
SOFTWARE TOOLS:
A BUILDING BLOCK
APPROACH

NBS Special Publication 500-14
U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

]

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to

strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this

end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and
technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro-

mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute

for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the !

Office of Experimental Technology Incentives Program.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist-

ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen-

tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab-

oratory Astrophysics^ — Cryogenics^ — Electromagnetics^ — Time and Frequency*.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure-

ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti-

tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air

and Water Measurement, and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services developing and promoting the use of avail-

able technology; cooperates with public and private organizations in developing technological standards, codes, and test meth-

ods; and provides technical advice services, and information to Government agencies and the public. The Institute consists of

the following divisions and centers:

Standards Application and Analysis — Electronic Technology — Center for Consumer Product Technology: Product
j

Systems Analysis; Product Engineering — Center for Building Technology: Structures, Materials, and Safety; Building
[

Environment; Technical Evaluation and Application — Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services

designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection,

acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus wthin the exec-

utive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer

languages. The Institute consist of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE OF EXPERIMENTAL TECHNOLOGY INCENTIVES PROGRAM seeks to affect public policy and process

to facilitate technological change in the private sector by examining and experimenting with Government policies and prac-

tices in order to identify and remove Government-related barriers and to correct inherent market imperfections that impede

the innovation process.
|

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific informa-
j

tion generated within NBS; promotes the development of the National Standard Reference Data System and a system of in-
j

formation analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services

to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the

following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library —
Office of International Standards — Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

^ Located at Boulder, Colorado 80302.

JAN 2,3 1979

COMPUTER SCIENCE & TECHNOLOGY: oc 100

Software Tools: A Building Block Approach vvo sta

^ iq-1-

I. Trotter Hardy
Belkis Leong-Hong, and

Dennis W. Fife

Systems and Software Division

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, D.C. 20234

Partially sponsored by

The National Science Foundation
18th and G Streets, N.W.
Washington, D C. 20550

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued August 1977

)

Reports on Computer Science and Technology

1 he National Bureau of Standards has a special responsibihty within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidehnes, and technical advisory services to improve the effectiveness of

computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will-report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end

of this publication.

National Bureau of Standards Special Publication 500-14

Nat. Bur. Stand. (U.S.), Spec. Publ. 500-14, 66 pages (Aug. 1977)

CODEN: XNBSAV

Library of Congress Cataloging in Publication Data

Hardy, I. Trotter

Software Tools.

(Computer science & technology) (National Bureau of Standards

special publication ; 500-14)

Supt. of Docs, no.: C13. 10:500-14

1. Programming (Electronic computers) I. Leong-Hong, Belkis, joint

author. II. Fife, Dennis W., joint author. III. Title. IV. Series. V.

Series: United States. National Bureau of Standards. Special publica-

tion ; 500-14.

QC100.U57 no. 500-14 [QA76.6] 602'. Is [001.6' 425] 77-608213

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1977

For sale by the Superintendent of Documents, U.S. Goverrunent Printing Office, Washington, D.C. 20402

(Order by SD Catalog No. CIS. 10: 500-14) . Stock No. 003-003-01823-6. Price $2.10

(Add 25 percent additional for other than U.S. mailing).

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. TOOLSMITHING 3

Types o£ Tools 4

Trends 6

Minimum Essential Tools 10

Specialization of Tools H
3. EDITOR AND SYNTAX ANALYZER LINKAGE 12

Functional Description 14

Design Description ly

Results 17

Conclusion 23

Avenues tor Further Exploration 24

4. REFERENCES 2?

APPbNDIX A: SOFTWARE TOOLS LABORATORY 30

APPENDIX B: SOFTWARE TOOLS BIBLIOGRAPHY 35

iii-

NOTE

Certain commercial products are identified in
this paper in order to specify adequately the ex-
perimental procedure, or to cite relevant exam-'
pies. In no case does such identification imply
recommendation or endorsement by the National
Bureau of Standards, nor does it imply that the
products or equipment identified are necessarily
the best available for the purpose*

~iv~

Software Tools:
A Building Block Approach

I. Trotter Hardy
Belkis Leong-Hong

Dennis M. Fife

The present status of software tools is
described; the need for special>purpose tools and
for new techniques with which to construct such
tools is emphasized. One such technique involving
the creation of general-purpose "building blocks"
of code is suggested; an initial application of
the technique to the construction of a text editor
and syntax analyzer tool is described. An anno-
tated bibliography of current literature relevant
to software tools is provided.

Key words: Building blocks; programming aids;
software tools; syntax analysis; text editing.

1. INTRODUCTION

Surveys such as Reifer's [Reifer] of the state of the
art in software tools emphasize the benefits that these au-
tomated aids can bring and point out clearly the need for
greater emphasis in this area. Further, workers with ex-
perience in large systems development projects invariably
cite good tools as a major contributor to project success,
Corbato [Corbato] , for example, states very strongly that
the use of a high-level language as a systems implementation
tool was well worth the additional start-up effort it neces-
sitated on the MULTICS project. Brooks [Brooks] reiterates
the case for high-level language tools, and goes on to state
that every large software development project requires a
"tool maker" to maintain commonly used tools and to develop
special purpose ones as needed.

The utility of software tools like high-level language
compilers, debuggers, and text editors is thus quite clear.
Yet, for most programming researchers and practitioners, the
need for better tools is obvious (see [Balzer] and [Grosse-
Lindemann] , for example). Brooks' argument for a tool-maker
on every major software project indicates also that the
state of the art has not reached a level where pre-
fabricated tools can merely be selected and put to immediate
use. More importantly, perhaps. Brooks' observations show

the importance of special-purpose tools for particular pro-
jects, and the decided need for project managers to allow
resources to be expended in the creation of such tools, both
by the project tool-maker and the individual project
members. Ad hoc tool creation in this manner--necessary as
it is—unfortunately falls heir to all the errors and relia-
bility problems of the applications software it is designed
to support. Major software projects can thus be plagued
with major tool expenditures just to allow efficient subse-
quent expenditures on the project's main product. If this
resource expenditure could be reduced through some more or-
ganized approach to software tool libraries in general and
to the creation of special-purpose tools in particular,
might not worthy benefits in time, cost, and tool reliabili-
ty accrue? The present investigation of software tools was
undertaken to explore precisely that question; this report
summarizes the results of the investigation.

2-

2. TOOLSMITHING

It is evident from prevailing experience and research
that every software production project, regardless of com-
plexity, must include a tool provisioning activity. The
toolsmith faces several questions, to be answered in colla-
boration with the project manager or "chief programmer" (if
a different person than the toolsmith)

.

1. Is there a commonly accepted set of standardized
tools applicable to every project?

2. What set of special tools for a given project can be
identified at the outset?

3. Are necessary tools already available as commercial
packages with acceptable cost?

4. What are the economical approaches to creating spe-
cial tools and modifying them as may be needed in the course
of a project?

The general evidence for answering these questions
shows there is inordinate difficulty in providing tools
under the present state of the art and conditions of the
software marketplace. Many tools are available commercially
at reasonable cost; but there is essentially no standardiza-
tion of tool capabilities, and the number of suppliers and
the complexity of packages presents an arduous selection
problem for the customer. But equally important is that
proprietary packages cannot be specifically modified and
tailored by the user since the source code is usually not
delivered in the purchase. Although a basic set of tools is
identifiable for any project, we believe also that special
modifications are warranted in many cases. Furthermore, a
general expansion and integration of available tool func-
tions would be well-advised to cope with the widely-
recognized problem of software quality control. The follow-
ing analysis tends to support a recommendation for standard-
ization of basic tools at the source code level, so that fu-
ture software production can be conducted with a common set
of tools amenable to user extension and specialization.
Moreover, it sets the perspective for the remainder of this
research on specialization of tools.

-3-

Types of Tools

The only standard tool for software production today is
the high-level language compiler. This statement applies
the traditional understanding that a standard is a formal
specification produced by a recognized professional group
for nearly universal application. Yet, national and inter-
national standardization of compilers has only addressed
programming language definition, while not considering the
language's essential features, such as the form and content
of output listings, the content and scope of diagnostic mes-
sages, debugging features, and alternative operational
modes

.

£ven so, common usage of software tools and the econom-
ics of tool design have led to commonly discernible types of
tools. For each type, many competitors may be found in the
market. These types cannot be called defacto standards, for
they only reflect similar purpose and function, and not by
any means a near equivalence of capability brought about by
competitive commercial demand. The following definitions of
such common types of tools have been determined after a sur-
vey of commercial packages as to similarity. The defini-
tions therefore categorize the tools found in the market-
place. This listing omits (for brevity or because of limit-
ed relevance) those packages that may be classified as com-
pilers, assemblers, data base management systems, utility
routines, application programs or libraries (e.g. mathemati-
cal routines) , or replacement packages for software normally
offered by a hardware vendor such as operating systems and
I/O access methods.

Abor t diagnosis - Provides a full or selective dump of the
contents of registers and memory whenever an abnormal termi-
nation of program execution occurs. May also provide diag-
nostic analysis of the abnormal end.

Breakpoint control - In an interactive environment, permits
the user to specify program points where execution is to
stop and control is to be returned to him. He may then ex-
amine or change program values for debugging purposes.

Cross reference generator - Produces a listing of variables
used in a program and subroutines, indicating where each
variable is being referenced.

Data audi tor/catalog - Examines source data definitions and
analyzes data relationships, data structures, formats and
storage usage for consistency checks, validation, and
storage utilization. May provide a data dictionary or cata-
log that contains definitions of the attributes and charac-
teristics of the data elements.

-4-

Error analysis and recovery - Certain kinds of abnormal ter-
mination are intercepted, and new program or data values may
be substituted, thus allowing the execution to resume; pro-
duces appropriate error messages.

File or 1 ibr ary manager - Facilitates organized and economi-
cal storage of program texts, data sets, and object modules
for centralized retrieval and update. May collect account-
ing and usage data to assist in storage allocation.

Flowchart generator - Generates a pictorial diagram of flow
of control of a given higher level language program.

Program auditor - Checks a source program to determine con-
formance to specified standards or criteria on design or
programming language use. May provide test data and exer-
cise the program for predetermined results to obtain a
minimum standard of acceptability for a generic class of
programs. May also analyze the program for static charac-
teristics, such as frequency of occurrence of syntactic un-
its or statement types.

Program execution monitor - Instruments source programs to
collect data on the program during its execution. Data col-
lected can include:

frequency of execution of each statement,
range of values of specified variables,
trace of the path of execution through labeled
statements, or
snapshot dumps of variables during the trace.

Program formatter /documentor - Rearranges and structures
source program text for Improved readability. May provide
limited text additions for documentation purposes.

Project manager - Provides data collection, storage and re-
porting facilities aimed at personnel time and task account-
ing. May be coupled with PERT packages and other produc-
tivity and scheduling management aids.

Resource monitor - Provides job accounting information about
util ization of system resources. May include costing algo-
rithm for billing purposes.

Shor thand or macro expander - Produces full source text for
programs from an abbreviated programming language or
parameterized input forms, to ease the coding effort for ap-
plication programs or job control commands. Also includes a
number of packages for generating higher level source state-
ments from decision tables.

-5-

Source level translator - Translates from one high level
language (e.g. RPG) to another (e.g. COBOL). Significant
case is the translation from one version of a given language
to its standard version. Also includes structured program-
ming languages as preprocessors.

Test data generator - Generates test data files according to
user specification , to be used for testing application
software

.

Test simulator - Simulates the execution and flow of control
of a test prograb by program analysis with actual or dummy
variables and subroutines. Control may be passed to the
user, who then may specify a course of action to be taken
during the testing procedure.

Text or proc^ram editor - Facilitates selective modifications
and corrections of program or document text.

Trends

This limited survey of commercial tools shows trends in
the relative availability, price range, and flexibility
among them. The table below (pages 8-9) illustrates that
among 315 packages examined (from announcements in widely
published software catalogs), the dominant types relate to
documentation and source level translation (specifically,
the types named "shorthand or macro expander," "cross refer-
ence generator," "source level translator," etc.). There
are significantly fewer packages available for debugging and
testing of application programs—probably because of tradi-
tionally heavy dependence on the compiler alone as a debug-
ging tool, and the lack of a broadly effective methodology
for debugging and testing on which to base a commercial
tool

.

Another trend shown is that tools tend to have a narrow
function corresponding to the definitions above. We have
indicated under "secondary function" the number of addition-
al packages falling under each type definition based on the
secondary capabilities that may be present, as opposed to
the primary purpose of each tool. Considerable overlap is
seen in documentation aids, namely "cross reference genera-
tor" and "program formatter/documentor," where the number
with such secondary capability is nearly as many as those in
the primary class. But most other types such as "breakpoint
control" and "resources monitor" are seen to be narrowly
special ized

.

-6-

Purchase prices tend to fall in a limited range up to
about $Qdkib f except for a few types such as "data
auditor/catalog" and "project manager," where prices are re-
latively higher. Tools of most types can be had at a very
low cost covering reproduction, particularly if the producer
is a user outside the EOP industry. But for most tool types
there are also commercial producers in the EDP industry
whose prices fall in the higher range. Also, the catalogued
tool descriptions indicate that most are applicable only to
programs in one programming language, e.g. COBOL, and that
many are available only for the computers and operating sys-
tems of the foremost manufacturer.

