2	
7 COIL DEPTH, OVERALL, IN. N	10 5/8	
8 FACE AREA , SQ. FT.	6.4	
9 TOTAL SURFACE AREA, SQ.FT.	272.4	
•	OVERALL	CONDENSER DIMENSIONS
I WIDTH, OVERALL, IN. A	32 1/2	
2 WIDTH, SHROUD, IN. B	27.4	
3 HEIGHT, IN. C	34.1.	
4 DEPTH, IN. E	11	
5 BELLMOUTH ORIFICE DIAMETER, IN. X	24 5/8	

CLASS - 2	QMR«E HIGH AMBIENT TEMPERATURE	CONDITION	AIR FLOW	PREE	29.92/ 29.42	110.0	75.0	110.0	135.1	197.4	METHOD	3580	. 33240	FLOW METHOD	8,623	8.25	7.9	33560	S	33210	31740	1470	3190	0,16	503	1 1	. 1575	1.32, 2	122.0	1700
	ASRE LOW SATURATION TEMPERATURE	SSERVED	AIR FLOW RATE CFM	FREE	29.81	\ \ \	76.9	95.2		171.8	AIR FLOW ME	3820	14910	REFRIGERANT FL	3.923	0.0	5.6	1,6010	RATINGS	15460	15260	200	3510	0.22	497	1	732.6	61.51	56.74	4.405
S12E - B	LOW S'	09	ONL	200	29.92/	95	75 = 5	95	105	170 \$ 10				REI	3.397		S MAK.													
	A S R E H SATURATION EMPERATURE	OBSERVED	FLOW RATE CFM	FREE LOW	29.59	95.1	79.1	95.1	130.2	196.1	METHOD	3860	52800	FLOW METHOD	13.17	4.	10.2	53190	TINGS	52940	49720	3220	3450	0.21	†9 †	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2509	210.7	194.3	15.34
No. 146-58	ASR HIGH SATU TEMPER		AIR	HIGH	12						AIR FLOW			REFRIGERANT	13,31		4%.		RATI											
NBS A			101/0 101/0	200	29.92/	95	75 25	9.5	130	195 = 10			r . many	REF			10° MAK													-
					, H3	4.	14.	LL.				CFM	BTUH		16 fain	PS!	٥. ا	BTUH		e BTUH	e BTUH	R BTUH	CFM	s "H20	" WATTS	ВНР	BTUH/SF	BTUH/SF	BTUH/SF	HO
MFR. KRAMER TRENTON	AIR CIRCULATING EQUIPMENT AND REFRIGERANT USED	FAN SERIAL NO. TOTTINGTON E-2420-4	SPEED	ITEM	1. BAROMETRIC PRESSURE Pas	2. DRY BULB TEMPERATURE OF tae	BULB TEMPERATURE OF	4. DRY BULB TEMPERATURE OF tag	S. SATURATION TEMPERATURE OF the	6. SUPERHEAT TEMPERATURE OF TRE		7. MIXTURE FLOW RATE VAPOR GE	6. TOTAL HEAT REJECTION 9to		S. REFRIGERANT FLOW RATE W.	10. PRESSURE DROP INTERNAL AP.	11. SUBCOOLING OF LEAVING ATS	12. TATAL HEAT REJECTION PER		13. TOTAL HEAT REJECTION 9+R	14. CONDENSING MEAT REJECTION GER	13. SUBCOOLING HEAT REJECTION GSR	16. AIR FLOW RATE	17. EXTERNAL RESISTANCE Pas	16. FAN MOTOR POWER	0.1	L/\	PER UNIT	117	

