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DIRECT BLIND DECONVOLUTION II.

SUBSTITUTE IMAGES AND THE BEAK METHOD

ALFRED S. CARASSO∗

Abstract. The BEAK method is an FFT-based direct blind deconvolution technique previously
introduced by the author, and applied to a limited but significant class of blurs that can be expressed
as convolutions of two-dimensional radially symmetric Lévy probability density functions. This class
includes and generalizes Gaussian and Lorentzian distributions, but does not include defocus blurs.
The method requires a-priori information on the Fourier transform f̂e(ξ, η) of the unknown exact

image fe(x, y), namely, the gross behavior of log |f̂e(ξ, η)| along a single line through the origin in
the (ξ, η) plane. The present paper significantly extends the applicability of the BEAK method. It
is shown that images of similar objects often display approximately equal gross behavior, and that
gross behavior in such substitute images can be used successfully in numerous practical contexts.
Next, using substitute images, a variant of the BEAK method is developed that can handle defocus
blurs. The paper is illustrated with several examples of blind deconvolution of 512 × 512 images in
the presence of noise, and includes a detailed discussion of an example where the BEAK method
fails.

Key words. image deblurring, blind deconvolution, direct methods, Lévy density functions,
defocusing, substitute images, BEAK method, SECB method.

AMS subject classifications. 35R25, 35B60, 60E07, 68U10.

1. Introduction. This paper is a sequel to [6]. As was the case there, the
procedure described below will generally not be useful for severely blurred images
at high levels of noise, nor for images degraded by arbitrary or unknown processes.
Rather, the method is limited to a narrow class of deblurring problems involving
restricted types of blur at low to moderate intensities, in the presence of low levels of
noise. With the type of blur assumed known, these conditions enable identification of
the parameters in the system point spread function. The discussion below includes
an example where the method fails. Other examples of failure are easily found. All
images in this paper are of size 512 × 512. Unless otherwise indicated, these images
are quantized at 8-bits per pixel, i.e., each pixel value is an integer lying between 0
and 255. Such quantization introduces 8-bit rounding noise which plays a significant
role. Additional noise processes are applied in some cases.

Blind deconvolution seeks to deblur an image without knowing the point spread
function describing the blur. In [6], two methods were developed for direct (i.e., non-
iterative) blind deconvolution, the BEAK method and the APEX method. These
are Fourier domain techniques for detecting the signature of the system point spread
function from one-dimensional (1-D) analysis of the blurred image. A separate direct
Fourier domain deblurring technique, the SECB method [4], uses this detected point
spread function to deblur the image. Direct blind deconvolution of 512 × 512 images
can be accomplished in minutes on current desktop workstations. Other approaches
to that problem are iterative in nature, but the iterative process is not always well-
behaved [6]. When that process is stable, several thousand iterations may be necessary
to achieve convergence [11], [15]. The discussion in [4] and [6] is focused exclusively on
so-called class G point spread functions. This is a significant but limited class of blurs
that can be expressed as convolutions of 2-D radially symmetric Lévy ‘stable’ proba-
bility density functions. This class includes and generalizes Gaussian and Lorentzian
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2 ALFRED S. CARASSO

distributions, but does not include defocus blurs. The BEAK detection method uses
a novel type of a-priori information about the exact sharp image fe(x, y), namely,

the gross behavior of its Fourier transform f̂e(ξ, η) along a single line through the
origin in the (ξ, η) plane. Such gross behavior is represented by a smooth function

that provides a least squares fit to the highly oscillatory trace of log |f̂e(ξ, η)| along
that line. By pre-rotating the image if necessary, one may assume that when such
gross behavior is known, it is known along the horizontal axis (ξ, 0). A large class of
sharp images, the class W, is exhibited in [6] having the property that gross behavior
can be summarized by the two positive numbers a, b in the expression

log |f̂e
∗
(ξ, 0)| ≈ −a |ξ|b, a, b > 0, fe(x, y) ∈ W.(1)

where

|f̂e
∗
(ξ, 0)| = |f̂e(ξ, 0)| /f̂e(0, 0).(2)

The second detection method discussed in [6], the APEX method, does not require
prior information on fe(x, y) but assumes that image to be a recognizable object.
Several (fast) interactive trials are necessary before locating a suitable point spread
function using that method.

In the present paper, the APEX method is not discussed further. Rather, the
range of applicability of the BEAK method is extended in two major ways. First,
we observe that gross behavior in class W images provides only superficial prior
information about fe(x, y), and that images of similar objects are often found to
display approximately equal gross behavior. Therefore, in using the BEAK method
for identifying system point spread functions, it is generally not necessary to know the
gross behavior in the original image fe(x, y), but only that in fs(x, y), an appropriate
sharp image of a similar object. There are numerous practical contexts where such
similar images are available. By substituting the gross behavior in fs(x, y) for that
in the unknown fe(x, y), the BEAK method becomes applicable in a wide variety of
situations. This is illustrated with examples of class W images blurred by class G

point spread functions.
A second aim of this paper is to develop a detection method for defocus blurs.

As will be seen below, deconvolution of defocus blurs is strikingly different from class
G blurs. Using substitute images as described above, a variant of the BEAK method
is presented that can approximately identify defocus point spread functions, provided
the defocus is not too severe. This detected psf can then be used to deblur the image.
Since the SECB deblurring procedure used in [6] is restricted to class G blurs, a
modification of that procedure is necessary for defocus and other shift-invariant blurs
not in G. This modification is discussed in the Appendix.

2. Gross behavior in class W images. A-priori information is paramount in
the solution of ill-posed inverse problems. Such information becomes ever more critical
in the case of blind deconvolution, where severe non-uniqueness is compounded with
discontinuous data dependence. In iterative blind deconvolution algorithms, positivity
and support constraints on the convolution components are generally imposed in order
to reduce the multiplicity of solutions. However, such constraints are not always
effective in avoiding traps at local minima (stagnation points), or divergence of the
iterative procedure. There is therefore considerable interest in finding types of prior
information that are widely applicable, and lead to reliable algorithms. Gross behavior
in Fourier space is one example of useful prior knowledge.
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BA

Fig. 1. log |f̂e
∗

(ξ, 0)| ≈ −a |ξ|b and rough equivalence of gross behavior in two different
spacecraft images. (A) Mariner 5 has a = 2.81, b = 0.190 . (B) Mariner 10 has a = 2.98, b =
0.183.

