
I

ICOMPUTER SCIENCE & TECHNOLOGY:

COMPUTER PERFORMANCE
EVALUATION USERS GROUP

CPEUG
16th Meeting

»' >' c.

500-65

NBS Special Publication 500-65

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

NATIONAL BOmm OF SlAMOAl^DS

The National Bureau of Standards' was eiiaDlished by an act o!' Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (!) a basis for the Nation's physical measurement system, (2) scientific

and technological services lor industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the foilownig centers:

Absolute Physical Quantities' -- Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology- — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activiiiti:

provides scientific and technological advisory services and assistance to Federal agencies, and

provides the technical foundation for computer-related policies of the Federal Governmeni.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headc|uarters and Laboratories at Gailhersbufg, M D, unless otherwise noted;

mailing address Washington, DC 20234.

Some divisions within the center are located at Boulder, CO 80303.

COMPUTER SCIENCE b TECHNOLOGY:

Computer Performance Evaluation

Users Group (CPEUG)

Proceedings of the Sixteenth Meeting
Held at Orlando, Florida

October 20-23, 1980

ATIOMAL HUaCAU
09 nAKI>Ami>B

UBBAAT

OCT 1 0 1980

Editor:

Dr. Harold Joseph Highland

Conference Host:

Navy Data Automation Facility

Naval Training Center

Orlando, FL 32813

Sponsored by

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Luther H. Hodges, Jr., Deputy Secretary

Jordan J. Baruch, Assistant Secretary for Productivity, Technology and Innovation

^- NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued October 1980

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of

computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in the series should complete and return the form at the end of

this publication.

National Bureau of Standards Special Publication 500-65
Nat. Bur. Stand. (U.S.), Spec, Publ. 500-65, 316 pages(Oct. 1980)

CODEN. XNBSAV

Library of Congress Catalog Card Number: 80-600155

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON; 1980

by the Superintendent of Documents. U.S. Government Printing Office. Washington. D.C. 20402

FOREWORD

In view of the theme of CPEUG 80 — CPE Trends in the 80 's — it
seems appropriate to reflect upon changes observed and progress
made during the 70 's as a guide to what we may expect in the next
decade.

As the 70 's began, the trend of spectacular growth in the number
of large-scale computer systems was ending. The computer
community began looking toward more efficient use of existing
systems in lieu of the seemingly endless proliferation of
large-scale systems that had characterized the late 60' s.

Economic recession in the private sector and the impact of the
Brooks Act in the Federal community were prime factors
contributing to this change. As a result, increased emphasis was
placed on (then) new techniques such as hardware and software
monitoring that have since become standard computer performance
evaluation tools. Benchmarking became a viable method to test
different vendors' systems during procurement of new systems.
System simulation and analytical modeling found new applications
in computer performance prediction. Throughout the 70's, these
techniques were refined and enhanced, new concepts were
introduced, and new terminology adopted — system tuning,
installation management, remote terminal emulation, system
sizing, the ADP life cycle, capacity planning all became parts of
the computer performance jargon of the 70 's.

The need for a forum to promote the exchange of ideas and

information in this newly developing discipline was fulfilled
with the foundation of CPEUG by the United States Air Force in

1971. Later, sponsorship of CPEUG shifted to the National Bureau
of Standards because of its responsibilities to explore the
applicability of standards to computer performance. CPEUG
quickly became the major annual event for those interested in the

efficient use of computers within the Federal establishment. As

CPEUG grew, its audience diversified so that in recent years
roughly half of CPEUG meeting attendees were employees of the

Federal Government. The remainder represented companies,
universities, and consulting firms who either had an interest in

the Federal ADP usage or who merely wanted to keep abreast of the

state-of-the-art of CPE.

ili

Throughout the 70's, CPEUG programs addressed techniques and
issues that were in the forefront of CPE activity. Thus, in the
early 70' s, CPEUG concentrated on topics related primarily to
hardware performance. However, as the uses of computers became
more sophisticated and CPE matured as a technical discipline,
CPEUG programs became more diversified — computer networks,
distributed processing, data base management, computer security,
and user satisfaction are topics that have been introduced to the
CPEUG program within the past two years and are prominent topics
for CPEUG 80. We hope that by emphasizing new CPE topics in the
CPEUG 80 program, we may stimulate discussion that will help us

all try to visualize the state of CPE (and CPEUG) ten years
hence. We welcome all of you to CPEUG 80 and hope your
experience here will be one that is remembered throughout the
80' s

.

My sincere thanks go to the many people whose efforts have
brought you this fine conference, especially those who have
dedicated their time, talent, and effort to serve on the CPEUG 80

Committee. Their names appear elsewhere in these proceedings.
In addition, I would like to thank Carole Zerr for her continued
excellent assistance.

Dr. James E. Weatherbee
CPEUG Conference Chairman
October 1980

iv

Preface

Last year's Conference theme, "The Expanding Scope of CPE,"
focused attention upon the roles of CPE in a rapidly expanding
and changing technology. This year's theme, "CPE Trends in the
80's," builds upon last year's Conference by emphasizing new
roles for the CPE practitioner. Several new and interesting
techniques in the traditional CPE areas are presented. In

addition, some relatively new areas and their relationship to CPE
are addressed. Debate on the relevancy of CPE in these new areas
will likely mold the future of this Conference in the 80' s. The
central issue to be debated is best stated through a question
posed by last year's Program Chairman: "How will CPE,

traditionally associated with large central computers, change in

an era of smaller and cheaper hardware and improved digital
communications?"

The technical program for this year's Conference emphasizes new
technology areas, procurement issues in the 80's, and new

approaches in traditional CPE areas. Six relatively new areas
are presented in this year's program: Data Base Management
System Performance, Data Communications, Computer Network

Performance, Software Improvements, Human Interfaces, and

Security, Fraud and Audit. Some papers have been presented in

these areas at past Conferences, but this year's program

significantly expands the scope of these sessions. The interest
shown in these areas will, to a large extent, mold the structure

of the future Conferences.

CPEUG is continuing to provide a forum for debating the ADP

procurement process within the Federal Government. The keynote

address, "Toward a More Efficient ADP Procurement Process in the

80's," highlights the objectives of the program's procurement

sessions, panels, and tutorials. Past interest in this phase of

the program suggests that CPEUG will continue to explore improved

ADP acquisition strategies.

V

The traditional sessions of CPEUG are again technically
stimulating and stress better approaches in CPE. New measurement
and prediction techniques are presented to expand the CPE
practitioner's set of available tools. Actual experiences are
also presented to show each of us what approaches should — and
should not — be used.

The CPEUG 80 program has been prepared by many people. The
Conference Committee, session chairpersons, authors, tutors, and
referees all deserve recognition for their time and patience.
The excellent administrative support of Cathy Casey and Terri
Schroeder merit special recognition. All of these individuals
have contributed to the success of this year's program,

James 0. Mulford
CPEUG Program Chairman
October 1980

vi

Abstract

The Proceedings record the papers that were presented at the
Sixteenth Meeting of the Computer Performance Evaluation Users
Group (CPEUG 80) held October 20-23, 1980, in Orlando. Florida.
With the theme "CPE Trends in the 80 's," CPEUG 80 focused on new
applications that are expected to grow in the 80 's and changes
that may occur in traditional areas during the 80' s. The program
was divided into two parallel sessions and included technical
papers on previously unpublished work, case studies, tutorials,
and panels. Technical papers are presented in the Proceedings in

their entirety.

Key words: Benchmarking; capacity planning; computer
performance evaluation; computer performance measurement;
computer performance prediction; computer system acquisition;
CPE in auditing; installation management; on-line system
evaluation; queuing models; simulation; workload definition.

The material contained herein is the viewpoint of the authors of

specific papers. Publication of their papers in this volume does

not necessarily constitute an endorsement by the Computer

Performance Evaluation Users Group (CPEUG), or the National

Bureau of Standards. The material has been published in an

effort to disseminate information and to promote the

state-of-the-art of computer performance measurement, simulation,

and evaluation.

vii

CPEUG Advisory Board

Richard F. Dunlavey
National Bureau of Standards

Washington, DC

Dennis M. Conti

National Bureau of Standards
Washington, DC

Dennis M. Gilbert
Federal Computer Performance Evaluation

and Simulation Center
Washington, DC

Harry J. Mason, Jr.

U.S. General Accounting Office
Washington, DC

*

viii

Conference Committee

CONFERENCE CHAIRMAN

PROGRAM CHAIRMAN

PROGRAM VICE-CHAIRMAN

PROCEEDINGS EDITOR

PUBLICATION CHAIRMAN

ARRANGEMENTS CHAIRMAN

REGISTRATION CHAIRMAN

FINANCE CHAIRMAN

AWARDS CHAIRMAN

PUBLICITY CHAIRMAN

LOCAL ARRANGEMENTS CHAIRMAN

VENDOR COORDINATOR

Dr. James E. Weatherbee
FEDSIM/MV
Washington, DC

James 0. Mulford
International Computing Company
Dayton, OH

Judith G. Abilock
Price Waterhouse & Company
Washington, DC

Dr Harold J. Highland
State University of New York
Farmingdale, NY

Peter J. Calomeris
National Bureau of Standards
Washington DC

Arthur F. Chantker
Federal Aviation Adminstration
Washington, DC

James G. Sprung
The MITRE Corporation
McLean, VA

Carol B. Wilson
Fiscal Associates, Inc.

Alexandria VA

Jeffrey M. Mohr
Arthur Young & Company
Washington, DC

Theodore F. Gonter
U.S. General Accounting Office
Washington, dq

Hadley G. Nelson
Navy Data Automation Facility

Orlando, FL

Wayne D. Bennett

National Bureau of Standards
Washington, DC

ix

Referees

Major Robert Feingold
USAF Phase IV PMO/PGY
Gunter AFS AL

Larry Ritchard

NCR Corp.

Dayton, OH

Duane Ball
FEDSIM/MV
Washington, DC

Captain Brett Berlin
FEDSIM/NA
Washington, DC

Bruce Herbert
US. General Accounting Office
Washington, DC

Joel Molyneaux
Engineered Systems
Omaha, NE

Arnold Johnson
GSA/ADTS/CFT
Falls Church, VA

Charles Davidson
U.S. General Accounting Office
Washington, DC

Wayne D. Bennett
National Bureau of Standards
Washington, DC

Richard F. Dunlavey
National Bureau of Standards
Washington , DC

Michael Morris
Independent Consultant
Washington, DC

Byron Griffith
AFDSDC/DM
Gunter AFS, AL

Lt. Ken Herbert
USAF Phase IV PMO/PGY
Gunter AFS, AL

Howard S. White
Lawrence Berkeley Laboratory
Berkeley CA

Dennis M. Conti

National Bureau of Standards
Washington, DC

Mickey Sutton
AFDSDC/DM
Gunter AFS. AL

Larry Davis
McDonnell Douglas Automation Co.

St. Louis, MO

Captain Steve Cristiani

USAF/ASD/ENA
WPAFB, OH

Todd Ramsey
IBM Corp
Bethesda, MD

Peter Petrusch
USAF HQ AFLC/ACT
WPAFB, OH

William Buckles

General Research Corp.
Huntsville, AL

James 0. Mulford
International Computing Co.

Dayton, OH

Major David Schafer
USAF HQ SAC/AD
Offutt AFB, NE

Geoffrey Goodman
International Computing Co.

Dayton, OH

Lt. Linda S. Mehalko
USMC SERV. CO. H&S DN ASC

Camp Pendleton, CA

Karen Gordon
University of Maryland
College Park, MD

X

Table of Contents

FOREWORD iii

PREFACE V

ABSTRACT vii

CPEUG ADVISORY BOARD viii

CONFERENCE COMMITTEE ix

CPEUG 80 REFEREES x

DBMS PERFORMANCE

ON THE SIMULATION MODELING OF NETWORK DBMS
Jan Aitken / Harry T. Hsu
FEDSIM/MV 3

AN APPROACH TO BENCHMARKING DBMS
Barbara Anderson
Satellite Business Systems 11

SECURITY, FRAUD, & AUDIT

EDP AUDITING IN THE 1980'S OR THE VANISHING PAPER TRAIL
Richard E. Anderson
Performance Systems, Inc 23

TRACKING POTENTIAL SECURITY VIOLATIONS
Robert L. Lehmann
Union Carbide Corporation 33

xi

SOFTWARE IMPROVEMENTS

MEASURING PROGRAMMING PRODUCTIVITY
Peter F. Zoll

Octopus Enterprises

COMPARATIVE PERFORMANCE OF COBOL VS. PL/I PROGRAMS
Dr. Paul J. Jalics

Cleveland State University

DATA COMMUNICATIONS

NBS NETWORK MEASUREMENT METHODOLOGY APPLIED TO
SYNCHRONOUS COMMUNICATIONS

Dr. Marshall D. Abrams
National Bureau of Standards

Dorothy C. Neiman
Commtex, Inc

INTRODUCTION TO DATA COMMUNICATIONS SYSTEM
PERFORMANCE PARAMETERS

Dana S. Grubb
National Bureau of Standards

COMPUTER NETWORK PERFORMANCE

USER-ORIENTED CARRIER SENSE MULTIPLE ACCESS BUS
SIMULATOR

Marjan Krajewski
The MITRE Corporation

A COMPARATIVE EVALUATION OF LOCAL AREA COMMUNICATION
TECHNOLOGY

Ronald L. Lars en
NASA Goddard Space Flight Center

Jonathan R. Agre
Ashok K. Agrawala
University of Maryland

PERFORMANCE PREDICTION TECHNIQUES - I

SOME PROPERTIES OF A SIMPLE DETERMINISTIC QUEUING
MODEL

Rollins Turner
Digital Equipment Corporation

A HIGHLY PARAMETERIZED TOOL FOR STUDYING
PERFORMANCE OF COMPUTER SYSTEMS

Dr. Herman Hughes
Michigan State University

OPTIMAL SELECTION OF CPU SPEED, DEVICE CAPACITIES, AND
ALLOCATION OF FILES WITH VARIABLE RECORD SIZE

Kishor S, Trivedi / R. A. Wagner
Duke University 129

PERFORMANCE PREDICTION TECHNIQUES - II

MVS PERFORMANCE PREDICTION USING MECHANICALLY -

GENERATED QUEUING MODELS
B. A. Ketchledge
AT & T Corporation

R. J. Feil

New York Telephone 139

AN I/O SYSTEM MODEL FOR 303X PROCESSORS
Sushil Bhatia / Phillip Carroll
IBM Corporation 157

CONFIGURATION AND CAPACITY PLANNING IN A
DISTRIBUTED PROCESSING SYSTEM

Dr. Kenneth C. Sevcik / G. S. Graham / J. Zahorjan
University of Toronto 165

CAPACITY PLANNING

FILE ALLOCATION METHODOLOGY FOR PERFORMANCE
ENHANCEMENT

Sujit R. Kumar
Digital Equipment Corporation

Robin B. Lake
Case Western Reserve University

C. Tom Nute
General Dynamics Corporation 175

CAPACITY ANALYSIS OF SHARED DASD CONTROL UNITS
Floyd L. Pedriana
County of Los Angeles 189

A NOTE ON COMPUTER SYSTEM CAPACITY PLANNING
THROUGH MATERIAL REQUIREMENTS PLANNING

Kasumu Salawu
Bell Laboratories 199

STATISTICAL METHODS

ADAPTIVE LOAD CONTROL IN BATCH-INTERACTIVE COMPUTER
SYSTEMS

Samuel T. Chanson / Prem S. Sinha

University of British Columbia 207

xiii

SENSITIVITY ANALYSIS AND FORECASTING FOR LARGE SCALE
IBM COMPUTER SYSTEMS: A METHODOLOGICAL APPROACH
AND CASE STUDY

Carl Steidtmann
Mountain Bell

MEASURING SYSTEM PERFORMANCE

A PERFORMANCE EVALUATION STUDY OF UNIX
Luis F. Cabrera
University of California

I/O PERFORlvlANCE MEASUREMENT ON CRAY- 1 AND
CDC 7600 COMPUTERS

Ingrid Y. Bucher
Ann H. Hayes
Los Alamos Scientific Laboratory

FORECASTING COMPUTER PROCESSING REQUIREMENTS: A
CASE STUDY

Ronald D. Tomberlin
Environnnental Protection Agency

HUMAN INTERFACES

DATA PROCESSING USER SERVICE IvlANAGEMENT
Peter S. Eisenhut
IBM Corporation

INSTALLATION MANAGEMENT

PERFORMANCE EVALUATION OF COMPUTER OPERATION
PROCEDURES

Patrick Drayton
Southwestern Bell Telephone Company

EVALUATING TOTAL COMPUTER RESOURCES FOR TOP
MANAGEMENT

Richard L. Fidler
U.S. Department of Commerce

THE AIR FORCE BASE LEVEL COMPUTER PERFORMANCE
MANAGEMENT PROGRAM

John Graham, Jr.

Air Force Data Systems Design Center

xiv

PROTOTYPING/BENCHMARKING

RTE'S - THE PAST IS PROLOGUE
Mitchell G. Spiegel

International Computing Company

APPLICATION PROTOTYPING: A CASE STUDY
C. Wesley Jenkins

Congressional Budget Office

OPERATING SYSTEM PERFORMANCE METERS

PERFORMANCE EVOLUTION IN A LARGE SCALE SYSTEM
Richard Brice

J. Wayne Anderson
Los Alamos Scientific Laboratory

XV

DBMS Performance

On the Simulation IVIodeling of Networic DBMS

Jan A. Aitken
Harry T. Hsu

Directorate of Design Assessment
Federal Computer Performance Evaluation and Simulation Center

Washington, DC 20330

This paper describes an approach to the simulation modeling of

Data Base Management Systems (DBMS) - specifically, those DBMS yhich
are based on the CODASYL DBMS concepts and specifications [1-4] .

The modeling approach provides the system designer (or data base
administrator) with a powerful tool for the prediction and evaluation
of DBMS perfomance . Modeling language statements corresponding
directly to actual data description language (DDL) and data manipula-
tion language (DML) statements allow the straightforward definition
of data base structures (schemas) and representation of application
program behavior. A pre-defined model structure which includes repre-
sentations of DBMS control functions (e.g., data base access control,
space management, buffer management) and DML operations, facilitates
DBMS modeling. The use of a simulation-time "replica" of a modeled
data base enables detailed modeling of data base navigation and
accessing

.

The DBMS model supports the investigation of many factors affecting
DBMS performance, including: workload composition, logical data base
structure, physical data base organization, data base size, data base
page size, number of buffers and buffer management strategies, data
base loading factors, and secondary storage device characteristics.

DBMS performance prediction and evaluation is supported by the

automatic collection and reporting of a variety of performance statis-
tics pertaining to (1) data base area queuing, utilization, and accessing,

(2) run-unit execution time and data base I/O, (3) buffer utilization
and queuing, and (4) run-unit DML request queuing.

Key words: Data base management systems; simulation modeling; per-
formance evaluation; data base; schema; data description language;

data manipulation language; CODASYL.

1. Introduction

The use of Data Base Management Systems
(DBMS) is becoming increasingly widespread

Figures in brackets indicate the litera-
ture references at the end of this paper.

in contemporary computer systems. A DBMS is

typically a complex software system with
substantial computer system resource require-

ments. DBMS performance can be a significant

factor in overall computer system performance.
Consequently, the prediction and analysis of

DBMS performance merits a prominent place

3

within the field of Computer Performance
Evaluation (CPE)

.

The prediction and analysis of DBMS
performance is a complex issue since DBMS
performance can be influenced by many diverse
factors related to logical data base design,
physical data base design, secondary storage
device characteristics, workload composition
and characteristics, and DBMS operation/
tuning parameter settings. There exists a

definite need for tools and techniques for
DBMS performance evaluation.

The CODASYL data model [1-4] represents
a popular approach to data base management

.

Many commercially available data base manage-
ment systems are based on the CODASYL speci-
fications .

In this paper, we present an approach
to DBMS simulation modeling for the perform-
ance prediction and evaluation of CODASYL-
type DBMS. The DBMS model provides the

system designer (or data base administrator)
with a powerful tool for DBMS performance
evaluation and performance prediction. It

can be used to:

(1) Predict the performance of a DBMS

for a given data base design and DBMS
workload

(2) Investigate DBMS performance rela-
tive to changing workload, and perform
DBMS stress-test studies

(3) Evaluate alternative logical and
physical data base designs to achieve a

reasonable performance-efficient data
base design

(4) Support DBMS performance tuning and
investigate DBMS performance problems.

The modeling approach results in a DBMS
model which closely simulates the operation
of a real DBMS. The fundamental concepts of

the model design are essentially the same as

those of the CODASYL approach to data base
management. Throughout this paper, it is

assumed that the reader is already familiar
with those concepts. For information on the
CODASYL specifications and DBMS based on
those specifications, the reader is referred
to references 1-11.

The DBMS model has been implemented
using the Extendable Computer System Simula-
tor II (ECSS II) [17]. ECSS II, a special-
purpose language for constructing discrete-
event simulation models of computer systems,
is a super-set of SIM"CRIPT II. 5 [15, 16].

Section 2 describes the salient features
of the DBMS modeling approach. Section 3

describes the DBMS and data base performance-
related outputs produced by the model.

2. Description of the Modeling Approach

This section presents the salient
features of the modeling approach. A detailed
description of the DBMS model is provided in

a separate document [18].

2.1 Overview

The structure of the DBMS model closely
resembles that of an actual DBMS. A simulated
Data Base Control System (DBCS) handles the
user interface and manages access to the data
base. A simulated data base replicates the
content and structural aspects of a real data
base. A Data Description Language (DDL),

similar to the CODASYL DDL, is used to describ
a data base. A set of Data Manipulation
Language (DML) commands, encompassing all
CODASYL DML operations, is used to charac-
terize application program data base activity.
By using the DML functions provided, simulated
application programs can store and retrieve
data base records, as well as navigate through
the simulated data base.

2.2 Data Base

The simulated data base is a replica of

the data base being modeled. It is virtually
identical to the real data base in both
content and structure, except for the fact
that it contains no real data.

An area (or realm) is a subdivision of a
logical data base. For each area in the real

data base, there is a corresponding area in

the simulated data base. An area in the
simulated data base has the same number of

pages as the real area it represents. Thus,
for each page in the real data base being
modeled, there is a corresponding page in the
simulated data base. A page in the simulated
data base is used to store simulated record
occurrences. The structure of a simulated
data base page resembles that of a real data
base page

.

Record types are mapped to areas. All
occurrences of a record type can be stored in
only one area, however more than one record
type can be mapped to the same area. Record
occurrence placement within an area is deter-
mined by record type location mode. The
location mode specifies how record type

occurrences are to be stored within an area,

as well as how they are to be retrieved.

4

A stored record occurrence in an actual

data base consists of two parts: PREFIX and
DATA. The PREFIX contains all the pointers
in the record, representing the relationships
between the record and other stored records.
The DATA is the useful data which is supplied
by the user. For records in the simulated
data base, only the PREFIX is stored. Each
stored record contains the same number of

pointers as the real data base record it

represents. The data portion is not stored,
and is represented only by an attribute
called "data length".

All elements of a set occurrence (in-
cluding owner and members) are linked to-
gether using pointers. The same number of

pointers for each set occurrence are stored
in the simulated data base as in the actual.
For example, if a set member record has a
"prior" pointer, then the corresponding
simulated member record will also have a

"prior" pointer.

The size of a simulated page should in
general be much smaller than that of a real
data base page because the simulated page
contains no real data, only pointers. If the
ratio of data length to prefix length is very
large, then the ratio of real page size to
simulated page size will also be very large.
The simulated page size is chosen so that a

simulated page can accomodate the same
number of records as a real data base page.

The physical data base consists of one
or more files. A file is an addressable
segment of secondary storage known to the
computer operating system. Each data base
area is mapped to a file. A simulated data
base can contain any number of areas and
files. A file in the simulated data base can
contain a single area, a portion of an area,
or several areas. For each page in the
simulated data base, there is a corresponding
block in a file.

Each simulated file is mapped to a
simulated direct-access secondary storage
device. A secondary storage device is char-
acterized in terms of its capacity, transfer
rate, and access time.

The simulation of a data base page
access involves the following steps:

(1) Determine the data base area which
contains the desired page

(2) Determine the file and the relative
block within the file containing the
desired page

(3) Determine the physical storage
device address (device, cylinder) of the
block

(4) Simulate a seek operation to posi-
tion the device read/write mechanism at
the required cylinder

(5) Simulate a data transfer operation
to read/write the block.

A feature of the data base modeling
capabilities is the automatic generation in
zero simulated time of a simulated data base.
Using this feature, a simulated data base is

populated with records according to the
information supplied in the model's data base
schema (i.e., the identification of record
types and, for each record type, a count of

the number of record occurrences to be
initially stored). The resulting data base
will have the specified number of occurrences
of each record type. Furthermore, set rela-
tionships will be established for the stored
records. Since a simulated data base is
generated in zero simulated time, this is the
most efficient way to produce a simulated
data base. This can be used to advantage
since, generally, the data base being studied
will not be initially empty. In addition,
once a data base is generated in this fashion
it can be saved, and copies of it used in
future simulation runs, thus avoiding the
cost of re-creating the same simulated data
base

.

2.3 Data Description Language

The model provides a DDL to describe a

complete data base schema. No sub—schema
description facilities are currently provided
A schema definition in the model is almost
identical to a real schema definition. It
provides for the description of files, areas,
record types, and set types. The principal
differences are:

a. In a record type description, indi-
vidual data items are not described.
Data items are treated as a unit and
represented for simulation modeling
purposes only by a total data length.

b. In the location mode specification
for a record type, the DUPLICATES NOT
ALLOWED option, specifying whether
duplicates are permitted for a defined
key, is not supported. It is assumed
that duplicates are always allowed.

c. In a set description, the ORDER IS

SORTED option is not supported.

5

Figure 1 presents an example of the model's

DDL.

2.4 Data Manipulation Language

The modeling approach provides a set of

Data Manipulation Language (DML) operations
for use in characterizing run-unit data base

accessing. The DML operations provided
encompass most of the CODASYL-specif led DML
functions, and include the following:

(1) OPEN. AREA
(2) CLOSE. AREAS

(3) STORE. RECORD for location modes
DIRECT, CALC, and via a set (VIASET)

(4) FIND. RECORD
(a) direct
(b) CALC

(c) owner, first, last, next, prior
of set

(d) first, last, next, prior of area
(5) MODIFY. RECORD

(6) DELETE. RECORD

(7) INSERT. RECORD

(8) REMOVE. RECORD

The approach to simulating each of the above
DML operations is described below.

The CODASYL specifications use the
concept of "currency" to define implied
operands for most DML commands. Thus, each
run-unit has a current record of the run—unit
and a current record of each set type, area,
and record type accessed by the run-unit. A
real CODASYL DBMS automatically updates
appropriate currency indicators whenever a
record is accessed. The DBMS model also
automatically maintains currency indicators
in a similar manner.

2.4.1 OPEN. AREA

The OPEN. AREA DML initializes an area
for access by a run-unit in one of six usage
modes: retrieval, update, protected retrieval,
protected update, exclusive retrieval, and
exclusive update. The simulated DBCS ' Area
Manager (reference Section 2.5.1) is invoked
to process the OPEN. AREA request. Depending
on the current mode of usage of the area and
the requested usage mode, the OPEN. AREA >

request will either be granted or queued. If

the request is queued, further execution of

the run-unit is not permitted until such time
as the request is granted.

^

2.4.2 CLOSE.AREAS

The CLOSE. AREAS DML terminates a run-
,

unit's access to all areas it has opened.
The Area Manager is invoked to process any -

queued area usage requests which may be „

granted due to the release of the run-unit's
j_

areas.
j

2.4.3 STORE. RECORD

Record type occurrences are stored in
the simulated data base according to the
location mode (DIRECT, CALC, or VIASET)
specified in the schema definition for the
record type

.

If the location mode is DIRECT, then the
run-unit must supply a data base key when
issuing the STORE. RECORD command. The data
base key specifies the data base page on
which the record is to be stored. The simu-
lated DBCS will try to store the record
in the specified page. If insufficient space

IiRTfHBRSE MUSIC. IIP

PftHESlZE = lOa* BYTES
LDftlUMG FRCTDR = 0.5

DBFILE MUSIC. FILE

hPER MUilC.RftER
III = 10
PFtGES = 100
HBFILE = MUSIC. FILE
riRTRBflSE.FtDDPESS = 1

RECDRIiTYPE PEPIDD
III = 301
IiRTRSIZE = 33
RPER = MUSIC. RPER
LDCRTIDMMDIiE = CRLC

RECDPDTYPE COMPOSER
ID = 30S
DRTRSISE = 4 0

RPER = MUSIC. RRER
LOCRTIDNMDDE = CRLC

SET STYLE
ID = 701
OI.INEP. RECOPDTYPE = PERIOD
ORDER = MEXT
NEXT. DBKEY. POSITION = 1

PRIOR. DBKEY. POSITION = £

SET. MEMBER
RECDPDTYPE = COMPOSER
SET = STYLE
NEXT. DBKEY. POSITION = 1

PR IDP. DBKEY. POSIT ION = d

DI...INER. DBKEY. POSIT ION = 5

MEMBERSHIP = MRNDRTDPY . RUTOMRT I

C

Figure 1. Example of Model's DDL

Is available in the specified page, the simu-
lated DECS will store the record in a nearby
page determined by the DBCS's Space Manager.
After a record is stored in this mode, its

correct data base key is returned to the

run-unit

.

For a location mode of CALC, the real

DBCS uses the hashing value of a record's

data item or data items to determine the data
base page on which to store the record. In

the DBMS model, since no actual data is

stored, a random number is generated for the

address of the page on which to store the

record. If the distribution of the hashed
data item values is close to random, the two

approaches should have roughly identical
distributions of record occurrences over a

specified page range. If there is insuffi-
cient space in the target page for the record,

then the record is stored in an overflow
page. The simulated DBCS' Space Manager
(reference Section 2.5.3) is invoked to

determine the overflow page. Record storage
statistics are automatically collected for

CALC records. If a CALC record is stored in

its target page, it is considered as a "CALC-

fit"; otherwise, it is considered to be a

"CALC-overf low". After a CALC record is

stored in a page, it is inserted into the

CALC set for the page. In the real data
base, the position of the new record within
the CALC set is determined by the value of

the CALC key data item, as well as by the

specification in the schema as to whether
duplicates are first or last. In the simu-
lation model, a random number is generated to

determine where within the CALC set the new

record should be inserted.

If the location mode is VIASET, a record

is stored by the simulated DBCS in the same

way as by the real DBCS. The simulated DBCS
uses the current of the specified set to

determine where to store the new record. If

the current of the set is a member of the

set, then the new record is stored into the

page containing the current of set (or as

close as possible) . If the current of the

set is the owner of the set, the new record
is stored into the same page as the owner (or

as close as possible) if the new record is to

\

be stored in the same area as the owner. If

I

the new record is to be stored in a different
area than that of the owner, the new record
is stored at a distance into its area propor-

j
tional to the distance of the owner record

' into its area. Record storage statistics are

automatically collected for VIASET records.
If a VIASET record is stored in its target

!
page, it is considered as a "VIASET-f it"

;

otherwise it is considered to be a "VIASET-
overf low".

2.4.4 FIND. RECORD

The location mode of a record type, in

addition to determining how a record occur-
rence is to be stored, also determines how a

record may be found. Most forms of the FIND

DML described in the CODASYL specifications
are supported in the model.

If a record is stored using location
mode DIRECT, then it can be found (directly)
only by using the direct access form of the
FIND. RECORD DML command, in which the record's
data base key, specifying on which page the

record is stored, is supplied.

If a record is stored using a location
mode of CALC, then it can be found using the
CALC key access form of the FIND. RECORD DML

command. A random number is generated for

the record's page number (analogous to

hashing a record's CALC key to yield a page
number). The set of random numbers so gen-
erated is constrained to correspond to page
numbers on which occurrences of the record
type have already been stored. If there is

more than one occurrence of the specified
record type in a CALC set, a random number is

used to decide which occurrence should be

selected and thus how much of the CALC set

need be searched.

If the location mode of a record type is

VIASET, then occurrences of the record type

can only be found through set navigation.
Since set relationships are maintained among

records in the simulated data base just as

they are among records in a real data base,

set navigation can be simulated just as it

would be done in the real data base. The set

access forms of the FIND. RECORD DML command
(find owner, find first, find last, find

next, find prior) are used to perform the set

navigation.

The simulated data base structure
supports the simulation of area navigation.

The simulated data base and the real CODASYL

data base are essentially identical in struc-

ture. They have the same number of areas,

and each area in the simulated data base has

the same number of pages as the corresponding
area in the real data base. The area access

forms of the FIND. RECORD DML commands (find

first, find last, find next, find prior) are
used to perform area navigation.

2.4.5 MODIFY. RECORD

A record in the simulated data base is

modified using the MODIFY. RECORD DML command.

Two types of record modification are supported;

one involves modifying the CALC key data

7

item, the other involves modifying other data

items. If the CALC key data item is not

modified, then the buffer page containing the

record is marked as "modified". The simu-
lated DBCS ' Buffer Manager (reference Section
2.5.2) will, just like the real DBCS, cause

the modified page to be re-written to sec-
ondary storage when the buffer is to be
reused. If the CALC key data item is modi-
fied, then, in addition to marking the buffer
page containing the record as "modified", the

simulated DBCS also simulates the reposi-
tioning of the record within the CALC set.

2.4.6 DELETE. RECORD

A record occurrence is logically deleted
from the simulated data base using the
DELETE. RECORD DML command. The deletion of a

record might result in the logical deletion
of many record occurrences in the data base.
Since a simulated data base replicates the

structural aspects of a real data base, the
simulated DBCS performs the DELETE. RECORD DML
operation in the same way as the, real DBCS.

2.4.7 INSERT. RECORD

A record occurrence is inserted as a

member of a set using the INSERT .RECORD DML
command

.

2.4.8 REMOVE . RECORD

A record occurrence is removed from a

set using the REMOVE . RECORD DML command.

2.5 DBCS Operations

The Data Base Control System (DBCS) is

the set of DBMS functions for the management
of data base access. The DBCS functions
having a significant impact on DBMS perform-
ance are assumed to be: area management,
buffer management, space management, data
base access, journaling, and data dictionary
access. The modeling approach provides for
the representation of each identified DBCS
function.

2.5.1 Area Management

The DBCS Area Manager is responsible for
coordinating the use of the areas of a data
base. An area may be used concurrently by
multiple run-units, but certain usage modes
restrict or even preclude concurrent usage.
The DBCS Area Manager processes a run-unit's
area usage request, and, depending on the
current usage of the requested area, either
grants the request or causes the delay of

further execution of the run-unit until the
requested usage can be permitted. Area

queuing and utilization statistics are auto-
matically collected and reported.

2.5.2 Buffer Management

The modeled DBCS includes a simulated
buffer pool and an associated buffer manage-
ment strategy. The number of buffers in the

buffer pool is a DBMS model parameter. Each
buffer can contain one data base page. The
DBCS Buffer Manager manages the buffers in

the buffer pool using a Least Recently Used
(LRU) technique. If all buffers are full and

the DBCS needs to read a new page, the buffer
with the page least recently accessed is

reused. If the buffer to be reused currently
contains a modified page, that modified page
is re-written to the simulated data base and

a page I/O is simulated prior to reusing the

buffer. An alternative buffer management
strategy may be used simply by replacing the

model's Buffer Manager module. Buffer

queuing and page I/O statistics are auto-
matically collected and reported.

2.5.3 Space Management

Data base space management, in particular
overflow handling, is simulated by the DBCS
Space Manager. When the simulated DBCS

attempts to store a record occurrence in a

page and finds that there is insufficient
space available in that page, the Space
Manager is invoked to identify an overflow
page to be used to store the record. The
default space management technique provided
in the model uses special space inventory
pages distributed at intervals throughout the

data base to keep track of data base free
space. An alternative space management
technique can be modeled by simply replacing
the model's Space Manager module.

2.5.4 Journaling

Journaling involves creating a journal
file, i.e., a file containing before-images
and after-images of all data base pages which
have been modified. The simulation of

journaling activity is supported by the
modeled DBCS. Journaling is enabled via the

specification of a DBMS model parameter. If

journaling is to be simulated, a simulated
file is designated as the journal file. Each

time a data base page is modified, two journal

file I/O operations are simulated, one to

represent writing a before-modification image

of the page and one to represent writing an

after-modification image of the page.

2.5.5 Data Dictionary Access

DBMS operation involves a certain amount
of overhead due to Data Dictionary accessing

(e.g., to access schema, sub-schema, and
Device Media Control Language (DMCL) defini-
tions) . A future enhancement of the DBMS
model will be to provide for the simulation
of DBMS data dictionary accessing.

2.6 Run-Unit Application Programs

A run-unit application program is repre-
sented procedurally. The procedure consists
primarily of a sequence of the DML statements
describe above. Since the DML operations
available in the model correspond in a

straight-forward, almost one-to-one, fashion
with those of the CODASYL specifications, the
modeling of an application program's data
base activity can be relatively easily accomp-

lished .

The use of the model's DML statements is

demonstrated in the example application
program segment shown in Figure 2.

OPErt.rtREhl -IUlIC .RRER U"RGE = EXCLUSIVE. UPDRTE

FIDR I = 1 TO N.

Da
: TDPE. RECQPD RECDRDTr'PE = PERIOD

FDR I = 1 TD M,

FIHD.RECnPD PECORDTi'PE - PERIOD
:tORE. RECDRD RECORDTYPE = COMPOSER

LDOP

FIND. RECORD REC RDTVPE = PERIOD
F mil. RECORD :et = ITVLE RECORD = FIRST
F I MD. RECORD !ET = ITiLE RECDRD = MEXT
FItlD. RECDRD SET = STiLE RECORD = QUMER

CLOSE. hRERI-

Figure 2. Example of Model's DML

3. DBMS Performance-Related
Model Outputs

The DBMS model automatically collects
and reports a variety of DBMS and data base
related performance statistics, which are
summarized below.

For each area of a modeled data base:

(a) queuing and utilization
(b) # pages read and written
(c) page access time

For each simulated run-unit:

(a) total execution time
(b) # pages requested
(c) # pages read and written
(d) CALC records stored (CALC-fit,

CALC-overf low)

(e) VIASET records stored
(VIASET-fit, VIASET-overf low)

For each physical file:

(a) # reads and writes
(b) // seeks and zero-time seeks
(c) seek time
(d) data transfer time

(e) total access time

For the DBMS Buffers:

(a) queuing and utilization
(b) // pages requested
(c) // pages read

(d) # modified pages written

For the DBMS

:

(a) run-unit DML request queuing
(b) run-unit concurrency level

4. Concluding Remarks

The DBMS model has been found to be easy
to use. Since the DDL and DML functions
available in the model correspond in a

straight-forward, almost one-to-one, fashion
with those of the CODASYL specifications, the
modeling of a particular data base and asso-
ciated application programs can be easily
accomplished. Furthermore, since the model
includes pre-defined representations of the

basic DBMS operations (e.g., data base space
management, area allocation management,
buffer management, etc.), no modeler effort

is required in these areas as long as the

default algorithms are accurate for the

particular CODASYL-based DBMS being modeled.

Validation of the DBMS model is in

progress. The results of the validation will
be reported in a future document.

References

[1] CODASYL Data Base Task Group, April 1971
Report, ACM, New York, NY.

[2] CODASYL Data Description Language Com-
mittee, Data Description Language,
Journal of Development, Document C

13.6/2:13, U.S. Government Printing
Office, Washington, DC.

[3] CODASYL Programming Language Committee,
CODASYL COBOL Journal of Development,
Department of Supply and Services,
Government of Canada, Technical Service
Branch, Ottawa, Canada.

[4] CODASYL Data Base Language Task Group,

CODASYL COBOL Data Base Facility Pro-

posal, 1973, Department of Supply and

9

Technical Services, Government of

Canada, Ottawa, Canada.

[5] Tsichritzie, D. C. and Lochovsky, F. H.

,

Data Base Management Systems, Academic
Press, New York, NY, 1977.

[6] Ullman, J. D., Principles of Data Base
Systems, Computer Science Press, Potomac,
MD, 1980.

[7] Date, C. J., An Introduction to Data
Base Systems, Addison-Wesley

, Reading,
MA, 1975.

[8] Taylor, R. W. and Frank, R. L., CODASYL
Data Base Systems, ACM Computing Surveys,
Vol. 8, No. 1, March 1976, pp. 67-103.

[9] Cullinane Corp., IDMS Concepts and
Facilities, IDMS Data Base Design and
Definition Guide, IDMS Programmer's
Reference Guide, IDMS Utilities,
Wellesley, MA, 1979.

[10] Digital Equipment Corp., DBMS-11 Data
Base Administrator's Guide, DBMS-11
COBOL Data Manipulation Language Ref-
erence Manual, Maynard, MA, 1977.

[11] Digital Equipment Corp., DBMS-10 Data
Base Administrator's Guide, DBMS-10
Programmer's Manual - COBOL, Maynard,
MA.

[12] Bachman, C. W. , "Data Structure Diagrams",
Data Base 1, 2, Summer 1969.

[13] Bachman, C. W. , "The Evolution of

Storage Structures", CACM 15, No. 7,

July 1972, pp. 628-634.

[14] Bachman, C. W. , "The Programmer as

Navigator", CACM 16, No. 11, November
1973, pp. 663-6581.

[15] Kiviat, P. J., Villaneuva, R. , and
Markowitz, H. M. , SIMSCRIPT II. 5 Pro-
gramming Language, CACI, Inc., Los
Angeles, CA, 1976.

[16] CACI, SIMSCRIPT II. 5 Reference Handbook,
CACI, Inc., Los Angeles, CA, 1976.

[17] Kosy, D. W., The ECSS II Language for
Simulating Computer Systems, Rand Report
R-1895-GSA, December 1975.

[18] Aitken, J. A. and Hsu, H. T. , "An ECSS-
Based CODASYL DBMS Simulation Model",
(In Preparation).

10

An Approach to Benchmarking DBMS

BARBARA N. ANDERSON*

Satellite Business Systems
8003 Westpark Drive

McLean, Virginia 22102

This paper presents a data base management system (DBMS) bench-
marking methodology developed by FEDSIM to support an acquisition of
both a computer mainframe and a DBMS. The DBMS benchmarking metho-
dology provides procedures for:

1. defining a logical data base structure,
2. constructing programs to generate files incorporating the

logical relationships, and
3. constructing batch and on-line benchmark programs which in-

corporate the logical DBMS relationships through the use of
vendor-independent interface functions.

In order to execute the benchmark programs, the vendor must im-
plement the logical data base structure in the proposed physical data
base structure, by replacing the interface functions with appropriate
DBMS commands. The vendor may implement any physical data base struc-
ture, as long as the functional requirements specified by the benchmark
programs are met.

The benchmark data base and programs were implemented and tested
by an agency team of programmer/analysts, with the agency team perfor-
ming vendor functions. This test of the DBMS benchmarking methodology
is described in this paper. Potential problems and benefits of this
approach to benchmarking data base management systems are also dis-
cussed. Finally, a comparison of the similarities and differences
between the U.S. Department of Agriculture's DBMS benchmark methodol-
ogy and the benchmark methodology presented in this paper is presented.

ij

* The author developed this benchmark

j

methodology with Mr. Kenneth C. Rieck and

I
Mr. Charles A. Self while employed at the

i Federal Computer Performance Evaluation and

I
Simulation Center (FEDSIM). Mr. Rieck

li currently works for FEDSIM. Mr. Self works

I

for the Office of Data Management and

I

Telecommunications, Veterans Administration.

The selection of a Data Base Management
System (DBMS) to support corporate data
base functions is commonly a "hit or miss"
decision based on a review of literature
from the vendors and discussions with
salesmen. This method of selection may or

may not provide the organization with the
DBMS that has the capability to provide the
required support.

1. Introduction

11

This paper discusses an approach to

benchmarking Data Base Management Systems
(DMBS) which was developed by the Federal
Computer Performance Evaluation and Simu-
lation Center (FEDSIM). This DBMS bench-
marking methodology was developed to support
an acquisition of both a computer mainframe
and a DBMS by a Federal agency. The agency
currently relies on' a DBMS for a large
portion of its information processing. Each
computer vendor must not only bid the re-
quired hardware, but must also propose a

DBMS to meet the agency's data management
requirements. The acquisition follows
federal procurement regulations for competi-
tive procurements, which specify that no
vendor is to be given undue advantage over
another.

The data base portion of the benchmark
includes both batch and on-line processing.
The proposed DBMS must be able to support
concurrent access and update by multiple
users.

2. Benchmark Data Base

The benchmark documentation provided to

the vendor includes a definition of the
logical structure of the data base. The
logical structure is the basis for the
functional description of the data base
portion of the benchjnark. The vendor may
implement any physical data base structure
as long as the functional requirements
specified by the benchmark programs are met.

2.1 Logical Structure of the Data Base

The logical structure of the data base
was determined through a workload study of
the procuring agency's current data base
processing. This workload study consisted
of processing accounting and terminal log
tapes to determine the frequency of execu-
tion of application modules which process
against the data base. The most frequently
executed on-line and batch data base appli-
cation modules were examined as to their
access paths through the data base and their
mode of access, i.e., read, update, or add.
The resulting logical structure is a model
of a current agency data base. The model
contains all variations of the file rela-
tionships found in the application data
base.

The logical structure consists of eight
files, named A through H, with the relation-
ships shown in Figure 1. Each file consists
of a group of related logical records.

Figure 1 . Data Base Logical Structure

(Throughout this paper, the terms set,
owner, member, and occurrence are defined
as follows. A set is defined as a two-
level tree of files in which there is one
owner file and one or more member files
that belong to the owner file. Any file in
a particular set may be either an owner or
a member file in another set. A set occur-
rence is a particular related group of
records in a set based on the owner record.)

In the agency data base, files A, B,

C, and E are key-retrieval type files. A
particular record from one of these files
can be retrieved directly, based on the
provided key value. The other files must
be accessed through their relationships
with the key-retrieval type files. Files
B and E can be accessed either directly,
based on a key value, or through their
relationships with their owner files.
Figure 2 contains the data base character-
istics .

12

NUMBER OF NIWBER CF
NU-IBER OF CHARACmRS PER RECORDS PER RETRIEVAL

FILE-NA^IE DATA FIELDS RECORD FILE TYPE

A 6 100 6,100 KEY
B 8 100 7,500 KEY & RELATIONSHIP
C 18 379 32,000 KEY
D 9 37 32,000 RELATIONSHIP
E 18 268 95,000 KEY & RELATIONSHIP
F 6 85 620,000 RELATIONSHIP
G 12 120 400,000 RELATIONSHIP
H 12 66 1,200,000 RELATIONSHIP

Figure 2. Data Base File Characteristics

All files are generated by programs
which automatically incorporate the appro-
priate logical relationships. The first

24 characters of each record contain the

information necessary to determine file and

I

record relationships. The first field

i
contains the file name to which the record

j

belongs. The second field is the unique

I

key number designating the position of the

:
record in the file. All records contain
this field regardless of the type of file

access. The "top node files," A and C,

I

contain valid information in the first and

second fields only. Records for the rest

FILES A AND C CXSILY

0

li
Example

As an example of the use of the

ii

logical relationship information fields,
'Suppose that a record contains the follow-
Ijing values in the 24 leading characters:

. D0014495B0006995C0014495

This would indicate that the record is

.record number 14,495 of file D. The
record belongs to a set in which file B is
the owner file. The record belongs to the
set occurrence of that set in which record

of the files contain information about
their specific owner record within a set

occurrence. The third field contains the

file name of the owner record, while the
fourth field is the record key of the
particular owner of the set occurrence to
which this particular record belongs. File
D is the only file that has two owners:
the information for the second owner is
contained in the fifth and sixth fields.
Figure 3 shows the schematic of the 24-

character information data fields at the
beginning of each record.

FILE D CNLY

6,995 of file B is the owner record. This
record also belongs to a set with owner
file C. Record 14,495 of file C is the
owner record of the second set occurrence.

2.2 Data Base Generation

The size of the DBMS benchmark data
base is large enough to fill several disk
packs, in order to represent more nearly
accurately the actual workload. The data
base contains approximately 234 million
characters. Instead of providing several
reels of magnetic tape to the vendors

FILE UNIQUE
KEY FILE NA!"rE

a-JNER

KEY
Oa^NER 2

FILE NAME

16

OWNER 2

KEY

T7 "74

FILES B,E,F,G, AND H

Figure 3. Logical Relationship Information Fields

13

(along with the attendant problems of read
checks, etc.). the vendors are provided with
eight file-generation programs; one for each
of the eight files. These programs, which
are executed at the vendor's site, generate
the contents of the data base, including all
necessary information concerning logical
relationships among records and files. The
data fields of each record contain randomly-
generated alphabetic and numeric data.

2.3 Physical Structure of the Data Base

The vendor subsequently loads the

generated files into the physical data base
structure using the proposed DBMS. The
logical relationship information fields are

data fields, and must be loaded along with
the other data fields. The DBMS benchmark
programs must be able to manipulate the

logical relationship information fields in

the same manner as the other data fields.

All accesses to the data base are performed
on a full record basis.

The logical relationship information
provided in the generated records of each
file is not intended to specify a physical
file structure. The vendor may load the

data base in any manner, provided the

functional requirements specified by the
benchmark programs are met and the benchmark
can be run within the allowed time frame.

3. DBMS Interface Functions

A description of the required data base
functions within the benchmark programs,
such as "adds," "reads," and "replaces," are
provided through a vendor-independent DBMS
language.

3.1 Purpose and General Description

The DBMS benchmark programs were
written in ANSI COBOL and do not contain any
architecture-dependent code, except for

statements such as SELECT statements, etc.

Vendor-independent DBMS functions were
developed and placed in the programs to
represent DBMS access.. The Interface
functions were inserted into the code in
the form of COBOL comment statements. The
vendor must replace the interface functions
with DBMS commands that perform the re-
quired functions.

3.2 Implementation

Access to key-retrieval type files is
requested on the basis of a key value,
which is provided as a parameter in the
interface function. When access to a

record based on its relationships with
other records and files is required, then
the desired relationship path is indicated
(owner or member record) and the specific S

set occurrence is also indicated by using f

the concept of "the current record of a s

file." The current record is defined as 5

the last record accessed for that file. A I

current record must be separately maintained
for all files accessed by each particular ^

program. Figure 4 is an example of the
provided DBMS interface function for a read
which depends on a relationship path.
Figure 5 shows the translation of the DBMS
interface function into IDS-II commands to
perform the specified function. The defi- ;

nition of the interface function and "end- ^

flag" processing requirements is described
in the next section.

Communication of the data content of
records is provided through an area in the
benchmark programs called the "user-working-
area." The vendor's code must deliver the
record content to this area when a record
is being retrieved from the data base, and
accept data from this area when a record is
being sent to the data base.

3.3 Interface Function Definitions !

•i

"I

Variations of three basic DBMS inter- i

face functions, DB-READ, DB-REPLACE, and '
;

081200 5800-FILE-F-DB-READ-FORMAT-II.

Qgj200 ***
081400*
081500* DB-READ RECORD OF FILE (F) VJHOSE OWNER FILE IS (E),
0816C0* RETURN END-FLAG (END-FLAG-F)
081700*
081800***
08190 0 58 90-EXIT-FILE-F-DB-READ-II.
082000 EXIT

Figure 4. DBMS Interface Function

14

083600 5800-FILE-F-DB-READ-FORMAT-II.
084100 FIND NEXT F WITHIN E-F.
084200 IF DB-STATUS EQUALS STAT-OK
084 300 MOVE ZERO TO END-FLAG-F.
084400 IF DB-STATUS EQUALS STAT-FIND-END
0 84 50 0 MOVE 1 TO END-FLAG-F.
084600 GET F.
084700 IF DB-STATUS NOT EQUAL TO STAT-OK
084800 PERFORM 9000-ERROR.
084900 MOVE F TO FILE-F.
085200 5890-EXIT-FILE-F-DB-READ-II.
085300 EXIT.

Figure 5. Example Translation

DB-ADD, are used. No delete function has
been specified. There are three DB-READ
formats, one DB-REPLACE format, and two DB-
ADD formats specified in the programs, each
of which provides a certain data base
function. The DBMS interface functions are
described in the rest of this section.

DB-READ

DB-READ RECORD OF FILE (Key-File-Name)
USING KEY (Key-Name)

This function retrieves a record from
a key-retrieval type file by using its key
value and places it in the user-working-
area. The Key-File-Name parameter is the
name of the file which contains the speci-
fied record. The Key-Name parameter is the
name of the variable which contains the
numeric value of the key of the specified
record.

DB-READ RECORD OF FILE (Member-File-Name)
WHOSE OWNER FILE IS (Owner-File-Name)

,

RETURN END-FLAG (End-Flag-Name)

This function retrieves a record from
a specific member file based on its rela-

" tionship with the specified owner file and

I

places it in the user-working-area. The

I

current record of the specified owner file

I

determines the set occurrence. The current
record of the owner file has been established
previously by another function. The speci-

I fied record of the member file is either

) (1) the next member record of the specified
set occurrence following the current
record of the named file, or (2) if there
is no current record of the named member
[file, then the specified record is the
[first record of the member file of the
jspecified set occurrence, or if there are
l|no existing member records of the specified
set occurrence or the la^t record in that
file that is in the set occurrence has been

previously read, then the value of End-Flag
being passed back to the program will be
set to 1

.

DB-READ RECORD FROM OWNER FILE (Owner-
File-Name) OF MEMBER FILE (Member-File-
Name)

This function" retrieves a record from
the specified owner file based on its
relationship with the specified member file
and places it in the user-working-area.
The current record of the specified member
file determines the set occurrence. The
current record of the specified member file
has been previously established by another
function.

DP-REPLACE

DB-REPLACE RECORD OF FILE (File-Name)

This function performs an update
function by replacing the current record of
the specified file with the contents of
the user-working-area. The current record
of the specified file has been previously
established by another function,

DB-ADD

DB-ADD RECORD TO FILE (Key-File-Name)
USING KEY (Key-Name)

This function adds a new record to a
top-node file by using its key value. The
contents of the user-working-area are added
to the data base as a new record in the
named file with the key that is specified
by the Key-Name variable.

DB-ADD RECORD TO FILE (Member-File-Name)
WHOSE OWNER FILE IS (Owner-File-Name)

This function adds a new record to a

non-key-retrieval type file by using its

15

relationship with the specified ovmer file.

The contents of the user-working-area are

added to the data base as a new record in

the specified member file, in particular as

the last member of the set occurrence speci-

fied by the current owner file record. The

current record of the owner file has been
previously established by another function.

4. DBMS Benchmark Programs

Both benchmark programs and test

programs are provided to allow the vendor to

test the proposed implementation of the

physical structure and DBMS interface
function translation.

A.l Test Programs

The vendor is provided with two test
programs. The first program generates eight
files, with a total of 607 logical records.
This data may be loaded into a test data
base accessible through the proposed DBMS.

The vendor can test the validity of the

proposed physical structure with this test

data base. The procedure used to load the

test data base can be used to load the

benchmark data base with necessary minor
changes for physical size.

The second test program provided to the

vendor tests the translation of the DBMS

interface functions into the vendor DBMS
commands. The program exercises the DBMS
commands, using the test data base. A
report is generated which shows the actions
completed and indicates any incorrect results
encountered during the execution.

Possible error messages are:

XXX BAD ADD - CAN NOT READ

XXX BAD REPLACE - CAN NOT READ

XXX BAD READ - CAN NOT READ

XXX BAD REPLACE - WRONG RECORD

XXX BAD ADD - WRONG RECORD

4.2 Benchmark Programs

The benchmark data base is accessed by
both batch and on-line DBMS benchmark
programs. These programs must have all DBMS
interface functions translated into vendor
DBMS commands before axecution of the pro-
grams is possible. The vendor must add any
code necessary to handle errors that may
occur due to system failure or implementa-
tion errors, by causing the executing bench-
mark program to abort with an appropriate

error message. Any Open or Close functions
that may be required by the DBMS must be
added by the vendor to the benchmark pro-
grams. The vendor's source listings will
be reviewed by the Government benchmark
team to ensure that no changes to program
logic have been made.

The specific set occurrences that are
accessed by the benchmark programs are
determined by an input seed number. The
input seed number determines the first
record accessed by the program and, through
the use of an algorithm, all subsequent
record accesses. The input seed numbers ,

used for test purposes are supplied so that

the vendor can verify the output produced
by the test runs against the sample output
listings provided. New input seed numbers
are provided by the Government benchmark
team for the timed portion of the benchmark
to ensure that the vendor does not optimize
certain paths within the data base.

There are three DBMS benchmark programs
the batch data base retrieval program, the
batch data base adds program, and the on-
line data base access program. The access
paths of these programs are such that the

areas of the data base that are to have
records added or replaced by any one pro-
gram are never read by other programs.
This is to ensure that, regardless of the

order of program executions, the results of

a series of reads through a set occurrence
will not change from run to run either in

content (changed due to a replace function)

or number (increased due to an add func-
tion). The effect of simultaneous users on

benchmark results is handled through the

use of a separate input seed number for

each execution of a program that adds or

updates a record. This ensures that each
execution is adding or updating a different
set occurrence.

The number of times each of these
benchmark programs is to be executed
during the one hour benchmark depends on

the year of system life of the proposed
system configuration that the vendor is

benchmarking. This particular computer
acquisition involves an eight year system
life span. The number of executions of the
benchmark programs increases each year of
the system life span by the percentage of
expected increase in the batch and on-line
workloads to reflect the predicted increase
in data base workload over time.

4.2.1 Batch Data Base Retrieval Program

The batch data base retrieval program
retrieves a selected record from file E of

16

the data base based on the value of the

input seed number. By following relation-
ship paths from the original E record, data
elements are extracted from seven of the
eight files of the data base and used to

produce an output report. Although the
exact record retrieved during any execution
of the program will be the same for any
given value of the input seed number, a
different record will be retrieved if the
seed number is changed.

Figure 6 shows how this program accesses
the data base. The following conventions
hold for this and all subsequent figures:

(1) The arrow indicates the access
path direction.

(2) The note beside the arrow line
indicates the accessing function.

(3) A shaded box indicates a file
accessed by the program.

(4) The unshaded boxes are files not
accessed by the program.

(5) The files that have the file name
underlined indicate key-retrieval type
files.

4.2.2 Batch Data Base Adds Program
The batch data base adds program

required a file-generation program that is

executed prior to the timed portion of the

benchmark. This program generates a tape
file of 5,000 transactions required as
input to the batch adds program. An input
seed number is used to vary the data that
is produced. Immediately preceding the
timed portion of the benchmark, the Govern-
ment benchmark team gives a new seed
number to the vendor, so that a new set of

transactions is generated.

The batch adds program adds the

transactions read from the tape to file G,

based on a program-calculated key value.

This key value is used to determine a set

occurrence in the set made up of files E,

F, G, and H. A printed report of all the

input records and their related file E key

value is generated by the program. The
number of records to be added is determined

by the value of an input card read in at

execution time. This effectively Imposes

the required workload that has been deter-
mined prior to the benchmark run. An input

seed number determines the data base paths

accessed during that particular execution
of the program. Figure 7 shows the data

base access of this benchmark program.

A

B C

D

ENTRY o.

Figure 6. DB Batch Retrieves Program Figure 7. DB Batch Adds Program

4.2.3 On-line Data Base Access Program

The on-line data base access program is

executed in an interactive mode through a

Remote Terminal Emulator (RTE) , i.e., the

program is activated by an emulated terminal
user. The program accepts a record ID from
the terminal and uses the ID to control
accesses to the data base key-retrieval type
files. Several data values are accepted
from the terminal and records are subsequent-
ly updated, added, and retrieved through the
DBMS. The on-line data access program
interfaces with the vendor's DBMS by the
same DBMS interface functions used by the
batch data base programs.

The interface for the transfer of
information between the terminal and the
executing program is through COBOL ACCEPT
and DISPLAY commands. These commands may be
replaced with the vendor's code if necessary.
The vendor's code must transfer 'information
between the terminal that activated the
program, and the program's data buffers in

the user-working-area of the program. This
terminal interface may be either direct or

through a teleprocessing monitor or trans-
action processor.

There are four portions of the on-line
data base access program: (1) key record
update, (2) logical relationship update, (3)

add, and (A) retrieval. Figures 8, 9, 10

and 11 show the data base access for each
portion of the program.

ENTRY

ENTRY

READ a^NER
AND UPDATE

Figure 9. DB On-line Logical
Relationship Update Transaction

ENTRY READ ^
" KEY ^

ADD

Figure 8. DB On-line Key Record
Update Transaction Figure 10. DB On-line Add Transaction

18

A

B C

D

J

Figure 11. DB On-line Retrieve Transaction

4.3 Testing

I

This approach to DBMS benchmarking was
tested by a team of one programmer and one
analyst, from the Government agency acquir-
ing the DBMS. The team was provided with

j
the data base generation programs, the data

' base benchmark programs, and the benchmark

{
instructions. The team successfully gener-

I ated the data base and loaded it into a

il

structure which is supported by their
U current DBMS package. The team success-

j!
fully translated the data base interface

I

functions in the benchmark programs into

I
the required DBMS commands and executed

I

each program to produce the desired results.

This test cast the agency team in the

role of the offering vendor. The analyst
of this team had a good background in IDS-

j
I, but no experience with IDS-II, which was

I the test DBMS package. The programmer had
|i no prior data base experience. The test
was accomplished with a minimum of communi-

j

cation between the agency team and the
I benchmark developers. The team spent
approximately three man-months on this

I project. Taking into account the experi-
I ence level of the agency team, it is
probable that a vendor would be able to
accomplish this in a shorter time frame.

A. A Benchmark Test Evaluation Criteria

The vendor's test results will be
evaluated based on the results obtained by
the agency's test. The input seed numbers
to be used at the Live Test Demonstrations
(LTDs) were input to the benchmark programs
during the agency's test. The reports
generated during the test and samples of
the updated files were saved for benchmark
test result comparison purposes. The
reports generated during the benchmark
tests will be compared for accuracy against
those generated during the agency's test.
At the conclusion of each benchmark test,
the vendor will be required to retrieve
records from the data base based on a list
of record keys provided by the Government
benchmark team. This list identifies the
file name and unique key of each requested
record and includes records that should
have been added, updated., read, or had no
access made to it during the benchmark
test. The contents of these requested
records will be compared against the
agency's test results. The vendor must
successfully match the results of the
agency's test, as well as not exceed the
one hour benchmark test time constraint, to
meet the evaluation criteria.

5. Potential Problems/Benefits

At this time, the agency trying to
procure the computer hardware and the DBMS
has not released the Request For Proposal
(RFP) ; therefore, there has not yet been
any vendor reaction to this DBMS bench-
marking approach. The vendor reaction will
be crucial in determining whether or not
this approach becomes an accepted way to

benchmark Data Base Management Systems.

This approach is very expensive in

terms of the in-house costs to develop the
benchmark and the costs to the vendor to

prepare for and run the benchmark. This
approach is not appropriate for organi-
zations acquiring only a DBMS, because the
relative cost of a DBMS is low compared to

the cost to the vendor to prepare for and

run a benchmark that uses this approach.
The vendor should be willing to spend more
in this area if it is a requirement within
a large-scale computer system acquisition,
where the cost-benefit ratio becomes more
attractive to the vendor.

The organization should do a risk

analysis study to determine the tradeoffs

between the cost to develop and test the

benchmark and the cost associated with

19

acquiring a DBMS which does not meet the

organization's needs. The organization
should currently have a DBMS, so that there
is an available DBMS to test the benchmark
programs or have access to another machine
for test purposes. The risks associated
with sending out untested benchmark programs
are too high.

This approach does not take into
account either the cost of conversion to the

new DBMS or the ease of use to the program-
mer. The capabilities of a DBMS query
language or an on-line update language are
also not considered.

An additional problem associated with
benchmarking DBMS's is that DBMS performance
is affected by the rest of the workload mix
that it must compete with for computer
resources. Also, the DBMS workload may
severely impact the performance of unrelated
on-line activity. This problem points out

the importance of accurately representing
all portions of the workload so that the
benchmark test will test the ability of the

proposed hardware and software to meet the

organization's expected workload require-
ments.

This approach to DBMS benchmarking
appears to have some promise for organiza-
tions that currently have a DBMS and need to

acquire computer system hardware along with
a new DBMS. The appropriateness of this
approach must be determined by the indivi-
dual organization through risk analysis.

6. A Comparison of the FEDSIM
and USDA DBMS Benchmark Approaches

The FEDSIM benchmark approach is an
expansion of the Department of Agriculture
(USDA) approach which has been used suc-
cessfully in several procurements. The DBMS
interface functions of the FEDSIM and the
USDA approaches are quite similar in con-
cept. The USDA logical data base structure
is a hierarchical structure of three files,
each at a different level within the hier-
archical structure. Thus the USDA logical
data base structure has a depth of three
files and a width of one file. All file
relationships are one to one. In contrast,
the FEDSIM logical data base structure
represents a CODASYL network structure,
which is necessary tp accurately represent
the procuring agency's data base processing
requirements. The FEDSIM logical data base
structure has a depth of five files and a

width of three files. There are one to one

file relationships as well as one to many
and many to one file relationships repre-
sented within the logical structure.

Another major difference between the
FEDSIM and the USDA approaches is the
difference in the manner in which the
vendors can access the data base file
structures. The USDA approach allows for
three separate sets of files: one set for
query activities, a second set for update
activities, and a third set for addition
activities. The FEDSIM approach stipulates
that all data base processing must occur
against one set of files. This requirement
ensures that there will be concurrent on-
line and batch queries, updates, and addi-
tions against the data base. The con-
current processing requirement is essential
to effectively model the procuring agency's
actual processing environment.

Reference

(1) United States Department of Agri-
culture, Automated Data Systems,
Kansas City Computer Center, "Live
Test Demonstration Manual", 1977.

20

Security, Fraud, and Audit

21

EDP Auditing in tlie 1980's

or Tlie Vanisiiing Paper Trail

Richard E. Andersen

Performance Systems Incorporated
30 Courthouse Square

Rockville, Maryland 20850

This paper is designed to provide an overview of (1) traditional
auditing methodology and (2) the reasons why these methods must be

modified and adapted in order to cope with the "vanishing paper trail"

inherent in today's (and tomorrow's) increasingly on-line, data
base-oriented, distributed processing, EDP environment.

The three basic types of audits (general, administrative, and

applications) will be discussed. Examples of flagrant, and not-so-
flagrant, computer crimes will be presented. Practical and proposed
solutions for the reduction of these types of DP crimes in the 1980's
will be examined.

The major thrust of the paper, however, will address the impor-
tance of the applications-oriented audit. The paper will discuss the
concept of Computer Management Technology (CMT), and show that this is

in reality a type of on-going auditing task. Alternatives will be

examined for measuring, managing and controlling key functional areas
that have a definite interactive effect on the availability of re-
sources and the performance of system components (or both) in a data
processing installation.

Key words: Auditing; audit-in-depth; internal controls; security;
auditing aids.

This paper discusses some of the aspects
of data processing that, while not in the
realm of the data processing exotic, will,
I believe, attain ever increasing impor-
tance for us in the years of the coming
decade.

No level of technology has found itself
above the ingenuity of a clever, albeit

1
1

dubious mind not even the computer.
'(One positive, although dubious, distinction

in the evolution of man has been his
ability to commit criminal acts, no matter

|i how difficult the circumstances. He
escapes from escape-proof prisons, he
tampers with tamper-proof devices, he

burglarizes burgular-proof establishments.
These examples merely serve to prove the

validity of "Danziger's Law", which holds
that as soon as something is invented,

someone, somewhere, immediately begins
trying to figure out a way to beat the

invention.

I'm sure that all of us have heard

of myriad examples of computer abuse
and/or crime in our own experience. But

I think that very few, if any, have valid
statistics as to just how much of this

subversion goes on. From all indica-

tions, a lot more goes on than is ever

detected. A lot of computer crime that

23

does go on, moreover, is never publicly
announced. Most security experts have
collections of incidents that they have
investigated, but which have never been
reported to the authorities. Further-
more, some banks and other companies,
candidly admit that when an incident is

discovered, the corporate victims usually
try to avoid the embarrassment and loss

of confidence that the publicity might
bring.

DP security specialists generally
tend to agree that about 85% of detected
frauds are never brought to the attention
of law enforcement officials. What often
happens is that the offender, once de-

tected, is required to make restitution
and then is sped on his way... often times
with severance pay, and sometimes with
letters of reference. One consequence of

this is a circulating population of un-
punished, unrepentant, and unrecognized
perpetrators going from company to company.
Probably a more serious consequence, how-
ever, is the suppressing of general re-
cognition of the extent of computer crime;
and that in turn can lull both makers and
users of computers into minimizing it as

a threat.

Since the basic topic of this paper is

EDP auditing in the 1980 's, it might be
well to get back to basics and examine some
basic terminology:

AUDITING

Source data, methodology, and report con-
clusions and sums are checked for accuracy
and validity through the use of 'studied
techniques' and information sources.

AUDIT IN DEPTH

A procedure wherein a detailed examination
of all manipulations on a transaction or
a piece of information is carried out.

AUDIT TRAIL

The 'trail' left by a transaction when it

is processed. . .the trail begins with the
original documents (the transaction entries,
the posting of records) and is complete with
the report. Validity tests of records are
achieved by this method. An audit trail
must be incorporated into every procedure.
Provision for it must be made early so that
it becomes an integral part. In creating
an audit trail, it is necessary to provide
(a) transaction documentation that is

detailed enough to permit the association
of any one record with its original
source document, (b) a system of account-
ing controls which provides that all

transactions have been processed and that
accounting records are in balance, and

(c) documentation from which any trans-
action can be re-created and its pro-
cessing continued should that transaction
be lost or destroyed at some point in the
processing procedure.

The sub-title for this presentation
is "The Vanishing Paper Trail". Speci-
fically, the inference to be drawn here
is that we will arrive at a consideration
and discussion of on-line accounting
systems. To cite an example of computer
crime to make a point: Outside of the

world of EDP, most of the present concern
among laymen about the latent problems of

computer security seems to have emerged
since the widely publicized Equity
Funding Insurance swindle. While this

was really more a case of old fashioned
fraud than an instance of computer
manipulation, the Equity Funding ripoff
could hardly have reached the magnitude
it did without the computer's adroitness
in fooling auditors from four major
accounting firms. The case pretty well

demonstrated that conventional auditing

procedures were all but helpless when

confronting intent and knowhow involving
deceit of computers. Auditors are losing

their paper trail... that plethora of

documents, indeliby inscribed orders,

invoices, bills and receipts that the men

in green eyeshades used to plow through

on the trail of auditing irregularities.

There appears to be at least one

group that has perhaps derived benefit
from revelations such as those of the

Equity Funding swindle. This is the

relatively small group of specialists
that appear to be able to write programs
to make the computer do the auditing.
Auditing through the computer rather than

around it; that is, to perform various
types of cross checks within the com-
puter, and to throw up warnings when
certain suspicious transactions occur.

This sort of auditing, however, is only
as dependable as (like everything else
that goes on inside the computer) the

computer itself. Unfortunately, com-

puters can be programmed to lie or

conceal as easily as they can be

programmed for truth.

24

Rather than throw up our hands in

despair and exclaim, "A lock only keeps as

honest man honest!", we should continue to

search for viable ways to audit through the

computer ... to continue to modify tradi-
tionally ingrained techniques to cope with
this vanishing paper trail.

A nominal amount of research in the

preparation of this paper revealed, among

other things, a promotional brochure
distributed by a company which is quite
famous in our industry for the fine refer-
ence material it publishes. Herewith, a

few pertinent quotes:

"Auditing through the computer-rather
than around it-will only become a reality
if you fully understand the confusing maze
called 'data processing'. EDP AUDITING ,

the only bimonthly updated reference
service, provides you with timely, compre-

hensive information on the DP function,
plus the latest methods and techniques
enabling you to work with the DP department
to improve your performance.

Designed for internal and external
auditors, and DP managers, this in-depth
'how to' reference contains the most
current information and approaches to the
EDP auditing function on the market. And

because it is regularly updated to provide
an ongoing collection of reference ma-
terial, its benefits far outweigh those of

a bound book. Initially with EDP AUDITING ,

you'll receive a rugged loose leaf binder
containing more than 40 information-filled

portfolios. Then, every other month your
service will be supplemented with 4 or more
portfolios, guaranteeing that you have the
most timely facts, methods, and advice at

your command.

Let EDP AUDITING help you close the

gap between the EDP function and your
auditing tasks. Let it enable you to audit
through the computer - plus much, much
more .

"

It is in no way my intent to demean
this promotional offering regarding EDP
Auditing. Quite the contrary. . .because in

the great deal of research and reading
undertaken in the preparation of this
paper, it is one of the very few practi cal

approaches and suggestions I encountered to
help the EDP Auditor with the tasks that
are going to be facing him or her... and the
more involved and difficult auditing tasks
facing him or her in the coming years of
the 1980 's.

This approach suggests, perhaps, the

linking of two separate specialities as a

result of our 'technological progress'.
This technological progress is usually
guaranteed, for a time at least, to

create a demand for specialized skills
that will be in very short supply. I

believe that such a field will be com-
puter auditing, where for all the growth
that has occurred over the last few
years, there is still a huge gap between
what j[s, and what is needed. I believe
the reasons for this are relatively
simple. Computers happened too quickly
for the accountancy profession, which is

accustomed to a more leisurely rate of
change. New "marriages", however, tend
not to be traumatic for the computer
profession. Data processing people are

used to seeing their speciality branch
out into new fields, but for the account-
ancy profession, the arrival of the

computer has, I believe, produced a bit

of- a trauma, and in some cases, a nasty
shock.

We have all witnessed the increasing
use of on-line systems and real time Data

Base Management Systems in accounting
applications, both in the larger and more
sophisticated companies, as well as many
applications in the smaller companies.
While these systems are well established,
they still present many new and different
challenges to the computer auditor.

Again, in the old batch systems it

was still possible for the auditor to

pretend that the computer didn't exist,

and audit "around" the computer. He or

she simply checked or matched what came

out with what went in. Some of these
"batch" tools will continue to be used,

and with efficiency... the old "hash

total" springs to mind. However, we see

a move toward concentrating efforts on

reviewing data flows within computer
systems, in order to establish the degree

of reliability that auditors can place on

their company's internal controls. These

controls are merely a set of procedures
and checks designed to ensure that valid

transactions, and only valid trans-

actions, are processed, accepted, and

recorded completely.

It is often more economical, and

better auditing practice, to use the

computer to extract exceptions, reports,

and records of all abnormal entries (and

samples of transactions and balances).

25

All incorporated companies must have
their accounts audited. In order to

express their opinion on the accounts (in

order to report that they are "true and

fair"), the auditors must achieve some
reasonable assurance. If the internal
controls are sloppy, the auditor has to

spend more time checking what lies behind
the figures. And the more time he or she
spends, the more it costs the clients.

Extraction of samples by computer
program, even very large samples, needn't
be expensive. It is the verification of
the data in the sample that costs money,
since someone has to go and see that the
source document exists, or that the stock
did in fact arrive, etc. In reviewing real

time systems, we see that they have re-
vealed a wide range of additional problems
relating to weaknesses of internal con-
trols, and weaknesses in the development of

interrogation software. An obvious example
is inadequately supervised terminals. If

anyone, not just authorized people, can get

to a terminal, risks of that abuse are

increased. Although many installations use

passwords, it often happens that the

password stays in use for so long that it

loses its confidentiality. Even the most
elaborate password systems will come
crashing to the ground if the operator
wanders away from an unattended terminal
without signoff. This is often compounded
by the fact that terminals tend to be

located in large open areas and offices
where there is little or no physical
security. Again, in reference to on-line
systems, accounting data tends to be keyed
in without control totals being first
generated. This increases the danger of
mis-keys and mis-reads going into main
files without detection, at least until

they turn up as meaningless stock orders,
or astonishing paychecks. Guarding against
these eventualities means stringent program
validation checks on data... more so than in

the batch environment. Usually, only those
systems that require keyed data to be input
by two separate individuals will provide a

uniformly high level of input accuracy.
Controlling the input and resulting accur-
acy of master data files is much more
difficult than in the old batch systems
because the main files are seldom read
through in their sequential entirety. This
control can often only be achieved through
the use of control totals of movements in

all key fields. Fairly frequent sequen-
tial passes of the main files will have to
be built into the systems, and checks
made that the sum of the brought forward

control totals plus the movement control
totals equals the sum of the individual
values of the files. Additionally,
sufficient transaction history obviously
must be kept, so that if the two sets of
totals fail to agree, rapid recovery is

possible from a sequential pass. In

practice, there is a tendency to reduce
the amount of transaction history held on

on-line files, especially compared to the'
amount held on most batch systems. The
most important difference introduced by

j

on-line, and Data Base Management sys- "

tems, from an audit point of view, is

that the functions of main data file
security are being absorbed by the Data
Base software itself. This concentration
of information means that the Data Base i

Administrator is becoming a very impor-
tant person. I don't mean to imply that \

DBA's are natural fraudsmen, but they are'
in a unique position of having an excel-
lent knowledge of a broad range of '

information in the company, and of the ^

relationship of the pieces of informa-
tion... one with another. Since a great

'

deal of audit thinking on control centers
on a division of duties, classically,
traditionally, historically. . .so that no

one person has too large an area of '

influence, the auditors' nervousness
about Data Base Administrators is under-
standable. An old audit maxum is to get

as many involved in each process as you '

can so as to make collusion more diffi-
cult. While it is rare that a Data Base '

Administrator has actual custody of a
'

company's assets, if he is allowed to run •

software, he has the ideal opportunity of

making un-authorized amendments of one

sort or another.

Therefore, specifically and parti- '

cularly in view of the considerations
that have to be taken into account as a

result of on-line systems, the auditor
'

has a key role to play in the design of

intended new systems at the earliest
possible stage of the planning. This
will enable him or her to assure that the
proposed system will incorporate suffi- i

cient audit (and good) basic controls.
Early involvement of the audit function
in the design of new systems cannot be

stressed too strongly, because the
\

internal and external auditor are con-
cerned that these control standards and

^

procedures in effect in a DP installation
are functional. In addition, the auditor
of the 1980 's is going to need to test
the reliability of the system in pro-
cessing various types of transactions.

!

26

The auditor's evaluation of the sufficiency
of internal control procedures will also

affect his or her determination of the

extent necessary in order to satisfy him or

herself regarding the reliability of those

systems.

DP has had a major effect upon audit-

ing, due primarily to the loss of this

visible paper trail (the vanishing paper
trail), and this increases the importance
of internal controls... which in turn
underscores the need for early involvement
of the audit function.

While good system design controls do

not in themselves eliminate the need for

I
auditing, they do significantly reduce the

i

need for testing necessary to the audit

function. Again, to re- iterate the concept

j

of auditing around the computer, the first
reaction to DP by early auditors was to

attempt to perform their audits with the

printed records and output provided by the

system, the theory being that if a sample

I
of the system output was correctly obtained
from the system using the system's input,

then the processing itself must be reli-

,

able. This was a reasonable approach
: perhaps ten or fifteen years ago when the

I
knowledge of DP auditors was extremely

' limited. However, the increasing diffi-
culty of applying this approach to the
vanishing paper trail, and the development
(and continuing need for development) of

better auditing methods, have combined to

discredit this old approach of auditing
II around the computer. The only alternative
I to this is auditing through the computer.
!

' Some examples of this might be (1) the
use of test decks using sample trans-
actions, either correct or intentionally
incorrect, or (2) the use of specially
written computer programs for interrogation
and control. What about the aspects of

I

data security? The growing reliance of

f
many companies on DP to process their
transactions and store their business data
has created, and continues to create, new
vulnerabilities and concerns. This is

especially true in the on-line environment.
A tremendous amount of computerized data,
including business forecasts, employment
data, payroll records, etc., has to be kept

1
confidential; but maintaining that confi-

I
dentiality has become increasingly more

I difficult with today's DP methods.

Advances in direct access and mass
storage systems and technology, coupled
again with improved and simplified
terminal usage, have given numerous
people throughout the company access to

sensitive business data. Information
that was once limited to viewing by top
management might now be subject to the
prying eyes of employees, or even com-
petitors. Even more of a threat than
intentional security violations, however,
is the damage to sensitive data through
well intentioned error. The great
majority of data losses is due to the
fact that, simply, people make mistakes.
The same technology that makes DP such a

boon to business can also greatly amplify
the effects of human error. We all have
probably experienced examples of that.
Irreparable damage to critical company
records can be caused by honest employees
who inadvertantly misuse data. Addi-
tionally, because of the dramatic rise
of, and projections for increase in,

computer crime, as we will touch upon
later, companies and Federal Agencies are
demanding increased security, privacy,
and control in DP operations.

To meet these demands, EDP auditors
of the 1980's must develop a working
understanding of DP. As our brochure
indicated, they must be able to work with
DP personnel, to secure and control this
valuable information stored in DP files.
The DP auditor of the 1980 's will have to

know how to audit through the computer
rather than around it. And this implies
that he or she will have to be able to do

numerous things. A partial list of those
things follows:

. He or she must be able to deal

with the important issues such as

the reconstruction of data files,
physical security, and the theft
of services or data in the
system.

. Also, he or she must be able to

take an active role in developing
policy on auditabi 1 ity, testing,
standards, and general controls.

. He or she must be able to provide
management with independent
assessments of DP decisions, and

their impact on the company in

general

.

27

He or she must be able to make
certain that the alternatives or

risks for a project have been
carefully considered, and that the
technical hardware and software
solutions are correct and reason-
able, and that the costs are

reasonable.

Sheer volume alone makes controlling
sensitive data more difficult and all the

more critical, because as the amount of

sensitive data increases, so does the need

to safeguard it. Hundreds and even thou-

sands of jobs are run on computer systems
each day. The task of monitoring which
jobs are using what data and which re-

sources is beyond the capability of any

human operator.

The only feasible solution to the

problem of protecting data is to let the

computer itself monitor and control data

access. This in turn will require data
software security systems that will combine

data access control with computer access

control. We might well ask at this point
what should be the goals for the 1980 's for

a data security system that takes into
account auditing considerations. As I see

it, there are three fundamental goals:

(1) To determine and detect improper
access attempts

(2) To prevent such attempts from
succeeding

(3) To record successful accesses and

unsuccessful accesses to data, on

an audit file

To these ends, a security and auditing
system has to be able to (1) prevent all

unauthorized access to all forms of busi-
ness data, including such things as system
libraries, application libraries, and

business forecasts, (2) provide authorized
personnel easy access to their data...
ideally without them even being aware of or

concerned about the security and auditing
mechanism, (3) immediately notify an

operator that a security violation attempt
is in progress, (4) identify and verify
every system job and user, (5) provide an

audit trail of every successful and unsuc-
cessful access attempt, being all the while
transparent to the user, and finally of
course (6) add minimum overhead to the
system, be easy to install and use.

Such security systems and auditing
aids are on the market now, in varying
degrees of completion and efficiency.
But in this area, much more needs to be
done... and much more education needs to

be brought forth to the DP community in

general. This is not a one way street...
a street where only the auditor needs to

learn new techniques.

I believe that there is good news
and there is bad news when one considers
computer security and auditing for the

1980's. I think that the good news is

that computer security systems will

become better than ever. There will be
help for the EDP Auditor. However, I

fear that the bad news revolves around
the fact that probably organized crime
will make its true data processing debut
in the 1980's. It is conceivable that

the mob will make use of career criminals
trained in DP by prison rehabilitation
facilities (perhaps along with top DP

technicians) recruited, sometimes un-

willingly, from the ranks of otherwise
honest DP personnel. I believe that the

incidence of large computer crimes will

go down, but that the size of the indi-

vidual crimes will rise. Recently
published figures indicate that the

national average of $450,000 per computer
crime will skyrocket. Professional
criminals will be much better at their
craft than the DP hobbyist, who is now
still the major perpetrator of computer
crime.