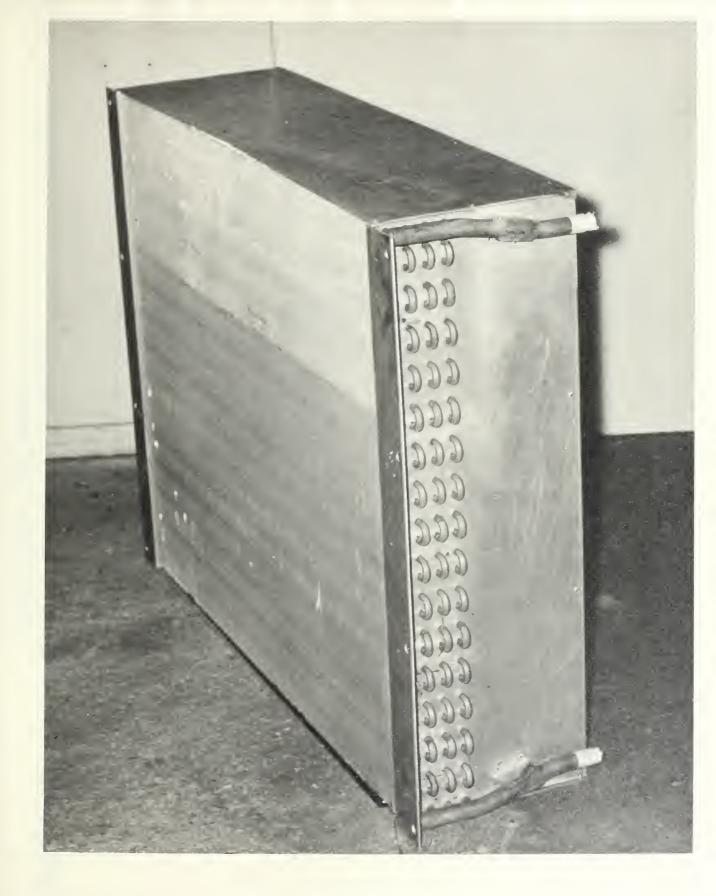
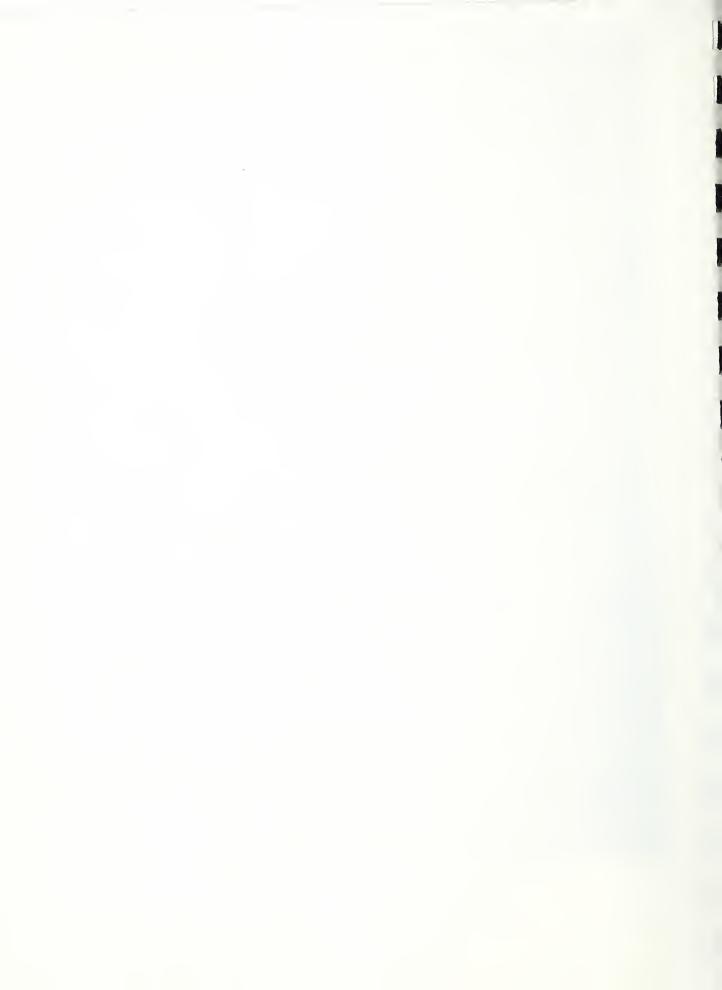
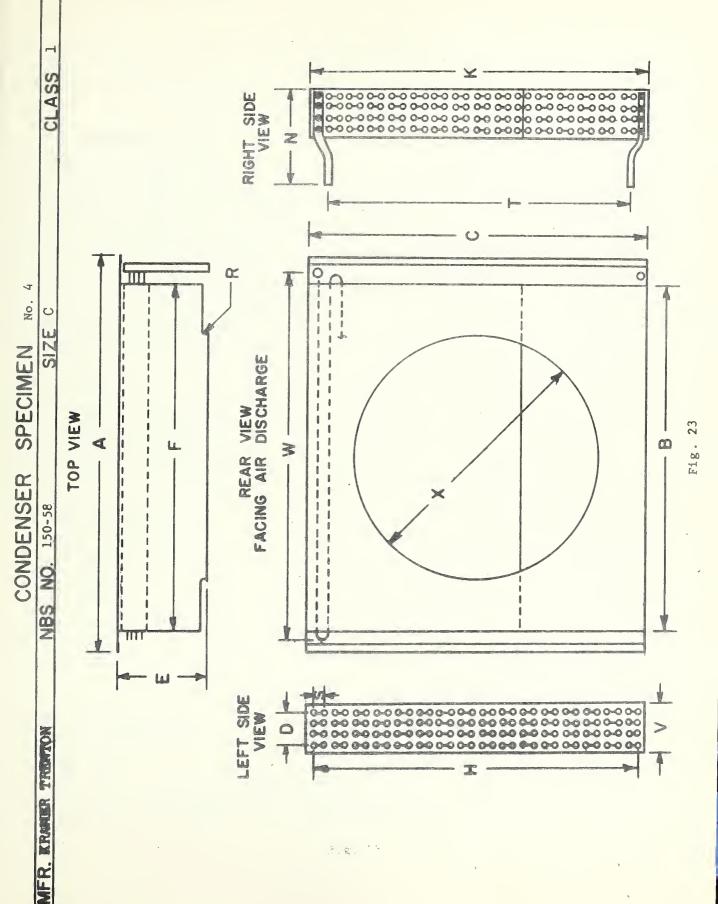