It should be noted that a wide variety of producers are
involved in the software tools marketplace, including
hardware manufacturers, computer users (commercial and not-
for-profit) , and independent software houses. Roughly 20
user groups, 100(9 software companies, 50 hardware vendors,
and 40,000 user installations may be potential sources of
usable and effective tools.

Because of these circumstances, the availability and
use of tools follows a mixed pattern across the population
of computer installations. A recent NBS survey of federal
computer installations [Oeutsch] revealed that 75 percent of
them acquired programming tools along with their hardware
procurements, over 50 percent also developed tools them-
selves or acquired them from non-commercial sources such as
user groups, while as few as 36 percent acquired tools under
separate procurements. The latter statistic particularly
suggests a weak market for tools from the independent
software companies. Only about half of the installations
reported that certain tools, namely flowchart generators and
debugging packages, were available, yet 65 percent said that
programming was primarily done by individuals or small pro-
ject teams. These statistics warrant more extensive inves-
tigation, but they tend to confirm that planning and invest-
ment for adequate software tools is not consistently a high
priority effort for installation managers.

-7-

Survey of Tools

1 Number of Packages

Type of Tool
1
Primary

1
Function

1 Secondary
j Function

Typical Price
Range (Purchase)

Abort Diagnosis
1 10 1 7 $0.2k - 2.5k

Breakpoint Control
1 11 1 1 $4. 0k - 7.5k

Cross Reference
Generator 27 1 33 $0.1k - 0.5k

Data Auditor/Catalog 15 1 6 j $10. 0k -15.0k

Error Analysis
and Recovery 16 1 6

1
$0.2k - 1.0k

File or Library
Manager 33 1 2 1

$0.1k
$2. 0k

- 0.5k
- 5.0k

Flowchart Generator 10 1 9
1

$0.2k
$0.2k

- 0.5k
- 0.5k

Program Auditor 8 1 2

$0.2k
$5. 0k

- 1.0k
-11.0k

Program Execution
Monitor 17 1 8

1
$2. 0k - 6.0k

Program Formatter/
Documentor 24 1 19 1

$0.1k
$1.0k

- 0.5k
- 8.0k

Project Manager 11 1 4
1

$4. 0k - 12.0k

Resources Monitor 27 1 1 1
$2. 0k - 8.0k

Shorthand or Macro
Expander 42 1 8 1

$0.2k
$5. 0k

- 1.0k
-15.0k

!

(continued next page)

-8-

(continued from previous page)

Source Level 1

Translator 1 30 1 1 i $2. 0k - 8.4k

Test Data Generator 1 9 i 5 1 $4. 8k - 6.5k

Test Simulator 1 12 1 2 1 $3. 0k - 4.5k

Text or Program I

Editor 1 13 1 7 1

$0.3k -

$3. 0k -
0.5k
5.0k

TOTAL 1 315 1 111 1

-9

Minimum Essential Tools

Prevailing experience and professional consensus are
sufficient grounds to recommend certain types of tools as
essential for almost any software development project. Ex-
ceptions may arise if the computer involved has such unusual
architecture or limited capabilities (e.g. no mass storage)
that it cannot support even these modest program packages.
Minicomputer systems generally would not be excluded, par-
ticularly since the UNIX system [Ritchie] has demonstrated
that a highly effective, interactive programming support
system is practical on a low-cost minicomputer configura-
tion.

In general, program system development should be done
with support of an interactive computer system. Interactive
support increases productivity in the effort of continual
change, debugging, and testing that characterizes most pro-
jects. It also facilitates the ultimate objective to have
the computer provide a total support environment to the pro-
ject group.

The primary tool for any project should be a high-level
programming language compiler. Again, experience has amply
proven the advantages for programming productivity of high-
level languages. Only selected programs that are critical
to system performance may need to be optimized for efficien-
cy through machine language.

However, other essential tools are the focus of this
report, and the following are recommended as a minimum com-
plement for most projects.

Text editor - For entering, correcting, and modifying such
texts as program specifications and design documentation.
Requires a facility for online storage and recall of named
text units for inspection, printing or editing.

Program editor - For entering, correcting, and modifying
program texts. With free-form programming languages, one
editor could serve both as text and program editor.

Program 1 ibr ar ian - For storing all program texts, associat-
ed job control statements, common data definitions, and test
data, and maintaining a chronological record of modifica-
tions between distinct versions.

Debugger - For analyzing program behavior during execution
on test data input, and deriving execution statistics and
traces to help correlate program output with the results of
individual high-level language statements.

-10-

Project manager - For recording chronologically the activity
of the individual project members on defined program
modules and deliverables of the project.

Specialization of Tools

The above definitions are meant only to give a general
notion of the capability involved in each type of tool.
Standard specifications of functions for each tool type ap-
pear feasible and desirable, and would assist those who un-
dertake toolsmithing without benefit of prior study and ex-
perience. Yet it is clear that individual projects often
may need to create special features that would not be avail-
able in standardized tools. Various project requirements or
circumstances may dictate such specializations. For in-
stance, large projects with many personnel especially would
benefit from extensions to automatically enforce unique
design standards and practices that are difficult to ensure
through personal communications and code inspections. A
contrasting example would be a one-person project of con-
verting a program from one source system to another target
system, that may benefit considerably from specializations
tailored to the peculiar programming language dialect on the
source machine.

Desirable specializations may range in difficulty from
minor extensions of extant tool functions to new composite
tools formed by integrating and refining several distinct
packages. Both of these cases require the original tool's
source code— ideally in a high-level language—and thorough
documentation of course. The latter case also requires that
the building block tools be carefully thought out, with
flexible interfaces and modular design, permitting extensive
modifications with relative ease.

It is appropriate therefore to recommend significant
new research and development on programming tools, with the
following goals:

1. to make widely available a set of building block
tools, with standard designs and source code in a high-level
language;

2. to evaluate alternative techniques for interfacing
and modular design that would facilitate major modifications
of tools without loss of efficiency and performance; and

3. to develop guidelines for rapid and reliable spe-
cialization of tools from available building blocks, based
upon the characteristics of projects that would yield signi-
ficant benefits from special tools.

-11-

3. EDITOR AND SYNTAX ANALYZER LINKAGE

A review of the program production aids described in
section 2 shows that a great many tools-^such as static and
dynamic program analyzers, keyword extractors, cross refer-
ence listers, macro expanders, and the like—depend for
their operation on knowledge of the programming language for
which they were designed. Such a "knowledge" of a language
in turn depends typically on several high-level algorithms,
chiefly the following:

lexical analyzer , or scanner, which reads
the character^ of the source text and
translates them into a series of single in-
tegers representing the basic elements of the
language, such as reserved words, identifiers,
operators, etc. Comments are usually passed
over so they are never of concern to the syn-
tax analyzer;

keyword recognizer , which is a simplified form
of lexical analyzer that recognizes and en-
codes in an internal form all reserved words
used in a program (e.g., BEGIN, END, IF, THEN,
etc.) and perhaps other language elements as
well, such as identifiers, or array refer-
ences;

symbol table handler , which builds and main-
tains a table of identifier names and can
determine if a given identifier has been en-
countered before, if it has been previously
declared as to type (integer variable,
subroutine name, etc.), perhaps— if it is a
var iable—whether it has been previously as-
signed a value, and so on;

syntax analyzer , which parses the source text
(usually It s integer representation from the
lexical analyzer) and determines what language
construct is currently being read and if it is
correct.

Since a large number of diverse tools were found to
depend on a small number of moderately sophisticated algo-
rithms, it seemed possible to code those algorithms indepen-
dently in some fashion that would enable a competent pro-
grammer to join them with one another and with other pro-
grams rapidly and reliably in ad hoc ways. If such a

-12-

capability were feasible , it might greatly simplify the
problem of building special purpose tools that require a de-
gree of language "fluency."

In such a scheme, the individual algorithms would be-
come "building blocks" available in a library, to be called
upon when necessary. Such a library would be much like a
typical installation's library of subroutines, only the in-
dividual "subroutines" would be considerably more sophisti-
cated, perhaps even independent programs. Further, the li-
brary of building blocks would lend itself naturally and
perhaps most usefully to network installation at a particu-
lar host designed as a special-purpose software development
facility, such as the "National Software Works" presently
under development [Carlson] , since the presumed sophistica-
tion of the building blocks could easily make it impractical
for a given installation to develop and maintain all of its
own

.

To test the building block idea, a novel (for this in-
stallation) tool composed of several building blocks was en-
visioned: a program editor with a syntax analyzing capabili-
ty. The decision to pick this combination was based on a
perception that productive work in programming today centers
increasingly on the development of a complete programming
environment, where all tools are coordinated and geared to
program development and checkout ([Balzer], [Bratman]

,

[Donzeau-Gouge] , [Grosse-Lindemann] , [Scowen]). The editors
'^escribed in [Donzeau-Gouge] and [Van Dam] were especially
influential in this ^oice. The development of a fluent ed-
itor could provide u ful secondary experience in establish-
ing a first step toward such an integrated programming en-
vironment, in addition to primary experience in analyzing
techniques for the establishment of tool building blocks.
The editor would be tailored for a particular programming
language and would permit syntax checking of source code at
its entry, as well as checks of code that had been previous-
ly entered without checking. Further, the editor might per-
mit displays in terms of language constructs, such as state-
ments, in addition to the usual editor displays in terms of
lines or characters. The editor would be constructed by
joining separate algorithms not necessarily intended for
joining, observing carefully what changes were required, and
reaching conclusions regarding what interfaces would have
been best suited to an automatic and error-free linkage.

The editor has now been built as a prototype, and as
expected, its construction has highlighted many of the prob-
lems of joining large building blocks of code in arbitrary
ways; serend ipitously , it has opened up several promising
avenues for exploration of new concepts in program creation
and editing generally. Unfortunately, the whole area of

-13-

linking programs and subroutines is one of great variation
across hardware-software configurations, and experience from
this study is primarily applicable to one programming
language and its implementation environment: ALGOL on a
Digital Equipment Corporation PDP->10. Yet, some conclusions
into what is essentially a general problem were reached.

Functional Description

The editor was written independently as a stand-alone
program with the typical features of a line-oriented text
editor: lines can be entered, deleted, and listed by line
number keys; strings of characters can be replaced by other
strings or deleted; all or selected groups of lines can be
written out to the permanent file at any time, or discarded;
and so on, A variant of ALGOL-60 is the source language of
the editor itself; ALGOL was chosen as it is both a high-
level and a well structured language (and an available
language on the NBS experimental computing facility). The
particular variant available also offered what appeared to
be fairly straightforward handling of individual characters
and strings of characters, and this was felt to be a decided
advantage in a text manipulating program.

After a working version of the editor was prepared, the
existence of an ALG0L-6fci syntax analyzer —wr itten in
ALGOL—^was learned of and obtained [WichmannJ . Obtaining an
existing algorithm was an unexpected benefit, for it lent
realism to the task of joining algorithms that had not been
written specifically for each other. A lexical scanner was
required and written for the analyzer, and modifications
made to the algorithm to enable it to recognize the local
facility's ALGOL variant. The scanner was initially pro-
grammed and debugged as a stand-alone program, and later in-
corporated as a procedure within the syntax analyzer. The
syntax analyzer with scanner was then completed and also in-
itially made operational as a stand-alone program.

This syntax analyzing program accepted a file of ALGOL
source code as input, and read that file until either an
end-of-file or a syntax error was encountered, at which
point it terminated with an appropriate message. This
scheme, although rather simple, was well suited to the
analyzer's purpose of avoiding complete compilation of a
program to identify essentially trivial syntax errors. It
was also well-suited to combination with an editor, since
immediate termination at the point of an error would also
allow immediate correction and quick resumption of the
check.

-14-

Once both the editor and the syntax analyzer were
operational independently, they were joined. The resulting
combination is an editor that allows text entry, modifica-
tion and deletion as before, but with the optional extra ca-
pability of checking that text for correct ALGOL syntax. The
checks can be made immediately as each line is entered or
suppressed at entry and made after entry is complete. These
modes can also be alternated or suppressed entirely. Check-
ing is done for one of three ALGOL constructs: block, pro-
cedure declaration or statement. Additionally, if checking
of a block or procedure is requested upon its entry, the ed-
itor prompts for the first line with the keywords "BEGIN" or
"PROCEDURE," as appropriate.

A few examples will suffice to give the flavor of a

user's interaction with the editor-syntax analyzer combina-
tion. In the following examples, the user-typed material is
in lower case, the editor-typed material in upper case. The
asterisk is the editor's prompting symbol, by which it indi-
cates its readiness to accept the next command.