A B

Fig. 2. log |f̂e
∗

(ξ, 0)| ≈ −a |ξ|b and rough equivalence of gross behavior in two different
aircraft carrier images. (A) USS Eisenhower has a = 2.91, b = 0.157 . (B) USS Kittyhawk has
a = 3.04, b = 0.158.

In the simplest case, image deblurring is associated with the solution of two-
dimensional convolution equations

Hf ≡

∫

R2

h(x − u, y − v)f(u, v)dudv ≡ h(x, y) ⊗ f(x, y) = g(x, y),(3)

where g(x, y) is the recorded blurred image, f(x, y) is the desired unblurred image,
h(x, y) is the blurring kernel or point spread function (psf) of the imaging process,
and ⊗ denotes convolution. The psf h(x, y) represents the cumulative effects of all
distortions caused by the media through which signals propagate, as well as all optical
and electronic aberrations produced by imperfect sensing and recording equipment.
It is assumed that h(x, y) is such that the linear problem Hf = g has at most one
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A B

Fig. 3. log |f̂e
∗

(ξ, 0)| ≈ −a |ξ|b and rough equivalence of gross behavior in two different face
images. (A) Marilyn Monroe has a = 3.57, b = 0.158 . (B) Ingrid Bergman has a = 3.11, b =
0.183. Solid curve in (A) deviates only slightly from solid curve in (B), despite differences in
corresponding values for a and b.

solution. This is the case for class G point spread functions defined in Fourier space
by

ĥ(ξ, η) = e−
∑J

i=1
αi(ξ

2+η2)βi

, αi ≥ 0, 0 < βi ≤ 1.(4)

The function ĥ(ξ, η) is known as the optical transfer function (otf) of the imaging
process. The blurred image g(x, y) includes noise, which is viewed as a separate
additional degradation,

g(x, y) = ge(x, y) + n(x, y),(5)

where ge(x, y) is the blurred image that would have been recorded in the absence of
noise, and n(x, y) represents the cumulative effects of all noise processes and other
errors affecting final acquisition of the digitized array g(x, y). This includes nonlinear
noise processes where n(x, y) may be a function of f(x, y). Both ge(x, y) and n(x, y)
are unknown, but n(x, y) may be presumed small. The unique solution of (3) when
the right hand side is ge(x, y), is the exact sharp image denoted by fe(x, y). Thus

h(x, y) ⊗ fe(x, y) = ge(x, y).(6)

Since fe(x, y) ≥ 0

|f̂e(ξ, η)| ≤

∫

R2

fe(x, y)dxdy = f̂e(0, 0) = σ > 0.(7)

Also, since h(x, y) is a probability density,

ĝe(0, 0) =

∫

R2

ge(x, y)dxdy =

∫

R2

fe(x, y)dxdy = f̂e(0, 0) = σ > 0.(8)

Using σ as a normalizing constant, we may normalize Fourier transform quantities
q̂(ξ, η) by dividing by σ. Let

q̂∗(ξ, η) = q̂(ξ, η)/σ,(9)
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A B

C D

Fig. 4. log |f̂e
∗

(ξ, 0)| ≈ −a |ξ|b and gross behavior in three different MRI brain images.
(A) Brain1 has a = 3.12, b = 0.155. (B) Brain2 has a = 3.28, b = 0.154. (C) Brain3 has
a = 4.03, b = 0.135. (D) Gross behavior roughly equivalent in Brain1 and Brain2, but markedly
different in Brain1 and Brain3. Use of Brain2 as substitute for Brain1 in BEAK method leads to
significantly better results than does use of Brain3. See Figure 8.

denote the normalized quantity. The function |f̂e
∗
(ξ, η)| is highly oscillatory, and

0 ≤ |f̂e
∗
| ≤ 1. Since fe(x, y) is real, its Fourier transform is conjugate symmetric.

Therefore, the function |f̂e
∗
(ξ, η)| is symmetric about the origin on any line through

the origin, η = ξ tan θ, in the (ξ, η) plane.

As previously noted, all images in this paper are of size 512×512. For each sharp
image fe(x, y), the discrete Fourier transform is a 512 × 512 array of complex num-

bers, which we again denote by f̂e(ξ, η) for simplicity. The ‘frequencies’ ξ, η are now
integers lying between −256 and 256, and the zero frequency is at the center of the
transform array. This ordering is achieved by pre-multiplying fe(x, y) by (−1)x+y.
We shall be interested in values of such transforms along single lines through the

origin in the (ξ, η) plane. The discrete transforms f̂e
∗
(ξ, 0), and f̂e

∗
(0, η) are immedi-

ately available. Image rotation may be used to obtain discrete transforms along other
directions. All 1-D Fourier domain plots shown in this paper are taken along the axis
η = 0 in the (ξ, η) plane. In these plots, the zero frequency is at the center of the
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horizontal axis and the graphs are symmetric about the vertical line ξ = 0.

The class W of well-behaved sharp images fe(x, y) introduced in [6] may be loosely
characterized as follows:

1. |f̂e
∗
(ξ, η)| has at most isolated zeroes in the (ξ, η) plane.

2. Neglecting isolated singularities, the global behavior of log |f̂e
∗
(ξ, η)| on any line

η = ξ tan θ is roughly monotone decreasing with increasing r = (ξ2 + η2)1/2; i.e., on

the ray reiθ, a least squares fit to log |f̂e
∗
(ξ, η)| with an appropriate monotone de-

creasing function, provides a fair representation of gross data behavior as r increases.

3. While the rate of decay may vary between rays, this decay is relatively slow, i.e., of
a general order of magnitude comparable to that found in the sharp Mariner images
in Fig 1.

4. The gross behavior of log |f̂e
∗
(ξ, η)| along the ray reiθ is defined to be the function

v(r) = −a(θ) rb(θ), a, b > 0, that best fits log |f̂e
∗
(ξ, ξ tan θ)| in the least squares

sense.

Nine examples of class W images are displayed in Figures 1 through 4, together with
their gross behavior along the axis η = 0 in the (ξ, η) plane. Several other examples
are given in [6]. What is of interest here, is the fact that ‘similar’ objects appear to
have roughly equivalent gross behavior. In Figures 1 and 2, the values for a and b are
approximately equal in the two spacecraft and in the two carrier images. Hence, the
corresponding gross behavior traces are roughly equivalent. In Figure 3, the values of
a and b for Marilyn Monroe and Ingrid Bergman are substantially different. However,
the corresponding gross behavior traces almost coincide in that case. In Figure 4,
gross behavior in Brain3 is markedly different from that in Brain1 and Brain2. This
shows that similar objects need not always have equivalent gross behavior. In prac-
tice, it may be necessary to sample several similar objects before arriving at a good
substitute image for use in the BEAK method.