Fig. 22

CONDENSER SPECIMEN No. 4

MFR. KRAMER TRENTON		SIZE - C
NBS NO. 150-58		CLASS - 1
ITEM	PROPERTY	REMARKS
	COIL TU	BE CHARACTERISTICS
I MATERIAL	Copper	Company of constitution and a Schröder from a more in constitution and con
2 NUMBER OF ROWS DEEP	4	
3 NUMBER OF TUBES HIGH	32	
4 NUMBER OF CIRCUITS IN PARALLEL	4	
5 NUMBER OF TUBES PER CIRCUIT	32	The second secon
6 TUBE DIAMETER, O.D., IN.	3/8	nominal, see text
7 TUBE WALL THICKNESS , IN.	0.025	approx.
8 TUBE RETURN BEND DIAMETER, O.D., IN.	3/8	nominal, see text
9 GAS INLET CONNECTION DIAM., O.D., IN.	7/8	
10 LIQUID OUTLET CONN. DIAMETER, O.D. IN.	. 7/8	
II VERTICAL TUBE SPACING, IN. S	1	
12 PRIMARY SURFACE AREA , SQ. FT.	36.9	
	COIL F	IN CHARACTERISTICS
I MATERIAL	Aluminum	
2 TYPE OF FIN	Plate	Embossed, slotted
3 FIN SPACING , PER INCH	8	
4 FIN THICKNESS , IN.	0:011	
5 SECONDARY SURFACE AREA, SQ. FT.	447.8	
		COIL DIMENSIONS
I FINNED HEIGHT, IN. K	31 7/8	
2 FINNED WIDTH , IN.	38 1/8	301 Fins(top section)
3 FINNED DEPTH, IN.	4	308 Fins (bottom section)
4 COIL HEIGHT, IN.	31	
5 COIL WIDTH , IN. W	39 7/8	
6 COIL DEPTH, IN.	3	
7 COIL DEPTH, OVERALL, IN. N	10 5/8	
8 FACE AREA, SQ. FT.	8.4	
9 TOTAL SURFACE AREA, SQ.FT.	484.7	
		:
	OVERALL	CONDENSER DIMENSIONS
I WIDTH, OVERALL, IN. A	43 1/2	
2 WIDTH, SHROUD, IN. B	38 1/4	
3 HEIGHT, IN.	31 7/8	
4 DEPTH, IN.	11 1/8	
S BELLMOUTH ORIFICE DIAMETER, IN. X	24 5/8	
6 BELLMOUTH RADIUS, IN. R	3/4	·
	1	,