*insert 100,10 the user ask
text (of any
line 100 in
mented by 10

s to insert
kind) at

lines incre-

100 <user typed text>
110 <more text>

*

NNN <end of text> a special character signals
the end of text entry

* the editor signals its read-
iness for the next command

-15-

*insert procedure 100,10

100 PROCEDURE <user typed pr
110 <user typed ALGOL text>

NNN <end of ALGOL procedure>

I NO ERRORS]

*

user requests the insertion of
an ALGOL procedure starting at
line 100—note similarity with
previous command

edure naroe>

if a syntactically correct
procedure is entered,
the editor stops entry
automatically

the editor notes that the
procedure was okay, and

prompts for the next command.

insert 300,10

300 procedure alpha(x,y);
310 integer x,y;
320 begin
330 if X < y then x t~ y;
340 <end of text>

*check procedure 300

text entry with no syntax
checking is requested again

an incomplete procedure
is entered (the initial
BEGIN on this line is not...

matched by an END here)

now a syntax check
is requested of the
procedure starting on
line 300

TOKEN MISSING OR MISSPELLED the error is noted,
... NEAR LINE 340 the location of the error,
MISSING TOKEN IS "END" and the nature of the error

insert 350

350 end;
360 <end of text>
check procedure 300
[NO ERRORS]

the user attempts to
correct the omission

check it again
it's okay

-1^

Design Description

Conceptually, one might view the joining o£ the editor
and syntax checker as the uniting o£ two algorithms to ac-
cess a common data structure: the editing algorithm, whose
primary role is the interpretation of a user's commands and
the consequent manipulation of the data structure in accord
with those commands, and the analyzer algorithm, whose role
is the syntactic analysis of text obtained from the data
structure. A significant task in bringing about that union
was the creation of a common routine to permit that common
access. The resulting "linking pin" between the editor and
analyzer in the present case is a small procedure within the
syntax analyzer called "getchar." This procedure is invoked
by another procedure, "getsymbol", which calls getchar re-
peatedly to build up the next source program symbol ("get-
symbol" is really the lexical scanner) . Getsymbol is in turn
repeatedly called by the syntax analyzer whenever it needs
to look at the next source program symbol.

The link with the editor is simply that getchar has ac-
cess to the editor's buffer of text and to a boolean vari-
able that indicates whether text is being entered at that
moment, or if a check is being made on text already in the
file. If text is being entered, getchar picks up each char-
acter from the terminal as it is typed, enters it into the
editing buffer, and then passes it back to its caller, get-
symbol; if a check is being performed on text that is al-
ready in the buffer, getchar simply picks up the characters
one at a time from the editing buffer and passes them back
to getsymbol without further processing. Thus when a user
enters a command to the editor, it is first interpreted and
then— if syntax checking is called for--control is passed
promptly to the appropriate syntax analysis procedure, which
does not know where the source program symbols are coming
from at all, only that they are obtained by calling getsym-
bol. Commands that do not call for syntax checking are han-
dled directly by the editor. The user, of course, is unaware
of the internal distinctions.

Results

Experience with joining the pieces of the "fluent"
editor— the lexical analyzer, the syntax analyzer, and the
editor—has pointed out a number of areas of concern for the
general problem of such linkages. In particular, the natur-
al tendency to classify a library primarily by its content
must be resisted: one library of language analyzers, another
of text manipulators, another of output formatters, etc.,
may seem the logical order of classification, but such an
order must be subordinate to a classification by type of

-17-

interface

.

For example, each of the three building blocks of the
editor was first coded as a stand-alone program, but two
were later modified to run as procedures (subroutines) of
the third. The process of changing an independent program to
a subroutine is conceptually trivial, and yet that phase of
the project was fraught with almost as many minor clerical
errors as the entire coding from scratch of the lexical
analyzer or the editor (the syntax analyzer, as noted, was
coded elsewhere) . V^hile bugs that showed up were generally
much more quickly tracked down during the linking phase (but
not always), their obvious origin only made it seem all the
more needless that they should have appeared at all. Cer-
tainly for a production library of building blocks, such er-
rors should be obviated if at all possible.

Particular problems of the linking phase included some
that are embarrassingly obvious in retrospect: the syntax
analyzer, as a stand-alone program was designed by its au-
thors to be simple and consequently quite fast in operation;
this speed was obtained at the cost of a rather unsophisti-
cated method for handling an error once detected: control
was passed to a failure handling procedure, which issued an
error message and then branched unconditionally to a label
at the end of the program, causing program termination. This
mechanism was immediately seen as unsatisfactory for use
with the editor, as the syntax analysis was to be callable
at different "entry points" (one to recognize a block, one a
procedure, and one a statement), and returns had to be nor-
mal procedure exits to avoid repeated calls resulting in
unwanted recursion. Consequently, the calls to the failure
handling procedure were modified so that returns were made
normally to the caller. Unfortunately, what was overlooked
was the recursive nature of the analysis procedures during
their normal operation (top-down, recursive descent pars-
ing): once the editor-analyzer found an error, it was often
three or four levels of recursion deep, and as it unwound it
repeatedly issued error messages that gave different
reasons—for what was essentially the same error—at each
level of recursion. (This problem was, incidently, irritat-
ingly simple to correct, but it proved one more obstacle to
joining two building blocks cleanly and simply.)

The result of the linking effort, then, showed that the
most fundamental classification scheme for tool building
blocks should be whether the building block is coded as a
stand-alone program or as a subroutine. Even with this ap-
parently clean division, some operating systems blur the
difference by allowing programs to be called as subroutines
from the operating system level [Barron] , but for most in-
stallations such calls are non-recursive and more restricted

-18-

than program calls to subroutines, and the stated classifi*
cation stands up reasonably well. Further, it is clear that
developing as a stand-alone program what is known to be
later used as a subroutine, is a poor idea: too many irk-
some, trivial bugs show up as a direct result of the conver-
sion. The proper approach appears to be to develop a
subroutine as a subroutine, using if necessary a dummy block
of code as the calling program. Parenthetically, one notes
that this scheme is the reverse of the common structured
programming approach, where a developed block of code ini-
tially calls dummy subroutines. The reversal seems appropri-
ate, since the emphasis in this study is on subroutines (and
programs) that will be used by unknown calling programs in
unforeseeable ways, not on known calling programs themselves.

Developing as one unit a subroutine that may subse-
quently be used with multiple entry points is also clearly a
poor idea, unless possibly the programming language being
used supports such entries. In the case of the ALGOL pro-
cedures of the present study, for example, the desire to
call the syntax analyzer at different points and the neces-
sity of having a common procedure linking them, made it im-
possible to view the analyzer as a "black box" of code, and
it thus was incorporated into the editor as a series of in-
dividual procedures declared at the same scope level as the
primary editor procedures. This type of incorporation also
necessitated a large pool of global variables, namely the
sum of all global variables in the editor and syntax
analyzer, and in practice this meant quite a bit of text
transposition and re-ordering, and some time spent ensuring
that global variable names did not conflict (they did ini-
tially) . This experience suggests that, in this case at
least, a "syntax analyzer" as such may be too large a build-
ing block for flexible use (although certainly appropriate
for some applications). Preferable, perhaps, would be
smaller units of syntactic analysis, such as "for-blocks,"
"procedures," and "statements," or— for less structured
languages such as FORTRAN—perhaps just for individual
statement types. Alternatively, if a library of building
blocks is being assembled for production use rather than ex-
perimental conclusions, use of language-dependent features
such as multiple entry points or procedure names as parame-
ters may well avoid fragmentation of conceptual entities.

The uniqueness of these "language-dependent features,"
in fact, makes it clear that "source program language" will
be another major building block classification, along with
"stand-alone program vs. subroutine." Some systems do have
the capability of linking relocatable object modules output
from different language processors, but for obvious reasons
constraints on parameters are severe: on the POP-10, for ex-
ample, ALGOL programs can call FORTRAN subroutines, but the

-19-

parameters can only be integer, real or boolean variables
called by value, and no input or output can take place in
the subroutine. Thus for practical purposes, a library of
btiilding blocks will of necessity keep different source
language elements distinct.

Despite one's best efforts at treating a piece of code
as a "black box" and consequently incorporating it unchanged
as a subroutine into another program, it may be necessary to
create a subroutine interface between the two elements (as,
for example, the "getchar" procedure described above) . In
such a case, the wisest (and obvious) course is to confine
all such overlap to the single interface routine. In some
languages, more explicit techniques for expressing the union
of two routines where one cannot properly be considered a
"black box" subroutine of the other are provided, and would
doubtless have been useful in joining the editor and syntax
checker: the implementation of "coroutines" in SIMULA 67 is
such a technique [Dahl] . For commonly used languages like
ALGOL, FORTRAN and COBOL, however, such techniques are typi-
cally absent.

Absent also from the majority of languages, but of po-
tentially great help in reducing minor errors in such cir-
cumstances, are language features that permit the declara-
tion of variables to be shared among a few specified pro-
cedures, in addition to the usual declaration mechanisms of
"local" to a procedure, or "global" to the entire program.
The need for such language mechanisms has long been noted
and that need was only emphasized in the present project.
In addition, whenever the joining of two algorithms depends
principally on their common access to one data structure, a
language that permits the maximum possible independence of
the accessing procedures and the physical data structure it-
self will prove of value. Although that sort of independence
is now routinely provided in, for example, data base manage-
ment systems, its provision in generally-used programming
languages is considerably less in evidence (note, however,
recent languages which have begun to provide such a facili-
ty; see especially iBrinch Hansen], [Tennent] , [Wulf71J and
(Wulf731), Future efforts at composing building block li-
braries will in fact focus much more strongly on the issue
of data structures and their accessing procedures, as that

j

seems the source of much productive work in module specifi-
j

cation and linkage today ([Parnas72a] , [Parnas72b]

,

lParnas72c] , [Wulf73]).
|

The coding of the lexical scanner and the editor, and
\

their joining with the syntax analyzer were largely the work
of one person. It was observed that this individual's temp-
tation to take advantage of intimate knowledge of all three
elements by various forms of code "trickery" to expedite

i

-20-

their union was all but irresistible. Thus followed the ob-
servation that in a production oriented library of building
blocks, each building block should be coded by a different
individual, or at least by the same individual at different
times, according to pre-defined interface criteria. Further,
and more to the point practically, building blocks should
not be created for particular applications and then entered
into a library for general-purpose use, without at least
thorough testing for generality by someone who did not par-
ticipate in the initial design and coding. This separation
of responsibilities accords, not surprisingly, with auditing
and accounting practices.

The observations regarding the necessity of clearly
identifying the type of interface of building blocks in a
library suggested that a look at the various interface pos-
sibilities might be useful. To that end, the following
operating systems—familiar to the researcher s--were infor-
mally reviewed: Digital Equipment Corporation's TOPS-10 for
the DECSystem-10, UNIVAC's Exec-8 for the 1108, Bell Labs'
UNIX for the PDP-11, and Computer Science Corporation's CSTS
(INFONET) for the 1108. The review showed that, in fact, a
variety of linking mechanisms are typically available on
present time-shared systems. These mechanisms range from an
essentially human link, where a user might run a program,
record or remember the results, and then provide those
results to another program subsequently executed; to a quite
sophisticated and very easy to use mechanism (UNIX) where a
series of programs can be strung together through "pipes,"
or internal buffers established and maintained by the
operating system for interprogram communication. In the
latter case, for example, the command

alpha datafile I beta I gamma I delta

means that program 'alpha' operates on on file 'datafile,'
passing the resulting output to program 'beta' as the
latter 's input; 'beta' in turn produces output which becomes
input to 'gamma,' and so on. In between this elegant inter-
face and the manual one fall the more usual mechanisms sup-
plied by most operating systems, which customarily include
communication by intermediate files for separate programs,
and libraries of installation-standard subroutines and func-
tions that are scanned automatically by compilers and
loaders for joining with a calling program. For the present
purpose of constructing a library of fairly sophisticated
building blocks to be joined in unforeseen ways, the follow-
ing classification of linking mechanisms was developed.
Although reference is made only to joining two such blocks,
the same ideas extend to any number of such blocks.

-21-

1. stand-alone programs, linked through

1.1 Files

1.1.1 manual interface: user runs one
program, then the next on the file
of output produced by the first

1.1.2 operating system job control
language: user sets up a job stream
that accomplishes without interven-
tion the same as (1.1.1) above

1.1.3 direct program-to-program: one pro-
gram writes a file, then "calls"
another directly (e.g., BASIC
"CHAIN" statement) ; an operating
system call is required, but hidden
from the user

1.2 Buffers

Job control language specifies which pro-
grams are to pass output to which other
programs, with no files used (UNIX is the
only system to date to the researchers'
knowledge that permits such a link)

.

1.3 Human interface

The user remembers or writes down the
output of a program, then enters it manu-
ally to the next executed program.

2. Subroutines, linked through

2.1 Textual incorporation

The user types, or uses an editor or mac-
ro facility to automatically copy, the
subroutine into the text of his program.
Both explicit parameters and global vari-
ables can form the actual communication
link; also, a common subroutine that is
"aware" of both building blocks and can
be called by either is possible.

-22-

2.2 Execution-time calls

The system linker or loader ensures that
an object-code copy of the subroutine is
accessible to the user's program at exe-
cution time. Communication is through
explicit parameters, or (if the language
permits, like FORTRAN) through global
(COMMON) variables.

Naturally, this scheme does not include everything of
interest for joining blocks of code; there are other dimen-
sions to the problem that do not lend themselves to incor-
poration in a simple outline format. In particular for
subroutines, one notes the necessity of considering the type
of parameter (integer, real, boolean, etc.), how the parame-
ter is to be passed (by value, by reference, or by name),
and which parameters are purely input to the routine and
which are returned with a newly-assigned va^ue. The possi-
bility of program termination being invoked by the
subroutine must also be considered, as well as the
subroutine's method for handling exception conditions. Once
a production library of building blocks became established,
it is likely that a formal means of interface specification
would be required. Fortunately, a number of efforts at for-
mal interface specification have been undertaken, some with
apparent success. Parnas [Parnas72a] , [Parnas72b] in par-
ticular has done significant work in this area.