Financial institutions, which have

been working for years toward safety of

their data, will probably be better off

than most DP users. Many so-called
"friendly" information systems and

interactive word processing systems
provide little if any security provision.
Additionally, they actually help the

computer crime perpetrator find what he

is looking for by putting the information
in an easy-to-read format. In the case
of information management systems on

mini -computers, these offer little at the

present time in the way of protection. I

believe that security precautions for

smaller systems will be one of the
greatest needs, and should be one of the

highest priorities, of the 1980's.
Companies will also be faced with the

dilemma of deciding when their computer
systems are safe enough. If a company
goes too far in the area of security
control, no one will be able to use the

computer, and production will fall off. i

28

Mr. Donn Parker, an internationally

recognized leading world expert on computer

crime, abuse and fraud, suggests that the

only completely safe computer is one that

is not used. He maintains, and I believe

correctly, that any security system can be

breached with the proper combination of

know-how and intent. He suggests that by

coupling more frequent auditing with more

sophisticated security systems, the inci-

dence of the small DP crimes could be held

to a minimum. However, because laws vary

from state to state, it is conceivable that

a computer thief can even avoid prosecution

by committing his crime in a state without

computer crime laws. This is an aspect of

computer crime that will have to be addres-

sed in the 1980 's also.

In our business at Performance Systems

Incorporated, we repeatedly come into

contact with top management personnel who

express their frustration in not being able

to establish or bring about specific

management controls on their DP depart-

ments. We find usually that one of the

main reasons that DP is undermanaged,

undercontrol 1 ed , underdocumented , ... and

misunderstood... is that historically the

DP manager has usually reported to a

comptroller or financial officer of some

type. Additionally, he has been only

loosely responsible to some type of user

steering committee for DP. But now we are

moving into an era where "corporate direc-

tors of DP and Telecommunications acti-

vities" (for example) are being appointed

who have a DP background as well as formal

indoctrination and training in management

principles and philosophy. This is an

encouraging trend, hopefully to be main-

tained and even accelerated in the 1980 's.

I also believe that these individual

companies that have been founded and

revolve around DP security concerns are in

the vanguard of a major contribution to our

DP way of life in the 1980" s.

Finally there is an element of seman-

tics involved in the term EDP Auditing.

} Sometimes there is a conflict between the

!|
purely financial aspects of auditing and

j

the computer aspects of the work of (for

I lack of better term) "the computer systems

audit staff". Among the services that we

provide at PSI is something that we call

I
the Data Center Review. It certainly is

j
not a new or revolutionary concept, but we

I

think that our approach is a bit innova-

j tive. Initially it was suggested that this

activity be referred to as an EDP Audit. I

\ believe that wiser heads prevailed, and in

discussing the conceptualization and

image provided by the term EDP Audit, it

was generally agreed that while this was
meant to be a systems audit as opposed to
a financial audit, we should provide a

descriptive phrase that was more meaning-
ful. Therefore, the term EDP Audit was
replaced with the tei^m Data Center
Review. The mechanics of the Data Center
Review merely embrace another type of
audit; and this is a facet (and only one
facet) of Computer Management Technology
(CMT).

This Data Center Review takes into
account that in a sophisticated DP
environment there exists a necessity to

develop highly specialized skills.
Departments or branches are formed having
well defined missions that are essential
but narrow in scope and responsibility.
Perhaps this is due in part to the
traditional and historical splitting of

functional involvement. . .again, in line
with our old audit maxim. Even the
elements of vendor support (e.g., systems
engineering and customer engineering)
tend to align themselves with these
various groups according to their indi-
vidual expertise and experience. In many
cases, management decisions are made on

the basis of the recommendations of

specialized technicians whose performance
is measured in narrowly defined responsi-
bilities. Such decisions could have an

adverse effect on other equally important
functions in the organization.

In the process of conducting Data
Center Reviews in the past, our experi-
ence has shown that several key areas
within an installation have a definite
interactive effect on overall system
performance. The methods and procedures
used to manage and control these areas
are vital in meeting and maintaining
performance objectives. We have develop-
ed and documented techniques for review-
ing these areas within an installation.
I believe you need an organized and

documented method of determining how
efficiently and effectively your data
processing systems are functioning and
operating. The Data Center Review
provides you with this capability by
identifying the data available from each
of the Data Center's functional areas
using simply a set of questions, or

checklist, to analyze procedures in each
of these areas. All data sources are

presented as a "shopping list", and the
checklists are modular. With this
format, an experienced analyst can easily

tailor a data source and checklist package

to an installation under examination.

However, too often we see many in-

stances of similar "guidelines and check-

lists" available, used, filled out, ratings
applied,... and yet no analysis. ..no follow-

up... no qualitative reporting is done.

Many times, we feel, that is where this

approach falls down and is lacking, because
all the collected data in the world is of

no use unless it is subjected to rigorous
analysis directed toward determining the

implications of all this collected data.

Perhaps the most effective means of em-

phasizing this point is to quote Johann
Wolfgang von Goethe who wrote in 1810: "The

modern age has a false sense of super-
iority, because of the great mass of data
at its disposal; but the valid criterion of

distinction is rather the extent to which
man knows how to form and master the
material at his command". So we see, after
all, that there is an element of sameness
in the world of rapid change in which we

1 i ve

.

We have covered a wide range of topics
under the general heading of EDP Auditing,
Security, and Computer Fraud. However, no

discussion of EDP Auditing, Data and

Systems Security, Controls, Checks, and

Balances, would be complete, I believe
without pondering some questions, even if

only briefly: What of OVERcontrol, OVER-
auditing, OVERsecurity paranoia, and other
potential abuses?

I would therefore like to leave you
with a little food for thought, in the form
of my only two overhead projector trans-
parencies. I am indebted to Professor
Dennie L. Van Tassel of the University of
California for his inspiration and (in

part) format:

30

CASHLESS SOCIETY

NATIONAL DATA BANK

DAILY SURVEILANCE SHEET

CONFIDENTIAL

3ULY 9, 1997

SUB3ECT: NAME
EMPLOYER
ADDRESS
SEX
AGE
MARTIAL STATUS
OCCUPATION/TITLE

PURCHASES: WALL STREET 30URNAL .25

BREAKFAST 2.50

GASOLINE 22.00

PHONE (328-1826) .15

PHONE (308-7928) .15

PHONE (lt2l-l9tH) .15

BANK (CASH WITHDRAWAL) 120.00

LUNCH 3.50

COCKTAIL 1.50

LINGERIE 26.95

PHONE (369-2436) .35

SCOTCH (1/2 GAL) 12.85

NEWSPAPER .25

**** COMPUTER ANALYSIS FOLLOWS ****

31

*** COMPUTER ANALYSIS »**

OWNS STOCK (99% PROBABILITY).

HEAVY STARCH BREAKFAST - PROBABLY OVERWEIGHT.

BOUGHT $22.00 GAS. SO FAR THIS WEEK HAS BOUGHT $38.00 GAS.
OBVIOUSLY DOING SOMETHING BESIDES JUST DRIVING TO WORK.

BOUGHT GAS AT 0857. SAFE TO ASSUME HE WAS LATE TO WORK.

PHONE NUMBER 308-1826 BELONGS TO 'FRANKIE THE LAYOFF. FRANKIE
ARRESTED 1978 FOR BOOKMAKING.

PHONE NUMBER 308-7928 - EXPENSIVE MENS' BARBER. SPECIALIZES IN
BALD MEN OR HAIR STYLING.

PHONE NUMBER '^21-1931 RESERVATIONS FOR LAS VEGAS (WITHOUT WIFE.)
THIRD TRIP THIS YEAR TO LAS VEGAS (WITHOUT WIFE). WILL SCAN FILE
TO SEE IF ANYONE ELSE HAS GONE TO LAS VEGAS AT SAME TIME, AND
WILL COMPARE TO HIS PHONE NUMBERS CALLED.

WITHDREW $120.00 CASH. VERY UNUSUAL SINCE ALL LEGAL PURCHASES
CAN BE MADE USING THE NATIONAL SOCIAL SECURITY CREDIT CARD.
CASH USUALLY USED ONLY FOR ILLEGAL PURPOSES. IT WAS PREVIOUSLY
RECOMMENDED THAT ALL CASH BE OUTLAWED AS SOON AS IT BECOMES
POLITICALLY POSSIBLE.

DRINKS DURING LUNCH.

BOUGHT VERY EXPENSIVE LINGERIE NOT HIS WIFE'S SIZE.

PHONE NUMBER 369-23*6 - MISS SWEET LOCKS.

PURCHASED EXPENSIVE 1/2 GALLON SCOTCH. HAS PURCHASED 3-1/2
GALLONS SCOTCH IN LAST 30 DAYS. EITHER HEAVY DRINKER OR MUCH
ENTERTAINING.

» OVERALL ANALYSIS *

LEFT WORK EARLY AT 1700, SINCE HE PURCHASED SCOTCH 1 MILE FROM
HIS OFFICE AT 1710 (OPPOSITE DIRECTION FROM HIS HOUSE).

BOUGHT NEWSPAPER AT 1930 NEAR HIS HOME. UNACCOUNTABLE 2-1/2

HOURS. MADE THREE PURCHASES TODAY FROM YOUNG BLONDES.
(STATISTICAL 1 CHANCE IN 78). THEREFORE PROBABLY HAS WEAKNESS
FOR YOUNG BLONDES.

32

Tracking Potential Security Violations

R . L . Lehmann

Union Carbide Corporation
South Charleston, WV 25303

Abstract: Security concerns not only involve providing restricted

access to computer resources, but frequently require investigative

studies to track suspicious utilization for potential company violations.

For such studies it is important to have pertinent information for the

entire job in order to trace what is being done. Sometimes very little

information is available to use as a key for isolating the jobs in

question. This paper describes a tool developed at Union Carbide Corp.

to enhance such investigations on IBM MVS systems.

Keywords: Audit trails; computer fraud; computer security; job tracking;

security violations, SMF retrieval.

1. Introduction

Frequently security violations involve
those who are authorized or have access to
the sensitive data of concern. Current
security measures are of little help in pre-
venting such unprincipled people from obtain-
ing their objectives. Indeed RACF, SECURE
and ACF2 minimize access to such areas but
to the authorized or knowledgable even they
must yield to the master's will. Acknow-
ledging that a completely fool proof system
is neither practical nor possible this paper
seeks to address the problem once violation
is detected or suspected.

Present products may aid in warning of
possible violations but what does one do then?
Accusing one falsely could have serious con-
sequences. Ability to track jobs based on
varying bits of information would be of great
help in gathering needed data to determine
the nature of the suspected infringement.
Since thieves and saboteurs tend to cover up
their tracks, sufficient flexibility must be
provided to track their use of computer
resources. Of course the supersleuth may
eradicate all traces of his presence and
leave you helpless, but even that condition
restricts your concern to only those few

'sharp' individuals capable of such system
internal manipulation.

Various questions immediately surface
when considering one suspected of violation.
What information was accessed by the indi-
vidual? What computer resources did he or
she use? What did the individual do with
the information accessed? When was the in-
fringement made and how could it have been
avoided?

In order to aid in answering these ques-
tions UCC developed a means of accessing
computer generated data to piece together in-
formation needed in resolving these concerns.
Five basic design steps are of importance in
describing the resultant facility

j

[l] What form of requests want to be made?

[2] What information is desired?

[3] What data is available to supply this

information?
[a] How can it be retrieved economically?

[5] How is it to be reported?

Detective work traditionally obtains bits

and pieces of information, with which it must

collect all relevant data, such that all con-

ditions of fact are met. Tracking security

33

violations has many similarities with respect
to the meager amount of information one may
have at the start.

In order to accommodate such tracking,
basic clues have been classified into nine
major areas. Any combination of these nine
variables may be requested to define retrie-
val conditions. Multiple requests are also
permitted in any given run. This is accom-
plished by ANDing the various conditions de-
fining each request and ORing the number of

requests

.

2. Form of Requests

Nine basic parameters were isolated to

define the primative set of request identi-
fiers. These may be grouped into four basic
categories:

1 Job Identification
a. PGMR - Programmer Name
b. PGM - Program Name
c. JOB - Job

2 Data Set Identification
a. DSN - Data Set Name
b. VOLSER - Volume Serial

3 Time Period
a. DATE - Date
b. TIME - Time

4 Accounting Concerns
a. CC - Charge Number
b. RIN - Remote Number

Any combination of these request identi-
fiers may be made, depending upon the amount
of information known and restriction of out-
put desired. The syntax related to each is
shown below.

2.1 SYNTAX Description

Programmer Name : Perhaps all that is

known is that programmer X appears to be
violating company standards. It would be
desirable to obtain all the information avail-
able regarding that programmer. But program-
mers Invariably spell their names differently
from one job to another. At times they may
use their initials whereas other times simply
the last name. Some may separate their ini-

tials with blanks, others with periods and a

few even use the underscore character. At
times abbreviations are even witnessed, esp-
ecially when the name is long. Consequently

It Is desirable to be able to simply request
a character string that if found anjrwhere

within the name field a retrieval will be
accomplished. Such a request is made by

simply stating:

PGMR=' character string'

[

Program Name : In addition to the pro-
grammer name, frequently one may need to

determine the users of a particular program.
When checks run against output from highly
confidential programs reveal problems, a

report of all individuals using that program
may be obtained by specifying:

PGM= ' name

'

Job Name : Jobs may be traced by simply
specifying the job name:

JOB= ' name

'

Data Set Name : Suppose suddenly one day
jj

a critical and sensitive data set has been
|

destroyed. Immediately you wish to know who
had been using that data set. A request of
the form below will produce a report showing
every user for the period of interest acces-
sing the data set having the exact name as
specified:

DSN='name'

Sometimes, however, the exact name with
all its qualifiers may not be readily avail-
able. The unique identifiers on the other
hand are known and it is desired to just
specify these to track the users. Similarly,
it may be desired to identify those who used
any of a family of datasets all having a
common string of characters somewhere within
its name. This may be accomplished by:

DSNX=' character string'

Volume : Disk or tape volumes containing
sensitive data may be accessed in ways other
than through standard data set name requests.
Circumstances may arise where it is necessary
to know who used such a volume and whether
it was used for input or output. This re-
quest is specified by the statement:

VOLSER= ' name

'

Date : Frequently one's concern is re-
stricted to a specific period of time. To
eliminate data outside the period of interest
the date option provides the ability of set-

ting day boundaries. This also illustrates
the facility of specifying multiple condi-
tions, which will be described in more detail
later. The date is specified in Julian form
as the following examples show:

DATE=80123
DATE> 80119 & DATE< 80120
DATE>80112 & DATE<80116 &

Date-'=80114

34

Time : But the period of interest may be

concerned with only a portion of the day.

Thus a time option is also available to set

the boundaries of time within each day of

interest. This condition is in the form of

hours and portion of hours as shown below:

TIME>20.0
TIME>8.0 & TIME<17.5

the SAS code necessary to retrieve the
conditions required. These macros are
written to a data set which is then concat-
enated with the SAS routine. Each error
message describes the problem encountered
as well as the actual request that was made.
An example of the diagnostic messages are
illustrated below. The selection types MAJ
and MIN will be discussed later.

Charge Number ; At times infringement
problems may involve users who manage to

direct personal computer use to charge niim-

bers other than their own. Ability to track
specified charge numbers is also available
by requesting:

CC=' charge no'

Input Requests:

MN» DSN=«K.CACI.SIMLIRB' & VOLSER« • KOOO 7 1 « (pGMR»«C*NOr»
MAJ
MIN DATE«'80091' & VOLSE«»'KRR002' 1 RlN«'R7,RDl»
MIN PGMRxLEHMANN i TIME>*8.« i TIME<12.
MIN PGM=»A9S00TFST< CC»'95000U>
MIN J0B=»AHLLPM1 TT • PGMRs'R.L.LEHMANN* h VOLSER»'KOOOJ»»
MIN RIN=>RDlO_Rni2< t. CC = '9000»'

Input Remote Number : One last request
type was designed to enable one of monitor
users at a given remote station. Suppose
violation is suspected at a given site during
the weekend. Activity at that remote station
could be retrieved by:

RIN= ' remo t e number

'

2 . 2 Summary

Nine different condition types are pro-
vided such that any combination can be used
to uniquely define the conditions represent-
ing the information known. All except DATE
and TIME have character values. In addition,
DATE, CC and TIME may utilize the operators
=,> or <. The remaining types may only use
=. Exception reporting may be accomplished
by using the"^ operator in conjunction with
the >, < or = operators. For example the
following request:

DATE=80246&TIME<6 . &RIN= ' R99 . RDl ' &CC= ' 9500U

'

&PGMR =' JONES'

will retrieve all jobs submitted from Remote
99 from midnight to 6:00 a.m. on day 246 us-
ing charge number 9500U except those of Jones.

3. Implementation

To provide flexibility and ease of main-
tenance it was decided to use a PL/I program
to process the input conditions and SAS to

do the data retrieval. PL/I was chosen
because at the time SAS did not have the
string mainpulation capabilities that are now
available. The PL/ I program processes the
retrieval parameters, checks for syntax and
other error conditions producing either dia-
gnostic messages, a condition code which
terminates the run, or SAS macros generating

Diagnostics

:

ERROI

I

ERR03I
ERROdl
CRROn
ERR09t
ERRlOl
ERRldl
ERR06I
ERRI3I
ERRISl
ERR22I
ERRZH
ERR17I

INVALID
MISSING
INVtLIO
INVILID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID

SELECT
DPFRAT
SYNTAX

SYNTAX-
SYNTAX'
SYNTAX'
Syntax-
Syntax-
SYNTAX-
SynTax-
Syntax-

ON TYPE. MUST SE HAJ OR MIN COnOITIONI
R IN SELECTION CONDITION. CDwDITlnNI
DATE NON-NUMERIC CONOITIONI
MISSING QUOTES CONOITIONI
TIME NON-DECIMAL COnDITIONI
PROGRAM > S CHARACTERS CONOITIONI
CHARGE > 5 CHARACTERS CONDITIONI
JOB NAME > 8 CHARACTERS. CONDITIONI
PGMR NAME NON-ALPMAMERIC CONDITIONI
VOLSER NON-ALPHAmERIC CONDITIONI
REMOTE • > 8 CHARACTERS CONOITIONI
REMOTE HAS NON-REM CHAR

,

SCOnD I T ION I

CHARGE NON-ALPHAMERIC CONOITIONI

OATE*'8009P
pghr*lEmmann
TIME>.()..
PGH«iA»500TEST>
CC-'95000u'
J08-<ARLLPM|tT'
PGMQ.iR.L.LFHMAMH*
VOLSER"'K0001»'
RINXPDIO ROl?*
pInb*rD1o~ro12*
CC»'90UOjT

4. Information Desired

Having defined the kinds of requests a

security officer may want to make, it is

necessary to determine what information is

required for retrieval. After some itera-
tion of ideas, it was decided that the fol-

lowing set of parameters would be sought on

a job level basis. Specifying a job level

basis means that all steps associated with
the job involving suspected violation are to

be included in the report even though some

may not contain the conditions requested.

For example, if a data set name was requested
all the steps of every job utilizing that

data set would be retrieved, even though some
of them may not specify the data set of int-

erest. This is to facilitate analysis of

what was done with the data set. Perhaps one

step copied the sensitive information to a

new data set after which processing or addi-

tional copying to tape was performed. By

removing the suspicious activity to the new

data set^detection may have been avoided or

complicated if only the step containing the

35

requested data set had been retrieved.

Therefore for each job, the following in-

formation will be incorporated in the print-

out :

REPORT HEADING
JOB
DATE
TIME
PGMR
PGM
STEPNO
STEP
CODE
CC

RIN
ROUT
DSN
VOLSER

10

DESCRIPTION
JOBNAME
DATE
TIME
PROGRAMMER
PROGRAM
STEP NUMBER
STEP NAME
COMPLETION CODE
CHARGE CODE
INPUT REMOTE NUMBER
OUTPUT REMOTE NUMBER
DATA SET NAMES
VOLUME SERIAL

IDENTIFICATION
I/O TYPE CODE

With the above information, one immediately
knows who submitted the job, at what time of

what day and what programs were executed.
In addition, preceding and/or succeeding
steps surrounding the step of concern are

available and all data sets used by the job

are listed giving both their data set name
and their volume serial number. Further
description is provided to Identify whether
the data set was used for input or output.
In order to locate the source of the viola-
tion both the input and output remote loca-
tions are provided, as well as the charge
code under which it was submitted. Lastly
the completion code has been included to

validate that the job ran to completion.

5- Data Available to Supply
This Information

Now that both the kinds of request and

the information desired is determined, we
turn our attention to investigate what data

is available to supply this information.
Being an IBM installation we have available
to us SMF (System Management Facility) and

the program package RMF (Resource Management
Facility) as well as Boole & Babbage's pack-

age, CMF (Comprehensive Management Facility).
All of these products can provide a data base
containing information on all the work per-
formed upon the computing system. After
evaluation it was decided to utilize the SMF
files for our basic data base, since neither
RMF nor CMF provide data set name information.
The records of interest that are used are the
type 4,5,6,14,15,26 and 35. From these all
of the information desired may be retrieved.
At the time of the beginning of this project

the SE-2 (System Extension) capabilities were
not available. Future revision could take
advantage of the type 30 records in the SE-2
product and thereby eliminate the need to

piece together various bits of job inform-
ation from different records. Due to SMF
generation being an event-driven system,
records pertinent to the specific request are
generated at various times within the pro-
cessing period. Since job name, date and
time occur in all records, these parameters
will define a job stamp for correlating all
records of a given request. This job stamp
is also used to create a job table associ-
ated with the conditions specified by the
input requests.

6. Retrieval

Economy Factors : A major factor in deal-
ing with SMF data retrieval is that of econ-
omy. Undoubtedly various requests may require

looking through a week's or month's worth of

data which means dealing with millions of

records. Consequently it is desired that

only one pass of the SMF data be necessary
to retrieve the information to satisfy the

request. But since the generation of SMF

data is event driven, and all of the inform-
ation concerning a job that meets the option;

that have been requested is desired, one can-

not determine all of the records needed on

the first pass through.

For example, suppose a request was made
in which only the data set name was given.

That data set may not have been used until
let us say, the third step within the job.

While processing the SMF data other data sets

used in the same job produce SMF records
which precede those regarding the desired
data set. However, it's not until we reach
the record containing the given data set de-
sired that we know with what job it was

associated. Consequently, we could not re-
trieve the earlier records beforehand. Even
sorting all of the SMF data, which would be
prohibitive, so that all of the records per-
taining to a given job are together, would
not easily resolve this problem. Thus, it

is obvious that multiple passes of some
nature must be done. Furthermore, retrie-
ving data from unnecessary records is a waste
of computer time. Therefore, some facility
should be provided to eliminate as much data
as possible beforehand.

A means of subsetting the data file may
be accomplished by specifying major, MAJ,

conditions. Since all SMF records contain
the date, time and job name, if the user
knows any of these parameters he may speci-

,

36

fy major options and thereby only records
containing these specifications will be re-

tained. If multiple requests are made in

the same run, all of the requests will be
conditioned by the major options. In other
words the major conditions are applied first,

then the minor options are tested against the
resulting records. Multiple MAJ and MIN re-

quests may be made within one run. When more
than one MAJ request is specified, the resul-
tant subsetted data file is the union of all

major conditions by ORing together all of the

major requests to form the retrieval file.

Since the major options simply subset
the data file, one must then specify a minor
option defining the various parameters of

interest. Though this may greatly reduce the

amount of SMF data to be processed, a further

reduction is accomplished by retrieving only
that information from the remaining records
that is desired whether or not they ulti-
mately are used.

Subsequent passes will then process only
the retrieved data greatly reducing the pro-
cessing required. As a result, the actual
SMF file indeed has only been passed once.

During this pass a job table has also been
created identifying all of the jobs necessary
to meet the required request. In addition,
separate data sets have been created contain-
ing the information retrieved from each of

the SMF records required. At this stage each
of these data sets is sorted and merged
against the sorted job table. This reduces
the data to only that which is necessary to

fulfill the required conditions.

Macros

:

MACRO MAJSEL
• MAJOR CONOITIONSI
IF(DATe«80091)

l«
MACRO 6P1C0N0
• MINOR CONOITIONSI
%
MACRO GP2C0ND
• MINOR CONOITIONSI

IF (0SN=<SYS1 .LIHOl ') i HOST= 1

THEN OUTPUT GP2TABLEI
in POS 0iVOLSER='K19762') & RQST«

THEN OUTPUT GP2TABLE;

MACRO MINALL
• MINOR DATE TIME ANO JOB CONOITIONSI
%
MACRO

%
MACRO

MINTYP<t
MINOR PROGRAM CONDITION)

MINTVPB
MINOR PROGRAMMER AND CHARGE CONOITIONSI

%
MACRO MINTYP1<»

MINOR INPUT VOLSER AND DSN CONDITIONS!
IF OSN="SYS1.LIB01 ' THEN DOIROSTa 1

lOUTPUT OUTl^il OUTPUT JOBTABLE I ENOI
PTR=INDEX (DSN, 'TOPS')

I

IF PTR^=0 THEN DOI ROST» 2t OUTPUT JOBTaBLEi
PnS=PTRtOUTPUT 0UT14IEN0I
IF V0LSER='K19762' THEN OUTPUT jOBTABLEt

RQST= 21

%
MACRO MINTYP15
• MINOR OUTPUT VOLSER AND DSN CONOlTIONSt

IF OSNa'SYSl .LIBOl ' THEN 00tRQST= 1

(OUTPUT 0UT15I OUTPUT JOBTABLE » ENDt
PTR=INDEX (DSN, 'TOPS')

I

IF PTR-sO THEN DOI RQST= 21 OUTPUT JOBTaBLEI
POS=PTR|0UTPUT OUTlSlENOt
IF V0LSER='K19762» THEN OUTPUT jOBTABLEl

RQST= 21

%
MACRO MINTYP26
• MINOR INPUT REMOTE NO. CONOITIONJ

MACRO

MACRO

MINTYP35
MINOR TSO CHARGE NO. COnOITIONI

SORTYP
SORT PRINTOUT CONDITION!

8Y J08JDAY RECTIMI

PROC PRINT! BY JOB DATE NOTSOHTEDl 10 PGMRI
TITLE SECURITY RETRIEVAL REPORT!

7. Implementation

As previously mentioned, to customize the

SAS routine to enable flexibility for request-
ing any combination of the nine conditional
parameters, the input requests are processed
to generate SAS macros. In this way, only
that code necessary to fulfill the given
requests is generated. This further reduces
processing costs from that of a generalized
routine that would have to be concerned with
all possible combinations. If any errors
were detected in the input requests, these
macros are not created and the run is aborted.

This request will retrieve all jobs run
on day 91 vrhich used a data set SYSl.LIBOl
or ha(J the character string TOPS somewhere
in the data set name for data sets residing
on volume K19762.

User Requests ;

MIN PGM=»UHPROGM«
MIN JOB=»ACBPEM» & TIME>10.i TIME<12,
SRT 'JOB' ID 'DATE'

A few samples of the SAS macros generated
from the user requests are shown below:

User Requests :

MIN DSN=tSYSl.LlB01»
MIN DSNX=»TOPS« & V0LSER=»K19762«
MAJ DATE=80091

37

Macros

:

MACRO MINTVP5
• MINOR PROGRAMMER ANO CHARGE CONOITIONSI

POS«INDEX(PGMRt (SYSTEMS')

I

IF POS» 0 THEN OUTPUT JOBTABLEl
OUTPUT 0UT5I
IF CC»'1233P» THEN OUTPUT JOBTaBLEI

«
MACRO MINTYP14
• MINOR INPUT VOLSER ANO DSN CONOITIONSI
%
MACRO MINTrPIS
• MINOR OUTPUT VOLSER ANO DSN CONOITIONSI
«
MACRO MINTYP25
• MINOR INPUT REMOTE NO. CONOITIONI

IF flIN=<R108.R01« THEN OUTPUT JOBTABLEI
%
MACRO MINTYP3S
• MINOR TSO CHARGE NO. CONOITIONI

IF CC-»1233P» THEN OUTPUT JOBTaBLEI
«
MACRO SORTYP
• SORT PRINTOUT CONOITIONI
8Y JOB TIME RECTIMI

PROC PRINTI BY JOB NOTSORTEOt 10 RINI
TITLE SECURITY RETRIEVAL REPORTI

«

MACRO HAJSEL
• MAJOR CONOITIONSI
l«

MACRO GPICONO
• MINOR CONDITIONS!
IF(POM»«UHPROGM«)
THEN 001 ROST» II OUTPUT GPltABLEI ENOI

IF(JOB««ACBPEM»1TIME>J0.4TIME<12.0)
THEN 001 HOST* 21 OUTPUT GPlTABLEI ENOI

MACRO GP2C0N0
• MINOR CONOITIONSI
«

MACRO MINALL
• MINOR OATE TIME ANO JOB CONOITIONSI

IF J0B»«AC8PEM« THEN OUTPUT JOBTABLEI
IF TIME>10. THEN OUTPUT JOBTABlEI
IF TIME<12.0 THEN OUTPUT JOBTABLEI

%
MACRO MINTYP4
• MINOR PROGRAM CONDITIONj

IF PGM»»UHPROGM« THEN OUTPUT JOBTABLEI
%
MACRO MINTYP5
• MINOR PROGRAMMER AND CHARGE CONOITIONSI
«
MACRO M I NTYP 1 ^
• MINOR INPUT VOLSER AND DSN CONOITIONSI
«
MACRO MINTYP15
• MINOR OUTPUT VOLSER AND DSN CONOITIONSI

MACRO MINTYP26
• MINOR INPUT REMOTE NO. CONOITIONI
«
MACRO MINTYP35
• MINOR TSO CHARGE NO. CONOITIONI
«
MACRO SORTYP
• SORT PRINTOUT CONOITIONI
BY JOB TIME RECTIMI

PROC PRINTI By job NOTSORTEOI ID OaTEI
TITLE SECURITY RETRIEVAL REPORTI

Includes the SRT option which provides SORT-
ing and report options, as discussed in the
next section.

User Requests :

MIN RINa»R108,RDl» i P6MR -**»SYSTEMS»
MIN CC*»1233P» i, OATE«80092
SRT 'JOB* ID *RtH*

Macros

:

MACRO HAJSEL
• MAJOR CONOITIONSI
t«

MACRO GPICONO
• MINOR CONOITIONSI
lF(RlN»«R10B.ROl'iPOS« 0 & POS-.= .)

THEN 001 ROST» 11 OUTPUT GPlTABLEI ENOI
IF(CC»il233P'iOATEB80092)
THEN 001 RQST« 21 OUTPUT GPlTABLEI ENOI

MACRO GP2C0ND
• MINOR CONOITIONSI
%

MACRO MINALL
• MINOR OATE TIME ANO JOB CONOITIONSI

IF OATE=80092 THEN OUTPUT JOBTaBLEI
%
MACRO MINTYP**
• MINOR PROGRAM CONOITIONI
%

8. Reporting Facility

Of major concern to the user, of course,
is the end report. Here again, significant
flexibility is desired to provide ease of
analysis and ready observation. Though gen-
erally, job integrity is desired for report-
ing, sometimes it is desired to sort the
resultant information on one or more of the
conditional parameters. Furthermore, it

would be helpful to readily separate major
sorting breaks and be able to specify what
variable to position in the left most column
of the report. All of these functions are
provided by the input selection type SRT.
Along with the MAJ and MIN types, the user
may specify a sort request indicating what
conditions he desires as sorting parameters
and the output variable desired in the left
most column. For example:

SRT 'JOB.PGMR' ID 'DATE'

This request will cause the report to be
sorted by job and programmer and provide major
reporting breaks by these parameters. In
addition the date will occur in the left most
column. If no sort condition is specified the
default is set to:

SRT 'JOB, DATE' ID 'PGMR'

No JCL or control cards are necessary to

accomplish this as it is accomplished in the
SAS routine by generating the proper macro
resulting from the input specified. Samples
of the output produced from the previous in-
put requests follows:

38

Example 1 .

User Requests:
MIN DSN='SYS1.LIB01'
MIN DSNX='TOPS'&VOLSER='K19762'
MAJ DATE=80091

p
Is
• o

o K o o a o

mmmm
Urn

S

IS

11

il
o o

if
55

II iii

SI III

I I s I

SI %

¥ SS55SSSS

i i

i I
Si

^ sssssss

39

Example 2.

a

User Requests:
MIN PGM='UHPROGM'
MIN JOB='ACBPEM'&TIME>10.& TIME<12.
SRT 'JOB' ID 'DATE'

o iri —< •-•

o o o o
a _i a a:
a. a "(r a
3C 1£ ^)C ^

3 a
o z
• o

in •

z> in
-J 3
a _i

o • a
u. in in
z Q. 0. o
>-i o o <
• »- I- o
Q • • _l
o in IT u
or O" o •
CL O", (t ^
i'O IS T
^ ^ q:

>-o

m o
•» o
iM in— a

rvj (VIo o
o o
in in
a a

in o
z> <
_1 o

a> in
a> a
ISO'

< <
in in
3 D

in in
a. ao O'

O mOi- •- «-> O O t- It

LT a) ~j o « oj^ ^ « J o rnO ® ^ «o o ^
a u\ <> ^ (o w) in
a « „ o
3£ ^ ^ ^ 3£

O O >
o o «
> > mo ^ o
•t \r>oO 19^ o •

O IS I-
• • 3
n m o
U) UJ f-
0. o. (X
< < o
I- in

o o o o
tv' —

<

z o o o^ (*) i£
S£ • o o
cr o o o o
I o nj M
a. tr < <-t

Q.- • • •
• • CD ID

3£ U O) ID m

at -<
I- <r

o O ffin (r >-i

o < _jMOO^ in oo Q. X
in o •
< a.
• • in

o —« o f\j o —

^

o o «c o o o
(x m ^ in ^ rvj a
o: or »- a q:
i£ le ic ^

o > o o
o >c o o
> in > >moo 1/1 £7*

o c^ o in IT
o ^ IS
X o •
O IS I- O IS

O m o n
_l IS »- liJ kJ
• (x a a

t- q: o < <

^ o

in I in

o o o o o oa a ^ (M (Vj b.
<^ < o o o z
O « « « a-i

4 in o ^ o o •
• Q. o q: o o o

in o -"X -< — o
IML < a. <i < a
do • • K- • • Q. •

J CD m • OD m •

n: o CD)c CD m u

^ ^ « o

a.

O to CO

-* ^ ^ ^
(7' (7" (T" C CT"

CM fVJ fU C\J fU
o o c c o

oj fu r\j f\) (\j

^ ff> o* ^o o o o oo o o o o
CO CO CD CO O)

oc a:
< 4
cr cr
ffi CD

m in
0. a
o o

< in —

<

X » I
IS — a
O DC o
a. CD o
o. u. ^
X w3 1-i <

ooooooooooooooo
cvjrvjojr\j(\jivj(\ifvji\jf\jcvj(\ji\j(\j(\j

coooooooooooooo
fVfvi(\jc\j(\jrxjc\j(\joj(\Jf\jryoj(\jru

oooooooooooooooooooooooooooooo
ffi ffi CO ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi

UJ X
h- a

Z UJ
O 2
O UJ
cr o
Q. CD
X Ul

^ O CO

ffi OD CD OD ffi CO ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi CD CO ffi ffioooooooooooooooooooooo
iriirifiirifimiririripiriptrifimiririnirminir
CT'CT'CT'C?*O*^(^^CT'0*CT' ^ ^ ^ ^ ^
ininmtninininirtrtinininiripiniririninirmin

OOOOOOC9000000000000000
fur\j(\jnj(vi(\jrvioj(\j fVif\jruAjfVjni{\j(\jf\jfMCyr\jnj
(T" CT" CT" ^ CT" ff" ^ ^ ^ ^ ^ O* O"oooooooooooooooooooooooooooooocco oooocoooooc
ffi ffi CO ffi ffi ffi ffi ffi ffi ffi ffi CO ffi ffi ffi CD ffi ffi CD ffi ffi ffi

40

Example 2>b

O i-i ««i o i-" t-i o o o

in i/i

o o ^ <v
^ n o n
fVJ O) o
« (VJ (/I t/i

^ ^ ^

o o
O X

o ir> IT o (C r-
o ^
o in « o o ^ o

t/1 M ^ •-• Qc
QT ^ ^ ^ 0^ ^ oc
^)C ^ ^ ^

CO o^ ^o « ^
a — —
k:)C

o o
> >
^ in

o o
o o
Ul u
_l _Jo u> Vu u
UJ UJ

o o
(VI (Vio o q: _j
« ^ u oo o o oO O O Z
< < a ^
• • t-<rt
CD ffi • >
CD (D 4/>

ffi

Z O
O O OO O >
• > ^

(/I *n o
Z O O-
< M O
a ^ o

>- 3J UJ o^ Q. U
< < »-

O o o O
^ o n n u.

fu o o 2
(D ^ ^ «0
•-> o o o in •

_J O O O C/1 UJ o
• ^ ^ ^ o a o

a:
trt • • •a. t~a.-
>- m (D ts • • •

v) m ffi ffi ^ ^ u

• in <o
O UJ UJ
o Q. a.
q: < <
Q.

u ^ ^

-I M M -• o *i i-» w o O O O ^ i-i »-• o •-•

<vj tn
—«

o

in ^^ ^
o a «
a ^ r\j

a ^ ^
^ ^

o oo o
> >
o o
o o
o oO t3

o ao
t- a
a (/I

o o o
u. n ^Zoo

«o >c
• o o
O o o
o
cr <j <r

—•in^<?-inuj'Cf-r-
<^£^o(^lnaoo —<£inooin4ooo
Aj — fvjo ^ >- in in a.

o o o
o o o o o
> > o o >^ 1^ > > «
o n c^ o n
o ^ a- in -*

o CVJ

o o — ^ o
• • o o •

U (/I • • (/>

*- Ul >^ in UJ
a a ujuj a
o Q. a o

o: q: < < ac
in Q. t- *- Q-

o o o o o
^ >o OJ «o ^ X
o o o o o O
«o <o ^ «o ^ zO O O O O 3o o o o o a.

-t — ^ —. CE
< «X < < <t UJ =>
• • • • • a. o.
ffi ffi ffi ffi ffi ^ •

ffi ffi ffi ffi m »- ^

_* o
• o
(X

i/i a.

>o (\j ino rvj

o in ^
1/1 ^
a (VJ ^
^ k: ^

o >o r)
o o

3
a UJ
ffi a.
3 <

o o
I ^o n
o o o
z « «
3 O O
a o o
CD ^ ^
3 < <

Q. a-
ffi ffi

o o
ffi O)

z z

3 3

ffi ffioo
inu^ininininininu^intnininintninininirininirinirinu^ininu^irininininininintri^
^ ^ ^ ff* ^ ^ 9" ^ C^ ^ ^ O* ^ ^ ^ ^ CT* C^ ^ ff" ^ ^ ff* ^ ^ ^ ^ ^ ^ o*

ininu^ininininininintnLninininininu^inininintninininininintnininininininintntnin

ooooooooooooooooooooooooooc 'OOOOOOOOOOOOO
ftj<\j*u(\j(\jnjf\jnj(\jojfvjfy(\jryojc\j(\j(\j*Vf\j(\jnjf\jfviOj(\jojfvjc\jc>j(\j*M(Vjnjf^
^ ^ O* ^ ^(T'^^^^^^^O'^^^d'C^^ CT" CT* ^ ^ Q> O* ^ CT* ff* CT" ^ CT* ^OOCOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOO
ffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffi QflOffi

in
in c^
<r <

a. < >
UJ CL a
»- I o
in 3 o

Z UJ
o z
O UJ

Q. ffi

X UJ
3 <

UJ ^ (VJ

f\i rvj nj rv) *\i

rvj Pj (M r\j (\j

ffi (T ffi ffi ffi

o o o o o
(VJ nj r\j r\j (M

fy oj (\j iM oj
UJ (^ O" o o a*
t- o o o o o
4 o o o o o
O ffi ffi ffi CO ffi

41

Example 2.c

wOm eoM oe» oooox »».

! i

• o ^
« oa
« X K

a M -J
or « «.
IC K)C

« tf< ee o e
O Sa
K K K

e « c
o r> o
a V -I
a xa
X x K

K (V*

c oO fU o
a n _i
ac xa.
K X

IT IM
^ o o c o
^ o o o o
cj </i a a _j
>• a a oc a
X ic >c >e

in ni
<c c
» o
<M _i— a

in

ir (\jX <c o
O -3 O
a <u -I
a —a

in
4 • « —en e »-e o ok-»- o o
»•» •> sa tt f ^ ^- a a. »- p-

« oo. o« « <o a a a « «
ifi» in aa a in in 'ir_j~>a in in
9VI 9 W V UJ A 0 < UJ 03 COV9 « or u as »- »->aa i- i-
•mo «o • *o • •Q • • •
a •« ee< e4« <ininin< << <i <
euto eo —oo oo ooooo oo oo
L> <A -J a a -I eu-i <J _i uooo_j o _i o _i
»^»»o ot>o ^ »- o o^o r-f-h-f-o f~ o o o«f»o k.«o ^ <i o u. o •£<C>e^O vO o u. %c o
tf>«a Zins wonic lotna zina ininmina in a z in a«u» vMca ««a B A a, ^w€l «ca:sQ. sa ^ tc a
• aU O cU • • •» O •U • • • •O C • <Jnno ot^O ««o rt<no or: o r^ni-imo orio»vu s»u «'»u a>o>o ao>u »»»»o o> u ao>u•AM ssm s«iA a. a) i/> a> cc <Z) m i/i tsm cr t/ioo • •O • oo • oo • • OOOO • O • • •
KKtC KKK)CiCX Ktfte X iC^ i£ i£ ^ ^

00>-<<-<OOx»0000
— r^f^o*in^»oftj®«a;n

aonjcufsjiT'^njfMinrvjru

oo> oo> oo
o o tc oor- oo
>>a> >>cD >>in^m ccp^m sD CT-

o o o cr (7- o o* o

•» » •
o o u.

p^ <X
in m o
w w
sc _i -»
• • <

<j < -

o o o
CJ (J u.

<
«c ^

in IT. o
a- a, ^
< «x ^
• • <
n n •

o* o« in
CO o a.o o o
5£ le H-

o o o o
• -»-»•

L. O O -)

< P* K <
-e -o X

c IT in o
00 CO

^ < < >f
< • • «
• < < •OOOO

u. o u n
< r*. <^ —

1

o in in o
^ cc cc
.» <[< ^
< • • <
• n n

in c^ o- in
a. O) a> aOOOO

5t

O O O O 1
• .» -» •

"5 O O L-
"

< 1^ < •

— * « -« .

o in in c <

^ 00 O) ^ ^

«^ ffi ffi >

4 • • < e

• < < •
o o o o c
-> O O U.

"

< p* < -

X »0 «£> ^ •

o in in o <

^ tr a. -3
^ 4 < ^ •

< • • < <

in 9 in I

Q. o} o) a c

o IS o o (

»- S£ Si I- >

•> X <vio ^ oceo
a o -I
a o a
^ ^

in
o •

<f (Oo r>
p-
<c »
in f*.

0 in
sc 3
• mo
< • <
o in ou -o _i

r> o
vO o

r> n o
ff. o

cc co_in
o o •

^

—• O

la o
o»-
at

«

I:

eooooooooeooooooooo oooo ooooooooooo
Ui OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

• •••••••••••••••••••*•••••••*••••OOOOOOOOOOOOOeOOOOOOOOOOOOOOO OOOO o

M^*MMAJAJA|AiAlAlAlAlKiA«l\JAlAJfV:IUf\«njfVlfVI(>Jf\JfUAjf\Jf\;rMAjfVJ(VrM

^ eooooeooeooooeooooooooooooooooocoo
«f ooooooooooooeooooooooooooooooooooo

Q. a
I*-

i/t in
Ol CO

X K
< <
CD m
o o
O OO Q

< >o
a inO CO
tn a.

O O
O
a:
a in
z <x>

3 a

>£) >0 O <^ %C ^ *foooooooooooooo
oooooooooooooo

^ ^ (T" ^ ^ ^oooooooooooooooooooooooooooo
CD (S S) CO flD S (C 00 (D CD CC

^ ^ *t -*

*C *D ^ 'Oooooo
ooooo
i\j (M fvj f\j nj

(T- ^ O Ooooooooooo
(C 00 00 CD <D

42

Example 3.

a

User Requests:
MIN RIN='R108.RDl'£.PGMR-'=' SYSTEMS'

MIN CC='1233P'&DATE=80092
SRT 'JOB' ID 'RIN'

^ ^ ^ ^ ^ ^ ^ooooooooooooooootno:oooooooaa^^^^^^^^^

< < <
o o o
u o o

< 4 < <

o o o I

L> U U <

in u) tn <

z z z z z z a

o o o
tn m tn
UJ UJ UJ
a. a. a

m r> n
o o o
t/) i/i tn
u u UJ
a. Q. a

• f\j •
n u. no o o
in a in
u; • uj
Q. a

OD >-

a.a.a.a.aaa.aa.
ooooooo<oaaaaccccaxr0O0OOI3O •O

• I/)ooooocol
fy> ^ O" ^

^ ^ ^ ^ >C £)

aaaaa.aa<a

0. a.n n
r) n
fVJ oj

Ui UJ
T X

O- l\J O- *VJ

OD in CO i/>o r> o r>
O CJ O fVj

(\J ^ (\i —•
K 1^ ^

rvi (VI

c rvj

(VI ^

e o

in in
O CT-

< 00
• o

tn ^c •
CD iC
O rst

O >£ O <£>

O «-« O «
> o > o
o O

CO • <c •
4- ^ ^ ^
(vj _i rvi _iO Q. O Q.

» t/1 > 1/1

• O so
CO ^ CO ^
•1 in m
_j o _* o
o < o <
to • «n •

m tn in in
c (y- o <h
< O) < «0
. o .o

in ^ IT

a> o) ^
O to O Ki
ic M ic

c^ rvj

o «o
o
> o
K o
in •

— O
O U
• V>
m z>
o _i
u a

in o (VJ o)
o ^ o. 00^ (VI

o ^ o «o o
> o > o
—

• o in o
r> • r» •^ u moo cr *^ i-
O < O 4
• tn • mu 3 o 3
a -I -J
< a < CL

«c tno a
o o
• t-

tn in
Q. Do _J

in in

rvi (VI

o oo •
> o
in UJ^ </)

(C in

in tn

-111 _J — -J « _i tn •

CD «0
in

_l o
o <
^£) •

in ino a>
< (D

o rsi

0. J (L -I
• O AO

CD ^ <S 4)
« in in
^ o _i oo < o <
•£> • «n •
in in in ino cr o o
4 CO < 00
• o • o

in ^ in ^
a • c •
<0 ^ 0)C
IS Ni O NJ
ic rsi it

3 o
-J vO
a in

in ino o-
4 <X>

• O
in it

z tn
a <^

O N
^ NJ

X Xo o
<c ^
in ino o
in m

o o
ex oc
a, a.

in in
o o
a. a

(Vjfvi(yfvj(vi*virvj(vj(\j(Ufvi
^ ^ ^ CT" ^ ^ ^ ^ CT*oooooooooooooooooooooo
SQOOVffiVAOOSCOO

ininininininininininin

ooooooooooo
fyivj(vjrvjcvjM(\jfVifvjoj«M

in tn
U. li.

u. u.o o

O V)
tn a.o o
0. »-

a: q:
bJ UJ
z zt
UJ UJ
o o
CD CD
UJ UJ
4 4

(vi(vj(Vj(\i<\i(\j(vi(Mfvj(\JOjftjfVii\jfVj<\injfufy<\i(Vi(V)(\j(vj(Vj

ooooooooooooooooooooo oooooo oooooooooooooooooo ooooo
0S)OCCDCO(Sffiffi®CDCDCDODS CPfOAffiCDS S. COODSflO

9COffiGDO®^^ffiCOCOOffiQOOOCOOA(OCDSSS

S<OSCDOOQO<DQDffiOOSCO(D0SCDCOO ODO ®cD<OS®

ooooooooooooocooooooooooc
oooooooooooot o o < oooo .oooo

43

Example 3.b

oooooooooooooooooo*-*

r)nmnnnr)<»)oooooor>ooc o

i-> ooooooooooooooooooooo«-»

i/l 00»-OOOOOOOOOOOOOOOOOK-0 o o
-I a:a.ai/)C)CjoaaaaociO(/)inc:.cocaa a. v>
o ocaottoooaoracEOOOcrctoooouQ: aa

»- ^ CD ^ or uj
OQ.oci<Q: Q:»-i-cr
>h-It-t-> UjXO •

uj t/i tt < uj azzx
^ ^ ~> _j t-n-.!-.*-

ru V
< o
CP 4
^ m
in o
>

ffi z
o «-«

a. a
o r> i(r

^ oo t_> <
< < CD
00 CD •
• • o
X O X
> > o
2 z yiM ^

a. a
)£ ^O O
< <

Q. O ^
15 fVJ C\J

^ <t 4
e> fvj fxj

< < <
CD in t/^

» • id
J a • •
[tt irt in
- UJ
) ^ CO (S
[a o o
J sc

<i5 ^ o a
o o o rvj ID

<r ^ -* St
fU (\J (\J M O<!<<<<
in (/) t/) t/1 (E
^ ^ ^ •

• * • • ^
IT IT in 1/1 a

CT* C> >-

(C CO CO cr a
O O O O UJ
S£ ^ S£ ^

•O *^ — _1
o r\j ru o
^ ^ o
cvj fvi fv a
4 < < <
in in i/i i/i

id ic: St

in in in IT
O CT" <^ o*
CO OD <C <X)

O O O -J
^ ^ ^ ^

a.aa o<aaooao<(£
^fr-< KI-<f->>t-l-t-<

iniDz>-zz>-tnflDZ
UJ UJ UJ q:4ujuj«-<*-<ujqc<uj

o <
2

• O
O UJ
X 1
U UJ
tn a

^ o

z
I- _J
• a
^ UJ

I- I- a a
z o < •

> > r r
Z Z UJ X^ cr

o o ^ ^ ^ o _i
ru ru oj o o ru rvj f«j fu ru o o ru ru ru tn ru ru M o rxj

rurufu rururvjrururururururu ruruofururuo. u.fu<<< <<<<<<<4tf4 <<z<<<< z<
ininin int/imi/)(ni/)mi/)iAt/i mi/t^inint/iin t-iin

Sd^SCl^^^St^k:^ i£ -iC • i£ i£ -it: • i£
• •• •••••••••• • •Q. • • « • a •

inininr^intnintninintninininr-inintnmirtnu^ otn
CT" Q. CT* O* O* ^ O" ^ Q. ^ ^ (U ^ ^ ^ O*

cocD<czco<c<coDa><x>a:eDa:coxcta3r^cccccD<r amOOOUJOOOOOOOOOOUJOOOOOO-J •o

a. Q.
o o
CD CO

UJ UJ
z z

a a
^ St:o u

UJ ^

rufururu(UfururuiMrufur\jr\jrvjfurur\ifUfvjfvjrvjru

OOOOOOOOOOOOOOOOOOOOOOooooooocooooooocoocooo
ACOffiS}COCD0D<OCDCO GOQOCOCCCDGOCOCDOOCOffi^

ininininminirinintninininininininininminin

o o o o o o < I o o o o o o < oooooooo

rurxjrufurururucvjru rururururucvirururururuojfurufurvjrvj

oooooocoooooooo ooooooooocooooooooooooooooooooooooooo
ef) CD (H <D OD OO 0 (C CD tD QO (S 33 S) <D S O) (D S) 00 (O (D CO 0 QO CD

f*ifnni*>rnn<*inf*)fnfni*infni*ifO'*inrnf^*^f*>(^fnr^f^
aacLcccccaaacc stcaccoca cco-cr aa-ccccccaa:oooooooooooooooooooooooooo
ininininininininu^u^inininininininininininininininin

OOOOOOOOOOOOOOOOOOOOOOOOOO
oooooooooooooooooooooooooo

44

Example 3.c

o O
o o
in a

I Io I
(/I »-

a t/i t/i

or cr a
^ ^ ^

T IO U

o o
o o

cr
or a

cr z
in _i
»- a
o UJ

O I

M >o
—« o oo o o
a t/) tn
or q: cr
^ ^ ^

0 o
1 X
(J u
in i/i

,0 ^
o o
o o
I/) a
a q:

I Xu I
in H-

'C >o o00000ao O Of
^ ^ ^

o >- a
»- I •

VI > X
a z X

o _j
fV o
»t o
(\j a
< <
to

i/t in

o o
rvj ojo >t

U. CVi CVJ

Z <I <
tn to

• ^ ^
Q • •
o in in
a o o-
a (S a>
• 00
^ ^ it:

o _i
Aj oo
< <
y: k:

in in

tr CD

o ^
U. (\J (M
2 < <
•-i in tn
• 1£

c:> • •

o in in
a (T-

CL CD OD
• 00
^ ic

o
o

rvj Q.
4 <J
(/) tn

in in

o -J

c ru o
^ o
(\j ru a
< «« <
t/> in (/)

^ ^
in in in
(J. (^
(D OC (C
O O -J
^ ^

OOt-«>*-iOOi-**-iOOOOOO<->

oin-»<-«r^oin--*j oodcdo'Ooo o cc r- rvj o ^fvjoeo—'ooo
(KOnjcvjnji/i^^njojmrvjojQ: o_J
a o — >- ct « »- ^ or — or o a

o o >O O CD
> > CD
in -> r)
a <> ^
a- O" o

o o > 00
o o 00
> > CD > >
OC ^ n >£)

CD 00 O- <D
(^ <^ o c^ <^

000
^ -* •
O O li_ I

r- r- <r
« sO ^ .

in in c
OD 00 ^

< < •

O O O I

U O U. I

1^ <I

^ "O ^
in in o
ct a> J
< < ^
• • <

tn D •

(^ <r in I

o) CD a. I

O O O I

y: ii: I

r r- <
1 ^ ^ ^
3 IT in o
r CO 4'

r < «i

1 • • 4
• < < •

3 O O
- U tJ -)

(K <
-• sD ^
:> in in c>
J OC OD
r < < ^
t • > <
• m n •
') <r in
. CD CO (L
> o o o
- y: »-

O o o O O
• ^ s» • •

~) O O ~)

< r- < <^ —
o in in o o

<D CO ^
^ CE OD <t ^
4 • • < <
• < < • •00000
U O li»

~>

<« r*- < <^ <c ,c ^o in m o o
<r (D <r
4 < -4 ^

«f * • 4 4
• n n • »

tn o a- in tn
a O) OD CL Q.00000
H- y: »- »-

—• ^ ino •
00o m

00 to
^ r5
• in o4*4
o in o
u _J
1^ n Q
* o
in 4 a
ffj u a
4 ic •
• • on r> Q
C O- (J
CD a) tn
o o •

^ y: y:

a a
r- r-

in in
<D CD

<\jrvjr>jojr\i<\jnjrof\jf\jfvjf>jrufu{V(Vfyr\j(\ji\jrsjfv(\j(virvif\j

00000000000000000000000000
4 00000000000000000000000000
O 00<C<D(DaOa)(Da)(CCDCX)CO(DCOCOCDcCCDa)QD(D<C(D<CODCD

a)CDCO<DCDaO(D(DaOCD(DCOCOa>COCDCCtX)0OCDCOOOCOCD0OCO00000000000000000000000000
X inininmininininininininLnintnininLnininLninininLnin

t— 00000000000000000000000000
ooooooooooo<)00000000000

X K
4 4
CD CO

13 O
o o
a o

4 >o
q: in
U 00
in a

X ^O o
o
CE vO
Q. in
X OJ

ojfxjcvjf\JC\jf>jf\jfVjnj(\j(\Jf\jfV(>jivjfuAJOJOJ

00000000000 c 0000000ooooocooooooooooooo
CO(Z><DCOeOCD00C0(D<S<X>CO00<I><D(D<X)CDCD

OOOOOOCOOOOCOOOOOOC
000000 >000000000000

45

9. Conclusions

Frequently it is desired to analyze com-

puter utilization to determine whether and/or

to what extent security violation has occurred.

This paper has described one approach to pro-

vide a flexible means of retrieving pertinent
information and producing relevant reports to

aid such evaluation.

Free form inputs of three types were dis-

cussed, to provide subsetting the original
data base, sorting and formatting the output
reports and specifying the retrieval condi-
tions that must be met. These specifications
may occur in any order with multiple requests
permitted within a given run, except for the

sorting type. Only one sort specification
is permitted per run.

Any combination of nine retrieval para-
meters were outlined to use as search condi-
tions to obtain the information desired.

Once retrieved, the complete job profile is

available for reporting accprding to the sort
conditions specified. In addition to the
usefulness relevant to security considerations,
this facility has been applied profitably to
aid in performance and billing problems.

10. Acknowledgments

I wish to acknowledge the Computer and
Data Security Department for their contribu-
tions to the design and utilization feedback
of this tracking capability. The efforts of

R. I. Pettersen have been especially valuable
in this regard providing early foresight for
critical design specifications, as well as
continuous discussion and recommendations
during development and implementation stages.

46

Software Improvements

47

Measuring Programming Productivity

Peter F. Zol

1

Octopus Enterprises
Post Office Box 126

Geyserville, CA 35^h]

The paper begins by characterizing the current era as one of
decreasing hardware costs and increasing software costs. These trends
make the improvement of programmer productivity a critical consideration.
The paper precedes with a review of the historical methods of measurement
that use statistics such as programs, lines of code, limited lines of
code, program correctness, data division lines plus verbs, and project
control history. The consequences of imposing these various measures
are considered from the aspects of generation of quality programs and
impact on programmer morale.

The second section of the paper advances the position that
available methodologies depend on the assumption that programmers
should be evaluated on their ability to produce a program, as opposed
to a product such as a report or a screen. An operat iona 1 i st metho-
dology suitable for metaprogramming is defined with the key consti-
tuents being a data elements dictionary and a set of software routines
that generate sections of programs. The paper concludes with some
suggested methods for measuring the efficiency of metaprograms ' output
as well as measuring the programmer's productivity in the new milieu.

Key words: Metaprogramming; operational ism; programmer measurement;
programmer productivity.

1 . The State of the Art

The introduction of the IBM k^OO ('E')

!
series hardware and its plug-compatible
competition has effectively quadrupled the
data processing buyer's dollar in terms of
equipment. This has been almost entirely
offset by the more than doubling of the

ji salaries of programming personnel in the

I'

last five years. Currently, in the San
Francisco Bay area it is not uncommon to

I

find trainees commanding twenty thousand

I

dollars per year, with contract programmers

I

engaged in nothing more complex than COBOL
coding earning, if such is the word, sixty
thousand dollars annually.

Monitoring facilities to report the

increased productivity of the new hardware
have grown in both number and sophistication.
Alas, the quantitative and objective mea-

surement of a programmer's productivity
is still deficient. Historically, the first

(and still most prevalent) programming
measurement methodology employed is a carry-

over from techniques used to manage some of

the more prosaic occupations. Typically,

the manager draws up a list of tasks,

estimates the effort involved and assigns

personnel. The programmers are evaluated on

their ability to complete tasks on time and

under budget. (l) While economy and time-

liness are critical and praiseworthy goals,

their attainment depends heavily on the

49

ability of the manager to estimate accurately
while simultaneously assuring a quality
product. Failure on the part of the manager
often results in programmers working odd and

long hours. This was of some short-term
benefit to the company, largely because the

projects were completed within bounds. The
steady eros ion of trained personnel seems to

be regarded as harmful in the long run.

Worse, information systems implemented under
the methodology discussed above can be

readily indent if ied by some or all of the

following features:

o Little optimization of system
resource consumption

o Very conservative technology (to the

point of obsolescence)
o Numerous specification changes due

to inadequate allocation of time or
resources for design and analysis

o A significant number of trivial

programs
o A substantial number of highly

specialized programs
o A high level of post- implementation

maintenance
o Coding that emphasizes expediency at

the cost of qua 1 i ty

In response to a groundswell of complaint
to the effect that a trivial program ought
to be weighted less than a complex one, and

that more eloquent (or verbose) coders should
not be penalized, counting the lines of code

was introduced as a measure of potential
program goodness. Lines of code has become
a fairly popular basis for productivity
measurement . (2) Like many other common mea-
sures, such as IQ, the exact meaning of a

line of code is not always clear. Because
persons who administer and evaluate program-
mers tend to be paid more than programmers,
the prospect of having a manager count lines
of code does not have economic appeal (not

to mention the understandable reluctance of
the manager to engage in such a mundane
activity). Accordingly, a number of attempts
have been made to use the computer to count
the lines of code. Presumably the irony of
using the programmer's tool to measure the

programmers had some appeal.

Those familiar with modern COBOL com-
pilers will be quick to point out that the
compiler in many cases provides the number
of Data and Procedure Division statements.
This means that the use of COPY statements,
however commendable, skewed the results.
The Remarks section of the Identification
Division was also slighted, as were comments.
Those installations fortunate enough to have
a source library manager such as PANVALET or

LIBRARIAN could consider using the library «
"

software to count the number of statements. '

The problem with this approach is that a
]

line containing a trivial amount of code f

(such as 'ELSE') would be equal to a line 1

containing 50 or 60 characters. i
^

Two divergent schemes were developed to''
''

resolve this problem. The limited lines of i

code approach discards all lines that do noti

contain a certain minimum number of char- •

acters (with fifteen being a common choice).!
The second approach calculated a ratio

j

between spaces and characters and termed f

this the program's density. It was asserted i

that program density correlated well with
a programmer's efficiency. A fairly thor-
ough search of the contemporary literature
has failed to uncover any publications that i

vindicate this assertion. At any rate,

several ingenious (if not wholly ethical) !

ideas were employed to counter the measure- «

ment programs. Blank cards, formerly used
to offset paragraph names or comments, were i

changed to contain an asterisk in column 7.
\

More extreme examples of this were the use i

of the literal SPACE or even asterisks in i

columns 7 through 71. An acquaintance of
mine coded all elements of a structure in

the general form of e-name, where name was
the lowest level qualifier. Using library i

features he was able to change all es to a ii

twenty character prefix. To add insult to i

injury, all the names were full qualified,
Naturally, he sported an enviable efficiency
rating and is now a manager.

The next improvement on the lines of

code approach counted both the identificat
and Environment Division statements in addi-

j

tion to comments, referenced Data Division
j

statements and Procedure Division verbs.
j

The qualification of referenced Data Divi-
,

sion statements was deemed necessary to
j

prevent the inclusion of superfluous COPY r

statements (or their equivalent). This
,

methodology was found to discourage many
,j

aspects of structured programming. Data-
i.

base programs were favored, while the
j

results on Report Writer and indexing were
^

mixed. Work on a compensation factor j

relating bytes of object code produced per \

verb was abandonned in the face of general lyE

fruitless results.

Scarred veterans of the programming
,

wars will be certain to point out that all
(;

the counting of lines is no substitute for '<

having the manager or chief programmer i:

inspect the code. Worse yet, the counter
(

is forced into an ongoing guerilla warfare
,i

with the countees (who, in their worst j

moments, have been known to take delight in ,

50

I

altering the counting program), Finally,
! the lines of code counting fails to observe

the most fundamental law fo programming '-

' any program that works is better than a

program that does not. Lines of code counting

i does not assure that a program will work, as

the (necessary) advent of structured tactics

shows; it merely insures that a large number

1 c
of lines of code will be produced. The most
shattering blow of all comes from user?. It

J
seems that they are, as a group, more aware
of and concerned with reports, screens and

so forth, than they are with how many lines

of code were produced. |n short, lines of

code counting does not distinguish between

a product and a process. (3)

2. Operational ist Metaprogramming

A recent publication indicates that any

hopes for a high improvement in programmer
productivity are likely | 1 1-founded. (A) |f

I the traditional measures and concepts are
' retained, or even adjusted by error refine-

ments (5), this gloomy conclusion is still

I
likely to hold. One may, however, take some

solace in recent thoughts by Gerald M,

,
Weinberg (6) to the effect that unusual tasks

! or work in programming are quite rare.

Accordingly, an operational ist approach
involving metaprograms may be of some promise.
Many metaprograms exist today. The most
common example is the commercially available
'report writers. Here all a user (programmer
lor not) need do is to define the data elements

((I
and relationships, and reports may be gener^

j ated with relative ease. Operational Ist

I

metaprograms exists today to extend this

1

function to cathode ray tube screens and

K I transaction editting. The user need only
j' declare the class of screen element Cllteral,

j database element, program variable) and
I define its position on the screen. The

I

attendant MFS macros (in the case of IMS/DC)

I'ljare then generated automatically. These are

I

accompanied by appropriate Working Storage
|and Procedure Division statements. in the
Ijicase of a transaction, the user need only

I
define the input format and the target data-

ibase elements. This process of metaprogram-
iiiming does indeed add yet another language to

! the Babel (7) existing today. The reduction
in monotony and increase in productivity

y

I

seems to be adequate compensation.

I

The programmer is then measures on his
or her ability to design a database system.

I The production of file definitions and data
Ij elements dictionary entries becomes the

j
critical measure. It can, of course, be
abetted by the measurement of additions,

: deletions and changes. These measures are

i;
readily derived from the data elements

dictionary. The routine audits now performed
by the database administrator to determine
aspects of element access and usage can also
be used to measure the goodness of the design
and the thoroughness of the analysis.

The change Is perspective from lines of
code and other measures which are used to

monitor the clerical functions of computer
programming to Inspection of design In the
milieu of operational 1st metaprogrammi ng
requires some reorientation. It implies a

higher usage of the hardware to reduce the
non-creative tai.ks associated with infor-
mation processing. This has been a trend
throughout the brief history of computing.
Programmers will have the option of becoming
either metaprogrammers (writing the routines
that generate the code) or into designer-
analysts. The former will still be aware of
and concerned with the reasonable use of
hardware, while the latter will gain more
ability to aid the organization In its

Imposition of computer-based Information
processing and structures on the less

desciplmed areas of the business environ-
ment.

References

(1) Comper, F.A., Project Management for

System Quality and Development
Productivity Proceedings of the

Application Development Symposium.

(2) Evans, B.
,
speech at the 10th Confers

ence on Computer Audit Control and

Securi ty

(3) Bradshaw, W.R., 'Application Develop-
ment Productivity Within IBM Informa-
tion Systems' Proceedings of the

Application Development Symposium

(A) Jones, T.C, 'The Limits of Programming

Productivity' Proceedings of the

Application Development Symposium

(5) Albrecht, A.J., 'Measuring Application
Development Productivity' Proceedings

of the Application Development
Sympos I um

(6) Weinberg, G.M., 'The Psychology of
Change In Development Methodology'
Proceedings of the Applications
Development Symposium

(7) Ehrman, J.R., 'The Babel of Application
Development Tools' Proceedings of the

Application Development Symposium

51

Also of interest:

Boehm, B.W. et. a1 , 'Quantitative Evalua-
tion of Software Quality" Proceedings of

the Second International Conference on

Software Engineering

Jones, T.C., 'Measuring Programming Quality
and Productivity' IBM Systems Journel

,

Volume 17, Number 1, 1978 also in

Proceedings of GUIDE h5

Kendall, R.C., 'Management Perspectives on
Programs, Programming and Productivity'
Proceedings of GUIDE ^5

Comparative Performance of COBOL vs. PL/I Programs

Paul J. Jalics

Cleveland State University

Abstract

The comparative performance of COBOL versus PL/1 programs on the

IBM/370 is studied on the basis of a substantive benchmark test which
has been implemented in both languages. The benchmark program was
written so as to use identical data-types and language facilities
where they exist, and close approximations elsewhere. Measurement
results from each of eleven atomic tests are then used to gain insight
into the relative merits of code generated for each language in that
particular area. A number of surprising results were found, which in

turn necessitated the running of additional experiments to explain the

results. These, then, all contribute to give substantial insights
into the relative performance of COBOL versus PL/1 Programs.

Introduction

The comparative execution time perform-
ance of COBOL versus PL/1 programs is exam-
ined on the basis of a substantive benchmark
test which has been implemented in both
languages. The original benchmark was writ-
ten in COBOL and is called BNCl. Subsequently,
three PL/1 versions were created: BNC6 is

the original PL/1 translation with COBOL nu-
meric COMP-3 items being interpreted as PIC
'9' items, with PERFORJl's being interpreted
as PROCEDURE calls; BNC7 which interprets
COBOL numeric COMP-3 items as FIXED DECIMAL
and enumerates multiple occurrences of sec-
tions of code PERFORMed in COBOL rather than
use procedures; and finally BNC8 which is

similar to BNC7 but uses PROCEDURE calls to

Implement PERFORM. BNC6 can be thought of as
a conservative COBOL programmer's translation
and BNC7 and BNC8 as more favorable transla-
tions for PL/1.

The benchmark breaks down into 11 sepa-
rate tests each of which is timed separately
using an assembler subroutine called XTIME
which returns the CPU execution time in units
of 10 milliseconds (0.01 sec=l time unit).

There is a repetition factor for each of the

11 tests which is set so as to give the pro-
portion of each category of tests to reflect
actual business programming usage (as inter-
preted by the benchmark's designer). We
shall not be concerned with the weights and
proportions given each test here, however,
since we want to focus our attention on the

relative performance of COBOL vs. PL/1 in

each of the 11 test categories separately.

Measured Data

The following table summarizes the

results for each of the benchmarks run on an

IBM 370/158 with maximum Compiler optimiza-
tion (using VS/COBOL release 2.2 and the

PL/1 Optimizing Compiler Version I Release
3.0):

53

Test
Number

Test
Description

BNCl (COBOL)
CPU time

BNC6(PL/1)
CPU time

BNC7(PL/1)
CPU time

BNC8(PL/1)
CPU time

1

2

3

4

5

6

7

8

9

10

11

12

Internal Subroutine Call
GO TO, GO TO Computed
COMP-3 or decimal arith
Binary or COMP arithmetic
Character MOVE's
Compare 's

Table Indexing
Numeric Editing of Decimal
Numeric editing of binary
INSPECT, char search & replace
Table Search
TOTAT

12

3

42

9

120

36
1

17

22

143

3

160
17

86

116
2

46
39

14

32

138
2

107
28

82

141
1

32

44

15

29

146

3

114

29

80

77

1

35

45

14

33

e 78

47

387 658 619 577

A detailed description of each of the tests
and the results obtained for each now follows:

Test 1: Internal Subroutine Call

This test was originally designed to test

the speed of execution of the internal sub-
routine facility in COBOL, namely the PERFORM
statement. A sequence of nested PERFORM' s is

executed; the nesting is three levels deep
and the first two levels contain TIMES
options for looping. In PL/1 the simplest
way to implement this is via PROCEDURE calls
without parameters. The looping in the

first two levels is done with DO loops.

This test shows the most dramatic differ-
ences between COBOL and PL/1 with COBOL
being 12 times faster than PL/1. The PERFORM
in COBOL is implemented very efficiently
whereas a PROCEDURE tall is by its nature
more complex with dynamically allocated local
storage, etc.

One can gain some insight into the factor
12 difference by looking at the table below
which outlines typical overhead of the vari-
ous subroutine mechanisms (as they are used
in this benchmark)

:

54

COBOL PL/1

simple PERFORM
6 instructions to get there

2 instructions to return

PERFORM UNTIL (with simple condition)

6 instructions to get there

+11 instructions on each looping

simple CALL
23 instructions to get there

(+possible library call to allocate
more memory space)

5 instructions to return

DO 1=1 TO N BY 1;

11 instructions to get there
12 instructions on each looping

PERFORM TIMES

11 instructions to get there
11 instructions on each looping

DO 1=1 TO N BY 1; CALL SUB; END;

34 instructions to setup & get there
(+possible library call to allocate more

memory space)
17 instructions on each looping

Test 2: GO TO, Computed GO TO

This test has a large number of GO TO

ji statements and one computed GO TO per execu-
' tion of the test (test is repeated 35 times).

A glance at the code generated and the numer-

lj
ic result indicates that both COBOL and PL/1

H perform quite well in this area and the code
generated is very similar.

Test 3: Decimal Arithmetic

This test consists of arithjnetic (add,

subtract, multiply, divide) to data-fields
of various sizes with overflow detection and
rounding on 27% of operations, overflow
detection on 9% of the operations. This

i test is implemented via COMP-3 packed deci-
I mal data-fields in BNCl. IN BNC6, it was
implemented via PICTURE '9' variables and in

BNC7 and BNC8 it was implemented with FIXED
DECIMAL. Thus the results of BNCl, BNC7,
and BNC8 are easily comparable but BNC6 is

not since it uses another data-type.

The results of this fairly important test
were puzzling and a good number of additional
experiments had to be devised to adequately

i explain the results.

Since BNCl, BNC7 and BNC8 all use the
same data-types, it was incredible to find
that ENCl was 2.7 times faster than the PL/1
versions. Looking at the code itself did
not give great insight into the performance
differences: BNCl was slightly smaller with

||
119 instructions total vs. 146 for PL/1.
The COBOL code looked like quite a different
style from PL/1 for identical operations but
the types of instructions were similar. In
fact, the lengths of most of the temporary
data-fields involved in the computations for

PL/1 were often smaller than for COBOL.
Rounding seemed to be handled more effi-

ciently in COBOL (4 instructions vs. 7 in

PL/1). The use of REMAINDER was more effi-
cient in COBOL whereas it had to be computed
with additional arithmetic in PL/1. State-
ments relating to ON SIZE, ROUNDING, and

REMAINDER were temporarily deleted from the

test to see if that would explain the huge
performance factor of 2.7. Once this was
done, the number instructions in COBOL was
reduced to 84 and in PL/1 to 85 instructions.
But the CPU time did not change appreciably.

Finally, the culprit was found to be

the PL/1 error interrupt handler. PL/1
always runs with all hardware overflow
interrupts enabled. If a certain abnormal
condition occurs, a machine interrupt takes

place and the PL/1 error handler is given
control. Then if that particular condition
is enabled by the PL/1 programmer, the

appropriate ON statement (s) are executed.
If the condition is not enabled, then the

error handler still gets invoked but he
quickly decides to ignore the condition.

Thus, when the ON SIZE statements were
removed as described in the paragraph above,

the overflows still occurred and the exces-
sive performance factor of 2.7 did not
improve. Finally, the statements causing
overflows were removed (10% of arithmetic
statements) the CPU times for both COBOL and
PL/1 settled down to about 41 time units.

The main conclusion from the above is

that PL/1 error interrupts are quite time

consuming with a minimum of about 500 micro-
seconds of CPU time per such interrupt.

Moreover, it doesn't really matter whether
the interrupt is to be ignored by the program
or acted upon; the overhead has to be paid
regardless.

55

The big question that remains is: Why

wasn't this same overhead observed in COBOL.

COBOL, in general, tends to be more lax

about overflow and other arithmetic disasters:

they are ignored in the usual case. Thus

COBOL usually runs with the hardware condi-

tions disabled. In looking at the code gen-

erated for the ON SIZE statements, they were
detected by doing the arithmetic with a

larger number of digits in temporary storage
and then additional instructions were gen-

erated to detect non-zero values in the

upper digits. This contrasts sharply with
PL/1 where one does not see any additional
code to detect overflow: it is all done by

the hardware (COBOL generates an additional
11 instructions to detect the overflow in a

typical case)

.

An additional experiment was carried out

to be able to compare the test 3 results for

BNC6 (uses PICTURE '9') to BNCl results.

BNCl was temporarily changed to use USAGE IS

DISPLAY which would then be comparable
directly to the PICTURE '9' data types of

BCN6. Results of this modified BNCl showed
a CPU time of 39 units, which is slightly
less than the 42 gotten originally for BNCl
using COMP-3 data-type. This slight decrease
was quite surprising when a substantial
increase was expected since DISPLAY data
types are first PACKED into COMP-3 (packed
decimal) then the arithmetic is done, and

finally the results are UNPACKed into DISPLAY
format. Thus it is surprising that with all

the extra work to be done, the CPU time is

smaller than for COMP-3 where the arithmetic
can be done directly. Previous measurements
have indicated that COMP-3 arithmetic is

twice as fast as DISPLAY[1].

Looking at the generated code, it became
clear that the extra PACK and UNPACK opera-
tions were also used to move the data to the
temporary workspace and back (this was done
with costly ZAP's in the original BNCl).
The comparison with BNC6 still didn't work
out well because of the error interrupt prob-
lem noted earlier.

In summary, the decimal test gave a num-
ber of interesting insights into COBOL vs.
PL/1 differences. The code generated by
PL/1 appears to be just as good as COBOL in

most cases (exception: ROUNDING, REMAINDER)
but the style of code generation is quite
different (for example: a simple add A=B+C
generates the sequence of instructions ZAP,

AP, MVO, ZAP in COBOL and MVC, AP, MVO, MVN
in PL/1). The most dramatic discovery is the
very high cost of program interrupts in PL/1
regardless of whether the interrupt is to be
ignored or acted upon. This, then, is in

sharp contrast to COBOL error handling which

56

relies more on additional
erated to detect the error
using ON SIZE in COBOL can
cally whereas in PL/1 it i

critical sections of code,

tion, then, was that COMP-
ables performed equally we
is normally expected to be
DISPLAY.

instructions gen-
condition. Thus
be done economi-

s to be avoided in

A final observa-
3 and DISPLAY vari-
11 whereas COMP-3
twice as fast as

lite!

if:

Ut

0

JO

Test 4: Binary or COMP Arithmetic

j

This test is identical to test 3 which
we have just examined except that COMP data-
type is used in COBOL and FIXED DECIMAL for

'

BNC6 and FIXED BINARY for BNC7 and BNC8.
The CPU times are also not directly compar-
able with test 3 since the number of repeti-

,

tions of the test is smaller than for test
3 (650 repetitions for test 3 and only 100

repetitions for test 4).

The same curious effect showed up here
as was observed for the decimal test (test

3). The PL/1 CPU times are 3.2 times as

much as the COBOL (ignoring BNC6 which is not

a comparable data-type) . The number of machin
instructions generated is very similar for

both COBOL and PL/1. Again the culprit is

the error interrupt handler which was invoked]

a number of times (some are caused by the
implementation limit of 32 bit in PL/1 vs.

64 bit limit in COBOL where the benchmark
originated). By eliminating the statements
causing overflow the CPU times were reduced
in COBOL to 6 time units and in PL/1 to 3

time units. So PL/1 is actually significant!
faster than COBOL for the binary fields of

the mix in this benchmark. The reasons for
this include the tendency of COBOL to use
more library routines for partial word multi-
plications and division; also more of the PL/
code is done in binary whereas the COBOL code

frequently converts operands to packed deci-
mal, presumably to get proper decimal trunca-
tion (since we specify COBOL COMP fields in
decimal digit ranges vs. bits in PL/1).

We can compare CPU times with test 3 by
multiplying the CPU times for test 4 by 6.5. .

Thus in COBOL the 9 unit result multiplied
by 6.5 becomes 58.5 which is about 50% higher
than for COMP-3 fields in test 3. This is

somewhat surprising since COMP is commonly
twice as fast as COMP-3. The explanation for^

this is that half of the data-fields are over^

10 digits where COMP fields are by far the
^

most inefficient of all.

Test 5: MOVE Test

This test consists of MOVE's of characte,
fields which vary in size from 1 to 1024 i

i

j

bytes. The sending and receiving fields
' talways have the same length.

This is one of the few tests where PL/1
clearly outshines COBOL, rather surprisingly

l^'l
since COBOL is supposed to be specializing
in fixed length character manipulations.
One big reason why PL/1 looks better here
than it might in real-life situations is

that the MOVE's are all of successive fields

of one record to successive fields in another

record and PL/1 is smart enough to recognize
this and instead of generating an MVC for

I

every MOVE, it generates one large MVC for

!up to 12 individual MOVE's.

j

This test was repeated with PICTURE 'X'

variables in PL/1 as well as CHARACTER vari-
ables and the performance results are iden-

' tical.

In summary, although PL/1 looks better

pen this test, the code generated and the

j

performance of MOVE operations on character

I
variables is likely to be identical for

"Uoth COBOL and PL/1.

Test 6: Compare Test
il

This test does a sequence of compares
of various data-fields of numeric as well
as character type and of various sizes. The

' results show COBOL to be at least twice as

fast as any of the PL/l's. The great vari-
' ation among the PL/1 versions deals with

I

the specific data-types of the variables
which are different for BNC6, BNC7, and

I

BNC8 in a number of cases. COBOL gets some

I
advantages from its additional language

j facilities like testing NUMERIC and
j ALPHABETIC which generate Translate and Test
machine instructions rather than the much

I

more overhead of testing it manually in PL/1
|i (involving multiple tests) . The code gen-
1^ erated for 88 level condition-names is very
; convenient for the prograitmer but the code

j

generated does not seem any more efficient
than the corresponding manually constructed

f sequence in COBOL or PL/1.

Most of the IF statements generate a

,|
similar number of machine instructions in

j
both COBOL and PL/1 and the factor of 2 per-

' formance appears to be due strictly to the

1|
advantages gained in COBOL class tests for

) NUMERIC and ALPHABETIC.

Test 7: Indexing Test

This test was intended to measure the
speed of execution of USAGE is INDEX data-
fields in COBOL. INDEX is a rather unique

feature of COBOL in which the COBOL programmer
set's the "subscript" which he will later use

to access an element of a table. The actual
value of the index is the byte offset which
points to the chosen element. As a result
each manipulation of the INDEX variable
reauires a multinlication bv the element size.

Thus the COBOL code is twice as large as the
PL/1 which has no equivalent language feature
but instead does analogues operations on
"subscripts" which have a data-type identical
to INDEX variables.

One would expect the CPU time for COBOL
to be twice as much as for PL/1. This is not
observed, instead the results are about the
same and fluctuate quite a bit for separate
runs, probably indicating that the total time
is so little in relation to our time unit
that we are not getting sufficient accuracy.

Test 8: Editing of Decimal Numerica Data

This test involves taking the numeric
results calculated in test 3 and moving them
to edited fields so that they can be printed
in a "pretty" format such as might be
expected in a business report. Both COBOL
and PL/1 accomplish this editing with editing
picture's like PIC Z, $, B etc. Here again,
BNCl can be compared with BNC7 and BNC8 but
not with BNC6 which uses PICTURE '9' for the
numeric fields rather than COMP-3 (or FIXED
DECIMAL for BNC7, BNC8).

The code generated looks about the same
for many of the edit moves and in fact COBOL
often generates a few more instructions than
PL/1 where they are not identical (example:

COBOL 9, PL/1 6). In spite of this, the CPU
time for COBOL is typically only a half of

PL/1 execution time. This can be attributed
directly to the fact that PL/1 calls library
routines in 3 out of the 17 edit moves where-
as COBOL generates in-line code for all of

them. When the three statements generating
library calls were removed, CPU time went
down -drastically from 39 units to 9 units
which would make the remaining somewhat
faster than COBOL.

In summary, the COBOL editing of deci-
mal numeric data is about the same or

slightly worse than corresponding PL/1 edit-
ing for the cases where PL/1 generates in-

line code. For the remainder, PL/1 performs
much worse. Thus PL/1 code generation in

this area is less polished.

Test 9: Editing of Binary Numeric Data

This test does editing Identical to test

57

8 above except that the source field data-

items are binary results calculated from
test 4.