CLASS-1	QMR¢E HIGH AMBIENT TEMPERATURE	OBSERVED CONDITION	POLO AIR FLOW	PREE DISCHARGE	29.92/ 29.80	109.9	86.2	109.9	5	192.2	METHOD	3770	06484	LOW METHOD	12.91 12.65	6	3.9	09824	9	47980	46500	1480	3290	0.10	6917	1 1 1	. 1300	.107.2	00.66	14.57	0.05187
	ASRE LOW SATURATION TEMPERATURE	SBSERVED	AIR FLOW RATE CFM	FREE	29,86	-	77.3	// 8.46	104.8 /3	173.8	AIR FLOW ME	3760	18600	REFRIGERANT FLO	7.696			19340	RATINGS	18970	18690	280	3460	0,11	481	1	514.2	42.37	39.14	5,488	5.444 0.00158
SIZE - C	LOW S. TEMP	00	ON ON	100 (50	29.92/	95	75 # 5	20	105	170 \$ 10		, rhaniss.		RE	4.317		5°MAK				-										
150-58	ASRE SATURATION TEMPERATURE	OBSERVED	AIR FLOW RATE CFM	FREE DISCH.	29.88	95.0	78.0	95.0	130.0	195.1	FLOW METHOD	3780	. 66350	EFRIGERANT FLOW METHOD	16.58 16.58	17.9	3.2	65720	RATINGS	66030	63320	2710	3400	0.10	473	1 1 1 1 1	1790	147.5	136.2	19.43	5.480
NBS NO.	HIGH	00	101/01/01/01/01/01/01/01/01/01/01/01/01/	200	29.921	95	75 \$ 5	95	130	01=561	AIR			REFRIG			10° MAX.													-	
		ű			Pab "Hg	tae °F	t'ae °F	tae °F	t'2c 'F	tac °F		Que CFM	9 tc BTUM		Wr 14min	APc PS/	ATS "F	Per BTUM		9te BTUH	gce BTUH	qse BTUH	QR CFM	Pas "H20	Pfm WATTS	Р ВИР	BTUH/SF	BTUH/SF	BTUH/SF	ВТОН) (CFM)
MFR. KRAMER TRENTON	AIR CIRCULATING EQUIPMENT AND REFRIGERANT USED	FAN SFEIAL NO. T-7.20-1.	- 19	ITEM	1. BAROMETRIC PRESSURE	2. DRY BULB TEMPERATURE OF	S. WET BULB TEMPERATURE OF	4. DRY BULB TEMPERATURE OF AMBIENT AIR	S. SATURATION TEMPERATURE OF ENTERING REFRIGERANT VAPOR	6. SUPERHEAT TEMPERATURE OF ENTERING REFRIGERANT VAPOR		T NOZZLE AIR AND WATER VAPOR T MIXTURE FLOW RATE	8. CAPACITY		9. REFRIGERANT FLOW RATE	10. PRESSURE DROP	II. SUBCOOLING OF LEAVING	12. TOTAL HEAT REJECTION		13. TOTAL HEAT REJECTION	14. CONDENSING HEAT REJECTION	15. SUBCOOLING HEAT REJECTION	16. AIR FLOW RATE	17. CONDENSER COIL	16. FAN MOTOR POWER	19. FAN BRAKE HORSEPOWER	20. HEAT REJECTION PER UNIT	21. HEAT REJECTION PER UNIT	22. HEAT REJECTION PER UNIT	HEAT REJECTION PER CFM	24. " , BTUH/SF(°F) 25. " , BTUH/SF(°F)

4.0 Comparison of Five Kramer Trenton Condensers

Table 9 shows the total heat rejection capacity for five Kramer Trenton condensers (including two Size B condensers previously reported in NBS Report No. 6670). Also shown is the percent of QMR&E requirement (22,300, 35,600 and 46,000 BTUH for Sizes A, B and C, respectively) for the QMR&E High Ambient Temperature Test.