3. The BEAK method for class G psfs. As discussed in [6], this is a Fourier
domain technique for detecting class G point spread functions acting on class W

images. The method uses 1-D Fourier analysis of the blurred image data g(x, y)
in (3), and requires prior knowledge of gross behavior in the unknown sharp image
fe(x, y) in (6). The detected optical transfer function is then used to solve the ill-posed
problem (3). This is accomplished using another direct Fourier domain procedure, the
SECB method [2, 3, 4].

The BEAK method is based on the following observations. In the basic relation

g(x, y) = h(x, y) ⊗ fe(x, y) + n(x, y),(10)

we may safely assume that the noise n(x, y) satisfies
∫

R2

|n(x, y)|dxdy ≪

∫

R2

fe(x, y)dxdy = σ > 0,(11)

so that,

|n̂∗(ξ, η)| ≪ 1.(12)
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A B

Fig. 5. Application of BEAK method to 8-bit blurred Eisenhower image, using gross behavior
from sharp Kittyhawk image. (A) 8-bit blurred Eisenhower image g(x, y) obtained by convolution
of sharp Eisenhower image fe(x, y) with ‘long exposure turbulence’ Lévy psf with α = 0.003, β =
5/6. Trace of log |ĝ∗(ξ, 0)| above 8-bit noise level only on small interval −60 ≤ ξ ≤ 60. (B)

log |f̂s
∗

(ξ, 0)| ≈ −3.04 |ξ|0.158 in sharp Kittyhawk image will be used to obtain BEAK fit to blurred
Eisenhower trace.

Consider the case where the otf is a pure Lévy density ĥ(ξ, η) = e−α(ξ2+η2)β

. Since
g = ge + n

log |ĝ∗(ξ, η)| = log |e−α(ξ2+η2)β

f̂e
∗
(ξ, η) + n̂∗(ξ, η)|.(13)

Let Ω = {(ξ, η) | ξ2 + η2 ≤ ω2} be a neighborhood of the origin where

e−α(ξ2+η2)β

|f̂e
∗
(ξ, η)| ≫ |n̂∗(ξ, η)|.(14)

Such an Ω exists since (14) is true for ξ = η = 0 in view of (12). The radius ω > 0 of
Ω decreases as α and n increase. For (ξ, η) ∈ Ω we have

log |ĝ∗(ξ, η)| ≈ −α(ξ2 + η2)β + log |f̂e
∗
(ξ, η)|.(15)

Hence, for |ξ| ≤ ω,

log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β + log |f̂e
∗
(ξ, 0)|.(16)

The idea in [6] is to replace the unknown log |f̂e
∗
(ξ, 0)| in (16) by its gross

behavior, i.e., its least squares approximation v(ξ) = −a |ξ|b, which is assumed
known. Extensive numerical experiments with a wide assortment of images and class
G psfs, indicate this to be a successful strategy. In the present paper, we replace the

unknown log |f̂e
∗
(ξ, 0)| in (16) by the least squares approximation vs(ξ) = −a |ξ|b

to log |f̂s
∗
(ξ, 0)|, where fs(x, y) is a substitute image, i.e., an image of a similar object

that is expected to have roughly equivalent gross behavior. Several candidate images
may need to be tried before achieving optimal results. The detection procedure is
then the following. With a and b given a-priori, find positive numbers α̃, β̃,

so that the function u(ξ) = −α̃ |ξ|2β̃ − a |ξ|b best fits log |ĝ∗(ξ, 0)| on |ξ| ≤ ω.
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A B

C D

Fig. 6. Blind deblurring of aircraft carrier image using BEAK psf detection method. (A) BEAK
fit to 8-bit blurred Eisenhower trace on −60 ≤ ξ ≤ 60, using gross behavior in sharp Kittyhawk trace.
Fit returns detected parameters α = 0.000931, β = 0.97, differing from true values α = 0.003, β =
5/6. (B) Detected psf (dashed) roughly approximates true psf (solid). (C) Blurred Eisenhower
image. (D) SECB deblurring of image C using s = 0.01, K = 1.27, and detected psf parameters
α = 0.000931, β = 0.97. Good restoration achieved even though detected psf not equivalent to true
psf.

This may be accomplished interactively using nonlinear least squares algorithms in
DATAPLOT [10]. The returned values for α̃ and β̃ are subsequently used for ĥ(ξ, η)
in the SECB deblurring procedure.

For more general class G otfs where ĥ(ξ, η) = e−ΣN
i=1

αi(ξ
2+η2)βi

, we again seek the

best fit to log |ĝ∗(ξ, 0)| on |ξ| ≤ ω, with a function u(ξ) = −α̃ |ξ|2β̃ − a |ξ|b. Here,
the returned values for α̃ and β̃ may be considered average values for the αi, βi, and
are expected to generate a pure Lévy density that well-approximates the composite
psf.

We illustrate this procedure in Figures 5 and 6. In Figure 5(A), the sharp USS
Eisenhower image shown in Figure 2(A), was artificially blurred by convolution with a
pure Lévy density with α = 0.003 and β = 5/6. This simulates long exposure imaging
in the presence of turbulence [9]. The result of that numerical convolution was then
truncated to 8-bits. The trace of log |ĝ∗(ξ, 0)| in Figure 5(A) lies above 8-bit noise level
only on the small interval −60 ≤ ξ ≤ 60, and is obviously quite different from that
in the original image in Figure 2(A). The sharp USS Kittyhawk image in Figure 5(B)
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A B C

Fig. 7. Application of BEAK method to 8-bit Brain1 image blurred with Lévy density where
α = 0.05 and β = 0.6. Blurred image trace lies above 8-bit noise level on interval −50 ≤ ξ ≤ 50. (A)
BEAK fit using gross behavior in sharp Brain2 image returns detected parameters α = 0.0325, β =
0.643, differing from true values. (B) BEAK fit using gross behavior in sharp Brain3 image develops
more curvature, and returns α = 0.00316, β = 0.921, markedly different from true values. (C)
Detected psf in (A) (dotted curve) is much closer to true psf (solid curve), than is detected psf in
(B) (dashed curve).