Results here are somewhat analogous to

test 8 above: COBOL editing is twice as fast

as PL/1. The size of the code generated is

about the same but both COBOL and PL/1 each

call 3 library routines. Two out of the

three library calls are for different move
edit source statements in COBOL vs. PL/1. It

is again clear that the factor of 2 in per-
formance for PL/1 comes from the library
calls because when they are removed, CPU time

drops from 45 to 17 units.

Test 10: INSPECT verb:

Character Search and Replacement

This test consists of scanning a char-
acter field of 40 characters in five differ-
ent INSPECT statements some of which scan in

testing for certain characters, others count

the number of occurrences of certain char-
acters, while others do selective replace-
ment of characters. Since PL/1 has no

facilities like INSPECT, loops are setup to

perform identical manipulations on identical
size and type data-fields.

Somewhat surprisingly, COBOL is 4 to 5

times as slow as the equivalent PL/1 code.

Looking at the code will very quickly explain
why this is so: COBOL calls a library rou-
tine to implement each of the INSPECTS. The
problem surely comes from the fact that
INSPECT is such a general statement with so

many possible combinations of functions that
the library routine which implements it must
be very generalized and parameterized and
therefore probably not the most efficient.
The parameter list for this library call is

so complicated that it takes more instruc-
tions in COBOL to prepare the parameter list
(110 instructions total) than to perform all
of the actions necessary in PL/1 (90 instruc-
tions total). This difference can easily
account for the factor of 4 to 5 difference
in performance.

Test 11: Table Searching

This test searches a table with 30 ele-
ments in six different ways, three times
using a linear SEARCH, the other 3 being a

binary SEARCH ALL. Since neither the SEARCH
nor the SEARCH ALL is provided in the PL/1
language, manual code was written to perform
identical functions. In the PL/1 code each
of the 6 table searches is done via linear
searching and since earlier measurements [1]

on COBOL indicated that the threshold at
which SEARCH ALL becomes more efficient is

with tables of at least 50 elements, this
should not prejudice the results substan-
tially.

The results indicate that PL/1 code is

about 50% faster than the COBOL code. The
PL/1 code consists of 102 instructions total
versus 142 for COBOL. In addition, COBOL
generates a library call for SEARCH ALL
whereas all of the PL/1 code is in-line.
Certainly the results would not be so favor-
able to PL/1 with a larger table but then oii

could without much difficulty write search '

loops that implement a binary search (SEARCi
ALL) .

Conclusions

Certainly one cannot expect to get a

complete overview of the execution efficienc
of two extensive programming languages like
COBOL and PL/1 from any one benchmark. The
benchmark used is impressively good, however
and serves to give substantial insights intc

the performance aspects of COBOL and PL/1 pr^

grams on the IBM/370 (excluding input/outputf
statement performance)

.

The following points summarize the

observations

:

1. Except for the overhead of the
PL/1 PROCEDURE call which is

substantial, there appears to

be no basic grounds why PL/1
programs have to be any less

efficient in execution than
corresponding COBOL programs.

2. PL/1 performance depends a

great deal on the choices made
by the programmer in selecting
language features, data-types,
etc. Thus considerable care
needs to be taken if one is to

achieve a performance level as

good as COBOL. Without such
care, it is very easy to get a

PL/1 program which runs two to

three times as slow as a simi-
lar COBOL program.

3. PL/1 code generation is not as

good as COBOL in a few areas
like editing of numeric data-
items and partial-word binary
arithmetic among others. The
code size is, in general, com-
parable but more use is made of

library calls than was observed
for corresponding COBOL programs.

58

4. PL/1 error handling has a

tremendously higher overhead
than COBOL in the cases observed,
simply because PL/1 makes more
use of hardware interrupts to

signal such conditions whereas
COBOL generates in-line code
to identify such situations.
Also, it is dangerous thing to

specify that error interrupts
are to be ignored since the
programmer will never know that
such errors occur on a regular
basis (they should be elimi-
nated instead by additional
checking) and serve to degrade
performance a great deal.

References

[1] Jalics, P. J., "Benchmarks for Measuring
COBOL Implementation Performance", Data
Management, Vol. 18, No. 4, April 1980.

[2] Jalics, P. J., "Improving Performance
the Easy Way", DATAMATION, April 1977.

[3] Jalics, P. J., "Comparative Performance
of COBOL Programs on Mini vs. Large
Computer Systems", Proceedings of the
First Annual Symposium on Small Systems,
New York, N. Y.

, August 1978 (ACM/
SIGSMALL)

.

59

Data Communications

61

NBS Network Measurement Methodology

Applied to Synchronous Communications

Marshall D. Abrams

Institute for Computer Sciences and Technology
National Bureau of Standards
Washington. D. C. 202 34

Dorothy C. Neiman

Commtex, Inc.
2411 Crofton Lane

Crofton, Maryland 21114

This paper focuses on the application of the NBS Network
Measurement Instrument (NMI) to synchronous data
communication. The suitability of the underlying
Stimulus - Acknowledgement - Response (SAR) model to
support the implementation of this methodology
permitting quantitative evaluation of interactive
teleprocessing service delivered to the user is
described. The logic necessary to interpret EAR
components and boundaries depends on character time
sequence for asynchronous data communications traffic
but entails protocol decomposition and content analysis
for character synchronous data traffic. The
decomposition and analysis rules necessary to evaluate
synchronous communications are discussed and the level
of protocol violation detection which results as a
byproduct is cited. Extensions to the utility of the
Network Measurement Instrument (NMI), deriving from
additional workload profiling measures desirable for
character synchronous communications, are also
presented

.

Key Words: Data communications; protocol
validation; synchronous;
teleprocessing service
evaluation

.

1.0 INTRODUCTION

In 1979 the National Bureau of
Standards contracted with Commtex for
the incorporation of the NBS Network
Measurement System [1] methodology
into a portable Network Measurement
Instrument (NMI) [3]. One part of
Commtex 's implementation entailed
extending the NBS concept of
performance measurement and
evaluation to deal with character
synchronous data communication
protocols

.

This paper focuses on the comparison
of data gathering for synchronous and
asynchronous data communication and
the suitability of the underlying
Stimulus - Acknowledgement - Response
model to both methods.

2.0 THE STIMULUS ACKNOWLEDGEMENT
RESPONSE MCDEL

63

The NBS approach to the measurement
of interactive computing tocuses on
the qualitative and quantitative
aspects of the service provided to
the terminal user. The assessment of
service delivered by such an
interactive teleprocessing system is
accomplished through the Stimulus -

Acknowledgement - Response (SAR)
model [2] which views user-network
communications as a sequence of
transactions composed of a stimulus,
and the consequential acknowledgement
and/or response from the
network/ system . Recognition of SAR
components from data traffic
transmissions requires specific
interpretation logic for each
transmission mode and protocol to be
analyzed

.

In order to produce measurement
results consistent with subjective
human judgment of system performance,
it is necessary to differentiate
operational feedback
(acknowledgement) from information
transfer (response) within network
output to the user.

2.1 Asynchronous Communications
Characteristics

In asynchronous communications the
acknowledgement is defined as a fixed
header, a known string of characters
which occurs at the beginning of data
transmission from the network, and
all non-printing characters which
immediately precede or follow the
header. In the absence of a fixed
header the acknowledgement consists
only of the non-printing characters
at the beginning of network output.

3.0 CHARACTERISTICS UNIQUE TO
SYNCHRONOUS COMMUNICATION

Unlike asynchronous communications
where the unit of exchange between
user and network is a character,
synchronous communications protocols
assemble multiple characters into
transmission blocks which are
transmitted at the maximum network
transmission rate. Only when
acknowledgement- response boundaries
are coincident with transmission unit
boundaries is the psychological
function of acknowledgement
fulfilled. For synchronous
communications, acknowledgement is

therefore defined as all transmissior
units containing a fixed header which
occur at the beginning of date
transmission from the network. /

synchronous transmission unit can be

identified as acknowledgement not
only as a function of content but
also as an occurrence in time. Ir

IBM 's binary synchronous
communications for example, the
"limited conversational mode" allows
for the substitution of a text
message for the link level
acknowledgement to user stimulus.
This message which often contains
format control data is accepted as an
acknowledgement

.

Although the NMI monitors all
communications on the circuit under
test, the link control sequences
which constitute overhead to the user
are not defined as SAR components.
An argument can be made for the
differentiation of information
content and link level control
sequences within information
transmission blocks; however,
accurate information identification
would require recognition of the
various levels of application
dependent protocol. Since the NMI
generally strives to be application
independent, this type of analysis is
not a standard measurement feature
and must be accomplished uniquely for
given applications.

3.1 Measurement of SAR Model
Parameters

Interactive communications are
described by the SAR model in terms
of the number of characters,
transmission time, and delay time
associated with each SAR component.
Stimulus delay time, for example,
equivalent to user think time, is
directly measurable by the NMI in
asynchronous communications as
illustrated in Figure 1. Response
time, defined as the elapsed time
from the input of the last character
of the stimulus until the receipt of
the first character of response, is
simply derived from the measured
variables as follows:

RESPONSE TIME =

ACKNOWLEDGEMENT DELAY TIME +
ACKNOWLEDGEMENT TRANSMISSION
TIME + RESPONSE DELAY TIME

64

iIME

Message Group 1

§ characters # characters # characters

ts

^da

"ta

-dr

'tr

^ds

stimulus transmission time

acknowledgement delay time

acknowledgement transmission time

response delay time

response transmission time

stimulus delay time

Figure 1. Asynchronous SAR Model

(lAlthough the EAR model is equally
{applicable to synchronous
communications as to asynchronous
icommunications , measurement of the
(model parameters is complicated by
•the local processing and buffering
^characteristic of synchronous
iterminals. Because input usually is

'not buffered at an asynchronous
terminal, what is measured as

I
stimulus transmission time

I
corresponds to operator typing time.

I

As illustrated below, several of the

j!

important measures must be estimated,
j rather than measured, when dealing
with synchronous communication.

Figure 2 illustrates the SAR mapping
to synchronous communications. Input
is traditionally buffered in
synchronous communications, and its
presence is not detectable at the
circuit interface prior to
transmission. As a result the NMI is
unable to measure operator typing
time and stimulus waiting time. The
stimulus only becomes available for
transmission when the operator
presses the "enter" key; it is not
actually transmitted until the
terminal is next polled.

65

User Network

:EOT>

^^\^Last Input Key

Communications With
Other Devices

<STX><Stimu1us 1> ,<ETX> <BCC>

Time

1

<ACK>

:EOT>

Communications With
Other Devices

cACK>

<STX> < Acknowledgement 1> <ETX> <BCC>

<ACK>

<STX> <Response 1> <ETX> <BCC>

cACK>

Last Input Key

Communications With
Other Devices

cPoll;

<STX> <Stimu1us 2> <ETX> <BCC>

Figure 2. Binary Synchronous SAR Model

As illustrated
stimulus waiti
measurable at
it can be
initiation occ
delimited by
last characte
response and
the current st
polled commun
this stimulus
more accurate
of the last un
device under t

in Figure 3, although
ng time is not directly
the circuit interface,

bounded. Stimulus
urs within the period
the transmission of the
r of the previous
the first character of

imulus. In the case of
ications the start of
waiting time can be
ly bounded by the time
successful poll to the
est

.

The median of the time interval from
the previous (unanswered) poll until
the present poll (which elicits
transmission) is employed as an
estimate of stimulus waiting time.
Using this estimate of stimulus
waiting time, acknowledgement delay
time at the user 's terminal can be
estimated from the measured
parameters by the following equation:

ACKNOWLEDGEMENT DELAY
TIME (estimated) =

STIMULUS WAITING TIME
(estimated) +
STIMULUS TRANSMISSION TIME
(measured) +
ACKNOWLEDGEMENT DELAY TIME
(measured

)

Response time is
estimated (Figure 4);

then easily

RESPONSE TIME
(estimated) =

ACKNOWLEDGEMENT DELAY TIME
(estimated) +
ACKNOWLEDGEMENT TRANSMISSION TIME
(measured) +
RESPONSE DELAY TIME
(measured)

Stimulus delay time at the user 's

terminal is estimated as a correction
to the measured value by the amount
of time that the entered stimulus
waits for transmission:

66

User Network

ws

<Pon>
I

cEDT>

Last Input Key
<• **

_ _ _ _ . ws

••da

]

Communications With

Other Devices

:Pon;
... - -I

"ts <STX> <Stimul6s 1> <ETX> <BCC>^ A
'

"da

cACK>
I

<EOT>

^da

Communications With

Other Devices

<Select>J
L

<ACK>

_ A. -Jr:

t = actual stimulus waiting time
ws

t * = measured stimulus waiting time
ws

t ** = estimated stimulus waiting time
ws

tjjg = actual acknowledgement delay time

t

t .
** = estimated acknowledgement

delay time

""ts
measured stimulus transmission

time

"da
measured acknowledgement delay time

Figure 3. Estimated Acknowledgement Delay Time

STIMULUS DELAY TIME
(estimated) =

STIMULUS DELAY TIME
(measured) -

STIMULUS WAITING TIME
(estimated

)

3 . 2 ARQ Effects

A major d
asynchronous a
transmission is
of an error det
system in the la
common such
(automatic
retransmission)
invoked subject
cyclic redundanc
data transmissi
measurement of s
user terminal re
of the resul
sequences

.

ifference between
nd synchronous data
the general presence
ection and correction
tter class. The most
system is the ARQ

request for
mechanism which is

to the results of a
y check made for each
on block. Proper
ervice delivered to a
quires reconciliation
ting retransmission

Since information transfer is a
function of successful user-network
communications, rather than
unsuccessful transmission attempts,
only correctly received transmission
units contribute to SAR character
count variables. Stimulus delay time
ends and stimulus transmission time
begins with the first transmission
attempt of user input. Stimulus
transmission time, as measured by the
NMI, is an indication of the time
required to successfully transmit the
entire stimulus and therefore
includes the transmission of
unsuccessful transmitted units. The
beginning of acknowledgement and
response, from the user's viewpoint,
is equivalent to the first
successfully received transmission
unit defined as such from the
network. As illustrated in Figure 5,
unsuccessful transmissions at the

67

User Network

<EOT>

71^

At 7'
ws \^

n
t

"-da

'ts

t Last Input Key

:P0ll

Communications With
Other Devices

± — <STX> <Stimulus 1> <ETX> <BCC>

•da

^ta V

••dr

^da

<ACK>

<EOT>

.Communications With

[
Other Devices

<Select>

:ACK>
I

JIL _ si'- — —
<STX> <Acknowledgement 1> <ETX> <BCC>~ ~ "T

cACK>
I

<STX> <Response 1> <ETX> <BCC>
I

<ACK>

t^ = response time

t .
** = estimated acknowledgement

delay time

1

t^^ = measured acknowledgement
transmission time

^jjj, = measured response delay time

Figure 4. Response Time

beginning of acknowledgement and
response contribute to
acknowledgement and response delay
time; retransmissions of
intermediate transmission units
contribute to acknowledgement and
response transmission times.

3.3 NMI Implementation
Characteristics

The NMI SAR interpretation logic is
implemented as a finite state machine
[3]. The state table which defines
this machine is a function of the
characteristics of the communications
protocol to be measured. For
synchronous transmission procedures,
the inputs to the SAR analysis are
data acquired from the circuit under
test which have been separated and

grouped by user terminal device
address. Each link level
transmission must be time stamped and
defined by type (e.g., poll,
information transmission, etc.).
Content analysis is performed and
acknowledgement boundaries are
designated. Data resulting from this
preprocessing is input to the SAR
statistical analysis.

3.4 Protocol Violation Detection

Synchronous transmission sequences
include a substantial amount of
overhead data beyond the information
content. The NMI logic which
identifies synchronous transmission
sequences by type is also implemented
as a finite state machine. This
protocol decoder dogmatically
observes data link transmissions in

68

User Network

<Pon>

<STX> <STIMULUS> <ETX> <BCC>

"-da

;ACK>

:EOT>

Communications With
Other Devices

: Sel ec.t>

cACK>

<STX> < Acknowledgement 1> <ETX> <BCC>

:NAK>

<STX> <Acknowleclgenient 1> <ETX> <BCC>

(—

-

<ACK>

<STX> <Response^lA> <ETX> <BCC>

<STX> <Response 1B> <ETX> <BCC>

<NAK>

<STX> <Response 1B> <ETX> <BCC>

cACK>

Communications With
Other Devices

<STX> <STIMULUS 2> <ETX> <BCC>

I

Figure 5. SAR Model Definition for Retransmission Sequences

1

[j
terms of a given set of rules

I

governing interaction; it will
^ necessarily reject non- compl iant
* transmission sequences. A level of
' protocol violation detection is

I

therefore a natural byproduct of the
j
design.

'4.0 NMI APPLICATION EXTENSIONS

j

Syntatic protocol checking is

f insufficient when applications
j
dependent information is needed.

^Semantic analysis is also required.
It is increasingly common, in the

I
data communications environment, for

I
a terminal to access dynamically a
diverse mix of applications via the

]
same network connection. This

" diversity may result from multiple
' applications supported by a single
'host processing facility to which the

user is connected, or perhaps because
the terminal is connected to a

resource sharing network. Regardless
of the manner by which multiple
services are available to the
terminal, the user is often concerned
with the discrete performance level
of individual applications.

Measuring the responsiveness and
other characteristics of separate
categories of system access involves
additional content analysis beyond
that precipitated by the need to
distinguish SAR components from a
specific protocol. To the extent
that there is adequate identification
data contained within the
transmission sequences, this further
categorization of measurement results
can be achieved

.

69

Identification of categories of
system utilization was implemented in

the' Network Measurement System for
asynchronous use of a Univac 1108.
Twenty-seven operating system
commands were identified by state
table syntactic analysis [4].

Examples of such expanded workload
profiling capabilities include:

From the service consumer 's viewpoint

*Relative responsiveness of one
system or application versus another

From the service provider's viewpoint

*Relative frequency of usage for
various categories of system services

*Profiles characterizing the
typical use patterns of each system
serv ice

From either point of view

*Terminal device productivity
comparisons

Additional data reduction and
reporting software are now being
implemented to provide these
capabilities within the Network
Measurement Instrument. Workload
balancing among terminal populations
and choosing locations for
distributed processing functions
deployed within the network are
examples of analytical projects which
will benefit from additional workload
prof il ing

.

5.0 BIBLIOGRAPHY

[1] Abrams, M. D. , I. W. Cotton,
S. W. Watkins, R. Rosenthal,
and D. Rippy, "The NBS Network
Measurement System," IEEE
Transactions on Communications

,

October 1977, pp. 1189-1198.

[2] Watkins, S. W. and M. D.

Abrams, Interpretation of Data
in the Network Measurement
System

,

NBS Technical Note 897,
Feb. 1976.

[3] Abrams, M. D. and D. C.
Neiman, "The NBS Network
Measurement Instrument," CPEUG
Proc

.

of the 15th Meeting

,

pp.
201-211, October 1979, NBS
Special Publication 500-52.

[4] Cotton, I. W. , Measurement of
Interactive Computing

;

Methodology and Appl ication

,

NBS
Special Publication 500-48, June
1979.

i

i

I

70

Introduction to Data Communications

System Performance Parameters

Dana S. Grubb

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, D. C. 20234

This paper is an introduction to a set of user-oriented data com-
munication system performance parameters that will permit the user to

specify, compare, and measure data communication service. The set of

parameters is designed to be universal in application for any digital
data communication system regardless of the control protocol or network
topology used. This set of parameters is also selected to provide a

comprehensive specification of data communication requirements. The
parameters are the subject of a proposed ANSI standard. The parameters
are based on a similar set of parameters contained in Interim Federal
Standard 1033. The primary parameters are specific measures of speed
(delay and rate), accuracy, and reliability associated with the three
primary functions: access, transfer, and disengagement.

Key words: Computer communications; computer networking; data
communications; networks; performance requirements; telecommunications.

1. Introduction

Data communication users need to be
able to specify their data communications
requirements in terms that are useful to
them. Their requirements are for the
transfer of information between users at a
specified delay, rate, accuracy, and reli-
ability.

satisfies the requirements.

This paper is an introduction to a set
of user-oriented data communication system
performance parameters that will permit the
user to specify, compare, and measure data
communication service.

The user needs to be able to specify
the requirements, compare available data
communication services, and measure the
service delivered. With appropriate user-
oriented parameters, the user can avoid
costly over-design by properly specifying
exactly what is needed; reduce costs by
comparing various data communication
services; and determine how well the
selected data communication service actually

The set of parameters is intended to be
applied universally to any digital data
communication system regardless of the
control protocol or network topology used.
This set of parameters is also selected to
provide a comprehensive specification of
data communication requirements. Individual
users may choose to omit parameters that they
believe are not applicable to their needs or
they may specify nominal values for those
parameters.

This paper is a contribution of the National Bureau of Standards and is not subject to
copyright

.

71

The parameters are the subject of a

proposed ANSI (American National Standard

Institute) standard. The parameters are re-

lated to a similar set of parameters con-

tained in Interim Federal Standard 1033

adopted by the General Services Administra-
tion (GSA) in May 1979.

2. User/System Interface

User requirements apply to data commu-
nication service as seen by the end user

.

There are normally two end users, each with
its own interface to the data communication
system. (An example of having more than two

end users is the case of a message broadcast
to all users on the system.)

The end user may be a human operator at

a terminal, a device medium (for example,
punched cards in a remote job entry terminal),

or an application program in a computer.
From an end user viewpoint, the data communi-
cation service requirement is the transfer of

information between end users with specified
delay, flow rate, accuracy, and reliability.
This interface between end users and the

system is termed the user/ system interface.

Tjrplcal interactions at the user/ system
interface are an operator keystroke on a

terminal keyboard; the punching of a paper
tape; or calling an operating system by an
application program.

The user/system interface contrasts with
traditional DTE (Data Terminal Equipment) /DCE
(Data Circuit-terminating Equipment) inter-
face, which is between the terminal or com-
puter port and a data modem or other circuit-
terminating device. The DTE/DCE interface
has been the point of interconnection between
computer equipment and equipment provided by
data communication service organizations.

3. User Information

User information consists of all digi-
tal information that is intended to cross
both of the user/ system interfaces. The
user information bits are those bits used
for the binary representation of the user
information transferred from the source
user to the system for ultimate delivery to

a destination user. When user information
is input as non-binary symbols (for example,
operator keyboard entries) the user informa-
tion bits are the bits used to initially
encode these symbols.

User information does not include over-
head information. For example, parity bits
and start-stop bits are overhead information

used by the system due to its internal needs.
The distinction is that only information
crossing both user/system interfaces is user
information.

4. Functions

The three primary functions common to

any data communication process between two
end users are: access, user information
transfer, and disengagement.

The access function includes those
activities that the originating user and
the system must accomplish for the system
to accept information for transfer to a

destination user. Access starts with an
"access request" and ends when the first bit
or block of source user information has been
transferred to the system. The term block
denotes contiguous information bits grouped
at the source user/system interface for

transfer to a destination user as a unit.
A block may be a single ASCII character, a

card image, a computer word, or the informa-
tion field of a frame, depending on the
equipment and protocol characteristics
associated with the user/system interface.

The user information transfer function
includes those activities that the system
and the user must accomplish to transfer
user information from the source user to the
destination user. The function begins when
the first bit or block of user information
is input to the system and ends when the

last "disengagement request" is issued.

There are normally two disengagement
functions, one for each of the two end users.

Each function begins with the issuance of a

"disengagement request" and ends on the
issuance of a subsequent "disengagement con-

firmation" or when that user is free to

begin a new access.

5. Parameters

The parameters are divided into two

categories: primary parameters and ancillaiy

parameters. The primary parameters are

specific measures of speed (delay or rate)

,

accuracy, and reliability associated with
the three primary functions; access,
transfer, and disengagement. The primary
parameters are shown on Table 1. There are
also ancillary parameters that qualify the

primary speed parameters by describing the

extent to which the primary speed parameter
values are influenced by user delays.

The primary parameters are developed in '

two stet)s: (1) a set of possible outcomes

72

are defined for each function; and (2)

appropriate probability, delay, and rate

parameters are defined relative to each
possible outcome.

The outcomes are the possible end re-

sults that may occur on any given attempt
to perform. Using the analogy of the famil-
iar voice telephone call on the dial tele-

phone network, the access function could
end in a correct connection, a wrong

i

number, exchange busy, called party busy,
or no connection.

I The bit and block oriented measures of

!

speed are developed using the average of

I
many consecutive trials. A quantity of bits
called a Sample is defined by the standard
to serve as a minimum number of bit trans-

: fer outcomes for meaningful measurement of

I

parameter values.

5.1 Delay Parameters

I There are four delay parameters.
' Average Access Time and Average Disengage-
ment Time are the average elapsed time for

,
the successful outcome of the access and

;

disengagement functions. Average Bit

Transfer Time and Average Block Transfer
Time are the average value of elapsed time
between start of a bit or block transfer
attempt and successful transfer of that bit

j

or block to the destination user.

I

5.2 Rate Parameter

j[
User Information Bit Transfer Rate is

Ij the total number of user information bits

,!
successfully transferred to and accepted by

i

I the destination user divided by the time that

I

is required for their transfer and accep-
! tance. In the case of message oriented
systems (e.g., packet networks), this time

'i is observed at both the source user /system
and system/destination user interfaces, and

1 whichever time is longer is used in deter-

II

mining the transfer rate.

I

5.3 Accuracy Parameters

Incorrect Access Probability is the

J

ratio of total access attempts that result
|i in incorrect access to total access attempts,
exclusive of failures attributable to the

1| user

.

M Bit or Block Error Probability is the

illratio of total incorrect bits or blocks to
jljthe total successfully delivered bits or

jllblocks. A block is in error if one or more

I

Ibits in the block are in error; or when
, isome, but not all, of the bits in a block
riare lost or extra bits.

73

Bit or Block Misdelivery Probability is

the ratio of total misdelivered bits or

blocks to the total transferred. A misdeliv-
ered block is identified by the occurrence
of the misdelivery outcome for any bit
transfer outcome in a block. (Due to

measurement difficulties, many users will
choose to omit this parameter.)

Extra Bit or Block Probability is the
ratio of total extra bits or blocks to total
received bits or blocks. An extra block is

identified by the occurrence of the extra
bit outcome for all bit transfer outcomes
in the block.

5.4 Reliability Parameters

Bit and Block Loss are considered to be
reliability parameters. Bit or Block Loss
Probability is the ratio of total lost bits
or blocks to the total transmitted bits or
blocks. A lost block is identified by the
occurrence of lost bit outcomes for all bit
transfer outcomes in a block.

Another important aspect of reliability
is system availability. The user may be
denied service due to a system outage (e.g.,

a computer failure or communication line
failure) or due to system blockage from an
excess of communications traffic. It is

quite helpful to the user to know whether a

service denial is due to system outage or

blockage. In the case of an outage, the
user calls the service personnel. In the

case of a blockage due to overload, the user
waits and then tries again for service.
Access Outage Probability is distinguished
from Access Denial Probability by the
failure of the system to issue any active
interface signals.

6. Proposed Standard

The ANSI work is being done by Task
Group 5 of the ANSI X3S3 Committee and is

contained in the working document X3S35/125.
The X3S35/125 document differs significantly
from 1033. It is expected that the proposed
standard (if adopted by ANSI) will also be
adopted as a joint Federal Information
Processing Standard and Federal Telecommuni-
cations Standard, replacing the current
interim (and voluntary) standard.

The current schedule calls for the

proposed standard to be completed and sent
to ANSI X3S3 in December 1980. Assuming
this date is met, the time required for re-
view, resolution of comments, and approval
make early 1982 a reasonable estimate for

approval by ANSI X3S3. Some additional

II

time will be required for approval as a

joint federal standard.

The standard that is currently under

development identifies parameters that de-

scribe system performance, but it does not

define how values will be determined for

these parameters. A subsequent ANSI

standard is planned for specifying the

measurement methodology.

Current federal work includes support

for the ANSI committee and a joint NBS

(National Bureau of Standards) /NTIA (Nation-

al Telecommunications and Information
Administration) project on measurement
methodology for the parameters.

7. Recent History

There are currently two ANSI standards

on data communication performance: X3.44 -

1974 (soon to be updated) and X3.79 - 1979.

These standards provide parameters for

specifying the flow rate, delay, and

accuracy of transferred user information

and availability of the service. These

measures are user oriented; they specify

measures of performance with regard to user

information. However, they are not indepen-

dent of system control protocol and are not

always measured at the user/system inter-

face.

8. Conclusions

The parameters discussed offer the data
communication user an opportunity to specify
requirements in user oriented, system
independent terms. The proposed parameters
may be used to specify and compare data
communication services, and to measure the

service received.

References

(4) Determination of Performance of Data
Communication Systems that Use Bit-
Oriented Communication Control Proce-
dures , American National Standard
X3.79 - 1980.

(5) Criteria for the Performance Evaluation
of Data Communication Services for
Computer Networks, NBS Technical Note

882, September 1975.

(1) Interim Federal Standard 1033 , General
Services Administration, May 1, 1979.

(2) Digital Communication Performance
Parameters for Proposed Federal Stan-
dard 1033 , Volumes 1 and 2, NTIA-
Report 78-4, U. S. Department of
Commerce, May 1978.

(3) Determination of Performance of Data
Communication Systems , American
National Standard X3.44 - 1974.

74

« UJ

Is

<2

Ik Ik

O O

RMANCi

IME

CATIONS ACTION

ESS

TIME

FRACTION

OCK

ER

TIME

ACTION

(

ER

TIME

ACTION
AGEMEN

O
Ik
-6 oc

Ik u Ik
«/)

Bt
Ik

Ik
«/>

oc
Ik O

at
u
< W (A Z at Z ee

Z
UI UJ

< UJ
Ik

UJ
«/ "r

<
a<

UI
(/)
< UI

«A
O 3 O 1— 3 t— 3 O 1^

at

<
ee

<

<

iUABILITY

1
ENIAL

ITY

UTAGE

ITY ITY

1

«/»

1/1
ITY LITY

SS

Dl
ABIL

SS

O
ABIL

OSS

ABIL
KLO

ABIL

II

IT

V

ILITY

iABII

mm Ui (D Ui CD CD u CD 01 O
at

ee u o O O O <
at —J at CD a.< a. < a. s CD a. O -J

at <

RION

CD
>- >- PROB.

BILITY
BILITY

iNIALP

TDENI

:ritei

CY
i/>

«/)
Ui

PRO
BABILI BABILI ERY

OBA OBA
o
at

MEN

< (J >- > £ at
LU
hk

GAGE

KMANCE

:cuR

r
AC

>-
t—

IVER
PROI PROI

;deli

a.

Sb ANS

< REC1
.BILI

MISDEL

OR
BITI

i UI a
at
1—

SEN<

FOI OR OD
at
at
Ui
<
at

o
at O O o
Ui Z at J; X _j
a. a. z LU CD CD Ui

Z UJ

o
.CCESS

IME
LOCK

IME

MATIO
ERRAT ;ment

UJ < z I— CD at u. UJ

oUi UJ LU at LU at O^ LU
a.

AGI SFEI AGI SFE
Ik z
Z < IGA

at UI at Z at Z — Of
at H- at z UIUI

> <
at

LU
> <

at to t
LU
>

LU

< < < 3 CO < a

t—

Z z
1

1

TIO

Z
O EMI

NC ^ LU
O
<

3
Ik

ACCESS

USER

INFORM
TRANSF

1

DISENG,

E
(0

re

75

Computer Network Performance

77

i

[

User-Oriented Carrier Sense lllluitiple Access Bus Simulator

Marj an Krajewski

The MITRE Corporation
Bedford, MA 01730

This paper describes a general purpose, user^oriented Carrier
Sense Multiple Access (CSMA) bus simulation program written in GPSS-V.
Designed to fill a need to quickly and easily predict bus performance,
it provides the capability to simulate local area computer communica-
tion networks governed by one of the CSMA protocols. Simplicity,
flexibility, and run-time economy were the key criteria employed in
the formulation.

CSMA protocols are a class of stochastic packet switching tech-
niques which allow multiple independent network subscribers to share
a single communications channel with reasonably high efficiency. All
are based upon the original ALOHA protocol. They possess their great-
est potential in meeting the communication needs of bursty, terminal-
dominated networks operating over a limited geographical area. In

general, these networks consist of low rate devices requiring extremely
short response times

.

The simulator was designed to be quickly adaptable to different
network characteristics. It is user-oriented in that all simulation
parameters are documented and initialized in a single section of the

program. Subscriber populations can range in size from few to many
thousands of terminals. Outputs from a simulation run consist of
the system characteristics input by the user and statistical channel
performance information gathered automatically by GPSS. This includes
the average throughput, subscriber traffic, and deferred and retrans-
mitted packet statistics. Statistics concerning individual packet
delays and overall end-to-end response times are formatted and output
in the form of delay distribution tables.

The program's primary application domain is the prediction and

evaluation of those bus performance characteristics relevant to ini-

tial local area network design decisions. These include packet size,
bus capacity, and the general suitability of CSMA protocols.

Key words: Bus Networks; Bus Performance; Computer Programs; Conten-

tion; CSMA; GPSS; Local Area Networks; Packet Switching; Simulation.

1. Introduction

I

The tremendous proliferation of digital
llevices has spurred a great deal of diversi-

fy in the technology of their interconnec-
tion. Depending upon the device data gen-

eration characteristics, response time

requirements, and physical separation, nu-
merous techniques exist which can provide
the required connectivity. Most of these

techniques utilize some form of packet
switching such that message packets,

consisting of data appended to a header,
form the basic units of information transfer.
For those networks limited in geographical
extent and consisting chiefly of numerous,
relatively inexpensive devices, the most
cost-effective packet switching approaches
are those involving a common shared channel.

Networks characterized as groups of

interconnected devices jointly sharing a

common communications channel, or bus, are

termed broadcast networks. Devices belonging
to such networks interact first by gaining
unique access to the bus through some multi-

ple access scheme and then by broadcasting
packets over it. Individual devices receive

all packets but only accept those containing
the proper addresses in the header. Due to

the broadcast nature of the bus technique,
time is the resource which must be shared.

The potential for efficient time sharing
of a communications bus is a major purported
advantage of numerous multiple access tech-
niques which have been developed in recent
years . Due to mismatches between subscriber
traffic characteristics and idiosyncrasies
of the individual schemes, however, the
overall system performance can be substan-
tially less than efficient. It is impera-
tive, therefore, that the prediction and

evaluation of bus performance be a necessary
step in the design of all such systems.

Analytical methods are extremely useful
in this regard where such models already
exist and where a general estimate of bus
perfomance is sufficient. For detailed
estimates of specific network implementa-

tions, simulation techniques provide sig-
nificantly greater flexibility and thus,

more accuracy.

The simulation program described in
this paper was designed to fill a need to

quickly and easily predict characteristics
of bus performance relevant to initial
broadcast network design decisions. Sim-
plicity, flexibility, and run-time economy

were the key criteria employed in its formu-
lation. Its range encompasses a class of

stochastic channel access protocols known as

Carrier Sense Multiple Access (CSMA)

.

2. Bus Access Protocols

A basic broadcast network architecture
is shown in Figure 1. Individual subscrib-
ers are connected to a Bus Interface Unit

Figures in brackets indicate the

literature references at the end of this

paper

.

(BIU) through some device-dependent parallel
or serial interface. The BIU buffers the
data, packetizes it, and then transmits it

onto an inbound data stream via a multiple
access protocol. Every BIU listens to the

^

outbound data stream continuously in order
to detect packets intended for them.

I

I

SYSTEM HATE

Figure 1. Broadcast Networks i

1

Of the many multiple access schemes
which now exist, [l,2]' each has advantages
and disadvantages with different subscriber i

populations. Some techniques excel with
steady, high speed users while others per-
form best when servicing bursty, low speed

|

users. In general, broadcast networks
supporting steady users perform best when
channel time is assigned to individual
users. Bursty users, on the other hand,

|

receive better service when channel time is

unassigned and individual users "contend"
for it. The basic advantage of contention-
based access protocols is the ability to

J

provide simple, reliable and flexible ser-
i

vice to a predominately bursty subscriber
population. Such networks are often
dominated by low data rate terminal devices

|

requiring extremely short response times at
j

irregular intervals. The primary disadvan-
j

tage of these protocols is their potential
for unstable operation at certain through- i

put levels. I

The first application of contention
protocols to computer communication networks

|

was the ALOHA system at the University of

Hawaii [3] . With ALOHA (Figure 2) , sub-
scribers simply transmit whenever a message •

packet is ready. Overlapping transmissions
j

from two or more subscribers always result
in a collision and mutual destruction of

!

the colliding packets. These are then
J

retransmitted after random delays to pre-
vent the same collision from occurring
forever. Requiring all transmissions to

conform to imaginary time boundaries (slots) j

improves upon this by forcing all colli-
sions to overlap completely rather than

partially. CSMA protocols [4] improve

80

performance still further by requiring all
subscribers to sense the channel prior to

transmitting and thereby avoid obvious
collisions. Detection of a busy channel

results in the immediate deferral of the
transmission attempt. Due to the physical

separation of individual subscribers, how-
ever, a packet may be enroute without other
subscribers realizing it. Another subscrib-
er may sense the channel and, finding it

empty, transmit its packet into a collision
with the enroute packet. The "vulnerable
period" when two subscribers may collide is

equal to the propagation delay between their
respective transmit and receive ports. As

the delay increases, the performance of CSMA
worsens and approaches that obtainable with
the ALOHA protocol. As with ALOHA, sub-
scribers involved in a collision detect that
fact and then reschedule their packets with
a random delay. The random retransmission

I delay is the fundamental controllable

j

parameter in the design and operation of all

I
ALOHA-based access protocols. Increasing

' the delay results in higher obtainable

I

throughput at the penalty of increased sys-
tem response time.

WASTED TIME

duration of the colliding packets plus prop-
agation delays. Subscribers operating in an
LWT mode do listen -to their own transmis-
sions and cease transmitting when a collision
is detected. Collisions in this case tie up
the channel only for the duration of the
overlapping propagation delays. LWT opera-
tion, therefore, is inherently more effi-
cient than LBT.

The CSMA protocols can be further dif-
ferentiated into three sub-categories
depending upon the specific deferral algo-
rithm used. Subscribers sensing a busy
channel may reschedule their transmission
attempt a random time in the future regard-
less of when the channel becomes idle.
Otherwise, they may persist in sensing the
channel and transmit with probability 1.0
when the channel becomes idle. Yet another
option is to persist in sensing the channel
until it is idle and then transmit with
probability p by introducing a random delay.
These algorithms are referred to as non-
persistent CSMA, 1-persistent CSMA, and
p-persistent CSMA, respectively.

All six combinations of operating mode
and deferral algorithm can be modeled with
the simulation program. Acknowledgement
transmissions over the common channel can
also be simulated.

WASTED TIME

Listen

before talk
pSMA

LISTEN

HHILE TALK

COLLISION

MAXIMUM
EFFICIENCY 37%

WASTED TIME

COLLISION
MAXIMUM
EFFICIENCY - 60 90%

PROPAGATION
DELAY (•!

WASTED TIME

COLLISION

M I*

-tTdr-' A B

Figure 2. Contention Protocols

CSMA protocols are divided into two

i
general categories: Listen-Before-Talk (LBT)

and Listen-While-Talk (LWT) . Subscribers
operating in an LBT mode do not listen to

' their own transmissions. Collisions are
5 detected only after the total packet has

j

been transmitted and a positive acknowledge-

ji
ment has not been received within a pre-

11

determined interval of time. This acknowl-

j

edgement may be transmitted on either the
!
common data channel or on a separate one.

Collisions tie up the channel for the

3. Subscriber Populations

The types of subscriber populations
encountered in practice often can be broken
down into two generic classes. One class

consists solely of subscribers with similar
data transmission characteristics. Examples
of this might be a collection of distributed
processors communicating among themselves or
a large collection of terminals transmitting
data to receive only devices for storage or
display.

A second class consists of numerous
interactive subscriber pairs in which each
complete message is followed by a reply.

This situation can occur in a distributed
time-sharing environment where users con-

struct messages at terminals, send them to

individual host computers , and await a

response.

It is also possible for groups of sub-
scribers sharing the same channel to have

dissimilar transmission characteristics.
Prime examples are independent, interactive
or non-interactive populations or an inter-
active population where one or a very few
host computers service a large number of

terminals. In these cases, the populations

must be modeled separately.

81

In all of the above cases, the traffic
generated by individual subscribers is usu-
ally bursty and therefore possesses non-
deterministic properties. Similarly, the
random aspects of the CSMA protocols also
result in the need for a stochastic system
model. Combining dissimilar populations in

an analytical model is difficult, at best,
whereby in a simulation model it is relative-
ly straightforward. Such situations demon-
strate the intrinsic value of a simulation
capability.

Two dissimilar populations may be
modeled with this simulator. Their subscrib-
ers may range into the thousands. Complete
messages may consist of several packets with
the last packet being shorter than the others
if necessary. For convenience, the fixed
time delays not associated with transfers
over the bus can also be included in the
simulation run. In addition, the capability
exists to simulate a massive collision in
which every subscriber attempts to transmit
at time zero. This feature is extremely
useful in measuring a system's response to

its maximum traffic load and possible channel
instabilities

.

4. Simulation Model

GPSS was selected as the programming
language for the simulator primarily because
of its power in defining systems governed by
queues [s] . Developed at IBM in the 1960 's,

its underlying rationale was to provide a

general structure for easily and rapidly
converting discrete system models into com-
puter programs. Since CSMA bus systems are,

by their very nature, discrete queued sys-
tems, GPSS offered many advantages. In

essence, it allowed more productive time to

be spent on model formulation and less on
bookkeeping than was possible with non-
simulation specific programming languages.

The simulation program is composed of

four main sections. An input section allows
the user to initialize the various system
parameters needed to perform the simulation.
The system model section provides the GPSS
entity description of the general model
implementation. A control section controls
the length of the simulation run and initi-
ates the collection of those statistics
which require a transient period prior to

steady state operation. Finally, a report

section formats the simulation output.

The system model section is the most
complex of the four. Referring to Figure 3,

messages are created as transactions for
each population of subscribers according to

a joint exponential interarrival time distr
bution. The mean of this distribution is

based upon the aggregate average interarriv,
time of messages to the system, considering
all subscribers in that population. Once
created, transactions are assigned appro-
priate parameter values and sent on to a

block which gives them a probability of
entrance into the system. This probability
is proportional to the fraction of subscrib
ers not in the process of sending a message
or waiting for a reply. Those transactions
which do not enter the system are destroyed

2*

N

GENERATE MESSAGES

CONTROL
INFORMATION

GATE MESSAGES

TRANSFER TO BlU

4[CSMA PROTOCOL

RECORD PACKET STATISTICS

FORMULATE REPLY

TRANSFER TO
FINAL DEVICE

RECORD COMMUNICATION STATISTICS

DESTROY TRANSACTIONS

Figure 3. Simulation Model

Once in the system, transactions,
representing messages, are first transferre(
into the BIU in the specified time and then

attempt the selected CSMA protocol. A
!

successful transmission is recorded by com-
puting the appropriate delay and throughput
statistics. If the transmission represents
the last packet in a message, a reply is

generated if so desired. If it is not the

last packet, the transaction again attempts
the CSMA protocol. Replies are delayed for
an appropriate formulation time before the

CSMA protocol is attempted. Following
reception of a complete message and its

reply (if any) , the appropriate BlU-device

*1

lopa

82

message transfer time is added and the total
communication statistics are recorded. The
transaction representing that particular
communication event is then destroyed and

S Its memory space made available for new
transactions

.

A complete communication event is termed
a call and represents a basic unit of infor-

I

nation interchange between network subscrib-
'jers. An example of this is an interactive
i terminal to computer communication sequence.
In this case, a call is defined as those

' events occurring between the initiation of
the transmission of the first character of

the query and the reception of the final
character of the response, by the terminal

; device. If a reply was not generated, the

j one-way message defines the call.
I

I

If an acknowledgement is specified, the
'successful reception of the acknowledgement
packet is required before the next data
packet in a message or reply can be sent.

Under heavy bus traffic loads, the loss of
acknowledgement packets through collisions
can, therefore, adversely affect the overall
delays

.

I

Certain assumptions were made about the
j characteristics of the systems to be simu-
jlated. These are as follows:

i
Al. There are no noise or propagation

errors occurring on the channel.
Retransmissions only result from
collisions.

A2. All packets involved in collisions
must be retransmitted.

A3. All transmissions are heard by
every subscriber on the channel.

A4. The time to sense the presence of
other transmissions on the channel
and act on this information is

negligible.

A5 . The new channel traffic generated
by each population of subscribers
is Poisson distributed.

A6 . New messages are not generated
until previous ones are completed.

A7. Acknowledgement packets are not

jj
themselves acknowledged upon

V reception.

All are reasonable assumptions for
modeling coaxial cable and fiber optic
propagation media and terminal-dominated
isubscriber populations.

Validation of the simulation model
involved verifying its accuracy in repro-
ducing predicted system behavior. In Figure
4, theoretical derivations of system
performance [6] are compared with simulation
runs of identical systems. For this partic-
ular comparison there are 50 subscribers,
the packet length is equal to 100 times the
propagation delay, and the average retrans-
mission delay (R) is equal to 20 times the
propagation delay in one case and 100 times
in the other. As is evident, both are in
excellent agreement.

CHANNEL THROUGHPUT

Figure 4. Predicted Delay Comparisons

5. Simulation Initialization

The simulation program was designed to
be readily adaptable to different bus sys-
tems. It is user-oriented in that all
simulation parameters are initialized in a

single section of the program. The
parameters are divided into five functional
groups

.

Common system parameters define the
general characteristics of the simulation
operating environment and BIU operation.
They include the CSMA operating mode and

deferral algorithm desired, whether an

initial massive collision is desired, the

83

channel data rate, the number of bits per
packet, the mean propagation delay, the mean
retransmission delay following a collision,
the transient time, and the nominal steady-
state running time of the simulation.

Acknowledgement parameters define the

characteristics of packets transmitted by a
receiver back toward the sender to acknowl-
edge a successful data packet reception.
They include the number of bits per packet,
the packet formulation time, and the waiting
time which must pass before a transmitter
assumes it must retransmit its original data
packet

.

Reply parameters define the character-
istics of reply messages generated by
interactive populations. They consist of
the reply formulation time, the number of

individual packets making up the reply, and
the number of bits in the last packet of the

reply.

Terminal parameters define the charac-
teristics of the two individual subscriber
populations. For each group, the parameters
include the number of subscribers, the mean
interarrival time between messages, the num-
ber of packets making up each message, and
the number of bits in the last packet of

the message.

6. Simulation Outputs

Outputs from the simulation program
utilize information automatically collected
for the particular GPSS entities used in the
model. Statistics for delays and throughput
are recorded only for the steady-state time
period indicated during initialization.

The average system throughput is a run-
ning average of the overall channel through-

put, including all successfully received
data and acknowledgement packets. It is

computed as the ratio of time spent in
successful transmission to total simulated
time, expressed as a percentage.

Individual terminal population call
traffic statistics are also collected. The
statistics printed out include the total
number of calls generated during the run,

the maximum number of calls in progress at

any one time, the final number of calls in

progress at the end of the run, and the

average number of calls in progress at any
one time.

Deferred or retransmitted packet sta-
tistics for the simulation run include the
maximum number of transactions in the

appropriate queue, the number of transactic
in the queue at the end of the run, and the

average number of transactions in the queue!
j

at any one time.

Delay information is output in the foi'<

of frequency tables. Packet delay and
individual terminal population call respons-

times are handled separately. Call respons^

time is defined as the end-to-end response
time encountered during a call. The pro-
gram outputs the total number of events
recorded, mean delays, standard deviation,
upper limit of frequency classes, observed
frequency, percentage of total entries in a|

particular frequency class, and cumulative
percentage of total entries in a particular
frequency class.

7. Applications

i 9

2£!The simulation program's primary appli-

cation domain is the initial determination '

of packet size, bus capacity and suitabilit'

of CSMA protocols. Both analysis and simu-
lation results indicate that CSMA technique^

can become unstable if the bus traffic
approaches some maximum value . When this

point is reached, the channel becomes satu-ii

rated with collisions, throughput rapidly
decreases to near zero, and delays grow
intolerably. It is imperative, therefore,
that such a situation be avoided in all
actual implementations.

The user-oriented nature of the simu-
lation program has been found to be extreme
useful in determining if a proposed system

|

design is operating near the saturation
point. If such is the case, design changes
could be made and evaluated quickly and

inexpensively. Optimization of system
response time is also facilitated by this

approach.

8. Example

An example demonstrating the simulator
utility is its application to the performan
analysis of a local area network soon to be
installed within the MITRE/Bedford complex.

Termed MITRENET, the system is envisioned a

a non-persistent LET bus operating at a
j

1.152 Mbps rate over a coaxial cable plant.

i

Multifunction terminals will use the net-
work to access host computers providing
word processing, scientific computation, an
other services. Local printers will also b'

interfaced to these hosts via the network.
The primary contribution to bus traffic

loading is expected to result from the word"

processing function. Two potential termina

host protocols were under consideration and'

needed to be evaluated.

Ml

]

84

The echo-plex protocol requires every
terminal-initiated character to be trans-
mitted as a small, separately addressed
packet which is echoed back by the host as
another separate packet. The block-transfer
protocol requires characters in the terminal-
initiated sequence to be echoed and buffered
locally, and then transmitted together as
fewer, larger packets. The former carried
the promise of straightforward implementation
while the latter promised significantly
greater efficiency. An important question
concerned the maximum population the bus
could support under each.

The projected network was modeled as in

Figure 5. All word processing terminal-host
communications were simulated by one inter-
active (with replies) terminal population,
and all host-printer communications by a

second, non-interactive (without replies)
terminal population. There was one printer
for every four word processing terminals.
Simulation results indicated that approxi-
mately 280 word processing terminals and 70

printers was the maximum supportable popula-
tion under the echo-plex protocol. Under
the block-transfer protocol, over 400 word
processing terminals and 100 printers could
be supported before bus instability became
a problem.

recommended if the projected number of simul-
taneously active word processing terminals
exceeded 280. As stated earlier, the evalu-
ation of any design changes would be a

straightforward and relatively inexpensive
task, requiring only that the appropriate
input parameters be altered and the simula-
tion rerun.

9. Conclusions

The capability to evaluate bus perfor-
mance via a flexible, user-oriented simula-
tor is valuable insurance against potentially
costly mistakes. By orienting program usage
toward users not already familiar with the
programming language, minimizing detail in

the model's input requirements, and concen-
trating on reducing run costs, simulators
such as the one described here form powerful
tools for broadcast network design.

10, Acknowledgements

The author wishes to gratefully acknowl-
edge the efforts of Mary A. Flood for her
improvements to the simulator's output
format, Norman B. Meisner for his consider-
ably helpful reviews and comments, and
Karen M. Fiorello for her patience and

expertise in preparing this paper.

-INTERACTIVE

TERMINAL I HOST 1

,aj:i'

NON-INTERACTIVE

Figure 5. MITRENET Example

The design choices presented by this
analysis were twofold. Selection of the
echo-plex protocol was recommended if the
projected number of simultaneously active
word processing terminals would not exceed
280. Selection of the block-transfer proto-
col, an increase in bus capacity, or a

switch to the LWT mode of operation was

11. References

R. M. Metcalfe and D. R. Boggs,
"Ethernet: Distributed Packet Switch-
ing for Local Computer Networks," CACM,
Vol. 19, No. 7, July 1976.

Meisner, Norman B., et. al, "Time
Division Digital Bus Techniques Imple-
mented on Coaxial Cable," Computer
Networking Symposium, December 1977.

N. Abramson, "The Theory of Packet
Broadcasting," TRB76-1, The ALOHA System,
University of Hawaii, January 1976.

L'. Kleinrock and F. Tobagi, "Packet
Switching in Radio Channels : Part I -

Carrier Sense Multiple Access Modes and

Their Throughput Delay Characteristics,"
IEEE Trans. Commun. , Vol. COM-23, No. 12,

December 1975.
IBM, "General Purpose Simulation System
V Users Manual," SH20-0851-1, Second
Edition, August 1971, Rev. 1977.
F. Tobagi and L. Kleinrock, "Packet

Switching in Radio Channels: Part IV -

Stability Considerations and Dynamic
Control in Carrier Sense Multiple Access,"
IEEE Trans. Commun., Vol. COM-25 , No. 10,

October 1977.

85

I

A Comparative Evaluation of Local Area

Communication Technology
i

I

R.L. Larsen, J.R. Agre, A.K. Agrawala

Department of Computer Science
University of Maryland

College Park, Mn 20742

The builder of a local area network is immediately confronted with
the selection of a communications architecture to interconnect the ele-
ments (hosts and terminals) of the network. This choice must often be
made in the presence of great uncertainty regarding the available alter-
natives and their capabilities, and a dearth of comparative information.
This was the situation confronting NASA upon seriously considering local
area networks as an architecture for mission support operations. As a

result, a comparative study was performed in which alternative communi-
cation architectures were evaluated under similar operating conditions
and system configurations. Considered were: (1) the ring, (2) the

cable-bus, (3) a circuit-switching system, and (4) a shared memory sys-
tem. The principle performance criterion used was the mean time re-

quired to move a message from one host processor to another host
processor. Local operations within each host, such as interrupt service
time, were considered to be part of this overall time. The performance
of each alternative was evaluated through simulation models and is sum-
marized in this paper.

1. Introduction

j

As local computer networks become a

j'lviable alternative in operational computing
•environments , the selection of an appropriate
intercomputer communications system design
Ibecomes one of the most basic design deci-
jfSions made. The performance of the overall
ijsystem can depend on making a proper choice,

I'^yet there exists relatively little informa-
I'ltion of a comparative nature by which to make
such a design choice. This situation con-
fronted a NASA study group at Goddard Space

l.iFlight Center, and led to a study performed
i;by the University of Maryland Computer Sci-
||ence Department and surmiarized in this paper.

The presentation is basically structured
jlin four parts. Section 2 provides background
P'information establishing the problem context.
In section 3 the approach to the analysis is

'described, followed in section 4 by a brief
lidescription of each of the four alternative

systems evaluated. The major performance
results are summarized in section 5, and

section 6 closes with a summary and some
general conclusions.

2. The Local Network Environment

The communications system of a computer
network can be viewed as a subnetwork of the

computing network. Its major responsibility
is to enable the transfer of data messages
(files, programs, status and control infor-

mation) between computers on the network.

To the communications subnet, the nodes of

the network are viewed as functional "black

boxes", which remove messages from the sub-

network, and which provide messages to the

subnetwork to be transmitted to other nodes.

In a local network, the distance between the

components of the system is assumed to be

less than a few kilometers. Because of the

small distance involved, high transmission

rates with low bit error rates are achievable.

87

The subnet must supply an entry point
interface to each of the network host nodes
(computers). In reality this interface must
handle address translation, transmission
protocols, line speed conversion, error con-
trol, routing decisions, flow control, and

the buffering of messages. Address transla-
tion is required to determine where a message
received from the host node is to be sent or

to determine if a message received from the

communications subnet is destined for its

attached host node. Transmission protocols
determine how a message can be sent over a

particular line, which line the message is

to be sent on, and the message format. Line
speed conversions are necessary when the in-

coming and outgoing data rates are different
as in the case of peripheral devices or host
nodes. Error control includes methods that
insure the message will be received correct-
ly. Routing decisions determine which path
a message should follow. Since buffering
techniques are used in all of the technolo- .

gies studied, buffer management is an impor-
tant function of the interface. In the

evaluation reported here, address transla-
tion, transmission protocols, and the

buffering of messages were considered. The

interactions between the interface (communi-
cations processor) and the host processor
were also modeled. It is felt that these
interactions are likely to have a major im-

pact on network performance. The models
attempt to mimic the host to interface
interactions as accurately as possible.

Communication in the models is envi-
sioned as being packet based. Data messages
are created at the host computer. When a

data message has been created at a source
host, the source host divides the message
into smaller messages of a pre-determined
maximum size, called a packet. Using this

method, each packet is independently routed
through the communications network. Although
packet switching involves increased cost
(additional control information is required
in each packet) and complexity (packets must
be reformed into messages at the destination
node) this method does provide rapid re-

sponse time for short messages in the net-
work as well as high throughput for longer
messages[5] . Packet switching also provides
enhanced error control since each packet
broadcast is usually shorter than an entire
message would be. Another benefit of packet
switching is that no host can monopolize
the communications network for long periods

of time. In this study, the communications
medium was allocated on a packet basis.

Figures in brackets indicate the li-

terature references at the end of this paper.

3. Approach

The major objective was to derive
comparative performance measures by which a

system designer could intelligently select
an appropriate communications technology for
a local computer network. To achieve this ,

objective, the overall modeling framework
\f

had to be fixed, and a common set of perfor^
mance measures determined. The performance'
measures which will be reported in the pa-
per for each of the technologies include:
mean message time in the system, communica-
tions system throughput, and bandwidth
utilization; as a function of message arriva,

rate and system configuration.

An overall system modeling framework
was defined which included configurations oi

8, 16, and 32 host processors. A communi-
cations traffic model was then developed to
simulate the generation of messages by host '

processors for communication to other host
processors. Figure 1 illustrates the models
ing framework devised for eight hosts.

;

Figure 1. Modeling Framework

From the perspective of each host

processor, performance statistics were kept

measuring the perceived performance of the t

communications subnetwork as a function of t

the arrival rate of messages to be trans- :

mitted.
;

Given the structure of Figure 1, alter-ii

native models of communications subnetworks
:

could then be developed and evaluated within^

a uniform framework and comparative perfor-
mance measures derived.

The communications traffic model

developed includes a Poisson message source
within each host processor which generates
messages with length uniformly distributed

88

between 300' and 5000 16-bit words. These
messages are then broken up into fixed-length
packets of 256 16-bit words (4096 bits).

Message destinations are selected randomly

and uniformly among the other host proces-
sors. The rate of the Poisson sources is

increased from low loading levels to communi-
cations subnetwork saturation.

Within this modeling framework, candi-

date communication subnetwork designs were
selected and modeled. Due to the complexity
of the systems studied, discrete event simu-

j

lation was determined to be the most ap-

propriate modeling technique, and SIMSCRIPT
II. 5 2 was selected as the simulation lan-

I

guage.

4. Candidate Communication Systems

Four communication alternatives were
selected for detailed modeling: (l) the ring,

I

(2) the cable-bus, (3) circuit switching,
and (4) shared memory. For each alternative,

!
if an operational version was known to exist,
that design was typically chosen and, in

(
some cases, modified slightly to take advan-
tage of known design improvements. In this

section a brief description of each alterna-
! tive is presented, including an overall high

I

level description, a description of the hard-

I

ware organization, and a discussion of the

j

message transmission protocol employed.

4.1 Token-Controlled Ring

4.1.1 High Level Description

A ring network is a communication sub-
net in which host computers are intercon-
nected into a single closed loop (ring)

topology by means of a unidirectional trans-
mission medium such as a twisted wire pair
and appropriate interfaces to it [3]. A
message, in our case a packet, circulates
around the ring from source host to destina-
tion host, with each ring interface forward-
ing the packet to the next ring interface
and then back to the source host. The
scheme is displayed in Figure 2.

The token-controlled ring has a unique
10-bit pattern, called a token, that con-
tinuously circulates the ring. A Ring Inter-
face desiring to transmit a packet must wait
for the token to reach it. It then changes
the token to what is called a connector
(essentially a different 10-bit pattern),
transmits its packet, and on receipt of the
ACK (when the packet is returned to the

SIMSCRIPT II. 5 is a product of CACI.

transmitting host) restores the token pat-
tern. A Ring Interface scanning the infor-
mation flowing through it, will see a series
of connector-packet pairs followed by a

token that signals available space for
transmission.

4.1.2 Ring Interface Description

All computers are connected to the ring
by devices called a Ring Interface. This
interface is responsible for control and
actual communication between host computers
over the ring. This interface is composed
of a transmitter, a receiver, a buffer for
incoming packets, a buffer for outgoing
packets, switches to control the routing of
information through the interface and con-
trol logic. The control logic is respon-
sible for such functions as address recog-
nition, error detection, and setting ACK
flags. It also handles the DMA transfer of
packets between the ring interface and the

host computer.

4.1.3 Message Transmission Protocol

Event sequence for the transmission of
a message from CPU A to CPU B:

(1) CPU A divides the message into fixed
size packets and transmits them one at
a time via DMA to the outgoing buffer
of Ring Interface A.

(2) Ring Interface A waits to receive the
token and then changes the token to a

connector, transmits the packet and

follows the packet by a new token.

(3) The packet moves around the ring to

Ring Interface B.

(4) If Ring Interface B's incoming buffer
is empty. Ring Interface B copies the

packet into its buffer and computes a

checksum. If no errors are detected,
the ACK flag is set as the packet is

forwarded to the next Ring Interface.
CPU B is then interrupted to inform it

of a received packet, and a DMA trans-
fer is initiated.

(5) The packet continues around the ring
until it reaches Ring Interface A,
which removes it (and the leading con-
nector) from the ring. If the ACK flag
is set. Ring Interface A assumes suc-
cessful transmission and informs CPU A.

Otherwise go to step 2 to perform a

retransmission of the packet.

(6) If there are no more packets in the

89

message, CPU A copies the next packet into
the outgoing buffer of its ring interface and
goes to step 2.

4.2 Cable-Bus

4.2.1 High Level Description

The cable-bus system modeled is a

variant of the Ethernet random access scheme
which was developed by Metcalfe and Boggs[7J.
This technology makes use of a coaxial cable
(Ether) as the communications medium along
with a communication protocol that was spe-
cially developed to work for cable based
schemes. Unlike the Aloha random access
scheme, Ethernet is designed to carry two-
way traffic between several host computers.
This modification enables the transmission
of messages for a computer-to-computer, as

well as a terminal -to-computer, computer-to-
terminal organization.

4.2.2 Hardware Organization

The cable-bus is designed to accomodate
up to 256 hosts. Each host is interfaced
to the cable by means of a communications
processor (CP), Figure 3.

The communications processor consists
of a line tap, a transceiver, two buffers:
one for incoming data, one for outgoing data,
and control hardware capable of interrupting
its host. The tap enables physical connec-
tion to the Ether. The transceiver is re-
sponsible for receiving and transmitting
bits over the cable. The control hardware
supervises the transfer of packets between
the host and the buffers via DMA, carrier
detection, truncated packet filtering,
and collision consensus enforcement.

Carrier detection refers to detecting
if the cable is in use. Communications
processors will never transmit when the ca-
ble is sensed busy. During transmission of

a packet, the communications processor moni-
tors the cable, this is termed interference
detection. Interference (a collision)
occurs when the signal the comnuni cations
processor is transmitting and the signal it

receives are not the same. In this case the

communications processor stops transmitting.
Collision consensus enforcement insures that
proper action is taken once a collision has

occured. If a collision occurs, the commun-
ications processor detecting this condition
places a noise pulse on the line to make
sure all other communications processors are

aware of the collision. Next, each communi-
cations processor which was involved in the

collision begins a collision avoidance pro-

cedure. This procedure is also known as

"blocked mode". First, a pseudo random num--

ber, uniformly distributed, is calculated
in hardware. This number is then multipliec
by the number of collisions which have oc-
cured in trying to send the current packet.
The communications processor then waits the
period of time indicated by the resulting
number before attempting to transmit again.

'

The primary difference between the
'

modeled cable-bus and Ethernet is that the

modeled design incorporates what is termed
j

an "in-buffer collision" scheme [2]. This
refers to the case when a communications
processor begins to receive a packet while
its incoming buffer is full. The communica-,

tions processor causes an artificial col-

lision which terminates the transmission.

4.2.3 Message Transmission Protocol

Event sequence for transmission of a

message from CPU A to CPU B:

(1) CPU A divides the message into a se-

quence of transactions called packets.

(2) CPU A transmits the next packet of the
sequence via DMA to the outgoing buf-
fer of its communications processor
(CP A).

(3) CP A waits for the cable to be inactive
and then transmits its packet, which

|

results in one of the following: i

!

a. No collisions detected, packet suc-
cessfully transmitted.

b. A collision is detected (go to stepi,

4).

(4) Each CP involved in the collision goes

into "blocked mode", calculates the
wait period, waits that period, and
then go to step 3.

(5) All CPs begin wait period for the cable
to once again be inactive.

(6) CP B copies the packet for the cable
into its incoming buffer, and performs
a checksum on the packet. If the
checksum is valid, go to step 7.

Otherwise, do not send an ACK and wait
for the packet to be retransmitted.

(7) CP B transmits an ACK to CP A. CP B

interrupts CPU B and a DMA transfer of
the packet to the host is initiated.

(8) CP A receives the ACK. CP A interrupts

90

'CPU A to inform it that the packet was suc-

^

cessfully transmitted (go to step 2),

: 4.3 Circuit Switching
1]

4.3.1 High Level Description

The Data Distributed Network (DDN) as

developed by Data General Corporation (DGC)

was designed to take advantage of circuit
switching techniques to provide communica-
tions links that operate at a rate of a few

megabits per second [Al-

4.3.2 Hardware Organization

As developed by DGC, DDN is designed to
"accomodate up to 255 host computers. Each
host is interfaced to the central switching

i

facility of the DDN by means of an Adapter.
iDDN thus consists of a central switching
j facility called the Switch Matrix and as

many Adaptors as there are hosts. The com-
ponents of a DDN are shown in Figure 4.

I

Each adaptor is controlled by a micro-

I
processor. Under host computer direction,
'the Adaptor sends data to and receives data

I

from the Adaptors connected to other compu-
Iters in the network. Data transfer between
ian Adaptor and its host computer takes place
ivia DMA. Each Adaptor has two 256-word buf-
!fers, one for outgoing data and one for
[incoming data,

'i

I

The Switch Matrix consists of three

j
units:

Diagnostic Unit - this unit is used to
determine faults on the network and is

capable of taking corrective actions to
keep the network in operation. It is

capable of communicating with any of

j
the Adaptors in the network.

|j{2) Data Routing Matrix - this is the

; actual circuitry which establishes the

I;

physical connection between any two

I
Adaptors, or between the Diagnostic

Ij
Unit and any Adaptor. This unit is de-
signed to contain up to 36 full duplex
links to permit up to 72 computers to

j

communicate simultaneously.

destination is busy, the Link Control-
ler can not process the request, the
current Adaptor is skipped, and the
Link Controller continues to search for
another Adaptor that desires to esta-
blish a communication. Otherwise, the

communications link is established and
the source begins transmitting its mes-
sage on a packet basis. When trans-
mission of the entire message is com-
pleted the link is dropped.

4.3.3 Message Transmission Protocol

Event sequence for transmission of a

message from CPU A to CPU B:

(1) CPU A divides the message into packets
and places the packets at the end of
its packet queue. When the first
packet of the message reaches the head
of the queue, it is transmitted via DMA
to the outgoing buffer of Adaptor A.

Adaptor A now begins to request com-
munications capabilities.

(2) The Link Controller reaches Adaptor A.

If a link is available, the Link Con-
troller then determines if Adaptor B is

free. If Adaptor B is free the con-
nection is made, otherwise the Link
Controller resumes polling (Adaptor A
is in a "suspended" state).

(3) Adaptor A prepares for transmission.

(4) Adaptor A transmits its packet.

(5) If the incoming buffer of Adaptor B is

empty, the packet is copied into the

buffer, else it is lost. The micro-
processor of Adaptor B is interrupted
upon completion of the transmission.
If the packet was successfully receiv-
ed, the interrupt-handling routine of
the microprocessor begins transmission
of a 3-word packet ACK to Adaptor A,

CPU B is also interrupted to inform it

of a received packet. If the packet
was lost, the microprocessor sends a

NACK to Adaptor A.

(6) On receipt of the packet ACK:

Link Controller - monitors and controls
the Data Routing Matrix. It cyclically
polls all Adaptors, searching for one
which desires to establish communica-
tion. When the Link Controller finds
such an Adaptor, it cyclically scans
the communication links until it finds
a free link. Next, the Link Controller
determines whether or not the specified
destination is currently "busy". If the

a. The microprocessor of Adaptor A is

interrupted. The microprocessor
then interrupts CPU A to inform it

of an ACK. If this was the last
packet of the message. Adaptor A

informs the Switch Matrix to drop
the link.

b. When CPU A is interrupted and pack-
ets remain to transmit, a DMA

91

transfer of the next packet of the

message to Adaptor A's outgoing
buffer is initiated.

c. When the entire packet is received
by Adaptor A, this, packet can now
be transmitted to CPU B (go to step

4).

(7) When CPU B is interrupted:

a. CPU B initiates a DMA transfer of
the packet from Adaptor B's in-

coming buffer into its own memory.

b. Once the entire packet is copied by

CPU B, Adaptor B's incoming buffer
is reset so that it can now receive
the next packet.

(8) If a NACK is received by Adaptor A,

Adaptor A's microprocessor is inter-

rupted upon receipt of the NACK which
causes a retransmission of the lost

packet (go to step 4).

4.4 Shared Memory

4.4.1 High Level Description

It has been found [l] that the use of

buffer memories to set up communication
links between two computers is appropriate
when the distances to communicate are not
very large. This method is used by the

Launch Processing System at the Kennedy

Space Center of NASA.

The Common Data Buffer (CDBFR) is a

specially designed piece of hardware design-

ed for intercomputer communication. This

hardware permits a shared memory medium for

transfer of messages between several CPUs.

4.4.2 Hardware Orgainzation

CDBFR consists of a memory module,

memory controller, CPU interfaces called
Buffer Access Cards (BAC), and interrupt
control logic. Orginally the design per-

mitted up to 32 CPUs to communicate via a

single CDBFR. Subsequently the design

changed to permit up to 64 CPUs to communi-

cate. Figure 5 illustrates the CDBFR

configuration.

CDBFR' s memory module consists of from
32K to 64K 16 -bit words of storage with a

cycle time of about 250ns. The first IK of

memory (page 0) is divided into 32 stacks

each of 32 words, with one stack being as-

sociated with each CPU attached to the

CDBFR. The next IK of memory (page 1) is

reserved for "block data transfer". When a

CPU obtains access of Page 1, in block data

mode, no other CPU can access Page 1. The i

remainder of the CDBFR memory is allocated
into private write areas for each CPU.
While a CPU can read any word of memory, it
can only write into its onw private write
area, and Pages 0,1. Each CPU has the re-
sponsibility for allocating and managing its
own private write area.

Each CPU communicates to the CDBFR
through a dedicated interface called a Buf-
fer Access Card (BAC). The CPU sends re-
quests for service, address, data and mode
information to the BAC, which then provides
this information to the CDBFR at the appro-
priate time. From the CDBFR, the BAC
receives data and error condition informa-
tion resulting from read and write opera-
tions into the CDBFR. The BAC then provides
this information to the CPU. The BAC is

also capable of transmitting interrupts to
and from the CPU.

The Memory Controller is responsible
for granting access to the memory. Only
one CPU (through its BAC), is permitted
access to the memory module at a time. The
controller must scan each BAC, starting with
the lowest addressed BAC to find the next
BAC desiring service. Once a complete scan
of the BACs is made the controller starts
again with the BAC with the lowest address.

The CDBFR is capable of interrupting
the CPUs for message synchronization. This
interrupt stack control logic is activated
when a CPU writes a word into the stacks of
Page 0. When a word is written onto a stack
the CPU which owns the stack is interrupted
Interrupts are postponed whenever the host
computer's BAC is active with a data trans-
mission. These interrupts are stacked in

the CDBFR until the message transmission
is complete.

4.4.3 Message Transmission Protocol

Each CPU is permitted only one outstandi
ing message to any other destination at a

time. Messages are divided into packets of
a fixed size. The private write area is

divided into a fixed number of blocks, each
the maximum packet size.

Event sequence for transmission of a

message from CPU A to CPU B:

(1) CPU A divides the message into a se-

quence of transactions called packets.

(2) CPU A allocates a block of its private
write area to the next packet of the

sequence. CPU A then transfers the

packet into this block.

92

(3) CPU A then places a word containing the

address of the packet (in the CDBFR
memory) on the interrupt stack of CPU B.

1
1
(4) Next CPU B is interrupted by the CDBFR.

CPU B then reads the packet address

word off its stack.

(5) CPU B copies this packet out of the

I
CDBFR into its own storage area.

!
(6) CPU B then places a word containing the

original address of the packet onto the

interrupt stack of CPU A. This serves
as the ACK of the packet by CPU B.

(7) The CDBFR interrupts CPU A and CPU A

reads the word off its stack. CPU A

i
than verifies that the address is the

\' original address of the packet and so

assumes that the packet was success-
fully transmitted.

i|(8) CPU A then releases the block contain-
ing the packet and the packet transfer
is complete.

ijfj (9) CPU A then returns to step 2 to process
the next packet of the message sequence.

j

5. Performance Comparison

j
The major performance measures to be

'compared among the alternative systems are:

h a. mean message time in the system

b. throughput capability

c. bandwidth utilization efficiency

i
To fully understand such a comparison

|l however, one must consider the major differ-

I

ences in design variables among the systems

j

and, while being unable to factor their

l^ffects out, at least appreciate their influ-
ience. Table 1 summarizes the two most criti-

i|8 cal design variables for each technology:

i' the transmission rate and the number of

l'

physical paths. Two key observations can be

I
made. The transmission rate for the Common

I

Data Buffer is an order of magnitude greater

|,
than the others, and DDN utilized multiple
physical paths. Since DDN is designed to

provide communication among many (up to 255)

computers using up to 24 distinct data paths,
, the number of physical paths available were

|l scaled down for modeling purposes to be con-

ji sistent with the fewer (8, 16, and 32) num-
ber of host processors, with the expectation
that this provides one with more realistic
insight into the operational performance of
DDN. Furthermore, the original design for

DDN utilized single-buffering in the adap-
tors. This design was subsequently modified
to include double-buffering. Results for
each of these cases are reported subsequent-
ly and demonstrate striking improvements for
the double-buffered case.

Figures 6, 7, and 8, and Tables 2, 3,

and 4 illustrate the primary performance
results. Table 2 is a display of message
time in a system measured in seconds, versus
the intensity of arriving messages, measured
in megabits per second. To be noted first
is the observation that the ring and the
cable-bus have virtually indistinguishable
performance characteristics, which are also
rather insensitive to the number of host
processors attached. What could have been
expected to be 6 separate plots on Figure 6,
then, become essentially only one. A slight
difference is discernible in Figure 8, but
its influence is barely observable in most
performance measures.

Six curves are shown for DDN. The
first set (solid lines) display message time
in a system for the single-buffered case,
and the second set (dashed lines) display
results for the double-buffered case. A

significant performance improvement is ap-
parent in the double-buffered case. It is

apparent from these figures that double-
buffering more than doubles the capacity of
the DDN system. For each of the DDN con-
figurations modeled, a processor to link

ratio of 4:1 was maintained. The overall
bandwidth available, therefore, increased
by a factor of two going from eight to six-
teen processors, and by another factor of

two going to thirty- two processors. This

study indicated that this bandwidth is

allocated equally efficiently regardless of
the number of links. Some saturation
effects might be expected as the number of
links grows beyond eight, but this was not

expl ored.

Unlike DDN, which can be configured
with a variable number of relatively low

speed links, CDBFR provides one very fast
shared path. When configured with only a

few host processors, then, the hosts are

unable to provide enough traffic to keep the

CDBFR busy. This is shown in Figure 4,

where the efficiency (the percent of band-

width provided which can actually be used)

is shown to increase with the number of host

processors

.

The data on which Figures 6, 7, and 8

are based are provided in Tables 2,3, and

4 respectively. Data was taken for light,

medium, and heavy loading. The notation

93

"oo" in the tables denotes a saturation con-
dition where an infinite queue of messages
to be transmitted was assumed to exist at
each host processor.

6. Summary and Conclusions

Four intercomputer communications
systems have been described and their per-
formance compared. While these systems
utilize different architectures and operate
at different rates and capacities, compar-
able performance measures were stated and
utilized to compare the systems. Existing
technology provides bandwidth capabilities
in the range of one to fifty megabits per
second. Proven architectures allocate
this bandwidth in different ways to host
computers, with varying efficiency. The
principal lesson to be learned from this
study is to know the communication require-
ments. Relatively modest ring or cable-bus
systems can very efficiently provide rela-
tively modest capabilities. If growth
flexibility is a strong requirement, then,
perhaps, a DDN-style system is the preferred
approach, although this flexibility comes
with a substantial price tag. For a rela-
tively large number of hosts with a heavy
communications load, short response time
requirements, and a potential need for
immediate access by each host to a set of
dynamic system-wide parameters, a CDBFR-type
system may be an attractive alternative.

At the time this study was performed, a

brief cost survey of the builders of these
systems failed to reveal significant econo-
mies of scale in going to larger, faster
communications systems for local networks.
It seemed to be the case that one could ex-
pect to pay for every bit of the capability
requi red.

It is our hope that this performance
analysis can be used as a basis for compari-
son of most current and future communi-
cation technologies appropriate for local

computer networks. The communications
traffic considered in the analysis of these
systems was of the most general form. The
designer of a local computer network must
understand the specific communications
traffic expected in a system being designed,
however, and understand the peculiarities
of it. It was our experience in doing this

for a NASA case study that some traffic-
dependent performance deterioration can be

encountered. This case study and its im-

plications are the subject of a companion
paper to this one [6l].

Many people made significant contributions
to this study.. In particular we would like
to gratefully acknowledge the contributions
of Karen Gordon, Rose McGinnis, Ray Bryant,
and Diane Acaron. The computing support for
most of this work was provided by the Com-
puter Science Center of the University of
Maryland. The research was supported in

part by NASA Goddard Space Flight Center
under grant No. NAS5-22878 and by the Air
Force Office of Scientific Research under
grant No. AF0SR78-3654A.

References

[1] Agrawala, A.K., Bryant, R.M. , and Agre,
J.R., "A Study of Shared Memory as a

Communication Medium", Proc. Sixteenth
Annual Technical Symposium: Systems and
Software , National Bureau of Standards,
Gaithersburg, Maryland, June 2, 1977,

pp. 51-60.

[2] Agrawala, A.K., Bryant, R.M., and Agre,
J.R., "Analysis of an Ethernet-Like
Protocol", Proc. of Computer Network-
ing Symposium , National Bureau of Stan-;

dards , Gaithersburg, Maryland, December

15, 1977, pp. 104-111.

[3] Agrawala, A.K., Agre, J.R., and Gordon,

K.D., "The Slotted Ring vs. the Token-
Controlled Ring: A Comparative Evalu-
ation", IEEE COMPSAC 78 , Chicago,
Illinois, November, 1978, pp. 674-679.

[4J Agrawala, A.K. , Gordon, K.D., and Agre
J.R., "Performance Analysis of a

Circuit-Switched Sommuni cation Scheme
for Local Computer Networks", Techni-
cal Report TR-645, Department of
Computer Science, University of Mary-
land, April , 1978.

C5j Agrawala, A.K., and Larsen , R.L.,
"Distributed Computing - A Review",
Technical Report TR-484, Department
of Computer Science, University of
Maryland, September, 1976.

[6] Agre, J.R., and McGinnis, R. , "Com-
parative Performance Evaluation of
Several Local Distributed Computer
Networks: A Case Study", Technical
Report, Department of Computer Science j;

University of Maryland, November, 1979.^

[7J Metcalf, R.M. , and Boggs , D.R.,
"Ethernet: Distributed Packet Switch-
ing for Local Computer Networks", Com-
munications of the ACM , Vol 19, No. 7,

July, 1976.

94

Table 1. Transmission Rate and No. of Paths

Technology

Transmission
Rate on

Each Path
(Megabi ts/sec)

Number
of

Physical
Paths

Ring 4 1

Cable-Bus 4 1

Common Data Buffer

(CDBFR)
32 1

Circuit Switching
(DDN)

3 2,4,8
1

Table 2. Mean Message Time in System (in ms)

[Number of Nodes

Cable
Bus

System
Arrival Rate

(in Megabit/sec)

.9

1.2

1.8
2.4
Yj
3.0

.6

Ring

Shared
Memory

Circuit
Switched

[Double

Buffered)

Circuit
Switched

[Single

Buffered)

'2.4

"6.0
'9.0
12.0

12.6;

16 .'8

.6

l.|"

"i:s

-J.6
1.1

14"." 4

.6

1.2

1.8

3.6

4.8
772"

16 32

.24^

35.

59.

104.

26. 26i,

57. 57.

58. 54.

25.

30.

37'

75.

362.

17.

37:

24.

27.

35.

49.

_83.

17.

23.

26.

49.

3£

41.

48.

44.

61.

140.

20;
31.

43.

57.

107.

17.

20.

29.

46.

62.

108.

Table 3. Throughput (in 10 16-bit words)

System
Arrival Rate

(in Megabit/sec)

Number of Nodes

16 32

.9 6.3
1.2 8.2 8.2

Cable 1.8 12.3
Bus 2.4 16.4 16.4 16.4

2.7 18.5 18.5 18.5

3.0 20.3 20.3
00 20.3' 20.3 20.0

"

.6 4.1 4.1 4.1
Ring 1.2 8.2 8.2 8.2

2.4 16.4 16.4 16.4
00 18.6 20.4 21.3

Shared
Memory

Circuit
Switched

(Double
Buffered)

k

Ci rcui t

Switched
Single
Buffered)

.6

1.2

1.8
2.4
3.6

7.2

14.4
00

.6

1.2

1.8

2.4
3.6
4.8
7.2
00

4.5 36.

6.0 42. 42

9.0 62.

12.0 84. 84

12.6 82.

16.8 116. 116
00 94. 160. 192

8.2

4.1

12.3 -

16 .

4

24.6 24.6
47.3 49.2

98.4
32.4 64.8 129.6

4.1 -

8.2 8.2 -

12.3 -

16.4 16.41

24.6 -

33.8
49 .

1

13.9 28.1 54.6

95

Table 4. % Throughput

Number of Nodes

System
Arrival Rate 8 16 32

;

(in Megabit/sec)
-

Q CD ,

1.2 33. 33.

Cable 1.8 49.

Bus 2.4 66. 66. 66.

2.7 74. 74. 74.

3.0 - 81. 81.

oo 81. 81. 80.

.6 16." igT
Ring 1.2 33. 33. 33.

2.4 66. 66. 66.

oo 74. 82. 85. ,— , , —

,

H.J ifi

6.0 21. 21.

Shared 9.0 31.

Memory 12.0 42. 42. S

12.6 41.
"i

16-8 58. 58. I

oo 47. 80. 97.
-J

.6 11. "
1

Ci rcui t 11.

Swi tched 1.8 33.

(Double 2.4 _ 11.

Buffered) 3.6 65. 33.

7.2 66. 33.

14.4 _ 66.
'

oo 86. 87. 86.
'

.6 11.

ui rcul t.
99 1

1

11.

Switched 1.8 33.

(Single 2.4 22. 11.

Buffered) 3.6 33.

4.8 22.
"

7.2 33.

CO ,37. 38._ 36.