Conclusion

Experience with joining the text editor and the ALGOL
syntax checker has led to the basic conclusion that li-
braries of software tool building blocks can probably be es-
tablished to permit rapid and simple assembly of new,
perhaps special-purpose tools that require some degree of
programming language fluency. The "probably" is a necessary
caveat, for it is clear that a prototype library of several
building blocks must now be assembled and tested in program-
ming projects where special purpose tools like the editor-
syntax checker combination are desired. When this step is
taken, a more definitive statement can be made regarding the
feasibility of establishing a tool building block library.

-23-

Avenues for Further Exploration

Experience with the ed itor -syntax checker as a tool in
its own right has led to a number o£ very interesting ideas
£or future work.

When the editor makes a syntactic check, for example,
revealing that an "END" statement is missing, it would be a
fairly simple matter for it to insert the missing statement
itself and merely notify the user that it had done so. Like-
wise, missing semicolons or other punctuation might be
recognizable and correctable. The syntax analysis cannot
consistently identify the exact nature of the user's error:
a missing "END" might really be a superfluous "BEGIN", for
example. Yet, with unfailing notification of all editor-
initiated changes permitting the user to override them, such
an error correcting editor could prove of some utility.

Beyond error detection and correction, the possibility
of a fully prompting editor that does not permit syntactic
errors to be entered in the first place arises. Indeed,
such an editor already exists: EMILY, at the Argonne Nation-
al Laboratory [Van DamJ . EMILY offers its users a "menu" of
choices at any point in the editing cycle. The user can
select a particular language construct (from the PL/I di-
alect EMILY is written for) such as "statement" or "block,"
at which point another level of detail is entered and the
menu offers choices appropriate to that level (such as the
various types of statements syntactically valid at that
point) .

If an EMILY-like editor could be table-driven from a
table of syntax definitions, it could be made quite
general -purpose . Such an effort would require a great de-
gree of sophistication within the editor itself, to compen-
sate for the minimal "intelligence" contained in a syntax
table. Thus, despite the suggestion, a table-driven editor
might in practice be rather complex and slow for an external
grammar of any size. One can see quickly, however, that the
appropriate degree of generality might more practically be
obtained by this project's method of building block integra-
tion. In this method, a complex syntax such as for a pro-
gramming language would not be embodied in a table of syntax
definitions, requiring a complex editor to interpret it;
rather the syntax interpretation would be embodied in a
separate program or subroutine (which might itself be
table-driven, of course) designed to analyze syntax, to
prompt for particular syntactic entries, and to do little
else. This type of program should be only moderately com-
plex and comparatively easy to understand, and its construc-
tion correspondingly of moderate complexity. The editor with
which it would be joined would also be of only moderate

-2k-

complexity as demonstrated by the editor written for this
project: it would only have to perform the basic editing
functions and provide simple "hooks" for the syntax in-
terpretation and prompting program.

This method would also allow different parsing algo-
rithms for different syntaxes, thus optimizing to whatever
extent desired the syntax recognition and prompting part of
the editor. It would, of course, be somewhat less easy than
a table-driven editor to use for the quick creation of a
prompting editor for a newly-created syntax, but syntax
analysis algorithms today lend themselves to automatic gen-
eration by "parser generators" ([FeldmanJ, [GriesJ, [John-
son], [McKeeman]) and in this fashion, relatively quick
creation is possible. It would only be necessary to modify
the parser generator algorithm to ensure that its output was
a subroutine easily joined with the editor.

The possibilities of a family of syntax recognizing ed-
itors for many varieties of programming languages leads to
an evolution in one's thinking about source program creation
generally. Although a "menu" as provided by EMILY offers a
great deal to the novice in a language, protecting him al-
most entirely from syntactic errors, it can be a bit cumber-
some for the more fluent user. In [Van Dam], for example,
it is noted that EMILY 's designer felt that the light pen
and menu convention was awkward for such users. A better ap-
proach was suggested where a terminal keyboard is specially
created or modified for the programming language m ques-
tion. On such a terminal—as indeed is already seen on the
IBM blkjlo BASIC/APL terminal/computer—one key would be set
aside for each syntactic construct in the language, at
perhaps several levels of detail. Thus a user would, when
desiring to enter a block of ALGOL code for example, push
the "block" key, followed by keys for the appropriate block
entries (e.g., " if-statement ,

" "then-clause," "else-
clause,"). The only actual typing would be for identifier
names and expressions.

The tremendous potential of this scheme is not only the
ease and speed of program entry and concomitant lack of syn-
tactic errors (as EMILY apparently provides now) , but also
the possibility of an immediate translation of the source
code into an internal format such as Polish notation or qua-
druples for subsequent entry directly to an interpreter or
code generating program. The "if" key, for example, would
transmit the internal code for "if" and the syntax
analyzer's major (though non-trivial) function would be to
construct and order the internal format reflecting the code
necessary to accomplish an "if" statement. Thus, much of the
time-consuming steps of compilation—namely the source pro-
gram scan, syntactic analysis and internal format generation

-25-

(for two or more pass compilers) —would either be greatly
reduced or absorbed relatively unnoticed at the time of pro-
gram entry to the editor. The compiler itself would be left
largely with the task of code generation.

-26-

4. REFERENCES

Balzer, Robert M., "A Language-independent Programmer's In-
terface," AFIPS Conference Proceedings, vol. 43 (1974),
pp. 365-370.

Barron, D. W. and I. R. Jackson, "The Evolution o^ Job Con-
trol Languages," Software—Practice and Exper ience ,

vol. 2 (April-June 1972), pp. 144-163.

Bratman, Harvey and Terry Court, "The Software Factory,"
Computer , May 1975, pp. 28-37.

Brinch Hansen, P., "The Programming Language Concurrent Pas-
cal," IEEE Transactions on Software Eng ineer ing ,

vol. 1, no. 2 (June 1975).

Brooks, Frederick P., Jr., The Mythical Man-Month, Addison-
Wesley Publishing Company, Reading, Mass., 1975,
p. 128.

Carlson, William, "The National Software Morks," presenta-
tion at the Federal AOP Users' Group meeting. General
Services Administration, Washington, D.C., January 21,
1976.

Corbato, F. J., "PL/I as a Tool for Systems Programming,"
Datamation , vol. 15, no. 5 (May 1969), pp. 68-76.

Dahl , O.-J., and C.A.R. Hoare, "Hierarchical Program Struc-
tures," in Dahl, Dijkstra, and Hoare, Structured
Programming , Academic Press, New York, 1972.

Deutsch, Donald R. , "Appraisal of Federal Government COBOL
Standards and Software Management: Survey Results," NBS
Internal Report 76-1100, June 1976.

Donzeau-Gouge , V., G. Uuet, G. Kahn, B. Lang, and J.J. Levy,
"A Structure Oriented Program Editor: A First Step To-
wards Computer Assisted Programming," Rapport de Re-
cherche no. 114, Laboratoire de Recherche en Informa-
tique et Automatique, Institut de Recherche
d 'informatique et d 'Automatique , Domaine de Voluceau —
Rocquencourt , 78150 Le Chesnay (France).

Feldman, Jerome, and David Gries, "Translator Writing Sys-
tems," Communications of the ACM , vol. 11, no. 2 (Feb
1968) , pp. 81 ff.

-27-

Gries, David, Compiler Construction for Digital Computers ,

John Wiley & Sons, Inc., New York, 1971, pp. 436 f£.

Grosse-Linderoann , C. O,, and H. H. Nagel , "Postlude to a
PASCAL-Compiler Bootstrap on a DECSystem-10 ,

"

Software—Practice and Experience , vol, 6 (Jan-Mar
1976) , p. 38.

Johnson, Stephen C, "YACC—Yet Another Compiler -Compiler ,

"

Documents For Use with the UNIX Time-Shar ing System ,

Sixth IHition, Bell Telephone Laboratories, Hurray
Hill, New Jersey.

McKeeman, Milliam N., James J. Horning, and David B. Wort-
man, A Compiler Generator , Prentice-Hall, Inc., Engle-
wood Cliffs, N. J., 1970, pp. 117 ff.

Parnas72a; Parnas, D. L., "A Technique for Software Nodule
Specification with Examples," Communications of the
ACM, vol. 15, no. 5 (May 1972), pp. 330-336.

Parnas72b: Parnas, D. L., "Some Conclusions from an Experi-
ment in Software Engineering," Proceedings of the 1972
FJCC.

Parnas72c: Parnas, D. L., "On the Criteria to be used in
Decomposing Systems into Modules," Communications of
the ACM, vol. 15, no. 12 (Dec. 1972), pp. 1053-58.

Reifer, Donald J., "Automated Aids for Reliable Software,"
Proceedings of the International Conference on Reliable
Software, SIGPLAN Notices , vol. 10, no. 6 (June 1975),
pp. 131-140.

Ritchie, Dennis M. , and Ken Thompson, "The UNIX Time-Sharing
System," Communications of the ACM , vol. 17, no. 7

(July 1974), pp. 365-375.

Scowen, R. S., "Babel and SOAP: Applications of Extensible
Compilers," Software—Practice and Exper ience , vol. 3

(Jan-Mar 1973) , pp. 15-27.

Tennent, R. D., "PASQUAL: A Proposed Generalization of PAS-
CAL," Technical Report no. 75-32, February 1975,
Department of Computing and Information Science, Queens
University, Kingston, Ontario.

Van Dam, Andries and David E. Rice, "On-line Text Editing: A
Survey," ACM Computing Surveys , vol. 3, no. 3 (Sept.
1971) , pp. 103-105.

-28-

Wichmann, B. A., "A Syntax Checker for ALGOL 60," NPL Report
NAC 53, August 1974, Division of Numerical Analysis and
Computing, National Physical Laboratory, Teddington,
Middlesex, England.

Wulf71: Wulf, H. A., D. B. Russell and A. N. Uaberroann,
"BLISS: A Language for Systems Programming,"
Communications of the ACM , vol, 14, no. 12 (Dec. 1971),
pp. 780-790, esp. p. 7Frr

Nulf73: Wulf, W. A., "ALPHARD: Toward a Language to Support
Structured Programs," Carnegie-Mellon University, 1973.

-29-

APPENDIX A: SOFTWARE TOOLS LABORATORY

work with the editor -syntax checker combination has led
to growing recognition of the necessity of further, more de-
tailed investigation of software tools and their construc-
tion generally. To meet this recognized need, ICST is
studying the implementation of a "software tools laboratory"
within its Experimental Computer Facility.

Although plans for the laboratory are only now being
made (November 19^6) , a statement of policy has been writ-
ten; this statement follows.

Software Tools Laboratory

Policy Statement

In keeping with the NBS mission of advancing science
and technology and promoting their effective application,
and the Computer Science Section's objectives and functions
of developing advanced methods, automated aids anc^ standards
for improving the management of software, the Software Tools
Laboratory is established

to develop and disseminate tools, and techniques for
the effective use of tools, for software development.

This statement of purpose includes, among other things:

* creating new tools and techniques as well as
refining old ones;

* formalizing techniques for combining tools into
useful aggregates;

* developing measures of effectiveness for tools;

* developing techniques for the management of
small team programming projects; and

* identifying, if possible, a minimal set of
tools essential to the development of high*
quality software.

The STL is NOT

* primarily concerned with collecting or evaluat-
ing existing tools, although such evaluations
may play a part in focussing research efforts;

* in competition with private sector software
suppliers of software tools;

* a standards-setting activity, although research
and development done in the lab may well sup-
port subsequent standardization efforts.

-31-

Definitions

Product — a tool or technique developed in the
STL.

Release (o£ a product) — formal distribution or
announcement outside of ICST of a tool or tech-
nique developed within the STL (informal distri-
bution for testing and feedback does not consti-
tute a formal "release")

.

Technique — a technical method of accomplishing a
desired aim, in this case the efficient produc-
tion of high-quality software and its accompany-
ing documentation. Techniques can encompass
programming as well as the management of pro-
gramming .

Tool — a computer program that assists a program-
mer in the process of designing and developing
software or documentation. Typical tools in-
clude analyzers, editors, pre-coropilers, problem
statement languages, compilers, debuggers, and
document processors.

Rationale

Many software tools are presently available and being
developed in the commercial environment. Yet there is no
clear body of techniques for making effective use of such
tools, nor, more importantly, are really high quality tools
available for the mundane aspects of computer programming,
such as program te^t entry and editing, debugging, and stat-
ic analysis. Those tools that are available are typically
written by hardware vendors in machine dependent code, wild-
ly non-standard across hardware types, of low utility rela-
tive to their potential because of poor human factors design
and inflexibility, and so disparate in control language and
implementation as to render impossible their effective use
in concert. Further, tools produced by independent software
suppliers are commonly designed to be self-contained, and
are consequently rather large and inflexible, such as ela-
borate compilers, library maintenance systems, and data base
systems. Large software tools, or packages, like these also
command higher selling and maintenance prices than smaller
ones

.

-32-

There appears at the present time, then, to be little
motivation for the private sector to develop small software
tools that can be used "as is," or easily joined with others
to form larger, special-purpose tools. The NBS can thus
step into this area, certainly with an eye toward research
and experimentation, without undue fear of competition with
industry, and with a reasonable expectation of providing
significant benefit to the federal government.

Policies

As primarily a research effort, the STL will not be
managed for the unique benefit of anyone. Rather, products
resulting from the lab will be in the public domain and will
be publicized and disseminated as widely as their value jus-
tifies. In general, research will be geared to helping in-
dividual programmers, and to a lesser extent, to helping
those who use the service of programmers.