A B C

Fig. 8. Blind deblurring of Brain1 image using two distinct BEAK detected psfs. (A) 8-bit
blurred Brain1 image. (B) SECB deblurring of image A using s = 0.001, K = 1.27, and Brain2
detected psf parameters α = 0.0325, β = 0.643. Good restoration achieved even though detected psf
not equivalent to true psf. (C) SECB deblurring of image A using s = 0.001, K = 1.27, and Brain3
detected psf parameters α = 0.00316, β = 0.921, results in comparatively weak restoration.

will now be used as the substitute image in the BEAK method. Using a = 3.04 and
b = 0.158, we best fit log |ĝ∗(ξ, 0)| in Figure 5(A) on the interval |ξ| ≤ 60, with the

function u(ξ) = −α̃ |ξ|2β̃ − a |ξ|b, using the fit command in DATAPLOT [10]. That
fit is indicated by the solid curve in Figure 6(A), and the beak or nib in that curve near
ξ = 0 is a characteristic feature of this detection procedure. The fit returns detected
parameters α̃ = 0.000931, β̃ = 0.97, that differ substantially from the correct values
α = 0.003, β = 5/6. However, as indicated in Figure 6(B), the detected psf (dashed
curve) roughly approximates the true psf (solid curve). Using this detected psf in
the SECB method with s = 0.001 and K = 1.27, produces a quite useful restoration,
as shown in Figure 6(D). While ringing artifacts are visible in the deblurred image
against the light sky background near the top of the image, considerable sharpening
of the planes on deck, as well as the ‘island’ structure containing the bridge and mast,
has been achieved.

The next example illustrates the importance of locating a good substitute image.
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The sharp MRI Brain1 image in Figure 4(A) was blurred synthetically by convolution
with a pure Lévy density with α = 0.05 and β = 0.6, and the numerical convolution
was rounded to 8-bits. This time, the trace of log |ĝ∗(ξ, 0)| lies above 8-bit noise level
on the interval −50 ≤ ξ ≤ 50. In Figure 7(A), the BEAK method is applied on |ξ| ≤ 50
using Brain2 in Figure 4(B) as a substitute image. This produces detected parameters
α = 0.0325, β = 0.643. In Figure 7(B), the BEAK method is applied using Brain3
in Figure 4(C) as the substitute image. The resulting fit develops more curvature
than in Figure 7(A), and returns detected parameters α = 0.00316, β = 0.921. These
values are markedly different from the true values α = 0.05, β = 0.6. As shown in
Figure 7(C), and as may be expected from Figure 4(D), the detected psf using Brain2
is much closer to the true psf, than is the detected psf using Brain3. In Figure 8,
we see that the Brain2 detected psf produces a quite good restoration, whereas the
narrower Brain3 detected psf results in a comparatively weak reconstruction.

Numerous other experiments with class G psfs using the BEAK method with
substitute images, confirm the pattern of behavior typified by the above two examples.
It should be noted that in addition to locating a good substitute image, successful
detection requires having a sufficiently wide interval about ξ = 0 wherein the trace of
log |ĝ∗(ξ, 0)| lies above noise level. This was the case in Figures 6(A) and 7(A). Severe
blurring caused by large values of α when β is near unity, and/or high levels of noise,
considerably reduce the width of that interval and can preclude useful detection.

4. Uniform defocus blur. With class G blurs, one can often deblur the image
quite satisfactorily with a psf that is only a rough approximation to the true psf. This
was the case in the USS Eisenhower image in Figure 6(D), the MRI brain image in
Figure 8(B), as well as in several other examples in [6]. We shall find defocus blurs
to be less forgiving.

Defocus blurs are discussed in [14]. Important early work on blind deconvolution
of defocus blurs can be found in [1]. Additional references may be found in [12]. If
R > 0 is the radius of the ‘circle of confusion’, the psf for uniform defocus blur is
given by

h(x, y) =







(πR2)−1, x2 + y2 ≤ R2,

0, x2 + y2 > R2.
(17)

This has a Fourier transform given by the ‘sombrero function’ [8, p. 72]

ĥ(ξ, η) = 2J1(Rθ)/(Rθ), θ =
√

ξ2 + η2,(18)

where J1(x) is the Bessel function of the first kind of order 1. A 1-D cross section
of the sombrero function when R = 0.08 is shown in Figure 9(A) and compared
with a Gaussian. Whereas in class G psfs the severity of the blur is determined
by how rapidly the optical transfer function |ĥ(θ)| decreases as θ ↑ 256, in defocus

blurs, severity is determined by the number of zeroes1 in |ĥ(θ)| on 0 < θ ≤ 256.
Taking logarithms of absolute values in Figure 9(B) emphasizes the difference in the
otf signatures of the two types of blur.

Defocus otfs can be generated in Fourier space by using (18) and letting the
frequencies ξ, η be integers with −256 ≤ ξ, η ≤ 256. Specifying R uniquely determines
the defocus otf. Synthetically defocused images can be generated via FFT algorithms

1The first five positive zeroes of J1(x) are 3.83171, 7.01559, 10.17347, 13.32369, and 16.47063.
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A B

Fig. 9. Fourier domain behavior of Gaussian and defocus blurs. (A) Comparison of e−aξ2

(dashed) with 2J1(Rξ)/(Rξ) (solid), on −250 ≤ ξ ≤ 250, when a = 0.001, R = 0.08, and defocus
otf has 6 zeroes in 0 < ξ ≤ 256. (B) Comparison of corresponding logarithms of absolute values.
Zeroes in defocus otf appear as sharp minima.

A B C

Fig. 10. Deblurring with incorrect defocus parameter and honeycomb artifacts. (A) Noiseless
defocused Sydney image when R = 0.1. Blurred image computed and stored in 64-bit precision. (B)
Successful deblurring of image A using correct defocus value R = 0.1, and modified SECB procedure
with q̂(ξ, η) as in (34), s = 0.001 and K = 500. (C) Deblurring with incorrect value R = 0.11
produces ‘honeycomb’ artifacts when K = 0.5, despite absence of noise in blurred image. With
larger errors in R and/or higher values of K, artifacts become more severe, eventually obscuring
image entirely.

and multiplication with 2J1(Rθ)/(Rθ). Deblurring such defocused images when the
defocus parameter R is known, can be done using the modified SECB procedure
discussed in the Appendix. This is a fast FFT-based direct method.