Figure 3. Cable-Bus

20Ubrt I
|3Mbp»©

1000 FEET

DAT*
ROUTINO
lUTRIX

OUSNOSTIC
UNIT

SWITCH MATRIX

Figure 4. Circuit Switching

©
BUFFER
ACCESS
CARD

MEMORY
MODULE

UEMOflV

CONTROLLER

64K WORDS
IS BITS/WOflO

250 n««G.

figure 5. Shared Memory

Figure 2. Ring

96

HesSME TIME
M SVSIEM
I SECONDS I

oo 1
-I H 1 1 1 1 1 1 1

O 4 • 12 W ZO 24 2« 12 M
AOOAEeklE OOHUUNKATIONS HUFEIC *IWn»t RATE IKOAailS PER SECOND t

Figure 6. Comparative Performance

O 4 a 12 K 20 24 Ze 12 U
ABOnEMIE COUWNCATIOHS IRAFFK ARRIVM. RATE (MEOAarS PER SECOMII

Figure 7. Comparative Thoroughput

loox - -

UTILIZA1UN or
AVAIL ABtE
COMUUMCAlOe
BAHOIMOTH

NUMBER Of inST COMPUTERS

Figure 8. Comparative Efficiency

97

Performance Prediction Techniques - 1

99

Some Properties of a

Simple Deterministic Queuing Model

Rollins Turner

Digital Equipment Corporation
Systems Performance Analysis Group

Maynard, Massachusetts

Abstract

A simple queueing network with fixed service times is
defined. This network might be an appropriate model for two
asynchronous devices sharing the use of a single resource,
where all service times are fixed. An algorithm permitting
efficient computation of system behavior is described.
Certain general properties of the system are determined.

Key words: Fixed service time; queueing network.

1. Introduction

There are many components in
computer systems that perform some action
in a fixed amount of time. Examples
include memory subsystems, synchronous
busses, and communications links. When
such components are included in a

queueing network model of a higher level
system they are most accurately
represented as servers with fixed service
times. Unfortunately, most of the
results of queueing theory do not apply
to fixed service times. Useful results
can often be obtained by substituting a

probability distribution for the fixed
time but important characteristics will
sometimes be lost. Operational analysis
can be used in some cases , but again some
important questions cannot be answered
[1,2], In this paper we examine one
particularly simple queueing network with
fixed time servers, and develop from
first principles some of its properties.
We mention in passing that work reported
here was originally motivated by the need
to explain some counterintuitive results
from measurements on actual computer
system components. The model developed in
this paper does explain those results,
which will be discussed later in the
paper

.

The model is of some interest as a
mathematical object in its own right. It

has a number of rather surprising
properties, including discontinuities in
its response time functions. This model
can provide some interesting tests for
conjectures about queueing networks with
no restrictions on service times, both in
stochastic analysis and operational
analysis. It should be considered as a
potential source of counterexamples when
a general theorem is under study.

The remainder of this paper is

divided into three sections. Section 2

defines the model and lists some of the

questions to which it can be applied.

Section 3 discusses the behavior of the

system and how it depends on the service

times. An algorithm is given by which

one can efficiently compute the time from

the completion of a wait until the next

wait. Using this algorithm, one can

compute essentially all quantities of

interest about any specific system. In

Section 4 we look at certain general

properties of this model, treating the

service times of the servers as

variables. A graphical representation of

systems in a two dimensional parameter

101

space provides some useful insights into
the systems' behavior.

2. Definition of the Model

The model that we shall examine is a
simple closed queueing network with fixed
service times. The network consists of a

single central server, designated Server
C, and two peripheral servers, called
Server A and Server B. There are two
customers in the system. Customer A

visits Server A, then proceeds to Server
C, where he may have to wait for service.
After receiving service from Server C,

Customer A returns to Server A. Customer
B follows a similar pattern between
Server B and Server C. Queueing can
occur only at Server C, and the wait time
can never exceed one service time for
Server C. A diagram of the system is
shown below in Figure 1

.

at any time in the future can be computed
by means of a step by step calculation of
system events.

Given that the system is
deterministic, one might ask whether
there is anything interesting to be
learned from a mathematical analysis.
The answer is yes. This simple system

turns out to have some surprisingly
complicated properties, and there are a

number of questions, possibly of
practical importance, whose answers are
not inmiediately obvious. Some of the
questions discussed in this paper are the

following:

1 . Given a starting state , which
customer will first have to wait
and when?

2. What will be the service rate
for each customer and
utilization of each server?

Server A

111

Server B

Server C

Figure 1

.

Network
Simple Deterministic Queueing

This system might serve as a model

for two 10 devices sharing a bus, or

perhaps for a processor and a single 10

device sharing access to a memory.

Because the service times are fixed, most

of the results of queueing theory do not

apply. We also note that the "routing

homogeneity" requirement of operational

analysis is not satisfied.

The system is characterized by three

parameters, the service times of the

three servers. These times are called a,

b, and c. The state of the system is

specified by where each customer is and

how long he has been there. Given the

state of a system, its future behavior is

completely determined. The time of all

future events and the state of the system

3. How does a change in the service
rate of one of the peripheral

servers affect the overall
system behavior?

3. Behavior of a Specified System

We know that the future behavior of
any given system can be determined by
direct computation. Furthermore, after
an initial transient, the system state is
always periodic. To show this, we need
to define two particularly useful system
states. Let State A be the state that
occurs when Customer A has just begun
service at Server A and Customer B has
just begun service at Server C,
Similarly let State B be the state that
occurs when Customer B has just begun
service at Server B and Customer A has
just begun service at Server C. One of

these two states will inevitably follow
whenever any queueing occurs.

Suppose then that some queueing
occurs. Since one of the two possible
states follows each wait, a state is sure

to be repeated after no more than two
waits. Since the future behavior is

determined given the state at any
instant, the system behavior is periodic

»

If there is no queueing, the two
peripheral servers must be synchronized,
so that Customer A completes m cycles in
exactly the same amount of time in which
Customer B completes n. Hence after m

102

cycles by Customer A, and n by Customer

B, the original system state will be

repeated

.

Since the system behavior is
periodic, we only need to compute the

times of successive system events until
we see an earlier state repeated. We
know then that the sequence of events
between the two occurrences of that state
will be repeated indefinitely. However,
it is possible to have an arbitrarily
long sequence of system events between
repetitions of a system state. It is
desirable to have a computationally
efficient algorithm for determining when
a state will be repeated. Algorithm
CYCLES, shown below, fills this
requirement. The following paragraphs
provide some background and motivation
for the development of this algorithm.
They do not, however, give a proof of its
correctness.

In the following discussion "a" and
"b" are assumed to be greater than "c".
(If either "a" or
Ho"

" is smaller than

c", the system is relatively
straightforward.) Suppose we begin
observing a system in State A. Let us

define an "A-Cycle" as the sequence of
events:

1. Customer A begins service at
Server A.

2. Customer A completes service at
Server A and goes to C.

3. Customer A completes service at
Server C and returns to A.

Similarly, let us define a "B-Cycle" as

the sequence:

1. Customer B begins service at
Server C.

2. Customer B completes service at
Server C and goes to B.

3. Customer B completes service at B
and returns to C.

(Note that each type of cycle is defined
as if we begin observing the system in
State A.)

If a B-Cycle ends within c time
units prior to the end of an A-Cycle,
Customer B will find Server C busy and
will have to wait. Upon completion of
service by Server C, the system enters

State A. If a B-Cycle ends at a time
greater than c and less than 2c prior to

the end of an A-Cycle, Customer B will
find Server C idle and begin service
immediately. Upon completion of service
by Server A, Customer A will find Server
C still busy with Customer B and will
have to wait. Upon completion of service
for Customer B the system enters State B.

Thus after beginning in State A, the
queueing will first occur when a B-Cycle
ends prior to the end of an A-Cycle by an
amount less than 2c.

To determine the first occurrence of
either State A or State B following State
A, we must find the smallest values of
positive integers m and n that satisfy
the equation:

0 = m(a+c) - n(b+c) <^ 2c

If m' and n' are the solutions we define
the variable d as:

d = m' (a+c) - n' (b+c)

We see that d can be computed as
REM(m'(a+c), (b+c)) where REM is the
remainder of the first argument divided

by the second.

If d is exactly 0 the system is

conflict free, with State A returning to
State A after m' A-Cycles. If d is in
the range between 0 and c, then State A

returns to State A after m' A-Cycles,
with Customer B waiting for d time units.
If d is in the range from c to 2c, then
State A goes to State B after m' services
by Server A, with Customer A waiting for
(2c-d) time units. Customer A makes m'-l

visits to Server C during this interval.
By reversing the roles of a and b we can
determine which state will follow State B

and when, in the same way we have just
done for State A.

Algorithm CYCLES can be used to
compute the value m' for any given values
of a, b, and c. The inputs to CYCLES
should be (a+c)/c and (b+c)/c. CYCLES
returns the value of m' . From m' we can
compute n' and d, from the above
equations

.

Algorithm CYCLES returns a value
that is the number of times Customer A

will visit Server A prior to one or the
other customer's having to wait, given
that the system started in State A.

Hence it gives the time from State A

until the next occurrence of either State

103

A or State B, whichever comes first. To

determine what happens following State B

we can use the same algorithm reversing

the two arguments. (The entire system is

symmetrical in terms of A and B.)

It can be seen that Algorithm CYCLES

will always terminate with no more than

L0G2((b+c) /c) recursions. On each

successive call, the second argument will

be no more than half the value of the

preceeding call. When the second

argument is less than two, the algorithm

terminates

.

Algorithm CYCLES (A,B)

Let A1 = REM(A,B)

If A1 i. 2 then Return 1

Else if A1 <. B/2 then

CYCLES (A1 - REM(B,A1),A1) » B

Al
Return

Else

Return

CYCLES (REM(B,B-A1) ,B-A1) » B - 2

B-A1

M.O General Properties

Having seen how to determine the

future behavior of any sepcific system,
we turn our attention to general
properties of all such systems. One

question of interest is "For what values
of a, b, and c is the system conflict
free?" The answer is provided by the

following theorems.

Theorem 1 . For any real c if

a = (2n-1)c
b = (2m-1)c

where m and n are positive integers
then the system is conflict free.

Proof: Suppose the system starts in

State A. Then until the first conflict,
Customer A's arrivals for service by
Server C come at multiples of (a+c) minus
c. Customer B's arrivals come at

multiples of (b+c). Since both a and b

are multiples of c, requests for Server C

come only at multiples of c. Thus it is
impossible for the first wait to occur
due to a customer's arriving at Server C

during service for the other customer.
The only possibility is that both
customers arrive at Server C

simultaneously. This will occur if and
only if there are positive integers i

j such that
and

i(2nc) - c

or 2ni - 1

j(2mc)

2mj

But this has no solution, because the 15

left side is odd and the right side is
even for any choice of i and j. Hence no

conflict can occur following State A. A
similar argument shows that no conflict

j

can occur following State B.

For initial conditions other than State A
or State B, a wait may occur. However,
following a wait the system will have to

enter either State A or State B. Hence
after the initial transient no conflict
can occur.

[Q.E.D.]

Theorem 2. For any real c if

aO = (2n'-1)c
bO = (2m'-1)c

and if m' and n' are relatively prime, i

then they are the smallest positive
integers, m and n, for which

m(aO+c) = n(bO+c)

Proof: Suppose there are smaller values
m" and n" for which

m"(aO+c) = n"(bO+c)

then

m"(2n') = n"(2m')

But this is impossible since m" and n"
were assumed to be smaller than m' and
n' , and ra' and n' were assume to be
relatively prime.

[Q.E.D.]

104

For a system described by the
parameters in Theorem 2, the overall
cycle consists of m' A-Cycles in parallel

with n' B-Cycles. During this overall

system cycle there will be no conflicts,

and State A will lead to another State A

after m'(aO+c) time units. However there

will be one "near miss" , as shown by the

next theorem.

I Theorem 3. Let

I

aO = (2n'-1)c

1
bO = (2m'-1)c

j
with m' and n' relatively prime. Then at

some point during the overall system
cycle starting with State A, Customer A

will arrive for service at Server C just
, as Customer B is completing service.

I

Thus State A leads to State B at this
point, and State B will lead to State A.

' Proof: Customer A's i'th request for

j

service at Server C will come at time
i(2nc)-c. Customer B's j'th request will
come at time j(2mc). Customer A will
arrive at Server C just as Customer B is
leaving if and only if there are positive
integers i and j such that the following
equation is satisfied:

i(2nc) - c = j(2mc) + c

i(2nc) - j(2mc) = 2c

,,, in - jm = 1

1, j

Since n and m are relatively prime, 1 is

e their greatest common divisor. We know
from Euclid's algorithm [3] that there
are positive integers i and j that
satisfy the equation. Thus for the

:
system described. State A leads to State

J3
I!

B after i services by Server A.

Reversing the roles of A and B we can

I,
compute the number of services by Server

I
B after which State B leads to State A.

i! During the entire system cycle there are
no conflicts.

[Q.E.D.]

4.1 Graphical Representation

' In characterizing systems in terms

1
of the parameters a, b, and c, it is

I
useful to have a graphical representation

of the systems. In the following
discussions we let our time unit be c.

With this convention, we can represent
any system by two parameters, a and b.

Thus we can represent any system as a

point on an a-b plane.

What we have seen so far is that
there is an array of conflict free points
in the a-b plane. These are the points
whose coordinates are positive odd
integers. If the odd integers are
relatively prime, the point has the
additional property of directly
specifying the number of A-Cycles and
B-Cycles in the overall system cycle.
Next we shall see that each of these

special points is the beginning of a

line, all points of which represent
conflict free systems. Furthermore all

systems represented by points on this
line have the same pattern in their
overall system cycles. In the following

theorem we see how to determine the line
segment of conflict free points given a

minimal conflict free point (aO,bO).

Theorem 4. Let aO and bO be given by

aO = (2n-1)c
bO = (2m-1)c

where n and m are positive integers, and

are relatively prime.

Then the system represented by

a1 = aO + A a
b1 = bO + ^ b

^a n
with = —

A b m

is conflict free if and only if Aa and

Ab are greater than zero.

Proof: Starting from State A, until a
conflict occurs. Customer A's i'th
request for service at Server C comes at
i(aO+ Aa+c)-c. Customer B's j'th request
comes at j(bO+Ab+c). A conflict will
occur if and only if there are positive
integers i and j such that

-c < [i(aO+Aa+c)-c] - [j(bO+Ab+c)] < c

-c < [i(2nc+nAb/m)-c] - [j(2mc+Ab)] < c

0 < (in-jm) (2c+ Ab/m) < 2c

105

1

0 < in - jm <

1 +^b/(2mc)

If Ab > 0, this is impossible because
the term on the right is a fraction
between 0 and 1 while the term in the
middle is an integer. Thus the system
represented by (a1,b1) is conflict free.

If, on the other hand, -2mc <Ab < 0, the
term on the right is greater than 1

.

Since m and n are relatively prime
Euclid's algorithm guarantees the
existance of integers i and j such that

in - jm = 1

Hence there is a solution for i and j,
and the system is not conflict free.

[Q.E.D.]

We see from Theorem 4 that
corresponding to each minimal conflict
free point (aO,bO) there is an infinite
set of additional conflict free points.
These are the points along the infinite
line segment beginning at (aO,bO) and
continuing through the a-b plane with a

slope of n/m, or (aO+1)/(bO+1) . Figure 2

shows these line segments for a part of
the plane. A little more reflection
shows that if we restrict a and b to

rational values these are the only
conflict free points. We note that the
lines whose points we can classify as

conflict free or not conflict free
radiate from the point (-1,-1) in the a-b
plane. Each of these "radials" passes

through a minimal conflict free point,
(aO,bO), and has slope (aO+1) / (bO+1)

.

Points to the right of (aO.bO) are known

to be conflict free, while those to the
left are known not to be. Now, any point
on the a-b plane with rational
coordinates is on one such radial. Thus

it is conflict free if and only if it is

to the right of the corresponding minimal

conflict free point. And, from this we

see that these radials represent all the

conflict free points in the a-b rational

plane

.

In summary, we have two ways of

determining whether a given system is

conflict free. We can use Algorithm

CYCLES to compute the number of cycles
between repeated states. From this

information we can compute the variable

d, and if it is zero the system is

Figure 2. Conflict Free Points i;

ii

conflict free. The value of d also tells ,

us the pattern of states that will be
^

repeated in the system's long term i,

behavior.

Using the results of Theorem k we
can determine directly whether or not the 1

system is conflict free. Given a and b

for the system (as rational numbers), we
express the ratio, (a+1)/(b+1) as a ratio

of relatively prime integers, n/m. If!

a2.(2n-1), the system is conflict free.
Otherwise it is not. So far, however,

this approach does not tell us anything
about the behavior of the system if it is

j

not conflict free . In the following

,

section, we shall see that the graphical
approach is also useful in determining

|i

properties of systems that are not,
conflict free.

4.2 Geometry of Regions
'

Having a Common Pattern '

In the following section we discuss-' U

regions of the a-b plane in which allj io

points represent systems having a common' k

pattern in their overall system cycles.' \

Complete proofs for the properties! ^

claimed for these regions have not yet
I k

been developed. Proofs are given that

certain properties are necessary
conditions for points to be in the same
region, and it is conjectured that these

same conditions are also sufficient.

Theorem 5. If (a1,bl) is any conflict
free point, with m(al+c) = n(b1+c), then

a point (a1,b2) will have the same
pattern from an initial state of State A

only if

c

= (b1-b2) < -

1

Proof: Suppose the system begins in

State A and consider the end of the

overall system cycle. At this point the
system returns to State A with Customer B

i arriving for service at Server C just as
i Customer A is leaving. If Customer B had
I arrived earlier by any amount less than

c, he would have found Server C busy and
been required to wait for that additional

' amount of time. The overall pattern

would have been unchanged with State A

leading to State A after n B-Cycles (and

m A-Cycles.) In order for this to occur

when b is decremented it is necessary
that

lj
nAb < c

or

c

Ab < -

n
[Q.E.D.]

terms of number of services by Server A

and Server B. The necessary condition
for this scenario is

c < nAb < 2c
or

c/n < Ab < 2c/n
[Q.E.D.]

From Theorems 5 and 6 (and the
conjecture that the stated conditions are
sufficient as well as necessary), we see
that below each radial of conflict free

points there are two strips, each of
vertical height c/n, in which the overall
system cycle is essentially the same as

along the radial. An example is shown in
Figure 3.

Figure 3. Region With a Single Pattern

Theorem 6. If (a1,bl) is any conflict
free point, with m(a1+c) = n(b1+c), then

a point (a1,b2) will have State A lead to
State B after m services by Server A,

only if

These strips extend indefinitely to
the right, since the conflict free radial
does. However we do not yet know
anything about how they are bounded on
the left. That is the subject of the

next theorem.

c/n < (b1-b2) < 2c/n

Proof: Again consider the end of the

overall cycle. If Customer B arrives

earlier by an amount greater than c but

less than 2c, then he will find Server C

idle. When Customer A arrives for what

would have been his m'th service by

Server C, he will find Server C busy.

Upon completion of service for Customer

B, the system will reach State B.

Theorem 7. Given a minimal conflict free
point (aO.bO) with

aO = (2n-1)c
bO = (2m-l)c

a point (a2,b2) with a2 < aO and b2 < bO

(and less than 2c/n below the radial)

will have the same pattern as (aO,bO) if
and only if

The overall pattern will be the same in

107

bO - b2 i

aO - a2 j

where in - jm = 1

Proof: It was shown in Theorem 3 that
for (aO.bO) Customer A will arrive for
service at Server C just as Customer B is

leaving following Customer A's i'th
service by Server A. At this point
Customer B will have completed j visits
to Server B. If we decrement both a and
b there will be a conflict at this point
if Customer A's cumulative savings exceed
those of Customer B. Hence in order to
avoid a conflict at this point, and a
different pattern, it is necessary to
have

i Aa < j ^b

or

Aa i

Ab j

[Q.E.D.]

Hence the end boundary for the

regions with the same pattern is a line

through (aO.bO) with slope i/j, as shown

in Figure 4.

Figure M. Region With a Single Pattern

Figure 5 shows a number of these

regions for a segment of the a-b plane.

We note that there are blank areas within

the figure . We can never draw a complete

map of these regions for any part of the
plane that includes any conflict free
points. This is because there are an
infinite number of regions within any
finite distance above a conflict free
point . Note that all points in a given
region in Figure 5 will have a common
pattern, starting with State A and
continuing until either State A or State
B is reached. To see the regions having
a common pattern starting with State B,
we would reverse the axes. (This map is
not symmetric.) The regions defined by
the intersections of regions in these two
maps specify sets of points that will
have the same pattern starting with
either initial state and continuing
indefinitely.

5 6

Figure 5. Regions With a Common Pattern

From State A to Either State A or State B

?

It was claimed that there are an
infinite number of distinct regions
within any finite distance above a

conflict free radial. This can be seenj

by considering what happens if ve,

decrement the value of "a" very slightly
from any value for which (a,b) is
conflict free. As an example let (a,b) =

(3,3), and consider the following timing
diagram:

i

108

Sarvcr A

S«rv*r C

S«rv«r B

Customer A

1 1 1
Cuttomar B

1 1

Slat* A Stat* A Stal* A Slat* A

Figure 6. Timing Relationships for a

Conflict Free System

We See that Customer A and Customer
B are synchronized, with one A-Cycle per
B-Cycle. Now if the value of "a" were
slightly decremented, Customer A would
arrive at Server C slightly earlier on

successive cycles. Eventually Customer A

would gain enough on Customer B that he

would arrive while Server C was still
serving Customer B. Thus we would have
State A leading to State B after some

large number of cycles. It turns out

that this is the transient, and that
State B will always lead to State B after

one cycle. However the transient can be

arbitrarily long. The smaller the
difference between a and b, the more

cycles it takes for Customer A to catch
up with Customer B. This is why there
are an infinite number of regions in any

I

finite area above a conflict free point

I

in the a-b plane.

4.3 Effects of Changes in Service Time

li' The final question that we shall
]) address is that of the effect of changes

!f in service time for one of the peripheral

I

servers on the throughput of the other.

,:j
One might guess intuitively that speeding

l|| up one peripheral server would always

j

give its customer an advantage in

1
competition for the central server, and

' thus could only lower the throughput of
a)' the competing customer. Looking at
e»| Figure 5, we see that this is not the
«e!|s case. There are some situations in which
IJ

j
speeding up one customer will help the

isjlfi competing customer.

I For any given value of "b" there are

j;

many values of "a" for which the system

j

is conflict free. At any of these points

I
each server operates at the same rate

I

that he would if only his customer were
present. Between these conflict free

points, there are always points at which
Customer B must sometimes wait for Server
C. At such points Server B operates with
reduced throughput. There are both
larger and smaller values of "a" for
which Server B's throughput will be
higher. Hence to know the effect of a

change in either service time it is
necessary to look at the specific
patterns before and after the change.
The effect of a change could be either an
increase or a decrease in the throughput
of the unchanged server. Measurements
showing this effect with actual computer
system components were the original
motivation for the work leading to this
report

.

Conclusion

A queueing network model with fixed
service times has been defined and
studied. We have seen that this
deterministic system, which is quite
simple to describe, can have rather
complex behavior. Unlike most of the
commonly used stochastic models, this
model exhibits discontinuities in the
functions describing performance
variables in terms of model parameters.
A geometrical description of the
parameter space provides useful insight
into the general properties of such
systems. A computational algorithm
permits efficient calculation of the
performance of a system with any specific
set of parameter values.

Thanks to Jim Bouhana for several
suggestions for improvements in clarity,
and to an anonymous referee for pointing
out several errors in the original draft

.

Discussions with my colleague Joel Emer
led to the original formulation of the
model as presented here.

References

[1] P.J. Denning and J.P. Buzen, "The
Operational Analysis of Queueing Network
Models," Computing Survevs. Vol. 10, No.

3, Sept. 1978, pp. 225-261.

[2] K.C. Sevcik and M.M. Klawe,
"Operational Analysis Versus Stochastic
Modelling of Computer Systems,"
Proceedings of the Computer Science and
Statistics; 12th Annual Symposium on the
Interface . J.F. Gentleman (ed.),
University of Waterloo, Waterloo,
Ontario, Canada, pp. 177-184.

[3] See any introductory text on number
theory.

109

I

It
III

1 J

1 lit

1 rii

1 !l

0
(I

A

for Studying

Highly Parameterized Tool

Performance of Computer Systems

Herman D. Hughes

Department of Computer Science
Michigan State University

East Lansing, Michigan 48824

ABSTRACT—A highly parameterized simulation model is described which
allows experiments to be performed for computer performance evaluations
studies. The results of these experiments can be used to evaluate the
effect of changing the hardware configuration, the workload, the schedul-
ing policy, the multiprogramming level, etc. The model is constructed to

function either as a batch or time-sharing system, or as a combination of
both. This simulation model also has the potential of providing dynamic
feedback for the scheduler. A discussion of the design, implementation,
and use of the model is presented. Examples are provided to illustrate
some possible uses of the model and verifications of the results obtained
from the model.

Key words: Simulation model, queue, scheduling policies, workloads,
hardware configuration, model validation, system performance, events,
cumulative distribution function.

*Research supported jointly by AFOSR Grant 78-3547 and Division of

Engineering Research

1 . Introduction

In order to provide sufficient infor-
mation for evaluating changes to computer

i

systems, both the hardware and software must
be evaluated with respect to the efficiency in

jPerforming their required tasks. There are
pcertain realistic constraints which make it

Ifvirtually impossible to effect changes to ex-
listing systems for the purpose of studying
(Computer system performance. Many of these
onstraints, however, may be overcome by the

s^e of a flexible computer simulation model

An emphasis of this investigation is to
Ijfocus on providing a tool for assisting anal-
jjrsts in making decisions on various perfor-
jhiance strategies. In order to develop such a
tool, it is obvious to this investigator that
a fairly complex model of a computer system is

required

.

The number of existing simulation models
cited in the literature for computer systems
and computer subsystems is too massive for an

adequate review. However, it should be ment-
ioned that a large percentage of the previous
work related to computer system simulations
has focused on answering questions relative to

specific computer systems /computer sub-
systems .

This paper describes a highly para-
meterized simulation model which allows exp-
eriments to be performed for which the hard-
ware configuration, the workload, and the

scheduling policy can vary. The model is

event-driven and is designed to accommodate
systems as simple as batch with uniprogram-
ming, to more complex systems which make use
of time-sharing, multiprogramming, and

virtual memory principles. Major components

of the model are described in the next section
of this paper.

Ill

Several experiments are presented to il-

lustrate the potential use of the simula-
tion model. Typical output from the model
includes: performance indicies (i.e., res-
ponse time, throughput rate, execution-time
dilation, paging rate, swapping rate, etc.),

queue statistics, utilization measures, and a

profile of the system. This output is avail-
able at the job-step level or at the overall
system level, and is broken down by system
overhead and users' statistics.

The model may serve as a tool for pro-
viding guidance to system analysts, capacity
planners, and individuals involved in courses

such as system programming, operating
systems, simulation, and performance measure-
ments/evaluations .

II. DESCRIPTION OF MODEL

The model is written in a high-level
language—ANSI standard FORTRAN—and is im-

plemented on a CDC Cyber 750 computer. There

are several components to the model, and each
component corresponds to a FORTRAN sub-
routine. These components and their functions
will be examined after a discussion of the

flow of transactions through the system.

The high level flow of jobs (job-steps)
through the system is depicted in Figure 1.

Each job-processing step listed below cor-
responds to an event within the model 17].

Step 1:

A job (batch or interactive) arrives
randomly or according to a specified distri-
bution. Upon arrival, the following job char-
acteristics are determined either randomly or

according to a pre-defined distribution: (1)

the total CPU time, (2) the average amount of

central memory (CM) requested, and (3) the
number of I/O requests.

Step 2:

The job makes a request for CM alloca-
tion. If the CM space requested is not avail-
able, the job enters the CM queue.

Step 3:

After the job enters the CM, it immedi-
ately requests the CPU. If the CPU is free,
it is assigned to the job and executes until
some blocking condition occurs (i.e., a system
interrupt, the time-slice used up, the job is

completed, or an I/O request is encountered).
In the former two cases, the job releases the

CPU, but is placed back into the CPU queue.

Step 4:

When a job issues an I/O request, the CPU
is released, and a specific disk is requested.
Since the total CPU time and the number of

disk requests for a job are predetermined, it

is assumed that the instances of I/O are uni-
formly distributed over the elapsed time of a

job, when it is run in a uniprogrammed mode.

Step 5: !

In order for a job to access a designated
disk, both the disk and the associated channel
must be free. Otherwise, the job enters a

disk queue. If the disk and the channel are

both free, a "disk-seek" time is generated.
During the "disk-seek" time, the disk is busy,
whereas the channel is not.

Step 6: I

After completing the disk-seek, a "rota-
tional delay" time is generated. When this*

time expires, the channel is requested again,

and if available, the data is transferred over
the channel. The disk and the channel are

both busy during the "transfer" time.

Step 7:

When the data transfer is completed, the

disk and the channel are both freed, and the

job proceeds to request the CPU again.

Step 8:

Upon completing all the CPU and I/O

tasks for a given job, the CM allocated for

that job is released. If the job is a batch' i

job, it leaves the system; otherwise, thei i

job is an interactive job, and has just i

completed a "system response cycle", so a i

"user think-time" is generated.

III. JOB EVENTS
I

The job-processing steps listed by

Steps 1-8 represent only a subset of the

events within the model. Other events in-i

eluded in the model are highlighted by Fig-
ure 2. Those events which appear in the

flowchart boxes have event-times which are"

predetermined and, therefore, can be placed
on the future-event list. The set of events
whose event-times cannot be determined in

advance are just listed below the flow-
chart (refer to Figure 2). For example, if a ,

batch job is in the CM-queue, the next event i

is requesting CM; but since it depends on '

when other jobs will leave the system and

make space available, the event time cannot] i

be determined. On the other hand, if a job

obtains the CPU at time t , and the inter-
o

I/O request time T is known, then the next i

event for this job (release the CPU) can bej

scheduled at time t +T, and hence placed on
the future-event lisi. li

s

IV, QUELTE STRUCTURE FOR MODEL ,

The model consists of several queues"

U2

(i.e., future-event queue, CM queue, CPU

i^jiqueue, channel queue, free-record queue,

disk queue, etc.). Each of these queues
forms a ring with a coincident head and tail.

I
{Records in the queues are constructed as doub-
ly-linked lists with pointers to the immediate

[predecessors and successors.

I

Job-records in the future-event queue

are always in ascending order of the next
event-time, whereas jobs in each waiting queue
are always in decending order of job priority.
The queue discipline, FCFS, is applied to jobs

of the same priority.

Figure 3 illustrates a typical queue str-
ucture for job-records within the model.
Notice that a job (job-record) can only appear
in one of the queues at a time, and that
records which are not currently active are at-
tached to the free-record queue.

The average queue length (In) can be de-
rived as follows:

+Vi^^-^-i^]/^^-^^

[-i t+(Z-i^)t +(l -z)t.+.

.

CO oil izz
+ il 1 -£) t +«, t] / (t -t)n-1 n n n n no
[Z (£ . -£)t +£ t]/t

i=l
linn n

n
= [Z (Z -£)t]/t +£

i-i 11 n n

where { t.} (o < i< n) denotes the time when a

j'job enters or leaves the queue, and Z. is the
>queue length at time t., wi th t =o. T?iis for-
mula was used throughout the model for cal-
i^iculating average queue lengths

.

V. THE GENERATION OF DISTRIBUTIONS

Distributions used by the model are gen-
i,ierated via a set of Cumulative Distribution
(Functions (C.D.Fs). The C.D.Fs are defined by
Ithe user supplying a set of discrete functions
i(e.g., 11 points), thus permitting the genera-
ijition of a desired distribution. As an ex-
^lample, assume that the job arrives according
yito Poisson distribution with mean X= 3

job/sec. Then, the inter-arrival time (random
(variable X) is known to have an exponential
Idistribution of mean 9=1/3, hence the C.D.F.
,|function can be approximated as follows:

IF [X < t]= l-e^^^ = l-e-^^, where F [X < t]

takes on tH6 vfl lu6s O^Oy Oaly 0.2^ 0 ^

1.0:

F [X ^ t] 0.0 0.1 0.2 0.3

t(approx.) 0 0.0351 0.0744 0.1189

0.4 0^5 0^6 0^7 0.8

0.1703 0.2310 0.3054 0.4013 0.5365

0.9 0.9995*

0.7675 2.534

*Here, since FtX^ t] equals 1.0 only when
t we use the value 0.9995 in order to

avoid t= The approximated C.D.F. is shown
in Figure 4(a).

After the C.D.F. has been approxi-
mated, and a sample is desifed from this

distribution, we only need t'o generate uni-
formly distrbuted random numbers over the
unit interval (0,1), and perform an inverse
transformation on the C.D.F.. This trans-
formation involves a table look-up and a

linear interpolation procedure to obtain
sample values. A possible pitfall of this

approach is that when a discrete function is

used to approximate a continuous function,
some error must be tolerated. Figure 4(b)
illustrates the case where a value x' may be

generated which is slightly larger than the

actual value x. Clearly, as the number of
points used to approximate a function in-
creases, the accuracy of the sample values
also increases.

Another problem related to the gener-
ation of various distributions in modelling
is the independence of the set of random
numbers generated for different distri-
butions. For this model, the independence
of the generation of jobs within job-class§s
was achieved by using a different random-
number seed for generating each job-class.

VI. MODELLING VARIOUS COMPONENTS OF SYSTEM

HARDWARE (see Figure 1) - The following
hardware is modelled, and can be configured
in various ways.

CPUs
DISKS
CHANNELS
TERMINALS
MEMORY

The timings of the hardware components are

relative, and may be redifined by the user.

SOFTWARE - In order to simplify the

model, the details of the operating system
are not modelled explicitly; instead, tim-

113

ings for system overhead are included in

system tasks (i.e., paging, swapping, sch-

eduling, etc.) II].

PAGING - Paging is modelled as a high-
priority system job which is activated at a

certain rate (specified as a parameter by the

user). This high-priority job will use the

CPU, channel, and the disk to read/write one

page of data. By using this approach for

modelling paging, the contention for devices
can be simulated very easily.

The paging rate is defined for some fixed

multi-programming level (i.e., MPL=7), and

will be varied by the model as a function of:

(1) the number of interactive users, (2) the

memory size, and (3) the MPL level.

SWAPPING - Swapping is not modelled ex-

plictly; instead it is modelled as a high-
priority system job which is activated when
(1) TTY jobs get into or out of think-time (CM

is actually freed), or (2) jobs request disk
I/O, but are blocked. An input parameter
controls the swapping rate. If the CM-queue
length is greater than this input parameter,
swapping occurs

.

The system resources used by swapping
are: the CPUs, disks, and the channels.

STORAGE ALLOCATION - the acquisition and

release of main storage for the application
programs are modelled. The user specifies the

memory size via input parameter,

SCHEDULING - Originally, jobs coming
from the same class (batch, system, or inter-
active) are assigned the same priority (speci-
fied as a parameter). This convention may be

altered if it is desired to assigned different
priorities to jobs within the same class.

Each time a job changes queues, its priority
is recalculated. The calculation proceeds as

follows

:

Internal priority = original priority + (CPU

time used) x weighty
+(system residence time) x weight2 + (CM size)

x weighty, where weighty are input parameters.

By altering input parameters such as

initial job priority, internal priority

weight, quantum size, MPL, etc., different
scheduling algorithms can be investigated.
Since the model collects statistics such as

queue lengths, and utilization information,
the results of these statistics can be used to

provide dynamic feedback to the scheduler 3 .

WORKLOAD - Each batch job-class is char-
acterized by its CM request, CPU time, and

number of disk. I/O requests. An interactive
job is characterized by its CM request, CPU

time, number of disk I/O requests, and the <

length of its think-time. These job char-

acteristics are defined by distributior
functions. For example, a user's think timt|j

may be simulated by sampling from an exponei
tial distribution with mean = 16 [5] . Ar.

approach for generating representative worl

load data to drive a simulation model will be

discussed in a forthcoming paper.

VIII. MODEL VALIDATION AND EXPERIMENTAL RESULl
1

It is an established fact that the valid-
ation of a simulation model is a comple>|M

process I4J. This model was validated by (!>'

verifying the logic of the FORTRAN program,'

(2) using a constant model to verify the ac-

curacy of the statistics produced by the simu-
lation model, and (3) using stochastic pro-

cesses to check the correctness of the simul-
ation. Since the first two steps used foi

validation are straightforward, the results
which make use of stochastic processes (step

3) are presented in experiments which follow.

Experiment 1.

no. of CPUs = 1

no. of disks = 1

no. of channels =1
size of CM = 300K words
multiprogramming level = 1 (uniprogramming)

The job-parameters were:

mean arrival rate ^= 3 jobs/second (Poissort

distributed) from a single batch class.

mean CPU service time =0.1 sec/ job
mean disk service time = 0.05 sec/job
avg. CM request per job = 50K words

The above three job-parameters are distibuted^

exponentially.

The system is depicted in Figure 5. A job

enters the system only when there is no other
job running. It uses one half of the CPU
time, then leaves the system. It should be

noted that the channel is not modelled here,

since no contention exists for it in a uni-
programming mode

.

The simulation results are tabulated
in Table 1 along with the analytic results.
An explanation for the calculations made in

rows 1-6 of Table 1 is given below.

1. Row 1— A is given as an input para-(J

meter. (A=3)
2. Row 2— the CPU utilization (L/CPU) is

calculated as;

VJCPU = A
y^^

=3.0 X 0.1=0.3

114

4.

Row 3— the disk utilization (Udisk) is

calculated as:

Udisk = A = 3.0 X 0.05 =0.15

Row 4—the calculation for the turn-

around R, is based on a M/G/1 system.

2.

R = E(Service time) +
A E (service time)/2
1- A E (service time)

R=n/x = 0.629 -r 2.48 = 0.255 seconds,
which is close to the result for the 400-
job case.

Experiment 2.

To further validate the model, let's sup-
pose that during a job's access to the disk, a

disk-seek time and a latency (rotational
delay) time were generated. Consider the fol-
lowing configuration:

no. of CPUs = 1

no. of disks = 1

no. of channels = 1

size of CM = 300K words
multiprogramming level = 1 (uniprogramming)
The job parameters were:

mean arrival rate ^ "| jobs/second (Poisson
Row 5—avg. CM queue length = total wait distributed) from a single batch class,
time/total time

avg. disk-seek time = 0.04 seconds
=(turnaround time - service time) x avg. latency = 0.01 seconds
(no. of job completion)/total

time The above two job-parameters are distributed
exponentially.

=(0.245-0.15) X throughput Figure 6 depicts the system of concern, and
= 0.095 X 3.0=0.285 the results are shown in Table 2.

= (0.15)+
45

[(0.15)^-(0.1) (0.05)]

= 0.15 + 0.095 = 0.245 seconds

It should be noted that the avg. CM queue

length may be thought of as an "occupancy
factor" for the CM queue.

6. Row 6— the average number of jobs in the

system (excluding the CM queue) is, by

Little's Law), [E(service time) x

throughput]. So, the average

CM utilization =[E(service time) x

throughput]x E(CM request)/CM size

=(0.15) X (50) x 3.0/300
= 7.5 X 3.0/300
= 0.075

Also, the Operational Approach proposed by

Buzen [8] can be used to check the consist-

ency of the model as follows:

i

' Little's law states that the average num-

ber (n) of jobs in the system, including those

'waiting in the CM-queue , is given by:

n=xR

Hence, we have

R=Ti/x

where x = throughput
R = turnaround time.

Now, n= avg. CM queue length +U CPU + U disk

= 0.184 + 0.296 + 0.149
= 0.629 (in the 400-job case) and

x=: 2.48, hence

Considerably more validation was done on
the simulation model, but will not be present-
ed in this paper [4]. The remaining experi-
ments are presented to illustrate some of the
more interesting outputs from the model. Ap-
pendix I contains an example of a system pro-
file produced by the model. A system profile
enables one to observe the degree of overlap
of resource utilization during a selected time
interval

.

Experiment 3.

This experiment is to investigate the ef-
fects of varying the quantum (time-slice) size
and observe the performance of a multiprogram-
ming computer system. The system under study
has the following configuration;

no. of CPUs = 1

no. of disks = 8

no. of channels = 2; 4 disks/channel
size of CM = 128K
multiprogramming level = 10

system overhead due to job-swapping = 2 to 3

msec

.

The impact of various quantum sizes on the

system's behavior is plotted in Figure 7.

Basically, for quantum sizes of 1.0 to 0.3
seconds, the system performs much the same,

because the average inter-l/0 time is rel-
atively small compared to the quantum sizes.

As the quantum size decreases to 0.08 sec-
onds, the turnaround time and the CPU queue
length are considerably reduced, hence we
get better performance from the system.

115

However, if the size of the time-slice gets
too small, the system overhead in creases
significantly, and therefore degrades the

system performance. So this simulation can
provide some guidelines for determining the

size of the time-slice.

Experiment 4.

In order to analyze the effects of dif-
ferent multiprogramming level (MPL) on the

system performance, a set of experiments
were performed with various MPLs. The

general configuration is depicted in Figure
1, with the following specificiations

:

no. of CPUs = 1

no. of disks = 8

no. of channels = 2; 4 disk/channels
size of CM = 128K
quantum size = 0.1 second

disk-seek time = 0.04 seconds
rotational delay = 0.01
disk service time = 0.2 seconds

The above three job-parameters are distri-
buted exponentially.

Batch jobs (jobsteps):

mean arrival rate ^ = 1/2.8 jobs/second
(Poisson distributed)

mean CPU service time =2.0 seconds
avg. no. of disk I/O = 5 times

The above two job-parameters are distribu-
ted exponentially.

Interactive jobsteps:

no. of terminals = 10

user think-time, Z = 18 seconds
mean CPU service time = 0.2 seconds
avg. no. of disk I/O = 2 times

The above three are distributed exponent-
ially.

The system also has paging and swapping over-
head as explained in previous sections.

Figure 8 shows the plot of the MPL vs sys-
tem performance in terms of batch turnaround-
time, TTY response time, system overall
throughput, and system overhead, etc.

Experiment 5.

Suppose that the system is now dedicated
to interactive users, and we wish to study the

behavior of the response-time as the number of
terminals increases. The system has the same

configuration as described in Experiment 4,

except that the MPL is set at 7. Workloa<
characteristics for this experiment are des-

cribed by the following parameters:

mean CPS service time per interaction = 0.:

seconds
avg. no. of disk I/O requests = 2 times
user think-time = 18 seconds

The above three job-parameters are distri-

buted exponentially

Figure 9 shows the various performance indicei

obtained as a result of varying the number o

terminals.

VIII. SUMMARY AND CONCLUSION

We have presented a general-purpose sim-

ulation model which is capable of simulating ;

wide variety of computer systems. The majoi

advantages of this model can be characterize<
as the following:

i. the structure of the model is genera'

enough to be tailored for many computei
systems, and yet,

ii. the model is highly parameterized so thai

it can closely approximate a rea.

system by specifying the hardware an<

software configurations;
iii. the (batch and interactive) workload!

that drive the simulation model cai

also be defined handily by a set o:

job-parameters

;

iv. the model can be easily modified to ac-

comodate different scheduling algor-

ithms.

Several uses of the model may be cited.

It can serve as a tool for the analysis oJ

system performance due to upgrading oi

chang-ing scheduling policies. It may alsc

be used to predict the system's future per-

formance with different workloads. Sectioi
VII illustrated some of these applications
by a set of experiments. While the numer-
ical results of the simulation model may not

be completely accurate; it nevertheless in-

dicates the trend of improvements or degrad-
ations, thereby providing guidelines to the

analysis of complex computer systems.

I would like to express my appreciation foi

two graduate students (Liang Li and Jefi

Perdue) who provided a significant contri-
bution to the development of this paper.

116

References

(1) Hughes, H.D., "GPSS Simulation Model of

MVS", Interinu Technical Report, Dow
Chemical, September 1979-

(2) Schwetman, H.D. Jr.,

A Study of Resource Utilization and Per-
formance Evaluation of Large-Scale Com-
puter Systems , Ph.D. thesis, the Univer-
sity of Texas at Austin, Computation
Center, August 1970.

(3) Bunt, R.B. and Hume, J.N. P., "A Simula-
tion Study of a Demand-Dr iven Scheduling
Algorithm", Symposium on Simulation of
Computer Systems III, 1975.

(4) Theorey, Toby J., "Validation Criteria
for Computer System Simulations", Sym-
posium on Simulation of Computer Systems
III, 1975.

(5) Hughes, H.D., "Some Predicted Results
for the APL System", Abstracted in the

Proceedings of the ACM Computer Science
Conference, 1978.

(6) Coffman, E.G. Jr., and Wood, R.C.,
"Interarrival Statistics for Timesharing
Systems", Communications of the ACM,
Vol. 9, No. 3, July 1966.

(7) McDougal, M.H.
,

"Computer System Simul-
ation", Computing Surveys, Vol. 2, No. 3,

1970.

(8) Denning, P.J. and Buzen, J. P., "The Op-
erational Analysis of Queuing Network
Models", Computer Surveys, Vol. 10, No.

3, September 1978.

(9) CHO, A.C., Strauss, J.C., "A Simulation
Study of Dynamic Dispatching", Symposium
on the Simulation of Computer System III,

1975.

117

APPENDIX I

SYSTEM PROFILE FOR THE SIMULATION RUN:

CPU AND CHANNEL STATUS: 0=IDLE; 1=BUSY.

CPU 1 TIME FOR EACH COMBINATION

0 136.579

1 879.810

CHANNEL 12 3 TIME FOR EACH COMBINATION

0 0 0 289.946

0 0 1 70.455

0 10 206.797

Oil 40.659

10 0 154.167

10 1 31.632

110 193.887

111 28.627

SYSTEM TIME 1016.369

CPU ONLY 286.993 I-

CPU BUSY 879.810

CPU-CHANNEL
OVERLAP

592.818

CHANNEL BUSY 726.443 I

CHANNEL ONLY 133.625 I 1

118

ITEM Simulation results Theoretical

200 jobs 300 jobs AOO jobs results

Mean arrival rate X

(= throughput

)

2.52 2.68 2.A8 3.00

Avg. CPU utilization 0.293 0.295 0.296 0.300

Avg. disk utilization 0.1A7 0.1A8 0.1A9 0.150

Turnaround time 0.242 0.232 0.255 0.245

Avg. CM queue length 0.166 0.172 0.184 0.285

Avg. CM utilization 0.090 0.083 0.085 0.075

TABLE 1. Simulation and Analytic Results for Experiment //I

Simulation results for 300 jobs

ITEM

Seek & latency
constant

seek & latency
exponentially
distributed

Theoretical

results

Mean arrival rate A

(= throughput)
0.296 0.296 0.333

Avg. CPU utilization 0.656 0.656 0.667

Avg. disk utilization 0.146 0.156 0.150

Avg. channel utilization 0.135 0.143 0.133

Turnaround time 4.684 4.732 4.689

Avg. CM queue length 0.574 0.578 0.658

TABLE 2. Simulation and Analytic Results for Experiment //2

119

0)

A!
0)

<u
<4-l (0

O I

C -H
(U "O

<u^ m
o (0

S3

u
O (fl

to

(U

H 2

rriv

B
•H
4J

« 1

d
O
t-1 thi

HH

CO

o •o

03

0) (d
U <u
W tH
>. 0)
(0 l-l

Cm

(U
0)

O w
1

e U)

0) •rt

u •o

\sys
end

00
c

P.
P-
«
w

o c

1 <J
1

I-l

3
fa

1

(U
60

/—

s

o
l-l c

(U

4J
iH
3
n)

(4-1

4J
1

<u

m OJ
4-1 p.
CO

Q
u

n

CO

<u

3
cr
0)

o

m

1 4-1

4-)

0) 4J cd
•H 1 bO si
iH

S nk in WC

U 01 •H a. o
C 4J 43 cu iH
0) CO 4J CO fu
> >^
(U

1

ID
to

CO
In

<u cn m c B

§ Pu M (U •H <u

3 O Q > 4-)

4J CO CO

3 4-1 4J 0) (U
<4-l OQ CO CO o CO CM

0) (U (U 00
ej 3 3 3 CO

cr cr o* o oi
4J <u (U (U •n o CO gV4 1-1 4J

a u M
o tc TY ta

Fl4

4-1 /•—

I

^—

\

H CO

o CM CO u-1

i-i
<•—'

iH
^—

'

iH

(0
4J /—

s

e^
c CM CO in 00 I-l

(U

>

4J -g

B
0) CO

4-1 43
CO O

CO

121

A record node has the following format:

(pointer)

predecessor user-job successor
link number link

where (pointer) is the
record number

For example^

(201)

Dummy queue-head 1

f (202)

15m 15

201

Dummy queue-head 2

(2)

201

209
209

Dummy queue-head 9

(15)

202
3
202

To put the above queues in the form of an array, we have:

Record
nodes

dummy
queue-heads

RECORD
NO. PRE

JOB
NO. sue

1 201 1 2

2 1 2 201

15 202 3 202

201 2 //// 1

202 15 //// 15

209 209 ///// 209

FIGURE 3. Doubly-linked queue structure in the model.

122

C.U.P.

A
1.0

0.9

1.0 1.5 2.0 2.5

C.]

^r^ is a random nximber uniformly generated between 0 and 1.)

4(a) Generation of a remdom variate x from a discrete C.D.F.

,

o

X X
FIGURE 4(t>) Example of the error of approximation by the discrete

C.D.F. . (x' is the estimation of x.)

123

Job
Arrival

CM-
queue

CPU -DISK

'Job Completion
FIGURE 5 A simple 1-CPU, 1-disk uniprogramming system.

Job
Arrival

CPU f j—^ j— DISK

laS^ rotsoT^aldis
seek delay

'

' Job Completion

FIGURE 6 A simple system with disk-seek and latency time.

124

1.5 -

1.0 -

0.5 -

A : System overhead CPU time in 100 seconds,
(total time = 1,000 seconds)

Swapping rate due to time-slicing, in
100 times per second.

0.01 0.02 0.05 0.08 0.1 0.5 0.6 1.0

FIGURE 7(a) The system overheads for variovis qxiantiun sizes.

Quamtum
Size
(sec)

1.5 -

1.0 -

0.5 -

0.0

Turnaround time in 10 seconds.

Ik' CPU-queue len^rth in number of jobs.

0.01 0.02 0.05 0.08 0.1 0.3 0.6 1.0

Quantum
-*Size
(sec)

FIGURE 7(l>) Turnaround and CPU-queue leng:th for various quantum sizes.

125

Througiiputvin 1,000 jobs per hour.

* • CM-queue len^h in 100 jobs.

-t

1 3 5 7 9 11 15

FIGUHE 8(b) Throughput and Cr4-queue len^h \inder different I'lulti-

Programming Levels.

MPL

126

I: CM utilization

2: CPU utilization

3; Chamnel utilization

MPL
1 5 5 7 9 11 15

FIGURE 8(c) System utilizations under different J^Iulti-Progreunraing Levels,

127

utilization

FIGURE ^^(a) System utilizations vs. number of terainals.

10 15 20 25 30 35 40 50 60

FIGURE 9(b) System overheads and response time vs. number of terminals.

128

Optimal Selection of CPU Speed, Device CapacitieSp

and Allocation of Files with Variable Record Size

Kishor S. Trivedi and Robert A. V7agner

Department of Computer Science
Duke University

Durham, N.C. 27706

This paper extends a previous model for computer
system configuration planning developed by the authors.
The problem is to optimally select CPU speed, device
capacities, and file assignments so as to maximize
system throughput subject to a fixed cost constraint.
In our earlier paper we assumed that the record sizes
for all files are equal, the block sizes of all devices
are equal and these two in turn are equal. In this
paper we extend our earlier results to allow each file
a distinct record size and each device a distinct block
size

.

Key words: Capacity planning; configuration planning;
file assignment problem; optimization; performance
evaluation; performance- oriented design; queuing
networks

.

1. Introduction

This paper is an extension of a
|inodel for computer system
configuration planning developed in

[1]. We are interested in optimally
(selecting the CPU speed, the
ieapacities of the secondary storage
Bevices, and the allocation of a
L

j* This work was supported in part
under the National Science Foundation
prant number MCS 78-22327 and the
[National Library of Medicine Program
jProject grant number LM-03373.

given set of files across the
secondary storage devices. The
objective of optimization is to
maximize system throughput subject to
budgetary limitations. In [1], it
was shov;n that any relative maximum
of this complex nonlinear programming
problem is also its global maximum.
A technique for significantly
reducing the conputational complexity
of the optimization problerr: was
developed. Finally, an interesting
subproblem, known as the file
assignment problem, was also
d iscussed

.

129

I

d iscussed

.

Two simplifying assumptions were
made in our earlier model. The first
assumption was that all secondary
storage devices use the same fixed
block size. In practice, block size
is likely to vary with the type of
device. The second assumption was
that a logical file I/O request
always generates a physical I/O
request. This assumption may nothold
in practice. Suppose that the
logical record size of a file is
smaller- than the physical block size
of a device so that several records
are packed into a single physical
block. Tlien a logical I/O request
will give rise to a physical I/O
request only if the block in which
this record resides is not already
resident in main memory. Section 2

develops an extension of our earlier
model assuming that files are
accessed in a sequential fashion.
Each device may have a different
clock size and each file may have a
different record size. Any relative
maximum of the modified optimization
problem is also its global maximum.
This optimization model has one
variable per file-device pair (giving
the amount of file i to be loaded
onto device j). The resulting problem
has too many decision variables to be
solved quickly. However, we have
developed a simple file loading rule
which reduces the number of decision
variables from one per file-device
pair to one per device (specifying
the size of that device) . The file
loading rule is then used to
determine exactly what parts of each
file are to be used to fill each
device. This loading rule is

ueterminist ic - no elaborate
computation is needed to use it. We
nave shown in [1] that this file
loading rule is always optimal. This
rule is presented in more detail in
Section 2. Section 3 presents an
example of use of our model.

VJe are interested in determining
several hardv.'are configuration
parameters (CPU speed and device
capacities) as well as software
configuration parameters (file
assignment) . The throughput of the
system is modeled using a closed
queuing network of the central server
type [2] . This is in contrast to

several efforts ignoring queuing
delays [3,4]. Other authors have
used open queuing network models
which are more suitable for
computer-communication network design
[2,5,6,7]. For hardware
configuration planning, several
authors have used decision models of
closed queuing networks
[8,9,10,11,12,13]. Similarly,
several models of file assignment are
available [14,15,16]. Apart from our
earlier paper [1], the work closest
to the present paper is that by Arora
and Galio [17]. Our model may be
thought of as a refinement of their
model that does not require the
approximate decomposition into two
submodels that they proposed. In
fact, we derive an exact
decomposition of the design problem.

2. The Basic Model

Inputs to our model consist of
workload parameters and device
cost/performance characteristics.
The workload is specified by the
resource requirements of -» typical
program. Let Wo be the total number

of instructions required, on the
average, to complete the execution of
a program. There are f files
numbered 1, 2,
with file i is its

f. Associated
logical record

size r^^ (in bytes), its total size S^

(in bytes) , and an activity n^ where

n. denotes the total number of
logical I/O requests directed to file
i, on the average, during the
execution of a typical job.

There are m secondary storage
devices and the cost of device j {1 <

j _< m) is assumed to be proportional
to its capacity (in bytes), that

is, COSTDEVICEj = K ^ . The total

cost of the I/O devices is given by
m

F(K) = S C. K.. The block size of i

51V

j = l 3 D

device j is dj bytes. The CPU cost

Fq is modeled by a power function of

its speed b^ (in MIPS), so that

130

Fo(bo) = C
0 '"o

•

We assume that for each j (1
jc j < m) and each i (1 < i < f), dj

is exactly divisible by r^^ and that

files are accessed sequentially.

Since dj / r^ logical records of file

i are stored (blocked) on a single
physical block of device j, the
probability that a request for a

logical record of file i on device j

generates an I/O request to device j

Let X^j denoteis r . / dj (< 1)

the number of bytes

assigned to device j

of file i

Thus a

fraction X
ID

/ of all logical

requests to file i will be directed
to the portion of file i residing on
device j. Only r^ / dj fraction of

these requests generate a physical
I/O request to device j. Therefore,
the total number of physical I/O
requests, W j , directed to device j is

given by

= ^ "i s dJ i=l ^ ^i

Let tj denote the average service

time (to fetch one block of size dj)

Then Vj = Wj tj isfrom device j

.

the total time demanded by a typical

program on device j. Let tQ be the

average time to execute an

|i instruction so

! Then

that = 1 / b 0*

typical program. The average service
times for the I/O devices are assumed
to be fixed parameters in this model
while the CPU instruction delay t^ is
a control variable.

In order to make the queuing
model computationally tractable, we
assume that if the scheduling
discipline of a device is FCFS (First
Come First Served), then the service
time distribution is exponential.
Any d i f ferentiable service time
distribution is permitted provided
the scheduling discipline is either
PS (Processor Sharing) or LCFS-PR
(Last Come First Served Preemptive
Resume) [18]

.

The number of jobs circulating
in tiie central server mocJel will be
denoted by n and is also referred to
as the degree of multiprogramming.
We consider n to be a fixed parameter
but a discrete search for the optimal
value of n can be performed if
desired

.

The throughput of the system is
given by Uq / [19; pp. 252-253],
[20] where

and

Uq = Yq G(y;n-1) / G(y;n)

_ m k • m
G(y;n) = z{ n y^M ^ k.=n

}

j=0 j = 0

Then the throughput T(y;n) is given
by

T(y;n) = G(y;n-1) / G(y;n).

Instead of maximizing
throughput, we will set up our
problem to minimize the reciprocal of
the throughput, denoted by z(y;n).
Now the problem of the optimal
selection of the CPU speed, device
capacities, and file assignments

(CSDCFA) can be stated as:

^0 = Wq to

is the total CPU time required by a

131

CSDCFA Problem;

...in z(y";n)

Subject to {i=l,2,..

ni

ID

FQ(WQtQ) + F(K) < COST

(la)

,f ; j=l,2, . . . ,ni)

(lb)

(Ic)

(Id)

t .

y- = ^

to 1 0

f

z
i = l

Yj > 0, Kj > 0

X. . > 0

"i ^ij -^i / Si (le)

(If)

(ig)

(Ih)

The constraint (lb) assures us
that the capacity of each device is
not exceeUed by the file assignment,
and the constraint (Ic) guarantees
that every byte of every file is
placed on some device.

:he CPU delay 0' uev ice

relative utilizations yj(l <j £ m)

,

the device capacities ^^j(l £ j £ m) ,

and the file assignment variables

are the

decision variables for a total of

m*(f+2) + 1 variables. The values of

^ij(l < i < f,l 1 j 1 m)

dj (1 < j < m)

,

r . (1 < i < f) , Wq, n, m, f

i' "i'

and COST

are assumed to be fixed parameters

for this problem.

With an appropriate change of
variables, the optimization problem
(1) above reduces to problem (9) in
[1]. Therefore, the following
results are easily derived:

THEOREM 1

The CSDCFA problem (1) is a
convex programming problem (assuming
that c(q ^ 0) , hence any relative

minimum is also its global minimum.

It should be that

X^^'s, Kj's, and S^'s

noted

are now

measured in bytes rather than blocks

as in [1]

per byte of device j

Similarly, C^ is the cost

A special case of problem (1) is
the file assignment (FA) problem
where the device capacities

Kj^,K2, . . . ,Kjjj and the CPU delay t^ are

fixed parameters. As a corollary to
theorem 1, we obtain the convexity of
the FA problem.

COROLLARY 1

problem is
problem.

The file assignment
a convex programming

Any solution to the CSDCFA
problem can be shown to have an
ordered characteristic as in [1]

.

Specifically, files may be ordered by
non-increasing n^^ / S^ value (access

^

probability). These ordered files
can then be assigned to devices,
filling each device in non-increasing
order of per-byte cost (Cj) . We have

shown that every optimum solution
necessarily has this form. Since this
form involves as decision variables
only the device capacities, we are
able to reduce the number of decision
variables from
m*(f +2) + 1 to 2m + 1 .

132

'i

f

I

3. An Example

We now consider a numerical
example illustrating the use of our
model. Assume that there are 10
files with tlie parameters as
ispecified in Table 1. The total
Inumber of instructions to be executed
jper program is one million, the
^udget is 3 million dollars, and the
jinain memory cost per degree of
multiprogramming is assumed to be
$50,000. The input data for the I/O
devices and the CPU is given in Table
2. The block sizes of the tv;o

devices are d^ = 3,840 bytes and d^ =

1,920 bytes.

\ The design model was exercised
ifor each degree of multiprogramming
starting from 1 up to 8. The
resulting optimal values of
ithroughput, device capacities, and
CPU speed in MIPS are given in Table
'3. Scanning the table we determine
|the optimal degree of
jmultiprogr amming to be 7 . The
optimal file assignment, though an
joutput of our model, is not
Ireproduced here.
I

I

The total CPU time needed by our
(370/165 to compute the solution
(values above was 1.68 seconds. Thus,
Imany design options, such as
variations in the number of, and
jspeeds of, I/O device can be
'attempted; the detailed choice of
jjdevice capacities, CPU speeds, degree
of multiprogramming and file
jplacement can be done automatically,
liat low cost, using this optimization
' technique

.

I

Note tnat device capacities and
lifile allocation variables are assumeo
!lto be continuous variables in this
ipaper while in practice they are
piscrete. The effect of this
[assumption has been analyzed in [21]
i'land will be further explored in a

future paper.

I

Briefly, these papers show that
fidiscretizing the continuous solution
taccording to our methods may cause a

^throughput degradation of a factor

I' < 1 + (m-l)max {n./S.} , and a cost
i

overrun of at most

l^max*(f*C^ax + <
^

* (C^ax-^min) >
'

This latter, extra cost is the cost of
storing one additional maximum-size
block per file, plus the cost of
moving one block per file and per
device from the least expensive to
the most expensive device. We
believe that, for practical problems,
the cost overrun is trivial, and the
throughput degradation is less than
1%.

The model reported in this paper was
implemented as a computer program by
Dr. A.K. von Mayrhauser.

References

[1] K. S. Trivedi, R. A. Wagner, and
T. M. Sigmon, "Optimal Selection
of CPU Speed, Device Capacities,
and File Assignments," JACM ,

July 1980.

[2] L. Kleinrock, Queuing Systems
Vol . I

I

: Computer Applications ,

Wi ley-Inter sc ience , New York,
1976.

[3] C. V. Ramamoorthy and K. M.
Chandy, "Optimization of Memory
Hierarchies in Multiprogrammed
Systems," JACM, Vol. 17, No. 3

(July 1970) , pp. 426-445.

[4] C. K. Chow, "On Optimization of
Staging Hierarchies," IBM
Journal of Research and
Dev elopment , Vol. 18, No. 3 (May
1974) , pp. 194-203.

[5] K. M. Chandy, J. Hogarth, and C.
H. Sauer, "Selecting Capacities
in Computer Communication
Systems," IEEE Trans . on Soft .

Eng . , Vol. SE-3, No. 4 (July
1977) , pp. 290-295.

[6] S. T. Chanson and P. S. Sinha,
"Optimization of Memory
Hierarchies in Multiprog rammed
Conputer Systems with Fixed Cost
Constraint," Technical Report,
Department of Conputer Science,
University of British Columbia,
1979.

[7] S. Mahmoud and J. S. Riordan,

133

"Optimal Allocation of Resources
in Distributed Information
Networks," ACM Transactions on
Database Systems , Vol. 1 , No. 1

(March 1976), pp. 66-78.

[8] W-W. Y. Chiu, "Analysis and
Applications of Probabilistic
Models of Mult iprog rammed
Computer Systems," Ph.D.
Dissertation, Department of
Electrical Engineering,
University of California, Santa
Barbara, California, 1973.

[9] D. Ferrari, Computer Systems
Performance Evaluation ,

Prentice-Hall, Englewood Cliffs,
New Jersey, 1978.

[10] S. K. Kacnhal and S. R. Arora,
"Seeking Conf igurational
Optimization for Computer System
Configuration Planning,"
Proceedings ACM Annual
Conference , 1975, pp. 96-101.

[11] K. S. Trivedi and R. E.

Kinicki, "A Mathematical Model
for Computer System
Configuration Planning," in
Performance of Computer
Installations , D. Ferrari (ed .)

,

North-Holland, Amsterdam, 1978.

[12] K. S. Trivedi and T. M. Sigmon,
"A Performance Comparison of
Optimally Designed Computer
Systems with and without Virtual
Memory," Proceed ings , 6th Annual
International Conference on
Conputer Architecture , 1979.

[13] K. S. Trivedi and R. A. Wagner,
"A Decision Model for Closed
Queuing Networks," IEEE Trans .

on Soft. Eng . , Vol. SE-5, No. 4
(July 1979), pp. 328-332.

[14] D. V. Foster and J. C. Browne,
"File Assignment in Memory
Hierarchies," in Modeling and
Performance Evaluation of
Conputer Systems^ Beilner ani3"

Gelenbe (eds.), North-Holland,
Amsterdam, 1976.

[15] D. V. Foster, L. W. Dowdy, and
J. E. Ames, "File Assignment in
a Star Network," Technical
Report 77-3, Systems and
Information Science Department,

Vanderbilt University,
Nashville, Tennessee, 1977.

[16] T. G. Price, "Probability
Models of Mult iprog rammed
Computer Systems," Ph.D..
dissertation. Department of
Electrical Engineering, Stanford!
University, Palo Alto,
California, 1974.

j

[17] S. R. Arora and A. Gallo,
"Optimization of Static Loading
of Multilevel Memory Systems,"

|

JACM , Vol. 20, No. 2 (April
I

1973) , pp. 307-319.
|

[18] K. M. Chandy, J. H. Howard, and
j

D. F. Towsley, "Product Form and
Local Balance in Queuing

\

Networks," JACM , Vol. 24, No. 2

(April 1977), pp. 250-263.

[19] P. J. Denning and J. P. Buzen,
"The Operational Analysis of

{

Queueing Network Models", ACM
Computing Surveys , Vol.10,

j

September 1978, pp. 225-261.
t

[20] T. Giammo, "Extensions to
|

Exponential Queueing Network I

Theory for use in a Planning
Environment," Proceed ings of the
IEEE COMPCON, Fall 1976.

[21] R. A Wagner and K. S. Trivedi,
"Hardware Configuration
Selection Through Discretizing a
Continues Variable Solution,"
Proceed ings of 1980 Int . Symp .

on Comp . Per . Mod . Meas . and
|

Evaluation, Toronto, Canada. "

134
1

Table 1:

file

File Activity Profile

record size No. of records Av . Activity Count

r^ (bytes) S./r- n-

1 480 84,000 13.86

2 320 125,000 14.85

3 480 84,000 9.9

4 960 84,000 7.92

5 960 521,000 28.71

6 320 188,000 4.95

7 320 500,000 3.96

8 320 625,000 3.9G

9 320 625,000 3.96

960 1,125,000 o . y J

Table 2 : Device Input Data

Device #| Label |Cj

Cost Curve Speed Controller
Cost

|coef f

.

exponent
1

0
1

CPU |$1,147,834 0.55309 Variable
1

1
1

I/O
1
0. 0030575 1.0000 0.00378

1
$24,496

2
1

I/O
1
0. 000155 1.0000 0.02938

1
$19,910

Table 3: Output of the Design Model

degmul TPUT Capacity Capacity CPU speed
n jobs/sec K^^ K2 bg

(million bytes) (million bytes)

1 0.986 201.28 2203.2 2.599
2 1.293 201.28 2203.2 2.479
3 1.423 212.12 2189.48 2.29
4 1.487 214.68 2186.92 2.161
5 1.518 209.88 2191.72 2.07
6 1.532 205.8 2195.8 1.999
7 1.535 201.28 2203.2 1.92
8 1.528 201.28 2203.2 1.816

135

Performance Prediction Techniq

137

MVS Performance Prediction Using

nileclianically - Generated Queuing Models

R. J. Fell, New York
B. A. Ketchledge,

, A central issue in capacity

I!
planning for IBM MVS environments is

I

the prediction of system performance
I under varying workload and

configuration assumptions. This paper
addresses the issue of performance

I

prediction in the context of a general

I
approach to capacity planning for MVS
environments. In particular the paper

I

covers

:

I
a. Definition of an RMF-based

j

measurement strategy for MVS
environments.

I

b. Software for mechanical generation
of BEST/1 queueing models of MVS
systems. (BEST/1 is a proprietory
product of BGS Systems, Inc.)

c. Calibration and use of the

resulting BEST/1 models for
capacity planning studies. An
actual case study will be

presented.

j

Key Words: Capacity, Planning;

I

queueing models.

1 . Introduction

This paper discusses an approach
to capacity planning for MVS
environments which has grown out of a

j

Bell System Capacity Planning project,
i Before exploring this approach, it is
' worthwhile to overview the project

itself.

Telephone, New York, NY
AT&T, Piscataway, NJ

The Capacity Planning project has
as its goal the definition and
implementation of a Capacity Planning
Methodology. The current phase of the

project involves the development of a

Capacity Planning and Management System
(CPMS) for use in IBM - compatible
mainframe environments employing MVS as
the System Control Program. This
effort focuses on developing techniques
to:

1. Establish Current Status:
Characterize current status of the
mainframe environment in terms of
workload, hardware utilization,
and service.

2. Verify previous plan: Isolate and
resolve significant deviations
from a previously developed

capacity plan.

3. Generate Future Workloads:
Forecast and characterize new
workloads, as well as growth
trends in existing workloads.

4. Forecast Processing Performance:
Predict future processing
capabilities taking into account
workload and hardware/software
changes.

5. Generate Recommendations:
Generate and report capacity
planning recommendations to

management.

139

During 1979, a project team
developed and implemented major
portions of an IBM - compatible
methodology. Prior to the formal start

of the trial, two commercial tools were
selected as potential aids for capacity
planning. SAS, a proprietary product
of the SAS Institute, Incorporated, is

a data manipulation, reporting and
statistical analysis tool. BEST/1, a

proprietary package of BGS,

Incorporated, is a performance
prediction tool. Evaluation of these
tools in the context of the CPMS was a

major goal of the effort.

The specific objectives of the
project were as follows:

1 . Develop a workable approach to

capacity planning (CP) in an IBM
MVS environment using available
tools and packages.

2. Evaluate the usability,
flexibility, and validity of the
data manipulation tool, SAS, and
the performance prediction tool,
BEST/1

.

3. Test the methodology in a series
of actual CP studies.

The main effort to date has
concentrated on systems with these
characteristics:

1 . MVS or MVS/System Extensions
(MVS/SE) as the System Control
Program.

2. IBM or an IBM - compatible
mainframe as the CPU.

3. Workloads including batch, TSO,
IMS/DL-I, and IMS/DC.

The approach used in the
development and trial of the

methodology using the CPMS software has
been threefold:

1 . Definition of a workable approach
to each of the five functional CP
areas listed above.

2. Integration of the commerical
tools (SAS and BEST/1) into these
approaches.

3. Execution of a series of CP
studies. These studies allowed
the CPMS software to be further
defined and the operational
characteristics of the tools to be
evaluated.

In the case of BEST/1, a series of
preliminary validation studies were
carried out. These studies had the
objective of verifying the analytic
algorithms used in BEST/1 and its
ability to model various data
processing situations.

The intent of this paper is to

discuss two major aspects of the MVS
Capacity Planning Methodology developed
thus far:

1 . Software and techniques to

characterize the current status of
the computer system.

2. A methodology and supporting
software for prediction of
processing performance.

In particular. Section 2 of this
paper discusses a SAS - based,

'Performance Management Subsystem'
(PMS) which employs data from the IBM
Resource Management Facility (RMF) to

report on status of the computer
system. Section 3 of this paper
extends this discussion into the
question of forecasting processing
performance. Software to reduce raw
measurement data (SMF and RMF) and
mechanically generate BEST/1 queueing
models is described. Section 4

discusses a case study in which the

model generation software was employed.

2

.

Establishing Current Status

Techniques to characterize the

current status of the computer system
stand at the foundation of the CP

methodology. Beyond the general goal
of providing an answer to the question
'Where are we today?', this area of the

methodology addresses several specific
issues

:

1 . What data sources and metrics
should be employed to measure
workload, utilization, and service?

140

2. How are functional workloads to be

defined and measured?

3. How should the raw measurement
data be reduced, stored, and
displayed so as to allow its use
in bottleneck identification and
resolution?

4. How can the reduced measurement
data be massaged to provide input
to the portion of the methodology
dealing with performance
prediction?

The approach to characterizing
current status is based on use of a

widely-available measurement tool
(SMF/RMF) and an available data
manipulation tool, (SAS).
(Characterization of IMS - related
workloads involves additional tools).
Highlights of the methodology are:

1 . Definition of a standard MVS
Installation Performance
Specification (IPS) across all
systems in the data center. MVS
Performance Groups (PG's) are
assigned functionally.

2. Workloads corresponding to various
functionally - related PG's are
grouped together into 'Logical
Workloads.' This classification
is maintained consistently across
all systems to be studied.

3. The concept of a PL/I-generated
'Workload Resource Table' which
ties together workload demand (by

'Logical Workload') with service
and hardware utilization measures
provides a vehicle for
interpretation of SMF/RMF data
into modeling terms ('Predict
Processing Performance'). This
concept is discussed in Section 3.

M. Existing workloads are
characterized (on an ongoing
basis) using RMF data only. RMF
Service Units play a principal
role in this characterization.
These units are also used to
characterize consumption of
hardware resources. SMF workload
data is used only in modeling
('Predict Processing Performance').

The methodology is implemented
through use of SAS software written to
process raw SMF-RMF data. The PMS
software consists of two functional
modules

:

1 . An SMF-RMF data extraction program
which allows the user to process
SMF-RMF Record Types
0,4,8,34,40,70-75 and generate one
or more SAS datasets for each
record type.

2. A set of SAS - based report
generation programs which
selectively process the extracted
SMF-RMF data and generate both
technical and management-oriented
reports.

The example reports on the
following pages illustrate some of the

salient aspects of this approach to
characterizing current status. The
reports were generated using SMF-RMF
data collected from an IBM 370/158-AP
processor supporting both TSO and batch
users.

141

The first report displays the
weekly average CPU utilization of the

AP processors by two hour intervals
(referred to as 'Durations'). Based on
data extracted from the RMF Type 70
record, this report allows the user to
easily identify intervals of peak CPU
usage.

The next report is a SAS 'star
chart' (generated using the SAS
procedure PROC CHART) which shows the
distribution of batch job terminations
CTRNSTERM') by two-hour intervals.
The source for this data is the RMF
Type 72 record. Only those Type 72
record fields corresponding to batch
Performance Groups were used in

constructing this chart. This
selection is accomplished via an
internally coded table of RMF
Performance Group definitions.

The following report shows the
distribution of TCB CPU time (RMF Type
72 record CPU Service Units) across the
various functional workloads. It is

done in SAS 'pie chart' format.

The next report is a SAS 'block
chart' of CPU-I/0 overlap across
two-hour intervals. On the left the

various system states are displayed.
'WAIT' refers to CPU Idle; 'OVERLAP'
refers CPU and Any Physical Channel
Busy; 'CPU BOUND' implies CPU Busy and
All Channels Idle; 'I/O BOUND' implies
CPU Idle and Any Channel Busy .

The final report displays physical
channel usage by two-hour interval. It

is used to identify potential I/O load
imbalances.

These and other reports from the
PMS are reviewed regularly by both
tuning and capacity planning
personnel. As such they provide
support for day-to-day tuning efforts
as well as characterization of current
system status.

3. Predicting Processing Performance

As discussed earlier, the effort
to develop software and a methodology
for determining current status of the
computer system has been matched with a
complimentary effort to define methods
to predict processing performance.

In this section an approach to
predicting performance given a specific
workload and hardware configuration is
presented. Techniques to develop
workload forcasts for input to the
performance prediction process are not
discussed.

The approach developed for

predicting performance is based on the
use of the BEST/1 performance
prediction tool supplemented with
software to mechanically generate the
models. Major aspects of the
methodology are as follows:

1. Performance prediction is
performed using the BEST/1 package.

2. Use of BEST/1 is supported by an
extensive set of modeling
strategies. MVS batch, TSO, and
IMS environments are supported.
(IMS/DC models require additional
measurement and data reduction
tools)

.

3. These modeling strategies are
implemented in PL/I-based software
which further manipulates the
SAS-reduced SMF/RMF data and
mechanically generates BEST/1
models. These models employ the
'Logical Workload' concept
discussed earlier.

4. Calibration and validation
procedures for refinement of the
mechanically-generated models are
defined.

Selection of BEST/1 for use as the

performance prediction tool was
motivated by several factors. Among
these were the following:

1 . The demonstrated capability of
queueing-based analytic models to

give reasonably accurate
predictions of system performance
as evidenced by the performance
literature over the past 5-10
years.

1 . The demonstrated capability of
queueing-based analytic models to
give reasonably accurate
predictions of system performance
as evidenced by the performance
literature over the past 5-10
years.

142

ECOV-I4I2

I

• 3
*

» ^ * » •

« « « « «

« « 91 « « t •

« « « « «
« « « • «
« « ^ « «

««««««« a «-!
« y « « « « o > ^ (1 « «

i> r. « '3 « -s «
« « « « «
* • ^

« w • «
A « 'J! « «

•

m * -H 9 « *l i ^ « «

« i-i «««{>.«• a « a s « « « « « «««•««
• ««««««« « « « «

« « « * 'ji 'C^ « « • ««««««««««

«

Ik.

143

I

« «

!
:i:

X
ft •

I

«

c

.X '

I • «
» «

> « «

« X

144

Hl.

e
I

a
X

CI .
••

•-• I «
3 I «

>9 • •

1.

z

• 4 «

— (X
•CMn •
« ni

3^

« «
« «

* «

145

II u
a)

via M
I

• la al •

* laaaaaaa| «-

"^aaaaaaal •

• —— CXI 1^ I

I*. I X n I H
I • * I

X
• la al ^ I

xia ai • i

oe

I

_v
^

*vlaaaa3a3l A
• —— K>

•Oil
1

• ———
I 'Jt

IH M CM
I • — —

. vO

H 1

*lal
H 1

i

~
1

^x

I

I

I'* — — —
II l«^ '

jl I •

'i • la a
:j

N.laaaa«aaBai;cvi

-4

• la
^9

i • — — r-

*
'vl a Si o

i
>H IV -N OI

VJ * _ ot
• laaaaaaal «

I
xia a a a a (

XI
-t I >• ——— -

I Ix
I

ui I I
• '—

aaHaaal:co i* laaa

tlx H il

• laai r~ I

,

xi a al

;l IX X >.
• lal 9) I X

ij i

—
XI

Ix
I

. —
, K)

• isaaasaaaaai y!X|aaaaaaaaaai: •

I

——_ i o< I

I
1
XI '

!
« I

—

—

i'_^ i
a a a a a ai ''I

3i* —_ I CO Ix I

IX < f\J

t I a ai •
I

' XI a ai a jl

• i

XI

T— Ni 1'

j
I

•
I

.n Ix
X.

I
Ix 4 f- I X I

J I « J. to \ XX • la ai <s !t

< ixiB a al • II

fx i , r *
\

I

X 'l>.
^» ;i . : — li I•^^laaaaaal il

~^l~

a I

I

(/) I

r

146

19
V

e

HI z« U >

«««« >««««««•««««{««««
«*>««.«««««•««.««.««{«

r

t

^
t

2 « « « « ««««««««««

« « « « « ««««««««

:
i

• :

• 2

i

2 I

2 O
I

a. 2
« tai

»IU
I

It

i I a

K
. Ul _J «
la u X« 2 U2u « or
I > X «
« u a

«««««« ««««««««««

1A7

2. The desire to provide a

performance prediction tool with
interactive capabilities and a

good user interface.

3. The vendor-independent nature of
the BEST/1 package, allowing for

potential extension of its use
into non-IBM DP environments.

Development of software to
mechanically generate BEST/1 models was
likewise motivated by several factors:

1 . The need to make implementation of
the CP methodology as cost -

effective as possible. This
implied that mechanization of
appropriate portions of the
methodology, such as model
generation, should be carried out.

2. Successful use of BEST/1 requires
development of suitable modeling
strategies in which algorithms to

manipulate raw data for creation
of the BEST/1 model are defined.
The algorithms tend to be specific
to both the software environment
modeled (e.g., TSO, IMS, CICS) and
the type of measurement data
used. Mechanization of these
modeling strategies and their
associated algorithms enables a

broader range of CP analysts to

employ BEST/1 in a consistent
manner.

The remainder of this section
discusses first, the Model Generation
Component (MGC) of CPMS. After
discussing this software the process by
which it is used to generate calibrated
BEST/1 models is overviewed. This will
provide background for the Case Study
addressed in Section 4.

The MGC of CPMS presently consists
of three functional modules:

1 . An SMF-RMF data extraction program
written in SAS. This an enhanced
version of the analogous PMS
module.

2. A SAS-based interface program
(•SASBEST*) which massages the
extracted SMF-RMF data and
generates conventional OS files.

3. A PL/I module ('BESTGEN') which
accepts the OS files written by
SASBEST and generates a BEST/1
model, among other outputs.

The flow chart on the following
page illustrates the structure of the
model generation system. Raw SMF-RMF
Data (1) from a specific time interval
provides the input to the overall
system. (The measurement interval is
selected based on representativeness
criteria outside of the scope of this
paper.) The SMF-RMF data is processed
by the SAS data extraction program (2)

and results in creation of a 'database'

(3) in SAS format. This database
consists of a number of SAS datasets,
each corresponding to a specific SMF or
RMF record type and each with a

specific name and set of variables.
For example, one such dataset is named
PMSDB.T70-CPU and contains variables
such as CPUBSY0 and CPUBSY1 . These
variables indicate the CPU utilization
on processor 0 and 1 of the mainframe,
respectively, at a given point in

time. This data is extracted from the

RMF Type 70 record.

The SAS database of extracted
SMF-RMF data provides input to another
SAS routine, SASBEST (4), which creates
OS files accessible tp PL/I. In
additon, these routines perform sorts
on the various SAS datasets so as to

accomadate the PL/I model generation
program. The SASBEST output files (5)

are input to the model generation
program, BESTGEN (10).

148

5

I

ISSUE INCH TITUE

149

c. Of t-t:-5

2. The desire to provide a

performance prediction tool with

interactive capabilities and a

good user interface.

3. The vendor-independent nature of
the BEST/1 package, allowing for

potential extension of its use
into non-IBM DP environments.

Development of software to
mechanically generate BEST/1 models was
likewise motivated by several factors:

1 . The need to make implementation of
the CP methodology as cost -

effective as possible. This
implied that mechanization of
appropriate portions of the
methodology, such as model
generation, should be carried out.

2. Successful use of BEST/1 requires
development of suitable modeling
strategies in which algorithms to
manipulate raw data for creation
of the BEST/1 model are defined.

The algorithms tend to be specific
to both the software environment
modeled (e.g., TSO, IMS, CICS) and
the type of measurement data
used. Mechanization of these
modeling strategies and their
associated algorithms enables a
broader range of CP analysts to
employ BEST/1 in a consistent
manner.

The remainder of this section
discusses first, the Model Generation
Component (MGC) of CPMS. After
discussing this software the process by
which it is used to generate calibrated
BEST/1 models is overviewed. This will
provide background for the Case Study
addressed in Section U.

The MGC of CPMS presently consists
of three functional modules:

1 . An SMF-RMF data extraction program
written in SAS. This an enhanced
version of the analogous PMS
module.

2. A SAS-based interface program
CSASBEST') which massages the
extracted SMF-RMF data and
generates conventional OS files.

3. A PL/I module ('BESTGEN') which
accepts the OS files written by

SASBEST and generates a BEST/1
model, among other outputs.

The flow chart on the following
page illustrates the structure of the
model generation system. Raw SMF-RMF
Data (1) from a specific time interval
provides the input to the overall
system. (The measurement interval is
selected based on representativeness
criteria outside of the scope of this
paper.) The SMF-RMF data is processed
by the SAS data extraction program (2)

and results in creation of a 'database'

(3) in SAS format. This database
consists of a number of SAS datasets,
each corresponding to a specific SMF or
RMF record type and each with a

specific name and set of variables.
For example, one such dataset is named
PMSDB.T70-CPU and contains variables
such as CPUBSY0 and CPUBSY1. These
variables indicate the CPU utilization
on processor 0 and 1 of the mainframe,
respectively, at a given point in

time. This data is extracted from the
RMF Type 70 record.