Research will concentrate on small tools that are used
by individuals and small project teams, such as editors,
keyword extractors, and compilers, rather than operating
systems, data base systems, or the like. This concentration
is a reflection of both the existing active participation of
industry in the latter area, and the Bureau's limited
resources and consequent inability to realistically develop
or test tools and techniques for large-scale use.

Products of the lab will be suitable for use on a
variety of computer hardware and software systems.

As the Computer Science Section has a charge to "em-
phasize advanced techniques... undertake state-of-the-art
studies... [and] structured programming experimentation,"
programming languages used in the lab will not be confined
to those customarily used by the majority of federal govern-
ment programmers. Nevertheless, techniques developed will
be as broadly applicable as possible across programming
languages.

Any programming done will be done in accord with
currently known and recommended principles of good style and
sound engineering.

Unless considerably greater funding, resources and
management direction are applied, the STL will not attempt
rigorously (i.e., scientifically or statistically) to evalu-
ate the benefits of its products. Rather, informal, reason-
able judgements will be made.

-33-

Research will be directed primarily toward improving
the process of software development and its documentation,
where such processes can be distinguished from software
maintenance ; testing and optimization.

Inasmuch as a large proportion of the work of software
development is concerned with text manipulation (program
texts^ documentation, plans, schedules, etc.)# tools and
techniques relevant to such processing shall be considered
within the domain of the STL.

Program products will be written according to the dic-
tates of (1) clarity and readability, (2) transferability,
and (3) efficiency, in that order of priority.

Products will be selected for development according to
(1) breadth of applicability, (2) level of benefit, and (3)
ease of applicability, in that order of priority. Note that
(1) and (2) mean that—all things being equal—a product of
broad applicability and modest significance is prefered over
one of greater significance but limited applicability.

Procedures

No product of the STL will be released without (1) at
least two individuals not directly connected with the lab
having used the product—not just reviewed it—and reported
favorably on such usei (2) the product's having been suc-
cessfully used with at least two different hardware/software
configurations, preferably of different manufacture; and (3)
the product's being uniformly and clearly documented. Docu-
mentation will include an easy means for product users to
provide comments back to the lab. Program products must ad-
ditionally pass a "code inspection^ by at least two people
looking for clarity, good structure, robustness and self-
evidentness of technique, and reasonable isolation of
machine dependencies.

Use of the NBS Univac-1108 and other NBS computers for
product tryouts is encouraged as a reasonable first step
after use in the ECF.

STL products will illustrate their author's cognizance
of current work outside NBS in the area of software tools
and development.

-34"

APPENDIX B: SOFTWARE TOOLS BIBLIOGRAPHY

This bibliography includes literature on software tools
and techniques used during the software development cycle.
Sources surveyed included journals and conference proceed-
ings as follows.

Journals

ACM Computing Surveys 1971-1975
Communications of the ACM 1971-1975
Computer 1975
Computer Decisions 1971-1975
DATAMATION 197^-1975
EDP Performance Review 1973-1975
Software—Practice and Experience 1971-1975

Conference Proceedings

First National Conference on Software Engineering,
Washington, D.C., September 11-12, 1975.

Third Texas Conference on Computing Systems, Aus-
tin, Texas, Nov. 7-8, 1974.

Fourth Texas Conference on Computing Systems, Aus-
tin, Texas, November 17-18, 1975.

1973 IEEE Symposium on Computer Software Reliabil-
ity, New York City, April 30- May 2, 1973.

1975 International Conference on Reliable
Software, Los Angeles, April 21-23, 1975.

Morkshop on Currently Available Program Testing
Tools — Technology and Experience, Los Angeles,
April 24-25, 1975.

Courant Computer Science Symposium 1, "Debugging
Techniques in Large Systems," New York City, June
29 - July 1, 1970.

Computer Program Test Methods Symposium, Universi-
ty of North Carolina, Chapel Hill, June 21-23,
1972.

National Computer Conference, Chicago, May 6-10,
1974.

-3^

National Computer Conference, Anaheim, Nay 19-22,
1975.

ACM 1974 Annual Conference, San Diego, November
11-13, 1974.

ACM 1975 Annual Conference, Minneapolis, October
21-23, 1975.

Follow-up of references cited in the above sources led
to the acquisition of technical reports published in other
sources.

Criteria For Inclusion

Included in this bibliography are papers on software
tools or techniques, and applications of software tools or
techniques. Where more than one paper by the same author
was found on the same subject, the most recent was selected.
Not included in this bibliography are papers on (1) purely
theoretical subjects, e.g., proof of correctness; (2) system
software performance and measurement tools, e.g., operating
system software monitors; (3) system software tools, e.g.,
compilers; (4) debugging or testing methods for application
software, e.g., numerical software error analysis methods.

-3^

Bibliography

Baird, R. , "APET—A Versatile Tool for Estimating Com-
puter Application Performance," Software—Practice and
Exper ience , October-December 1973 , vol . 3 , no . 4 ,

pp. 385-395.

The Application Program Evaluator Tool, APET,
is an application of a general concept: prototyping
functional models of a project to be undertaken, and
then using the prototypes to answer performance
questions. APET is a functional modelling method that
produces synthetic jobs, which can be used to con-
trol computer system activity to measure selected
hardware or software functions as they interact within
an application under real operating conditions. APET
is controlled by a language that provides the means for
synthesizing a real job, thereby producing synthetic
benchmarks of a general class of problems. A syn-
thetic program produced by this tool has measure-
ment facilities built into it in the form of timing
routines, software or hardware hooks, event traces,
etc

.

Basili, V. R. and M. V. Zelkowitz, "Compiler Generated Pro-
gramming Tools," workshop on Currently Available
Testing Tools, April 1975, p. 45.

Two compilers, SIMPL and PLUM, are implemented with
data collection aids that provide compilation, exe-
cution and post- execution statistics. Compilation
time data give an insight into syntactical
bugs—and help the programmer debug his program more
efficiently; and execution-time and post-execution time
data permit analysis of program efficiency and
correctness.

Bergeron, R. Daniel and Henri R. Bulterman, "A Technique for
Evaluation of User Systems on an IBM S/37fc,"
Software—Practice and Exper ience , January-March 1975,
vol. 5, no. 1, pp. 83-92.

The most frequently used techniques for identifying
critical regions of a program are described. These
techniques are: Gallup, in which the programmer must be
polled for the critical region in his program;
Spy, whereby an independent subroutine interrupts
the execution of a program to determine in which of
the user-defined areas the program was executing;

-37-

machine-language interpretation, which interprets each
instruction in the user system; and the "AED"
technique, which uses a runtime statistics-gathering
package for user systems. The System for System
Development (SSD) , which uses the "AED" technique,
is described. SSD consists of a special compiler
for the systems programming language LSD, augment-
ed to provide various systems-oriented facilities,
including an evaluation facility. The SSD intercepts
user subroutine calls, compiles and analyzes the
information oh the subroutines, and returns without
affecting user processing.

Blair, Jim, "Extendable Non-Interactive Debugging," Courant
Computer Science Symposium 1, (June 29- July 1, 197fa) ,

Debugg ing Techniques in Large Systems, edited by
Randall Rustin, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1971, pp. 93-115.

The Purdue Extendable Debugging System (PEBUG) is a
general purpose and flexible debugging tool, designed
for use in either an interactive or non-interactive en-
vironment. Another design criterion was that this de-
bugging system should be extendable by the user in
terms of his source language, so that he can add his
own debugging aids without complicated system inter-
faces. In keeping with this requirement, a basic sys-
tem was produced from primitives, and these primitives
built up in levels; thus the final system has a system
of primitives on which other debugging aids can be
built. PEBUG structure on top of the primitives has
three basic components: the breakpoint interpreter,
which controls the dynamic execution of the program be-
ing debugged; the command scanner, which is actually
the program that controls the commands entered as in-
put; and the group of debugging subroutines, which ac-
complish the actual debug processing.

Boehm, B. M.,R. R. McClean, and D. B. Urfrig, "Some Experi-
ence with Automated Aids to the Design of Large Scale
Reliable Software," Proc. International Conference on
Reliable Software, April 1975, pp. 105-113.

Recent experiences in analyzing and eliminating
sources of error in the design phase of a large
software development project are summarized. A taxonomy
of software error causes and an analysis of the
design-error data are presented. Investigations
into the cost- effectiveness of using automated aids
to detect inconsistencies between assertion of the

-38-

nature o£ inputs and outputs of the various elements of
the software design have led to the development of a
prototype version of such an automated aid, the
Design Assertion Consistency Checker (DACC) . Results
of an experiment using the DACC on a large scale
software project show that there is value to such a fa-
cility, although cost considerations should be
weighed before using (or developing) such a tool.

Boyer, R. S., B. Elpas and K.N. Levitt, "SELECT—A Formal
System for Testing and Debugging Programs by Symbolic
Execution," Proc. International Conference on Reliable
Software, April 1975, pp. 234-245.

SELECT is an experimental system for assisting in the
formal debugging of programs, by systematically
handling the paths of programs written. For each ex-
ecution path SELECT returns simplified conditions on
input variables that cause a particular path to be
executed; and it returns simplified symbolic values
for program variables at the path output. Potentially
useful input test data that cause a particular path to
be executed are generated; and if such data cannot be
generated, then the particular path is no longer pur-
sued. This experimental system allows the user to
supply interactively executable assertions, con-
straint conditions or specifications for the intent of
the program from which it is possible to verify the
correctness of the paths of the program.

Bratman, Harvey and Terry Court, "The Software Factory,"
Computer , May 1975, pp. 28-37.

The Software Factory concept is an approach to
software development emphasizing a disciplined
methodology that produces reliable software; that
utilizes a flexible facility with a set of tools
tailored to the software development process; and that
allows incorporation of new tools to ease the process
of development. The basic components are FACE, the
control and status gathering service, IMPACT, the
scheduling and resources computation facility, and the
Project Development Data Base. Some of the tools
available to the software projects are AUTODOC
(documentation tool) , PATH (program analyzing tool) ,

TCG (a test case generating tool) and TOPS (a
design verification tool).

-39-

Brown, A.R and W, A. Sampson, Program Debugg ing , American
Elsevier, New York, 1973.

The nature of programming errors and debugging,
the different types of debugging, and the debug-
ging aids presently available to a programmer are ex-
plained. The authors' own technique, the METHOD,
adapted from a management principle, is then intro-
duced. This debugging technique has as its basis the
location and definition of a "deviation" from the
expected, which forces the programmer to consider on
the causes of the deviation, and

Brown, J.R., "Practical Applications of Automated Software
Tools," TRW Report no. TRW-SS-72-ki5 , September 1972.

The measurement of "thoroughness" in testing is il-
lustrated with a small program, using automated aids
that analyze the code, instrument it to produce
the necessary output, and monitor testing. The tools
discussed are FLOM, a program execution monitor, and
PACE a set of automated tools that support the plan-
ning, execution, and analysis of computer program
testing. The tools described help in measuring the
thoroughness of testing by analyzing all possible
paths, and eliminating those that contain mutual-
ly exclusive conditions; and by identifying the
remaining paths in relation to their use of statement
and branches.

Burlakoff, Mike, "Software Design and Verification System,"
Workshop on Currently Available Program Testing Tools,
April 1975, p. 19.

The Software Design and Verification System, SDVS,
is an integrated set of software tools intended
to reduce the efforts needed in the design, development
and verification of software. The software system
is partitioned into a number of simulated computer
processors, and it uses a set of software
modules for its execution in a simulated environment
under SDVS control. The design and verification condi-
tions are specified in a Test Case File, and us-
ing the SDVS, the software system is exercised accord-
ing to specifications.

-40-

Carpenter, Loren C. and Leonard L. Tripp, "Software
Validation Tool," Proc. International Conference
liable Software, April 1975, pp. 395-40k).

Design
on Re-

Design Expression and Confirmation Aid, D£CA, is a
set of programs used in conjunction with a top-
down dominated design methodology. A design expres-
sion consists of a static structure (the design tree)

,

a dynamic structure (the transition diagram) , and the
relationship between them (the data parcel) . Using
the transition diagrams, the design can be validated by
"walking through" the system's action. DECA con-
sists of five sequentially executed subprocesses : a
syntax scanner, a text ordering sort, a
consistency-checking document printer, an
information-ordering sort, and a global checker. The
use of DECA enhances the design process of the
software system, and in turn its development, because
of the thorough, top-down validation of the design pri-
or to the actual coding of the program.

Chanon, R.N., "An Application of a Specification Technique,"
Proc. Third Texas Conference on Computing Systems, No-
vember 1974, pp. Ik). 1.1-10. 1.2.

The experience resulting from applying the
Parnas specification technique [see Parnas, D. L., "A
Technique for Software Module Specification with Exam-
ples," Communications of the ACM , vol. 15, no. 5 (May
1972) , pp. 330-336] in the construction of a semantic
analyzer for a compiler construction course is
described. The specification technique consists of
(1) a description of the possible values of the argu-
ment to each function, (2) a description of the
possible values of the result, and (3) exactly enough
information to completely determine the results, given
the arguments to a function and the previous results
of the function comprising the module.

Crocker, Steve and Bob Balzer, "The National Software Works:
A New Distribution System for Software Development
Tools," Workshop on Currently Available Program Testing
Tools , April 1975, p. 21.

The National Software Works is a centralized clear-
inghouse residing on the ARPANET. The NSW plans to in-
crease the availability of software tools to the
vastly different types of user on a distributed network
environment; it intends to incorporate major types
of computers into the Works, and allow the tools to be

-41-

used in dissimilar
develop specifications
etc

.

computersi it plans to
for interfacing new systems;

de Balbine, Guy, "Tools for Modern FORTRAN Programming,"
Workshop on Currently Available Program Testing Tools ,

April 1975, p. 27.