It should be noted that the defocus variable R used in this paper is a Fourier
domain variable that enters all calculations only as the argument of the Bessel function
J1 in (18). Our numerical values for R are not comparable to those used in some
studies where R denotes the radius or diameter of the defocus circle, and is measured
in pixels. In comparing the severity of the blurs discussed here with those in other
studies, the relevant measure should be the number of zeroes of ĥ(θ) on 0 < θ ≤ 256.

Our first example is the defocused Sydney image with R = 0.1 in Figure 10(A).
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This was calculated and stored in 64-bit precision and may be assumed noiseless.
With the otf known exactly, excellent deblurring is accomplished in Figure 10(B),
using the modified SECB procedure in (33) with s = 0.001, K = 500, and q̂(ξ, η) as
in (34). In particular, the umbrellas and people on the Opera House deck, and the
logos on the sailboats, are nicely resolved at this high value of K. When the blurred
image contains noise, lower values of K must be used, resulting in lower resolution.

Of great significance to the present paper is the image in Figure 10(C) that results
when the same procedure is used to deblur Figure 10(A), but with the incorrect value
R = 0.11. The honeycomb artifacts obscuring the image in Figure 10(C) are not
typical noise artifacts, as the blurred image is noiseless and K was reduced to the
value K = 0.5. Rather, this phenomenon may be understood as follows. The SECB
formula in (33) may be written as

f̂ †(ξ, η) = k̂(ξ, η)ĝ(ξ, η), k̂(ξ, η) =
ĥ(ξ, η)

|ĥ(ξ, η)|2 + K−2|1 − q̂s(ξ, η)|2
.(19)

where k̂(ξ, η) is the Fourier space representation of the regularized inverse to the
defocus blur operator. The blurred image |ĝ(ξ, η)| is zero or has very small values at

the points in the (ξ, η) plane where |ĥ(ξ, η)| is zero or has very small values. This set of
points, Λ0.1, is determined by the value R = 0.1. With that value of R, the regularized
inverse |k̂(ξ, η)| develops appropriate spikes on the point set Λ0.1, so that the correct

deblurred image results upon multiplication of k̂(ξ, η) with ĝ(ξ, η). However, with

R = 0.11, |k̂(ξ, η)| develops its spikes on the dislocated point set Λ0.11, where the
blurred image |ĝ(ξ, η)| need not always be small or zero. Inevitably, there is false

overamplification of power at selected frequencies in ĝ(ξ, η). This ‘resonance’ effect
produces the artifacts in Figure 10(C). With larger errors in R, and/or larger values
of K, these perturbations change character and become more intense, eventually
obscuring the image entirely.

Several techniques for blind deconvolution of defocus and motion blurs seek to
exploit the regular patterns of zero crossings that occur in the optical transfer func-
tions describing such blurs. The main idea is illustrated in Figure 11. Using R = 0.08,
the sharp Mariner 10 image in Figure 1(B) was synthetically blurred by Fourier mul-
tiplication with (18), and the resulting image was stored in 32-bit precision. At
this low level of noise, the trace of log |ĝ∗(ξ, 0)| in Figure 11(A) (solid curve) dis-
plays a regular pattern of sharp minima, at the same locations as those found in
log |2J1(0.08 θ)/(0.08 θ)| (dashed curve). The defocus parameter R can easily be
determined from blurred image data alone in that case. However, when the blurred
image is stored in 8-bit precision, as in Figure 11(B), log |ĝ∗(ξ, 0)| is seriously con-
taminated by 8-bit rounding noise, and the regular pattern of sharp minima is no
longer evident. The first three local minima in Figure 11(B), at ξ = 47, ξ = 90,
and ξ = 107, respectively yield R = 0.0815, R = 0.0780, and R = 0.095. At higher
noise levels, reliable determination of R from blurred image data alone is generally
not possible.

Using additional a-priori information, a more sophisticated and computationally
intensive iterative procedure is developed in [13], [12]. The method is based on view-
ing the blurred image as a noisy observation of an autoregressive moving average
(ARMA) Markov random field. Blur detection and image reconstruction are reformu-
lated as an ARMA parameter identification problem. A maximum likelihood principle
characterizes the desired parameter values as those values having most likely resulted
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A B

Fig. 11. Influence of noise on defocus parameter identification from blurred image trace. (A)
Trace of defocused Mariner 10 image with R = 0.08, computed and stored in 32-bit precision (solid
line), together with trace of defocus otf (dashed line). Sharp local minima in blurred image trace
correctly determine defocus parameter R. (B) Trace of defocused Mariner 10 image with R = 0.08,
stored in 8-bit precision. Pattern of sharp local minima, now seriously affected by 8-bit rounding
noise, does not reliably determine R. First three local minima, at ξ = 47, ξ = 90, and ξ = 107,
respectively yield R = 0.0815, R = 0.0780, and R = 0.095.

in the observed image. The expectation-maximization (E-M) algorithm is then used
to obtain the maximum likelihood solution. The procedure requires prior estimates
of image and point spread function support sizes, as well as preprocessing of the
boundaries in the blurred image. The authors stress that the E-M algorithm is only
guaranteed to converge to a stationary point, and often converges to one of several
local minima rather than to the desired global minimum. This results in erroneous
parameter estimates and a failed reconstruction. The convergence point is strongly
dependent on the initial guesses for parameter values. Repeated trials with different
initial values are usually required. Good a-priori information about the ideal image
and the blurring kernel is essential for useful results.

The method described below is a fast FFT-based direct method. At the levels of
noise and blur intensities where it produces useful reconstructions, the method may be
used in two different ways. It may be used as a stand-alone direct blind deconvolution
technique, or it may be used in conjunction with the above maximum likelihood
procedure, or some other iterative approach, to provide good initial values and other
pertinent information necessary for convergence to the desired global minimum.