Table 9

TOTAL HEAT REJECTION OF FIVE KRAMER TRENTON CONDENSERS

			Т	otal Heat Rej	ection, BTU	Н
Condenser			ASRE High	ASRE Low	QMR&E	QMR&E
NBS No.	Class	Size	Sat'n Temp.	Sat'n Temp.	High Amb.	Requirement
						%
134-57	1	A	31430	7180	21440	96.2
- 1 0	4	_			32750 ^{a,b}	0.0
147-58	1	В	43	-	32/50"	92.0
146-58	2	В	52940	15460	33210 ^a ,b	93.3
140-30	2	D	32940	13460	33210 ,	93.3
145-58	3	В	47570	13230	34340	96.4
143 30	9	Ь	77570	13230	34640 ^b	97.4
					0.310	
150-58	1	С	66030	18970	47980	104.3
150-58	1	С	66030	18970	47980	104.3

^aPreviously reported in NBS Report No. 6670

bWithout mixer

Table 10 lists the Heat Transmission Coefficient, BTUH per ${\tt Ft}^2$ (°F log mean temperature difference), (Item 24 in Tables of Test Results), and the air entering face velocity based on CFM at test conditions (Item 7, Tables of Test Results), for the five Kramer Trenton condensers.

Table 10

HEAT TRANSMISSION COEFFICIENT OF FIVE KRAMER TRENTON CONDENSERS

Condenser NBS No.	Class	Size	ASRE High	Temp.	ASRE Low Saturation	Temp.	QMR&E High Ambie	
			Trans. Coeff. BTUH/ft ² (°F)	Air Face Vel. FPM ^a	Trans. Coeff. BTUH/ft ² (°F)	Air Face Vel. FPM ^a	Trans. Coeff. BTUH/ft ² (°F)	Air Face Vel. FPM ^a
134-57	1	A	7.41	540	5.29	530	6.94	535
147-58	1	В	C209	-	-	-	5.84 ^b ,c	560
146-58	2	В	7.09	605	7.36	595	6.11 ^b ,c	560
145-58	3	В	6.07	600	6.10	600	6.08 6.20 ^c	600 600
150-58	1	С	5.48	450	5.44	450	6.05	450

^aBased on CFM at test conditions (Item 7, Tables of Test Results)
^bAdjusted from value reported earlier in NBS Report No. 6670
^cWithout mixer

Table 11 gives the Heat Transmission Coefficient, BTUH per Ft² (°F log mean temperature difference)(CFM), (Item 25 in Tables of Test Results) for the five Kramer Trenton condensers.

Table 11

HEAT TRANSMISSION COEFFICIENT OF FIVE KRAMER TRENTON CONDENSERS

			Coefficient, BTU	JH Per Ft ² (°F	log Mtd)(CFM ^a)
Condenser			ASRE High	ASRE Low	QMR&E
NBS No.	Class	Size	Sat'n Temp.	Sat'n Temp.	High Amb.
134-57	1	A	0.00407	0.00287	0.00391
147-58	1	В	-	-	0.00182 ^{b,c}
146-58	2	В	0.00206	0.00210	0.00191 ^{b,c}
145-58	3	В	0.00182	0.00172	0.00181 0.00185 ^c
150-58	1	С	0.00161	0.00158	0.00184

^aBased on standard air (Item 16 in Tables of Test Results)
^bAdjusted from value reported earlier in NBS Report No. 6670
^cWithout mixer

Table 12 gives the Heat Transmission Coefficient, BTUH per Ft² (°F log mean temperature difference)(FPM entering air velocity).

Table 12

HEAT TRANSMISSION COEFFICIENT OF FIVE KRAMER TRENTON CONDENSERS

Condenser			Coefficient, BTU ASRE High	JH Per Ft ² (°F ASRE Low	log Mtd)(FPM ^a) QMR&E
NBS No.	Class	Size	Sat'n Temp.	Sat'n Temp.	High Amb.
134-57	1	Α	0.0137	0.00998	0.0130
147-58	1	В	-		0.0104 ^b
146-58	2	В	0.0117	0.0124	0.0109 ^b
145-58	3	В	0.0101	0.0102	0.0101 0.0103 ^b
150-58	1	С	0.0122	0.0121	0.0134

 $^{^{\}mathbf{a}}\mathbf{B}\mathbf{a}\mathbf{s}\mathbf{e}\mathbf{d}$ on entering air velocity at test conditions $^{\mathbf{b}}\mathbf{W}\mathbf{i}\mathbf{t}\mathbf{h}\mathbf{o}\mathbf{u}\mathbf{t}$ mixer

5.0 Discussion and Recommendations

Review of the test results in this report and others which have preceded it in this series indicates need for specification of maximum refrigerant pressure drop to be maintained during rating tests for selection of equivalent-duty condensers. Complete condensing and minimum subcooling consistent with this pressure drop should also be required. These requirements should be added to the other obvious items such as physical size, weight, materials, capacity at specified conditions, etc.