The SAS database of extracted
SMF-RMF data provides input to another
SAS routine, SASBEST (4), which creates
OS files accessible to PL/I. In

additon, these routines perform sorts
on the various SAS datasets so as to

accomadate the PL/I model generation
program. The SASBEST output files (5)

are input to the model generation
program, BESTGEN (10). This contains a

subset of the data items originally
contained in SMF-RMF Record Types
M, 34, 40, 70, 72, 73 and 74.

Hence data containing resource
demand by the various workloads (Record
Types 4,34,40 and 72) as well as
utilization and multiprogramming levels
on the system (Record Types 70,73 and
74) is available to the BESTGEN program.

BESTGEN also accepts a number of
manually created files. These files
supply control information to the
program:

150

1. The ADDRMAP ('Address Map') (6)

file contains a mapping from
physical device addresses into
'Logical Addresses'. (These
Logical Addresses correspond to
BEST/1 'Servers' in the
mechanically generated model).

2. The WKLDMAP, ('Workload Map') (7)
maps actual workloads, as
identified by RMF Performance
Group Number/Period on the SMF-RMF
Type 4 and 72 records, into
'Logical Workloads'. Each Logical
Workload corresponds to a BEST/1
Workload in the
mechanically-generated model.

3. The SYSIN (8) file contains user -

assigned values to various control
parameters. These parameters
control which phases of the
BESTGEN program are executed, and
let the user overide or modify
various internal BESTGEN
algorithms.

4. The ASGFILE ('Assignment File')

(9) provides a vehicle for the
user to give BESTGEN special
environmental information. Among
other things, the user can assign
Capture Ratios to various
workloads via this file.
Likewise, the user can force
BESTGEN to allocate the activity
on various devices to one or more
workloads via control cards.

(It should be noted that the
BESTGEN program includes routines to
mechanically generate WKLDMAPs and
ADDRMAPs suitable for most modeling
applications.

)

Execution of the BESTGEN program
results in the creation of a number of
output files and reports:

1. The BEST/1 model created by
BESTGEN is written to the MODELA
(11) file. It is a complete
ready-to-run BEST/1 model.

2. The WRTFILE (1) file receives one
'Workload Resource Table' for each
time period analyzed. For
example, if the user specified in
the SYSIN file that raw
measurement data for the interval
5 A.M. to 11 A.M. was to be
processed on a one-hour basis, one
Workload Resource Table would be
generated for each of these
intervals: 5-6 A.M., 6-7 A.M.,
... 10-11 A.M.

The Workload Resource Table
contains data derived from all of
the various SMF-RMF Record Types
processed. It contains all the
information necessary to build a
BEST/1 model for the interval to

which it pertains.

3. The MSGFILE (13) is used to record
informatory and warning messages
generated by BESTGEN during its
execution.

4. The various reports created by the
BESTGEN program are written to the
REPORT files (14).

In its present form the BESTGEN
programs generates the following
reports:

1 . Workload Resource Table . This
report summarizes the essential
workload and hardware parameters
of the system being modeled.
Referring to the example on the
next page, note that the columns
of the report refer to the various
Logical Workloads. The upper part
of the report gives various
information regarding each
workload, such as:

a. WKLD TYPE - The 'type' of
workload, using BEST/1
terminology. 'BP' workloads
are batch; 'TS' are
time-sharing; 'TP' workloads
are transaction processing.

b. WKLDNAME - A descriptive name
given the workload by the user
in the WKLDMAP input file.

c. CPU UTILIZATION - The estimated
utilization of the CPU by this
workload, as computed by
BESTGEN using the SMF-RMF data.

151

WDRKLDRD RESCUPCE TRI;L.E

DRTE TIME INTEPVRL CPU UTlLlZRTIO'i
S 0 0V 6 1 4 . 5 ij - 1 5 . 5 0 9 . 04

WDRKLDRD SERV I CE MRTR I

X

UMITS= SEC

NUMBER 1 4 6
TYPE IS TS TS TS TS BP BP

WKLD NRME TSDUS TSDUS TSDUS TSDUS TSDEL QUICK BRTS

CPU JTILIZRTIOH 0. 00 0. 83 3 . .:i 1£. 09 0. 00 1 0 . 3 0 8. 6

ELRP •-RESP TIME 0. 00 3 . 66 4.91 5 . 95 0. 00 67. 39 6.4£. 1

FIVE TERMS'- MPl 0. 00 0.41 £0. 48 6.13 0 . 0 0 0 . 6£ fl ft

THRUPUT 0« 00 71 . 56 ££78. 5£ 561 . 6*8 0. 00 33 13 4 ft

CPU SERVICE 0.0 0 30. 03 1 379. 74 435. 30 0. 00 370. 73 312,6

TRPE MDUHT 1 9. 1

I^-D SERVICE

POOL TYPE UTIL

140 DRSn £ . 7 0. 00 0. 00 0 . 0 0 0 . 0 0 fl . 0 0 0 . 0 0 0 . Ci 1j

141 IiRSD 9.4 0. 00 0 . 0 0 15. 74 £77. 44 0 . 0 0 0 . 0 0

142 IiRSn S . £ 0. 00 0. 00 0. 00 0 . 0 0 0. 00 0 . 0 0 0 . 0 0

143 DRSD 0. 1 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0 . 0 0

145 DRSD £.6 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 I'l, I'llj

146 DRSD 3.9 0.00 0. 00 1 0£. 1

1

I'l. i'i9 0 . 0 0 0 . 6£ 0. 00
£50 DRSri 43.5 0. 00 0. 00 0. 00 0 . 0 0 0. 00 0 . 0 0 0 . 0 0

£51 DRSD £4. 7 0. 00 1 3. 85 6<£8 . £ 1 £4£ .18 0. 00 0. 00
£=r£ DRSD ££.3 0. 00" £6.49 598. 85 178. 54 I'l , l"l l"l 0 . 0 0 0 . 0 0

£53 DRSD 1.5 0. 00 0. 00 19. 09 I'l , I'l i^i 0. 00 3£ . 09 0 . 0 0

£54 DRSD 19.3 0-. 00 0 . 0 0 1 0 . £5 £5. 58 I'l , I'l f1 1 . £3 65. 03
£55 DRSD 13.8 0. 00 0 . 0 0 0 . 0 0 I'l , 1j f

(

I'l , I'l 1j I'l. 15 I'l 0 . 0 0

£56 DRSD 1.6 0. 00 1*1
, f1 f1 £. 98 0 . 0 0 0. 0 0 I'l . I"l fl

33 0 DRSD 0.9 f1 ^ f1 f1 pp. Qp fl f(f1 I'l I'l fl f1 f1 f1

38£ DRSD 4.9 0. 00 I'l , n 0 0 . 0 0 0 . 0 I'l I'l , f1 I'l I'l , I'l I'l f1 . f1 f1

334 DRSD r • i' 0. 00 0 . 0 0 0 . 0 0 0 . 0 0 0. 00 0 . Ij 0 0 . 0 0

397 DRSD 0.9 0. 00 f1 , fl fl fl . 0 0 0 . 0 0 I'l . f1

0

0 . Ij
'
j 0 . n I'l

3'5'F DRSD d m 9 fl _ fl f

I

fl _ f1 f1 I'l , n 11 i'l , I'l I'l I'l , I'l I'l f1 . f1 f1 f1 . f1 f1

3BO DRSD 0. 00 0. 00 0. 00 0. 0 0 0. 0 0 0. 00 0. 0 0

3E1 DRSD 13. 0 0. 00 0. 00 133. 46 0. 0 0 0. 0 0 0 . r r" 0. 0 0

3E£ DRSD 1 . 1 0. 00 0. 00 0. 67 0. 0 0 0 . 0 ij 1 . 47 0. 00
3B3 DRSD 0. 1 0. 00 0. 00 4. 69 0. 0 0 U. 0 0 0. 0 0 0 . 0 0

3B4 DRSD 1 0 . 0 .0. 00 0. 0 0 6. 45 0. 93 0. 0 0 0. 93 195. £0
3B6 DRSD 9. 6 0. 00 0. 0 0 0 . 0 0 0. 0 0 U. 0 0 344. S3 Ij . 0 0

1S:J. DRSD 15.5 0. 00 0. 0 0 0. 0 0 0. 0 0 Ij . 0 0 0. 0 0 M . M lj

£t5. DRSD 56. 9 0. 00 0. 0 0 0. 00 0 . 0 0 0. 0 0 0. 00 LI . 0 0

31 i. TRPE O t m C 0. 00 8. 66 9£3. 4 0 0 . 0 0 £. 00 151 . 84
4:i.}. TRPE 11.7 0. 00 0. 0 0 0. 0 0 0. 0 0 Ij. 0 0 0. 00 1£3. 3£
5-1-1 TRPE 4.3 0. 0 0 0. 0 0 0. 0 0 0. Oi'' 0 . 1j Ij 3 1 . 7£ 0. 0 0

152

d. I/O SERVICE - The total time
(in seconds) spent by this
workload at the Logical Address
('POOL') listed at the left.
Note that the actual
utilization of the physical
devices corresponding to this
Logical Address is also shovm
(•UTILM.

The major use of the Workload
Resource Table is in model calibration,
where results from the execution of the
generated BEST/1 model are compared to

the Workload Resource Table.

2. Multiprogramming Report - This
report gives estimates of
multiprogramming depth,
throughput, and service for each
Logical Workload.

3. I/O Service by Pool - This report
summarized total EXCPS (I/Os) by
Logical Address as well as
milliseconds of device busy. A

'milliseconds per EXCP' ratio is

also given, which is useful in

identifying cases in which EXCPs
are a poor measure of relative
usage of a device by the various
workloads.

4. CPU Time Report - This report
displays TCB and SRB CPU time
totals by workload type (e.g.,
'BP', 'TS', or 'TP') as well as
total CPU utilization. It
provides input to SAS-based
Capture Ratio analysis routines.

A typical modeling study using
this software might proceed as follows:

1 . Determine the scope and objectives
of the study. Most importantly,
decide what question(s) will the
proposed models answer?

2. Identify and obtain relevant
data. SMF-RMF is the minimum data
required. Operating system
parameters (IPS and VATLST
especially) are also used.

3. Select the time interval of
interest. This choice is based on
the questions the model will
attempt to address as well as
availibility of valid measurement
data. CPMS includes a number of
SAS routines which are useful for
this analysis.

4. Extract and reduce the SMF-RMF
data using the CPMS extraction
program and SASBEST.

5. Prepare BESTGEN user inputs.
These include the ADDRMAP,
WKLDMAP, SYSIN and ASGFILE files.

A number of issues must be
addressed in this phase, such as:

a. Strategy for modeling Operating
System functions.

b. Workload aggregation (WKLDMAP).

c. Peripheral modeling approach
(ADDRMAP).

6. Execute BESTGEN and create the
initial BEST/1 model.

7. Calibrate the BEST/1 model by
executing it and matching the
results of the BESTGEN output
reports (especially the Workload
Resource Table). This is in

general an iterative process.

8. Address the 'what-if questions
laid down during the
scope/objectives phase.

To date the CPMS Model Generation
Component has been used in several
studies. The next section discusses
one such application of the system.

4. Case Study

In this section calibration and

use of typical BEST/1 model is

described. The system modeled was an

IBM 370/158-AP configuration supporting
approximately 20 to 25 TSO users and H

to 6 active batch initiators during
prime-shift hours. Typical CPU

utilizations varied between 60-75$
during these periods.

153

Construction of the model vras

facilitated by use of the mechanical
model generation software incorporated
into the CPMS. One important goal of
the study was to test that software in

the context of modeling a live

operational environment. Another goal
was the development and validation of
modeling strategies for MVS/TSO.

The modeling and validation
approach employed was divided into

these phases:

a. Mechanical generation of a base
BEST/1 model of a prime-shift
hour with heavy load.

b. Calibration of the model to

reflect operational
consideration, e.g., tape
mounts, system pack usage, and
varying TSO MPL levels.

c. Modification of the calibrated
model of heavy load to reflect
lower multiprogramming (MPL)

levels occurring at periods of
reduced loads.

For the purpose of creating a

base BEST/1 model of the period

of heaviest load, a particular
hour was selected. Four
workloads identified as active
during this interval were
modeled. They are listed in

Table 1 at the end of the paper.

The approach used in modeling the
hardware configuration was highlighted
by:

a. Representation of each active
DASD device and tape channel by
an individual BEST /I Server.

b. Approximation of the 370/158-AP
CPU by a 370/158 uniprocessor
with 1.8 times the internal
speed as a normal UP.

c. Use of SAS-based linear
regressions to apportion device
busy times across workloads
where necessary. This
technique was applied to

system-oriented packs such as
SWAP, CVOL, SPOOL, and SYSRES
volumes.

Calibration of the base model

involved providing estimates of tape
mount time (for batch workloads) and
assuring a correct distribution of CPU
time across workloads. The
distribution of CPU time was
accomplished via SAS analysis of SMF
capture ratios (ratio of SMF TCB CPU
time to actual CPU time).
Additionally, estimates of user think
time were calculated for each of the
two TSO workloads.

Results

Calibration of the base model
resulted in good overall agreement
between predicted and actual
values; as shown in Table 2 at the

end of the paper.

Validation of the model was
accomplished by varying the model
parameters to reflect a different
interval on the same system. Table 3

compares this interval to the original
interval represented in the base model.

Adjustments made to the base model
of heavy load to reflect the interval
of lighter load vrere as follows:

a. The number of TSO terminals in
the two TSO workloads was
reduced from 13 and 6 to 8 and

4 respectively.

b. The batch MPLs were all scaled
by the ration of 1.80/3.50,
i.e., the ration of Batch MPLs
for the two intervals. Note
that the mix of batch workloads
(i.e., the relative MPLs of the
various batch workloads) was
not adjusted. Since the
primary validation criteria was
TSO response time and total
batch throughput, exact
representation of the MPLs of
the various batch workloads
occurring in the interval of
lighter load was not considered
necessary.

Results of the model are shown in
Table 4.

Based on the relatively good
results obtained, it seems that the

base model is valid and quite robust.

154

Several conclusions were based on

this study:

a. BEST/1 is applicable to

modeling of live operational
environments provided that data
concerning operational factors
such as tape mount time is

available.

TABLE 1

Workload
Name

TSOUSER-App.A

Functional
Description

TSO users
involved in

application
development

b. SAS can be used as an aid in

statistical analysis of
measurement data during model
construction and calibration.
SAS-based linear regressions
were used in both determining
appropriate capture ratios and
partitioning system pack usage
across workloads.

TSOUSER-App.B

BATTEST

TSO users
involved in

application
development

Batch users
doing
application
testing.

Use of the BEST/1 priority
feature (PRIORITY =) is

essential for valid modeling of
mixed batch-time sharing MVS
environments.

BATTEST-DEV Batch users
involved in

application
development.

d. The mechanical model generation

software incorporated into the
CPMS is adequate for generation
of BEST/1 models.

TABLE 2

Quantity

CPU Utilization {%)

TSO Response Time - App. A. (sec.)
TSO Response Time - App. B. (sec.)

Batch Throughput *(Jobsteps/hr.

)

TSO Command Throughput **(Cmds/hr.)

Actual Predicted

69.5
2.40
2.93

72.2
2308.0

68.5
2.65
2.83

63.0
2302.0

Relative
Error

-1.4^
+10.4$
-3.5%

-12. 7$
-0.3%

TABLE 3

Interval Comparison
(Actual Values)

Interval

CPU Utilization (%)

TSO Response Time - App. A. (sec.)
TSO Response Time - App. B. (sec.)
Batch Throughput (Jobsteps/hr.)
Logged on TSO Users
Batch MPL

Light Load

46.80
2.08
2.80

82.30
12.00

1.80

Heavy Load

69.50
2.40
2.93

72.20
19.00

3.50

155

TABLE 4

Relative

Quantity Actual Predicted Error

CPU Utilization {%) 69.50 68.50 -1.455

TSO Response Time - App. A. (sec.) 2.40 2.65 +10.45J

TSO Response Time - App. B. (sec.) 2.93 2.83 -3.5%
Batch Throughput »(Jobsteps/hr.) 72.20 63.00 -12.7^

TSO Command Throughput »»(Cmds/hr.) 2308.00 2302.00 -0.3%

156

An I/O System Model for 303X Processors

Sushil Bhatia
Phillip Carroll

International Business Machines Corporation
P.O.Box 950

Poughkeepsie, New York 12602

In the 303x input/output system certain jobs are
critical in the sense that the system pays a penalty in
reduced performance if they are not finished in some
maximum allowable time. The purpose of the model is to
determine the extent of the penalty a system will pay
in a heavily loaded environment.

The model of the input/output system of the 3 03x
processors decomposes the system into a three level
hierarchy of server/requestors. The levels are: 1.

(highest) the teleprocessing controllers, 2. the byte
channel interface, and 3. (lowest) the director of the
3 03x channel group. Each server services requests from
the next higher level of the hierarchy (in a strict
priority order defined by the system design) and makes
requests to the next lower level of the hierarchy.

In a typically heavily loaded situation, the rare
situations when the queues for the shared resources
become excessive, some jobs may pay a performance
penalty. The analytic techniques used to determine the
probability of these rare situations of excessive queue
length and the model validation results will be
described

.

I
Introduction

1

] Evaluation of channel
performance for channels designed
ijrith shared resources (e.g., 303X
I'lirectors) is more complex than
phose with nonshared resources (for
ixample stand-alone channels of the
li/370 Model 168). Queueing theory
||.s applicable to the evaluation of
iiystems with shared resources and
lias been used quite successfully in
fhe evaluation of computer system
l>erformance . However, it has not
,i>een used to evaluate the detailed

ii

hardware designs of the systems with
shared resources, or to predict the
occurrence of rare events. The
paper deals with the first
successful application of queueing
theory to the evaluation of
performance of channel hardware and
in predicting the occurrence of rare
events, which in some cases have
channel performance implications.

Model Need

Greater care needs to be
exercised in configuring, and in

157

designing, channels using shared
resources than is required in
configuring and designing
stand-alone channels. The increased
sensitivity of the I/O system
performance to details of
configuration, combined with the
greater complexity of the I/O
system, generated the need for a
model to assist the systems engineer
and the channel designers in the
analysis of the various interacting
resources. Such a model should be
easy to use, have a reasonably fast
execution time, and should be able
to handle the wide variety of I/O
devices attachable to the system.
It should also have an acceptable
level of accuracy. The model was
created to meet these objectives.

System Overview

An I/O device experiences
performance degradation if its
time-dependent function requests are
not completed by the I/O system
within the allowable time. The
phenomenon is labelled an overrun.
On some devices, the degradation due
to an overrun is negligible and
transparent to the user; on some it
is marginal and barely noticeable
whereas on other devices it results
in human intervention and hence is
visible. As examples, IBM 3705
Communications Controller on WRITE
operation, sends idle characters on
the transmission line if the data
has not been received from the
channel. This results in lower
teleprocessing (TP) line utilization
but the user view of system
performance is not affectd. On some
mechanical devices, overruns create
a fixed time delay until mechanical
synchronization can be
reestablished, for example, DASDs
and line printers. While on
unbuffered devices like IBM 2501

,

card reader and IBM 2701 data
adapter unit, h\aman intervention is
required on the occurrence of an
overrun. The model estimates the
overrun rates for each device in the
specified configuration. It does
not deal with or analyze the
performance effects just described.

The contention for shared
resources is the primary cause of
overruns on I/O devices. These
critical resources utilized by

different devices, the contention
for which may cause a device
overrun, are shown in Table 1

.

Table 1 Critical Resources of
Devices

Device Critical
Resources

1 . Channel Group
Processor

2. Main Memory

Devices on
Block Channel

Devices on
Byte Channel

1

Teleprocessing 1

Byte Channel
I/O Interface
Channel Group
Processor
Main Memory

TP Control-
ler's Interface
Adaptor
Byte Channel
I/O Interface
Channel Group
Processor
Main Memory

For all the devices listed in
Table I, when a higher-numbered
critical resource is in use by a
device, all the lower-nvimbered
critical resources are also being
used by that device, e.g., when a TPI

line is using the channel group
processor then it is also using the
byte channel I/O interface and the
TP controller's interface adapter
(TPCI adapter) . Thus, multiple
critical resources may be used
simultaneously by a device.

The channel group processor and
byte channel interface service the
requests by a predetermined
nonpreemptive priority scheme. The
service mechanism used by main
memory and the TPCI adapter is very
complex and its description is
beyond the scope of this paper.

Model Overview

As mentioned earlier, the
current version of the model is
limited to the prediction of the
overrun rates on each device in the
system. An overrun occurs if a
certain sequence of work (labelled
critical sequence) is not completed
by the channel in the time allowed
by the device. This allowable time

I

158

I

is labelled critical time. If the
! work involved in the critical
sequence is not completed within the
critical time, an overrun occurs.
Hence, to determine the occurrence
of an overrun, the critical sequence
response time (CSRT) is calculated,

j

It is then compared with the

I

critical time. If CSRT exceeds the
I critical time, an overrun occurs,
j

This is illustrated in Figure 1

.

>

Ij

< PROBABILITY-
00

o / OF overrun/
oc
a.

t —^CRITICAL SEQUENCE RESPONSE TIME CRITICAL

FIGURE 1. CRITICAL SEQUENCE RESPONSE
TIME DISTRIBUTION

An analysis of the critical
sequence work indicates that for
some portions of the work one shared
resource is required. For some
other portions, more than one shared
resource is required, and for some

(portions of work dedicated resources
i are used. As an example, consider
!
the diagram shown in Figure 2.

j

During intervals t2, tj and t^, only
shared resource #1 is Being used.

I

During the intervals W3 and t^, when

the request is waiting for and
receiving service from the shared
resource #2, the #1 shared resource
is not released. Hence the
effective service time of the shared
resource #1 is tg, which is the
total time the next request for the
shared resource #1 would see it
busy. During t^ only dedicated
resources are being used and since
these are not shared with other
requests, no time is spent waiting
for these resources to become
available

.

The service times of the
requests, when a single resource is
being utilized (that is, times t-]

,

^2' ^3' ^H' ^^'^ t^) , can be
determined from the analysis of the
system design. But the waiting
times, (W ^, W 2 and W ^ depend on the
load on the shared resources and the
service discipline of the resource
(e.g., FCFS or priority). Analytic
techniques requiring use of queueing
theory are used in the model to
determine these waiting times. When
the queue forms for the use of a
single shared resource, as in W ^ and
W 3 in Figure 2, the load on that
resource only is required for the
analysis. But when multiple shared
resources are used simultaneously,
hierarchical techniques are used for
analysis, for example, is first
calculated from the analysis of load
on the shared resource #2. This
enables one to determine the
effective service time tg of the
shared resource #1. W2, the waiting

DEDICATED RESOURCE

SHARED RESOURCE NO. 1

SHARED RESOURCE NO. 2

REQUEST
ARRIVAL

REQUEST
DEPARTURE

-W,

-W3-^t4.

WAITING TIME FOR A SHARED RESOURCE
SERVICE TIME FOR A RESOURCE

FIGURE 2. CRITICAL SEQUENCE TIMING DIAGRAM

159

time for shared resource #1 can then
be calculated by the analysis of the
load on this resource. This
hierarchical technique is repeated
as many times as necessary to
evaluate the situation when two or
more shared resources are held
simultaneously.

An analysis of the main memory
response time behavior, which was
later supported by the measurements
on the system, indicated that the
variation in response time was very
small. Hence, for the sake of
simplicity, it is represented in the
model by a constant value. The
value chosen is on the conservative
side based on the laboratory
measurements of the system.

The byte channel I/O interface
and the channel group processor
service the requests by a strictly
predetermined nonpreemptive priority
discipline. For the channel group
processor, the priority is based on
the channel number of the channel
making the request and the type of
service required. For the byte
channel I/O interface, the priority
is based on the position of the
device on the SELECT-OUT line and
whether the device is wired for
selection at SELECT-OUT or SELECT-IN
time. Both the channel group
processor and the byte channel I/O
interface service one request at a

time. The service time distribution
of the requests at each priority
level is determined from the
analysis of system design and the
use of hierarchical modeling where
necessary. Successive arrivals are
assumed to be independent of each
other and a Markovian arrival
pattern is assumed. Under these
conditions, the M/G/1 nonpreemptive
priority queueing theory developed
by Takacs [1] is used to calculate
the moments of waiting time
distribution at each priority level.

The service discipline in the
TP controller for the use of an
interface adapter by the TP lines is

very complex. It uses a dynamic
priority algorithm and services one
TP line at a time. For the sake of
simplicity the dynamics of the
priority algorithm are not modeled
but are represented by a fixed
nonpreemptive priority scheme. The

priority of .the TP lines are
specified by the model user. The
service time of the interface
adapter for the different TP lines
were obtained from the TP
controller's designers. As with
other shared resources, the
successive arrivals to TP line are
assumed to be Markovian in nature
although it is known that they are
not. With these simplifications and
assumptions, the M/G/1 nonpreemptive
priority queueing theory mentioned
earlier is also applicable for the
analysis of waiting times for the
interface adapter. Again,
hierarchical modeling technique,
described earlier, is used as many
times as required.

The heart of the model is the
determination of the critical
sequence response time distribution.
The analytic queueing technique
mentioned earlier enables us to
determine n moments of waiting time
distribution when the arrival rate
and n+1 moments of the service time
distribution of the priority server
are known. The implications of this
loss of one moment from queueing
model input to output are
demonstrated with the aid of example
shown in Figure 2.

Let us say that we wish to
generate n moments of waiting time,
W , of the shared resource #1. Thus
we require n+1 moments of the
service time of this resource. But
this service time consists of the
waiting time of resource #2 and thus
we require n+1 moments of the
waiting time of resource #2. This
will require n+2 moments of the
service time of resource #2.

Thus we see that each
application of the hierarchical
technique results in a reduction of
one moment. From the simplified
critical sequence work diagram for
TP line shown in Figure 3, and the
previous discussion on hierarchical
modeling, it may be seen that three
levels of hierarchical
representation are required to
evaluate the waiting time for TP
controller's interface adapter. It
will be shown later that three
moments of response time are used to
obtain the approximated probability
density function of the response

160

REQUEST
ARRIVAL

T.P. INTERFACE ADAPTER I

BYTE CHANNEL I/O INTERFACE

CHANNEL GROUP PROCESSOR

REQUEST
DEPARTURE

FIGURE 3. SIMPLIFIED CRITICAL SEQUENCE WORK A T.P. LINE SERVICE

time distribution. Hence, to
determine the approximate response
time distribution of TP interface
adapter, we have to start with six
moments of service time distribution
of the channel group processor.
This process leads us to have five
moments of waiting time distribution
for the channel group processor, and
four moments of waiting time
distribution for the byte channel
interface. Thus more moments are
available than are actually used in
the model for the calculation of
overruns on the block and byte
channel devices directly. But these
six moments are required to
calculate the overruns on TP lines.

The principal output of the
model is an estimate of the expected
overrun rate for the specified input
configuration and load. We have
described how moments of response
time are calculated for various
overrunable sequences of work which
we have called critical sequences.
Having obtained these moments, and
having determined the critical
response time values for each case
which, if exceeded, will result in
overrun; the next step is to
determine from this information the
probability that the critical
response will be exceeded.

I
This process has two conceptual

'stages. First, a set of moments are
used to derive an equation which

ji describes a probability density
function consistent with the
moments. Second, some approximation
method is used to evaluate the
integral of this curve beyond the
critical value.

A typical approach used is to
assxime a normally distributed
variable and to use the calculated
mean and variance as parameters for
transforming the value of interest
into standard deviations of an
equivalent unit normal distribution.
Standard formulas are available for
computing highly accurate
approximations of this cumulative
function [2].

This approach may be reasonable
for roughly estimating areas that
are typically greater than, say, 205?

of the total cumulative
distribution; particularly when the
approximated distribution is roughly
symmetrical. However, in the cases
considered by the model, an area to
be calculated is typically less than
1/10000 of the total area.
Furthermore, typical response times
are highly skewed toward the smaller
values rather than being symmetrical
like the normal. Therefore, this
technique would generally result in
estimates too grossly inflated to be
of practical value. At another
extreme, one might consider assuming
exponential service times. This
could result in gross underestimates
where the actual distribution is
more balanced.

The method used in the model is
to assume that the response time is
distributed according to one of the
feimily of lognormal distributions.
Lognormal curves begin at a finite
lower bound, terminate at infinity,
and possess a continuous range of
skewness

.

With knowledge of at least

161

three moments, the coefficient of
skewness can be calculated and a
lognormal distribution of the
skewness can be fit. Any lognormal

I

distribution can be transformed into

I

an equivalent unit normal
distribution, and the critical time

I

can then be stated as standard
deviations of the unit normal.
Having calculated this
transformation, the model uses a
standard approximation formula for
the normal cumulative which is
accurate to five decimal digits.
Finally, this probability estimate
is converted to overruns per minute
at the I/O load described to the
model

.

Model Validation

The model has had extensive use
in the past year. In addition, its
output was compared with
measurements made using an extensive
set of controlled test workloads.
In one group of tests, I/O loading
details were varied while holding
total I/O loads at a relatively
constant high level. In another
group, a fixed set of I/O programs
were operated at several load
levels. This collection of
measurements permitted extensive
study of variations in workload and
the corresponding model estimates.
Included were tests involving solely
the byte interface, solely block
channels, and combinations of both.

Model Accuracy

On the byte interface, data
overruns are typically of the type
which cause some user inconvenience
such as an aborted job. It is
desirable that the total absolute
number of such overruns be held
below some specified rate in terms
of time rather than throughput.
Therefore, an important performance
question with respect to a given
configuration is what level of
throughput can be achieved at a
given overrun rate. In this
context, a model should ideally give
conservative overrun estimates, but
less conservative than any simpler
alternative estimating technique.
We have found that the model
consistently overestimates byte
channel overruns but has been able
to predict substantially higher

safely achievable throughput rates
than those predicted by the
available alternatives.

On the other hand, DASD
overruns merely impose a minor
response time penalty on the work
involved. Therefore, a more
meaningful performance criterion is
the percentage of successful
operations, that is, those without
overrun. We have found that the
model consistently yields estimates
with +0.1% of the percentage of
successful operations.

A primary intended use of the
model is the evaluation of
alternative device arrangements on
channel, or the cimount of overrun
increase to be expected due to
increases in load. The model has
been consistently accurate in
predicting the magnitudes of such
changes whenever the changes are
substantial

.

In addition to the above
mentioned uses, the model has had
the following uses:

1 . A special-case version was
developed to predict channel
response times for a unique
proposed customer
application involving
customer-written real-time
channel programs.

2. Other special versions have
been used to assist in
evaluation of engineering i

design alternatives. [

Summary and Conclusions

The available literature on
system models, based on analytic
queueing techniques, suggests that
the current state-of-the-art is the
derivation of the average values of
response times for the shared
resources. In our situation, the
average response time is of no
particular interest, and only those
rare situations when the response
times exceed a prespecified value
are of concern. Hence, in our
situation, a model which accurately
calculates the tail of the response
time distribution is required.
Comparison of the model to lab
measurements at known points on the

162

tail of the response time
distribution, have shown that the
model has the required accuracy.
Hence, the model has been successful
in predicting the occurrence of rare
events arising in queueing
situations

.

The model was initially
intended to be used by the IBM
Systems Engineers for performing
configuration analysis of IBM 303X
I/O systems. Its use has extended
beyond this requirement to include
engineering design tradeoffs and to
perform special systems analysis,
(for example, I/O throughput

analysis) . We feel that the
techniques developed within the
model can be further applied to
other queueing systems in predicting
the occurrence of rare situations of
large queue lengths.

References

[1] Lajos Takacs, "PRIORITY QUEUES,"
Operations Research, Vol. 12, pp.
63 (196U).

[2] Handbook of Mathematical
Functions, National Bureau of
Standards, 1964.

163

Configuration ind Cipiclty Planning

ii I Distributod Procossing Systom

K.C. Sevcik
G.S. Graham
J. Zahorjan

Quantitative System Performance
Toronto, Ontario and Seattle, Washington

and
Computer Systems Research Group

University of Toronto

The distributed health claims processing system of a

major insurance company was based on hardware that soon
proved inadequate for the processing load. A decision was
made to replace the entire system with new hardware and
software through an acquisition and development process
scheduled to take three years. We were asked to undertake
a study with the goals of (l) comparing alternative proposed
configurations for the replacement system, and (2) assess-

ing the adequacy of alternative transitional systems based
on the existing software intended for use during the

development of the replacement system. In this paper, we
describe the latter aspects of the study. Using analytic

modelling and simple asjTnptotic bound analysis, we were
able to show that the performance of a proposed transi-

tional system was likely to deviate significantly from the

expectations based on intuition and information from the

hardware vendor. Subsequent benchmark tests, motivated
by the results of our study, conformed closely to our predic-

tions. Without the information that resulted from our brief

study, the company might have purchased hardware inade-

quate for its intended purpose.

Key words: Asymptotic bound analysis, benchmark tests,

capacity planning, configuration analysis, queueing network
modeling.

165

1. Problem Context

A major insurance company has decentral-

ized its health claim processing, which is dom-
inated by claims under group health insurance

policies, by establishing mini-computer systems
at approximately twenty geographically distri-

buted sites. At each site, five to forty clerics with

terminals enter and process claims. Each clerk

can process about 80 claims per day. Telecom-
munications is used to provide data interchange
between the head office and the remote sites.

A few months ago, it was determined that the

systems in place at the sites were not providing

adequate response, and that it was necessary to

acquire more powerful hardware. The aquisition

cycle plus conversion of applications systems was
planned to take place in the next three years.

Seven different mini-computer systems were pro-

posed to serve as the basis of computing at each
site. The company wished to reduce the field of

candidates down to two or three before proceed-

ing with benchmarking studies. In addition they
wished to investigate several alternatives for tran-

sitional systems. Using the existing software

applications systems, hardware upgrades were
necessary to handle the workload between 1960
and 1983.

Two analytic modelling studies were carried

out to support the company's decisions. In one,

the simple technique of asymptotic bound
analysis of a single class queueing network model
provided insight into the capabilities of alterna-

tive proposed transitional systems.

In the second study, a single class queueing

network model was used to predict the perfor-

mance of each of the candidate configurations for

the long-term system. We produced predictions of

throughput and mean response time as functions

of the number of active terminals, and of the

number of terminals leading to the highest sys-

tem throughput.

The remainder of this paper describes the

modelling techniques and assumptions and the

results of the first phase of this study, the evalua-

tion of the alternative transitional systems.

2. Method

At the time our study started, the existing

system wcis overloaded at most of the sites. Even
with only a moderate number of active terminals

mean response time was in the 30 to 60 second

range. The productivity of the claims processing

clerks was impaired by the slow response from
the system. The vendor of the existing hardv.-are

had two newer systems capable of executing the
same software as the existing system. Th^
insurance company realized that a transitionsd,

upgrade to the existing system was needet^
because the workload was expected to increase'
steadily over the three year period during which
the equipment selection and application system,
conversion for the long-term system was to takej

place.

Discussions with the vendor gave the
insurance company the impression that replacing
the existing system (EX) by either of the twc;;

newer systems (TRl and TR2) would improve per-

formance by estimated factors of
j

1.5 to 2 for TRl, and
2 to 3.5 for TR2

ICDl

Of the twenty sites, the company wished to knon^
which sites could be upgraded to the less expen-.j

sive TRl system and which would require the TRc
system to provide acceptable performance duringj

the transitional period.

The information we were given to support ouP
analytic modelling study included:

(1) system measurements of the existing

system taken at severed sites under
"live" workloads,

(2) system measurements of the existing

system taken during "benchmark" tri-

als in which varying numbers of clerks

entered transactions from fixed

scripts,

(3) information from the vendor on some
aspects of the relative performance ol

systems EX, TRl, and TR2.

;jly

31

Mi

'A

From the Live system measurements over IE

minute intervals at several sites, we were able tc

determine that each health claim processing tran-

saction involved four to eight terminal interac-

tions, with an average of five. Although there wa^
some variation from site to site, the overall aver
age service requirement per interaction was 4.6

seconds at the cpu and 4.0 seconds at the disk or

the existing hardware. These numbers were,

obtained by dividing respectively the cpu busy,

time and the disk controller busy time over

fifteen minute inter\-als by the total number ol

terminal interactions during the interval. The dis-

tribution of think time was highly skewed smd,

could not be measured directly under live condi-.

tions. We used a rough estimate of meem think,

time of 60 seconds.

s

The "benchmark" tests were done on both the;

existing hardware and the more expensive of the,

two proposed transitional systems (TR2). A script)

designed to closely resemble health claims tran-

saction processing was foUov.'ed repeatedly by

13111

at

'561

to

"eoii

ipp

iler

Ike

:iilf

166

clerks at terminals. On each of the two types ot

hardware, three 15 minute trials were done, in

which one, four, and eleven clerks participated
respectively. From these trials, we were able to

(1) verify the speed ratios of both the cpus and
disks between the EX and TR2 systems, and (2)

quantify the growth of memory contention over-

head with the number of terminals. No bench-
mark tests were done on the TRl system because
none was available in Toronto.

The vendor-provided information on the rela-

tive speeds of the three systems included the fol-

lowing. The cpu instruction rate of the TR2 sys-

tem is 1.5 times that of the EX system, while the
TRl cpu is only .9 as fast as that of EX. Both the

TRl and TR2 systems use the same disk, which has
an average service time approximately half that of

the EX system disk. The rotational speeds of the

'{two disks are the same, but the seek times are
lonly half as long with the newer disk, and some io

is avoided entirely in the newer system relative to

"Ithe Ex system. The benchmark tests substan-
tiated the 1.5 cpu speed ratio between the TR2
jand EX systems, and indicated that the average
idisk service time was reduced by slightly more
than a factor of two.

With the above information, we were able to

{estimate the service time requirements (without

overhead) that would exist under live loads on the

TRl and TR2 systems:

The parameters required
queueing network model are:

to specify the

(1)

(2)

(3)

(4)

the number of active terminals,

the mean think time (including time to

enter input and receive output),

the mean cpu time per interaction.

and

the mean
interaction.

disk service time per

This queueing network model was analyzed in

two ways for each of the three sets of parameter
values representing the EX, TRl and TR2 systems
respectively. First, we carried out "asymptotic
bound analysis" as described by Denning and
Buzen [DB]. Next, we did a single-class analysis

based on product-form queueing network analysis

[DB]. In both cases we used the queueing network
solution package, THEsolver [GZ]. Both analyses
are described in the following sections.

4. Asymptotic Bound Analysis

Asymptotic bound analysis is a simple tech-
nique for quickly determining upper bounds on
throughput and corresponding lower bounds on
mean response time as a function of system load.

EX (observed)

CPU 4.60 sees.

DISK 4.00 sees.

TRl (estimated) TR2 (estimated)

5.12 sees.

1.88 sees.

3.10 sees.

1.88 sees.

3. The Model

Each terminal interaction cycle consists of

I) think time, (2) data entry, (3) processing, and
%) data output. The processing involves bursts of

pu activity interleaved between io operations. In

epresenting the system as a queueing network
'tiodel, we represent the terminals, the cpu, eind

le disk as the three congestion points. (Although

Dme sites had two physical disk drives, the disk

ontroUer did not permit them to be active simul-

taneously. For this reason, having only a single

isk service center in the queueing network model
appropriate.) Each clerk corresponds to a

3ken that moves from service center to service

enter in the model. While the clerk is thinking

nd entering data, the token resides at the termi-

al service center. During processing, the token
dernately visits the cpu and disk service centers,

tlii t the start of terminal output, the token moves
llifjack to the terminals service center. For more

'fetail about the theory and applications of queue-

g network models, see [Gr].

It is based on the service requirements of transac-
tions at each of the system resources. With the
definitions

Li - total service requirement per
interaction at device i,

Z = mean think time,

M = number of active terminals,

X = throughput, and
R = mean response time,

asymptotic bound einalysis consists of the follow-

ing relationships [DB]:

X g 1/Lb

X ^M/{Z-^Y,^i)

R xLt, -Z

[1]

[2]

[3]

[4]

where b is the bottleneck device, such that Lb ^ Li
for all i.

167

Equations [l] through [4] each have an Lntui-

Uve interpretation. Equation [l] indicates that if

each interaction requires seconds at device b,

then interactions can certainly be completed no
faster than one every Li, seconds on average.

Equation [2] states that mean response time is at

least as great as the sum of service requirements
at all devices. (This assumes no internal parallel-

ism within a job, such as io/compute overlap.)

Equation [3] is based on the fact that, with a sin-

gle clerk active, the throughput is 1/(2^ + 2 ^)
i

since each interaction has average length

(2 + 2 i'i)- Adding more users will lead to con-
i

tention, so the throughput rate can rise at most
linearly with the number of users. Finally, equa-

tion [4] shows that at least time Af x Lj, is

required to serve each user at the bottleneck dev-

ice, so a user's time for a complete terminal

interaction (which is T + Z) can be no smaller
than this on average.

Inserting the service requirements for each
of the three models into the four equations leads

to the graphs shown in figures 2 and 3. A brief

glance reveals that, at high loads, system TRl is in

fact inferior to the system EX. This, of course, is

a consequence of the fact that system TRl has a

slower cpu in a cpu bound environment. Thus,
rather than a performance gain factor of 1.5 to 2,

performance degradation will be seen in moving
from system EX to system TRl whenever the

number of active terminals exceeds some thres-

hold (probably in the vicinity of fifteen terminals).

Figures 2 and 3 indicate a substantial perfor-

mance gain in moving from system EX to system
TR2, although the gain in throughput cannot quite

be a factor of two or more as originally expected.

5. Single-Class Analysis

In the previous section, we developed upper
bounds on throughput and lower bounds on mean
response times. By making a few additional

modelling assumptions that have proven viable in

many computing environments, we can obtain
point estimates of throughput and mean response
time. These point estimates coincide with the
bounds at M=l and asymptotically as M becomes
very large, and form a smooth curve in the mid-
dle.

The additional assumptions made to obtain
the point estimates were:

(1) Homogeneous Routing - The probabil-
ity that a job completes after a partic-

ular cpu visit is independent of other
jobs and of the number of visits that
the job has made to the cpu, eind

(2) Homogeneous Service Times - The time
before a job's service completes at a

device depends only on the job and the
device.

With these assumptions, an efficient compu-
tational algorithm yields the throughputs and
mean response times with various numbers of

users [DB]. One queueing network solution pack-
age that incorporates this algorithm is THEsolver
[GZ]. The appendix shows the THEsolver input to

do both the asymptotic bound and single class

analysis. Figures 4 and 5 show both the asymp-
totic bounds and the point estimates obtained
from single-class analysis for throughput and
mean response time respectively.

6. Conclusions

On the basis of our study additional bench
mark tests were done in order to re-assess the

advisability of involving system TRl in the transl

tional plan. The benchmark studies of the TR]

system confirmed our prediction that the perfor
mance of TRl became worse than EX once tht

number of terminals reached 10 or so, and the

performance gain of TRl over EX at lower loads

was negligible. Consequently, there was no perfor

mance reason to invest in TRl systems for an]

sites. The results of the benchmark tests an
included in figure 5.

In this study, very simple queueing networl
modelling techniques proved veduable in evaluat

ing the proposed hardware. Without the simpli

modelling study that we carried out, the compan;
might have ordered TRl systems without doin|

benchmark tests on them. In that case, the;

would have been destined for a great disappoint

ment with the arrival of the new equipment
Instead, they are now in the process of installini

TR2 systems at all processing sites.

7. References

[DB] Denning, P.J. and J.P. Buzen, The Operations

Analysis of Queueing Network Models, Corr

puting Surveys 10 (3). September (1978]

225-261.

[Gr] Graham, G.S., editor, Queueing Networ
Models of Computer System Performanc(
special issue of Computing Surveys, Sei

tember (1978).

[GZ] Graham. G.S.. and J. Zahorjan, THEsolve
User Guide, Computer Systems Researc
Group, University of Toronto (1980).

168

8. Appendix

Below are input statements to THEsolver that
produce the information about the TR2 system in

figures 2 to 5.

CO 'SYSTEM TR2 ANALYSIS'
CL CLAIMS END_CL
DV CPU DISK END_DV
LD CLAIMS CPU 3.10

DISK 1.88
mm*

END_LD
AB
SN CLAIMS 1 TO 32 END_SN
TH 60
LF 1 TO 32 END_LF
QU

The purpose of the commands are as follows:

CO -comment
CL -there is one class called "claims"

DV -there are two devices called "cpu" and
"disk" respectively

LD -the service time requirements per
terminal interaction for health claims
are 3.10 seconds at the cpu and 1.88

seconds at the disk

AB -determine upper bounds on throughput
and lower bounds on mean response time

SN -solve for throughput at multiprogramming
level from 1 to 32

TH -mean think time is 60 seconds
LF -solve for system throughputs and mean

response times for numbers of active

terminals from 1 to 32.

CPU

Figure 1. The Queueing network model

169

16 24

Number of Active Terminals

Figure 2. Upper bounds on throughput.

16 24

Number of Active Terminals

Figure 3. Lower bounds on mean response time.

170

Number of Active Terminals

Figure 4. Estimates of throughput.

/

1 1 1 1 1 1

(

8 16 24 32

Number of Active Terminals

Figure 5. Estimates of mean response time.

171

Capacity Planning

llilit

File Allocation Methodology for

PerformanGe Enhancement

Sujit R. Kumar
Digital Equipment Corporation

Maynard, Massachusetts

Robin B. Lake
Case Western Reserve University

Cleveland, Ohio

C. Tom Nute
General Dynamics Corporation

Fort Worth, Texas

Abstract

Storage device configuration is an important issue in the
performance of computer systems. The designer or installation
manager has to map user and system demands for storage space across
the range of I/O devices available on the system. We present here a

methodology for optimizing such mapping. A generalized performance
model for interactive systems is developed and validated. The model
incorporates the device organization, and given the descriptors for
storage devices, predicts performance figures for a broad range of
system configurations and workloads. Alternately, given the target
performance figures for the installation, it helps work out
alternative system configuration for improved performance. We
present cost benefit tradeoff studies based on hypothetical
scenarios to determine optimal file storage strategies from the
point of view of the user as well as the installation.

Key words: I/O Resource Allocation; Systems Performance Modeling;
Logical Storage to Physical Device Mapping; O.S. Performance
Prediction; File Binding; Systems Storage restructuring; Storage
Partitioning; O.S. Tuning.

1. Introduction

A modern computer system is best
iconsidered as a collection of resources.
"The various funtional components of the
icomputer system -- central procesor,
anemory

, peripheral devices, system
utilities — are the resources of the
jisystem, and the system's performance
depends on the effectiveness with which
Ithese resources are brought together by

the hardware and deployed by the software

to perform specific tasks for the user of
the system.

Performance aspects -- namely
performance measurements, analysis,
modeling, tuning, and prediction — have

been the focus of increasing interest
lately (c.f. bibliographies compiled by

[Agajanian-76] , [Mohan-78]). The roots of

this trend can be traced to the early

175

annals of Computer Engineering.
Rudimentary operating systems were first

evolved in an effort to improve the
utilization of the increasingly costly
computer hardware. These operating
systems were just job schedulers for the

CPU and I/O channels trying to keep these

resources working at capacity as much as

possible. The benefits of
multiprogramming in a computer
installation were then practically
realizable. Thus, from the very
beginnings of the computer, performance
issues have motivated, guided, and decided
basic trends in its evolution.

2. Storage Allocation

The peripheral storage devices in a

•computer system cater for permanent system
and user files; they also provide space
for swapping, spooling, temporary system
and user files necessry for compilation,
inter-process commiinication ('pipes' and
•filters' in UNIX), assemblies, and so

on. Because the performance of any
computer system is dependent on the speed
at which information in these areas can be

accessed, the distribution of these
accessing demands across the various
classes of devices is an important issue
in the analysis of system performance, and
has been the goal of our research
[Kumar-80].

3. Analytic Modelling

Analytic modeling seeks a set of
equations relating the chosen performance
measures to the parameters of the system.
A simulation approach is often used when
these equations are not soluble, and
cannot be expressed in a closed form, or
when it is not obvious what these
equations are. An analytic model of a
computer system usually consists of a

graphical, job-flow representation of the
system with a set of mathematical
relationships of its various parameters.
Our goal is a model which describes
storage usage and can be used to
investigate the performance impacts of
alternative peripheral storage
configurations in a computer system.

The point we wish to emphasize is
that a variety of resource allocation
usage policies must be interpreted in
tractable terms and factored into the

overall model before we can express the

inter-relationship between storage

characteristics and the performance

measures we are interested in. We will,

term such a model an 'integrated' one.

Providing the ability to express different

system policies and device configurations

makes the model a generalized one. We

present next such an integrated,

generalized, analytical (IGA) performance

model for interactive computer systems.

3.1 T^'^ TGA Model

Figure 1 presents the generalized

computer system model. The model is a

closed network one as we are mainly

interested in interactive computer systems

where a fixed number of terminals,

proceeding in think-wait cycles, submit

'jobs to the system.

Devices are partitioned into numbered

resource classes. The numberical

subscript, if any, referes to the

particular device within the class. Thus

device 1 is the cpu; 0 refers to the

outside world (user terminals); 1,

represents the third cpu in a

multiprocessing environment.

Jobs submitted to the system are
loaded into main memory when space is

available according to the job scheduling

policies for the particular system. Jobs

resident in memory and waiting to be
processed are given control of a cpu
according to the system's cpu scheduling
policies. In the UNIX Operating System
(OS), this cpu switching policy is a

preemptive round-robin within priority
classes, with a one-second time slice
limit.

The mechanism outlined above
describes the situation where a job is

assigned to s single cpu; note, however,
that parallel processing is not precluded
by the model; parallel processing may be

modelled, without loss of generality, by
assigning multiple cpu's to a single job.
Alternatively, each job may be assumed to

Trademark of Bell Laboratories [Ritchie-74]

176

'spavm' multiple processes, each assigned
a cpu for execution.

In general , the model shown in figure
1 imposes no assumptions regarding the
degree of multiprograming. In the UNIX OS
the multiprogramming level (MPL) is a
variable quantity which is determined by
the total amount of available memory and
the size of each job. The effective MPL
at any instant in a multiprocessing
environment is the total number of active
jobs normalized by the number of active
processors -- the degree of
multiprocessing

.

A job in the system may require
service from resources other than the cpu.
The central server processing network
imbedded in the model accomodates these
resource demands also. From the cpu, the
job may proceed to any of the peripheral
resources shown. Service at these
stations progress according to the
requirements set by the job and the
operating system policies. Each of these
peripheral nodes may, in turn, be
decomposed into a subsystem modeled with
multiple servers and queues [Courtois-75].
However, in the integrated model each is
represented by a single node with its
associated queue.

Vfhile being serviced or waiting for
service by a peripheral device, the job is
precluded from consideration by the cpu
switcher. These 'blocked' memory-resident
jobs may be removed from main memory, if
required, to swap-in ready jobs. Such
swapping is intitiated by the scheduler in
the UNIX system and, in general, is
dictated by the operating system policies
as well as the mix of jobs present in the
system. Associated with each I/O device
access is a finite 'risk' probability of
being evicted from main memory. These
probabilities vary from device to device.
If it is not swapped out , a job when ready
to run again waits its turn on the
round-robin queue. If swapped out,
usually to a peripheral storage device,
the job encounters an additional delay
waiting its turn To be loaded into main
memory once more.

It is possible that the cpu service
burst required by the job exceeds the time
slice allotted. Such quantum run-out is a

frequent occurence for cpu-bound jobs;
when this occurs, the job will be
preempted to allow others at higher or the
same priority level to execute. Once

preempted, the job queues up for its next
turn at the cpu in the round-robin queue
to which it is assigned. At this
juncture, at the discretion of the memory
scheduler, the job may be swapped out of
memory altogether if there are ready jobs
in swap-area waiting for memory space.
This is represented in the model by a
dummy resource access on quantum run-out.

Termination of executing jobs is
modeled by a quitting probability, q,
which routes the job out of the system:

'10

N
= 2 - 1 p

i=2

li
(1)

There is a delay (for system
housekeeping) after which the appropriate
user is notified of termination. The
user, after an appropriate think-time,
submits a fresh job to the system. The
user terminals may thus be viewed as yet
another peripheral node in the system; the
service time of this node corresponds to
the user's think time. The number of jobs
circulating in the system is a function of
the number of users. In systems where
multi-tasking is not permitted, the number
of jobs is exactly the number of users
present.

The mechanism outlined above is
sufficiently general to be valid for a
variety of interactive systems. We have
discussed how the UNIX system can be
described in terms of the general model
and shall apply the model with simplifying
assumptions, to the UNIX OS to derive
performance measures such as response
times from the devices and workload
parameters of the installation.

The analytic model was validated for
a PDP-11/45 UNIX system. The UNIX system
Instrumentation and its control and trace
data reduction utilities developed for
these studies are being distributed by the
authors through the UNIX-user's group;
operational analysis techniques
[Buzen-78], LDenning-78] , were used to
simplify the analysis of the IGA model.

The choice of UNIX for validating and
applying the model was dictated by its f

availability and usage convenience, but it)

has turned out to be a fortunate choice,
as UNIX though primarily implemented on)

small machine, has 'big league' r

characteristics as far as features are

178

concerned. So, It Is more demanding In

terms of modeling versatility and most
other operating systems have only a subset
of these features.

The workload at any computer
installation has a definite pattern of I/O

data access requirements. These I/O

demands are serviced by the peripheral

devices configured in the system. Our

performance model predicts the response

time encountered by users of the
interactive installation by analyzing the

characteristics of the workload and the

resources present at the installation.
The system designer and the installation
manager can improve user response times by

employing the performance model to
determine the optimum mapping strategy
between I/O demands and peripheral
devices

.

4. Some Experimental Results

The starting point for the series of

performance evaluation experiments was the

normal system configuration (CO) with 3

peripheral clusters present — the fixed

head disk (HS), the multiple platter
drives (DV), cind the removable disk packs

(RK) . Usually the removable disk packs

are reserved for user-mountable file
systems. The logical I/O system mapping
for this configuration is shown below:

/ ->

swap ->

/tmp ->

/usr ->

HS

DV

DV

DV

In the UNIX system "/" refers to the

root directory of the tree structured file

system. User directions reside in /usr;

so /usr/Kumar would be the pathname for a

particular user's area. All devices are
assigned logical files. Thus writing to

/dev/tty3 would accomplish the logically
expected result system priveleges
permitting. /tmp is used by the OS for

scratch files in compiles, edits and other
system utilities.

The twin DIVA drives are logically
partitioned into 6 different subdevices
(dvO through dv5); our system
instrumentation traces activity at the
logical device level, enabling us to
differentiate between, say, /tmp and /usr

activity even though they are mapped to

the same physical aevice- Note, this
would be difficult to implement with
hardware system instrumentation.

Figure 2 tables parameters for some
common storage devices. The normal
configuration CO has 12MK words of memory
of which the lower 48K is 1 sec core and
the rest is 750 sec MOS. The usual
complement of card readers, lineprinter,
magtape, crts and remote dial-in ports are
also present.

The configuration was exercised by
running benchmark scripts built through
analysis of the actual user load on the

system, to simulate typical user demands
on the installation for controlled and
reproducible experimentation. Runs were
made simulating different degrees of user
loading up to the maximum possible
loading. The limit was set by system
process table size which decides the
maximum number of current process that may
be accomodated. Different think times
were set in the user scripts run to
evaluate response changes with different
user characteristics. The analytic
performance model was then solved for the
particular system configuration, with
parameters determined by the system
instrumentation, to get response time and

system throughput measures under different
user loading conditions. As will be

demonstrated, these measures match the
actual system performance closely,
validating the analysis of the model.

Figure 3 shows the performance model

for the normal configuration CO. The

synopsis of data from a benchmark run for

this parameter configuration is given in

Figure 4. The parameters for the model

•have been obtained from system,

.instrumentation data analysis utilities

developed.

Figure 5 plots the predicted and

actual measured response for different

loading conditions. At lower values of

system loading, the model's predictions

are consistently found to be conservative

for this and other configurations
analyzed. That is, the measured response

is better (lower) than that predicted. At

higher levels of loading, the model

predicts slightly better response than

that actually measured by benchmark runs.

This may be due to any of the following

factors:

179

TIME IN MSEC.

!

DEVICE SEEK LATENCY
TRANSFER
OF 32K AREA

DIVA (DD25) i 10-55 12.5 255

RFll 0 17.0 550

RK05 50 20.0 835*

RP03 29 12.5 325

RS04
1

0 8.5 70

EMU 0 6 us set
up time

40

*2.8A msec/256 word transfer time

Figure 2 • I/O Device Parameters

180

a
u
(D

as tM

iH 00 ;»

n (1

<» O ?• 0.

•* oo «s
vo eo iH
vn va iH

II H tt a
F-4 (SI <n -ff

> > > >

(J u y u
« (U
m
a i § §

00
00 CO o

m in <T>
•»

II II U 11

^

—

H
CO

3
u

CO
£
o.
(9

»
CO

fH (S ro
CO CO CO CO

f-t

>
oo i-H

o > > >
d O
«
1-4 > d d d

v|

vl

9)

Si

•)>)

I

-^1

as

y
QZ

CM

>

0)

y
(U

OT

• (0

ec

A
1 10

I5

A 1" 1

B

u

an <u

o.

<u
V ca

a> s
0 o
0 aa ca

a) 4)

«
at

s
o >

T3 «
e
3
0 0

u
<u 3

0 u
>-] <

noo **

>«. • m
^^ •

mm* I

I M
I O
in
r>» >

«

- J3

I

CB

e
0
o.
03

V
u

Q.
9
U
>
o
ee
e

a
o

•o
e
3
o

u
Va
o.
9

O
a

T3
a
3
o

V
a.

§• 5

I *
OS

f- ou

«9
en

<u
b
3
00

II II

O -H (N| fO «T
> > > > >

CR

a

u

>
o

<^ a

00

m in o
CM (M «» CM w

vO
100 m r-. oc

00 ^ m
•a
00

n tt H U 1

es
•* CM oo

CO CO > >
1-4 <vi fn <n
> > > > cn ON

M <n (n
•<-l

c
NO
1^ 00

fn
<r

1 CO

181

+
> > > >
+ wA 9»

0 > »-* O
+ 00 -H 5

1 o • • •

i-t > o o o

R u It I aO i-l <M <*t •»
> > > > >

o
o

o

u
o
04

N

00

ON

N (9

a e
c- a

a

CO ON o
<-i

9> vo in

00 ON in ON
at vO o 00

d !>. ON
o 00

00 r>

a II II U

1-1

w
> > > >

o

CO

>

>

•a

5

MR

»!Ml

O
00

^1

o
.a

o o CM
o ON o o CM CM
vn lO CO
CO fn <N m <T vO ON ON
in -a- ON fH

II II II a 11 U M n

—4 en >
> > > > V) CO CO

«

«
m
CN

nC
CM

VI

oi

VI

00
<M

u 0
u

t-l

<u cn >
a. O u

<u

0] sr en

o <N
in

U)
II

t-t •o
vT c

<M
0 fn
u

XO M
in <u in

a.

00 V
ON a

(fl

s
o
CL
to

<u

cc

>
u
V
9)

o

w
u
0)

^ OD
cn CM
j3 •

> CM

Z CM

3 ^
II

s

<

1
o

3

CO

u

si

u

m

en

o
00

(0

u
4)
CO

m sf
CM ON

so
CM CM
V/
Btf—

>

V/
00
CM

CM
CM

CO

>
•

•

<0

0)

a
fl)

N CO
>,

iH

4) <
cn

*o
c
3
w

"I

«

9
as

U H
01 fa
u£
60

u

oT
u

cn

0

(fl

u
u
Cfl

•H
U
n)

CO

e
o
i-i

b4

182

IScript SScrlpt

Total Duration 387.30 sees 1861.32 sees

CPU Idle 13.71%
(User - 24.37%
Sysint - 2.21%)

1.63%

Scheduler Idle 99.13 97.03%
Blocked - 0.27%

Process Swaps 112, .07 sees /swap
Size - 1709.15

530, 0.14 sec/swap
Size • 2234.51

Swap Active - 1.91%
Overlap 0.42%
No queuing for swap

Active " 3.97%

Overlap - 3.53%
Ou^iilno 0 272

Total Disk Interrupts 7364 53501

DV's Busy 88.25 sees 707.69 sees

Total Transfers 5676 (2018016 wds) 44221 (23537600 wds)

Overlap with CPU 10.96% 36.5%

HS Busy 15.75 sees 89.05 sees

Total Transfers 1688 (432128 wds) 9280 (2375680 wds)

Overlap with CPU 1.98% 4.63%

HS-DV overlap 0.56% 2.72%

Figure 4 Configuration - CO: Data Synposis

183

a) Increased contentions for data
base accesses, memory, and cpu at

higher degrees of loading and
increased process management
overheads on the part of the
operating system, which were being
neglected, become noticeable now.

b) To reduce the interaction of
concurrent scripts (prevent them from
falling into step) activation are
delayed (by 10 or 20 seconds) in the

benchmarks when the run is started.
Thus the level of interference due to

other jobs varies throughout the
benchmark run and the actual measured
values reflect this.

5. Cost/Performance Benefit Tradeoffs
in I/O Mapping Strategies

In this section we shall examine
allocation policies for using a fast,
solid state device , the Extended Memory
Unit (EMU). The EMU is a plug compatible
replacement for head-per-track disks and
its salient parameters are shown in Table

2» It features a zero seek time and very
fast data trasfer rates.

From the System Instrumentation we
observed that data transfers between
processes and peripheral devices occurred
in 256 word blocks. The swap sizes
however, were considerably higher. For

data accesses, the seek and latency times
constitute a large proportion of the total
activity, as the transfer time for a

single block (512 bytes) is 2 or 3 msecs.
only, even for a slow device. In the case
of swapping, fast accesses (seek and
latency) are not as important because the
transfer time accounts for a major portion
of the peripheral activity. Devices like
the EMU which are non-rotational and have
no seek or latency times (requiring a
set-up time of a few ^jsecs. only) are thus

more attractive for these short data
accesses

.

We observed that there is a high
degree of contention in data accesses.
Besides mutual interference in accesses,
potential overlap with the processor is

also denied by his physical device
contention on independent logical I/O
accesses. The best response time
improvement would come from mapping the
/usr files on to the EMU. However, this
is not feasible due to space constraints.

^ EMU is a trademark of Monolithic Systems

Corp., Englewood, Colorado.

An alternative proposal is to have a

partion on EMU reserved for use as a user

assignable volume. We shall investigate

the merits of this proposal next and
establish optimal strategies for the user
applicable in any interactive system.

Performance improvements are
realizable with this proposal, because of
2 factors:

1) Faster data access with the EMU,
reducing processor idle times in
waiting for data.

2) Higher degree of overlap from
splitting the user's logical files
over different devices , and reduced
intereference between different
accesses to the same device.

We have observed that mapping some
accesses even to a slower device may be
benefical. Factor 2, outlined above,
explains why this happens.

Assume that t^ is the access speed
(blocks/sec) for the new device and t^ is
the access speed for the old device. Let
the total user area be b, such that b
blocks in the user area may be partitioned
on to the new device, leaving b blocks
behind in its original position. Assume
also that the capacity of the new device
is B blocks and S 2. b . Let T be the run
duration on the older configuration.

Assume that P^ was the degree of
device-cpu overlap in the original
confguration . During this a total of

blocks were accessed on the old

Assume that accesses were
uniformly distributed over the user area.
Then after reconfiguration

P t T
.0 Q 0
device

.

PoToto bn (_]

bo+bn tn to

represents the time savings on device-cpu
overlapped accesses to the fraction of
user space allocated on the faster device.
Then, the performance gain realizable, in

terms of savings in access and overlap
times is represented by:

bntbQ _ in _ Jia + PoToto M(_! L-) (2)

to tn to b tn to

There is also an additional savings
realized by overlapped accesses of the two
user areas. This is a second order effect
and if Pon represents the degree of
overlap between the old and new user

184

areas, the total reconfiguration gain in

terms of time, is:

ToPon + bn [(i _ l).l.(bo+bn-PoToto)] (3)

to tn b

Expression (3) above is a polynomial of

the form:

A + Bbn + Cb^ (*»)

The installation's cost accounting

policy decides the additional charges

levied with EMU usage and thus has to be

balanced against the benefits realizable.

In general, there are two ways of

assigning charges:

1) A flat usage fee when the volume is

assigned to the user.

2) Prorated usage cost function.

The proration may be a linear one

based on space and time usages. Often,

there is an initia;L assignment cost

built-in also (a minimum charge).
Alternatively, an exponential size or time

proration algorithm may be used at the

installation for load levelling and for

promoting equitable usage (discourage

hogging the resource).

Figure 6 shows the Cost/Benefit

tradeoff for a family of normalized

benefit polyomials and different usage

charge policies enforced at the

installation. The curves A, B, C, D are

the savings realized by allocating
different proportions of the user's

logical file b to the EMU. We have

illustrated 3 different charge policies —
a flat fee EMU assignment cost, a size

prorated linear cost function, and a

non-linear combination of the two to

promote equitable sharing of the EMU

amoung the user population. We see that B

just breaks even marginally when 100$ of

b is mapped to the EMU. A is always a

losing proposition unless there is

additional file area space partitioning.

In fact, for the system policies shown,

j

any benefit curve lying in the area below

;
B is not cost justifiable.

With the benefit characteristic C,

the flat charge policy dictates that EMU

allocation greater than 70$ of b^ only are

justifiable, whereas with the linear usage

cost prorated function, only allocations

under 70% are justifiable. An interesting

threshold effect is observed for D, when

there is a exponential usage charge

i

function. Here the strategy should be to

allocate between 45$ and 65$ of normalized
b^ oh to the" EMU or simular device,
n

The thresholds above determine
break-even points for operation, when the
response time benefits achieved through
reconfiguration evenly balance the costs
incurred in such an operation. The user

may derive optimal operating strategies
from the precceding analysis. Thus, for
the last case an allocation around 60$
gives the best performance gain.

6. Conclusions

The use of analytic models for
performance studies is well accepted
([McKinney-69] , [Browne-77]) , we have
demonstrated its use as a tool to study
and reconfigure I/O accessing demands, for

system performance enhancement. The
methodology for this is based on the
simple premise that during the execution
of a job, various system and user areas
residing in peripheral storage devices
have to be fetched or updated , and the

rate at which this information can be

accessed is an important factor affecting
the performance of the computer system.
In addition to the raw speed limitations
of the peripheral devices, interference
and contention between accesses initiated
by the same job, or by other concurrently
executing jobs, introduce processing
delays. We have, then, certain accessing
demands for peripheral storage, and a

specified set of devices available, the
problem being the determination of an
optimal mapping strategy between demands
and devices. This issue has not been
studied to date, and our generalized
performance model served as an excellent
tool for such activities.

The performance model developed is

simple to use and has proved to be an

accurate means of performance prediction

and evaluation. It was formulated for

flexibility and generality, to serve as an

analytic tool in performance studies, and

is sufficiently general to be set up to

represent any interactive system.

The I/O mapping methodology developed

is applicable to any computer system, the

only requirement is that some means of

reconfiguring the system storage areas be

available. On systems with
tree-structured files (e.g., UNIX) the

mapping between storage area accesses and

physical devices is an explicit one and is

easier to restructure as the logical
partitioning is distinct. In this

185

V
u
3M

00 r*- vc lO

($) s4Tun xuaNaa/xsoo

oa

186

context, we may point out that it is not
necessary to map a storage area to a
faster device to obtain improved
performance. We observed some cases where
reassigning a storage area to a slower
device results in response time
improvements because of reduced contention
delays, and improved overlap.

We observed that using the EMU as a

swap device gives only marginal response
time improvements, and that too at higher
degrees of system loading when there is
abnormal swap activity. The best strategy
for performance enhancement would be to
allocate the short 'bursty* transfers to
devices like the EMU. Thus, on the UNIX
system response time improvement is
expected if the user areas eire mapped on
to the EMU or similau? peripheral devices.

As this may not always be feasible,
because of size constraints, we suggest a
user-mountable volume strategy, outlined
and analyzed before, as a feasible
technique for response time improvement.
Allocating the root directory (/) of the
tree-structured file system on the EMU
would also produce a significant response
time improvement for the entire user
community. From the point of view of
system throughput, this may be a better
strategy, especially when the mount-volume
approach does not provide enough space for
multi-user assignments.

Accesses to the paging device in a
paged memory environment is another
example of frequent, short accesses. The
EMU (or similar device) should yield
significant performance improvements when
used in such an environment; however
further research and experimentation is
required to substantiate and quantify the
degree of performance improvement.

In full swapping environments , when
space is not any constraint, the
configuration strategy suggested is to
partition the EMU or similar peripheral,

j
into two individually ported (dual-ports)

J

file subsystems, one for global access
areas (the root in UNIX) and the other for

'} user-assigned file allocation. For

(
systems with small memory configurations,
where heavy swap-loads occur at moderate

ji

user loading, using the second partion as

I
a swap device would improve the response
times for all users currently on the
system, instead of favouring ony those
assigned to the mountable partition. If

dynamic reconfiguration were feasible, an

optimum strategy would be to assign the
second partition for system use
swapping — whenever a predetermined load
threshold is exceeded.

7. Acknowledgments

The authors thank the Computer
Science and Biometry Departments at Case

Western Reserve University, Cleveland,
Ohio for the cooperation amd facilities
extended. Funding and equipment for the

experimental portions of this research
were provided by the Department of
Biometry.

8. References

[Agajanian-76] Agajanian, A.H., "A
Bibliography on System
Performance Evaluation"

,

ACM Sigmetrlna. January
1976.

[Brown-77] Brown, R.M., Browne, J.C.,
Chandy , K.M.

, "Memory
Management and Response
Time", Communictions of
the ACM . Vol. 20, No. 3,
March 1977, pp. 153-165.

[Browne-75] Browne, J.C., Chandy,
K.M., et. al.,
"Hierarchical Techniques
for . the Development of
Realistic Models of
Complex Computer System"

,

ProG. IEEE. Vol. 63, No.

6, June 1975, pp. 966-976.

[Buzen-78] Buzen, J. P., "Operational
Analysis: An Alternative
to Stochastic Modeling",
ProQ. Int. Conf . on
Performance of Computer
In jS. JL^11^1.1^1I& ,

North-Holland Publishing
Co., 1978, pp. 175-194.

[Courtois-75] Courtois, P.J.,
" Decomposability

,

Instabilities, and
Saturation in
Multiprogramming Systems"

,

Communiations of the ACM
Vol. 18, No. 7, July 1975,

pp. 371-376.

[Courtois-77] Courtois, P.J.,
DecomDOsabilitv: Queuelng

187

[Denning-78]

[Kuinar-80]

[McKinney-69]

[Mohan-78

]

CRitchie-74]

APDliQatlona . Academic
Press, 1977.

Denning, P.J.
, Buzen,

J. P., "The Operational
Analysis of Queueing
Network Models", Computing
Survevfl. Vol. 10, No. 3,
Sept. 1978 pp. 225-262.

Kumar, S.R., "An I/O
Resource Allocation
Methodology for
Performance Evaluation and
Enhancement Studies of
Interactive Computer
Systems", Ph.D.
Dissertation January 1980,
Case Western Reservce
University, Cleveland,
Ohio.

McKinney, J.M., "A survey
of analytic time
sharing-models", Computing
Surveva . Vol. 1, No. 2,
June 1969, pp. 105-116.

Mohan, C.
, "Survey of

Recent Operating System
Research, Design and
Implementation", Operating
Systems Review January
1978.

Ritchie, D.M., Thompson,
K. , "The UNIX Time-Sharing
System", Communlfiatlona of
the ACM. Vol. 17, No. 7,
July 1974, pp. 356-375.

188

Capacity Analysis of Sliared DASD Control Units

Floyd L. Pedriana

Co\mty of Los Angeles

Data Processing Department
Downey, CA 9021+2

Abstract

The IBM DASD control unit is an expensive and important component in

an IBM 370 processing system. As is the case with most computer equipment

,

the data handling capacity is not well defined in terms of its impact on
system throughput. Defining this is an especially difficult task where
the control unit is connected to several CPU's. A queuing model can ad-
dress this situation, however, the standard modeling equations do not

account for a multipath environment. In addition, the collection of

model input data is not a simple process. The data collection and model
verification procedures are discussed in detail in this paper. In

addition, some significant observations are made regarding the opera-
tion of the control units. This study resulted in a recommendation of

limiting the control unit load to less than 50 SIO's per second.

1. Findings

I

The control unit performance data
jalculated using the queuing model described
to this paper compared very well with
[ctual measurement data. Therefore, it

ppears that the queuing model used here is

valid mechanism to use in the evaluation
tf the capacity of control units that are
hared between central processors.

I,

If a hardware monitor is not available,
jjhe percent of time that a shared control
Ijait is busy can be determined using a

jlevice and channel activity distribution
p.ble.

Using the method above to determine
pntrol unit utilization, the service time
er SIC is easily determined by noting the
Dtal number of SIO's in a specific time
toterval. This service time calciilation

can be verified using the average block size

and data transfer rates.

The "Control Unit Busy" flag in the

Unit Control Block is an indication of con-

trol unit queuing (not utilization). The

SIO records stored in GTF files are a good
source to use in determining the relative

number of occurrences of this "Control Unit

Busy" flag.

The following two factors may contribute
significantly to disproportionate DASD
service to the central processors sharing

control units.

a. The faster CPU will experience a

smaller percentage of "Control Unit

Busy" indications.

189

b. The 3830 control unit has a built-in
logic mechanism that , in certain
cases, will process SIO's according
to a priority determined by the
arrangement of channel cable
connections

.

At the installation involved in this
study, it was recommended to limit SIO
activity to less than 50 per second for

each 3830 control unit. This means that
the guideline of one control unit for each
string of eight DASD \inits used at this
installation, provides much more control
unit capacity than is actually needed.

2 . Background

The DASD Control Unit (383O) is a

fairly large and expensive piece of computer
equipment and since there is considerable
flexibility in the way that it may be
incorporated into the system configuration,
it was decided to perform a detailed analy-
sis of the control unit operation. The
objective of this study was to determine
techniques and guidelines for use in the
capacity analysis of IBM control unit
configuration and loading.

The software monitors, GTF, RMF, and
CMF were all used for parts of this study.

These monitors have certain limitations in
a study of this type, however, a hardware
monitor was not immediately available and
it was decided to proceed as best as

possible without one.

The general approach to this problem
was as follows . First , some general DASD
performance data was collected and reviewed.
Then a mathematical model was proposed and
some specific data was collected and
analyzed. At several points in this
process, calculated values were compared to
measured values in order to verify the
validity of the model, the calculation, and
the general iinderstanding of the situation.
Finally, all of the data was reorganized
and consolidated into meaningful values
which have been summarized in this report.

In the entire process, a conservative
approach was used in order to provide for a

margin of error in data collection and
analysis. For example, all of the data used
was obtained during brief periods of highest
activity on all systems . These periods were
mid-morning or mid-afternoon. This,
therefore, assures that the analysis will
acco^xnt for the capacity requirements during
the peak demand periods rather than for the
average requirements.

The objectives of this paper are to 1

define the control unit mechanization and to
|

describe procedures to help evaluate the con-
trol unit capacity. This paper is not ii

intended to be a tutorial on queuing model 1

theory. The model used is a very basic one
for which all of the equations axe readily
available in many books.

3. DASD Control Unit Operation and Model I

The main function of the 383O control lj|

unit is to select and transmit data and
|

control infonnation between the disk devices ,

and the I/O channel at the central processor.!
The actual data transmission time is !

generally very small compared to the total
I/O time. This is due to the delays encoiin-

tered in the channels, the disk device, and
also in the I/O Supervisor (lOS) software. :

The majority of the I/O delay time is ^

usually due to mechanical device time or
file contention.

,

i

Figure 1 shows the interconnection
j

between the various channels and devices.
j

This figiure shows that any CPU can get to
j

any device through either of two channels
and through either of two control \mits.
This provides for backup in case of hard-
ware failure and provides for improved ',

performance when a single channel or control
j

|

unit becomes overloaded and cannot handle
:

all of the traffic by itself.

When a control unit detects a request
to transmit data by the channel (indicated
when the "Select Out" bit is set by the

j

channel interface), the control unit responds!
by setting either the "Operational In" tag
or the "Status In" tag on the channel inter-
face [13. In the case of the former, I/O

processing continues. In the case of the
latter, the control unit sets a combination
of bus bits that indicate some difficulty in

completing the I/O. The combination of
"Status Modifier" (bus bit l) and "Busy"

;

(bus bit 3) indicate that the I/O must be
delayed due to the control unit being pre-
occupied handling another I/O request. The
control unit also sets an internal flag
called "Request Pending". This flag is used
later by the control unit to initiate
reconnection to the central processor.
Meanwhile, lOS places this request on a queue
and sets the "Control Unit Busy" bit in the
Unit Control Block (UCB). This process has
led to some mis-understanding regarding the

j

significance of this bit. This bit is

incorrectly labeled since it is not always
set when the control unit is busy but rather
only when an I/O request has been delayed
due to a busy control unit. The meaning of
this bit would be clarified if its name were

j

190

ICC
System B

CM 1

System A
CM 1 Ch J CM t CH 6 tH J <H 1

HCC
System C

C H 2 CX 1

191

changed to "Control Unit Delay". When the
control unit becomes free it sends an I/O
interrupt (Device End - status bit 5) to the
central processor. lOS then tries to com-
plete the original I/O which has been queued
by starting the process all over.

In order to define a mathematical model
of the system, it is necessary to understand
the interrelations between the various com-
ponents of the system as discussed above.
Although there are many types of models
defined in the literature, none of them
exactly fit the shared DASD - multipath
configuration of this problem. However,
after making some simplifying assumptions
and examining various models in detail, it

was found that the class of models which
are described in Kendall notation as M/M/c
could be used quite successfxilly for this
application. In order to fit this simple
model to the actual configuration, the
control units are considered to be servers
that are independent of the rest of the
system configuration and interaction.

It is beyound the scope of this report
to explain this class of models and the
interested reader is directed to reference

{^2]. In selecting this model it is assimied

that the interarrival times of I/O requests
and control unit service times are exponen-
tially distributed. This is not an unusual
assumption and is generally a good approxi-
mation even if the data is not exponentially
distributed. The key items that must be
defined in order to use this model are the
expected control unit service time for each
I/O request and the expected arrival rates
for each I/O request. In this discussion an
I/O request is defined as a Start I/O machine
instruction (SIO - op code of 9C).

h. Control Unit Service Time

The expected service time for an I/O

operation was determined by two different
methods in order to have a high degree of
confidence in the calculations. The first
method was based on actual measurements,
while the second is based on calciilations

using engineering hardware specifications.

Determining service time from perform-
ance measurements is a fairly straight
forward process : The amount of time spent
servicing all SIO's is simply divided by the
number of SIO's serviced. The time spent
servicing all SIO's is the percent of time
that the control unit is busy, multiplied
by the total elapsed time of the data col-
lection period. Control unit busy time can
be determined from channel busy time and the

distribution of device activity. Since each
control \mit is connected to three systems,
the data had to be collected on all three
of these systems simultaneously. The control
unit time is the seime as channel time except
for time spent in error recovery and in
format write erase. Therefore, the percent
of time that the control units are busy is

determined by the total channel and device
time as measured on all three systems.

The difference in speed between the
3350 and the 3330-11 must also be taken into
account . Figure 2 is a matrix showing the
distribution of channel and control lonit

time. Figiire 2 also has a comparison of
channel time as calculated using the above
process, and as measured using the software
monitor. Since these values compare very
well, it is safe to assiune that this method
of determining the control unit busy time is

valid.

At the same time that this control unit
data was collected, the quantity of SIO's
being processed was also collected. This
data was averaged over several hours and
used to find the average control unit service
time for each I/O, This value was 8.5 ms.

Using the data transfer rate of 1,198,000
bytes per second and aji average block size
of 7000 bytes, the service time is found to
be 5.8 ms. These values are in the 5 to 10
ms range and, therefore, establish a high
level of confidence in the approximate value
for control unit service time. The more
conservative 8.5 ms was used in this
analysis

.

5. Model Validation

The M/M/c model itself was validated
by comparing three separate calculations
with measured values. These three values
are: (l) the probability of an I/O request
encountering a busy control vmit, (2) the
amount of time that an I/O request can
expect to wait due to a busy control \init

,

and (3) the level of control unit utiliza-
tion. The symbology used in these calcula-
tions is explained in detail in reference
2 and is suimnarized in Figure 3. The
items above are determined by the following
relationships

.

Wq = C(c,u) E(s)
c(l-/))

/> = XE(s)/c

Where u = /\ E(s)

192

(•Hum'
S r« II & II 1 i4 It 4 IS T»TA«.

CMIW.«<9

(

.08
n,7c

i».ie 1 V4

2

f.U

.17

.•8

a
3.

Mi
7.H7

.0)1

e.A

$r»rtM

1 l».7*

itX
17.

«

U.7

A 7 M.7¥ «7.«

t Ml M.O

«
IH.BS

3

<i ie.is
ia.77

ai.A

1 I.SM

6.13

iS.!.

1>70

2 .•1

(.13
.»t

c
3

.03

.«(s.f

%H3 (1.81 I7.ec I7.C* i:i.7S (7Mf

Figure 2

(flannel - Control Unit
Activity Matrix

193

Figure k ±s a. tabulation of the values
calculated using the preceding equations and
the same values as recorded by GTF and RMF.
These validation calculations were made
using the raw RMF data (see figure 5) accum-
ulated for control units 2 and 15. These
control units which control 3350 drives

,

had the highest traffic rate (51.02 SIO's
per second) during the period of measure-
ment. For general modeling piirposes the
degree of agreement between the calculated
and measured values is considered very high,
and indicates that the model can be used
with a relatively high level of confidence.

N Number of customers in steady state
system.

C(c,u) P(Nic) ; probability. all c servers
are busy ; Erlang ' s C formula

u Traffic intensity measured in

Erlang' s; Minimum vlaue for steady
state system.

Probability that any particular
server is busy; server utilization.

Wq. Expected (mean) time in the queue,
excluding service time for steady
state system.

E(s) Expected (mean) service time for
one customer.

>y Mean arrival rate of customers into
queuing systems

.

Control of _o rn _?

"o of Time
Unit Central SIO ll/-tTT T_ t? -

CU busy d:

Number Processor Coimt is best

J , lU A ly (041 . Ob
B 20562 .12

C 3007 0
Total 220610 .18

D , 11 A 101775 .03
13 105216 .03
c 87 0

Total 207078 .06

2, 15 A 335775 .30
B 396 .03
C 31211 2.22

Total 367362 2.63

1 1).1, 14 A 90597 .11
B 69238 .17
C 71206 .11

Total 2310IH ,39

3, 12 AA 103400 1 . Qk

£ 169752 .14

C 1150 .57
Total 27I+302 1.75

)r 1-3
4, 13 A liiiyyo .21

B 2003 .43
1 7oncn1 / ^UpU

Total 2960ii9 .70

Note : RMF data was collected between
lk:00 and l6:00.

Figure 5. RMF Data Summary

c Number of Servers

.