5. A modified BEAK method for defocus blur. This procedure assumes
knowledge that the blur is a defocus blur and requires a substitute image. The idea
is similar to that in section 3, except that logarithms are not used. We again begin
with the basic relation

g(x, y) = h(x, y) ⊗ fe(x, y) + n(x, y),(20)

where the noise n(x, y) is assumed to satisfy

∫

R2

|n(x, y)|dxdy ≪

∫

R2

fe(x, y)dxdy = σ > 0,(21)
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Fig. 12. Blind deblurring of spacecraft image using BEAK psf detection method. (A) BEAK
detection of approximate optical transfer function in 8-bit defocused Mariner 10 image (left), us-
ing gross behavior in sharp Mariner 5 image (right). (B) Least squares fit of trace in (A) with
2|J1(Rξ)/(Rξ)| on −250 ≤ ξ ≤ 250, returns R = 0.081436, not far from exact value R = 0.08.
(C) Defocused Mariner 10 image. (D) Successful deblurring of image (C) using detected value
R = 0.081436, and modified SECB procedure with q̂(ξ, η) as in (34), s = 0.001 and K = 0.5. Faint
honeycomb artifacts visible against dark background.

so that

|n̂∗(ξ, η)| ≪ 1.(22)

With R > 0 and θ =
√

ξ2 + η2, let Ω = {(ξ, η) | θ ≤ ω} be a neighborhood of the
origin where

2 |J1(Rθ)/(Rθ)| |f̂e
∗
(ξ, η)| ≫ |n̂∗(ξ, η)|.(23)

Such an Ω exists from (22), since the left hand side of (23) is unity at the origin. For
(ξ, η) ∈ Ω we have

|ĝ∗(ξ, η)| ≈ |ĥ(ξ, η)| |f̂e
∗
(ξ, η)| = 2 |J1(Rθ)/(Rθ)| |f̂e

∗
(ξ, η)|.(24)

Hence, for |ξ| ≤ ω,

|ĝ∗(ξ, 0)| ≈ 2 |J1(Rξ)/(Rξ)| |f̂e
∗
(ξ, 0)|.(25)
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We now replace the unknown |f̂e
∗
(ξ, 0)| in (25) with evs(ξ), where vs(ξ) = −a|ξ|b is the

least squares approximation to log |f̂s
∗
(ξ, 0)|, and fs(x, y) is the substitute image for

fe(x, y). The detection procedure is then the following. With positive a and b given

a-priori, find a positive number R such that 2 |J1(Rξ)/(Rξ)| best fits |ĝ∗(ξ, 0)| ea|ξ|b

on |ξ| ≤ ω. Note that the expression

u(ξ) = |ĝ∗(ξ, 0)| ea|ξ|b , |ξ| ≤ ω(26)

which involves gross behavior in a substitute image, is a very rough approximation to
|ĥ(ξ, 0)|, the absolute value of the actual defocus optical transfer function on the line
η = 0. Note also that use of logarithms would require the fitting of log{u(ξ)} with
log{2 |J1(Rξ)/(Rξ)|}. The sharp spikes in the latter function are not helpful in the
fitting algorithm. Finally, fitting u(ξ) produces quite different plots than was the case
in Figure 6(A). In particular, there is no beak at ξ = 0 in this version of the BEAK
method.

We illustrate this procedure with two examples. In Figure 12 the Mariner 10
spacecraft image in Figure 1(B) was blurred by Fourier multiplication with (18) using
R = 0.08. As noted in Figure 11(A), the otf has 6 zeroes on 0 < ξ ≤ 256. The resulting
blurred image, rounded to 8-bits, has the trace shown in Figure 11(B). With the
Mariner 5 image in Figure 1(A) as the substitute image, we have a = 2.81, b = 0.190.
We now form u(ξ) in (26). The plot of this approximate otf is shown in Figure 12(A).
Notice that the maximum value in u(ξ) is almost 5, whereas the correct value in the
true otf is 1. In Figure 12(B) we best fit u(ξ) with 2 |J1(Rξ)/(Rξ)| on |ξ| ≤ 250. This
returns R = 0.081436, not far from the exact value R = 0.08. Little change in the
returned value of R results when the fitting procedure is used on the smaller interval
|ξ| ≤ 100. The vertical scale in Figure 12(B) is restricted to a maximum of 2 so as
to better display the resulting fit (solid curve). Using the modified SECB procedure
with q̂(ξ, η) as in (34), s = 0.001, K = 0.5, and this detected value of R, produces a
quite good reconstruction. Faint honeycomb artifacts are in fact visible against the
dark background.

Our second example is the Marilyn Monroe image in Figure 3(A), defocused
with R = 0.12. In that case the otf has 9 zeroes on 0 < ξ ≤ 256. The blurred
image was rounded to 8-bits, and this was followed by the addition of 1% uni-
formly distributed random noise, i.e., each 8-bit pixel value g(x, y) was replaced by
{1 + 0.01 n(x, y)}g(x, y), where n(x, y) is a random number drawn from a uniform
distribution in the range [−1, 1]. The Ingrid Bergman image in Figure 3(B) is now
used as the substitute image. With a = 3.11, b = 0.183, we form u(ξ) in (26). This
approximate otf, displayed in Figure 13(A) on |ξ| ≤ 150, has a maximum value of
about 3. A least squares fit to these data with 2 |J1(Rξ)/(Rξ)| on |ξ| ≤ 150 is shown
in Figure 13(B). This returns R = 0.118816, not far from the exact value R = 0.12.
With this detected value of R, the modified SECB procedure with q̂(ξ, η) as in (34),
s = 0.001, and K = 0.25, results in a high quality reconstruction. Noise artifacts are
clearly visible in Figure 13(D).

Similar behavior is found in many other examples of moderately defocused images
at low levels of noise, provided a good substitute image is used. However, there are also
many cases where the BEAK method does not provide sufficiently accurate values for
R, and further analysis is required to obtain a useful restoration. The next example
points up the limitations of our procedure, and signals some essential difficulties that
attend blind deconvolution by any method.
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A B

C D

Fig. 13. Blind deblurring of noisy face image using BEAK psf detection method. (A) BEAK
detection of approximate optical transfer function in noisy defocused Marilyn Monroe image (left),
using gross behavior in sharp Ingrid Bergman image (right). Exact otf has 9 zeroes on 0 < ξ ≤ 256,
and 1% noise was added to the 8-bit blurred image. (B) Least squares fit of trace in (A) with
2|J1(Rξ)/(Rξ)| on −150 ≤ ξ ≤ 150, returns R = 0.118816, not far from exact value R = 0.12.
(C) Noisy defocused Marilyn Monroe image. (D) Successful deblurring of image (C) using detected
value R = 0.118816, and modified SECB procedure with q̂(ξ, η) as in (34), s = 0.001 and K = 0.25.
Visible noise artifacts.