Three general development tools purported to aid
in the writing 9f a program are discussed: PDL—a pro-
gram design language and processor, which allows
the writing of a description of what is to be done in
simple English; S-FORTRAN— the structured FORTRAN
language and processor, which converts the design
language into executable code; and the "structuring
engine"—a program reformatter for existing FORTRAN
programs.

DeVito, A. R. , "The PRO/TEST Library of Testing Software,"
Workshop on Currently Available Program Testing Tools ,

April 1975, p. 31.

The PRO/TEST library of testing software consists of
three modules: The DATA GENERATOR, which generates test
files from parameter statements; the FILE PROCES-
SOR, which is used on the files generated; and
the FILE CHECKER, which automatically verifies
computer output. This library of testing software is
concerned both with obtaining a sufficient volume of
comprehensive test data, and with verifying the
completeness and correctness of test results.

Fairley, R. E., "An Experimental Program Testing Facility,"
Proc. First National Conference on Software Engineer-
ing, September 1975, pp. 47-52.

The Interactive Semantic Modelling System, ISMS,
is an experimental program testing facility that
allows experimentation with implementation of a variety
of information collection, analysis and display
tools. ISMS addresses the following questions with
respect to testing: (1) Mhat information is useful?
(2) How can the information be collected? and
(3) How can the information be analyzed and
displayed in a meaningful format? In this context,
the design characteristics of the ISMS preprocessor
and those of some of the tools being developed with
ISMS are described. Salient among the design features
are: the syntax driven nature of the preprocessor; the

-42-

isolation of the data collection from the data
analysis and display processes; and the indepen-
dence of the collection, display and analysis routines
from the internal details of the data base imple-
mentation .

Ferrari, Domenico and Mark Liu, "A General Purpose Software
Measurement Tool," Software—Practice and Sxper ience ,

April-June 1975, vol. 5, no. 2, pp. i81-192c

The general-purpose Software Measurement Tool,
SMT, is intended for use in the interactive
system, PRIME. The SMT is designed with flexibility,
and generality in mind. It allows the user to
instrument a program, modify pre-existing instrumenta-
tion, and specify how the data are to be reduced with a
few commands or with a user-written measurement
routine. There are three phases to the measurement
process of the SMT: the instrumentation phase, the
execution phase, and the data reduction phase. At
present, only a prototype of the SMT has been imple-
mented .

Fragola, J. R. , and J. F. Spahn, "The Software Error Effects
Analysis: A Qualitative Design Tool," Proc. 1973
IEEE Symposium on Computer Software Reliability, May
1973, pp. 9k<-93.

A qualitative method of evaluating a software package,
called Software Error Effects Analysis (SEEA)

,

provides systematic, consistent, objective and
permanent analysis of the software. The technique re-
quires the definition of the module interdependen-
cies, and the analysis of the effect of error in the
data flowing between them, thus yielding a comprehen-
sive picture of how the program can fail and
where. It identifies the weak points in the program
and suggests where redundancy should be added.

Glassman, B. A. and J. W. Thomas, "Automating Software
Development—A Survey of Automated Aids in Support of
the MDAC-W Computer Program Management Technique
(CPMT)," McDonnell Douglas Report Number MDC G57fe!7,

January 1975.

To relieve developers of some of the menial and
error-prone tasks in writing software, some automat-
ed aids are developed. The tools described include
CCP (Configuration Control Program): automates

-43-

software configuration and management procedures;
MACFLO; constructs flowcharts depicting the logic
flow of computer software; JOYCE: constructs glos-
saries, cross reference maps, and trees defining
the program structures and variable usage; PET
(Program Evaluator and Tester) i gathers informa-
tion on source statements and inserts code into the
source deck to obtain run-time statistics; REPROMIS

:

aids in documentation; TRAKIT: aids in project con-
trol; and FORSEQ and TIDYs accomplish general house-
keeping, such as sequence numbering and indentation.

Goetz, Martin, "Soup Up Your Programming with COBOL Aids,"
Computer Decisions , March 1973, vol. 5, pp. 8-12.

Because of the large number of COBOL users in the
computing community, there is a large group of
software tools available to the COBOL programmer
during the software development cycle. These "COBOL-
aids" are most abundant during the coding, testing
and debugging, and maintenance phases of program
development. A brief discussion of each of these
tools, with examples, is presented.

Graham, Robert M, Gerald J. Clancy and David B. DeVaney, "A
Software Design and Evaluation System," Communications
of the ACM, vol. 16, no. 2 (February 1973), pp. llfc-16.

The Design and Evaluation System, DES, is a system that
addresses the problem of evaluating the performance of
a proposed design before it is implemented. DES has a
single hierarchical data base that contains hardware
and software information on the object system. DES
provides performance information at each of the follow-
ing stages in the design and implementation of a
software system: component, subsystem, and total sys-
tem. Component evaluation is concerned with the per-
formance and resource usage of individual procedures

—

mostly static information such as the total number of
instructions in the procedure. This stage also pro-
duces a simulation model which becomes input to the
subsystem and system evaluation stages. Subsystem
evaluation builds a composite model of the subsystem,
and then it is subjected to the same evaluation as in
the components evaluation stage. And finally, the sys-
tem evaluation uses simulation to determine the dynamic
behavior of the system. At each of the above stages,
the evaluation results produced by DES are used to
validate the performance of a design before it is im-
plemented .

-hk-

Gceen, Eleanor, "What, How, and When to Test," Workshop on
Currently Available Program Testing Tools , April 1975,
pp. 33-34.

During the four major phases of the software life
cycle— design, implementation, verification and
maintenance— the questions of what to test for,
how to devise adequate tests and when to stop testing
should be taken into consideration. Among the automat-
ed aids that help in the testing processes are AUTO-
FLOW II and ROSCOE which help in the testing at the
specification level, and MetaCOBOL and LIBRARIAN,
which help in testing at the program level. The au-
thor suggests that testing should be thought out from
the design phase; that testing should be well-
designed and where possible use automated aids; and
that testing should be an integral part of the
life cycle of software.

Grishman, Ralph, "Criteria for a Debugging Language,"
Courant Computer Science Symposium I (June 29-July 1,
197k)) Debugg ing Techniques in Large Systems , edited by
Randall Rustin, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1971, pp. 57-75.

Current debugging systems are discussed in terms of the
features that a good debugging system language ought to
have. In particular, special attention is focused on
interactive debugging systems. The author's system,
AIDS, is by the author's account a good system. It
contains: (1) ON and WHEN statements specifying the oc-
currences that trigger the initiation of debugging ac-
tions; (2) a debugging procedure following an ON or
WHEN condition specifying what actions are to be per-
formed; (3) statements to invoke facilities in the de-
bugging system not available in the source language;
and (4) a debugging language similar to the source
language. AIDS is intended for use with both FORTRAN
and assembly language programs; thus an "object code"
system was judged most advantageous. A source program
is submitted to a FORTRAN compiler or an assembler,
which then generates an object program and a listing.
AIDS first reads the listing, extracting the attributes
of all symbols; it then loads the object program, and
asks the user what he would like to do.

-45-

Griswold, Ralph E., "A Portable Diagnostic Facility for SNO-
B0L4,'* Software—Practice and Exper ience , January-
March 1975, vol. 5, no. 1, pp. 93-104.

In programming systems based on abstract machine-
modelling concepts, the underlying structure of the
abstract machine can be made available to the software
implemented on it. The result is a facility for
diagnosis and exploration of software structure. One
such facility is " The Window to Hell" (TWTH) . TWTH
consists of built-in SN0B0L4 functions, operators
and keywords, tnat provide a vertical extension between
the SW0B0L4 "externals" and the SIL (SN0B0L4 Implemen-
tation Language) "internals". Therefore, SIL level
structures are made accessible to a SN0B0L4 program,
and the powers of the higher level language are
available for analyzing and modifying its own inter-
nals.

Howard, Phillip, editor, '"Simulation: Its Place in
mance Analysis," EDP Performance Review ,

no. 11, November 1973.

Perfor-
vol. 1,

Simulation as an analysis and evaluation tool is
discussed from the users' point of view, with concen-
tration on "commercially"- available simulation
packages, e.g., "general purpose" system evaluation
tools, such as SCERT, SAM, CASE, which are used as
"system" simulators, and are often thought of as a "fu-
ture planning " tool.

Howard, Phillip C, editor, "Third Annual Survey of
Performance-Related Software Packages," EDP Performance
Review, vol. 3, no. 12, December 1975.

This series of surveys on commercially
available (proprietary) software packages is a good
source of information for the software development pro-
jects, because it identifies by name, and classifies
software tools that help in the measurement, evalua-
tion, and improvement in the quality of computer
software, or help in the improvement in the produc-
tivity of a computer installation. Although this is
purported to include only those software packages that
have as their primary function that of enhancing
or evaluating the performance of a computer system,
it also includes communications tools, precom-
pilers, data management etc, as well as the traditional
performance- type tools, like monitors, simulators, op-
timizers, etc.

-46-

Howard, Phillip C, editor, "Bibliography of 1974 Perfor-
mance Literature," EDP Performance Review , vol. 3,
no. 3, March 1975.

This bibliography is organized by subject; and it con-
tains an author's index, a publisher's address list and
a subject index. The subjects covered include job ac-
counting, compilers, simulation tools and techniques,
and is exhaustive for performance related topics.

Uowden, William E., "Methodology for the Generation of Pro-
gram Test Data," IEEE Transactions on Computers , May
1975, vol. c-24, no. 5, pp. 554-559.

The program test-data generation methodology
described decomposes a program into a finite set of
classes of paths, in such a way that an intuitively
complete set of test cases would cause the execution
of one path in each class. This is known as the
"boundary-interior" method for choosing test paths.
There are five phases in this methodology: (1) the
analysis, classification and construction of
program-like descriptions of classes of program
paths, (2) the construction of the description of
input data which cause the different standard
classes of paths to be followed, (3) the
transformation of implicit description into
equivalent explicit description, (4) the construc-
tion of explicit description of subsets of the input
data set not accomplished by the previous phase, and
(5) the generation of input values satisfying the ex-
plicit descriptions. The first four phases of this
methodology could be useful for a partial
program-correctness system. The last phase is the
actual test-data generating process for certain
classes of programs that must be thoroughly tested.

Howden, William F., "Automated Program Validation Analysis,"
Proc. Four th Texas Conference on Computing Systems , No-
vember 1975, pp. 4A2.1-4A2.6.

DISSECT is a system in which the user has flexible
control over the application of the types of valida-
tion analysis carried out automatically by the comput-
er. This analysis can be used to generate test data,
prove correctness or check a program against its
specifications. DISSECT has the ability to attach at-
tributes to paths and to direct the system to
choose paths conditionally based on a path's attri-
butes. The author presents an evaluation of

-47-

DISSECT against other systems like it—e.g.,
SELECT, EFFIGY, RXVP—all of which use the "symbolic
evaluation" method for forming the systems of predi-
cates that describe the data causing a path or set of
paths to be followed.

Ignalls, Daniel H.H,, "FETE—A FORTRAN Execution Time Esti-
mator," Stanford University Report no. STAN-CS-71-204

,

Computer Science Department, Stanford University,
February 1971.

FETE is an automated system that inserts
counters automatically into a program during execution.
FETE is a three step process: first, it accepts any
FORTRAN program and produces an edited file with
counters? second, it executes the modified program,
while saving the original source program? and
third, it re-reads the modified source program, and
correlates it with the final counter values in
such a way that the executable statements appear with
the exact number of executions and approximate computa-
tion time. Next to the logical IF's, FETE shows the
number of TRUE branches taken, and computes the
"cost" of execution, based on a linear scan
cost-algorithm. Basically, the tallying counters are
inserted when certain control structures are found,
and the time estimates are calculated when the
modified source program is executed with all the tally-
ing counters.

ikezawa, M.A., "AMPIC," Workshop on Currently Available
Program Testing Tools , April 1975, p. 7.

AMPIC is a tool under development that is
claimed to represent a program as a structured program,
regardless of how it was originally programmed. Its
capabilities includes an assembly language
flowchart generator, assembly-source-to-higher func-
tional language translator, semi-automatic path
analysis, and details of deductions by which the
translations are produced.

Isaacson, Portia, "PSj A Tool for Building Picture-System
Models of Computer Systems," Proc. Third Texas
Conference on Computer Systems, November 1974,
pp . 3.4. 1-3 .4.5.

-48-

PS is a tool for designing computer systems by using
picture systems as models. A picture-system model
consists of a "picture set" containing a picture for
each state of the computer system relevant to
the mechanism being modeled. The goal of this research
is to automate the production and analysis of picture
system models so that these models can be used on
a broader basis as a means of communicating computer
systems mechanisms at various levels of abstrac-
tion.

Itoh, Daiju and Takao Izutani, "FADEBUG-I, A New Tool for
Program Debugging," Proc. 1973 IEEE Symposium on Com-
puter Software Reliability, April 1973, pp. 38-43.

FACOM Automatic DEBUG (FADEBUG-I) is a debugging
tool for assembly language that is to be used at the
early stage of module testing. This debugging
tool has two main functions: it checks out automatical-
ly the possible execution paths of a program; and it
compares the contents of main memory with the desired
data after the program has been running. Experimental
data using FADEBUG-I are evaluated and results show
that with this automatic debugging tool, program per-
formance is improved.