Figure 3. Symbology Summary

M/M/c Model RMF or GTF
Calculations Measurements

Wq .1+23 ms .515 ms

C(c,u) .077 .066

:_217 .2 (appr)

Figure h. Model Validation Data

6. Control Unit Capacity

There are two distinct advantages to
developing a system model in an analysis of
this type. First of all, the process of
putting together the pieces of the model
requires the analyst to become familiar with
the detail operation and loading of the sub-
system in question, thereby, making an

intuitive appraisal more realistic.
Secondly, the model itself can be used to
answer questions regarding the subsystem
which cannot be answered directly from
measured values. The parameters of the
model can be modified to reflect changes
in the system, the -vJorkload , or the desired
response time and the model will then yield
specific quantitative values for evaluation.

One area of concern regarding the con-
trol unit capacity is the significance of

the percentage of I/O requests that encounter
a control unit busy condition. Figure 6

194

shows that this percentage is 7-^9 for the

3350 control units and 9-^6 for the 3330
control units. Although these percentages
are not particularly high, the ultimate
concern of course is how these values relate
to user service levels.

Nmher
SIC
Count Busy Count

V-iUIlUXUX UIl-L JDUSy

Percent of SIO's
Hverage

Busy Percentage

5 6,212 350 5.63

10 6,1|64 itl7 6.1+5

6 10,278 61+6 6.28

11 11,188 685 6.12

2 10,180 681 6.69

15 9,501 62lt 6.57

1 13,5i+9 l,52it 11.25

ll* 12,256 1,3H8 11.00 IM (3350)

3 28,777 3,1+86 12.11

12 29,031 3,166 10.91

k 16,761 1,223 7.30

13 15,599 1,172 7.51 9.he (3330)

Total 169,796 15,322 9.02

Data collected during peak period duration of 20 minutes.

Figure 6. GTF Control Unit Data Summary

The M/M/c control unit model was used
to produce Figure 7 which shows the rela-
tionship between control unit loading and
the increase in service time to the user.

Figvire 7 shows that this relationship is

non-linear and that it starts to increase
rapidly as the niunber of SIO's per second
increase beyound 100 per pair of control
units. However, even at a loading level of

100 SIO's per second the delay time is in

the millisecond range (l millisecond = .001

second). If a very conservative estimate
of 2 ms is made regarding the amount of
time during peak loading periods that each
SIO can spend at the control unit without
affecting the user, then it follows that
the control units have the capacity to

safely process about 100 SIO's per second

(50 SlO's/sec. for each unit in a pair of

3830's).

7. Observations

In reviewing the GTF data, an inter-

esting phenomenon was observed. Figure 8

shows that there is a definite relationship
between the number of SIO's that encounter

a busy control unit and the central pro-

cessor that issued the SIO. The data

clearly indicates that SIO's originating on

System A (TSO and batch) have a very high

probability of being executed immediately.

While those originating on System C (Health

Care Systems) have a much higher probability

195

SlO's/Second

FIGURE 7

Control Unit Load Effects on User Service

196

of being delayed due to a busy control
unit. There is a definite priority mech-
anism in effect here but it is not clear
what the nature of this mechanism is.

DASD Central SIO Control Unit Control Unit Busy
Model Processor Count Busy Count Percent of SIO

A 27583 1+89 1.77
3350 B 29080 2737 9. hi

c 22965 3050 13.26

Total 79628 6276 7.88

A 23378 1501 6.^2

3330 B 30055 2222 7.39
C 36735 532U lk.h9

Total 90168 90i+7 10.03

Fig^ure 8. GTF Central Processor
Data Summary

Part of the reason for this shift is

accounted for by the speed of the 3033 pro-
cessor. If two systems are notified at

about the same time that an l/O path has
become available, the faster of the two

will be the one that gains control first

while the slower one gets rejected when it

finally attempts to use that path. This
same effect can occur if CPU's of equal
speed are notified in sequence rather than
simultaneously. The first one notified
will probably be the one to gain control.

Another explanation for this effect was
found in the electronic circuit diagrams
for the 3830 control unit (see reference 3).

The 3830 circuits are designed to give

priority to the input ports at 3830 con-

nectors in a certain fashion. The input

ports are designated as "A", "B", "C", and
"D" on the hardware itself and in the hard-
ware documentation. A spot check of the
system cables indicated that system A was

connected to input port "A" on all control
units, and system B and C are similarly
connected to ports "B" and "C" on all

control units. The 383O circuit diagram
(Figure 9) shows that the hardware priority
for the input ports is in the order ABC
D, with A being the highest priority.

I
Although this arrangement of cables may
simplify the doc\amentation of the control
unit cabling layout, it appeared to be

' causing a performance bias in favor of the
system which processes the batch workload.
Therefore, it was necessary to recable the

control units to properly balance the
selecting priority defined in the hardware.

References

[a] IBM System/360 and System/370 I/O

Interface Channel to Control Unit
Original Equipment Manufacturer '

s

Information; GA22-697'+-l

•

[2] Arnold 0. Allen, Probability ,

Statistice, and Queuing Theory with
Computer Science Applications .

Academic Press, N^w York, 1978.

[3] IBM Control Unit Model 3830, Automated
Logic Diagrams (ALD) Voliame 1,

page CSIOI.

197

Select Out"
Port "A"

"Select Oat"
Port "B"

"Select Out"
Pert "C"

"Select Out"
Port "D"

"Enabl
OP 1

Port

"Enabl
OP i

tort

"Enabl
OP 1

Port "

"Enabi
OP i

Port "

Figure 9

3830 Priority Circuit

198

A Note 11 Ciipitir SystiH Cipicltf Pliiiiii

Tbroiih Mitiriil RMilriiiits Pliiilii

K. Q. Salawu

bell Laboratories
Piscataway, New Jersey Obti5't

A computer installation is likened to an industrial production factory.
Demanos for goods and services are either not met (shortage, disservice) or

oversuppliea (inventory or waste). For given shortage and wastage costs, a

smoothened, short-term production/service plan can be drawn from predicted
demand or workload. This brief note employs simple graphical methods used
by production engineers for aggregate production scheduling and the

arithmetic of materials requirement planning to impute measures of
aisservice to users and poor utilization of computer resources. Noting
that production/service objectives are hardly unique, the methods of goal
programming that incorporate the satisfaction of multiple objectives are
judged to be more appropriate for formulating production/service plans.

1. .LntrOdUCtion : computer Capacity
Planning ObieGtivfts

In manufacturing systems, sales
forecasts guide maximum investment and
minimum profit objectives as well as
decisions on the total work-force
levels, the production rate, net
inventory levels and the stability of
these rates and levels. here, our
working concept of computer capacity
planning is the efficient allocation of
data processing resources to
satisfactorily execute the offered
workload hence we note that the
characterization of an installation's
workload oirectly influences the data
processing objectives of the
installation's management.

As the speed and flexibility per
unit cost of computer hardware decreases
rapidly, and the unit cost of producing
and maintaining software rises, we
observe that a unit of the user's time
is now more expensive than that of the
computer, the tool used. It seems
rational-economic then that the
provision of high overall levels of
service to the user, which conserves his
time and effort, should now assume a
much higher priority than cost and
performance (utilization)
considerations. in fact, the
mechanistic performance/cost criterion
which emphasized the evaluation of the

199

performance of the computer subsystem,

is giving way to a systemic or holistic
view of the performance of the computer
and its environment LFerrari, 197ti].

Notwithstanding the fact that

workload characterization remains one of
the most formidable problems in

performance evaluation for capacity
planning, it is now widely accepted that

the most important input for computer
capacity planning is a clear definition
of user service objectives, and to a

smaller extent, estimates of the
availability and utilization of the

total computer system. Furthermore,
these overall objectives vary in their

degrees of importance, depending on the

utility preferences of the

installation's management iGrochow,

1972J.

2. Short-t'sra Capacity PlannXns

Figure 2-1 is a histogram of the

average CPU consumption by all

applications at a computer installation

Lfrom bronner, 1979 j. A similar

histogram may, for instance, have been

constructed for the average daily

printer utilization by the various batch
job categories at an installation.
Furthermore, the histogram in Figure 2-1

could be differentiated into its

component histograms, i.e. one

histogram per application. These latter
histograms will show the extent and time
of service receivea from the CPU
resource by each application.

Suppose our winaow is between 9

a.m. and b p.m. every day, and some
representative application usually
consumed hourly rates of CPU service as
shown in line 2 of Table 2-1. Figure
2-2 shows the histogram of CPU
utilization by this application,
bmploying simple graphical methods used
by production engineers for planning for
uniform production rates, we first plot
the cumulative service requirements as
curve OPQR in Figure 2-3. The slope of
the straight line OH would give the
average requirements as well as the
service rate per hour that this
application would have.

ri«tu. 2-1 1 UatofrM of CPU ConMaftUQ hf Applu.ctoa. .c m iMtUUCtM

0 nisaiuMous

S MT* IIKESSIM COnU

Kcomriiii

TIK (2« Hm MM

cm CmSIIFTIM BV VPLIUTIM.

Tabl* 2-1: > CPVi Consuaption bjr « Ba|>r«s«iiutive Appllutton During klndoH

!!« of Day 9-10 -11 -U -1 -2 .3 -J4 -5 p.i
> CPt Conaiaeo 19 9 2'3 57 72 90 3b 12
» CPU Dadicatw) 40 40 40 40 40 40 40 40
SurpIuA (inventory) or
Shortage ultb no Setup 21 52 69 52 20 -30 -28 0

As a feasible production plan must
cover the aemand in every period, the
broken line ST will be drawn parallel to

Oh to pass through the point U on the
curve which is perpendicularly farthest
from Oh Lbuffa and Killer, 1979j.
however, the intercept OH that this line
makes on the utilization axis is
equivalent to "inventory" carried into
the window at 9 a.m.. In practice, this
woula mean that CPU consumption was
anticipatea, provided and consumed
before the demand for such service was
made. in the case of batch processing,
this scenario might be workable through
worKload shifting operations and for

transaction processing, it may be

necessary to stagger the work hours of
some terminal operators themselves.

In either event, one may assess
tnese rescheduling operations as "setup
costs" at the beginning of every window,
however, no buffer inventories of). CPU

time will be offered hour by hour in

aoaition to the constant average hourly
service "aedicated" to each application.
While an attempt to smoothen service is

gooQ, penalties must be borne for our
inability to snift the workloaa backward
(inventory) or forward (backlogging) , at

will, to fit the constant service rate.

200

uo
licui* 2-2i Blatograa of CFU Coaauaptloa bjrr lapraaantatlm AppllcatloB

SurpliwM <

I (Poor uttltutlon)

(dlMcrrlc*)

10 12 1 2

TtM o(Dar, (TrlM Shift)

Flfur* 2-3i CimulatlTc Conauaptloo of CPU ftcsourca by Od« Application T

)

9a.B. Timt of Da; (Prlaa Shift) Sp.a.

201

1

The last line of Table k-^ gives
the surplus or shortage of service for

each hour in the window without using
any beginning inventory at 9 a.m.. The
entries on this line are simply the
differences between the cumulative > CPU

dedicated ana the cumulative > CPU
cohsumea by the application by the end
of each hour. The provision of any
amount of beginning inventory will
increase every entry on this line by

exactly that amount. In our example, it

would be wasteful to start with an
inventory of more than 'iOjb CPU, the most
negative inventory balance for this
application. This value of 30 is the
same amount indicated in Figure 2.3 as
the intercept (Jb. We propose that
shortages be related to measures of
disservice while surpluses should be
related to poor utilization of
resources

.

3 . Aggregate CQMPUtsr Capacity flannxne
Usjins iisisil Proeramtning

Suppose X
it.

IS the amount of
resource consumption requested by the
application with priority i, (i = 1,2,
...,k) in period (hour) t, curing a

window of T hours^_^Let

2 X . ,

it

i T
'

be the average hourly > CPU dedicated to

the application. Using requirements
planning formulation, let S. be the
amount of > CPU usee as setup or
beginning inventory for this application
and let net inventory in hour z be

represented by

_ t=z

1^2 =
'^i

+ z - 2 x^^. for z=l, 2, ...,T,

The average inventory per window will
then be given by

z=T

2 1
iz

i" = - 1. iff 1. < 0 and 0 otherwise.
Till total^Seficiency in the supply of
the resource to the application would be

z=T

z=1

Let c. be the unit cost of shortage
or disservice for the application with
priority i; c. the unit cost of holding
unused resource in inventory per unit
per window and c. the cost of setting up
beginning inventory of 'i% CPU. These
unit costs may vary with the time of day
but we shall not introduce these
complexities here. We note however that
c 2. c . if priority i is higher than

Ihis means that we assume that the
value of service to each class of users,
as evaluated by the installation
management, is consistent with the
priority given to that class of users.
The resulting multidimensional objective
would then be to

Minimize Z. c* 1.= c S. + c. 1. ,

for each of tfee i^=^1 , 2^ .^.,k applications.
.

,
subject to

i=k *^

2 - t=l,2,...,T

and x.^ 2 0
it

Using this approach, the solution
procedure successively seeks the
achievement of the objectives in order
of priority. In effect, higher priority
goals may very well be achieved at the
expense of the lower priority
objectives, LLee and Moore, 1974]. For
instance, when a resource is known to be

totally consumed, i.e. lOOjb utilization,
one expects that service requirements of
higher priority users are met possibly
to the exclusion of those of lower
priority users.

1 ~ T
while the shortage in nour z will be

202

H. Suggested Kxhftn.sinnw

A different pair of 1 . and 1~ is
i i

associated with each S.. In our
illustrative application, for instance,
one may examine the following four

IS. ,1. , i"i triplets or bundles:
10^19.5^56};^ ilU,i;9.5,3bi; 120,39.5, lb)

and i30,'i9.5,0} . An installation
management's preference or indifference
among the bundles will be used to order
the operationally feasible combinations
and this ranking may then be used to
impute the _numerijal relationships
between c . , c~ and c .

.

1 ' 1 1

So far, objectives have been
formulated and priorities assigned
along Job class lines. A more useful
framework may be one where management's
multiple goals are specified in terms of
turnaround/response time,
availability/utilization of
(sub)systems, workload balancing and
queueing problems in the system. For
example, a top-priority, one-sided goal
that is not open-ended may be that the
turnaround time for a given class of
batch jobs be no more than a numerically
specified interval of time.

Most companies now view distributed
systems to be more efficient in
providing better service to the users
than are centralized systems Li>vobovoda,

1976 j because of the former's virtually
superior availability, reliability,
flexibility and security. One of the
most troublesome problems now introduced
by the addition of telecommunication
(switching and transmission) interfaces
to the existing hardware/software
interface in centralized systems is how
to distribute shared resources such as
databases both physically (haroware
topology) and logically (software
protocol) in a way that minimizes
congestion and deadlock in the system.

The goal programming approach
suggested here, being a multidimensional
form of linear programming, will be well
suited to the allocation of scarce

resources in these computer networks,
furthermore, other forois of goal
progreimming which permit one to make
progress toward all objectives
simultaneously, Lbradley, Arnolao and
hagnanti, 1977 j, may also be used.

LI] Bradley, is. P., Arnoldo, C.h. and
hagnanti, T.L., Apjyllfid

ha,thfima.U.CAA Proerjamm3.ng Heading,
Kass.: 1977.

L2j Bronner, Leehoy, Capacity Planning
Implementation, Ibh Technical
bulletin UGk2-90 15-00, January
1979.

LbJ buffa, fci.L. and Miller, J.G.,

ProdvctiC'n-InvgntQry ^ystgina

:

Planning .ami Ccntrol, homewood,
Illinois: Hichard D. Irwin, 1979.

L^J Ferrari, D. Comp.U.t^r ^yst^fflg

Performance tvaluation. tngiewooa
Cliffs, New Jersey: Prentice-Hall
inc., 197ti.

L5J Grochow, J.h., "A Utility
Theoretic Approach to hvaluation
of a Time-bharing bystem," in

Freiberger, 1«. (ed.) ^tatiatical
Computer Pgrformance bvaluation,
New iork: Academic Press, 1972 pp.
25-50.

LbJ Lee, S.h. and hoore, L.J., "A

Practical Approach to Production
iicheduling," ProUucti.On SSiSl.

Ipveptory Management. 1st Quarter,

1974, pp. 79-92.

L7j Svobodova, Liba, "Performance
Problems in Distributed Systems,"

Procee<jinp;§ si ii&aaiiyi 'lb

,

hdmonton. Alberta, Canada; May
23-25 197b.

203

statistical Methods

205

Adaptive Load Control In Batck-lnteractlvo

Computer Systems

Samuel T. Chanson and Prem S. Sinha

Department of Computer Science
University of British Colinnbia

Vancouver, B.C. V6T 1W5

Canada

This paper presents a systematic approach to estimate the satura-
tion point of a large computer installation using operational analysis.
An expression for saturation point as defined by Kleinrock is derived
in terms of measurable and operational quantities. Using stochastic
programming and time ser' analysis the optimal number of batch jobs
that should be activated within next interval is then computed, so

that the system is neither underutilized nor over-saturated.

Keywords: Multiprogramming; response time; throughput rate;

saturation point; load control; queuing theory; operational analysis;
optimziation.

1. Introduction

Most large scale computer systems
employ some form of load control to maintain
a high throughput rate and/or to provide an
acceptable level of service to the users.
For paging systems this is often accom-
plished by manipulating the degree of multi-
programming or equivalently the size of the
resident sets of the active processes to
keep the system from becoming saturated.
Previous work directed towards this end is

primarily represented by the development of
the working set policy [1,2,3,4] where
working set is defined as minimtom number of
pages needed to run a program efficiently.
More recently, efforts to optimize the
system work capacity lie mainly in keeping
some measures related to program behavior
(usually paging behavior) within some pre-
determined bounds [5,6,7,8]. The 50%
criterion [7] for example, aims at main-
taining the utilization of the paging device
to around 0.5. The L=S criterion [6] pro-
poses to keep the system life time to
approximately that of the page swap time.

The knee criterion [5,8] suggests that the
mean resident set size of each process should
be maintained at the value associated with
the primary knee of its life time function,
where life time is defined to be expected
time between two successive page faults [5],

Though the most robust of the three, the
knee criterion, is also the most costly to

implement and involves the largest amount of
overhead

.

Though these criteria are not based on
mathematical models and cannot be proved to

be optimal, they aim at increasing the

throughput rate by loading the system up to

the point when the measured indicator
suggests further increase in system load may
cause 'thrashing'. The methods cannot be

appli . I "o non-paged systems. Furthermore,
for interactive systems and combined batch-
interactive systems, one is interested not

only to maximize the system throughput rate
but also to guarantee good response times to

the interactive jobs (possibly at the expense
of the batch jobs). Landwehr [9] studied a

combined batch-interactive system and

207

proposed a scheme to activate batch jobs
based on the terminal load. The emphasis

of the study, however, was on model formu-

lation and validation. There was no attempt
to prevent the system from saturation or to

optimize performance. As well, there Is no

easy or systematic way of determining the
values of the break points. Hlne et. al.

[10] studied the problem from a slightly
different viewpoint. Their goal was to

control the main memory allocation for each

class of jobs to provide different response
times to each while maximizing the CPU
utilization. They employed a mathematical
model but optimization was achieved by an

exhaxistive search technique. A heuristic
was also given which provides good but not
optimal results.

saturation load

No. of active terminals

Figure 1. Mean Response Time vs the

Number of Active Terminals

In this paper we study the performance
of a combined batch-interactive computer
system using the operational analysis
technique proposed by Denning and Buzen [14].

The control algorithm determines from time

to time the number of batch jobs (if any) to

be activated from the batch queue. The
control criterion aims at keeping the system
from saturation (to be defined in the next
section) while minimizing the mean number of
jobs waiting to be activated. The effect is

to maximize the throughput of the system
while maintaining good response time for

interactive jobs.

2. Estimation of System Saturation

Definitions of system saturation have
been proposed [12,13,14]. Invariably the

system is considered saturated at the point
the response time vs system load curve
starts to rise rapidly. Kleinrock [12], for
example, using the number of active termi-
nals as the load, defined the system's sat-
uration point to correspond to the inter-
section of the mean normalized response time
curve asymptote and the horizontal line
corresponding to the minimum response time
(i.e., when there is only one active
terminal) . (See Figure 1) . If a system is

not allowed to get saturated according to

this definition, the mean response time of
the active jobs will not exceed an accep-
table level. However, the implicit assump-
tion is that the program population
considered is both homogeneous and station-
ary. Our approach is to compute the system
saturation load at small intervals (such as

a few seconds) during which the stationary
assumption is justified. The homogeneous
assumption is discussed below.

The computer system is often modelled as

a central-server model [11,13]. Consider
such a model with M service centres and a

degree of multiprogramming equal to N. Each
service centre consists of a device and its

associated queues (Figure 2)

.

^1

^2

^3

^2

q3

o 2m

Figure 2. Central-server Model with M
Service Centres

The service centre S-^ is the CPU service
centre (the central server) . On completion
of the CPU service a job either leaves the
system or joins another service centre. A
job leaving service centre S^, 1=2, 3,...,

M

must join the central server.

2.1 Notation

The quantities defined here and computed
in section 2.2 are mean values within an
observation period and as such are functions
of time which is omitted for clarity.

208

T : observation period

: observed number of completions at

centre during T

: the total amount of time during which
the service centre is busy during
T

: observed number of requests for
centre during T

q^^ : request frequency, the fraction of
jobs proceeding next to service
centre on completing a service
request at the central server

2.2 Operational Quantities

We now compute the operational quanti-

ties in order to obtain an expression for

saturation point.

Mean service rate of server = = ^±/'R±

I

Utilization of server Sj^ =
pj^

= B^/T

System throughput rate f = (X-, • qi) /T

= il . ^ .

Bi
* T * ^1

R(N) = N/T .

= V P qi
11

(1)

by (1)
N Nqi

^^iPl ^iPi^l

M

i; ' /
1

by (3) R(i) = ^ [I 7^ •

qi
+ 1]

i^^l i=2 *^i
^

(4)

(5)

The equation of the asymptote (as N appro-
aches infinity) is more difficult to derive.

Let us first consider the simple case of a

non-virtual memory system. The asymptote
occurs at the point when the utilization of
a service centre (i* say) reaches unity
(i.e., it becomes the system's first bottle-
neck) .

From Buzen's analysis [11], i* is that
service centre which has the highest utili-
zation in an interval (i.e. , i* may vary
from interval to interval as the work load
characteristics change) . If it is the CPU
the equation of the asymptote is simply

(6)

Utilisation = B^/T

Xl Bi— •

Xi

^i

*

T ^1

Bl Xl Bi

T Bl
'

Xi Xl

Under the job flow balance assumption

Xi = Ci ±n

q^, i?«l

I M ^ M y^

I Pi = Pi + I Pi u • ^i
i i=l ^ i=2 ^i

^

When there is only one job in the system

1^ I Pi = 1 •

i=l
M -1

, ^ Pid) = [I TT •
qi

+ 1]
^ i=2 ^i

^

We use Little's law to compute the mean
response time

Otherwise, using equation (4) and noting
that vi^ as well as the ratio (qi/q^) remains
unchanged as N increases, the equation of

the asymptote is

ROJ) =
Nq

i*

^i*qi
(7)

For a paging system, the eventual bottleneck
as N approaches infinity must be the paging

(2) device but it need not be the first device
to saturate.

Case (i), the paging device is not the first

to saturate.

In this case, as the system is satura-
ted before the paging device is fully

utilized, the asymptote should be computed
based on the first device to reach satura-

/3\ tion and equation (7) is still valid (see

Figure 3).

209

degree of multiprogramming, N

Figure 3. Mean response time vs N, a non-
paging device is the first to be

saturated

Case (ii) , the paging device is the first to

saturate

.

The ratio q^^/ q-^ continues to increase

as N increases and approaches infinity as N

approaches infinity. A realistic approach
consistent with the one used in Case (i) is

to use the value of q^j^/ qi
corresponding to

the point the paging device first becomes
fully utilized. However, this ratio is not

easy to estimate. The observed value of

q^^/q-|^ can be used if the system is close to

saturation (i.e., N* = N, see below) when the

parameters are measured. Otherwise the

saturation load will be under-estimated .

This is not a problem when the work load is

light. As can be seen subsequently, if the

system work load then gets heavy, the control
policy will adjust to it and the observed
ratio will again approach the desired value.

The saturation load N* satisfies equations
(5) and (6)

M ^

N* = 1 + I
— q. if the CPU is the

i-2 ^i ^ bottleneck (8)

or it satisfies equations (5) and (7).

^l^i* i=2 ^i

All of the above equations can also be de-

rived using queuing theory.

Most proposed schemes assume a fixed
saturation load. The Michigan Terminal
System [15] for example computes the values
of five load factors at fixed intervals and
if one or more exceeds the corresponding
predetermined static saturation value, the

system is assumed to be saturated. For the
50% criterion, the saturation point corres-

ponds to when the utilization of the paging
device exceeds 0.5+c, where c is some small
positive constant. The L=6 criterion to a

^

certain extent assumes the system to be
saturated when the system life time is below i

the page swap time, which is fixed for a k

given paging device. s

3

In a previous report [15], we have i

shown that the saturation load is really a
function of the characteristics of the *

current work load and cannot be very well
represented by some constant measures. For
the present model, these work load charac- i

teristics are and y^^, i=l,2 M. Any -j

model which does not take this into consi- ^

deration will sometimes over-estimate and
sometimes under-estimate the system satura-
tion load. The fact that the over-estimatior
on the average is equal to the under-estima-
tion provides no comfort when the goal is to

optimize performance at all times. .

3. Load Control

The first criterion for load control is

to keep the system from saturation. From
Figure 1 , it is seen that the mean response
time increases rapidly beyond this point.
Furthermore Denning [16] has shown that

I

' thrashing ' (and thus reduced throughput !

rate) occurs when the paging device is
i

saturated. For multiprogrammed paging
j

computer systems, the simplest way to accom- i

plish this is to keep the number of active
j

jobs below N* given in equation (8) or ©) .
i

Since the system throughput rate is a non-
decreasing function of N before the system
saturates [8], activating N* jobs whenever
possible will also maximize the throughput.
There are three cases to consider:

(i) the system is saturated (L.e. N>N*) , ,

(Li) the system is under-utilized (i.e.,

N«N*) ,

II

(Lii) the system is close to but not yet •

saturated. [

3

Case (iii) is the interesting case
J

since if the system is under-utilized, it is
\

unnecessary to apply any control measure but I-

to activate each job as it arrives until I

the condition for case (Lii) is reached. If ;

the system load is then properly controlled, t

the system should attain saturation (case i(

(t)) infrequently and only for brief periods.
The control, when the system is saturated,
could simply consist of not activating any k

more batch job until the system comes out of i

saturation. If the system is in the satura-
tion state frequently and for extended

}

210

durations then it is highly probable that

the hardware is inadequate to handle the

normal work load and should be upgraded.

Thus we shall consider only case (iii) in

this paper. Vfe note that many systems (e.g.

the Michigan Terminal System [15]) do not

apply any control until saturation is

detected. This, in our opinion, does not
constitute proper load control.

4. Optimization

\k define the following variables all of

which are functions of time T which is

omitted for clarity:

I : number of batch jobs waiting to be
activated during T,

min{ (E^-N^)C^ + (E^-N^)C2}

subject to N + N, < S
t b —

t

number of terminal requests during T,

expected number of terminal arrivals in
the next interval.

expected number of batch arrivals in the

next interval,

expected number of job departures (both

batch and terminal) in the next interval,

optimal number of batch jobs that should
be activated,

optimal system capacity pleasured in

terms of the number of jobs) to be

reseirved for expected incoming terminal
jobs,

remaining system capacity (defined as

the number of additional jobs that can

be accommodated without saturating the

system)

.

S can be approximated by

S = N* - N + D

|The problem is to determine how many of the

l5 jobs should be filled by waiting batch
'jobs df any) . Our objective is to maximize
'ithe mean system throughput rate without
saturating the system. This is equivalent
ito minimisSing the expected number of jobs
Ithat have to wait at each interval because
admitting them would saturate the system.

shall minimize a weighted sum of the
waiting batch and terminal jobs which is a

pore general problem.

I

Let the weights be C-^ and C2 for batch

and terminal jobs respectively. The opti-

mization problem is therefore

(10)

(11)

N^<E^, N^<I

The problem is equivalent to

Max Z = N^.C^ + N, .C„
t i b /

subject to the constraints given by (11).

If Ci > C2 (i.e., terminal jobs are
favoured) , it is easy to see that the solu-

tion to the above optimization problem is

= if E < S = S - E
t t t b t

N=SifE>S N^=0
t t — b

(12)

In the above computation, it is assumed
that E^- and D are available at the beginning
of the Interval. If Et<D then we may have
N+N^>N* for a short period at the beginning
of the interval. This problem can be alle-
viated by spreading out the activation of
the batch jobs throughout the Interval
Instead of all at once at the beginning. It

remains to show how E^ and D can be computed
using smoothed statistical estimates.

Let P(- be the expected prediction of
the parameter for the period [t,t+l]. Let
x^ be the observed value of the parameter at

time t. P(. can be expressed as

= (1-6) (X^ + 3Xj._^ + b_2 + ...)
00

= (1-B) I bV_:
1=0

^

where the exponential weight factor 3 is a

constant between zero and one. Similarly,

^-1 = ^\-i-l
1=0

P^ = (1-3)X^ + BPj._j^. (13)

Now let the error made at time (t-1) in

predicting x^ be e^, then

^t = \ - ^-1 ^^'^

substituting in equation (13),

= P , + (l-6)e (15)
t-1 t

211

Now if is relatively small, we do not

recompute the value of B . If Ej. is large,

we find a new value of 6 which will minimize

the sum of the squares of errors given by

I {X -d-B) I (16)

i=t j=0

In practice, the summation in (16) does not

have to involve many (k,say) terms before

B^ approaches zero. B does not have to be

very accurate and standard techniques exist

for its efficient computation.

To summarize, the control procedure
consists of the following steps:

1. During an interval T, observe D, J, N,

 Vii, 1=1,2, . . . ,M.

2. Compute N* using equation (8) or (9).

3. Estimate the expected number of terminal
arrivals and total departures in the

next Interval using equation (15).

4. Compute the number of batch jobs to

be activated in the next interval using
equation (12)

.

5. Terminal jobs are immediately activated
upon arrival.

5. Conclusion

A model to estimate the saturation of a

computer system has been presented which is

capable of adjusting to varying work load
characteristics. Based on this, the number
of batch jobs that should be activated to

minimize a weighted sum of the number of

jobs that will have to wait upon arrival
without saturating the system in a combined
batch-interactive environment is computed
using optimization theory. The approach
thus provides good mean response time to the
terminal jobs and maximizes the system
throughput rate imder that condition.

The second level of load control - that
of the selection of the type of jobs to be
activated has not been discussed in this
paper. Work has started in this direction.
However, because of the difficulty of

predicting accurately the resource demands
of a job before it is executed and because of

the adaptlveness of the proposed scheme which
is capable of correcting Itself it may be
that equally good results can be achieved
without It.

The use of the number of jobs to charac-

212

terize the system load is of course not pre-
cise as jobs do not necessarily have the
same resource demand characteristics.

^

However, it has been shown to produce useful
results [17,18]. It is made even more
acceptable for this application because of
the built-in adaptlveness of the proposed
policy. If the average resource demand of
the activated jobs in the next time intetrval

is lighter than that of the previous inter-
val (on which the remaining system capacity •

was estimated), then the updated remaining
system capacity will Increase and more jobs
will be activated in the next interval. On '

the other hand, if the average resource
demand is heavier, then the remaining
system capacity will decrease and fewer (or

no) jobs will be activated in the next
interval.

References

[1] Denning, P.J., "The working set model
for program behaviour". Comm. of ACM
15, 5 (Hay 1968), 323-333.

[2] Denning, P.J., "Virtual memory".
Computing Surveys 2,3 (Sept. 1970),
153-189.

[3] Denning, P.J. , "Third generation
computer systems". Computing Surveys 3,

4 (December 1971), 175-216.

[4] Rodriguez-Rosel, J. and Dupuy, J. P., !

"The design, implementation, and eva-
luation of a working set dispatcher".
Comm. of ACM 16,4 (April 1973), 247-253

[5] Denning, P.J., Kahn, K.C., Leroudler, J

Potler, D. and Surl, R.
,
"Optimal multl

programming", Acta Informatlca, 7 (1976
197-216.

[6] Denning, P.J. and Kahn, K. , "An L=S
criterion for optimal multiprogramming"
Proc. Int'l. Symp . on Computer Per-
formance Modeling, Measurement and
Evaluation , (March 1976), 219-229.

[7] Leroudler, J., Potler, D.
,
"Principles

of optlmallty for multiprogramming",
Proc. Int'l Symp. on Computer Perfor-
mance Modeling, Measurement and Evalua-
tion (March 1976), 211-218.

[8] Graham, G.S . and Denning, P.J., "On the

relative controllability of memory
policies", Proc. Int'l. Symp. on

Computer Performance, Modeling, Measure-

ment and Evaluation, O^ugust 1977)

,

411-428.

11

C9ll Landwehr, C.E., "An endogenous priority
model for load control in combined
batch-interactive computer systems",
Proc. Int'l. Symp. on Computer Perfor-
mance, Modeling, Measurement and Eva-
luation , (March 1976), 282-287.

[103 Hine, J.H. , Mitrani, I. and Tsur S.,

"The control of response times in

multi-class systems by memory alloca-
tion". Comm. of ACM 22.7 (July 1979),
415-A24.

nil] Buzen, J. P., "Analysis of system bottle-
necks using a queuing network model",
Proc. ACM-SIGOPS Workshop on System
Performance Evaluation (April 1971)

,

82-103.

Z122 Kleinrock, L., "Certain analytic results
for time-shared processors". Infor-
mation Processing (Proc. IFIP Congress

68), (1968), 838-845.

ClSD Ferrari, D. , Computer Systems Perfor-
mance Evaluation , Prentice Hall, 1978.

[14] Denning, P.J. and Buzen, J. P., "The
operational analysis of queuing network
models". Computing Surveys 10,3
(September 1978), 225-261.

L15D Chanson, S.T. , "Saturation estimation
in interactive computer systems".
Technical Report 79-7, Dept. of Computer
Science, University of British
Columbia, (June 1979)

.

CI6D Denning, P.J., "Thrashing: its cause
and prevention", Proc. FTPS

, 33,

(FJCC, 1968), 915-922.

C17II Scherr, A.L., "An analysis of time
shared computer systems", Ph.D. Thesis ,

Dept. of Electrical Engineering, M.I.T.,
Cambridge, Mass. (June 1965).

ClSl! Chanson, S.T. and Ferrari, D. , "A
deterministic analytic model of a

multiprogrammed interactive system",
NCC, AFIPS Conference Proc , 43(1975),
645-652.

213

)

I

Sensitivity Analysis and Forecasting for

Large Scale IBM Computer Systems:

A Methodological Approach and Case Stuui

Carl Steidtmann

Staff Consultant
Mountain Bell

Denver, Colorado

This paper outlines the development and use of a new method of
forecasting computer capacity for large scale IBM computer systems at

Mountain Bell. The model that was developed to accomplish this task

uses three different statistical techniques. A representation of the

computer system is developed using two stage least squares multiple
regression. An autoregressive integrated moving average process is

then used to individually forecast the level of use for each of the

components of the system. These values are then placed into a sys-

tem of simultaneous equations which are then solved to give the

desired results. The data that was used in this project was collected

over the course of a year by hardware monitors off of an IBM 3033 that

was the global processor in a MVS/JES3 triplex in Mountain Bell's
Colorado/Wyoming processing center.

Key words: Box-Jenkins; forecasting; multiple regression; sensitivity
analysis; simultaneous equations.

j

1. Introduction

I
In data processing two of the most dif-

I'ii
ficult forecasting problems that management

if must face are:
r

,
1. When will our present computer

i system run out of capacity?

i 2. If we make a change in our present
computer system, what will be the

[
impact of the change on the

j

different components of the system?

' By developing the proper answers to

these questions management in data proces-
ji sing can provide the best possible service

(to the organization at the least cost. The

I

model presented in this paper seeks to
provide data processing management with the

' answers to the above questions. In answer-
ing these questions the model gives its

user an understanding of when new hardware
needs to be ordered and what the impact
changes in the present computer system will

have on the other components of the system.

By forecasting computer utilization on a

component by component basis through the

use of simultaneous equations, sensitivity
analysis can be conducted to ascertain the

impact of a change in one system component
on all of the other components of the system.

2. The Theoretical Model

In developing the theoretical dimen-

sions of this model two design criteria were
constantly kept in mind. The first criteria

was that the output of the model had to pro-

vide useable forecasting information. The

second criteria was that the model had to

have the capability of answering 'what if
questions. While it is a relatively simple

process to develop a forecasting model for

computer capacity, creating a model that

215

gives its user the capability of perfonning
sensitivity analysis is a bit more difficult.
In trying to meet these two design criteria
it was felt that the best results could be

obtained through the combination of three
separate forecasting techniques. The three
techniques that are used in this model are
multiple regression, Box-Jenkins time series
analysis and simultaneous equations.

Multiple regression alone can be used
as an effective forecasting tool if the data
conforms to a rather strict set of assump-
tions. Since the data in question did not
conform to several of these assumptions mul-
tiple regression was used only to quantify
the interrelationships that exist between
the different components of the system. A
second statistical method, time series
analysis, was selected to make point fore-
casts about the level of system component
utilization. While time series analysis
would by itself provide an adequate means
of forecasting component utilization, it

fails to take into account the dynamic nature
of the process that is under study. To
incorporate this perception of a dynamic
process into the model, the equations that
were developed in the multiple regression
portion of the study were merged with the
point forecasts that came from the time
series analysis. This merger of the output
of these two statistical techniques produced
a set of equations that were solved simulta-
neous to produce the final forecast.

2.1 Model Development

A methodological flow chart that out-
lines each step involved in the development
of the forecasting model is given in Figure 1.

The first step that must be taken in the
model design process is an evaluation of the
data that is available for forecasting pur-
poses. This data can come from System
Management Facility (SMF) data, hardware
monitors, or Resource Management Facility
(RMF) data. If other sources of data are
available these can also be used. Once this
data evaluation process is completed the
selection of the system components that are
to be used in the model can proceed. There
are no restrictions as to which system com-
ponents can or should be used in the model.
Selection of system components depends
entirely on the interests of the model
builder and the availability of the data.
Some of the components that can be used
include:

1) Central Processing Unit Busy
2) Information Management System (IMS)

Transactions

3)

4)

5)

6)

7)

8)

9)

10)

11)

a) Rate

b) Volume
c) Response Time
Problem Program State Level

Supervisor State Level

Swapping Rate
Paging Rate
Channel Busy
Control Unit Busy
Device Busy
TSO Usage

a) Number of Users

b) Response Time

c) Volume of Transactions
Resource Usage by Application

Once all of the data has been collected
and the appropriate variables have been

identified, the next step is to determine
the correlations and the interrelationships
that exist between the selected system com-

ponents. This task is accomplished through
the use of the statistical tool of two stage
least squares multiple regression.

FIGURE I

FORECASTING
METHODOLOGY

Data

Box-Jenkins
Identification

Stage I

Regressions

Nel der-Mead
Function Min.

Stage II

Regressions

Marquardt N-L
Least Squares

Box-Jenkins
Forecast

Simul taneous
Equations
Model

Forecasts
Sensitivity
Analysis

216

2.2 Multiple Linear Regression

If there are n different system compo-
nents that have been included in the analysis
then each individual system component will

yield an equation of the following form:

\ = h'hh'^2h'^.^^-^^^ (1)

is the dependent system
component
is the intercept value

are the regression
coefficients
are the observations of the
independent system components
represent the error terms

Using matrix notation for each system compo-
nents we get:

Using matrix notation this set of equations
can be reduced to:

where:

. .B

..X

Y = XB + U (2)

Where:

^1 1 ,X2^ .Xj^

.

•^tl

1 » X22 ' X22 •^t2

h 1 .X23,X23.
•^ts

Y= X=

^'^2n'^3n-
_

!x.
tn

u=

Where:

t = The number of system components
under consideration

n = The number of data observations
being used in the analysis

Extending the application of multiple regres-
sion to all t components of the computer
system we get the fundamental equation of the
model. This can be expressed as:

^1 = ^01 ""^l 1^1 '^21^2
•

^2 = ^02''^1 2^1 ^^22^2-

^3 " ^03"^^! 3^1 ^^23^2-

(3)

•^t-l,l^t-l''^l

•Vl,2Vl^"2

•^t-l,3Vl''"3

Y = B *

txl txt
X + U

txl txl
(4)

The beta values in this last equation repre-
sent the technical coefficients of the system
under consideration while the X values repre-
sent the different system components that
were used.

The beta values must be interpreted
within the context of the X and Y components
of the equation in which the beta values are
found. In their totality the beta values
can be viewed as indicators of overall system
performance and balance. Generally speaking,
positive beta values should be viewed as
indicators that the system is in balance.
Similarly, negative beta values should be

viewed as possible indicators of system
bottlenecks. For example, if the Y value
represented Central Processing Unit (CPU)
busy, a negative beta coefficient on an X

value that represents channel busy for some
Direct Access Storage Device (DASD) channel
tells us that as channel busy increases, CPU
busy declines. This situation would seem to

indicate that the processor in question was
I/O bound on the channels that had negative
beta coefficients. Further analysis would
be required to confirm this conclusion.

Under different circumstances if the Y

value represented channel busy a negative
beta coefficient on an X value that repre-
sented channel busy for another channel indi-

cates that as channel X busy increases
channel Y busy decreases. This situation
would tend to indicate that the channels in

question were in contention with each other.

A similar anlaysis and conclusion could be

drawn for individual devices and control

units that exhibited the same X,Y and beta

coefficient values.

Positive beta coefficients under the

right circumstances could also be viewed as

an indication of potential system problems.

If the Y value represents IMS response time
and the X value in question represented
channel busy a positive beta coefficient
would tell us that as the channel busy

increased so would the IMS response time.

The channel in question could represent a

bottleneck for the IMS application. Again,

further study would be necessary before a

definitive conclusion could be drawn.

^Ot'"^lt\'"^2t^2

217

2.3 Assumptions

In using the statistical tool of multi-
ple regression, the analyst must make a

number of assumptions about the nature of
the data and the relationships between the

variables that are involved in the analysis.

The first assumption implicit in one's
use of multiple linear regression is the

assumption that the relationship that exists
between2the Y and X values is a linear one.

A low R value is a statistical way of saying
that the independent variables do not explain
the variation in the values of the dependent
variable. [1]

The second assumption that is implicit
in the use of multiple regression is that
the error terms (U) exhibit homoscedasticity,
that is to say that the errors have a constant
variance over the range of empirical
observations

.

A third assumption that is made in

using multiple regression is that the error
terms (U) are not autocorrelated. The
existence of autocorrelation in error terms
can be tested via use of the Durbin-Watson
statistic. The absence of autocorrelation
means that the level of one set of observa-
tions of independent values does not
influence any other set of observations. In

using data that measures device utilization
of the different components of a computer
system this assumption is often violated
since what transpired on a computer system
today can influence what will happen
tommorrow. [2]

The fourth assumption that is made in

using multiple regression is that the error
terms are normally distributed. In dealing
with a large number of data observations as

is the case in doing computer capacity fore-
casting this assumption does not pose a

problem. [3]

The fifth assumption is that col linearity
does not exist between the independent vari-
ables of the multiple regression equation.
It would be virtually impossible to select
independent variables that exhibited no

coll inearity. If several variables are
found to be col linear then they should be

dropped from the analysis since they offer
no additional explanation of the variation
of the dependent variable. [4J

The final assumption of a multiple
regression model is that the postulated
equation or model is in fact the true model.
This assumption of model significance can be

evaluated through the use of a F-test.

2.4 Box-Jenkins Time Series Analysis

Once the structural characteristics of
the computer system have been ascertained,
the next step in the model building process
is to forecast a trend in the use of all of
the components of the system that make up the
model. Collectively these trended values wil

represent the X vector in the equation:
'

Y = B * X + U

The statistical technique that was selected '

to perform this task was Box-Jenkins time
series analysis.

In developing the forecasted values for
the)(vector, using the Box-Jenkins approach
involves a three step process. The first
step is to identify the functional form of
the Box-Jenkins model to be used. Once the
form of the model has been identified the
next step is to estimate the value of the
parameters of the functional form. Once both
the functional form of the model and the
parameters of the model have been estimated
the final step in the process is to make a

forecast.

2.5 Model Identification

The purpose of model identification is

to determine the appropriate class of model
that the data represents within a general
class of models. In making this determination
the value of three different parameters that
represent the nature of the data must be

identified.

The first parameter or order that must
be identified is the degree of differencing
that is required to make a time series
stationary. A stationary time series is one

'

that has a fixed mean value while a non-
stationary time series such as the utilization
of a computer system have an increasing or
decreasing mean value. A stationary process
can be squeezed from a nonstationary ojie by
differencing the nonstationary process 'd'

times. Thus we have:

t
" ^t"^t-l (6)

The number of times that the time series must I

be differenced to achieve stationarity becomes

i

the value of '
d'

. '

I

Once the time series has been differenced:
as many times as necessary to produce a

218

stationary process, the autoregressive para-
meter, p, and the moving average parameter,

q, can be estimated to give us a model that
describes the time series model of order
(p,cl,q).

The process of determining the order of
the autoregressive parameter requires a

combination of applied statistics and tempered
judgment. The process begins by calculating
the values of the autocorrelation coeffi-
cient. These values represent the ratios of
the covariances of the time series at dif-
ferent time lags. Thus the autocorrelation
coefficient for lag j is:

P.
J

(7)

Where:

E[Z, - r){Z
J ---t

r = 1/t * Z

t+j
r)]

Z. = The data observation of the time
series at time t.

The order of the autoregressive process
is generally assumed to be 0,1, or 2. If
the time series in question has an autore-
gressive order whose value is zero then
only P-j will be a nonzero value. All of the
remaining P. values will equal zero. For an

autoregressive time series whose order is 1,

the value of the autocorrelation coefficients
will tail off in an exponential manner as j

increases.

For an autoregressive process whose
order is 2 the values of P. will exhibit
either a mixture of exponer^tial ly increasing
and decreasing values or they will exhibit
a damped sine wave pattern.

Partial autocorrelation coefficients
can next be derived using the autocorrelation
coefficients that were calculated in the last
step. For a time series whose autoregressive
order is K we have:

Pj=0kiPj-i"---0kCk-i)Pj-k.i"Vj-k

j=l,2,....k

Where all of the above 0 values represent
the partial autocorrelation coefficients.
Putting these equations into a matrix struc-

ture yields the Yule-Walker equations that

can be expressed as:

1 PI P2

Pi 1 Pi

1

P PK-1 K-2

~9S
'^kl

' pr

P2

P3

-

Pi

•

Pi 1

-

These equations are then solved for all
relevant levels of K, the order of the
autoregressive process. [5]

Once all of the values of 0 have been
determined the order of the moving average
process can be determined. Like the order
of the autoregressive process the moving
average order is generally assumed to be

0,1, or 2. The order of the moving average
process is assumed to be zero if all of the

0 values except
0-|i

are zero. The order of
the moving average process is assumed to be
1 if the 0 values decline in an exponential
manner. The order of the moving average
process is assumed to be 2 if the 0 values
represent either a mixture of increasing and
decreasing exponential movement or if they
exhibit a damped sine wave pattern. [6]

It should be stressed in concluding
this section that the process of model

identification is an iterative process that
in many cases must be done repeatedly in

order to get the desired results. This is

due largely to the fact that time series
model identification remains an art, and not

science, that is based on rules of thumb
rather than unbreakable laws of science.

2.6 Model Identification

Once the values of p,d, and q have been

identified for the time series in question,
the next step in the process is to identify
the values of the parameters of the process
that was identified in the previous step.

The parameters to be estimated depend on the

characteristics of the model that has been

identified. A simple moving average model

of order q, MA(q), takes the form:

^t "
'^t

" ®^t-l
,9 A^

q t-q
(9)

Where;

\ = ^ -
^t-1

The parameters of the model to estimated are;

219

®1 '^2" • "^q

A simple autoregressive model of order p,
AR(p), takes the form:

The parameters to be estimated from this model

are:

V02--0p

A more complex model that mixes both the

autoregressive and the moving average model

of order p,q or ARMA{p,q) takes the form:

Z.=0tZ. ,+0,Z. ,...+0 Z. +A. ,-..9a }^^'^
t 1 t-1 2 t-2 p t-p t-1 q t-q

The parameters to be estimated from this model

are:

Finally, an autoregressive integrated moving
average model of order p,d,q or ARIMA(p,d,q)
takes the form:

(12)
Z,= (U0i)Z^_^..

. Vd^t-p-d-^l^t-l ' -Vt-q'^

The parameters to be estimated from this
model are:

01'02---Vd'°l'^2---%

3a^

(13)

Where;
represents the residual values of

the estimated function.

b^ represents each of the parameters

to be estimated.

From the X.. values a I x J matrix, referred f fIt ,'3

iit

ltd

to hereafter as](, is formed where:

X. . = ZX.,X.

.

(14)

The next step is to form a X vector where the]

elements of Y are:

1

Y. = EX.,A, (15)

The X vector and X^ matrix produce a set of

modified linearized equations much in the

same fashion as found in multiple regression

and in a like manner the values of the B

vector are solved for where:

Y = XB (16)

The values of the B vector, the X vector, and

the X matrix are scaled before the system of

equations is solved for B. The scaling factor

that is used in this step is:

The statistical methodology that was used
to estimate these values was a Marquardt
Algorithm for nonlinear least squares. The
purpose of the algorithm is to fit a function
to a given set of data points and in so doing
estimate the values of the parameters in the
function.

The algorithm begins by asking for preli-
minary estimates of the parameters. These
initial values were estimated using the
Nelder-Mead Function Minimization technique
which uses a simplex technique to find a mini-
mum value for a known function given the
constraints as defined by the user data. [7]
In cases where there is only one parameter to

estimate the Nelder-Mead technique proves
sufficient by itself. Given the initial
values to start with, the following derivatives
are evaluated for each step in the Marquardt
process

.

Thus;

*

^i
*

Y.

*

^i

1

1

X../C.C.

B./C.

Y./C.

1 + Q,

(17)

(18)

;

The new parameters for the B^ vector are next

determined and the sum of the squares is cal-

culated for the new set of i values. The new

B values, are derived as:

il
(19)

220

Where:

= The original estimates of

B.| = The new estimates of

i = The values derived from the pre-

vious step.

If the sum of the squares of the new

estimate is less than the old, the parameter
correction, B^*, are tested for convergence.

If all are smaller than the user set conver-
gence value then convergence is assumed and

a covariance matrix of the B, estimates is

produced and the process is complete. If

convergence has not occurred then the value

of n is reduced by a user set factor of M and

the entire process is repeated using the

original B^ values. If the sum of the

squares of the new estimates is greater than

that of the old estimates then is incre-

mented by a factor of M and the entire pro-

cess 1s again repeated using the original

values of B^. [8]

2.7 Forecasting

Once the time series model in question

has been identified and the parameters of
the model have been estimated the last step

In this phase of the model building process

is to generate a forecast for what will

become the values of the X vector variables

of our general model

.

The methodology that was selected to

make the forecasts for each of the values

in the _X vector of the general model was

the difference equation approach as sug-

gested by Box and Jenkins.

The difference equation approach to time

series forecasting begins by taking a condi-

tional expectation of the difference equation

form of the model that was identified for

some time origin t. For example, if the

model that was identified in the first step

of the time series process was an autoregres-

sive integrated moving average model of order

0,1 J), the difference equation for this

type of model would be:

Taking the conditional expectation of this
difference equation would yield:

Z,,i = (U|3;Z^-|32Z,_i+A,-OA,_T (21)

^t.i =(l^<'l)WlVt.1-2 for all \ll

For all forecasts beyond the time period of
t+2 the A. and OA. elements of the difference
equation fall out because the future expecta-
tion of all of the error components A. equal
zero. Thus:

E (A^) = 0 (24)

The A. value has a direct Influence on the
forecast for the first two time periods of
the forecast since the actual value of the
A. values can be used. For forecasts beyond
time period three in the above equation the
actual A. values cannot be used since they
have not taken place and as such are not
known. This is not to say that the influence
of the A^ values is not embedded in the fore-
casts at lead times greater than two as all

of the future forecasts are indirectly
dependent on the forecasts in time periods
one and two which in turn are dependent on
the value of A^. [9]

The Z. values that are used as seed values
to start the time series are derived from a

linear time series least squares. The mean
value of the time series could be used if

the time series was stationary. Since this

is not the case for any of the components in

a computer system, these seed values must be

derived before the final forecast can be made.

Once the forecast for each of the inde-
pendent vector variables has been made,
the forecast values are plotted out into the
future and the general model itself can now
be solved.

2.8 Simultaneous Equations

One of the shortcomings of both multiple
regression and time series analysis is the

requirement that a distinction be made between
explanatory and dependent variables. Once
this distinction is made these statistical
techniques imply that there is a certain
degree of causality whose direction goes from
the explanatory to the dependent variables.

In a computer system maintaining this distinc-
tion of explanatory and dependent variables
based on assumptions of causality is a

difficult if not spurious task. This is the

221

primary reason for turning to the technique

of simultaneous equations where the values

for all of the variables in the model can be

determined at the same time. In dealing with

the statistical technique of simultaneous

equations the steps in the forecasting pro-

cess that must be made are those of model

identification, estimation, and the solution.

2.9 Model Identification

The crux of the identification problem

resolves around the statistician's ability

to estimate the functional equations of the

system under consdieration from the data that

is available. In layman's terms the identi-

fication problem asks the question of whether

a solution exists to the system of equations

that is both meaningful and unique.

Whether or not a system of equations

can be identified depends on its ability

to meet the standard rank and order condi-

tions that have been established for simul-

taneous equation systems. The order condi-

tion, which is a necessary but not sufficient

condition for system identification states

that in a model of M equations each equation

in that model will be identified if it

excludes at least M-1 of the variables

appearing of the variables appearing in the

model. The rank condition which is both a

necessary and sufficient condition for model

identification states that in a system of M

equations with M variables that are to be

determined internally to the model an equa-

tion within the system of equations is con-

sidered to be identified if and only if at

least one nonzero determinant of the order

(.M-1),(M-1) can be constructed from the co-

efficients of all of the variables in the

model that were excluded from that particular
equation in question but included in the

other equations in the system. [10]

Once it has been determined that the

model in question can be identified, the

next step in the process is to estimate the

equations in the system.

2.10 Model Estimation

The method of model estimation that was

used for this step in the model building pro-

cess was two stage least squares multiple
regression. Since multiple regression was

discussed in length earlier in this paper,

comments about its use will be limited. A

two stage least squares approach is taken

so as to minimize any correlation that may
exist between dependent variables that appear
in each regression equation and any error
term of the other independent variables.

The elimination of this correlation whici

would lead to bias in the final system of
equations is accomplished through the use of S

two stage least squares regression. The firsf
stage regression produces estimates of all of!
the dependent variables based on the original"
data. The second stage regression produces
estimates of all of the dependent variables

j

based on the estimates of the first stage. [11.^

2.11 Model Solution *

The system of equations is solved by a

reduced form algorithm that expresses each of
the unknown variables of the system as a func-

tion of the predetermined values of the model.'

This is done through a process of substitutior
that reduces each equation down to the point .

where there is but one unknown variable in
'

each equation. Once the process of reduction *

through substitution has taken place the
'

solution of each of the remaining equations
;

for the value of the unknown variables becomes'

a trivial task.
'

\

3.0 The Data
'

A listing of the data that was used in

the case study is available on request from
'

the author. In total there were 323 obser-
vations where each observation represents '[

the average percentage utilization of a parti-,
cular set of system components over the course 1

of a day for the entire year of 1979. The !

data were captured by a hardware monitor and
stored by ten minute intervals on a data base.j

For the purposes of this study, each of the
144 daily observations were aggregated and

i,

then averaged to produce the actual data
;

observations. The different data elements
that were used in this study are:

Julian Date
]

Central Processing Unit Busy t

Problem Program State Busy
j

Idle-Stop
:i

Channel 1 Busy - DASD Channel

Channel 2 Busy - DASD Channel

Channel 3 Busy - MSS Channel

Channel 4 Busy - DASD Channel

Channel 5 Busy - Tape Channel

Channel 7 Busy - DASD Channel

Channel 8 Busy - DASD Channel

Channel 9 Busy - MSS Channel

Channel A Busy - DASD Channel

Channel B Busy - Tape Channel

222

The major shortcoming of the data exists

in the periodic gaps that can be found. These
gaps in the data were due to either a failure

in the hardware monitor, a failure in the

system that was under study, or an error on

the part of the hardware monitor operators.

In total these gaps represent less than 10%

j

of the total data that could have been cap-

!
tured and in no way should bias the overall

resul ts of the model

.

4.0 The Fitted Model

1
In the multiple regression segment of

; the model building process a two stage least
1 squares approach was taken to insure that the

I

equations that were produced for the simul-

I

taneous equation portion of the model were

j

unbiased. The second set of regressions were
'i run using the estimates generated from the

1 first set of regressions. In the second

i

stage regressions all coefficients that were
i not significantly different from zero at a

I

confidence interval of 90% using a two-tailed
t-test were dropped from consideration. The

j

set of beta coefficients that were produced
by this two stage process can be found in

Table I.

In addition to the beta coefficients
there are a number of other vital statistics
that were derived from each regression to

ascertain whether or not any of the original
i regression assumptions were violated. A
listing of these statistics for both the

I

first and second stage regressions can be

i found in Table II along with their corre-

j

spending dependent variable.

The statistics of interest in determining

I

the usability o| the regression equations are

1
the values of R , F, and the Durbin-Watson

[

statistic. An examination and comparison of
these statistics between the Stage I and
Stage II regressions will reveal that the

critical statistics in question are pretty
' much the same. The F values from the Stage II

regressions were across the board higher than
the R values from Stage I although this is

i
probably due to the dropping of the insigni-

i ficant variables in performing the Stage II

I regressions. The F values in Stage I varied
from a low of 97 to a high of 541 and in all

cases represent highly significant values at

a 95% confidence interval. The F values from
' the Stage II regressions varied from a low of
I 130 to a high of 1643 and were also in all

cases highly significant at a 95% confidence
1 interval

.

I 2
I The R values for both Stage I and Stage

I

II regressions were similar. In both cases
y the R values varied from .77 to .95 which
1 would tend to indicate that a high degree of
, the variation in the dependent variables can

i

be explained by the independent variables.

The statistic that casts a dark pale over
the results in general is the Durbin Watson
statistic. As discussed earlier, the Durbin-
Watson statistic is a measure of autocorrla-
tion that might exist in the data under study.
As anticipated the Durbin-Watson statistic
in both Stage I and II regressions were in the

range of. 9 to 1.7 which indicates that auto-
correlation exists. The existence of auto-
correlation will not bias the estimates of
the beta coefficients which is our primary
concern. At worst, the existence of auto-
correlation will bias the variance of our
estimates of the beta's which in turn would
m^an that the values computed for the F and

R statistics are not as good as we had pre-
viously believed them to be.

Plots of the residuals from both Stage
I and II regressions are avail bale from the

author. A visual examination of these plots

indicated that several of the standard linear
regression assumptions about the nature and

distribution of the error terms have been at

the very least violated in spirit if not in

fact. The assumption in question here relates

to the lack of autocorrelation among the re-

siduals, the existence of a constant variance
and the selection of the X values by a fixed

and repeated sample. Again, as in the case

of the spurious Durbin-Watson statistics it

was felt that these violations of the standard
assumptions would only bias the variance of
the regression coefficients and not the

coefficients themselves.

4.1 Time Series Model Identification

The process of identifying the structure
of a time series is an art and not a science.
In trying to make a determination of the

values of the parameters p, d, and q there
must be a trade off made between the differ-
ent criteria that can be used for the purposes
of identification. Given this disclaimer,
the following is an explanation of the

structure of the time series that were
developed as inputs into the general model.
The output listings for the autocorrelation
coefficients and the partial autocorrelation
coefficients are available from the author.

For the simplicity, the identification
notation used by Box-Jenkins to characterize
the different types of models will also be

incorporated here. Thus a simple first order
autoregreesi ve model becomes AR(1) while a

comparable moving average model would be

MA(1). An integrated autoregressi ve model

would be ARI(1,1) while a comparable moving
average model would be IMA(1,1). Combining

Table 1

Beta Coefficients

Dependent 1 2 3 4 5 6 7 8 9 10 11 12 13

Variable

1 44.06 .61 -.40 -.36 -.29 .67 .24 0 0 .29 -.39 .30 0

2 -2.92 .20 0 0 0 0 0 .44 0 -.09 .17 -.16 0

3 77.00 0 -.69 -.82 0 .41 0 0 0 .24 0 0 -.46
4 2.33 0 -.02 0 .23 .37 .17 0 .91 -.17 -.54 0 -.07
5 .83 0 0 .36 -.03 .24 .25 0 -.37 .56 0 -.09 .08

6 -3.48 0 .04 .42 .11 .05 .17 0 -.39 -.16 .79 0 0

7 -.53 0 0 .31 .27 .28 .05 0 -.17 0 0 .24 0

8 .89 .21 0 0 0 0 0 0 0 0 -.21 .14 .82

9 .03 0 0 .82 -.21 -.34 -.11 0 0 .17 .49 .14 .04

10 -3.83 -.08 .04 -.27 .62 -.34 0 .09 .38 .06 .18 .40 -.15
11 .07 .05 0 -.39 0 .65 0 -.12 .42 .10 -.02 .25 .07

12 -.45 -.06 0 -.09 -.08 0 .17 .08 .23 .29 .43 .05 0

13 2.8 0 -.04 -.14 .10 0 0 .94 .13 -.14 .09 0 0

Table II

Stage I Statistics

Regression
Number

Dependent
Variable

F r2 Durbin-Watson

1 CPU Busy 109 .79 1 .149

2 Problem Program
State 111 .81 1.471

3 Idl e-Stop 97 .77 .933

4 Channel 1 Busy 333 .92 1.264
5 Channel 2 Busy 137 .84 .949

6 Channel 3 Busy 255 .91 1 .008

7 Channel 4 Busy 160 .85 1 .019

8 Channel 5 Busy 540 .95 1 .408

9 Channel 7 Busy 408 .94 1 .345

10 Channel 8 Busy 164 .86 1 .758

11 Channel 9 Busy 385 .94 .963

12 Channel A Busy 222 .90 1 .090

13 Channel B Busy 541 .95 1 .310

Stage II Statistics

1 CPU Busy 130 .79 1.167
2 Problem Program

State 269 .81 1 ,442

3 Idl e-Stop 215 .77 .926

4 Channel 1 Busy 499 .93 1 .283

5 Channel 2 Busy 207 .84 .920

6 Channel 3 Busy 383 .91 .988

7 Channel 4 Busy 295 .85 1 .003

8 Channel 5 Busy 1643 .95 1 .391

9 Channel 7 Busy 616 .94 1 .341

10 Channel 8 Busy 180 .86 1 .764

11 Channel 9 Busy 516 .94 .956
12 Channel A Busy 298 .90 1 .084
13 Channel B Busy 857 .95 1.291

224

both the autoregressive and moving average
forms would yield ARMA(1,1) and in its inte-
grated form this would be ARIMA(1 ,1 ,1)

.

An examination of the autocorrelation
and partial autocorrelation coefficients
from the CPU busy time series revealed this
data to take a structure such that p=2, d=l

,

and q=o. As such we can call this an ARI(2,1)
model or an autoregressive integrated model

of order 2,1. None of the partial autocor-
relation coefficients of this time series at

any degree of differencing had either an
exponential or a damped sine wave pattern
thus eliminating the moving average compo-
nent of time series from consideration. In

examining the autocoreelation coefficients
after a first differencing had been taken, a

damped sine wave pattern could be discerned.
This pattern in the autocorrelation coeffi-
cients tells us that the data is autoregres-
sive of order 2. Taken with the need to

difference the data once to achieve this

pattern we can conclude that we have a time
series of the structure ARlC2,l). As could
be expected, the other components of the
system that were directly related to the
central processing unit also took on an

ARIC2,1) model structure. These components
were the problem program state and idle-stop.

For channel 1 , a DASD channel , the auto-
correlation coefficients of the original
series, before taking a first difference,
were not significantly different from zero

after the first lag. These coefficients, how-
ever, exhibited a damped sine wave pattern
after both a first and second difference was

taken which suggests a model that could have

at least an ARI(2,1) structure.

An examination of the partial autocor-
relation coefficients after both a first and

a second differencing revealed that they both
declined in a smooth exponential manner. As

such we have a moving average component in

this time series with the total model taking
the form of either ARIMA(2,2,1) or ARIMA(2,1,
1). For the sake of parsimony the second
model structure was used.

For channel 2, also a DASD channel, an

examination of the autocorrelation coeffi-
cients revealed that regardless of the degree

of differencing they did not follow any type
of set pattern. As such it was assumed that

this time series did not have an autoregres-
sive component to it. An examination of the

partial autocorrelation coefficients revealed
that after a second differncing the coeffi-
cients declined in an exponential manner.
As such this time series was assumed to take
the structure of a first order moving average

model with two degrees of differencing or
simply IMA(2,1). All of the other DASD and
mass storage channels produced similar auto-
correlation and partial autocorrelation
coefficients and as such were all classified
as IMA(2,1) type models.

For channel 5, a tape channel, the par-
tial autocorrelation coefficients exhibited
no discernable pattern thus eliminating the
moving average component of the model from
consideration. The autocorrelation coeffi-
cients of the original time series exhibited
a damped sine wave pattern which made this
time series a second order autoregressive
time series with no degrees of differencing
or AR(2). Channel B, the other tape channel,
also took on a AR{2) model structure.

A summary of the different model struc-
tures can be found in Table III. It is

interesting to note the commonality of model

structure taken on by the different system
components. All of those components that had

anything to do with the central processing
unit took on a common AR(2,1) structure while
all of the DASD and MSS channels took on an

IMA(2,1) structure with the exception of
channel 1. This could be due to the fact
that channel 1 has the system residence packs
on it which would conform to very different
performance characteristics when compared to

the average DASD channel. Both tape channels
took an AR{2) model structure.

4.2 Time Series Estimation

Having identified the structured form of
the time series to be forecasted, the next
step in this process is to develop the dif-

ference equations for each of the four dif-
ferent types of time series that were identi-
fied in the previous step. Once the appropri-
ate difference equation has been determined
for each of the time series in question, the

parameters of each difference equation can

be estimated.

The four difference equations that were
used for forecasting the input values for

the vector of our general model are derived
from the functional structural forms that have

already been identified. These four equations
are:

For the AR(2) model

:

Z = 0iZt-l"02^2-t^^

For the ARI(2,1) model

:

(25)

Z^=(1) Z^_i Z^_2+(1) ^t-2-''2^-3^^

(26)

225

TIME SERIES

TABLE III

BOX-JENKINS TIME SERIES SUMMARY

NATURE OF THE SERIES MODEL STRUCTURE

1. CPU Busy
2. Problem Program State
3. Idle-Stop

4. Channel 1

5. Channels 2-4
Channels 7 - A

6. Channel 5

Channel B

Second Order Autoregressive
Integrated with 1 degree of
differencing

ARI(2,1)

ARIMA(2,1 ,1)Second Order Autoregressive
Integrated First Order Moving
Average with 1 degree of differencing

First Order Integrated Moving IMA(2,1)
Average with 2 degrees of differencing

Second Order Autoregressive
with 0 degrees of differencing

AR(2)

TABLE IV

Parameter Estimates

Equation Model Form "l ^1

1 - CPU Busy ARU2,1) .41926 39292 NA

2 - Problem Program State ARI(2,1) .45068 .44883 NA

3 - Idl e-Stop ARI(2,1) .45091 45946 NA

4 - Channel 1 ARIMA(2,1 ,1) .50073 .29656 .29915

5 - Channel 2 IMA(2,1) NA NA 1 .05

6 - Channel 3 IMA(2,1) NA NA 1 .05

7 - Channel 4 IMA(2,1) NA NA 1 .05

8 - Channel 5 AR(2) .99999 7 45E-9 NA

9 - Channel 7 IMA(2,1) NA NA 1 .05

10 - Channel 8 IMA(2,1) NA NA 1 .05

n - Channel 9 IMA(2,1) NA NA 1 .05

12 - Channel A IMA(2,1) NA NA 1 .05

13 - Channel B AR(2) .99999 6 .49E-7 NA

NA = Not Appl icable

226

For the IMA{2,1) model

For the ARIMA(2,1 ,1) model

:

(27)

(28)

V^l^l'l^^t-rl'lV2-^^l"«'2)V2-''22t-3^V9lAt-l

Given these difference equation forms
the next step in the model building process
is to estimate the 0 and 0 parameters of the
models in question. This part of the model
building process was accomplished through a

two step approach that used a Nelder-Mead
function minimization process to develop
Initial estimates and then a Marquardt non-
linear least squares algorithm to develop the
final estimates. For the IMA(2,1) models
that had only one parameter, the Nelder-Mead
process produced estimates that were more
than adequate for our purposes. A summary
of the parameter estimates can be found in

Table IV.

4.3 Time Series Forecast

Having both identified the proper model

form for each of the thirteen system vectors
the last step in the time series analysis
portion of the model building process is to

develop a point forecast for each system
vector. The point in time that was selected
as the focus of this forecast was one year

I

from the point in time when the empirical
data came to an end or roughly speaking

j

January 1981

.

I

In making this type of time series fore-

1
cast the most important step is selecting an
appropriate starting point or "seed" value
from which to begin the analysis. If the

j

time series in question are stationary and
: have a fixed mean then the mean value of the
time series is the appropriate starting value,

j

Unfortunately for our purpose none of the
'time series that we are manipulating are
I stationary and as such the appropriate
'starting values must be derived.

For our purposes these starting values
were derived using a simple two variable
least squares linear regression. The output
from these regressions are available from the
author. In each of the regression plots the
Y axis represent the dependent value of one
lof the thirteen system components that are
[under consideration while in every case the
jX axis represents time. The dotted line on
both sides of the regression line represents
a 95% confidence interval. The extremely low
value of the R statistics for all but one of

the regressions is an indication as to why
the method was used only to establish a

starting point for our forecast and not to

make the full forecast Itself. Using this
method the starting values that were used for
the time series analysis for each of the
system components is as follows:

Starti ng

Equation Description Value

1 CPU Busy 48 33

C. Problem Program State 23 80
3 Idle-Stop 27 72

4 Channel 1 Busy - DASD 14 33

5 Channel 2 Busy - DASD 15 36

6 Channel 3 Busy - MSS 9 99

7 Channel 4 Busy - DASD 12 99
8 Channel 5 Busy - Tape 30 21

9 Channel 7 Busy - DASD 13 59

10 Channel 8 Busy - DASD 9 11

11 Channel 9 Busy - MSS 10 64

12 Channel A Busy - DASD 12 57

13 Channel B Busy - Tape 36 39

The final step of the forecasting process
for the time series analysis portion of the
model is to place the starting values for
each of the system components into their
appropriate equations and then to plot out a

forecast for the values in question for an

entire year. The forecasted values that were
used derived from this process and used in

the final simultaneous equation solution pro-
cess are as follows:

Starting
uation Description Value

1 CPU Busy 74 23

2 Problem Program State 36 14

3 Idl e-Stop 33 63

4 Channel 1 Busy - DASD 21 73

5 Channel 2 Busy - DASD 26 22

6 Channel 3 Busy - MSS 13 61

7 Channel 4 Busy - DASD 16 61

8 Channel 5 Busy - Tape 30 10

9 Channel 7 Busy - DASD 16 48

10 Channel 8 Busy - DASD 13 82

11 Channel 9 Busy - MSS 17 88

12 Channel A Busy - DASD 16 19

13 Channel B Busy - Tape 36 25

4.4 Simultaneous Equations

The final step of this entire process

was to bring together both the Box-Jenkins
estimates and the linear regression estimates

into a system of simultaneous equations. The

equation that was used to accomplish this

step in matrix form was:

Y = B X

227

The level of utilization for the differ-

ent system components that was derived from

the solution of this equation were as follows:

Component ^Utilization

1)
' 1 U r U D U by 76 1 5

?)
1-

1

riUDI trill riUyiuIll ^LdLc 1 45 69

81 91

"<) Uridililt: 1 1
?1 74

J V

6) Channel 3 26 08

7) Channel 4 33 26

8) Channel 5 36 63

9) Channel 7 31 06

10) Channel 8 50 02

11) Channel 9 26 64

12) Channel A 47 53

13) Channel B 14 41

While the Channel and CPU busy forecasted
estimates have the appearance of reasonable-
ness both Problem Program State and Idle-Stop

do not. This anomaly could be due to any

number of factors and more will be said about
it in the concluding remarks.

5.0 Concluding Observations

In a very literal sense the output of
this model represents point estimates of
component resource utilization for Mountain
Bell's Colorado/Wyoming processing center's
3033 JES3 global processor for January 1981

based on the assumption that no major hard-

ware or software changes are made before that
data. Should such changes be made, however,
the real value of the model will come into

play as such changes can be reflected in

changes in the value of the 1 vector. These
new 1 vector values can then be used to once
again solve the system of simultaneous equa-
tions to ascertain the impact of the change
in one of the system components on the entire
system. As such the value of the model is

three fold. First, the model does have the

capability of forecasting future computer
resource utilization. Secondly, the model
also has the capability of pointing out
current as well as potential system bottle-
necks. Finally, the model has the ability
to answer 'what if questions about proposed
system changes.

In using this model for capacity planning
at Mountain Bell there are a number of direc-
tions that will be taken in the future. The
first such step must be to refine the current
model . The case study that has been presented
in this paper illustrates the potential pit-
falls that are involved in trying to develop
a dynamic system model. The results of the

simultaneous equation system points to two
areas in particular, problem program state

and idle-stop, where additional work needs

to be done to refine the technical coeffi-
cients that were developed in the multiple
regression portion of the model building
process. The final results of these two

system components should not be viewed as

proof of the inappropriateness or weakness
of the methodology but rather as opportunities
where further work should produce more useable

results. The inappropriateness of these
values indicates a need to reexamine the

variables that were used to forecast these

values in the model

.

Another task that needs to be addressed
with respect to the future use of this metho-
dology at Mountain Bell is the task of model

verification. Before this model can be used

with confidence for the purposes that it was

designed, it must be tested using historical

data to ascertain its useability and its

accuracy.

Once the model variables have been

stabilized, and the model results verified,

the last task that must be accomplished
before this methodology can be broadly
applied is that the software that was used

to develop these results must be rationalized,
consolidated and simplified so as to make it

possible for the average technician, who is

unfamiliar with the statistical techniques
involved, to produce a forecast.

5.1 Acknowledgements

It would have been impossible for me to

have completed this paper without the generous
contribution of time and effort by all of the

members of the Hardware Forecasting and Per-

formance Evaluation Group at Mountain Bell.

I would like to give a very special thanks to

Ms. Esther Martin for her secretarial skills

and unlimited patience. The errors that

remain in this document despite these indivi-

dual 's efforts remain my sole responsibility.

References

[1] Bhattacharya , Gouri and Johnson, Richard,

Statistical Concepts and Methods , John

Wiley & Sons, Inc. New York, c. 1976,

p. 396.

[2] Johnston, J., Econometric Methods , McGraw
Hill Book Company, c. 1972, pp. 246-249

[3] Box, George, and Jenkins, Gwelyn, Time

Series Analysis , Holden-Day, c. 1970,

pp. 88-89.

[4] Box and Jenkins, pp. 173-177

[5] Box and Jenkins, pp. 64-65,

228

£6] Box and Jenkins, pp. 169-176

17] Nelder, J. A., and Mead, R.A., "A Simplex
Method for Function Minimization", The
Compten Journal, 7, 1965, pp. 308-313.

[8] Marquardt, D.W., "An Algorithm for Least
Squares Estimation of Non-linear
Parameters", Journal of the Society for
Industrial Applied Mathematics,
June 1963, pp. 431-441.

[9J Box and Jenkins, pp. 129-132.

[10] Gajarati , Damodar, Basic Econometrics ,

Basic Books, New York, c. 1977,

pp. 360-363.

[11] Johnston, pp. 346-350.

229

Measuring System Performance

231

)

i

i

1

I*

1

A PsrformanGe Evaluation Study of UNIX^

Luis Felipe Cabrera^

Computer Science Division
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley CA 94720.

Different performance aspects of computer systems on which the time-
sharing operating system UNIX runs are presented.

A comparison of the performance of three installations is made and
the method discussed. The effects of distinct upgrading changes made in
the systems, namely, the addition of a cache memory, of a disk drive and
of main memory are also reported.

Key words: Comparison; performance of computer systems; UNIX; upgrading
changes

.

1. Introduction

j

Since its first release by Bell Laborato-
I ries in 1974, the timesharing operating system
UNIX [l] has run on a wide variety of main-

[il frames. Primary among them is the PDP-11
M family manufactured by Digital Equipment
jj Corporation. Moreover, UNIX also runs on

J Digital's recently released VAX 11/780, even
though its hardware presents drastic differ-
ences with the PDP-11 family, and has also

!;
been ported to the INTERDATA 7/32 and to the
iUNIVAC 1100 series machines.

Ij

It has then become of interest to measure

i

the effect that the underlying hardware has on

I
the performance of the various computer sys-
tems on which UNIX runs. In what follows a

study of three computer systems is presented.
Each was deliberately chosen to be substan-

!
tially different from the other two.

" UNIX is a trademark of Bell Laboratories

jl ^This research was supported in part by
Ithe National Science Foundation under grants
||MCS78-24618 and MCS78-07291, by a research
.grant of the Pontificia Universidad Catolica
ide Chile, and by the Italian National Research
iCounsil under grant CNR 78.02548.07

When we compared systems, we tried to

assess the effect on performance of leaps in
technology and design. On the other hand,
when we analyzed an upgrading change, we
observed the effect this new hardware com-
ponent had on the performance of the given
system. Moreover, the upgrading changes made
to each of the systems provide good examples
of what may be achieved when such a change is

implemented in an installation.

All the systems studied operate in the

Electrical Engineering and Computer Sciences

Department of the University of California
at Berkeley. Measurements were taken over a

span of five months (April through August

1979) beginning by the third week of the

Spring Quarter of 1979.

The rest of the paper is divided as

follows. Section 2 presents the basic design
decisions about the experiment as well as the

measurement techniques and the reduction of

the data. In section 3 we present and

analyze diagrams which compare the performan-

ce of the systems. Section 4 shows the re-

sults of the upgrading changes and section 5

contains our conclusions.

233

2. Measuring UNIX Performance

2 . 1 Preliminaries

When comparing the performance of differ-
ent installations, many problems are resolved
if the same operating system runs in all of

them. This is because the identical user in-
terface makes it posible to define a high-
level language benchmark and use it unmodified
in each of the systems.

When this is the case, funotionat equiv-
alence of the benchmark is immediately ob-
tained [4]. Whether this equivalence corre-
sponds or not to a resource consumption equiv-
alence will depend on the actual implementation
of the operating system. Determining whether
or not it yields a responoe time equivalence
is the main purpose of our comparison study.

Choosing response time as the main ob-
served performance index of our study is jus-
tified by our belief that in any timesharing
system, from the user's point of view, what
counts most is the responsiveness of the sys-
tem to user supplied tasks. Nevertheless,
using standard UNIX instrumentation, we have
also monitored system time (the cpu time spent
in the operating system) and user time (the

cpu time spent executing the command) for each
of our tasks. This has proven very helpful
in analyzing possible causes for effects
noticed while studying the performance of each
system.

Characterizing the work load is a central
problem in any benchmarking experiment where
a comparison between systems is made. The
question about the conditions under which the

experiment should be performed has been given
a number of different answers. Perhaps the

best way to answer it is to design an ex-
periment where a benchmark is executed in each
system on a stand alone basis and where com-
plete control of the work load is achieved by
loading the system with some kind of internal
or external driver. The main advantages of

this method are total reproducibility and
absolute control of all the activities in the

system.

The main difficulties it presents are
related with the availability of tools to

drive the system and with the design of the

work load that those tools will implement.
The (artificial) work load under which the

system is to be studied must be such that
results obtained from its usage should yield
information about the system's performance
under its natural work load.

Lack of such tools at the time when we

had to make this , decision led us to the less
sophisticated approach of monitoring the sys-
tems periodically under their natural work
load with the aid of a shell script^. Then,
in order to analyze our results we had to
find satisfactory characterizations of load
with respect to which the performance Indices
corresponding to a given task would be meas-
ured. We decided to use single variable char-
acterizations of load for this purpose.

We have characterized work load by taking!
two different yet related viewpoints. One is |

an outside viewpoint (how much work is being
done on the system) and the other is an inside
viewpoint (how much work is being demanded
from the system)

.

ii

1:1

For comparisons as well as for analyzing i

upgrading changes, the first viewpoint yields '

two rather coarse but very natural character-
izations of load: the number of users
(logged in while our benchmark begins to run)
and the number of active users (those which
are executing some task when our benchmark
begins to run) . For comparing installations
we found that the most interesting character- «

ization based on the second viewpoint was
that based on the number of real processes.
This is the number of processes which are
likely to run while one of the tasks in our
benchmark will be running. Its precise
definition is the following: a process in the «

process table is a real process if it is not
a login shell or a sleeping shell'*. It is

clearly less coarse than the above two char-
acterizations .

II

II

:ii

ms.

n

The three systems we monitored had the

C shell [2] running in addition to the ordi-
nary shell. To make the experiment portable
in our environment, we wrote a script for

the C shell which was run on the background
(with the same priority as any user process)
in each of the systems. Its text is repro-
duced in [8] together with the text of all

programs and files used by it. Documentation

^In UNIX the shell is a command language
interpreter through which the user inputs its

tasks to the system [l]. Moreover it is also

a programming language [2] thus shell programs

{shell scripts) can be written with it.

''A login shell is a process waiting for

input from a terminal in which no user is

logged in. In UNIX, whenever a user inputs

a command, the shell forks spawning a child
shell which executes the command. While the

child shell executes the command, and unless

the command has been issued followed by an &,

the parent shell sleeps till the completion
of the command. We call sleeping shells
this last type of process.

ft

III

ii

234

!
regarding the usage of the script and about
changes needed to convert the script into one
for the standard UNIX shell can be found in

[8].

2.2 The Script Driver

Our strategy for monitoring each system's
responsiveness was to run periodically a set
of predefined benchmarcks. This was achieved

,j
by using a shell script which contained
these tasks together with commands which
gathered statistics about the work load and

. the time it took the tasks to complete. The
script was run every other week during the
normal operations of the systems. The script,
after cycling through its instructions once,

I
would go to sleep for twenty minutes and then

I wake up to initiate the cycle again.

j
This data gathering method can be cate-

gorized as a time-sampling tool [3] and in
fact is eery similar to Karush's[7] terminal
probe method. By using it we measure the

work load of the system as well as the depend-

ij
ency of our performance indices on the under-

I

lying equipment. Thus we are actually eva-
luating the installation.

Although running our script affects the
load of the system, and thus its responsive-
ness, it was felt that this was irrelevant
for a comparison study because all systems
were going to be presented with the same
script. In fact the main purpose of the
comparison experiment is precisely to observe
how each system reacts to this stimulus.

jj
Our commitment to use standard UNIX fea-

tures, for portability reasons as well as for
assuring the functional equivalence of the
benchmark, made us decide upon the usage of

the time command [5] as the measurement tool
for our tasks. The time command returns,
upon completion of the command with which it
is called, three measurements: response time
(the elapsed time during the command), system
time and user time. These last two are accu-
'xate to one tenth of a second while the first
Is accurate to one second. The time command

'truncates, does not round off.