6. Failure in the BEAK method. The Mariner 10 experiment in Figure 12
was repeated using R = 0.25 when the defocus otf has 20 zeroes on the interval
0 < ξ ≤ 256. As shown in Figure 14(A), this is a severe blur. As before, the blurred
image was rounded to 8-bits and the Mariner 5 image was used as the substitute
image. A least squares fit of the resulting approximate otf with 2 |J1(Rξ)/(Rξ)| on
|ξ| ≤ 50 returns R = 0.22236. Apparently, this is insufficiently close to the correct
value R = 0.25. Restoration with that detected value of R produces severe honeycomb
artifacts that obscure the image, as shown in Figure 14(B).

While the presence of 8-bit noise in the blurred image is not helpful, noise is not
the primary cause of failure in this case. Indeed, if the R = 0.25 defocused image is
computed and stored in 64-bit precision, and the above procedure is reapplied to this
noiseless blurred image, the maximum detected value of R, over a number of trial
subintervals |ξ| ≤ ω ≤ 256, is R = 0.22468. Deblurring the noiseless image using that
detected value of R produces results very similar to Figure 14(B), even when K is
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A B

Fig. 14. Failure of BEAK method in severely blurred image. (A) 8-bit defocused Mariner 10
image when R = 0.25 and otf has 20 zeroes on 0 < ξ ≤ 256. BEAK detection of approximate
transfer function using sharp Mariner 5 image, and subsequent least squares fit on −50 ≤ ξ ≤ 50,
returns R = 0.22236, insufficiently close to correct value R = 0.25. (B) Deblurring of image (A)
using detected value R = 0.22236, and modified SECB procedure with q̂(ξ, η) as in (34), s = 0.001
and K = 0.25, produces severe honeycomb artifacts that obscure image.

A B

Fig. 15. Misleading patterns in noiseless blurred image data give false reading for R. (A)

log |ĝe
∗(ξ, 0)| in 64-bit defocused Mariner 10 image when R = 0.25 (solid), and log |ĥ(ξ, 0)| (dashed).

Despite absence of noise, sharp local minima in blurred image trace are not well-correlated with
zeroes of J1(0.25ξ). (B) Identifying first 3 sharpest minima in noiseless blurred data with first 3
positive zeroes of J1(x) implies R ≈ 0.15, grossly underestimating true value R = 0.25.

reduced to the value K = 0.1.

Some insight into the reason for this failure is provided in Figure 15. In Figure
15(A), which is analogous to Figure 11(A), the trace of log |ĝe

∗(ξ, 0)| (solid line) in
the 64-bit defocused Mariner 10 image, is shown on the interval |ξ| ≤ 150, together
with the logarithm of the defocus otf when R = 0.25 (dashed line). Evidently, there
are many more local minima in the defocus otf in Figure 15(A), as compared to
Figure 11(A), even though the ξ-interval in Figure 15(A) has been reduced to improve
visibility. This produces a crowding effect. In addition, the defocus otf and blurred
image data are only available at discrete values of ξ. For a given R, the zeroes of
J1(Rξ) cannot always be well-captured on a preassigned discrete mesh. A zero of J1
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A B

Fig. 16. Analysis of failure of BEAK method in severely blurred image. (A) Comparison of
approximate otf u(ξ) (dashed curve) with exact otf ue(ξ) (solid curve) on |ξ| ≤ 30. Minima in
u(ξ) at ξ = 15 and ξ = 28, coincide with those in ue(ξ) and are compatible with R ≈ 0.25. (B)
Comparison of least squares fit to u(ξ) (dashed curve) with ue(ξ) (solid curve) on |ξ| ≤ 50. Minima
in least squares fit dislocated relative to true values. Fit returns R = 0.22236, locating first minimum
at ξ = 17 rather than at ξ = 15.

that does not fall on a mesh point translates into a small value of the defocus otf at
the nearest mesh point, if it is not missed altogether. And, if the otf value at that
mesh point is not sufficiently small, the resulting local minimum in the logarithmic
defocus trace will not be particularly sharp.

This behavior of the defocus otf at preassigned discrete values of ξ is translated
into similar behavior of the blurred image trace at these same ξ values. The blurred
image is the primary information in blind deconvolution, and the discrete mesh was
imposed when the digitized image was acquired. Weak local minima in log |ĥ(ξ, 0)|
become weak local minima in log |ĝe

∗(ξ, 0)|. As a result, the crowded minima resulting
from zeroes of J1 no longer clearly stand out among other local minima in the highly
oscillatory blurred image trace. Hence, despite the absence of noise in the 64-bit
solid curve in Figure 15(A), there is no convincing regular pattern of sharp minima
analogous to that in Figure 11(A).

This point is more clearly made in Figure 15(B), which displays log |ĥ(ξ, 0)| and
log |ĝe

∗(ξ, 0)| on the interval 0 ≤ ξ ≤ 70. Without the knowledge provided by the
dashed curve, the relatively sharp minima in the solid curve at ξ = 28, ξ = 47 and
ξ = 66, and respectively labeled 1, 2 and 3, might easily be construed as originating
from the first 3 positive zeroes of J1(Rξ). Such a scenario yields 3 distinct but not
seriously incompatible values for R, namely, R = 0.1368, R = 0.1493 and R = 0.1541.
In fact, very similar considerations are used to initiate iterative blind algorithms,
and any one of these 3 values of R might be a plausible initial guess in the ARMA
maximum likelihood approach in [13], [12], for example. Convergence to the desired
global minimum from such initial values would be doubtful.

Clearly, any detection procedure that examines the solid curve in Figure 15(A) and
concludes that R = 0.25, must do so on the basis of quite good a-priori information.