Kerninghan, B. and P.J. Plauger, "Software Tools," Proc.
First National Conference on Software Engineering, Sep-
tember 1975, pp. 8-13.

A tool-building concept is introduced whereby programs
can be conceived as special cases of more general
purpose tools. The authors show that programs can
be packaged as tools, and proceed to describe an ideal
environment for tool-building and tool-using. This en-
vironment is UNIX, where it is possible to have
building blocks, or "filters" with the capability
for handling input and output redirection, and a
mechanism for hidden buffering between output and in-
put, called "pipes." One of the advantages offered
by this "filter and pipe" concept is that once a
filter is created it can be used as a building block to
build other more complex tools using pipes to
join them together, so that eventually it will be-
come unnecessary to re-create a tool each time one is
needed; rather, one should be able to piece together
different filters to perform the desired function.

-49-

King, J.C., "A New Approach to Program Testing," Proc.
International Conference on Reliable Software, April
1975, pp. 228-233.

Rather than testing a program by choosing an ap->

propriate example, or data, the author proposes that
symbols be supplied to the program being tested. He
argues that the normal computational definitions
for the basic operations performed by a program can
be expanded to accept symbolic inputs and produce sym-
bolic formulae as output. Specifically, the in-
teractive debugging/testing system called EFFIGY is
discussed. This system was implemented with the prin-
ciples of symbolic execution in mind.

King, J. C. "Symbolic Execution and Program Testing,"
Communications of the ACM , July 1976, pp. 385-394.

The principles of symbolic execution are discussed,
in an ideal sense, as an alternative to specific
testcase-testing . In particular, a general purpose
interactive debugging and testing system, the In-
teractive Symbolic Executor--EFFlGy— is described.
EFFIGY provides debugging and testing facilities for
symbolic program execution, with normal program
execution as a special case. Additional features
of this Symbolic Executor include an "exhaustive" test
manager, and a program verifier.

Kirchoff, M.K. and R.H. Ryan, "The Need to Salvage Test Tool
Technology," Workshop on Currently Available Program
Testing Tools , April 1975, p. 3.

The usual procedure with test tools is that of dis-
carding them after they have performed the function
they were designed to do, and re-inventing the same
tools (together with the mistakes from the previous
generation) when the need arises once again. This
paper advocates the salvaging of the test- tool tech-
nology in order to avoid the "re-invention of the
wheel" each time the same tool is needed. To this pur-
pose, the creation of a "test tool specification li-
brary" is suggested. This library would include a
specification for each tool, stating requirements for
that tool's development so that eventually a specif-
ication language can be developed. To test the feasi-
bility of this idea, it is proposed that a modest
set of tools be specified in this manner? and the suc-
cess or failure of this kind of experiment should be
reported in conferences.

-50-

KuXsrud, H.E., "Extending the Interactive Debugging System
HELPER," Courant Computer Science Symposium 1, (June 29
- July 1, 1970) , in Debugg ing Techniques in Large
Systems , edited by Randall Rustin, Prentice-Hall, Inc»,
Englewood Cliffs, New Jersey, 1971 , pp. 78-91,

HELPER is an interactive extensible debugging system
used for debugging programs that have been compiled
previously. HELPER is highly modular and treats many
normal systems functions as user programs. It is
directed to the problem of debugging at the machine
language level. It analyzes the program by simulating
the instructions; the user communicates with the system
by means of a simple algorithmic command language, and
the arguments of this language are the symbols of the
user's own source program, HELPER consists of five
main elements: a simulator, a compiler, a communicator,
a controller, and a set of debugging routines. Of par-
ticular interest are the compiler and the set of debug-
ging routines, because these are what provide the ex-
tensible capability of the system. The compiler is
used to translate the commands given by the user, and
the debugging programs are those routines that are ac-
cessed when certain switches are set by the simulator
and user commands. To introduce changes in the command
language, only the new syntax for the compiler is fed
to the metacompiler, and the resultant code replaces
old code or is added to the compiler. To introduce a
new debugging command, the separate debugging
routine (s) is added to the system. The flexibility
that is obtained with the extensibility of this debug-
ging system allows for operational upgrading of the
system software.

Lemoine, M, and J. Y-Rousselot, "A Tool for Debugging FOR-
TRAN Programs," Wor kshop on Currently Available Program
Testing Tools , April 1975, p, 48.

A debugging tool, implemented on a CII IRIS 80, is
designed to help the FORTRAN programmer in locating po-
tential sources of error, i.e., static function (before
the run) , and monitor the execution of the program,
i.e,, dynamic function (during the run). Basically, it
divides the FORTRAN program into "blocks" and then,
reconstructs the segmented program as a directed
graph. The tool is divided into two partss (1) mani-
pulation of directed graphs (flowcharts) , and (2)

manipulation of program semantics and the associated
graphs (debug)

.

-51-

Lite, S., "Using a System Generator," Datamation , June 1975,
pp. 44-47.

GENASYS is a system generator that exploits the very
high degree of commonality that exists among commercial
applications. The system has a core library of 300
general system definition macros, which are used
to automate the production of code once processing
and output specifications are defined. The user sup-
plies the initial macros from a "workbook" of
predefined system definition macros, and using the
macro-expansion facility of the assembler, these
macros are modified by the input parameters, which are
then used to produce the final source code and com-
plete documentation.

Lyon, Gordon and Rona B. Stillman, "A FORTRAN Analyzer," NBS
Technical Note no. 849, October 1974,

The NBS FORTRAN Analyzer performs both static and
dynamic analyses on a program. In the static
analysis section frequency statistics on 118 FORTRAN
statement types are collected, and accumulated
over all programs analyzed. In the dynamic
analysis section the execution frequencies of each code
segment are monitored, and the flow from segment
to segment are recorded. The dynamic analyzer is a
two-pass function: in the first pass the source code is
instrumented by inserting calls to a tallying func-
tion; and in the second pass the instrumented program
is executed, causing the program to compute and re-
port execution frequency statistics in addition to per-
forming its normal functions. Specific features of
the FORTRAN analyzer are discussed in detail. The
report includes a sample run and sample analyses.

Lyon, Gordon and Rona Stillman, ''Simple Transforms for In-
strumenting FORTRAN Decks," Software—Practice and
Exper ience , October-December 1975, vol. 5, no. 4,

pp. 777-888.

The method of instrumenting a FORTRAN program used in
this FORTRAN Analyzer consists of inserting calls to
a tallying function in the original source program dur-
ing pass one, and then, in pass two this augmented
version of the program is executed, providing
frequency- of-execution counts of program segments.
During pass one, a static analysis of the source
code is performed, by providing a count of statement
types. The resulting analysis highlights

-5^

unusually heavy usage in certain segments of
codes, as well as unexecuted segments. Particular
transforms used in this analyzer are explained.

Miller, E. F., "Experience with RXVP in Verification and
Validation," Workshop on Currently Available Program
Testing Tools , Apr.xl 1975, p. 26.

RXVP is a commercially available software package
that aids in acceptance testing. Included among the
functional capabilities of this package are static
analysis, dynamic analysis at statement and control-
structure level, and test case data generation.

Miller, E. F. and R. A. Melton, "Automated Generation of
Testcase Datasets," Proc. International Conference on
Reliable Software, April 1975, pp. 51-58.

The use of systematic testing methodology can be a
vehicle to insure software quality. One such
methodology relates functional test cases to formal
software specification as a way to achieve
correspondence between software and its specifica-
tions. To do this, appropriate test case data genera-
tion is required. The automatic generation of test
case data, based on a-priori knowledge of two forms of
internal structures is discussed: a representation of
the tree of subschema automatically identified from
within each program text, and a representation of the
iteration structure of each subschema.

Pomeroy, J. M., "A Guide to Programming Tools and Tech-
niques," IBM Systems Journal , 1972, vol. 11, no. 3,

pp. 234-254.

Different techniques and tools aiding the programmer
in the software development process are discussed,
and illustrated with descriptions and examples of
tools for each category. Tools mentioned in
this article are constrained to those that are
obtainable through IBM.

Ramamoorthy, C.V. and K. H. Kim, "Software Monitors Aiding
Systematic Testing and their Optimal Placement," Proc.
First National Conference on Software Engineering, Sep-
tember 1975, pp. 21-26.

-53-

Complete validation of large software systems is
often economically infeasible; hence partial validation
remains the most practical approach, with testing as
the most commonly used technique for achieving partial
validation. The technique of using software moni-
tors as partial aids to systematic performance of pro-
gram testing is presented. Typical strategies involv-
ing software monitors are: 1) Test-path generation
schemes, (2) test-input generation schemes, and (3)
test-output evaluation schemes. Two types of moni-
tors are especially well-suited for these tech-
niques: the flow-controlling monitors, and the
traversal-markers monitors. The optimal instru-
mentation of these monitors is analyzed in terms
of their placement in the target system.

Eamamoorthy, C. V., R. £. Meeker, Jr and J. Turner, "Design
and Construction of an Automated Software Evaluation
System," Proc. 1973 IE£E Symposium on Computer Software
Reliability, April 1973, pp. 28-37.

The concept of a two-step approach is applied to an or-
ganized software validation effort: (1) Analyze
the software for well-formation, and eliminate
existing anomalies; and (2) Apply testing pro-
cedures to check for application specifications.
Using the above philosophy of validation, the Au-
tomated Code Evaluation System (ACES) is developed.
This system is essentially a language processor with
capabilities for static language analysis and data
generation. ACES performs analysis of program struc-
tures, modelled as directed graphs, to allow for
detection of structural flaws and examination of
critical or interesting flow-paths through the
program. Execution monitoring is performed by
automatically inserting calls to a monitoring
routine. Although "complete" validation of large
software systems cannot be performed, systems such as
ACES that encourage the systematic analysis of code can
play an important role in partial validation.

Ramaraoorthy, C. V. and S. F. Ho, "Testing Large Software
with Automated Software Evaluation Systems," Proc.
International Conference on Reliable Software, April
1975, pp. 382-393.

A general survey and a brief description of software
tools are presented as an introduction to the au-
thors' discussion of operational experiences with
automated software evaluation systems, such as FACES,

-54-

PACE, AIR. A Software Evaluation System is a
composite system consisting of various automated
tools intended to perform system design analysis, de-
bugging, testing and validation. Automated tools
are classified and described as follows: (1) by mode
of operation— static and dynamic analysis; (2) by
the development phase in which it is
applicable--design and analysis, testing and debugging,
and maintenance; (3) by the specific function
they perform—automated design, siroula'tion, code
analysis, run-time behavior monitoring, test genera-
tion, documentation, etc. The desirable charac-
teristics of a "good" automated tool are outlined:
good resolution power, generality, several levels of
abstraction, easy to use, highly automated, well-
structured, well-documented and thoroughly tested,
and machine-independence to facilitate transfer-
ability.

Reifer, D. J., "Interim Report on the Aids Inventory Pro-
ject," The Aerospace Corporation, Report SAMSO-
TR-75-184, 16 July 1975.

The Aids Inventory Project described here serves as a
storage and distribution center for software tools
(support programs) used in the testing and development
of weapon-system software. The Inventory is divided
into two parts: The Physical Inventory, which consists
of a set of tools that are application-independent,
and are used by multiple projects; and the Ex-
isting Aids Catalog which contains a list of the pro-
grams including their location, limitations, status
and capabilities. This report also contains a glos-
sary of aids with their definitions, the Existing Aids
Catalog, a glossary of other technical terms used
throughout the report, and a bibliography of relevant
literature.

Reifer, D. J., "Automated Aids for Reliable Software," The
Aerospace Corporation, Report SAMSO-TR-75-183 , 26 Au-
gust 1975.

A guide to automated aids used to increase program
productivity by decreasing cost, and increasing
software reliability is presented. The aids are di-
vided into the following categories: simulation,
development, test and evaluation measurement,
and programming support. This report recommends that
a systematic basis be established upon which a "core"
set of tools is defined, and is used to build a

-55-

"tailored" support system for individual projects.

Reifer, Donald J. and Loren P. Meissner, "Structured FORTRAN
Preprocessor Survey," Lawrence Berkeley Laboratory,
Univ. of California at Berkeley Technical Report
UCID-3793, November 1975.

This survey is an inquiry into existing FORTRAN
preprocessors and other software packages that
are aimed at constructing "structured" control-
structures with the FORTRAN language. Developers
of these preprocessors were polled with question-
naires, and the results of the inquiry are included in
this report.

Reifer, D. and Robert Lee £ttenger, "Test Tools: Are They a
Cure-Ail?" The Aerospace Corporation, Report SAMSO-
TR-75-13, 15 October 1974.

Test tools are evaluated in terms of their capabili-
ties, constrained by the requirements that the test
tools should be commercially available, and that the
developers have the intention of implementing them in
JOVIAL. Four tools meeting these two criteria were
investigated: QUALIFIER, NODAL, RXVP, PET. The
evaluation is based on timing data, obtained using
benchmark programs. In conclusion, the theme ques-
tion is answered negatively, mainly because the test
tool technology, as known today, is an evolutionary
process, and today's test tool constitutes a "first
step" in that direction.

Rizza, John B. and Dennis Hacker, "Quality Assurance Inspec-
tion and Test Tools—An Application," Workshop on
Currently Available Program Testing Tools , April 1975,
pp. 9-10.