This low resolution of time together with
our desire that no individual measurement be
off by more than 10% led us to consider tasks
which would never take less than five seconds
(to complete. On the other hand we could not
come up with a set of tasks that would over-
load the system every time they were run, if

«e were to run them periodically for an ex-
tended period of time. Our script was desig-
led as a compromise between these requir-
ements.

Four tasks were timed at each run: a C

compilation, the execution of a CPU-bound
job, the retrieval of the manual page of the
on-line copy of the UNIX Programmer's manual,
and a mix, which included the above three
plus some I/O bound tasks and two system
commands; the mix was called "Script", even
though it did not correspond to the actual
script we were running.

2.3 The Tasks Chosen

Our desire was to measure a set of tasks
that would be representative of the user's
tasks and that would stress distinct aspects
of a configuration. The lack of a Pascal
compiler or interpreter for the VAX at the
time made us use the language C [6]. Two of
our tasks were then the compilation of a
short CPU-bound program and its execution.
Our CPU-bound program executes its inner
sequence of instructions 100,000 times. In
all performs 1,200,000 integer arithmetic
operations plus those needed for the for
loops. It was decided against using floating
point arithmetic because one of the measured
systems, the 11/40, does it in software.
This precluded any meaningful hardware-ori-
ented comparison.

As for our third task, rather than having
a strictly I/O bound task we felt it would
be more interesting to choose a task which
would involve more features than just the
speed of the disks and the efficiency of the

I/O subsystem. Thus, the command man man,
which retrieves the entry for the manual page
out of the on-line copy of the UNIX Program-
er's manual, was chosen, because, as the on-
line copy is kept in compact form on disk
to save space, this copy is retrieved using
the formatting program nroff, a utility
program widely used in text processing. To

avoid problems when running the script, the

output of man man was sent to /dev/null
instead of sending it to a real terminal.
This has the effect of discarding the already
formatted text of the retrieved page.

The last task timed is what we called
Script. For technical reasons we used the

date command to determine total elapsed time.

The only drawback is that it does not yield
system time nor user time for this task.

Script, besides including the above three

tasks, also includes six short l/O-bound
tasks, a couple of date commands and two

commands which gather extensive data about

the system. Script is thus a fairly bal-

anced task and can be considered as an in-

dicator of throughput.

235

2.4 The Systems Measured

Our main motivation when choosing which
systems to monitor was diversity. Our choices
were the following:

(1) A PDP 11/40 with 200K bytes of main
memory, one DIVA disk controller with
three DIVA disk drives which have 50M
byte disk packs. This system has 23

ports and no floating point arith-
metic unit.

(2) A PDP 11/70 with 1.3M bytes of main
memory, a 2K byte cache memory, one
DIVA disk controller with four DIVA
disk drives which have 50M byte disk
packs and an RS04 fixed head disk
used as swapping device. This system
has 81 ports.

(3) A VAX 11/780 with 512K bytes of main
memory, an 8K byte cache memory, one
Digital disk controller with one
RP06 disk drive with 177M byte disk
packs. This system had 16 ports.

Throughout the rest of this paper we shall
refer to these systems as the 11/40, the 11/70
and the VAX respectively.

The configurations described above are

those which each system had during most of

our data gathering period.

The work loads of the three systems are
as diverse from each other as their under-
lying equipment. The 11/40 is mostly used
for administrative matters. The 11/70 is

mostly used by undergraduate students in
coursework-related activities. The VAX is

primarily used by advanced students in re-
search related tasks.

defined as the square root of the ratio
between the variance and the cardinality of
the sample. For response time we found the
standard error to be consistently large and
thus ploted 90th-percentile curves. All the

^

diagrams mentioned above can be found in [S],

To prevent outliers from appearing in
our curves we chose the minimun size of sam-
ples by the iterative method of plotting the
curves with samples of increasing size until
outliers would not appear. Whenever we did
not have enough points in a sample we clus-
tered samples corresponding to consecutive
values of the variable. From this larger
sample the 90th-percentile was chosen. The
x-coordinate used for such a point was the
average of the x-coordinates corresponding
to the clustered samples. We used samples
of size sixty.

We believe this approach to go a long
j

way in solving the conflicting problems of

insufficient number of data-points, presence
of outliers in the samples, large variance
of some samples and finite amount of resources

Table 1 displays the amount of data
points gathered. Only for the 11/70 we felt

had an Insufficient amount and this was due

to the large number of ports this installa-
tion has. Taking our experience as a model,

one should try to obtain fifty measurements
per value of the variable characterizing
load to avoid clustering samples.

Table 1. Number of Sample Points per
System.

Given this diversity of the natural work
loads, the problem of work load characteriza-
tion for the comparison of the responsiveness
of the different systems becomes very impor-
tant as well as more difficult. Our char-
acterizations described in 2.1 proved to be
reasonably adequate. Of course, the analysis
of our results was inevitably influenced by
considerations about the work load of the

individual systems.

SYSTEM Number of
Sample Points

11/40

11/70

VAX

536

1007

1368

3. Comparison of the Installations

2.5 Reducing the Data

The data points provided periodically
by our script were gathered in appropiate
files and latter processed using time stamps.

We were thus able to plot mean user-time,
mean system-time and mean response-time versus
Users, Active Users, Processes and Real Pro-
cesses for each task in each system together
with the standard error of the corresponding
sample. The standard error of a sample is

Rating different installations with our

method presents several difficulties. They
all emanate from the diversity of the work
loads and the lack of satisfactory charac-
terizations for them.

Those characterizations based on an ex-

ternal view of the system fail to be accurate
because they are dependent on too many fac-
tors. Clearly, a student doing research
submits jobs which are of a different caliber

236

from those submitted by a user editing a file.
Thus we believe that our comparison curves
based on this view penalize the VAX because
of the quality of its users (see 2.4). Like-
wise, our characterizations of load based on
an internal viewpoint fails to distinguish
between types of jobs.

For comparing response time, we found
that our characterization of load in terms of
real processes provided us the best overall
view as to how the systems performed relative
to each other. Moreover, it also seems to be
the best single indicator of the true level
of activity of each system.

Finally, the disparity of configurations

j

is also an important degrading factor for the

I

VAX. This system was supporting all of its

j

I/O activity, including swapping, in one arm.

In contrast the 11/70, which swaps on drum,
I has several other spindles to handle the rest
of the I/O.

We have chosen to present here only two
• of the four tasks monitored because they are

I

representative of the behavior observed. The
other results may be found in [8].

3.1 CPU-bound Job

I

As mentioned in section 2.3 this task
I
was the execution of the code generated by a

I

very simple C program which had two nested
|! for loops. Given its small size (the C code
has 27 lines, including coiranents), the pro-

jlbabllity of being swapped out from core while
on the system is minimal. Thus, assuming

i:Same scheduling in all three systems, its
processing time only depends on the lengths
of the CPU and memory cycles, the effect of
the load in terms of I/O interrupts and the

j

size of the ready queue.

'I

In figure 1 we see that the VAX ranks
uniformly first while the 11/40 ranks third.
This same ranking was observed under our ex-

iiternal characterizations of load, but there
|the slopes of the curves of the 11/70 and the

I^VAX were almost identical. This is the task
:where difference between the three systems
is most visible.

I We could observe the amount of user time
lithe CPU-bound job took in each system. At
iithe five user level the 11/40 took on the
average 21.0 seconds, the 11/70 8.5 seconds
jand the VAX 5.66 seconds. At the fourteen
'user level the 11/70 took 8.61 seconds while
'the VAX took 5.81 seconds. We feel that user
time for this task is a very good indicator
of the speed of computation of the machines.
The VAX does show to be a substantially faster

0 10 20 90 40 SO 6

NUMBER OF flEflL PROCESSES

Figure 1. Response Time of CPU-bound
job versus Real Processes.

machine than the other two.

Given that no I/O is done, we expected
to observe the fairly linear behavior we
obtained. This was true for all of our char-
acterizations of load. Response time for
the 11/40 consistently showed to have a larger
rate of growth than for the other two systems.

3.2 The Script

Figure 4 contrasts with figures 2 and 3

in that it shows the VAX no longer being
slower than the 11/70 throughout the whole
range of load. Script includes several tasks

which make extensive use of the I/O subsystem,

and so the inferior VAX I/O subsystem must
be a heavy degrading factor. Figure 4 also

suggests that with a better configuration the

VAX might outperform the 11/70 at all loads.

One would clearly need to add more main
memory to increase the threshold of load that

saturates the system and also disk drives

to increase parallelism in I/O service.

The results observed for this task are

similar to those obtained for the C compila-

tion and the command man man. The only

difference with the pattern observed here is

that in the latter task, when ranked using

our external characterizations of load, the

VAX ranks third, while when using Real Pro-

cesses it ranks second. A possible reason

237

0 7 lU 21 26 3S 112

NUMBER OF USERS

Figure 2. Response time of Script
versus Number of Users.

0 8 12 18 2U 30

NUMBER OF ftCTlVE USERS

Figure 3. Response time of Script
versus Number of Active Users.

0 10 20 30 HO so

NUMBER OF REAL PROCESSES

Figure 4. Response time of Script
versus Number of Real Processes.

for this was given at the beginning of sec-
tion 3.

4. Effects of Upgrading Changes

All diagrams presented in this section
are 90th-percentile curves, and the size of

samples has been chosen, as before, so as to

exclude outliers. We have analyzed these
changes using the characterization of load
which is best understood: the number of

(logged in) users.

4.1 Adding a Cache Memory to the 11/40

Perhaps the most spectacular use of a

histogram of all measurements taken on a

given system for a given task is that of

witness to a basic configuration change. The

phenomenon of multiple peaks in performance
indices for a given task such as user and

system time is almost certainly associated
with a basic configuration change. In effect,

the addition of the cache memory to the 11/40

was responsible for shifting to the left the

peaks in each task's histogram.

Most remarkable is the case of the CPU-
bound job, where the peak in user time went
down from 23.0 seconds to 19.6 seconds, the

mean user time decreased from 23.13 seconds
to 19.71 seconds, and the standard deviation
of the user time sample decreased from 0.25

238

to 0.20. The system time also improved dra-
matically for this task: its mean decreased
from 0.68 seconds to 0.33 seconds, and its
standard deviation decreased from 0.88 to

0.36; figure 5 depicts the shifting of peaks
in the case of user time for the CPU-bound
job.

19.1 20.0 20.9 21. e 22.7 23.6 24.:

USER TIHE CSEC3

Figure 5. Histogram of User Time for

the CPU-bound Task in the 11/40.

j

Figure 6 shows the remarkable effect of

I the change on the CPU-bound task, while in

ifigure 7 we may appreciate the very positive
leffect of the change on the Script task. The
^variation observed in figure 7 is representa-

tive of what happened with each of the other
two tasks. The curves were obtained using
239 measurements without cache memory and 303
measurements with the cache memory. A minimun
sample size of 60 was used for this plot.

Because of figure 7 it can certainly be
stated that both responsiveness and through-
put are enhanced when a cache memory is added.
It is only a matter of cost-benefit analysis
to determine its size and type.

4.2 Adding Main Memory to the 11/70

It is unfortunate that we only had 175

measurements before this change was made and
that they were obtained at the beginning of
our data gathering period. In our university
environment, the systems are not "pushed" by
the users as hard as they are latter in the
quarter, when the users have become more
sophisticated. Thus, for this change, our
curves actually show the effect of two
sources of variation: addition of IM byte of

main memory and increase of the load. The
830 measurements we had after the new memory
was installed would have allowed us to apply
statistical techniques, such as the analysis
of variance, that would have provided us with
the relative weighs of the two sources of

variation. However, this kind of analysis
was precluded by the minimal amount of samples
we could gather before the addition of memory.

Thus figure 8 must be interpreted care-
fully. In it the 0.3M byte curve may be too

I NUMBER OF USERS

il

i!

Figure 6. Response Time of CPU-bound job versus Users.

i

1

(_>

UJ
lA
•J 229-

z
»—

... 18S-

O

147

J29-

109-

90 -

71

80 PEKHTILf— WITHOUT

» MITH COCHE

*t S

NUHBER OF USERS

Figure 7. Response Time of Script versus Number of Users in the 11/40

optimistic, given that the users were not
performing tasks as resource consumming as
those in the 1.3M byte curve. Nevertheless,
the response time is much lower in the 1 . 3M
byte configuration. It is also seen that the

saturation point of the system occurs at a

lower level of load with a smaller amount of
main memory.

The addition of main memory certainly
increases the amount of multiprogramming the
system handles before saturation, and this
has a very positive effect on the response
time of trivial tasks. Unfortunately, this

effect is not measured by our script and so

we can not report on it directly, although
it influences the response time of the Script
task.

u
UJ
in

496-

... 388-

22»-

172-

11»-

6«

to fEKEMTlLE CUMVES— 0.31 STTCS Sr MIM HCMOIIT— 1. 3* BTTE5 or MIN NENOAT

1 1 1 1 1 1

19 22 25 26 31 34 37 HO

NUHBER OF USERS

Figure 8. Response Time of Script versus Number of Users in the 11/70

240

4.3 Adding a Second Disk Drive to the VAX the responsiveness on the system, as seen in

figure 10, but for one type of task it proved
The addition of a CDC 9762 disk drive with to be disadvantageous,

a CDC 9400 controller' and 80M byte disk packs

to the VAX configuration was a mixed blessing. CPU-bound jobs took longer to finish with

It proved to yield an overall improvement in the two disk configuration (see figure 9).

27 -

5S 21 -

18 -

15 -

12 -

X
M PCKEHTILE CURVES— aC DIM ORKC

—~- TM 0I» WItES

"I
1 1 1 1 1 1 1 r1231456789 -|

i
1 1

10 U 12 • 13 It

NUHBEA OF USERS

Figure 9. Response Time of CPU-bound Job versus Number of Users in the VAX

When analyzing the sample of user time for
this task for the one-disk configuration (934

measurements) and the two-disk configuration
(433 measurements), we see that mean user
time remained essentially unaltered; 5.66
seconds with one disk and 5.69 seconds with
two disks. Moreover the standard deviation
(0.21) of the user time sample did not change.
However, mean system time increased from 0.29
seconds in the one-disk configuration to 0.41
seconds in the two-disk configuration.

We believe this increase in system time
to be directly related to the cause of the

longer response time observed: it probably is

an indication that now jobs get interrupted
more often due to completed I/O requests and
thus sent to wait queues more times than
before

.

As was expected, all tasks with I/O ac-
tivity which made advantageous use of the new
file configuration run quite faster [8] . The
file system was reconfigured in such a way
that temporary files, like those created by
compilers, editors, text formatters, and
several other utility programs were placed
on the disk not containing user files. It

could also be observed that the rate of growth
of response time decreased for tasks of this

type as well as for the Script task. Thus,

the two-disk configuration is best suited for
supporting more users with less risk of system
saturation.

5. Conclusion

The increasing number of different systems
on which the same timesharing operating system,
UNIX, runs makes it possible to study the
influence of the equipment on a system's
global performance. In this paper we have
studied three different systems, compared
their performance and analyzed the effects
of different upgrading changes.

Lack of portable tools that would enable
us to load the systems in a controlled way
led us to design an experiment which probed
each system periodically while the natural
work load was being executed. This method
has many drawbacks when comparing installa-
tions, but the consistency of our curves
shows that a study can be based on it. We
also believe the method not to be too expen-
sive in terms of resources used: in our case,

it requires about 3% of the total CPU cycles.
This amount does depend on the system.
Moreover a great advantage of this method is
its total portability. New systems can
easily be added to our study.

Our single-variable characterizations of

load forces one to observe several work load
variables simultaneously in order to draw
solid conclusions. This is specially cri-
tical when the natural work load is non-
stationary .

No one system presented itself as a
clear best although it is obvious that a
configuration having a PDF 11/40 is outper-
formed by the other two. Moreover, certain
additions, such as a cache memory, prove to

be almost indispensable.

Having observed that the change from the
PDP 11/40's to PDP 11/70's was very benefi-
cial (faster CPU, better responsiveness,
larger address space), the question was
whether the same conclusion could be reached
for the change from the PDP 11/70 to the VAX
11/780. The main obstacle against drawing
strong conclusions from our study was the
marked difference in each system's configu-
ration. Unfortunately, the VAX 11/780 did
not have as much main memory as the PDP 11/70

1

and it only has one disk. Moreover, the size!
of UNIX had grown in the VAX implementation,
thus leaving proportionally less core space
for user processes.

The higher speed of the VAX CPU was
confirmed by our observations. Better yet,

when a second disk was added to the VAX con-
figuration, it performed tasks such as C

compilations faster than before, ranking now
very close to the 11/70. The performance
that such tasks now achieved makes us believe
that each system is at least as good as the

other. At this point it has to be enphasized'

that the C compiler for the VAX is a fairly
portable one while the one the PDP 11/70 has
was essentially custom made. This is of

j

course an advantage for the VAX (but proba-
bly a performance disadvantage)

.

6. Acknowledgements
'

I am very grateful for the amount of

help I received from my professors, collea-
ges and staff of the Department while working
on this project. It exceeded all my expec-
tations. In particular I would like to thank

Domenico Ferrari for encouraging me to work
in this area and for his guidance, Robert
Fabry for introducing me to his earlier
work at Berkeley, and the PROGRES group for

their helpful remarks.
^

''f

7. References
;|

[l] Ritchie, D.M. and Thompson, K. , "The

UNIX Timesharing System". CACM 17 (7)

(July 1974), pp. 365-375.

242

[2] Joy, William, "An Introduction to the C

Shell " Computer Science Division, Depart-
ment of EECS, University of California,
Berkeley. December 1978.

[3] Ferrari, Domenico, "Computer Systems
Performance Evaluation", Prentice-Hall
1978.

[4] Ferrari, Domenico, "Characterizing a

Workload for the Comparison of Interactive
Systems", Proceedings 1979 NCC , pp. 789-

796.

[5] UNIX Programmer's Manual
Bell Telephone Laboratories Incorporated,
Holmdel, New Jersey. 7th Edition, De-
cember 1978.

[6] Kernigan, Brian and Ritchie, Dennis, "The

C programming Language ", Prentice-Hall
Software Series, 1977.

[7] Karush, A.D., "The Benchmarking Method
Applied to Time-Sharing Systems". Rept.
SP-3347, System's Development Corporation .

Santa Monica, CA. August 1969.

[8] Cabrera, Luis F., "Benchmarking UNIX: A
Comparative Study", MS Project Report,
University of California, Berkeley, No-
vember 1979. The text is available as

the ERL Memorandum No UCB/ERL M79/77.

I/O Psrforniiei Measurement on CRAY-1 and CDC 7600 Computers

Ingrid Y. Bucher
Ann H. Hayes

Computer Science and Services Division
Los Alamos Scientific Laboratory

Los Alamos, NM 87544

Disk I/O transfer rates and overhead CPU times were measured as
functions of buffer size and number of logically independent I/O chan-
nels for several operating systems and 16 I/O routines on the Cray-1
and CDC 7600 computers. By parameterizing the codes for a variable
number of channels, buffer sizes, and words transmitted, the effect of
these variables is observed for buffered, nonbuffered, and random-
access I/O transmissions. To measure CPU-overlapped performance, I/O
was performed concurrently with a pretimed compute loop. Rates, sector
overhead, and CPU transmission speeds were calculated upon completion
of I/O. Effects of memory blocking due to vector operations were
observed. Methods and results are presented in this paper.

Key words: I/O performance; CPU transfer rates; overhead CPU;

compute-and-test loop.

1. Introduction

Due to the high computational speeds of

large scientific computers, I/O rates may be

the factor limiting execution speeds of cer-

tain application programs. It is desirable,

therefore, to

• provide users with criteria for the selec-

tion of I/O procedures most suitable for

their programs

;

• determine how well existing operating

systems and I/O routines approach the

maximum capabilities of the hardware; and

• learn where improvements might be possible.

For these reasons, a study was undertaken at

the Los Alamos Scientific Laboratory (LASL)

to investigate I/O performance on the Cray-1

and CDC 7600 computers.

Disk I/O rates, as well as the times

during which the CPU was unavailable for com-

puting while I/O was being performed, were

measured . The measurements were taken as

functions of buffer size and the number of

logically independent I/O channels used in

performing the operations. The tests were

executed on Cray-1 and CDC 7600 computers

at the following installations: LASL,

Lawrence Livermore Laboratory (LLL) , and

Cray Research Incorporated (CRI) . Sections

2 and 3 describe the methods of measurement

and analysis of the resulting data. In

Sec. 4, results obtained for various oper-

ating systems and I/O routines are discussed.

245

2 . Measurements

The following processes were measured

:

unformatted reading or writing from and to

disk; reading or writing with concurrent

computing; and concurrent reading, writing,

and computing.

The test programs measured two quanti-

ties as functions of buffer size B and the

number of logically independent I/O channels

N used to perform the I/O operations:

transfer rates R(B,N) in words per second

per channel, and overhead CPU times per

sector Tq^(B,N). The latter are defined

as the times when the CPU is unavailable

for computing while a sector (512 words)

of data is being transferred to or from

disk. Buffer sizes were multiples of

512 computer words, except for BUFFER IN/

BUFFER OUT operations for which program

buffers were multiples of 511 words. Four

logically independent channels were avail-

able at all Cray-1 systems at LASL and LLL.

The CDC 7600s were equipped with three

logically independent channels at LASL,

two at LLL

.

Each test program reads and/or writes

N one-million word files by repeatedly

filling (emptying) a program buffer of

preset length B. The process is repeated

for each buffer size. For several

routines, I/O can be performed either

sequentially or by choosing disk addresses

at random. Rates were measured for single

channels in two ways;

(1) The non-overlapped (or synchronous)

part of the test called for reading

(writing) a buffer and waiting for I/O

completion, then repeating this sequence

until the entire file was read (written)

.

(2) The overlapped (or asynchronous) part

executed a pretimed compute-and-test

loop while waiting for I/O completion.

The duration of the compute-and test loops

had to be short enough not to slow down I/O

operations. For several cases, overlapped

rates exceeded the non-overlapped rates

considerably, indicating that the system's

frequency of testing for I/O completion was

not high enough or that the time required

to return from the interrupt was too long.

The tests were run on dedicated system

time, with other users and system diagnos-

tics blocked out. Great care was exercised

to select timing routines that measured wall

clock time and that had high enough preci-

sion. Experience showed that this was a

non-trivial problem. Rates R(B,N) were

obtained by dividing the total number of

words transferred W (an integer multiple of

512 * B approximately equal to 10 N) by the

measured time T^ required for the transfer

and the number of channels N:

W(B,N)
R(B,N) =

T^(B,n) * N
(1)

Overhead CPU times T (B,N) were meas-
OH.

ured in the following way: After initiating

the transfer of 512 * B words on each of N

channels, a compute-and-test loop was started

that performed a series of multiplications

and then tested each channel for I/O comple-

tion. If I/O was complete on any channel,

it was reinitiated immediately before the

compute-and-test loop resumed. The process

was repeated until all files were trans-

ferred. The number of times the compute-

and-test loop was executed during the com-

plete file transfer N, was measured as
loop

well as the duration of one compute-and-test

loop t, . The overhead CPU time per
loop

transfer of 512 words is given by

T (B,N) - N, *t,
(u - loop loop

^OH^^'^-* " W(B,N)/512

246

In many cases, the numerator in Eq. 2

is a small difference of two large numbers,

i.e., the overhead times are small compared

to the transfer times of 512 words. For

these cases the resulting values of T are
OH

extremely sensitive to even small errors in

any one of the numerator terms, which there-

fore had to be measured with high precision.

The total transfer times T^(B,N) were of the

order of several seconds and could easily be

measured with high accuracy (better than

10 ^) by calls to the cycle counter or

microsecond clock. The integer loop count

N, is free of error. However, the meas-
loop

urement of the duration of the compute-and-

test loop
^2_oop

^^^"^^^ ranged from 20 ys to

j

1000 ys) required special attention. Three

calls to the timing routine were made to

!

accurately time and deduct the duration of

the timing call itself. All I/O status

j

tests were included in the timed loop, and

parameters were set in such a way that the

branches of the loop transferred to were the

same and that I/O status checking was done

in the same way as when I/O was busy. The

essential section of code that includes the

timing of the compute-and-test loop for each

number of channels and the timing of the

j
file transfer overlapped by the compute-and-

(test loop is given in Appendix A. Compute-

,
and-test loops were timed several times, and

occasional skewed values caused by system

disturbances were discarded. The remaining

I

values agreed to better than 1 ys. To assure

|,j

that no systematic errors were overlooked,

|1
tests were run with compute-and-test loops

I
of several lengths differing by factors of

j

about 2 for each routine. No systematic

I deviations were found.

To prevent certain hardware problems on

the CDC 7600 caused by accessing the same

memory location too often, the calculations

were performed on subscripted variables.

These loops automatically vectorized on the

Cray-1 and were subsequently replaced by

scalar loops to obtain longer compute loops

.

Overhead CPU results obtained from testa run

with vector compute-and-test loops on the

Cray-1 showed considerably higher overViead

than those using scalar arithmetic, due to

memory lockout during a vector operation.

This indicates the sensitivity of the opera-

tions involved. Some tests were run with

compute-and-test loops that required no

memory access at all. The results were

identical to those with loops performing only

scalar operations.

Measured values of transfer rates and

overhead CPU times were subject to some ran-

dom fluctuations, which were especially

pronounced for ALAMOS , a LASL-produced oper-

ating system for the Cray-1. Part of these

variations is due to fluctuations of the

rotation rate of the disks that is nominally

+ 2%.

3. Analysis of Data

The disk units attached to the Cray-1

(DD-19) and the CDC 7600 (819) are very

similar. Each unit consists of 40 recording

surfaces subdivided into 411 cylinders for

recording data. A read-and-write head is

associated with each recording surface. The

40 heads are divided into 10 head groups of

4 heads each. The four heads of a group are

used in tandem to transfer data to and from

disk in such a way that parts of a single

computer word will reside on four recording

surfaces. During one disk revolution of 1/60

seconds, a head group will pass over and

therefore be able to read or write one track

of data. For the Cray-1, a track contains

18 sectors; for the CDC 7600, a track con-

tains 20 sectors of 512 computer words each.

Switching from head group to head group is

7

accomplished electronically and rapidly;

therefore, a maximum of 10 tracks, constitut-

ing one cylinder, can be transferred to or

from disk without mechanically repositioning

the read-and-write heads or missing a disk

revolution. Repositioning of the heads is a

mechanical and therefore slow process. For

sequential access, one disk revolution is

missed at each cylinder boundary. This

results in a maximum transfer rate of R
max

of one cylinder per 11 disk revolutions for

sequential access of large files extending

over many cylinders. For the Cray-1

R(B) = 512 words

^ ^ 180*512 words
max,Cray 11*1/60 second

for the CDC 7600

200*512 words

= 502.7 kword/s;

(3)

max, 7600 11*1/60 second
558.5 kword/s.

(4)

In practice, the maximum transfer rates

will not be reached if additional disk revo-

lutions are missed or if the density of data

written on the disk is less than optimal.

If B sectors are transferred to or from disk

per I/O call, M disk revolutions are missed

per call in addition to those at cylinder

boundaries, and S sectors are transferred

per revolution, then the number of disk rev-

olutions N needed to transfer B sectors is

given by

= B/S + B/(10*S) + M (5)
o

The number of disk revolutions per sector

N (B) = N„/B is
revs B

N (B) = 1.1/S + M/B , (6)revs ^

and the associated transfer rate is

N (B)*l/60 second
revs

512*60 words
(1.1/S + M/B) seconds '

(7)

If more than one logically independent chan-

nel is employed for data transfer, Eqs. 3-7

should be applicable to each channel

independently.

Equation 6 indicates the number of disk

revolutions N (B) per sector should be a
revs

linear function of 1/B, the reciprocal of

the buffer size. To analyze the experimental

data, the measured values of N (B) were
revs

plotted for each I/O routine as a function

of 1/B. Most plots were indeed linear, and

the constants S and M could be determined

from the zero intercept and the slope of

each line. As an example. Fig. 1 represents

data measured by the routines BUFFER IN/

BUFFER OUT on the Cray-1. The number of

disk revolutions per sector for BUFFER OUT

as plotted as a function of the reciprocal

of the buffer size is a straight line, the

slope of which corresponds to M = 3; that

is, three disk revolutions are missed per

I/O call. The zero intercept corresponds to

a transfer of 18 sectors per revolution. The

data for the BUFFER IN operation can be

fitted by two straight lines, with the same

zero intercept. For B >^ 18 sectors, two

disk revolutions are missed; for B >^ 16

sectors, only one disk revolution is missed

per I/O call. These results are interesting

but not characteristic of most I/O routines

on the Cray-1 and CDC 7600. The most fre-

quently encountered sets of coefficients

were M = 0 and M = 1 (one disk revolution

missed per I/O call) and S = 18 for the

Cray-1 or S = 20 for the CDC 7600 (maximum

number of sectors per disk revolution)

.

248

0* I/BUFFER SIZE

FIGURE 1. Disk revolutions per sector
for BUFFER IN/OUT as a func-
tion of the reciprocal of the
buffer size.

An example of results obtained on the

CDC 7600 is shown in Fig, 2. Routines per-

forming random-access I/O transmission were

used for this test. The solid line repre-

sents data for sequential access and

corresponds to one disk revolution missed

per I/O call and a transfer of 20 sectors

per disk revolution.

t6n

l/BUFFER SIZE

FIGURE 2. Revolutions per sector for
transfer by WDISK/RDISK (7600)
as a function of the reciprocal
of the buffer size.

Using a random number generator to

determine the disk addresses at which to

start transmissions, the test was performed

a second time using the same routines.

Data for these results are also fitted by a

straight (dotted) line, with the same zero

intercept, corresponding to 20 sectors

transferred per disk revolution. Due to

more frequent seek operations, 1.4 disk

revolutions are missed per I/O call.

To interpret results obtained for over-

head CPU times, it is reasonable to assume

that the overhead CPU time per sector

(B,N) consists of two contributions, the
Un

CPU time T required to actually trans-
trans ^ ^

fer the data, and 1/B times the CPU time

T , , needed to initiate and complete the
call

system call for I/O:

T^„(B,N) - T^ + 1/B*T
OH trans call

(8)

Experimental results indicate that the

assumptions leading to Eq. 8 are valid in

most cases. Plots of T„„(B,N) versus 1/B
Un

are straight lines with a zero intercept of

T and a slope of T ^ , .

trans call
Figure 3 shows data obtained for the

Cray-1 using random-access I/O routine RDISK.

The lower curve represents data obtained

using a scalar compute-and-test loop, with

T = 660 + 10 ys and T = 6 + 2 ys.
call — trans

The tests were also run using a vectorizable

compute-and-test loop. Because of memory

lockouts during the vector calculations, the

CPU overhead times are slightly higher, as

observed in the upper curve.

Data obtained from CDC 7600 tests is

shown in Fig. 4. Both sequential and random

tests were performed as previously described.

The zero intercept is the same for both

tests; the overhead CPU times per sector are

slightly larger for the random test due to

more frequent seeking.

249

FIGURE 3. Overhead CPU times per sector
for RDISK (CFTLIB) as a func-
tion of the reciprocal of the
buffer size.

l/BUFFER SIZE

FIGURE 4. Overhead CPU times per sector
for WDISK/RDISK (7600) as a

function of the reciprocal
of the buffer size.

4. Notes on Results

Measurements made on both the Cray-1

and the CDC 7600 employed a wide variety of

operating systems, libraries, and I/O

routines. Both sequential and random

writing/reading, buffered and nonbuffered

I/O, Fortran versus assembly language (CAL)

,

and overlapped/non-overlapped tests were run

and analyzed.

Tests performed on the Cray-l used pro-

gram buffer sizes of 1, 2, 3, 9, 18, 36, 90,

and 180 sectors to ensure that any peculiar-

ities occurring at track and cylinder

boundaries would be observed

.

In almost all cases, overhead CPU times

can be represented by Eq. 8. The random

access routines IZDKIN/IZDKOUT, RDABS/WRABS,

and RDISK/WDISK are all very efficient with

very small overhead CPU times. In some

cases, the implementation of a very short

compute-and-test loop (< 30 ys) ensured that

no disk revolutions were missed, even at

buffer size B = 1.

Buffered operations were measured using

BUFFER IN/BUFFER OUT and BINARY READ/WRITE

statements. Some of the tests were run with

system buffer sizes of 1/4, 1/2, 1, and 2

times that of the program buffer size to

determine the effect on rates. It was ap-

parent that in all cases where this approach

was taken, the resultant rates were a direct

function of the system buffer size.

Program buffer sizes for tests run on

the CDC 7600 were set at 1, 2, 3, 10, 20,

40, 60, 100, and 200 sectors. The results

of these tests were generally analogous to

those seen on the Cray-1. Overhead CPU

times were somewhat larger, with the smallest

exhibited by RDISK/WDISK routines with

T , = 1050 + 50 ys and T = 46 + 3 ys.
call — trans —

Again, on random access routines, transfer

rates are consistent with a transfer of 20

sectors per disk revolution and one disk

revolution missed per l/O call. Tests that

generated random-disk addresses by a random-

number generator showed an increase to 1.4

in the number of disk revolutions missed •

per I/O system call, due to more frequent

and longer seek operations.

For BUFFER IN/BUFFER OUT tests, as with

the Cray-1, the rates were solely dependent

on the size of the system buffer used in the

transfer. For read requests, two revolu-

tions were missed per processing of a system

buffer, except for the minimum system buffer

size of B = 2 sectors, for which four disk

revolutions were missed.

The situation for write operations was

more pronounced: four disk revolutions are

missed per system buffer processing for

B > 4. For B = 2, it was found that nine

disk revolutions are missed per call. This

Is caused by excessively high overhead times

associated with this buffer size.

The raw data from these tests can be

obtained from the Computer Science and

Services Division's Research and Applications

Group at the Los Alamos Scientific

Laboratory

.

5 . Summary

Characteristics of all routines tested

are summarized in Table 1. The following

general observations can be made.

With the exception of some BUFFER IN/

BUFFER OUT routines, the maximum number of

sectors is transferred per disk revolution:

18 for the Cray-1, 20 for the CDC 7600.

For the Cray-1, maximum transfer rates

of 503 kword/s for both overlapped and non-

overlapped reads and writes were achieved on

the COS operating system. The overhead CPU

time for an I/O system call T ^ = 480 \is
call

is smallest among the operating systems

tested; the CPU time required for the trans-

fer of one sector T = 42 ys is slightly
trans

higher than that observed on the CTSS oper-

ating system.

The CTSS operating system has library

routines that achieve maximum transfer rates

for both overlapped and non-overlapped

writes. The reads are more sensitive to

proper timing of I/O requests than the

writes. Non-overlapped reads always miss

one disk revolution per call. For over-

lapped I/O, using the most efficient routines

available, maximum transfer rates can be

achieved only by testing I/O completion at

< 100-ys intervals. Observed overhead CPU

times are T = 650 us for the I/O system
call

call and T = 7 us for a one-sector
trans

transfer. On a single channel, these are

short enough not to degrade I/O performance;

for multichannel tests and small buffer

sizes, some rate degradation will occur.

At least one disk revolution is missed

per I/O call for all routines on the ALAMOS

operating system. This is attributable to

the high overhead CPU time of about 4000 ys

for the I/O call. This is considerably

higher than the 926 ys required for one

sector to pass under the read/write head.

CDC 7600/LTSS operating system routines

also miss at least one disk revolution per

I/O call. The minimum overhead CPU times

for initiating an I/O call are

T 1050 ys for RDISK/WDISK routines,
call

just slightly longer than the 833 ys

required for one sector to pass under the

read/write head. The minimum measured

transfer CPU time per sector is

T = 46 ys.
trans

It is apparent that maximum I/O rates

can be achieved only if one chooses I/O

routines carefully and performs frequent

enough testing for I/O completion on small

buffer sizes.

251

Table 1

Performance Characteristics of Cray-1 and CDC 7600 I/O Routines

Machine

Operating

System Routine Library

Sectors per

disk revolution

Disk revolutions

missed per I/O call

T
call

(us)

trans
(ys/sector)

CRAY-1 CTSS IZDKIN
IZDKOUT

BASELIB 18

18

0 or 1^)

0

630
630

6

10

RDISK
WDISK

CFTLIB 18

18

0 or 1^>

0

660
660

6

6

RDABS
WRABS

FORTLIB 18

18

0 or l*")

0

650
650

7

9

BUFFER IN

BUFFER OUT
CFTLIB 18

18

1 or 2

3

1580
14000

50
150

BUFFER IN

BUFFER OUT
FORTLIB 18

18

1

0 or 1

READ
WRITE

CFTLIB 0 or 1

0

730
730

10

10

READ
WRITE

FORTLIB 18

18

> 1

2

ALAMOS System calls
(read)

System calls
(write)

BUFFER IN

BUFFER OUT

18

18

9

9

2

1

4050*^^

4050^^^

—

155"=)

155")

—
COS System calls

(read)

System calls
(write)

18

18

0

0

480

480

42

42

CDC 7600 LTSS IZDKIN
IZDKOUT

BASELIBF 20

20

1

1

1600
1700

50
50

RDISK
WDISK

FTNLIB 20

20

1

1

1050

1050

46

46

BUFFER IN FTNLIB 20 2 -1750'^) -loo"^)

BUFFER OUT 20 4
*<!)

READ

WRITE

FTNLIB 20

20

1

1

BUFFER IN
BUFFER OUT

ORDERLIB 20

20
5

2

a) Depending on length of compute-and-test loop for overlapped I/O. Always 1 for non-overlapped I/O.

b) 0 for B<24, 1 for B>36.
c) for B>9
d) Equation 3.5 does not apply.

252

Appendix A

Example of Code for Timing of the Compute-and-Test Loop
and File Transfer

C SET NUMBER OF CHANNELS
DO 1000 NCHAN=1,MAXCH

1COMP=0
DO 110 N=1,NCHAN

NEXT(N)=0
DONE(N)=.TRUE.

110 CONTINUE
CALL IDLE

C
C TIME COMPUTE-AND-TEST LOOP FOR EACH NUMBER OF CHANNELS

T0=TIMEF(DUM)
T1=TIMEF(DUM)

C
115 CALL COMPUTE (NCOMP)

IC0MP=IC0MP+1
C

DO 160 N=1,NCHAN
I0C=N+4
IND=DSP(4,N)
IF((IFTBL(3,IND).GE.0).OR.DONE{N))GO TO 160
IF(NEXT(N) .LT.MAX) GO TO 150
DONE(N)=.TRUE.
GO TO 160

150 CALL RDISK (IOC, BUFF. NWDW, NEXT (N)*NWDW)
NEXT(N)=NEXT(N)+1

160 CONTINUE
C

ALDONE= . TRUE

.

DO 170 N=1,NCHAN
170 ALDONE=ALDONE.AND.DONE(N)

IF (.NOT.ALDONE) GO TO 115
C

T2=TIMEF(DUM)
TLOOP (NCHAN)=1000.*(T2- 2*T1+T0

)

C
c
C SET BUFFER SIZE, ARRAY ISECT CONTAINS BUFFERSIZES

DO 900 NBF=1,9
NWDW=ISECT(NBF)*512
MAX=NWDS/NWDW
ICOMP=0
DO 310 N=l, NCHAN

NEXT(N)=0
DONE (N)=. FALSE.

310 CONTINUE

CALL IDLE
C
C
c
C GET TIMINGS FOR OVERLAPPED I/O
C

TO=TIMEF(DUM)
C

GO TO 355
340 CALL COMPUTE (NCOMP)

IC0MP=IC0MP+1

253

C TEST EACH CHANNEL WHETHER I/O BUSY, IF NOT REINITIALIZE
355 DO 360 N=1,NCHAN

I0C=N+4
1ND=DSP(4,N)

C IF CHANNEL N BUSY OR DONE GO TO 360
IF((IFTBL(3,IND).LT.0).OR.DONE(N)) GO TO 360
IF(NEXT(N).LT.MAX) GO TO 357
DONE(N)=.TRUE.
GO TO 360

357 CALL RDISK(IOC, BUFF, NWDW, NEXT (N)*NWDW)
NEXT(N)=NEXT(N)+1

360 CONTINUE
C
C TEST FOR FINAL I/O COMPLETION

ALDONE= . TRUE

.

DO 370 N=1,NCHAN
370 ALDONE=ALDONE. AND. DONE (N)

IF (.NOT.ALDONE) GO TO 340
C

T1=TIMEF(DUM)
TIO(NCHAN,NBF)=1000.*(T1-T0)

C
900 CONTINUE
1000 CONTINUE

254

Forecasting Computer Processing Reqnirements:

A Case Study

Ronald D. Toraberlin

Environmental Protection Agency
Research Triangle Park, NC 27711

This case study describes a recent experience the author had
in updating a computer workload forecast. It presents an example
of a workload forecast developed without regard for future upxlate

requirements and the subsequent problems encountered when trying to
perform an update on the original study. The update methodology
used is described and a series of recommendations is provided to
help the reader avoid problems of the type experienced by the
author.

Key words: Benchmark; capacity management; capacity planning;
workload forecasting; workload update.

1. Introduction

Workload forecasting is inherent in
all competitive procuronents of computer
equipment and services. There must be some
measure to indicate the amount of processing
required to support the future requirements
of an organization. As a result, most
organizations have been involved in at least
one attempt to forecast their computer work-
load requiroiaents. But, situations arise
vihen neither the time or funding is avail-
able to support a detailed study. When
this is the case, organizations tend to
enhance, expand, or update their most recent
forecast

.

Often these updated forecasts do not
employ the detailed analytical methods nor-
mally used in forecasts of this tjrpe. Intu-
itive reasoning replaces technical excel-
lence. If results appear "reasonable" they
are generally accepted. More often than
not these results prove to be adequate.
But, developing a process to determine these
results can sometimes prove to be quite a
challenge. Lessons are learned in these
situations and, if shared with others, can
make this process of updating a workload

forecast easier. Such is the case with
the presentation of this study.

This case study discusses a situation
in which an organization contracted for a
workload forecast and later decided that
this forecast should be updated with more
recent historical data. A gross estimate
of processing growth was all that was re-
quired. Unfortunately, the original study
was not designed to facilitate an update.
As good as the original study was, it

proved to be extremely difficult to update.

What follows is an outline of some of
the major problems that had to be overcome
in order to perform an update of this
original study. This case study does not
danonstrate how an initial workload fore-
cast should be performed. The technical
literature [1][4] provides many articles
that offer guidance in this regard. This
study deals only with one organization's
attempt to update its outdated workload
forecast

.

There are two primary reasons for dis-
cussing this case study. First, the study
is presented to acquaint the reader with the

255

types of problems an organization had to

consider in updating a workload forecast.

In this respect, only enough of the detail
work is presented to explain how the prob-
lems were solved. Second, and most impor-
tant, this case study presents a series of
recommendations to aid those organizations
who might be preparing an initial workload
forecast or who might want to update a study
at some future time. It is hoped these
recommendations prove beneficial in aiding
the development of workload forecasts with
increased utility for other organizations.

2. Background Information

The organization requiring the update,
in 1977 as today, was facing tremendous
growth in the need for ADP support to meet
the many demands of the user community.
In such a dynamic environment it was diffi-
cult, at best, to meet the ADP requirements
of the user community. At the time of the
original study the organization was support-

ing six major offices at the national level
and ten regions, each with varied require-
ments. Two major computer c«iters, one
with Sperry Univac equipment, the other
with IBM equipment, were providing the major-
ity of the support to the user canraunity.

The original workload forecast was an
extremely detailed study performed in 1977.
Historical data for the period October 1976
- April 1977 were used. In addition to
historical data, management surveys were
taken at various levels of the organi-
zation. These surveys were used to quantify
management's position on future organiza-
tional growth. Based on this historical
data and management survey information, the
workload forecast for the organization was
generated. Three different scenarios were
developed to cover minimum, normal, and
maximtmi periods of growth for the organiza-
tion. Each scenario included processing
projections for each computer center and
each regional and national office for the

Upper Limit
10.00

IBM Growth

Overall Growth
4.60

UNIVAC Growth
4.08

Lower Limit
3.00

1.00 1.00 ASSUMPTION: The IBM Processing Power is equal to
the UNIVAC Processing Power in 1977.

77 78 79 80 81 82 83 84 85 86 87

YEAR
89 90 91 92 93 94 95

Figure 1. Original Study Processing Requirements

256

target years of 1979, 1981, 1985 and 1990.

3. The Update

Due to the large volume of data pro-
vided in the original study, data were
extracted and consolidated in a graphical
format to depict the agency's projected
growth in processing for both computer
centers. For ease of comparison, all data
were "normalized" to a base year of 1977
(See figure 1).

Figure 1 depicts the future processing
requirements of the organization as derived
from the original study. The various lines
are not representations of continuous func-
tions. The points at each of the target
years are the "normalized" processing require-
ments of the organiz;ation. Figure 1 is
presented only to show the original chart

to be updated. Other problems associated
with figure 1 will be discussed later.

The basic idea of the update was to

take 1979 historical processing data, develop
a new graph, and compare it to the original
information to determine the accuracy of
the projection methodology of the original
study. At first glance the problem seemed
simple enough. Just accumulate the histor-
ical data, process it with the software
package which generated the original results
and prepare a new chart. But as it turned
out, the actual update was not quite that

simple. There were a few "minor prob-
lems" that precluded a simple solution to

this problem.

4. Problems Encountered

The first problem associated with the
update was to locate anyone who might pro-
vide insight as to how the graphs from the
original study were prepared. In a period
of only two and one half years, the exper-
tise associated with the study had virtual-
ly disappeared.

A second discovery was the software
package used in developing the original
forecast was not available. No provision
had been made to retain a copy of the

support software for future use.

The original study used management sur-

vey information as an integral part of
the original forecast. But due to the

short period of time allocated for the
update, new management surveys were not
feasible. As a result, the original manage-
ment information had to be used in the

update.

The majority of workload forecasts,
once completed, become the official basis
for any future references to workload growth.
This study was no exception. It was the
basis for depicting processing growth for
the organization. Once a study becomes
established within an organization, it be-
comes almost impossible to replace it. It
can be updated, enhanced or expanded, but
never discredited or discarded.

During the period between the original
study and the update there were major sys-
tem changes at both computer centers. Also,
several times during this period the account-
ing algorithms were changed to reflect the
fact that both computer centers were non-
profit organizations. Each time a change
was made, the previous accounting data,
relative to workload forecasting, was in-
validated. Benchmarks or test programs
could have been utilized to supply the
linkage across configurations, but this was
not done.

The majority of problems encountered
were directly associated with gaining ac-
cess to data needed to perform the update.
Data were either fragmented, inaccessible
or non-existent. Also, data were recorded
in different units in 1977 and 1979 at one
of the centers. There were changes in

contractor support which made location of
some required data impossible. The final
problem was deciding how to combine the
work at each of the centers to develop one
measure of agency workload. In the past
(see figure 1) these processing requirements
had simply been added together but this
was considered an unrealistic assumption
for the update. In the update the Univac
and IBM systems were treated separately.

Other problems were encountered in the
course of this update. But these were the

major problems that had to be resolved before

the original processing forecast could be

updated.

5. Update Methodology

Given the list of problems that had

to be resolved, one might assume an update

of the original workload forecasting study

was, if not impossible, at least unrealistic.

Nevertheless, the original study had to be

updated, and the update had to be performed

without benefit of the original software

package and new management survey informa-

tion. The gross nature of the update and

an insufficient amount of time were the two

primary reasons new management surveys were

not taken.

257

Since the Univac system accounting data

for 1977 and 1979 were reported in SUP
hours, they were used for that portion

of the update. SUP hours included central
processor usage, input/output usage, and
executive services. In 1977 the IBM system
accounting data were reported in Resource

Hours. Resource Hours included central pro-
cessor, input/output, and memory usage. How-
ever, in 1979, after a change in contrac-
tor support, the data were reported in

Computer Utilization Units (CUU's). A fac-
tor relating CUU's in 1979 to Resource
Hours in 1977 had to be developed to provide
the transition between the update and the

original study. This will be duscussed
later.

Because of the differences in account-
ing data, it was decided that an update
would be performed for each of the computer
centers. With the many assumptions made,

no attempt was made to combine the informa-
tion from the two centers to develop an
overall organizational forecast.

The following seven step procedure was
developed for the update. The procedure
for each computer center was essentially
the same until the final step. For the

purpose of explaining the procedure, all
references will be to the Univac system.

The first step was to determine the
total resources projected for each of the

ten regions and the six national offices
for each of the three scenarios mentioned
earlier. These totals were required for
each of the target years of the original
projection (1979, 1981, 1985, 1990). Each
computer center was treated separately. All
of this information was extracted from the
original study.

Step two was to generate a "normalized"
total processing value for each target year.
Once tables for total processing for each
of the three scenarios were created, the
totals for each office and region for each
target year were totaled to get the total
for each of the target years. These values
were then divided by the 1977 total to get
a set of "normalized" values. These values
are represented as scenarios 1, 2, and 3
in figures 2 and 3 which will appear later.

The third step required each of the
values for each office and region for 1981,

1985, and 1990 in the table just created
to be divided by its corresponding value
for 1979. This created a table of multipli-
ers representing the original management
survey information for each scenario for

the target years of 198 1, 1985, and 1990.
Step five of the procedure used this table
of multipliers.

The fourth step was concerned with
the actual data for 1979. The SUP data in
the accounting report for calendar year
1979 were averaged for the same offices and
regions mentioned earlier. Since overhead
was just a lump sura figure in the reports
and accounted for approximately forty to
forty-five percent of the total it had to
be included. It was proportionally spread
across the figures for each of the offices
and regions.

Step five involved taking the monthly
average figure from the actual 1979 data
for each office and region and multiplying
it by the corresponding values from step
three to develop the new projections based
on the actual 1979 data. This procedure
allowed the original management projections
to be applied to the 1979 data.

In step six the new projected values
for each scenario for each target year
were totaled. These totals were also di-

vided by the actual total for the base
year of 1977 to "normalize" the data for
comparison to the original study.

The final step in the procedure was
simply to plot these "normalized" values
for comparison purposes.

Figure 2 is a graph of the "normalized"
values for the Univac System. All three
scenarios from the original forecast are
included. Only the scenario 1 values
(normal) are plotted for the update.

There is a large difference in the
actual and predicted values for 1979. Be-
cause of this difference a graph of the
new values plus an accumulated error of
ten percent per year was developed. Due
to the numerous assumptions made in the up-
dating procedure it was felt this second
graph could be considered a "reasonable"
upper bound for the new workload forecast.
These new forecasted values are represented
by dashed lines in figure 2.

The same procedure was followed for

the IBM system. All references to the
1977 processing data were stated in Resource
hours and references to the actual 1979
data were stated in Computer Utilization
Units. In attempting to form a bridge
between the two units, consideration was
given to going back to the original data
and developing an artificial algorithm. Time

258

constraints made this option unworkable.
As a last resort, CPU hours for the years
1977 and 1979 were used to develop a conver-

I sion factor that could be used to compare
li the original and updated data. Figure 3
' is a graph of the "normalized" values for

the System after the conversion factor
had been applied. The labeling on the

i graph is the same as for figure 2.

I
The data for figures 2 and 3 were pro-

' vided in the same fourteen year format as
the original study. However, workload fore-
cast information projected beyond three years
has historically been shown to provide very
little utility.

At this point the obvious question
must be asked. Just how good are the new
projections of processing workload? This
is a very difficult question to answer.
If the original management surveys were
good then it is probably acceptable. A re-
examination of the procedure in 1981 is

the only sure way to get a reasonable

measure of its accuracy. At best, it can
be no better than the original information.
Time, as always, will be the ultimate judge.

6. Recommendations

Obviously, if certain things had been
done, the update of the computer workload
forecast could have been accomplished with
less effort. The following list of recom-
mendations has been developed as a result
of this update. This list is by no means
complete. It is only meant to serve as a

starting point for those organizations con-
sidering a workload forecast.

Workload characterization is essential.
Select those measures relevant to your ADP
operation. For those uncertain about what
measures to select, a review of the recent
technical literature is recommended [2] [3]

[5]. It is difficult to know where you

are going or how fast you are getting there

without knowing where you have been.

259

F
A
C
T 5
0
R
S

ixmit Workload projections based on 197 9
data represeited by dashed lines.

Scenario 1 + 10% (1979)

7.74
Scenario 2

6.03
Scenario 1 (1979)

Scenario 1
5.14

3.56
Scenario 3

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

YEAR

Figure 3. 1977 IBM *3rkload Projections

95

Second, do not consider the workload
forecast as a single, one-time operation.
Make it just one part of an on-going capaci-
ty managanent/capacity planning process
for the organi2ation.

Third, if the workload forecast is to
be performed by a contractor, insist that
all input data files and support software
be made a part of contract deliverables.
You will need these later.

Fourth, require detailed documentation
on the methodology used in the forecast.
Eventually soneone will wonder how it was
done.

Fifth, benchmarks, though expensive to
develop and maintain, should be used if
hardware and software systems change frequent-
ly. These changes invalidate accounting
data relative to workload forecasting but
a benchmark can provide the bridge between
the old and new data.

Sixth, if benchmarks are not available,

then a set of sample programs can be used.

As with benchmarks, the linkage is essential
if the data are to be used.

And finally, for those looking for a

starting point for reviewing the technical
literature, the IBM System's Journal, volume
nineteen, number one, 1980, entitled Instal-
lation Management/Capacity Planning is re-
commended. It is an excellent source of
information as well as a good source for
additional references.

7. Acknowledgements

I gratefully acknowledge the assistance
of Dr. Thomas F. Gatts of the University
of Alabama, and Dr. David F. McAllister of
North Carolina State University who felt
this study warranted documentation and en-
couraged me to do so. Thanks also to
Sharon Walker, Cheryl Mooring, and Leslie
Batten without v*iose help this case study
would not have been possible.

260

REFERENCES

[1] Agrawala, A. K.
,
Mohr, J. M., and

Bryand, R. M. , "An Approach to
the Workload Characterization Prob-
lem," Computer, Vol. 9, No. 6,

June, 1975, pp. 18-32.

[2] Bronner, L. , "Overview of the
Capacity Planning Process for
Production Data Processing," IBM
Systems Journal , Vol. 19, No. 1,

1980, pp. 4-27.

[3] Cooper, J. C, "A Capacity Plan-
ning Methodology," IBM Systems
Journal , Vol. 19, No. 1, 1980,

pp. 28-45.

[4] "Guideline for Writing Computer
Procurement Support Documen-
tation," U. S. Department of Agri-
culture Handbook Supplement :

DIPS Manual Chapter 3 , March 1977,

pp. 7-25.

or

McNeese, James E., "Computer Work-
load Forecasting," Proceedings
of the 15th CPEUG , San Diego, CA,

Oct. 1979, pp. 113-120.

[5] Tripathi, S. K.
,
Gordon, K.D.

,

and Agrawala, A. K. , "An Optimal
Sample Size Allocation Scheme for
Benchmark Design," Proceedings
of the 15th CPEUG , San Diego, CA,

Oct 1979, pp. 105-111.

261

Human Interfaces

263

Data Processino User Service Manaoement

p. S. Eisenhut

IBM Data Systems Divsion, East Fishkill
Route 52, Hopewell Junction, N.Y. 12533

After 30 years since the advent of the electronic computer,
we are fast entering the era of the information society. The

trend is towards increasing use and dependence of business upon

data processing. Data processing professionals must provide ap-
plications which perform adequately with respect to the business
needs of users. Data processing professionals who concern them-
selves with the functional and technological aspects of data

processing must now concern themselves with the performance or

effectiveness of data processing in the business environment.

To do this requires a coordinated management process. This
management process starts during the development of new data
processing applications with user oriented service objectives.
The process includes measurements, problem diagnosis, reporting
of service and follow-up action, all on a regular basis. It also
includes a formal capacity planning process which relates to com-
mitted levels of service as well as computing load.

Making the transition to an information society requires a

new attitude among data processing professionals and a commitment
from data processing management. Good data processing managers
will view User Service Management as being critical to their own

success.

Key words: Computer performance evaluation; data processing per-
formance; data processing service; information system design; in-

formation system usability; performance management.

1. Introduction

Computing technology has developed
' at a very rapid rate during the 30 years
'j since its beginnings. During this time,

! more computing capability has been pro-

I

vided at dramatically decreasing costs,

j
Yet, it seems much less attention has been
focused on the Data Processing - User
Interface depicted in Fig. 1. For any

^

given enterprise, a Data Processing Organ-
ij ization (D/P) will provide service to

i various user organizations within that
I, enterprise. Ideally, this service should

I

be in response to user needs. The inter-
face breaks down because users find it

difficult to express needs in terms meaning-

ful to D/P; and because D/P finds it dif-

ficult to determine those courses of action
which best satisfy user needs within limited
D/P resources.

The following are examples of this

breakdown in the D/P - User Interface.

Example #1

This example is provided by Richard
Nolan (Nolan, July-August 1977). The D/P

department of a medium size company auto-

265

mates the marketing organization's order

entry system. The vice president of market-

ing is alarmed when he sees his monthly bill

from D/P rise to 25% of his budget and to

over 3 times the cost of order entry prior

to computerized order entry. He demands an

explanation from D/P. The representative of

D/P explains that D/P bills so much for CPU,

so much for elapsed time, so much for kilo-

bytes per minute, adjusted to reflect virtual

storage, and so much for EXCPS. He asks the

vice president of marketing which of these

he would like to control. This explanation

is the last straw for the vice president of

marketing. He phones the president of the

company with the following complaint:

"I'm strapped. Data Processing is

charging me for services that are essential,

and I can't do anything about the cost.

When I try to get down to how to control the

costs, all I get is technical gibberish
"

Example #2

A large manufacturing site of an inter-

national corporation decides to improve pro-

ductivity by installing a computerized dis-

patching system for equipment maintenance
personnel. It is designed to have on-line
terminal input and output and operate in

real time. Another location already has such
a system, and D/P estimates one systems ana-
lyst and one programmer can complete the

implementation in one year. Three years
later, three programmers are still re-

writing programs to make the system usable
to the maintenance organization. Response
times at the terminals are over 15 seconds,
and terminal access to the data is only
possible 75% of the time. Under pressure
from manufacturing management, the main-
tenance organization gives up on D/P.
Within three months the maintenance organ-
ization implements their own manual pro-
cess using work order tickets and tele-
phones.

Other examples of the breakdown in the
D/P - User Interface include the following:

° Reluctance by D/P to provide users with
higher speed lines for fear that addi-
tional load will result on the central
computer.

° Removing a transaction from a perform-
ance report because its response time
was unacceptable.

° Sixteen weeks of unacceptable transac-
tion response times because a program-
mer changed the procedure for purging

the data base just prior to leaving i

the company, but didn't tell anyone!
'

° User reporting unacceptable performance

to top management based on their own

measurements, and D/P attacking the

measurement process.

In 1975 the IBM users group, SHARE Inc.,

sponsored a study to extrapolate the trends

in the data processing industry through 1985.

The authors of the SHARE Inc. study make the

importance of the D/P - User Interface quite

clear when they state:

"Our main conclusions are that over the

next decade, the major tasks of the data

processing industry will be to improve:

° The quality of data processing services
- as perceived by the end users of

these services;..." (Dolotta, et al

,

p. 9, 1975)

According to the SHARE study, the trend

is for the operation of business to rely

more and more upon data processing. It is

imperative that data processing organizations
take steps to better' meet the needs of users.

This paper introduces the framework of a man-

agement process to accomplish this. It then
discusses some of the key problem areas en-

countered in trying to implement this manage-
ment process in a typical D/P organization.

2. The Management Process

2.1 New Application Development

The management process starts by man-
aging the design and development of new user
applications. A typical project management
system to control the progress of a new appli-

cation calls for project milestones and
phases as indicated in Fig. 2. Key phases

are problem definition, design specifica-
tion, development (programming), and trial

production followed by a final acceptance.
In a D/P environment, this process often
falls short of the mark because it manages
function at the exclusion of performance . 1

Users require both performance and func-

tion. Functional requirements are those de-
scribing what processes the program, equip-
ment, and hopefully, people do. The perform-
ance requirements are quantifiable expressions
of how well the functions are performed.
Figure 2 shows how performance management
relates to the project phases.

Management must require that design
specifications include objectives for per-

266

FIGURE 1, Data Processing-User Interface

Phase Performance

Milestone Completed Management

1 Problem Understand User

Definition Performance Requirements

2 Specification Agreed Design Objectives

and Design for Performance

3 Development and Developed Measurement
Test Process

4 Accepted Trial Performance Meets Design

Implementation Objectives

Objectives Become
Commitments

FIGURE 2. Application Project Management

267

formance. Figure 3 illustrates a possible

categorization of user performance require-

ments in terms meaningful to users. If these

are the categories of requirements, then they

also must be the categories of performance

objectives to be specified as part of the

design. Design specifications should also

include how performance will later be

measured. The application project should

not be allowed to proceed past milestone

2 until this requirement is met. Like-

wise, the application should not be form-

ally accepted as completing milestone 4

until the design objectives have all been

satisfied as measured during the trial

production period. At milestone 4, these

design objectives may now become "commit-

ments" by D/P.

Objectives must be jointly developed

and agreed by all parties affected by the

outcome. Various departments or organiza-

tions may be involved. Programmers, data

base administrators and hardware configur-

ators can control response time at a user's

interactive terminal. Data center opera-

tions and operating system support person-

nel can control availability and reliability

of the applications to the user. Data cen-

ter operations and job schedulers can con-

trol turnaround time for job completion or

the degree to which scheduled reports are

on time to the user. Users, as well as

programmers, control workloads. All parties

control cost. All affect the profits of

the enterprise. Therefore, all are involved

in the management process.

2.2 Overall Process

Figure 4 illustrates the overall user

service management process starting with

new application development as just discuss-
ed. By the time the application achieves

milestone 4, there should be a committed set

of performance objectives.

Given this set of committed performance
objectives, there must be regular (e.g.,

weekly) performance measurements of how well

D/P and the users are performing relative to

these objectives. These performance mea-
surements must then be analyzed and evalu-

ated to determine the reasons for deviations
from the agreed objectives. Then, as per-
formance versus objectives is reported to the

D/P and user management, reasons for the

deviations and recommended actions may also
be reported. Management must then make final

decisions on the actions or projects to

undertake. These action projects result in

the attainment of old objectives and in the

establishment of new ones, thus closing the

cycle.

The D/P Plan, usually done once or twice

per year, is shown in the center of Figure 4.

Measurements determine existing load versus

D/P resource capacity (manpower, CPU, DASD,

etc.) and performance level. Given the

existing load, users and application program-

mers participate in the projection of load.

The D/P Plan is at least a two year projection
of load and necessary D/P resources required

to handle the load within the limits of the

agreed performance objectives. The perform-
ance objectives associated with the Plan are

those currently committed as well as design
objectives that will become commitments.
The result of the Plan is a set of actions,
which may be managed as milestone type pro-

jects that support these objectives and the
projected load.

The management process described in

Figure 4 is dependent upon its many subpro-

cesses for success. D/P management must
understand the large amount of coordination
required, and they must be willing to assign
staff responsibilities for performing these
subprocess.es.

2.3 Benefits

There are several key benefits to the

User Service Management Process. Improved

performance means that users will be more
productive. For example, improved response
time at a terminal means less user wait
time and potentially fewer terminals and

users for the same job or task. Also, for

example, a manager that receives a manufac-
turing line trouble report prior to the start
of a shift can assign people to resolve the
trouble before those people get involved in

other things. Because it benefits them,

users are motivated to participate in the

process.

Increased user satisfaction results not
only from improved performance, but also from
improved trust and communications. If a re-
porting system allows both D/P and users to

see performance in like terms, there will be

fewer escalations to higher levels of manage-
ment to resolve disputes.

"Management by Objectives" becomes pos-

sible if measurements and reporting are done
against performance objectives. The objec-
tives give purpose to actions like data base
reorganization, adding higher speed communi-
cation lines or a faster printer, reschedul-
ing batch jobs, or program modification.

268

• Scheduled Availability of Service

• Unscheduled Down Time
Mean Time of Service Unavailability

% of Schedule Not Available

Maximum Time of Outage
Number of Failures Or Service Interrupts

• Response Time (Interactive)

Average

Percentiles

Tolerances

• Turnaround Time (Unscheduled Batch)

• Report Timeliness (Scheduled Batch)

% of Reports Available to User on Time

• Workload Capability

Average
Peak

• Cost Charged

FIGURE 3. Performance Requirements

User

Inputs

Actions

New
Application

Development

•t-

Objectives

Agreements

D/P

Inputs

Formal

Plan

Measure
Diagnose

Report

Periodic

Assessments

FIGURE 4. User Service Management Process

269

Rather than fight fires, management can make

changes based at least partly on the effects

those changes will have in user productivity

and satisfaction. It also becomes possible

to talk to users about the tradeoffs be-

tween more function and more performance.

Justification of plans and hardware pro-

posals becomes easier. It is quite often

necessary for D/P management to justify ac-

tions to higher levels of management. Such

actions might include procuring major pieces

of hardware like computers, mass storage de-

vices, or printers. If higher levels of

management understand that objectives are

important for the business, and if D/P man-

agement can show that these actions contri-
bute to attaining the objectives, then D/P

management will find these actions easier
to sell

.

3. Problem Areas

The successful implementation of the

management process requires overcoming sev-

eral problem areas. Perhaps of even greater
importance is that before general acceptance
is possible, higher levels of management, or

at least the manager of D/P, must understand
and support the process and the methods to be
used to overcome the problem areas. The
following discussion concerns these problem
areas and suggestions for dealing with them,

3.1 Defining Objectives

Generally the objectives should be

grouped according to a categorization simi-
lar to Figure 3. Specific definitions, how-
ever, will vary from one enterprise to an-
other. The following general suggestions
may help to avoid problems with acceptance
or workabil ity:

(1) Only define objectives that can and
will be measured,

(2) Be sure that the results of measure-
ments against objectives can and will
be reported to users.

(3) Attempt to define service objectives
which can be directly linked to the
business objectives of the user organ-
ization. For example, if a D/P ser-
vice for process control is out for
more than X hours, it may impact the
user's ability to produce product.
Defining the maximum outage allowed
would be a critical objective.

(4) Attempt to define objectives as close

to the D/P - User Interface as possi-

ble. For example, define a response

time at the terminal as seen by the

user rather than at the host computer.

(5) Allow the key users to choose objec-

tives most meaningful to them, I

(6) Pick a time frame long enough to smooth

out the effect of short term and random

events, and short enough to allow at-

tention and action before too much
damage is done,

(7) Remember, "To have an objective and not

meet it is not nearly as bad as never
to have had one,"

3.2 Specifying Values of Objectives

What values should be set for the objec-

tives? For example, should average terminal

response be 2 or 15 seconds? Should it be the

same for data input as for graphics? The fol-

lowing suggestions for setting values may be
helpful

:

(1) Values for design objectives should

be reasonable as determined by similar
applications or technologies. Values
for commitments should be achieved
over a sustained period as determined
by measurements. However, commitments
should not be lowered because of de-
graded performance.

(2) Values should be related to business
needs. For example, the timing of a

report required to assign priority to

work moving through a manufacturing
line may be more critical than an

employee education record. Therefore,
the manufacturing report may be re-

quired daily by 7:30AM 95% of the

time, whereas the education report
may not be required at any particular
time of day,

(3) Terminal response times should not
exceed 15 seconds if the user is to

remain at the terminal, (Martin,

p, 326, 1973,) Faster user "think"
times demand faster terminal re-

sponses, (Doherty, p, 154, 1979.)
This is why graphics requirements
are in subseconds. Consistency of
response is also important. The
spread of response times is speci-
fied by a percentile value (90 per-
centile) as well as the average.

270

(4) Tolerances should be established around
the objective values to recognize ran-

dom events. For example, if the aver-
age actual response is 5 seconds, and
if results are reported daily, then
some days may average 6 seconds and

others 4. The tolerance (possibly 1

second) should recognize this fluctua-
tion. Action would be taken only when
the objective value plus the tolerance

is exceeded,

(5) Objectives should offer some challenge.
"You don't make progress looking back-
wards."

3.3 Form of Agreement

How formal should this agreement of ob-

jectives be? Should it be a "contract" with
a specific user organization? Initially,
users may balk at the term "contract" which

may imply a formal and legally binding obli-
gation. On the other hand, the complete ab-
sence of a written document would imply a

lack of agreement and would also preclude
conmunicating a common understanding of
what the objectives really were. The ideal

solution seems to be to make available to

all parties to the agreement, a common "Do-
cument of Understanding" (DOU). This docu-
ment should contain the performance objec-
tives agreed upon as well as a statement of
the philosophy and reasons for the agreement.
It may avoid future arguments if the docu-
ment also contains references to the source
of measurements and manner of reporting
actual performance, and the conditions for

taking corrective actions.

With what level of user organization
should D/P have a DOU? Too high a level will
lose participation by the actual end users.
Too low a level will mean too many contracts,
all subject to change with reorganization.
Administration could be costly. Too low a

level can also mean too much interdependence
between user organizations. It may not be

possible to manage service to one organiza-
tion without affecting service to another.

There is much evidence to indicate a

trend in the years ahead to more and more
interdependence between user organizations.
(Nolan, March-April 1979.) This interdepen-
dence is characterized by many organizations
using common data bases and applications,
and the passing of information between organ-
izations. An example of this is an online
IMS application for tracking the flow of

work-in-process through manufacturing. Jobs
are released to manufacturing departments by
various production control departments who
make entries into the IMS data base. Claims
of progress through successive fabrication
steps are made by various manufacturing de-
partments. Information is passed to an ac-
counting department for product, costing,
and to inventory control departments for in-
ventory adjustments. In this data base ap-
plication, performance is controlled by

changing the application or by changing IMS.

For example, a change to the data base struc
ture or a new version of IMS are possible
actions. However, these changes affect al

1

users of the application or all users of IMS

One way of dealing with this interde-
pendence is to have separate DOUs for each

D/P service offering, for example, one for
IMS, one for TSO, one for unscheduled batch,
etc. A DOU could have separate objective
values for each application if values were
not common across the service offering. The

DOU would then be a common agreement for all

users of the same service or application.
This application orientation is, of course,
fully consistent with the idea of setting
performance objectives for new applications
as discussed earlier.

"All players on the team must play

according to the same game plan if the team

is to win.

"

3.4 Measurement Tools

It has been said, "If you can't measure

it, you can't manage it." A corollary is

that it is meaningless to have an objective,

if there is no way of knowing where one is

relative to that objective. On the other

hand, it is also meaningless to measure
where you are relative to an objective that

is irrelevant. It is often said that mea-

surement tools in current use provide too

much data and not enough information. What

is really being said is that the measure-
ments are compared to objectives whose rel-

evancy is non-existent or at lease unclear.

For example, to a user who has not been re-

ceiving reports on time, the channel utiliza

tions from 2:00 to 3:00AM on the host com-

puter would not be relevant. The user only

understands that his report schedule has

been met only 50% of the time this past

week. What is needed are tools and proce-

dures to bridge the gap between the user's

view of performance against an objective

and the evaluation of the causes of that

performance.

271

First, there is a need for tools which
measure actual performance against user

agreed performance objectives. Tools of

this type are almost non-existent. There-

fore, measuring the percent of time that
reports were available to a user on schedule

must be done by a manual process. Response
time at the terminal is another example.

Use of hardware monitors have been unsuc-
cessfully attempted. Alternatives have

been to create a typical terminal trans-

action and invoke it automatically. Another
alternative might be to measure response only
at the host computer and estimate the telepro-
cessing time. Yet the most relevant alter-
native may be to have the terminal user re-

cord responses in a log according to a pre-

arranged sampling plan. This certainly in-

volves the user in the process.

Secondly, there is a need for tools to

relate higher level performance measures to

lower level measures. In a preceding exam-

ple, the reason that the user reports were
available only 50% of the time may have
been due to channel utilization, to DASD
contention, to high central processor load,

or to people in the printout room not tear-
ing reports off and putting them into the
user's pickup bin. Reports are needed to

summarize this type of information over a

period of time and make it available to a

problem analyzer on a timely basis. Un-
fortunately, such tools are not standard,
and home-grown programs and manual data
synthesis are the rule.

Thirdly, there is a need for an organ-
ized approach to. analyzing problems rela-
tive to the performance objectives agreed
to by users. This means D/P management
must invest in qualified people who can
use the available tools, or can program
new ones, for the purpose of problem diag-
nosis. This diagnosis is necessary when-
ever actual performance deviates from user-
agreed objective. Recommendations for ap-
propriate action should come from this
process.

3.5 Reporting

Assume that "What the user doesn't
know can hurt you." Unless performance
is reported to them, users may blow minor
problems out of proportion and escalate them
to higher levels of management as a means of
guaranteeing acceptable levels of perform-
ance. Therefore, performance should be

reported to users. D/P services users,
not the other way around. Users have the
right to know.

Developing DOU's or contracts with
users is a formal process specifying user-
oriented performance objectives. It makes
sense that the process of reporting actual
service back to the users should also be a

formal process. D/P management must assure
that the report includes performance ex-
pressed in the same terms as those agreed
to in the DOU, and is available regularly
according to the agreed frequency. D/P
management must also assure that problems
and corrective actions are reported rela-
tive to the user service.

One of the problems with reporting is

that there are no standard program packages
to generate a comprehensive report. Each
location or enterprise may have different
formats and contents depending upon the

DOU or contract. Furthermore, the variety
of input required and the scarcity of mea-
surement tools means that the collected
data input must come from a large number
of first line departments. To a large ex-

tent, the collection of data and the sum-

marization of data into a meaningful re-

port will be a manual process. The first
line departments involved in the reporting
process may hesitate to devote resources

to work that is not directly in line with

their specialized missions. It may be

necessary for management to redefine de-

partment missions to include responsibi-

lities for data collection and reporting.
Generally, D/P management may find that

a great deal of coordination is required

to assure effective and timely reporting.

Figure 5 shows a logical organization

to accomplish coordinated reporting. Some-

one will be assigned the clerical responsi-

bility for pulling together the data col-

lected by the various first line departments
doing measurements. This person will sum-

marize the data into predefined formats for

regularly scheduled presentations and formal

reports to users and D/P mangement. An ana-

lyzer will also be assigned responsibility
for problem diagnosis and action followup.
This analyzer will make use of the detailed

and traditional performance measurement and

modeling techniques to explain poor user

service shown in the management presenta-

tions. He will recommend courses of action

to improve user service. The formal reports

272

to user and D/P management should include
the status of actions being taken to cor-
rect poor user service. Management coordi-
nation is accomplished by establishing a

reporting process, by formally assigning
(responsibilities for the reporting tasks,
and by following up on action items.

4. Mentalities

j

Perhaps the biggest obstacle to suc-
cessful implementation of the user oriented

1

process of management are the mentalities

j

of the organizations involved.

I

4.1 The User Mentality

I

Users are of many different person-

j

alities and professions. They may be ac-

j!

countants or clerks, or they may be engi-
neers or management staff. Users are

j

specialists in their own profession. The

\
user works with output units, such as in-

i voices processed, inventory part status,

j

production schedules, etc. Users tend to
' be alike in their view of D/P. According
; to the study by SHARE INC., (Dolotta, et

j

al, p. 43, 1976.):

j

"As a rule they have no interest in

,j

how the system works as long as their needs

j

are met; that is, as long as the data pro-
cessing system provides the services they

i desire at what they consider to be reason-
! able cost. A failure to provide these
services is a failure of the entire data

I processing system in these users' eyes."

j 4.2 D/P Mentality

i The D/P mentality is best described
'1 by Louis Fried (Fried, p. 30, 1979).

,

"The programmer's programmer is one
who can design a program that will operate

1

faster using the least amount of memory, to
produce a desired result. The programmer's

' interest is directed toward ultimate effici-
; ency in use of the computer. As might be
expected from one drawn to a highly individ-
ual activity oriented toward abstract and

I machine-related problem solving, the pro-
i

grammer is generally introverted. He finds
his best expression in dealing with situa-
tions that do not include human relation-

1
ships.

"

j

The D/P mentality has great difficulty
understanding user needs and has great

t!

difficulty adopting the user service manage-
ment concept.

Traditionally, professionals In D/P be-

gin as programmers and so this mentality is

extended to programmer-analyst and to systems
analysts dealing with hardware architecture
and systems software. Lower levels of D/P
management who are brought up in this envi-
ronment may also exhibit the same mental-

ity. Lower levels of D/P management may
be afraid to "dictate" objectives to their
staffs lest they lose popularity. Staff

may fear management evaluation or lack of

support in their efforts to achieve objec-
tives. The following typical comments were
made by lower levels of D/P management, when

asked to agree on user-oriented objectives,

and are indicative of the D/P mentality:

° "The users aren't complaining, service

levels must be OK. Don't need all this."

" "I won't sign unless they sign."

° "1 can't agree on objective unless I am

certain I will achieve it."

" "I don't have control over service."

° "I should not be responsible, they

should."

° Can't commit to anything, things are

always changing."

° "User will use the objective for ammuni-

tion and turn me in everytime I miss it."

^ "My manager told me not to sign anything

unless he sees it first."

° "I can't sign anything unless my staff

first commits to it."

4.3 Renaissance Man

The D/P mentality is necessary and

vital, but there needs to be more of another

type of mentality in D/P. This new menta-

lity is one that can bridge the user menta-

lity to the D/P mentality. It is a total

systems view. It is a business view. En-

ter "Renaissance Man."

This new mentality parallels very

closely, what Louis Fried calls the System

Analyst's Analyst. (Fried, pp. 31-32, 1979.)

273

— Coordination Coordination

First Line Departments

FIGURE 5. Organization for Performance
Reporting

IVIanufacturing

Production

Prod./lnv. Control

Product Engineering

Process Engineering

Tool Engineering

Industrial Engineering

DIP

Data Center Operations

Operations Support

Application Development

Software Support

Hardware Support

Plans, Measurements and Reporting

FIGURE 6. Manufacturing-D/P Analogy

274

"The 'Systems Analyst's Analyst' is one

who can design and implement a system that

is appropritate to the problem, make the op-

timal use of the organization's resources,

be integrally related to the other systems

in the organization, and do the job intended.

Ideally, he'll function as an extension of

the organization's management "

" He is keenly aware that all sys-

tems are run by people. His concern is cen-

tered around aligning the goals and activi-
ties of the people with the goals and ac-

tivities of the system. Characteristically,
the analyst is an extrovert. He is oriented
toward interpersonal relationships."

i

It is time to view D/P as a business,

or at least as a business within a business.
Figure 6 shows that there is a direct anal-

ogy between organization of a manufacturing
enterprise and the organization of D/P.

"Customers" become "Users;" "Product fabri-
cation" becomes "Data Center Operations,"
etc. The same professional skills that make
the manufacturing enterprise successful can

! therefore make D/P successful

.

i Where does Renaissance Man come from?
I It may be necessary to change hiring prac-
tices. Traditionally, D/P has hired pro-

' grammers with no prior experience or with
' computer science degrees right out of
school. These neophytes were then required
to acquire company-sponsored eduction and

i work up through the ranks of programming
responsibilities to become systems analysts

I and into lower levels of D/P management.
I
This is an unlikely source for Renaissance

I

Man. Perhaps a better source is D/P pro-
ij fessionals from application areas or with

1

business backgrounds. For example, MBA's,

1 production control analysts and industrial

jl
engineers are possible candidates.

Renaissance Man's first step must be

Ij

to reorient the top level of D/P management
! to the new business view of user service.
According to Geoffrey Goodman (Goodman,
p. 69, 1979.):

j,

"The first steps in establishing a

*\ computer performance system are critical

jj

to success. Lack of attention to organ-

I

izational and management needs are as

I
likely to lead to failure as lack of at-

! tention to technical details."

The top manager of D/P is best able to

see the business view. He doesn't get to the

top by being myopic. In fact, the good D/P

manager will view user service as critical to

his own success. Indeed the top D/P manager

may himself become Renaissance Man! Once the

top D/P manager has the business view of user

service, the lower level of D/P management

and the rest of the organization will follow.

The change will occur through a combination

of direction from the top, education, reas-

signment of job responsibilities, and re-

staffing. Following this, the technical part

of managing user service will then be rela-

tively easy. The first step to reorient D/P

management may prove to be Renaissance Man's

biggest contribution.

5. Conclusion

If Data Processing is to continue to

advance, a new process of performance manage-

ment is required. The systems analyst, the

industrial engineer, or even the information

administrator, will prove to be the Renaisance

Man who brings about the birth of usable data

processing. The technology of flying machines

came 30 years before commerical passenger

travel by air. Likewise, after 30 years the

technology of computing machines is about to

enter its own era of usability. Some will

call this period the Information Revolution.

The need for Renaissance Man is here now.

Each of you is challenged to assume this role!

6. References

(1) W. J. Doherty and R. P. Kelishy,

"Managing VM/CMS Systems for User Ef-

fectiveness," IBM Systems Journal,

Vol. 18, No. 1, 1979.

(2) A. Gayle, "Perspectives on Business

Management - Data Processing a Manage-

able Resource," IBM Systems Research

Institute Publication, TR73.003,

June 4, 1979.

(3) G. H. Goodman, "Methodology for Es-

tablishing a Computer Performance

Management System: A Case Study,"

CPEUG, 15th Meeting, N.B.S. Special

Publication 500-52, pp. 69-76, 1979.

(4) S. Lowry and D. Schafer, "Implementing

a Performance Management System," Pro-

ceedings Guide 48, Philadelphia,

pp. 875-898, May 23, 1979.

275

(5) R. L. Nolan, "Managing the Crises in

Data Processing, " Harvard Business

Review, March-April 1979.

(6) R. L. Nolan, "Controlling the Costs

of Data Service, " Harvard Business

Review, July-August 1977.

(7) R. L. Nolan, "Computer Managers to

Data Resource Managers," Proceedings
Guide 48, Philadelphia, pp. 1797-

1805, May 24, 1979.

(8) R. A. Sills, "Data Center Performance
Reporting," Proceedings Guide 48,

Philadelphia, pp. 469-474, May 23,

1979.

(9) D. P. Norton and K. G. Rau, "A Guide

to EDP Performance Mangement," Q.E.D
Information Sciences Inc.. Wellesley,
Massachusetts.

(10) C. B. Wilson, "Technology Assessment:
ADP Installation Performance Measure-
ment and Reporting," N.B.S., Septembe
1979.

(11) L. Young, "lE-The Ideal Interface
with MIS," Industrial Engineering,
November, 1979.

(12) Data Processing in 1980-1985 , A Study
of Potential Limitations to Progress,

T. A. Dolotta, et al, John Wiley &

Sons, by SHARE Inc. , 1976.

(13) Practical Data Processing Management
L. Fried, Reston Publishing Company,
1 976.

(14) Design of Man-Computer Dialogues ,

J. Martin, Prentice-Hall, Inc.,

1973.

Installation Management

277

i

i

Performance Evaluation of Computer

Procedures

Operations

Patrick A. Drayton

Southwestern Bell Telephone Company
St. Louis, Missouri 63101

A discussion of the measurements required for an evaluation of the
operating procedures of a large computer system data center.
Included are the guideline values which should be achievable with
good operating techniques and solutions to frequently encountered
problem situations.

Key words: Performance, Operations, Measurements.

1. Introduction

1. Today's data processing hardware is

experiencing an exponential advance in

technology. Coupled with this is an
increasing trend towards more
sophisticated operating systems and user
software (data base systems, intelligent
networks). In marked contrast, there
has been negligible attention placed on
the operating procedures used in data
centers. This is unfortunate since DP

operations personnel must cope with the

advancements in technology. Some
examples should help illustrate the

point

.