The present practice, as suggested in ASHRAE 20-60, of listing the air moving capacity of the fan in a given condenser in units of standard CFM may be misleading in that the volume of air handled by a given fan in a fixed system is essentially constant for a range of temperatures. If a fan in a given condenser under test at 110°F entering air temperature and 50 percent relative humidity is found to move, say, 4000 CFM, that same fan and condenser operating at standard conditions would still move nearly 4000 CFM but at higher density and horsepower. Listing the performance of the fan in standard CFM for the actual flow measured at the test conditions would show approximately

$$4000 \times \frac{13.33}{15.00} = 3560$$
 CFM Std.

assuming standard barometric pressure, whereas the fan volume actually would not drop to this level even if it were operated at standard conditions. It would appear preferable to list the actual CFM at the test conditions in both ratings and requirements.

The critical effect of placing the fan in the condenser shroud orifice can be observed by comparing the measured air flow for the three tests in Table 4, 3850, 3860, and 3850 CFM and in Table 8, 3780, 3760, and 3770 CFM with the measured flow rates in the three tests in Table 6, 3860, 3820, and 3580. In Tables 4 and 8, the three tests were made without changing the relative position of the fan and shroud orifice. In Table 6, the first two tests were made at one time, and the third test at another time, with removal and reinstallation of the test condenser occuring between the two times. Even though considerable care was given to mounting the same fan in each instance in similar position, the difference of 260 CFM was probably caused by dissimilar mounting.

Par. 6.3.4 of ASHRAE 20-60 should be corrected to read, "Condensing heat rejection effect: $q_c = W_{rp} \ (h_{r1} - h_{f1})$, Btuh". Note discussion in "Data and Results" of procedure used to calculate the condensing heat rejection.

The total heat rejection (Item 13 of the Tables of Test Results) shown for all of the condensers tested in this series was determined by averaging the heat rejection determined by both the air-side, and refrigerant flowmeter measurements, and correcting for deviation from specified test conditions. This method of computation was recommended in ASRE PS-2.4, and for sake of continuity was continued for all tests in the series, even though ASHRAE 20-60 recommended a different computation method. ASHRAE 20-60 differs in that the heat rejection calculated from the flow rate measured by the (primary) refrigerant calorimeter is taken as the total heat rejection without correction for deviation from specified test conditions, provided the confirming flow rate determined by the (secondary) flowmeter is within ± 5 percent of the flow rate determined by the calorimeter.

		1
•		

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A hrief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D. C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage. Absolute Electrical Measurements.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Volume.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research. Crystal Chemistry.

Mechanics, Sound. Pressure and Vacuum. Fluid Mechanics, Engineering Mechanics, Rheology. Combustion Controls.

Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characterization. Polymer Evaluation and Testing. Applied Polymer Standards and Research.

Metallurgy. Engineering Metallurgy. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition. Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Operations Research.

Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Far Ultraviolet Physics. Solid State Physics. Electron Physics. Atomic Physics. Plasma Spectroscopy.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Elementary Processes. Mass Spectrometry. Photochemistry and Radiation Chemistry.

Office of Weights and Measures.

BOULDER, COLO.

CRYOGENIC ENGINEERING LABORATORY

Cryogenic Processes. Cryogenic Properties of Solids. Cryogenic Technical Services. Properties of Cryogenic Fluids.

CENTRAL RADIO PROPAGATION LABORATORY

Ionosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.

Troposphere and Space Telecommunications. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Spectrum Utilization Research. Radio-Meteorology. Lower Atmosphere Physics.

Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Frequency Utilization. Modulation Research. Antenna Research. Radiodetermination.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. High Latitude lonosphere Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

Radio Standards Physics. Frequency and Time Disseminations. Radio and Microwave Materials. Atomic Frequency and Time-Interval Standards. Radio Plasma. Microwave Physics.

Radio Standards Engineering. High Frequency Electrical Standards. High Frequency Calibration Services. High Frequency Impedance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration Services.

Joint Institute for Laboratory Astrophysics-NBS Group (Univ. of Colo.).