The usage of software tools at different stages of
software development is contrasted with purely
manual methods, and the benefits resulting from
the application of software tools are dramatized
by the presentation of a method of projecting
cost reduction for software projects. Specifically,
two examples are given showing the cost-reduction
formula at work: the use of software tools to ver-
ify compliance with coding standards versus using pure-
ly manual methods; and the application of
branch-testing standards vs. not using them. The exam-
ples illustrate the merits of using software tools by

-5^

the project funds saved

Rochkind, Marc J., "The Source Code Control System," Proc.
First National Conference on Software Engineering, Sep-
tember 1975, pp. 37-43.

The Source Code Control System (SCCS) is a software
tool designed to help programming projects control the
changes made to the source code. It provides facil-
ities for storing, updating and retrieving all
versions of modules, for controlling updating
privileges, for identifying load modules by version
number, and for recording who made each software
change, when and where it was made, and why. The key
features of the SCCS are: (1) Its storage capability,
which allows all versions to be stored together in the
same file; (2) Its protection capability, which
controls updating, and access privileges; (3) Its
identification capabilities, which automatically insert
date, time and version numbers to the programs; and
(4) Its documentation capabilities, which record who
made the changes, what they were, when, where, and why
they were made. Presently, the SCCS resides in a
facility known as the "Programmer's Workbench," under
the UNIX operating system.

Ryder, B. G., "The PFORT Verifier," Software—Practice and
Exper ience , October -December 1974, vol. 4, no. 4.,
pp. 359-377.

The PFORT Verifier is a standard-enforcing tool that
checks a FORTRAN program for adherence to PFORT, a
portable subset of ANS FORTRAN. The Verifier checks
that intra-program-unit communication, occurring
through the use of COMMON and argument lists, is con-
sistent with the standard. Intra-program-unit error
diagnostics, symbol tables and cross-reference tables
are produced as part of the output for the program be-
ing checked.

Satter thwaite , E., "Debugging Tools for High Level
Languages," Software—Practice and Exper ience , July-
September 1972, vol. 2, no. 3, pp. 197-217.

The design of a programming system that supports a
range of debugging aids and techniques using ALGOL
W is described. These tools are based upon the
source language, are efficiently implemented,
and are useful in verification, analysis and diagnosis.

-57-

There are four design criteria for this debugging sys-
tem: (1) the information presented to the user
should be in terms of his program and of the source
language, ALGOL W; (2) The compiler produces machine
level code, and this code should not be degraded by
the requirements of the debugging system; (3) Resource
requirements should be limited, for I/O especially;
and (4) the debugging features should be easy to in-
voke. Some examples of tools in this debugging
system are presented, among them, a selective
trace that is automatically controlled by execution
frequency count, and an assertion capability that al-
lows for specification of redundant information at
critical points in the program.

Shomer , Jon A., "Improving Program Reliability Using COTUNE
11," Workshop on Currently Available Program Testing
Tools , April 1975, p. 30.

COTUNE II is a program execution monitor for
COBOL that produces an execution count and
processor-time histograms. The resulting COTUNE II
reports can be used for documenting the source program
as well as for giving an execution profile of the
program. This tool can be used in testing and vali-
dating a program to ensure its correctness, and to con-
trol its reliability.

Stillman, Rona B, and Belkis Leong-Hong, "Software Testing
for Network Services," NBS Technical Note no. 874, July
1975.

This report is a first step towards identifying ef-
fective software tests and measurement tools, and
developing a guide for their use network-wide. Two
tools are studied experimentally: the NBS FORTRAN
Test Routines, which collectively form a useful tool
for FORTRAN compiler validation; and the NBS FORTRAN
Analyzer, which is a useful testing tool that provides
static and dynamic analyses of the source code. Indi-
cations of their roles in systematic testing in a net-
work environment are given.

Stucki, L. G., "Testing Impact on the Future of Software En-
gineering," Proc. Fourth Texas Conference on Computing
Systems, November, 1975, pp. 4A-1.1 - 4A-1.6.

-58-

While self-metric software analysis suggests an attempt
to explore control and data semantics of program
behavior, the notion of an embedded assertion language
is introduced that extends the ability to carry out
"systematic programming." These assertion concepts are
based upon the premise that there is a need to "think-
through" the actual and expected behavior of an algo-
rithm; they are also designed to encourage the develop-
ment of algorithmic validation criteria from the begin-
ning of the software development cycle, i.^., the de-
finition of requirements, to the final program code.
The assertion language is discussed in terms of its
characteristics, such as, the generalized local asser-
tion construct, which may be embedded in comments at
any point within the executable code of a program; dif-
ferent assertion control options, such as instrumenta-
tion control, dynamic control and threshold control;
and specialized local assertions and global assertions.

Stucki, L.G., and Gary L. Foshee, "New Assertion Concepts
for Self-Metric Software Validation," Proc. Interna-
tional Conference on Reliable Software, April, 1975,
pp. 59-65.

A user-embedded assertion capability is included as an
extension to the Program Evaluator and Tester (PET)

.

PET is a validation tool that allows for automatic ve-
rification of the dynamic execution of the user's pro-
grams. The assertion capabilities would allow the user
to establish his own assertions at key points within
his algorithm in the language he is using, as well as
the ability of the user to obtain dynamic analysis and
feedback on the validity of the assertion. These
assertion capabilities would provide for two levels of
control: global assertions and monitor commands have
effect over the whole length of their enclosing module
or block; and local assertions are position dependent,
and consist of any legal logical expression of the host
language. The assertions are transparent to the normal
language compiler, and must be pre-processed in order
for the dynamic execution checking to take place. The
preprocessor instruments the assertion by augmenting
the original source program with self-metric instrumen-
tation. The augmented code is then executed, and also
run-through a post-processor, finally yielding summary
reports containing assertion violations and execution
statistics.

-59-

Youngberg, E, P., "A Software Testing Control System," Com-
puter Program Test Methods Symposium, June 21-23, 1972,

Program Test Methods , edited by William C, Hetzel,
Prentice-Hall , Inc., Englewood Cliffs, New Jersey,
1973, pp. 205-22.

One of the ways of achieving thoroughness in testing is
by using a systematic approach, A "test control sys-
tem" provides for systematic testing procedures that
ensure thoroughness. The control exercised on the test
applications allows failure areaft to be easily identi-
fied, and it also allows system degradation to be
evaluated. One such test control system is the Valida-
tion Control System (VCS) . The VCS consists of seven
basic "tasks," these ares a "control nucleus;" "self-
checking" modular test "kernels" containing service re-
quest calls to the control nucleus; a "job interroga-
tor"; a parameter-driven "structurer " ; a parameter-
driven "JCL generator"; a data generator; and a
"result reporting routine." Together, these tasks give
the VCS the capability to interact with the software
being tested at the unit level, the component level and
the system level , and it provides the mechanism for
validating software under a testing control system.

Wong, K.K., editor, "Computerguide 5s Concepts in Program
Testing," and "Factfinder 8: Program Testing Aids,"
vols, 5 and 8 of Computers and the Professional , The
National Computing Centre Limited , Manchester, England
1972.

In volume 5, different concepts and techniques in
program testing are discussed, and some examples of
testing aids are given. In volume 8, basic information
about different testing aids is given.

-60-

MBS-1 14A (RF.V. 7-73'

U.S. DEPT. 0<^ COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS SP-500-14

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

COMPUTER SCIENCE & TECHNOLOGY:

Software Tools: A Building Block Approach

5. Publication Date

An cm c+ 1 Q'7'7

6. Performing Organization Code

7. AUTHOR(S)
I. Trotter Hardy, Belkis Leong-Hong, and Dennis W. Fife

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

640-1125
11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Partially sponsored by
The National Science Foundation
leth and G Streets, N.W.

Washington, D. C. 20550

13. Type of Report & Period
Covered

Final

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 77-608213

16. .ABSTRACT (A 200-word or less (actual summary of most signilicant information. If document includes a significant

bibliography or literature survey, mention it here.)

The present status of software tools is described; the need for special-
purpose tools and for new techniques with which to construct such tools is

emphasized. One such technique involving the creation of general-purpose
"building blocks" of code is suggested; an initial application of the technique
to the construction of a text editor and syntax analyzer tool is described. An
annotated bibliography of current literature relevant to software tools is

provided

.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons

)

Building blocks; programming aids; software tools; syntax analysis; text editing.

18. AVAILABILITY [Tl Unlimited 19. SECURITY CLASS
(THIS REPORT)

21. NO. OF PAGES

1 !
For Official Distribution. Do Not Release to NTIS

UNCL ASSIFIED
66

IxJ Order From Sup. of Doc, U.S. Government Printing-Pfiice
Washington. D.C. 20402. SD Cat. No. CI 3« 10: 500-14

1 !
Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

22. Price

$ 2.10

USCOMM.DC 29042-P74

t}-U.S. GOVERNMENT PRINTING OFFICEi 1 9 7 7-240- 848/275

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau
of Standards research and development in physics,

mathematics, and chemistry. It is published in two
sections, available separately:

• Physics and Chemistry (Section A)
Papers of interest primarily to scier' ^v*^ orking in

these fields. This section covers a br ^ .ige of physi-

cal and chemical research, wif- ^^-^ ^r emphasis on

standards of physical measu' ^ , fundamental con-

stants, and properties of m- ^ '.asued six times a year.

Annual subscription: D- ^ ^, $17.00; Foreign, $21.25.

• Mathematical Sci' ^^p^'^v Section B)
I Studies and com'- ^» .is designed mainly for the math-
ematician anH .j^*itical physicist. Topics in mathemat-
ical statis*'^^5^.ieory of experiment design, numerical

I analysi" ^ ^retical physics and chemistry, logical de-

sign ^ programming of computers and computer sys-

t' gX^nort numerical tables. Issued quarterly. Annual
! si'^ ocription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bulle-

tin)—This monthly magazine is published to inform
scientists, engineers, businessmen, industry, teachers,

students, and consumers of the latest advances in

science and technology, with primary emphasis on the

work at NBS. The magazine highlights and reviews
such issues as energy research, fire protection, building

' technology, metric conversion, pollution abatement,
health and safety, and consumer product performance.
In addition, it reports the results of Bureau programs
in measurement standards and techniques, properties of

matter and materials, engineering standards and serv-

ices, instrumentation, and automatic data processing.

Annual subscription: Domestic, $12.50; Foreign, $15.65.

NONPERIODICALS

Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and
industrial practice (including safety codes) developed
in cooperation with interested industries, professional

organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences
sponsored by NBS, NBS annual reports, and other
special publications appropriate to this grouping such
as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, man-
uals, and studies of special interest to physicists, engi-

neers, chemists, biologists, mathematicians, com-
puter programmers, and others engaged in scientific

and technical work.

National Standard Reference Data Series—Provides
quantitative data on the physical and chemical proper-
ties of materials, compiled from the world's literature

and critically evaluated. Developed under a world-wide
program coordinated by NBS. Program under authority
of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for

these data is the Journal of Physical and Chemical
Reference Data (JPCRD) published quarterly for NBS
by the American Chemical Society (ACS) and the Amer-
ican Institute of Physics (AIP). Subscriptions, reprints,

and supplements available from ACS, 1155 Sixteenth

St. N.W., Wash. D. C. 20056.

Building Science Series—Disseminates technical infor-

mation developed at the Bureau on building materials,

components, systems, and whole structures. The series

presents research results, test methods, and perform-
ance criteria related to the structural and environmental
functions and the durability and safety characteristics

of building elements and systems.

Technical Notes—Studies or reports which are complete

in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so compre-
hensive in scope or definitive in treatment of the sub-

ject area. Often serve as a vehicle for final reports of

work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—-Developed under proce-

dures published by the Department of Commerce in Part

10, Title 15, of the Code of Federal Regulations. The
purpose of the standards is to establish nationally rec-

ognized requirements for products, and to provide all

concerned interests with a basis for common under-

standing of the characteristics of the products. NBS
administers this program as a supplement to the activi-

ties of the private sector standardizing organizations.

Consumer Information Series—Practical information,

based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable lang-

uage and illustrations provide useful background knowl-

edge for shopping in today's technological marketplace.

Order above NBS publications from: Superintendent

of Documents, Government Printing Office, Washington,
D.C. 2()J,02.

Order following NBS publications—NBSIR's and FIPS
from the National Technical Information Services,

Springfield, Va. 22161.

Federal Information Processing Standards Publications

(FIPS PUBS)—Publications in this series collectively

constitute the Federal Information Processing Stand-

ards Register. Rergister serves as the official source of

information in the Federal Government regarding stand-

ards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-govern-

ment). In general, initial distribution is handled by the

sponsor; public distribution is by the National Techni-

cal Information Services (Springfield, Va. 22161) in

paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey

bibliographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service. A

literature survey issued biweekly. Annual subscrip-
tion: Domestic, 125.00 ;

Foreign, S.30.00'.

Liquified Natural Gas. A literature survey issued quar-
terly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature

survey issued quarterly. Annual subscription: $30.00 .

Send subscription orders and remittances for the pre-

ceding bibliographic services to National Bureau of

Standards, Cryogen " *-a Center (275.02) Boulder,

""olorado 80302.

J.S. DEPARTMENT OF COMMERCE
IVational Bureau of Standards
A/ashington, O.C. S0S34

3FFICIAL BUSINESS

Penalty for Private Use. S30a

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM.219

SPECIAL FOURTH-CLASS RATE

BOOK

		Superintendent of Documents
	2022-04-16T11:01:07-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