Very helpful but unavailable a-priori knowledge would be log |f̂e
∗
(ξ, 0)|, the trace in

the exact sharp Mariner 10 image, since subtracting the latter from the solid curve in
Figure 15(A) produces log |ĥ(ξ, 0)|, the dashed curve in Figure 15(A). Equivalently,
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we may exponentiate these traces and form

ue(ξ) = |ĝe
∗(ξ, 0)|/|f̂e

∗
(ξ, 0)| = |ĥ(ξ, 0)|.(27)

The BEAK method seeks to emulate the process leading to (27) using available infor-
mation. With the noisy data |ĝ∗(ξ, 0)| and the gross behavior vs(ξ) = −a|ξ|b in the
substitute Mariner 5 image, we form the approximate otf u(ξ) in (26). The trace of
u(ξ) on |ξ| ≤ 30 is shown in Figure 16(A) (dashed curve), and compared to the exact
otf ue(ξ) (solid curve). It is noteworthy that u(ξ) has local minima at ξ = 15 and
ξ = 28. These minima coincide with the first two minima in ue(ξ) and are compatible
with R ≈ 0.25. (The first positive zero in J1(0.25ξ) occurs at ξ = 15.32684 which is
not a mesh point). However, the least squares fit to u(ξ) with 2 |J1(Rξ)/(Rξ)| does
not coincide with ue(ξ) !! Instead, the more objective examination of the u(ξ) data
by the least squares algorithm results in the dashed curve in Figure 16(B), whose
minima are dislocated relative to those in the exact otf (solid curve). The returned
value for R is 0.22236, and the fit locates the first minimum at ξ = 17, rather than
at ξ = 15.

7. Possible recovery from failure. While the behavior in Figure 14(B) is more
common in severely defocused images, similar behavior due to inaccurately detected
R values can occur with more moderate blurs. There are three avenues that can
be explored to improve reconstruction in such cases. One should first compare the
first two or three minima in the fitted curve with the corresponding minima in u(ξ),
provided the latter minima are clearly defined. Comparing logarithms of both curves
is often helpful. If there is dislocation, new values for R corresponding to the minima
in u(ξ) can be tried. A second approach assumes the BEAK returned value RB to be
within striking distance of the exact value Re. For 512 × 512 images, 20 trial SECB
restorations, each with a different value of R, can be obtained in about a minute of
cpu time on current desktop workstations. Starting from RB , an interactive visual
search for Re is therefore quite feasible. In that search, care must be taken to use
low values for K in the SECB method, until a value of R is located where artifacts
disappear. Higher values of K can then be used to improve resolution. Finally, RB

can be used as the initial guess in an iterative blind deconvolution algorithm. In the
case of Figure 14(B), the BEAK returned value RB = 0.222 is a more useful initial
guess than are the values R ≈ 0.15 obtained by inspecting the solid curve in Figure
15(B).

8. APPENDIX. A modified SECB procedure for psfs not in G. The
SECB method applied to the convolution integral equation Hf = g in (3) presupposes

the psf h(x, y) to have a non-vanishing Fourier transform ĥ(ξ, η), so that for any fixed

s > 0, ĥs(ξ, η) can be uniquely defined [7, p. 555]. In addition, ĥs(ξ, η) is required to be
the Fourier transform of a probability density. This is the case for class G point spread
functions in (4), and more generally, for 2-D infinitely divisible probability densities,
[7]. The integral operator Hs is then defined to be the operator of convolution

with the inverse transform of ĥs(ξ, η). Solving (3) is equivalent to solving a time-
reversed diffusion equation, and can be implemented as a continuation problem using
the operator Hs. Such a continuation approach is an important element of the APEX
method discussed in [6]. The SECB constrained solution f † to the ill-posed equation
Hf = g is defined by

f †(x, y) = Arg

{

min
f∈L2

(

‖ Hf − g ‖2 +K−2 ‖ Hsf − f ‖2
)

}

,(28)
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where the positive constants K, s are previously chosen regularization parameters, as
discussed in [2, 3, 4]. This minimization problem has a closed form solution in Fourier
space. We have, with z denoting the complex conjugate of z,

f̂ †(ξ, η) =
ĥ(ξ, η)ĝ(ξ, η)

|ĥ(ξ, η)|2 + K−2|1 − ĥs(ξ, η)|2
.(29)

The functional on the right of (28) embodies the a-priori information that with suitable
fixed K, s > 0, the correct solution f0(x, y) satisfies

‖ Hf0 − g ‖≤ ǫ, ‖ Hsf0 − f0 ‖≤ Kǫ,(30)

where ǫ > 0 is an L2 bound for the noise in g(x, y). Rigorous error bounds for SECB
regularization are developed in [3, 4]. Applications of the SECB constraint to ill-posed
problems other than image deblurring are discussed in [5].

The above diffusion formalism is not applicable to out of focus blurs since the
continuous real-valued function ĥ(ξ, η) in (18) has infinitely many sign changes. The
operator Hs is not well-defined, and solving (18) is no longer equivalent to solving
a diffusion equation backwards in time. For deconvolution problems Hf = g where
ĥ(ξ, η) is not an infinitely divisible characteristic function, we may proceed as follows.
Choose q̂(ξ, η) = exp{−α(ξ2 + η2)β} with fixed α > 0 and fixed 0 < β ≤ 1, and let
Qs denote convolution with the inverse transform of q̂s(ξ, η), 0 ≤ s ≤ 1. The correct
solution f0(x, y) of Hf = g again satisfies

‖ Hf0 − g ‖≤ ǫ, ‖ Qsf0 − f0 ‖≤ Kǫ,(31)

with suitably chosen K, s > 0. Accordingly, we obtain a constrained solution f † of
Hf = g by means of

f †(x, y) = Arg

{

min
f∈L2

(

‖ Hf − g ‖2 +K−2 ‖ Qsf − f ‖2
)

}

,(32)

leading to the Fourier domain solution

f̂ †(ξ, η) =
ĥ(ξ, η)ĝ(ξ, η)

|ĥ(ξ, η)|2 + K−2|1 − q̂s(ξ, η)|2
.(33)

The error analysis in [3] must be modified in order to be applicable in (32). For a
given fixed q̂(ξ, η), use of (33) on a blurred image g(x, y) requires knowledge of the
regularization parameters K, s. These parameters will depend on the choice of Q
and represent a-priori information about the exact solution, some form of which is
always necessary in the solution of ill-posed problems. In practice, if the unknown
sharp image is an easily recognizable object, we may fix a value of s in the range
0.001 ≤ s ≤ 0.1, and adjust K interactively in (33) so as to achieve optimal results.
Higher levels of noise dictate smaller values of K, and vice-versa. Begining with a
small value of K, increasing K increases sharpness in the restored image, until a
threshold value is reached. Further increase in K brings out noise which eventually
obscures the image. In the defocus examples in Sections 4-6, q̂(ξ, η) was chosen to be

q̂(ξ, η) = e−0.075(ξ2+η2)1/2

,(34)

with integer ξ, η lying between −256 and 256.
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