As CPU hardware becomes more powerful,
more jobs are processed simultaneously
which places increasing pressure on the

operations personnel in the areas of
scheduling and resource management. In

addition, all inefficiencies in tape

mounting and WTOR replies are magnified
by the larger multi-programming level.
As the peripherals become faster and
more complex, the operator's actions
become more important. For example, in

many installations the introduction of

non-impact printers displaced numerous
impact printers because of the five-fold
increase in print speed. To operations
this means that a five minute job setup
time has the impact of 15-25 minutes of
total print throughput based on previous
hardware

.

Operating systems, have progressed from
single thread real storage systems to

virtual machines. This complex
environment has added problems to

operations such as swapping, paging more
powerful commands, intricate messages,
and job entry subsystems. But there is

still only one person sitting at the

master console who must digest all the

messages on the screen and make the

appropriate response, or take the

correct preventive action.

One additional area of technical
advancement is user software systems.

The increased use of on-line data base
systems and time sharing systems has

resulted in increasingly difficult
operational problems. Instead of simply

two or three batch jobs active at one

time, operations is now responsible for

279

hundreds of terminal users. Each of
these could have need of operator
interaction to resolve response time
delays, data base problems and hardware
failures. In summary, there is an
increasing potential for user-related
performance problems.

It is clear that many areas of the DP

environment have greatly advanced in the

last ten years. However, the ability of

operations to cope with these new
technologies has not always kept pace.
Recently a number of software products
have entered the market whose aim is to

automate portions of the operator
environment. These include tape
management systems, disk space control
systems, automatic scheduling systems
and operations interface subsystems.

This discussion attempts to explore the

areas of performance as they relate to

the actions of the operators. This
includes the following:

- Sources of measurement data

- Guideline values with which to

evaluate operations performance

- Recommended solutions to

problems

.

It is hoped this will both increase
awareness of the importance of
operations in the data center and
provide a means of evaluating their
impact on overall system performance and
throughput. The specific tools and
methods are aimed at large IBM MVS data
centers. However, the basic principles
should apply to all operating/hardware
environments

.

2. Sources of Measurement Information

There are six major sources of
information concerning operations
performance. A brief description of
each follows:

Hardcopy log - this is a data
set that contains a copy of all
messages that appeared on any
console plus all operator
replies to program/system
requests. All entries are
time-stamped.

- SMF (System Management
Facilities) - accounting type
data on all jobs including
resource consumption and
termination status.

- RMF (Resource Measurement
Facility) - IBM's system
monitor which reports on device
usage, paging, CPU usage and
SRM (System Resource Manager)
activity

.

- Timings - stopwatch timings of
events

.

- Observations - monitor data may
indicate a problem, but without
observing the situation, the
cause may go undetected.

- Interviews - these include
discussions with users,
operators and data center
managers. It is an attempt to

get their perspective on what
is right/wrong in the data
center.

3. Measures, Guidelines and

Corrective Action

This section is divided into five areas:

- Tape Operations
- Disk Operations
- Printer Operations
- Scheduling

Quality Control

In each area, the operation to be
measured, the guideline value and
potential corrective actions will be
discussed.

3.1. Tape Operations

For any data center with an appreciable
amount of batch work, the operation of
the tape pool is of vital importance.
Four measures of performance are
discussed: scratch tape mount time,
input tape mount time, allocation
recoveries and tape load failures.

280

3.1.1. Scratch Tape Mount Time

This is a measure of the time
between a request for a non-specific
scratch tape and the satisfaction of
that mount request by an operator.
Both the request and the volume
recognition message can be found on
the hardcopy log. If the average
time required to mount a scratch
tape is greater than 60 seconds

,

there are problems in this area.
Some possible solutions are:

1) Insure that a supply of scratch
tapes are within easy reach of
the tape pool operator. That
is, the tape console and the

scratch tapes should be as

close to each other as

possible

.

2) Review labeling procedures. Do
not prelabel scratch tapes and
require that a particular
volume is needed be satisfy the

request. If a physical label

is attached after each tape

file is created, the use of a

label printer driven by the

mount messages greatly reduces
mount time.

3) Insure that scratch tapes are
easily distinguished from used
tapes. An operator should have
no doubt as to the status of a

particular volume.

4) Use of a tape management system
relieves the need for rings in

scratch tapes, since it will
protect unexpired data sets and
it relieves the need for

external labels except for

tapes shipped to other
locations

.

5) Review the tape drive
configuration. The ideal is a

square or rectangle with all
drives facing the operator.
For tape pools which are shared
between systems it is best to

designate strings of drives as

dedicated to a particular
system. There will also need

to be strings which are
designated as sharable between
systems to facilitate variances
in workload. The dedicated
drives should be localized in

an area near the operator's
console to reduce mount times.

3.1.2. Input Tape Mount Time

This is the time between a request for a

specific volume and its satisfaction.
Unfortunately IBM systems without a

local modification do not recognize the
satisfaction of input tape mounts.
There are two available sources for the
data required to make this measurement.
They are:

A manual timing between the issuance
of the message and the tape mounting

- Average percent mount pending for
all drives from RMF tape device
usage report.

If the manual timing results in an
average greater than three minutes or
RMF reports an average mount pending
percentage greater than ten , a problem
exists. Some potential solutions are:

1) If input tapes remain in the storage
area until a mount request appears
on the console, pre-staging tapes
based on a job schedule will greatly
reduce mount time. One method of
accomplishing this is to have
someone review all job run requests
and through the use of a tape

management system, note which input
tapes each job requires. This will
allow for the pulling of these tapes
prior to the job executing. Some
automated scheduling packages can
generate a list of tape volumes that

will be needed up to 24 hours in

advance

.

2) After an output tape has been
created, it should not be refiled
immediately unless it is known that

no subsequent step/job will be using
that volume as input. It is best to

place newly created tapes on a

holding cart for from one to two

hours prior to refiling.

281

3) All tapes should have external
serial numbers on the spine of the

cartridge/case to facilitate quick
identification

.

4) For input tapes prestaged in the

operator area, quick retrieval is

enhanced if they are grouped in some
logical manner. This could be in

serial number bands or by
jobname/appl ication group.

5) The tape drive configuration should
be conducive to quick access by the

operator. (See §5 under scratch
tape Mounts.)

3.1.3. Allocation Recoveries

An allocation recovery occurs when a job

step requires more physical peripherals
(in this case tape drives) than are

physically on-line to the system. This

job step and all subsequent jobs

allocating tape drives will wait until
the allocation request is satisfied.
Therefore, a small number of these can
greatly impact throughput. These can be

measured by an analysis of the hardcopy
log. NOTE: SMF has a record type for

allocation recovery but does not time
them, nor are all responses counted. If

more than 10% of the tape mounts result
in an allocation recovery message, a

problem exists. Some possible solutions
are

:

1) Each job which requires tape drives
should be so identified to the

operator along with the highest
number of drives required
concurrently. This can be

accomplished either by using a

position in the jobname
(i.e., seventh position indicates
the number of drives), by use of the

JES /* SETUP card, or by use of a

special job class.

2) A master console operator should be
constantly reviewing the number of

drives available before releasing a

tape job for execution. The
standard IBM commands are available
for this purpose.

3) If the tape pool is shared between
two or more CPUs, excellent and
constant communication needs to
exist between the operators.

4) Review tape requirements of all jobs
for possible reduction. Small tape
files may be candidates for disk.
Use of flip/flop on tape files
should only be done when the file is

greater than three reels. Allocate
files to the same drive whenever
they are not required to be open at
the same time (i.e., SORTIN and
SORTOUT files). Use FREE&CLOSE on
any tape files which are closed an
appreciable amount of time before
EOJ (i.e., SORTIN when SORTOUT is to

disk).

3.1.4. Tape Load Failures

A tape load failure occurs whenever a

tape fails to become ready the first
time it is mounted on a drive. The
operator is then required to remount the

tape. An abundance of these are
aggravating to the operators and degrade
job throughput. If more than 5^ of the

tape mounts are resulting in load
failures, a problem exists. Some
potential solutions are:

1) Institute a practice of tape leader
inspection after each load failure
rather than just retrying the load
operation. If the leader is

damaged, it should be clipped before
the tape is reloaded. Failure to do
this will only cause the problem to

get worse.

2) For tapes in "easy-loader"
cartridges, be aware of situations
where the tape is removed from the
cartridge to accommodate
non-cartridge loading drives. If

these exist, they are probably the

cause of leader damage. Removing
the tape from the cartridge also
causes the leader to not be
positioned near the cartridge
opening, which will degrade load
performance

.

3) For tapes not in cartridge, the

leader should be retained with a

282

sponge rubber gronnnet to prevent
damage

.

4) The temperature and humidity in the

computer room and in the tape

storage area should be within
manufacturers specifications.
Temperature in the range of 65-75

degrees and relative humidity of
35-45% is usually acceptable.
Deviations from these could cause
excessive static and inhibit loading.

5) The hardcopy log can be used to

identify problem tape drives. The

vendor should insure that those

drives are at the proper maintenance
level and that they are operating
within specifications for airflow
and suction.

6) All tape drives should be cleaned at

least once every eight hours.

3.2. Disk Operation

Control of the disk pool is extremely
important. Almost all jobs will either

use permanent disk data sets or require
temporary work space. Three measures of

performance are discussed: allocation
recoveries, space allocation and ENQ
delays.

3.2.1. Allocation Recovery

In a data center with mountable
disks, allocation recoveries can
impact throughput. An allocation
recovery occurs whenever a mountable
disk request cannot be serviced on

the available drives. If more than

10% of the disk mount requests (as

measured on the hardcopy log) result

in an allocation recovery, there is

a problem. Exclude from this count

allocations for temporary space.

Some potential solutions are:

1) Review scheduling procedures.

The master console operator

should be made aware of all

mountable disk requirements
either via JES /* SETUP cards

or a list of all jobs' disk

requirements

.

2) Attempt to schedule together,
jobs which require the same
mountable disk. This reduces
both the number of mounts and
the potential for allocation
problems

.

3) If scheduling does not relieve
the problem, evaluate the cost
effectiveness of adding
hardware and making the problem
disks permanently resident.

3.2.2. Space Allocation

Insufficient temporary disk work space
will significantly reduce throughput as

a job waits for another job to release
space. This problem is difficult to

measure, but the console operators are
very aware when it is occurring. For
this reason, interview and the operators
note the level of complaints about space
allocation problems. If these are high,
some potential solutions are:

1) Review space requirements of all

large users of scratch space. After
identifying the jobs, certify that

their space requests are justified.
For SORT WORK data sets which are
created in one step and passed to

another, console/sysout information
should be available from which
actual space required can be

calculated. For data sets the use
of SMF EXCP counts on file creation
plus block size information can be

used to calculate space needed. For

files entirely used within a step,

SMF EXCP counts can give activity

but the programmer will need to be

questioned on the number of times

the data is accessed.

2) Always allocate in cylinders or

rounded blocks to increase
performance and decrease
fragmentation

.

3) For files which vary greatly in

their volume, use the primary

allocation for the expected volume
with a secondary allocation to

handle unusual volumes. Potential

problems exist with this if the

secondary is not available in the

283

middle of a long running job. Use
of RLSE in the JCL will allow
freeing of unneeded space after the

file is closed.

4) Dedicate disk packs for use as

scratch packs and insure that no
permanent data sets are allocated to

them.

5) Regularly execute maintenance which
scratches unneeded data sets and
data sets remaining after a system
crash

.

6) Avoid scheduling two known large

work space users at the same time.

3.2.3. ENQ Delays

ENQ delays occur when two jobs require
the same resource and one of them cannot
share the resource. The most common
occurrence are two jobs accessing the

same data set and one has DISP=OLD.
However, ENQ delays can also occur for

catalogs and VTOCS. Often an ENQ will
result in a swap out of the second job

requesting the resource. If RMF
indicates you are experiencing more than
.01 ENQ swaps per second , a problem
exists. Use detail RMF enqueue reports

to identify the causes of the ENQ
swapping. Based on these findings, the

following solutions are available:

1) The ERV (enqueue residence value) in

lEAOPTxx member of PARMLIB should be

set at 500 to allow time to resolve
enqueues before swapping occurs.

2) DSN - if many ENQ are occurring
because two jobs are requesting the

same data set, attempt to either
reschedule the jobs or have their
execution tied together via an
lEBGENER step whereby a successful
execution of one job will cause
automatic submission to JES of the

subsequent job. Also, review the

use of DISP=OLD to insure that
updating of the data is being done.
If this is a read-only operation
DISP=SHR should be used.

3) VTOC - ENQs occurring on the VTOCs
of storage packs, indicates a need
for more scratch packs. Contention

for allocation of work space is

lessened when there are more
candidates for allocation.

4) Catalog - ENQ problems involving
catalogs usually only occur on large
TSO systems. They are indicative of
the need for a split of the problem
catalog into smaller user catalogs.
The most logical breakdown is best
and easiest to maintain (i.e., by
department, application, location).

3.3. Printer Operation

The performance of the printer subsystem
is vitally important in that it produces
the product the end-user actually
receives. Quality, clarity and
promptness are important in this area.
The main measure is user satisfaction.
If during the user interviews,
complaints about printed quality are
raised, the printer operation needs to

be investigated. If delivery of
printouts is sited as a problem, RMF can
be used to measure printer usage. If

the average percent not ready is less

than 10% and the busy percentage is not
in a range of 30-70%

, printer operating
procedures should be questioned. Some
potential solutions are:

3.3.1. Quality Problems

1) For impact printers, the ribbon
should be changed regularly.
It is better to have a set
interval rather than waiting
until it is noticed that the

printing is getting light.

2) For nonimpact printers, the

toner should be refilled on a

regular interval.

3) Cleaning of the printer either
by the vendor or by the

operator should be done
regularly. Once a shift for

impact, every hour for

nonimpact

.

4) Preventive maintenance is

extremely important and
deviations from the vendor's
recommended schedule should not
be allowed. It may be

284

inconvenient, but in the long
run it will provide higher
quality output and more
sustained periods of up time.

3.3,2. Output Delivery Problems

1) Insure that the configuration
is conducive to good work
flow. Are the paper
load/retrieve areas on the

printer easy to access? For
example, the 3800 paper is both
loaded and removed from the

front. Having two 3800s face

each other will allow one
operator to quickly service
both.

2) Adequate storage area should be
available around the printers
to pre-stage both stock and
special forms paper so that the

operator does not have to

retrieve subsequent boxes from
the stock room.

3) Separator sheets between jobs

should be employed. They allow
job differentiation and
eliminate the need to remove
the paper after each job

completes

.

4) Some type of destination
address should be attached
before the printout leaves the

printer area. This can either
be computer-generated or be

added by the operator by using
a distribution list.

5) If the printers are averaging
greater than 70% busy, look
into acquiring additional
hardware. Higher usage than
this is difficult over extended
periods due to maintenance,
downtime and job setup.

3.4. Scheduling

As has been previously mentioned, the

use of an accurate job schedule is

necessary for all data centers. If

during the interviews with the user
community, service complaints arise.

scheduling should be investigated. SMF
accounting data can be used to identify
the flow of work through the CPU. This
data, along with a list of commitments
to the user can be used to determine the
specific service problem areas. Once
identified, the following action should
be taken:

1) Perform an analysis of the abends
experienced by the problem
application(s) using SMF data.
Depending on the abend code,
different actions should be taken.

USER and OCX - usually a

programming problem, but could
be caused by invalid input
data/parameters . Review data
verification procedures and
redesign programs to delete
invalid data and print
appropriate message rather than
abend

.

- 222 - operator cancels should
be eliminated. Investigate the

reason for any cancellations,
inadequate resources, data sets

unavailable or input media not
ready and correct the

situation.

- X37 - usually a space problem.
Assure that adequate work space
is available at all times.

This often occurs during runs
of unusually heavy volumes.
These problems can often be

avoided by use of secondary
space allocations.

X13 - label problem. This

usually indicates a problem in

matching JCL information with
the physical data set

attributes. Use of the catalog
and a tape control system, and

eliminating the coding of

volume and DCB parameters on

input files should correct
this

.

- 001 - usually caused by

read/write errors on hardware.
Review PM procedures and use

LOGREC data to pinpoint problem
devices

.

285

JCL errors - review methods of
updating procedures. Use of
TSO with initials or comments
by each modification is best.

Use of reader procs where the

jobs are submitted via TSO
eliminates card decks and many
override problems.

2) Review critical path of

application. Insure that
operators are aware of which
jobs are in a direct line with
the required output and which
are sideline jobs which can be

processed as time becomes
available. A special SRM
performance group can be used
to guarantee an application's
service levels.

control is two-fold; first user
complaints will be heard when they are
dissatisfied with their reports, second
SMF can be used to report on job
reruns. If more than 4% of the jobs are
rerun, a problem exists. Some potential
solutions are:

1) Install a position of quality
control which monitors all traffic,
both in and out of the computer
room. This would include the
following:

Review all user report
requests for accuracy and
completeness.

- Insure all JCL overrides
are error free.

3) Review start-end time of each
job in the application's cycle
using SMF data. For each job,

the following questions should
be asked:

- Is its current start time

the earliest it can

begin? Is the data
actually ready sooner?

- Is this dependent job
being started as soon as

possible? For example, if

job B requires a tape out
of step 2 of job A, it

should not wait for all
the steps of job A to

complete before beginning
execution. Insert an
lEBGENER after step 2 in

job A, which automatically
submits job B.

4) Review relative priority of

applications, i.e., who gets
delayed when a "hot" job is put

on the system. These
priorities should be documented
and known by everyone.

3.5. Quality Control

Control of a job's input and output is

extremely important for a successful
operation. The measure of quality

- Notify master console as
input becomes available.

Review all SYSOUTS for

good EOJ.

File all SYSOUTS for later
reference

.

- Extract run control totals

as needed.

- Forward abends/JCL errors
to person responsible.

- Review all output for

compliance with user
requests and for quality.

- Log all activity in and
out

.

Log all problems,
including time, person
referred to, solution and
time lost.

2) Install a change control
procedure. This should insure
that both system program and
procedure updates are reviewed
for completeness and are

applied per instructions.

4. Conclusion

The procedure outlined above is not a

one-time experience which is only

286

entered into when the wolves are at the

door. For a data center to operate
effectively, a system of continuous
performance monitoring must be
followed. This insures that few
surprises arise and that adjustments are
made in a calm, controlled atmosphere
rather than a "red alert" panic
situation. It is also helpful if the

measures are done on a work shift basis
with the results published to establish
competition between the shifts.

5. Guidelines

Listed below are the guidelines
discussed in each area:

11 • ocLotcn tape mounL
time 0~60 seconds

0 Input tape mount
time O^j inlnutss

u iu« mount
npnd -i n p (RMF ^

3. Tape allocation
recovery 0-10% of tape

mounts
4. Tape load failure 0-5% of tape

mounts
5. Disk allocation

recovery 0-10% of disk
mounts

6. Disk space
allocation operator feedback

7. ENQ delays O-.Ol ENQ
swaps/seconds
(RMF)

8. Printers user feedback
0-10% NOT READY
(RMF)
30-70% BUSY (RMF)

user feedback
9. Scheduling user feedback
10. Quality control user feedback

0-4% jobs rerun

Evaluating Total Computer Performance for Top Management

Richard L. Fidler

Office of Procurement and ADP Management
Office of the Secretary
Department of Commerce
Washington, DC 20230

Computer performance evaluations, installation
reviews and EDP audits have all focused on an individual
data processing system. It is rare that any evaluation
is made of all computer systems and related functions on
an organization-wide basis. Consequently, there is an
abundance of technical and management information for use
at the installation level but a dearth of management
information for use at the organization's top level.

At the Department of Commerce we are initiating a

new program of installation reviews, to provide useful
information not only to installation management but more
importantly to the Assistant Secretary for
Administration, the top Commmerce official responsible
for the management of computer resources. A three-phase
approach will be used. First, all data processing
installations will complete an annual questionnaire about
their operations. Second, several installations will be
selected each year for on-site reviews. Other, more
technical evaluations may be made as necessary. Finally,
using the summary information provided by the bureaus and
based on the installations' questionnaire responses, an

annual report will be produced for the Assistant
Secretary

.

Key words: ADP management, computer performance
evaluation.

1. Introduction

We know how to evaluate one data
processing installation, but how do
we evaluate all installations, and on
an annual basis, for top management?

This is the question we wrestled
with at the Department of Commerce.
The Office of Procurement and ADP
Management (OP&ADPM) is charged with

eva lust ins 3II installations snd
makina reports and recommendations to
the Assistant Secretary for
Administration? the E'epa rtment ' s top
ADP official.

2. What We Did in the Past

The Department first beSan an
evaluation program in 1976. The
annual review schedule was set by the

289

Office of Audits because ours was an
integral part of their overall review
of a particular office. Typically
one person from our office spent a

week on-site evaluating the
installation. Afterwards he wrote a

report and sent it to the Assistant
Secretary. On occasion the services
of the Federal Computer Performance
Evaluation and Simulation Center
(FEDSIM) were utilized for a thorough
technical evaluation while the
Department of Defense Computer
Institute (DODCI) was called in for
ADP security reviews.

With a complete turnover of
OP&ADPM's top management in 1979, the
new managers felt the program needed
revision, for several reasons:

The program was limited by
resources to only two or three
installations annually.

The focus was on the optimization
of computer utilization, thereby
excluding functions such as
programming and areas such
as adherence to Federal
Information Processing Standards
(FIPS) .

It did not take into account the
ADP security requirements mandated
by the Office of Management and
Budget (0MB) in its Transmittal
Memorandum Number 1 to Circular
A-7 1 .

Therefore, management decided a new
approach was needed and laid down the
following conditions:

1 The evaluation
annual basis

.

should be on an

3.

5.

It should include all data
processing installations within
the Department.

Travel funds for on-site reviews
will continue to be limited.

All functions of the installation
must be reviewed, not just
computer center operations.

All aspects of proper management
security, budget, programming,

user satisfaction must be
evaluated, not just computer
per formance

.

6. The various security;
requirements, particularly those
pertaining to reviews, must be;

included

.

3. Putting Together
the New Program

We felt the easiest, cheapestfii
and fastest way to implement such a;

program was to do what we did withi
our ADP security manual: copy ang

existing one from another agency.

j

Therefore, we contacted about a dozen
other agencies including the General
Accounting Office (GAO) and asked if
they either had such a program or
knew of any other agency which did.
To our disappointment and surprise we
found that no agency was conducting a

program similar to the one we
proposed

.

We found most agencies had no
program at all. Those that had|
programs did not suit our needs. For
instance, one agency had a rather
extensive computer performance
evaluation program using hardware and
software monitors. Another had a

program conducted by its Office of;

Audits. Another had a comprehensive
program but the results did not get
to and were not intended for the
agency's top management. Another
looked at a specific topic such as
ADP security but neglected what we
thought were equally vital areas.
Others did it on a sporadic basis,
very similar to what we had done in
the past. Another agency performed a

review immediately prior to the
installation of any new computer
system. Some had a program which
evaluated computer center operations
but neglected such areas as top ADP
management, programming and analysis
and those users who did not have
their own computer but instead had
terminals connected to someone else's
computer. Even consolidating all
these programs would still not have
yielded a program aimed directly at
top management.

Consequently we
with a totally new
sources we used
questionnaires we obt
agencies having some
program, the audit
our Office of Audits,
of the Faim Tech
magazine articles.

had to come up
program. For
the various

ained from those
kind of review

program used by
several volumes

nical Library,
GAO pamphlets

,

290

I

(j
conversations with

i\ professionals and our own
5 to what information would

4. Objectives

other miscellaneous kinds of installations
thoughts as and technical and non-technical user
be useful. satisfaction. Following is a

sampling of questions.

are
The objectives
to ensure that

of the program
all applicable

regulations, particularly in the
areas of security and standards, are
being adhered to, to determine how
effectively our office is doing our
job and what we still need to do, to
disseminate knowledge of problems and
their successful solutions throughout
the Department, to provide our office
with very basic information about all
our installations and to identify
problems that cannot be resolved by
installation management or the
various bureaus.

We want to evaluate every data
processing installation in the
Department. We generally are
following the guidelines of 0MB
Circular A-7 1 , Transmittal Memorandum
Number 1, as to what constitutes a

data processing installation. Since
their guidelines encompass nearly
everything and everyone involved with
data processing, our evaluation
program takes into consideration the
wide variations we have in Commerce.

5. Proposed Evaluation
Program

By consulting all our sources we
came up with a program that has three
distinct parts: an annual
Commerce-wide questionnaire, on-site
reviews of selected installations and
summarized reports for use by the
Assistant Secretary.

The first part is a

questionnaire consisting of
approximately 250 yes/no questions
and 25 questions requiring narrative
answers. The 25 narrative questions
cover such items as history of the
installation, unusual conditions
(proximity to volcano, area prone to
flood or earthquakes, etc.) and the
mission of the installation.

To be completed by each data
processing installation the
questionnaire has sections for top
ADP management, computer center
management, remote programmers (not
under direct control of this
installation's management), other Is there a portable fire extinguisher

For ADP management:

What is the stated mission of this
ADP installation?
Discuss the reasons for any overtime
incurred over the past year.

For computer center management:

What programs and procedures do you
have to continuously evaluate the
performance of the center's hardware,
software and services?

Are console operator printouts
reviewed daily to detect equipment
and operator problems?

Is the equipment being used for the
purpose given in the justification
statement when it was acquired?

Has the fire department assigned to
service this installation been
notified that this is a data
processing installation?

Are tapes in the tape library stored
vertically?

Have turnaround standards been
established for various classes of
jobs?

Are supplies of critical forms stored
off-site as backup?

Are procedures for using the
telecommunications system documented
for the users?

For systems
management

:

and programming

Is the testing of new programs done
by someone not involved in the design
or programming of the new program?

Is there more than one copy of
program documentation?

For terminals connected to this
computer system:

291

within 50 feet of all data processing
equipment?

For users

:

Describe your workload (cyclical or
erratic, peak times, business or
scientific, etc.).

Do you maintain any manual system as
a supplement to your automated
system?

Have you ever received a copy of the
computer center's user's manual?

The answers to all questions
will first go to top management in

the particular bureau. These people
will summarize the information given
by each installation for each of the
yes/no responses and retain the
completed questionnaires. These
summaries will be responses to our
general questions asked of each
bureau's top ADP management. A

general question may be "What
problems have been found in
implementing measures to detect fire
and water hazards in the computer
center and to protect the equipment
from damage by these hazards?" The
specific questions would ask if (1)
there is plastic sheeting near the
equipment, (2) fire extinguishers are
present, tested regularly and easily
accessible and (3) all operations
personnel are instructed as to what
to do in an emergency. Bureau top
management consequently will have to
become actively involved in this
evaluation program, which they should
be, of course. Bureau ADP management
will also tell us how they plan to
attack any problems they can solve at
their level and will make
recommendations on problems which can
be solved only at our level.

Consequently, at headquarters
level we will receive only the
responses to the general questions as
summarized by each bureau and the
narrative questions pertaining to
each individual installation.

Because these levels of
departmental ADP
management installation, bureau and
headquarters are involved, each
level becomes aware of the problems
created by and which can be resolved
at that level. This involvement by

all levels of ADP management follows
the philosophy that management action
should be taken at the lowest
possible level

.

The second part will be on-site
reviews, similar to what we have done
in the past. Because we will have a

considerable amount of information
including that installation's latest
responses to our questionnaire before
traveling to the site, we should be
able to conduct the review in a time
period shorter than under the
previous program. It is possible
that reviews of smaller installations
will be conducted over the telephone
rather than by an actual visit. The
selection of sites will be somewhat
subjective based on importance, size,
impending acquisitions and other such
factors. A report for each site will
be sent to the top ADP management in
the bureau involved. The purpose of
the on-site review is to ensure that
both our questions and the
installation's responses are valid.

The third part will be the
production of reports for use by the
Assistant Secretary. We do not
intend to issue "report cards" on
each installation. Since the
Assistant Secretary is interested in
the overall performance of all the
Department's installations rather
than in any single installation, we
intend to produce summary reports.
We will particularly highlight those
problems which cannot be resolved at
lower levels or which need additional
emphasis at these higher levels. For
instance, if we find many bureaus
saying that the procurement of ADP
resources is too slow, we will
recommend actions to be taken at
Departmental level to speed up the
process

.

6. Implementation

The implementation of the
program will take a year or more. We
have produced a draft questionnaire;
the next step is to get active user
involvement in putting it into usable
form, i.e., adding or deleting
questions, changing the method of
implementation, etc. We will then
publish a version for use with the
testing phase in which 8 or 10
installations of varoius types will
take part. The program will be
further modified based on the results

292

of the test. At the same time the
non-test installations will get a

copy of the questionnaire (a) to
prepare for the time they too will
have to complete the it and (b) to
allow for their further input. After
evaluating the results of the tests,
the program will be modified again
and the questionnaire sent to all
data processing installations for
them to complete in earnest.

We hope to provide the
Department's top ADP official with
the kind of information needed at
that level to effectively manage the

Department's ADP resources. We also
hope to enable all our installations
to increase their effectiveness and
to help them comply with Federal and
Departmental requirements. We also
expect to find out where this office
can most effectively apply its
limited resources. Since we do not
have the benefit of others'
experiences to draw on, we are
relying heavily on involvement by
users for help and guidance. With
their cooperation we believe this
program can be of benefit to them as
well as to top management.

293

The Air Force Base Level

Computer Performance Managiient Progrim

John K. Graham, Jr., TSgt, USAF

Office of ADPS Management
Air Force Data Systems Design Center

Gunter AFS, Alabama 36114

The Air Force base level Computer Performance Management (CPM)
program is 10 years old this year. More than 100 operating locations
around the world are within the scope of the program. This paper
describes the history and current status of the program. It also
speculates about the future course of Computer Performance Management
within the base level environment.

Key words: Air Force Data Systems Design Center; CPM Project
Officer; Computer Performance Management Technical Center.

1. History

In 1969 the Air Force began converting
its base level computer support from the
Burroughs B263 to the Burroughs B3500 com-
puter. The B263 was an early second genera-
tion piece of equipment with four thousand
characters of main memory and no mass
storage devices. The only peripherals were
reader, punch, and printer. The B3500 is a

third generation, multi-programming computer
with disk and magnetic tape. The B3500 was
supposed to provide the Air Force with
trouble-free support for many years. It

didn't. With the new hardware came new
applications. Either the new applications
or new hardware were incorrectly sized.
Saturation was immediate at many locations.
Compounding this problem was the lack of

operations experience with multi-programma-
ble hardware. Mix management seemed to be
either run one job at a time or load the
system as heavily as possible and let it

thrash. Recognizing these problems, the
Air Force Data Systems Design Center (see

figure 1) began developing a CPM program.
The scope of the program can be described
in two ways. First, within the Air Force,
there are 108 installations with about 120
Burroughs medium system processors. These
computers support 14 Major Air Commands and
Separate Operating Agencies (MAJCOM/SOA)

.

Second, within each installation, instead
of looking just at the hardware, the program
also focuses on such things as software,
personnel, and facilities, in short, the
entire installation. Anything that can
degrade a system's performance, whether it

be a disk channel bottleneck, poor mix
management procedures, or an inefficient
air conditioner, falls under the scrutiny
of the program.

In 1970 the Design Center purchased a

D-7700 hardware monitor and trained analysts
in its use. For the next year, the analysts
evaluated different hardware monitors. The
Dynaprobe D-7900 from COMTEN was selected
and several were purchased. Our early CPE

efforts were centered on the hardware
monitors and on learning what the B3500 was
capable of doing. Two travelling teams
responded to crisis situations by conducting
on-site studies. They also produced a

series of Operations Research Reports that

have since proved to be invaluable reference
texts on B3500 capabilities. Although the

support given individual installations was

excellent, coverage was inadequate. Two

teams could not respond to the needs of the

entire Air Force. To solve this problem,

the Design Center began developing software
monitors. After several years of refinement,

a monitor was developed that was the best

295

HQ AIR FORCE
^

MAJCOM/SOA

I

AIR FORCE
DATA SYSTEMS
DESIGN CENTER

BASE LEVEL
DATA
PROCESSING
INSTALLATION

>

FIGURE 1. The Design Center reports to the Air
Force Communications Command (a major air
command) . It conmiunicates with and supports
HQ Air Force, the MAJCOM/SOAs and the base level
data processing installations.

296

I

trade-off between overhead and the compre-
hensiveness of the data collected. A great

benefit was realized with the development of

the software monitor. With just a little

1

training, almost anyone with operations
experience could perform their own studies.

After development of the software moni-
tor, the direction of the CPM program began
to change. While still performing studies,
the teams began training personnel at all

the sites they visited in the use of the
monitor. A major step in the program's
development was the identification, assign-
ment, and training of "CPM Project Officers"
from each Air Force MAJCOM/SOA (HQ SAC, HQ
TAG, etc.). These project officers act as

! the managers of the CPM program for their
headquarters. With the addition of project
officers, the CPM program was beginning to

take shape. There was, however, one last
major obstacle to an effective program. The
software tools and documentation for those
tools were "bootlegged". That is, they
were dropped off at the locations visited
and were not a part of the standard release
provided to the operating locations by the
Design Center's Quality Control Directorate.

Not only did we have a problem getting the

monitor to the field but it was impossible
to keep updated once it was sent out. We

• just couldn't remember who had which
I version.

In 1978 the Design Center released the

software monitor, its reduction software,
and the associated documentation as a por-

I

tion of the standard base level software
package. The standard release of the moni-
tor removed the last major obstacle to our

providing a tool for continuous use at the

base level installations.

2. Tools.

1 The software monitor is an Air Force

I
developed version of the Burroughs operating

ji system. It is an event driven monitor that

j
captures processor, disk channel, and disk

'i
device statistics. The data reduction pro-

1 gram allows a great deal of flexibility in

computations, date-time selection, and out-

ij

put formatting.

I
In addition to the software monitor,

several other tools and techniques are

available. One is a "snapshot" monitor
that samples the active job mix. A series

j

of tools provide reduction of the accounting
log. The data collected by this method is

used to compile a quarterly summary of use
I statistics, the Configuration Analysis and

Projection System (CAPS). The Workload

Analysis and Modeling System (WAMS) is a
data base compiled from five years of these
use statistics.

Sizing techniques are used to predict
the impacts of new workloads. Through the
use of sizing, it is possible to quantify
new requirements and have equipment In place
prior to implementation to meet those
requirements

.

Simulation and benchmarking are used to
evaluate such things as new processors, new
operating systems, and mix management proce-
dures. A benchmark that closely represents
a typical workload is being developed now.
It will be used to evaluate several software
and hardware options.

Models have been developed that are used
in building the five-year master plan. The
master plan predicts equipment requirements
for the next five years. This plan is

updated yearly and is used for budget
requests to Congress.

3. CPM Applications.

Good tools are important, but in order

to be worthwhile, they have to be applied
in areas where they get results. The best

results of the base level CPM program have
been realized from:

- Disk balancing and tuning.

Bottleneck analysis.
- Mix management

.

- The hardware upgrade process.
- Special projects.

The application that has brought us the

best return for effort expended has been
disk balancing and tuning. Disk configura-
tions at base level installations range

from two channels with two devices to seven

channels with nine devices. The devices

are a mixture of fixed head and moving head

disk. Disk balance is simply placing files

on the devices so that each path to disk
(channel/device) gets equal activity. This

increases the probability of simultaneous

I/O activity and reduces the time that the

processor is idle waiting for disk I/Os to

complete. Disk tuning applies only to

moving head disk. It is the placing of

files on each device so that the highest

activity files are contiguous. This

reduces read/write head movement to a mini-

mum. When the disk system is loaded with

no regard to file placement, device times

range from 40 to 50 ms. On properly tuned

disk, device times are reduced to a range

of 29 to 36 ms. This results in greatly

297

reduced l/O queue times. The combined
results of effective disk tuning and balance
can be impressive. User response time can
be decreased by 20 to 30 percent with a

corresponding increase in throughput. Each
Air Force base level installation is strongly
encouraged to initiate a regular program of

disk tuning and balance and take periodic
measurements to verify the results.

When any component of a system restricts
the performance of that system, a bottleneck
has developed. Without detailed performance
data, identification of a bottleneck is

reduced almost to guesswork. A disk con-
tention problem is sometimes seen by opera-
tions personnel as one of not having enough
memory to get the job done. Had memory
increases been made in these cases, it would
have allowed more jobs in the mix to compete
with the already saturated disk access
resources. The end result would have been

either no improvement or a further degrada-
tion of throughput. Accurate evaluation of

a performance problem requires detailed

information. As an installation develops
some expertise in performance analysis, they

are able to identify system bottlenecks
before they degrade performance.

A computer operator can generate up to

30 percent processor overhead by mismanaging
the job mix. He does this by overloading
the job mix and changing priorities, causing
program swapouts. One major emphasis of the

CPM program has been to learn the best ways
of managing the job mix, then training as

many operators at as many locations as

possible.

The computer upgrade process in the Air
Force is rather involved. The basic philo-
sophy is that each installation should have
enough equipment to meet mission require-
ments without wasting resource dollars.
When requesting an equipment upgrade, the

installation is required to complete a CPM
study that shows:

- The requested equipment is needed.
- The requested equipment will correct

the problem.
The current equipment is well

managed

.

This upgrade process has generated a

much improved ratio of dollars spent to

information processed. Upgrades are now
more orderly, more predictable, and more
effective.

"Special projects" covers a wide range
of activities. They include evaluating new

operating systems, new pieces of hardware,
and evaluating the impact of new functional
software. Benchmarking or simulation are
usually used for these evaluations.

4. Todays Status.

A wide range of applications are served
by the base level CPM program. For these
applications to be well served, an effective
organizational structure is necessary.

The Air Force CPM program has been
formalized under direction from Headquarters
Air Force (see figure 2) . The program is

structured with a single focal point for all
performance management activities within the
Air Force. The focal point is the communi-
cation link between headquarters and Comput-
er Performance Technical Centers (CPTCs)

.

These are the managers of the CPM program;
each is responsible for one hardware type.

Each Major Air Command/Separate Operating
Agency has assigned a CPM Project Officer.
He is responsible for providing the CPM
support for his command. The CPTCs provide
training and assistance to the project
officers as required. The directive also

establishes a requirement for upward report-
ing and a historical data base of perform-
ance data. This need is partially filled by
the CAPS and WAMS described earlier.

The CPTC concept is working well. The
structure is in place and the base level CPM
Project Officers are all trained. Informa-
tion is being shared and passed through the
use of newsletters, working groups, seminars,

and assistance visits.

The AFDSDC has developed a "CPM Guide"
for base level installations. This guide is

an introduction to computer performance
management for operations personnel. It is

also used as a text for training seminars.
The guide covers:

- Developing a CPM study plan.
- Disk balancing and tuning.
- Disk file management.
- Use of the software monitor.
- Job mix management

.

The upgrade process.

Although designed as a stand-alone tool
for operations personnel, the guide is most
effective when used with training seminars.

Training seminars are given at irregular
intervals by either the CPM project officers
or CPTC personnel. The sessions last about
four days. They cover the material in the
CPM Guide and there are discussions on the

298

CO
PS
wuH

o
HO
u
•-5

o
PS
Pj

2
P^U

U
Eh

O

0)

U

u
1-1

o
0)

H
(U

V
c
CO

P4

0)

3a
e
oo

PS

o

299

operating system and the Air Force developed
data communications handler. Training will
continue to be a major objective in the

future.

5. The Future.

Major emphasis of the CPM program in the
near future will be training. As the cur-
rent base level hardware becomes older and

more heavily used, good management practices
become increasingly important. As more
people are trained at the operational sites,

the Design Center, as CPTC, will be less

involved in the day-to-day operation of the
program. The CPTC's role will be one of

advisor

.

The long-term future is exciting. The

Phase IV capital replacement program for

base level hardware is becoming closer to

reality. The Phase IV program is the largest

computer acquisition ever undertaken by the

United States government. This will give
the base level performance analysts a whole
hardware series to measure, evaluate, and

learn. Planning for the CPM program to sup-
port the new hardware has begun. Lessons
learned in the past should prove valuable in

developing this program.

In the ten years the program has been in

existence, there has been one lesson that

has constantly repeated itself. To be
effective, a computer performance management
program demands an ongoing commitment from
people at all levels within the organization.

6. Glossary.

Air Force Data Systems Design Center
(AFDSDC) - Analyzes, designs, develops,
tests, implements, and maintains standard
automated data systems. Acts as manager for
hardware common to more than one MAJCOM/SOA.

Configuration Analysis and Projection
System (CAPS) - A quarterly summary of

machine performance statistics.

CPMe - Computer Performance Measurement.
The use of specialized tools to measure
system performance.

CPE - Computer Performance Evaluation.
The analysis of the data collected in comput-
er performance measurement.

CPM - Computer Performance Management.
The application of evaluation results to the

operation and management of Air Force hard-
ware.

CPM Project Officer - An individual
designated by a MAJCOM/SOA to act as focal
point for computer performance management.

Computer Performance Technical Center
(CPTC) - The focal point of the CPM program
for a hardware type.

MAJCOM/SOA (Major Air Command/Separate
Operating Agency) - The major breakout in

the Air Force organizational structure (HQ

SAC
, HQ MAC , HQ TAC , etc .)

.

Phase IV - The capital replacement
program for base level hardware.

Standard Release - The monthly release
of standard software (object code) and docu-
mentation from the Design Center to instal-
lations worldwide.

Standard Software - Software common to

more than one Air Force command.

300

Prototyping/Benchmarking

301

RTE's - Past Is Prologue

Mitchell G. Spiegel

International Ccanputing Company
4330 East-West Highway
Bethesda, MD 20014

This paper surveys the evolution of Remote Terminal Emulators (PTEs)

.

Major developments in PTE technology are separated into three "generations"
of products. Each generation's unique applications and features are
highlighted. Recent developments are noted and a prediction of future use
for RTEs is provided.

1. Introduction

Remote Terminal Emulators (RTEs) first
appeared as sojiiisticated system drivers
in manufacturing and university[l]

^

laboratories more than 10 years ago. Aside
from the occasional report of a study done
using an PTE, the device has remained a
laboratory curiosity. RTEs have not been
widely used because of the high cost of
their use, lack of portability, requirement
for sizeable resources for stress testing,
and unavailability of trained personnel.
RTEs have acquired a reputation for being
useful primarily in the context of stress
testing systems. A literature search
performed as part of the research for this
paper indicates that RTEs enjoy robust
ajplication to a wide variety of problems.
Ihe RTE is entering its "third generation"
of design. Whereas early RTE systems had
many undesirable qualities, and "second
generation" systems were not generally
available, the new generation of RTEs is

expected to alleviate cost, portability,
resource, skill, and image problems and
open many new areas of potential use. The

^Figures in brackets indicate the
literature references at the end of this
paper.

RTE likely will become a keystone for

system quality assurance efforts. (In this
paper RTEs are not differentiated by the

manner in which test workloads are imposed

on the system under test (SUT) — many
approaches have been used to drive systems
with remote terminal generated work
including: central processor (CP) devices
that reside in the host, also referred to

as simplex drivers; front-end processor
(FEP) drivers that reside in the
cormunication control processor; message
processor (MP) drivers that reside in

concentrators or network switches; remote

set simulator (RSS) drivers that reside
in a microprocessor attached to the
terminal-line interface or in terminal or

cluster controllers; data pipe (EP) drivers
that reside in remote job entry systens;
and remote terminal emulator (RTE) drivers
that reside in a separate external computer
system and are capable of replicating the

entire network as it is connected to the

SUT.)

2. The "First Generation"

"First-generation" RTEs were developed
mainly as debugging systems that used

simplex drivers, individual terminal
simulators, and/or data pipes. A few RTEs

were built in the laboratories of several

303

conputer manufacturers to test systems that

supported large numbers of mixed terminal

types. Reasons cited by Honeywell [2] for

developing its Honeywell Communications

Environment Emulator (HCEE) were to aid in

the checkout and debugging of communication

software; permit experimentation with

software and terminal configurations

(although the terminals did not actually

exist) ; and evaluate iDOth the operational

limits and stress-load responses of on-line

software. In addition, Honeywell felt that

conventional test techniques (such as

checking each transaction path, generating

huge quantities of test data and stress

testing with manned terminals) were time-

consuming and impractical. More

importantly, conventional tests violated a

prime rule of scientific experimentation,

i.e., reproducibility of test conditions.

IBM also mentioned the importance of

the reproducibility of test conditions in

its chronology of experience gained from

its first virtual operating system [3] .

The manufacturer's view of on-line system

viability was and still is a complex

relationship between cost, performance, and

the value of system functions to the using

organization. Fixed values were
established for system ownership cost
(measured in dollars expended over the life
cycle) and function value (measured in the
percentage of productivity improvement per
user) . The viability of the system was
determined by the number of users that
could be supported at acceptable levels of
system performance (e.g., such service
objectives as response time by application
and availability) . Typical on-line service
objectives were specified and then compared
with measures obtained by executing a
series of RTE runs under controlled,
reproducible conditions. Results indicated
the number of users that could be supported
by a given configuration. An interesting
finding of IBM's virtual storage operating
system development group was that, prior to
the use of the measurement driver, more
than two-thirds of all software errors in
system releases were discovered by
customers. Subsequent to the use of the
measurement driver, the ratio reversed, to
a point where three-fourths of all
operating system software problems were
detected before release by the Corporation.

Design characteristics of Honeywell's
first generation RTE were as follows: The
HCEE simulated up to 63 lines (8-terminal)

,

with both asychronous and synchronous (2400
bps) terminal types. Maximum output of up

to ten 100-character I/O pairs per second
could be generated. The initial software
was implemented on a Honeywell 1200 with
64K bytes. Resident software required
about 30K bytes. By contrast, the IBM
Measurement Driver handled up to 256 active
asynchronous terminals on eight lines.
Output was approximately 12 I/O pairs per

second. The initial software was
implemented on an IBM 360/40 with 128K
bytes.

User exposure to drivers was limited to
such tools as those supplied to users of
IH^l's Passenger Airline Reservation System
(PARS) . A unique aspect of the PARS
software support accompanying the test
tools was a system test methodology to
assure quality at any point of the system
development/operation process [4] . This
methodology was an important feature
because of the large nuirtjer (hundreds to
thousands) of terminals on-line in a
typical PARS system. The RTE-like
canponents and their relationship to the
system test methodology were (1) a system
test compiler (STC) used in all £*iases of
testing, beginning with the unit test to

create test records, programs, and
messages; (2) a Remote Set Simulator (RSS)

used to measure the behavior in a batched
mode of individual or multiple terminals
during application package test; and (3) a
system test vehicle (STV) , similar to the
RSS, activated during stress tests from
remote terminals in conjunction with a

prerecorded scenario tape loaded on the

System Under Test (SUT) . All three tools
were also employed during post-cutover
testing to detect problems and to

re-establish a baseline after changes had

occurred. PTEs were made available in
IBM's laboratory to perform stress testing
for sizing various PARS configurations and
to demonstrate the ability of a proposed
configuration to meet its customer's
service objectives.

The PARS stress test demonstration of
performance was extended to other software
product lines in the early 1970 's by IBM
for selected large on-line custcaners. The
hardware/software configuration that
successfully passed the customer's
performance objectives served as a
pilot/prototype vehicle for the general
design and feasibility stages of the
customer's system development cycle [5]

.

The system test compiler (STC) function was
expanded from the PARS implementation to
allow the user to specify in detail the
characteristics of an application's

304

interface with the operating system and
data base, and to specify the application's
consumption of parocessor resources. The
pilot/prototype abroach was limited,

however, by the lack of availability of
RTEs in the user environment. Users had to
form an evaluation team with the
manufacturer's tedinical staff to develop
scenarios for workload, applications, and

data bases. Tests of various workload
levels were performed at the manufacturer's
benchmark facility. Limited test time
forced many ccmpromises on the experiment's
design.

3. The "Second Generation"

The development of the minicaipater
marked the beginning of the "second
generation" of Remote Terminal Emulators.

V*iereas previous RTE iirplementations

required manufacturer benchmark facilities,

minicomputer RTEs were small enough to be

installed at a customer's site. In 1972

and early 1973, two design-verification
models of an RTE were developed by the

MITRE Corporation under the sponsorship of

the Air Force [6] . The first such model,

located at MITRE/Bedford , MA, was a

fixed-site system, used primarily for

program and scenario development, and

interfaced with the SUT through the

switched telephone network.

Ihe second design-verification model

was an on-site system, used primarily for

detailed emulator test and evaluation. The

on-site system was ccnceived as a prototype

RTE to be used in future ADP system

procurements. The on-site system
interfaced through cables directly with the

SUT's ccgranunications line adapters.

Ihe primary hardware component of both

MITRE systems was a Data General Nova 800

miniconputer configured with a fixed-head

disk, magnetic tape, TTY, and SUT interface

unit. The system could emulate up to 16

low-speed asynchronous terminals. The

on-site system had the additional
capability of emulating 8 high-speed (up to

2400 bps) synchronous lines. Software

included a macro pre-processor, scenario
assembler, real-time executive, scenario
interpreter, and data reduction program.
In practice, the on-site system proved to

be more difficult to relocate and return to

an operating condition than had been
expected, primarily because of the very
cannplex nature of the RTE-SUT interface [7] .

Custom-built RTEs were implemented for

miniconputer s and delivered as part of an

overall system architecture in cases where
the RTE was integral to the operation and
maintenance of the on-line system. An
exanple of such an HTE was the
International Computing Company's Network
Exerciser, delivered in 1973 to a carmercial
custaner as part of an on-line transaction
system for their clients. The ETE was
part of a distributed miniccrtputer
network, serving the vital function of
determining real-time problems in the
network software. Client response time

requirements of less than one second,

in addition to throughput rates of
over 100 transactions per second, were
comnon.

An early use of a customized RTE for

evaluating time-sharing services was made
at the Bell Laboratories. During the mid-
seventies. Bell Laboratories spent between
$50 million and $75 million on time-sharing
services. To obtain satisfactory service
from its time-sharing vendors, Bell
constructed an emulator for a DEC PDP-11/45
system and operated it similar to MITRE 's

fixed-site RTE. Each time-sharing service
vendor was required to pass a live-test
demonstration by repeating a series of
tests controlled by the RTE over a two-week
trial pieriod. The results of the tests
were documented for both performance and
charging algorithm baselines [8]

.

Services were retested at unannounced
intervals (about every six to twelve weeks)

to verify that the service was within
contract terms.

The National Library of Medicine (NIW)

used a similar approach to evaluate its

MEDLINE services. The MEDLINE Simulated
User System (MSUS) resided in the front-end
ccxrputer (XDS940) and was limited by the

number of terminals that the front-end
could Qtiulate without degrading system
performance. Stress tests were performed at

NLM by using multiple front-ends to drive

the SUT. The NLM RTE functional and stress

test capabilities were one of about a dozen

RTE approaches unearthed during a survey of

manufacturers and Government agencies

[9,10].

In the mid-1970s, conputer

manufacturers upgraded their RTE

capabilities at their benchmark test

centers by using more efficient and

flexible software. The upgrade enabled

manufacturers to drive SUT's with very

large networks of terminals and terminal

combinations of greater variety. A rule of

thumb for sizing RTE system requirements

among manufacturers estimated that an RTE

305

one size smaller than the SUT would be able

to "saturate the SUT" without falling
behind the scenario rate established for

the test.

Because of the availability of PTEs at
manufacturers' benchmark facilities, and
the large Government investment in on-line
systems and time-sharing services [11] , a
workshop on RTEs was held jointly by the
National Bureau of Standards (NBS) and the
General Services Aininistration (GSA) in

1976. The early results of a procurement
projection study were presented at the
workshop [12]. The data presented
indicated that the volume of procurements
for on-line systems and the number of
remote terminal devices would generate a

need for a system-independent workload
generator that could be used to evaluate
vendor proposals. The related technical
issues were subsequently made available in

a later report [13] . In addition, a major

government case study involving the use of

four vendor RTEs was described [14] . GSA
presented a plan for incorporating the use
of RTEs in the Federal ADP procurement
process [15] . The plan was closely adhered

to by GSA, culminating in the successive
production of three documents: (a) PTE
Specifications, (b) a description of the

use of RTEs in Federal procurements, and

(c) a handbook [16] combining the two

previous documents. This handbook
presented in a compact format rules for

temporary Federal Procurement Regulation 49

on the use of benchmarking and remote
terminal emulators for performance
validation in the procuronent of ADP
systems and services.

About the time the Government began its

examination of RTEs, the manufacturers
publicized for customer evaluation the use

of such devices in conplex system
environments [17,18]. RTEs in

manufacturer's benchmark facilities
provided customers with measures of the
sensitivity of a given hardware or software
configuration to changes in the workload
[19,20]. Custcxners were surveyed to

determine the environment for specific
industry uses of certain software packages
(i.e., operating systan, on-line
application control system, data base
management system, and network control
system) . The results of the survey were
used to construct synthetic representations
of the custoner's aggregate workload.

Performance measures were taken for various
increments of workload to determine system
sensitivity to mixtures of workloads on

given hardware and software configurations.

The emergence of ccxiputer networks
provided a further opportunity for

second-generation RTE applications. Early
networks were designed, tested, and
operated with RTEs attached. Most early
developnents were related to digital
networks. An early example was the
evaluation of the packet-switched
subnetwork CIGALE, the basis for the
CYCLADES network which connects research
centers and universities in France [21]

.

Studies addressed throu^put rates for
different line control procedures and
maximum throughput and transit delays for

packets transmitted under various loading
conditions.

Analytics, Inc., developed a driver
that was eirployed both as a network tester
and as an RTE to evaluate a SUT. The
driver, installed at one of the locations
of the Worldwide Military Command and
Control System [22,23] , enabled the staff
to reduce the time required to certify new
releases of Honeywell's GCOS operating
system from 200-400 man hours to about 20

man hours. The RTE was also able to drive
the network with SUT output responses and
to receive inputs from other network
nodes. The SUT emulation capability
permitted functional tests of multi-level
protocols between hosts, as well as more
conventional throughput and delay exercises.

Public packet-switching networks
generated further functional danands for
RIE-like network exercisers. In France,
the TRANSPAC experimental network required
a tool to provide protocol conversion,
frame error detection, call establishment
and clearing, and a terminal packet data
generator/absorber [25] . Users were given
frame trace capabilities, a list of errors
caused by their software; statistics on
about line errors; frame suppression
capabilities to simulate errors; the
ability to activate frame generation; and
the flexibility to establish calls, vary
messages sent, and detect error
conditions. The products that resulted:

REX25; ESOPE; and SIMAD; have helped users
to develop interfaces with TRANSPAC. REX25
was implemented on a MITiy^ 125, a powerful
minicomputer. ESOPE and SIMAD were
implemented in a Datapoint 5500 RJE
station. A follow-up emulator was
implemented for the Canadian public
packet-switched network, DATAPAC.

Other network testing devices also
received attention during the same time
period.' Both IBM and Bell Telephone
Laboratories developed digital devices for

306

testing analog networks in order to replace
such complex analog test equipment as
oscilloscopes. When an analog signal
arrives at a modem, it is decoded into
digital data, which is subsequently
presented to a communication subsystem
(e.g., a front-end communication processor,
transmission control unit, or host
ccmputer) . Measuring is done by removing
the line from service or attaching analog
measuring equipnnent to the line, modem or

associated interface. The operations staff
must know vi^en to measure and often has
difficulty identifying intermittent
errors. Special skills are required to
read analog measuring equipnent.

Another approach [25] uses the extra
information about the line's performance
(the parameters of the analog signal as
received) . The analog data are passed to a
line quality monitoring (LQM) program in a
separate computer, which analyzes them and
creates appropriate summary information.
The network location of the line quality
monitor conputer is the same interface
point normally chosen for installation of
an PTE (in front of the communications
front-end processor) . The LQM approach
offers the following advantages: (1) the
line stays in service during the
monitoring; (2) the data collected can be a
permanent record of line performance; (3)

the monitoring is continuous, allowing for
identification of transient conditions; and
(4) such an JXM process can be linked to a
network operating system that performs
dynamic routing assignments and network
maintenance control. One installation's
experience with the approach was a
prime shift circuit availability increase
from 82 percent to 99 percent within one
month after IQA began. Over the first
three months of operation, 17 of 21
reported line problems were confirmed as
correctly diagnosed. The monitoring also
proved useful in diagnosing a number of
problons in telecommunication software.

4. The Third Generation

The general problem of network
managment has served as a unifying force to
relate the PTE, LQM and other measurement
and quality assurance functions. A unique
approach evolved from the PARS System Test
Vehicle [26] . Underlying the approach is

the interrelationship between network
operations and network development in order
to maximize user satisfaction (i.e., to
provide successful delivery of services and

I meet user objectives) . The PTE and related

I

network and SUT measurement applications

are integral parts of network "process"
control. Such project activities as
network design, hardware and software
configuration, and capacity planning
interface with the data obtained from
on-line measurement and evaluation at the
network interface. The "sidestream"
processor, a prototype management tool, has
been developed to evaluate the automation
of many labor-intensive management
activities associated with large on-line
environments [27] . As a separate tool, the
sidestream processor can be inserted into
the cOTimunications system's operational
process without disturbing the on-line
applications. The sidestream processor has
the potential of merging PTE applications
with other network management functions in

a single system.

Third-generation PTEs fall into two
major categories: (1) microconputer based,
econcanical versions of small, single-
purpose systems that were previously
minicanputer based and (2) multi-purpose
systems, such as the sidestream processor,
that integrate the PTE functions with
related network managenent functions
demanded by users and managers. Examples
of the former category are under

development by Analytics Inc., (e.g., a

Honeywell Level 6 version of the ASE
System) Computer Sciences Corporation

(e.g.. Data General (DG) MP-200 version of
the MITRE PTE) and Logica Limited
Instrumentation System (e.g., A Texas
Instruments 990/10) . Examples of the
multi-purpose systems are under development
by International Computing Company (e.g., A
Univac V7700 Network Exerciser delivered in

January 1980 as part of the NASDAQ system)

and contemporary manufacturers' large
terminal systans (e.9., IBM's Teleprocess-
ing Network Simulator (TPNS) used on IBM
4300 series systems).

Major features of each third generation

approach follow. The Analytics ASE Level 6

system is designed to handle large stress

test environments by ccanbining multiple
Level 6 systems into a large parallel

system. Conmunication interfaces are

similar to the current ASE implementation.

Computer Science's approach permits an

extremely portable product, weighing less

than fifty pounds in total (power supply,

CPU interfaces, etc.). The prototype DG

MP-200 system can emulate up to 16

asynchronous terminal scripts based on the

same scenario. Available parotocols are

only limited by the flexibility of the DG

307

cx^munication, access manager and
COTHHonication control hardware.
Synchronous communication support
(bi-synchronous) is under development.

Logica, Limited designed their
Canrunications Environment Generator (CEG)

as a hierarchical multi-microprocessor
system in response to a set of requirements
issued by the Central Computer and
Telecanrajnications Agency (OCTA) of the
Br itish Government. A Texas Instruments
(TI) 990/10 minicscaiputer and associated
DXIO software serves as the "master"
control in the syston. Ihe "master" is
connected to up to seven TI 990/5
microccxrputers, which in turn can be
connected to up to nine TMS 9900
microprocessors that function as
micro-progranneble four-channel controllers
(PCOC) . PTE software functions are
allocated across all three levels of the
system. An initial configuration of the
990/5 's and four ECCCs can drive 48 full
duplex lines at 4800 bps or 36 FDX lines at
9600 bps. Ttiroughput rates of 15 I/O pairs
per second can be sustained. Protocols are
currently restricted to Britain's ICL
product line.

The International Ccxrputing Ccmpany
Network Exerciser delivered to NASDAQ
performs all of the coninon RTE functions -

script generation, logging, data reduction
time-stanping, synchronous and asynchronous
line handling - while providing capability
to sairple the cojtanon carriers' lines and
provide for network problem determination.
The UNIVAC V7700 configuration is capable
of handling up to 48 synchronous lines
operating at 9600 bps and sustaining stress
rates in excess of 50 I/O pairs per
second. Ihe software is written in a
portable language (INFOS) that can be
operated on five other miniccmputers. An

advanced third generation design is in
development to incorporate other service
quality assurance functions in a highly
reliable "non-stop" hardware architecture.

The Naval Personnel Research and
Development Center (NPRDC) obtained a RTE
design for a specific workload of up to 64
interactive remote terminals under contract
N6600-79-C-0406. The hardware config-
uration consists of a DEC PDP-11/34 with a
300 mb disc and a hi^ performance
microprocessor from Plessey called a
MIPROC. The PDP-11/34 is used for
carpiling scripts and editing the output to
readable form off-line. The PDP-11/34 and
the MIPRCC run the actual real-time

evaiuatlOTi. They are connected by an
asynchronous control channel and a direct
memory access channel to transfer script !

information from the PDP to the MIPRDC and
to transfer logging output from the MIPROC
to the PDP. The MIPROC interfaces with the

SUT to perform the most time-critical tasks.

McDonnell Douglas Autcanation Company
has developed a siirplex emulator that can ,

drive an IBM 4300 system. The emulator is

written as a CICS application, using the
timing features of CICS to perform the I

time-critical functions. Current plans
call for an extension to full-duplex
emulation capability. 1

Announced, off-the-shelf manufacturer
RTEs have recently added enhanced scripting
capabilities and the ability to function in

both simplex mode and as true RTEs. IBM's

script generator for TPNS produces scripts
from TSO, IMS and CICS trace tapes.

5. Summary

Althouc^i technology has removed many of

the barriers to successful use of RTEs,

some problems remain. Because of the
sheltered status of RTEs during the last

decade, there are very few trained
personnel that can successfully accomplish

an RTE study. Problems with RTE use have
been documented [28,29] , and the
ever-present benchmark problem of lack of
correct scientific method is especially
prevalent in RTE environments [30]

.

Further impediments to RTE use are user

organizations that are still structured
around a production environment, rather

than a service environment. The problems
will be overcome slowly over the next
decade. Although the 30-odd references
appended to this paper represent the bulk

of the published knowledge about RTEs, many
ad hoc studies have been done at the
manufacturer's benchmark facilities.

Since TPNS became a licensed product,

about 100 of the 3,000 installations that
operate medium or large scale DBMSs have
installed TPNS. Certainly a small

percentage, but a large number in just a

few short years. I believe the emphasis on

service to the user, the importance of
system quality assurance, problem
determination, and the continuous interest

in systsns design issues will enhance the
demand for functions an RTE can perform at
its unique position between the entire SUT
and the network [31] . The RTE will, I

believe, become the basis for principal

308

CPtVCPE products for Computer and
Conmunications Studies and for Network
Management.

References

[1] Greenbaum, H., A Simulator of Multiple
Interactive Users to Drive a
Time-Shared Computer System, Report
MAC-TR-54 (MIT, Cambridge, MA, October
1968)

[2] Caplan, R. , Pearlman, J. M. , and
Snyder , R. , A Conmunications
Environment Emulator, Proceedings of
the Spring Joint Ccarputer Conference ,

1969, pp. 505-512.

[3] Schwemm, R. , Experience Gained in the
Developiuent and Use of TSS,

i Proceedings of the Spring Joint
; Conputer Conference , 1972, pp. 559-569

[4] International Business Machines
Corporation, Airlines Control Program
(ACP) System Documentation, Vol. B,

!
GS-20-1435-0, PARS Testing Philosophy,
Rev 1, 9/13/68.

[5] Kirrene, M. , and Spiegel, M. , Design
for Performance, CPEUG (15th Meeting) ,

1979, NBS, Washington, DC, pp. 129-140.

[6] James, D.L. , A Remote Terminal
Emulator for Loading and Performance
Measurement of On-Line Systems,

M72-83, Bedford, MA: The MITRE
Corporation, March 1972.

[7] DeMone, E.C., Remote Terminal Emulator
(Design Verification Model)

,

Description of Hardware, MrR-2677,

Vol. 8, Bedford, MA: The MITRE
Corporation, February 1975.

[8] Wright, L., and Burnette, W. , An
Approach to the Evaluation of

Time-Sharing Systems: MH-TSS, A Case

Study, Performance Evaluation Review ,

ACM SIGMETRICS, Vol. 5, No. 1, January

1976, pp. 8-28.

[9] Watkins, S., and Abrams, M. , Survey of

Remote Terminal Elailators, NBS Special

Pub. 500-4 , NBS, Washington, DC,

P^il 1977, pp. 1-71.

[10] Arthur, C, Remote Terminal Emulator

Development and Application Criteria,

1977 National Conputer Conference ,

AFIPS Conference Proceedings,
Montvale, NJ, 1977, pp. 733-739.

[11] Davis, R. , Welcoming Address, Summary
of the NBS/GSA Federal Workshop on
Remote Terminal Emulators , June 21,
1976, pp. 5-7.

[12] Kiviat, P., Procurement Projection
Results, Summary of the NBS/GSA
Federal Workshop on Remote Terminal
Emulators , June 21, 1976, pp. 36-59.

[13] Wyrick, T., Concepts and Issues
Relevant to the Use of Remote Terminal
Emulator in Teleprocessing
Procurements, Washington, DC: General
Services Administration, May 1977.

[14] McFaul, E., RTE - A Case Study at the
Geological Survey, Sunmiary of the
NBS/GSA Federal Workshop on Remote
Terminal Emulation, June 21, 1976 ,

pp. 122-133.

[15] Wyrick, T. , and Findley, G.,
Incorporating Remote Terminal
Qnulation into the Federal ADP
Procuranent Process, CPEUG (14th

Meeting) , NBS, Washington, DC, October
1978.

[16] General Services Administration
Handbook, Use and Specifications of
Remote Terminal Emulation in ADP
System Requesting, Washington, DC:

General Services Administration,
August 1979.

[17] Bailey, L., Experimental Evaluation of
an Interactive-Batch System Using a
Remote Terminal Emulator, CPEUG 1976
Conference Supplement , NBS Washington,
DC, November 1976, pp. 111-122.

[18] Duke, M., Testing in a Complex System
Environment, IBM Systems Journal , Vol.
14, No. 4, 1975, pp. 353-365.

[19] Currie, R., An Experiment in Synthetic
Benchmarking to Predict MVS
Performance for Broad Mix Systems,

Slides from Proceedings of SHARE 48

Conference , SHARE, Inc., Houston, TX.

[20] Palmer, S., CS-1100 - Sperry UNIVAC
Communications Simulator , CPEUG 1976 ,

NBS, Washington, DC, November 1976,

pp. 197-201.

[21] Eyries, F., and Gien, M. , On-Line
Performance Measur orient in the

309

CYCLADES Network, EURXON 11 , Venice,

Italy, May 1977, pp. 50-55.

[22] Shirey, R. , Tools for Post-Programming
Software Testing in a Dispensed
Multi-Vendor Environment, 18th Annual
ACM Technical Syirposium , June 21, 1979.

[23] Analytics, Inc., ASE Computer
Operations Manual, Naval Electronic
Systems Command, Contract No.

N00039-75-C0145, Technical Report
1152-25-TR-02, Washington, DC,

December 1977.

[24] Giraudeau, P., Description of Services
Offered by REX25, ESOPE and SIMAD for

the Purpose of Establishing an X.25
Module Dialogue, CCETT , Paris, France,

December 1977.

[25] Bryant, P., Giesin, F. , and Hayes, R.

,

Experiments in Line Quality
Monitoring, IBM Systems Journal , No.

2, 1976, pp. 124-142.

[26] Giles, H., Successful Network
Management Hinges on Control, Data
Communications , August 1978, pp. 33-41.

[27] Leach, J., and Campenni, R. , A
Sidestream Approach Using a Small
Processor as a Tool for Managing
Communications Systems, IBM Systems
Journal , Vol. 19, No. 1, 1980, pp.
120-139.

[28] Trehan, V., Problems in Remote
Terminal Emulation, CPEUG 1978 14th
Meeting) , NBS, Washington, DC, October
1978, pp. 27-61.

[29] Tendoklar, N., Determination of
Non-Steady State Conditions in

Performance Measurement Runs, CPEUG
1977 (13th Meeting) , NBS, Washington,
DC, October 1977, pp. 87-94.

[30] Hyman, B., Stability and Workload
Definition for Time-Sharing Systems,
FIPS TG-13 , Document 70, 1974.

[31] Wyrick, T., Benchmarking Distributed
Systems: Ctojectives and Techniques,
ICPCI 78 , Gardonne, Italy, June 19,

1978, pp. 13.

310

Application Prototyping: A Case Study

C. Wesley Jenkins

Budget Analysis Division

Congressional Budget Office
Washington, D.C. 20515

Accurate specification of user requirements for interactive systems is

especially difficult in an environment where the demand for information is

intense, short-fused and largely unpredictable.

The Congressional Budget Office was created in 1975 by an Act of

Congress. Its primary mandate is to serve the Budget and Appropriation
committees of both the Senate and the House of Representatives. The Act also

defined a Congressional Budget process specifying a calendar of events and
specific completion dates for major activities. This pacing of budgetary actions

produces a highly charged environment in which CBO must be able to respond
immediately to information needs with information that is both accurate and
consistent.

In approaching a redesign of some of these highly visible information

systems, CBO decided to follow a strategy of prototyping these systems in order

to faciliate the involvement of the user, highlight the user's real needs and to

demonstrate the feasibility, effectiveness and any shortfalls of the proposed
system before risking either a management or design commitment.

1. Introduction

j

The traditional approach to systems
analysis seems to have serious limitations when

;
applied to interactive information systems that

I are in a state of constant change and growth.

Communications among the user, analyst and

1 manager tend to be imprecise, a detailed

analysis prolongs the process to the annoyance of

the users, and specifications are either am-
biguous or too voluminous to read. To compound
this problem, the user is often requested to

'freeze' his requirements and subsequent

attempts at change are resisted. The alternative

I of an informal analysis only increases the proba-

I
bility that the user will not be satisfied by the

I
new system.

Approaching systems analysis and design

I

around a strategy of prototyping offers a tech-

!
nique that minimizes the dangers of a long

formal analysis and increases the likelihood of a

ii

successful system implementation. The essence

of the prototype approach is the construction,

test, and demonstration of a representation

(model) of the system that is to eventually be

developed. This methodology allows the user to

interact with this skeleton version of his system

and to be more involved in the design. The
analysts and programmers can experiment with

alternative system and data base designs.

Managers can better gauge the expected per-

formance and cost of the new system.

CBO decided that the potential benefits

seemed well worth the initial investment of re-

sources. The following case study of the experi-

ence at CBO includes a brief description of the

background, an overview of the major steps

leading up to the decision to prototype and a

discussion of the prototype plans. Unfortu-

nately, the publication deadline of this journal

precludes a description of the outcome of this

prototyping experience.

2. Case Study Background

2.1 Instant Systenns

The appointed director of CBO, Dr. Alice

Rivlin, took office in the spring of 1975. In less

than six months cin effective organization of

almost 200 individuals had been pulled together.

The Budget Analysis Division was formed to

handle three major functions: (1) providing cost

estimates on all bills reported, (2) keeping 'score'

on the Congressional budget process, and (3)

providing five-year cost projections on the

Federal budget. It was quickly decided that the

last two functions required computerized
systems to provide the necessary information in

a responsive manner. Within a few short months
the necessary information systems had been
developed and implemented by a handful of CBO
analysts with the assistance of contract person-

nel. The systems were installed and run in a
service bureau environment. As time had not
permitted analytical studies, these systems were
considered necess ary stop gap measures to get

up to speed in a hurry.

2.2 Nature of Demands

Serving the information needs of Congres-
sional committees is a unique, and often frus-

trating, experience for the individucils involved

in data processing support. Every request is a
directive that must be answered immediately.
Responsiveness is absolutely critical to the
credibility and viability of an organization such

as CBO. When information is needed, it is often

needed immediately or the value of it is lost.

Flexibility is also a must, as the type of infor-

mation that is in demand fluctuates from
Congress to Congress, chairman to chairman,
committee to committee, year to year, week to

week during the budget process and often hour to

hour during the Budget Committee markup
sessions. The third major characteristic of the

information demands on Capitol Hill is the visi-

bility and impact of the information delivered.

Accuracy, consistency, integrity and security all

are critical data issues.

2.3 EDP Objectives

In 1978 the MITRE Corporation completed
a study of the data processing systems in the

Budget Analysis Division. By this time the

'interim' systems developed in 1975 had become
a gigantic collage. For the most part they were
still providing the needed information in a timely

fashion, but MITRE warned of a further collapse

if the systems were not redesigned. They speci-

fically recommended that a Data Base Adminis-
tration function be established and that the new

design should center around the use of a Data
Base Management System.

The Budget Analysis Division took several

positive steps during 1979. The first step was to
provide a framework of long-range objectives
and strategies to guide the planned redesign and
development efforts. These objectives are high-

lighted below.

Long-Range EDP Objectives

o Effective and efficient information ser-

vices

o Minimize data cind system maintenance
o Improve system flexibility

o Simplify system use
o Improve data accountability and manage-

ment
o Improve system transferability

o Improve data integrity

o Improve ability to monitor system per-

formance

3. Initial Steps

Between June 1979 and June 1980 the

following steps were taken. Each was significant

in the evolution towards using 'application proto-

typing' at CBO.

3.1 Data Management Requirements Analysis

This task was intended to identify and
define the requirements for a more effective

program of data management in the Budget
Analysis Division. An important objective was
to describe the needs from three basic perspec-
tives: manager, user and data processing
analyst. There were several significant observa-
tions made during this study that confirmed the

MITRE recommendations for system redesign

and improving the methods used to manage the
organization's data resources.

A primary concern was with the consis-

tency of information supplied by the Budget
Analysis Division to committees and other users,

both on and off Capitol Hill. Management also

identified quality assurance as a major consider-

ation. The responsibility for updating and accu-
racy verification for each data item should be
implemented as part of an authorization scheme
that would ensure that only the designated indi-

vidual would be permitted to alter that data

item. Other factors involved in a program of

quality assurance should include the ability to

maintain audit and activity records in order to

monitor usage and determine ineffectiveness, to

track the logical and physical growth of the data

base, to monitor system performance and to

assure that adequate data validation is done.

312

FVobably the most imperative requirement
was viewed as the demand for timeliness in

providing the information which is needed by a
Congressional committee. This means knowl-
edge of what data is available and how to access

it is critical. It also means that the organization

of the data base must be convenient and facili-

tate the ease of retrieval and report generation.

This leads directly to a related management
concern for flexibility in data structure. As the

committee demands for information vary radi-

cally with the issues at hand, the point in the

budget cycle and any number of external factors,

the need to accommodate these changing views
of the data is a primary requirement of manage-
ment.

Users with data accountability responsibili-

ties each expressed concern about the need for

better verification and control techniques.

There is a particular need for better verification

of modeling outputs. A related requirement is

for a simulation or test mode when doing data
projections so that the new figures can be re-

viewed and accepted before the data base is

actually updated. In conjunction with these

concerns was a heavy emphasis on the require-

ment for consistency and the difficulties of

accomplishing it when the data is passed so

frequently from system to system, machine to

machine, and one file to another. This redun-

dancy of storage and the complexity of the data

combine with a lacking of documentation and

standards to create a worrisome situation for the

people responsible for the data.

The programmer /analysts indicated a need

to either have better information on all data

files, reports, programs, and procedures or to

have independence of the programs and proce-

dures from changes in the data files. The
programmers spend much of their time at-

tempting to locate a program or programs that

do this or that function in order to modify it or

use it to create a different version.

The outcome of this study supported the

MITRE recommendations. The concerns that

surfaced definitely pointed to the need for a

program of data management and the use of such

tools as a data dictionary and a DBMS. The ideal

environment for data management should pro-

vide the tools, techniques and procedures neces-

sary for an organization to effectively and effi-

ciently monitor and control the allocation and

utilization of its data resources. This process

often involves the recording and controlling of

data about data in a single authoritative source.

It does not necessarily depend on physical cen-.

tralization of data files, but functional integra-

tion is preferrable in order to limit the negative

consequences, such as inconsistency, of applica-

tion independence.

3.2 Application Requirements Analysis

After the successful completion of the

data management study, plans were made to

begin a thorough analysis of user requirements in

the major application areas. The first proposal

called for the following type of information to

be brought together in a workbook: (1) current
environment description, (2) data description, (3)

functional requirements, ('f) management re-

quirements, and (5) standards. This traditional

approach was rejected because the paperwork
appeared excessive, the resources required were
substantial eind the users objected to such a

prolonged process.

An alternative approach was proposed that

called for using the structured analysis method-
ology. This technqiue promised to provide a

rigorous description of the new system with

much less paperwork. This alternative was also

rejected, however, as both management and
users felt that it was a case of overkill for an

organization the size of Budget Analysis Divi-

sion; especially considering our limited technical

support staff.

At this point it was decided to ask the

Federal Computer Performance Evaluation and
Simulation Center (FEDSIM) for advice. A rep-

resentative of FEDSIM, Mitchell Spiegel, spent a

few weeks evaluating our data processing per-

formance problems and considering our known
requirements. Mr. Spiegel's recommendations
basically supported the MITRE conclusions and
indicated a need to begin moving to a new data

processing environment. He also confirmed the

suitability of a DBMS for the type of data

processing requirements that exist at CBO.

3.3 Decision to Prototype

Based on the FEDSIM and MITRE con-

clusions about the benefits of a DBMS, CBO
decided on the following course of action. The

user requirements for the major applications

would be briefly defined, then an evaluation of

DBMS packages would be undertaken. The DBMS
that appeared to best meet the CBO require-

ments would then be leased for a 60-day period

in order to verify the conclusions of the paper

evaluation and to conduct performance tests.

With the decisions about data base management
systems, data dictionary, ad hoc languages,

development languages and report generation

tools completed, the plan would be to move
rapidly into application design and development.

As this plan evolved, it became clear that

the 60-day test period offered an ideal opportu-

nity to bring up a model or prototype of one of

the major systems needing redesign. As the

313

possibilities were discussed, it became clear that

this approach provided several advantages.

First, it was an excellent way to involve the

user, to capture his interest and to obtain spe-

cific feedback on certain techniques that were
being considered. Second, this approach would
allow us to demonstrate the various capabilities

proposed to the managers who are actually re-

sponsible for the 'go/no go' decision. Third,

performance statistics and loading tests would
provide excellent information for estimating the

resource utilization impact and requirement of

the proposed system. Forth, the technical team
would be able to test alternative system designs

and data base structures.

In short, application prototyping appeared

to be an excellent approach under the circum-
stances. CBO decided to proceed with this plan.

Initial DBMS Evaluation

The basic application requirements were
documented. Major user concerns were obtained

through interviews and any significant data pro-

cessing problems in the current EDP environ-

ment were described. Management supplied

long-range goals and strategies to guide the

process. Within a short time, a profile of

mandatory requirements had been put together

to be used in evaluating the DBMS packages
available.

CBO started with a list of some twenty
DBMS products. The list was quickly reduced to

seven contenders, who were invited to present

their packages. The information on each con-
tender was captured on a standard form that

addressed the areas of major concern to CBO.
An initial evaluation eliminated four more pack-

ages. The remaining three contenders were
examined in detail and evaluated within cate-

gories that had been assigned weight factors by
management. This process resulted in clearly

placing one DBMS above all the rest in its ability

to meet the CBO mandatory requirements.

If-, Prototype

With the DBMS selection decided, steps to

prepare for the prototyping were started. The
choosen DBMS was leased for a 60-day period,

training for the participating programmers was
arranged and the DBMS was installed at a con-

venient service center on Capitol Hill. A de-

tailed test plan was written, the application to

be prototyped was choosen and the scope of the

prototype was defined.

k.l Test Hypotheses

As the test period is of limited duration, it

is important to specify in advance the hy-

potheses that are going to be tested. In the case

of CBO, these hypotheses relate to both the
application and the use of the DBMS and data
dictionary.

(1) Use of a DBMS is in concert with
overall BAD EDP objectives and re-

sponsive to user requirements.

(2) An integrated or active data dictionary

provides important support to efficient

and effective management of EDP re-

sources.

(3) Use of a high-level, user-oriented pro-

gramming language for the develop-
ment of interactive applications is an

efficient and effective method for re-

ducing system development and mainte-
nance costs.

('f) The cost analysts in BAD will use a
high-level, user-oriented language to

query data bases, write simple reports

and perform certain types of generic

updates to data for which they are

responsible.

(5) Use of a CRT improves the ease of data
entry and reduces the need for hard-

copy reports by providing users with a
convenient method of viewing this data
interactively.

It is important to either confirm these

positions or document any shortcomings or prob-

lem areas during the prototype. Management
and technical decisions based on these hy-

potheses will have a far-reaching effect on
future EDP developments at CBO.

^.2 Prototype Design

Several decisions had to be made about the

scope of the application prototype before an
actual prototype design could be developed.

CBO decided to use the five-year projections

system and to load the entire data base for the

test. The DBMS development language and
COBOL would be used in the prototype. The
DBMS would be installed under CICS and full-

screen, 3270-like devices would be used. It was
also decided to load the data dictionary first and
to utilize it cis an active part of the application

prototype.

The next major task was the definition of

the application functions to be performed. One
goal of the prototype is to demonstrate an
effective method for accomplishing interactive

data updating. This will include adding new
records to either the data file or the reference
files. The prototype will provide for changing
several fields and for record deletion. These
data updating functions will provide full-screen

314

!

capabilities, interactive editing of data entered

and concurrent interactive updating of the data
files by multiple users.

Other techniques of updating that will be
I tested as part of the prototype include inter-

active generic updating and batch updating of

the data files with external data. The generic

updating is a capability currently used in the

projections system. It allows the user to specify

a change for certain fields within a selected set

of records. The following types of change will

be permitted: zero, blank, add a field, and move
a field. The batch updating will show the ability

of the system to accommodate the addition of

data from a sequential file.

Another objective of the prototype is to

demonstrate selected interactive data retrieval

i
techniques and to display the data retrieved

using full-screen terminals. There are two

I

primary approaches to providing the users with

I this type of capability: one involves guiding the

user through menus, tutorial aids and carefully

I
designed parameter selections and the other is

I

through the use of a powerful English-like query

I

language that a non-technical user can utilize to
I' state his own requests. The first approach is

similar to techniques currently used, but it be-

comes more convenient to the user with full-

screen speed and more fleixible with a DBMS
providing the retrieval capabilities.

The prototype will be designed to provide a

menu-driven query capability that offers several

retrieval options. Within these options there will

be choices on what data the user wishes to

display. The prototype will also provide a

browse capability that will allow the user more
flexibility in selecting retrieval characteristics

and to combine these parameters with Boolean

operators or range operators. In all of these,

appropriate facilities of the full-screen termi-

nals will be utilized.

j

The ad hoc query language will also be

tested as part of the prototype. The technical

{

team will exercise the ad hoc facility and

i

measure its performance. Non-technical users

I will experiment with the ad hoc language in

order to evaluate its ease of use, ease of

learning and usefulness.

Another objective of the application proto-

type is to test and evaluate the report genera-

tion facilities available with the selected DBMS,

j

This will involve producing three or four of the

I
projection reports off the prototype data base,

j

The usefulness and efficiency of the selected

j

Report Generator facility in creating these

reports will be evaluated. At least one or two of

these reports will also be produced using

COBOL. This will provide us with better infor-

mation on the performance differences between

the two approaches, the relative programming
difficulties and costs, and the relative

flexibility.

Other factors that will be evaluted via the
prototype include:

o Recovery from a system failure. This

will include an analysis of the automatic
recovery capability from both an effec-

tiveness and efficiency point of view.

o Ease and cost of reconstructing the

prototype data base.

o System utilities to backup and reload the

prototype data base.

o Flexibility of DBMS to accommodate
changes to data structure. This will

include adding new fields, adding dif-

ferent record types (new logical view),

changing fields from non-key to key,

changing a logical view, or changing the

physical attributes of a field. These will

all be analyzed as to their impact on the

prototype programs already written.

o Data dictionary facilities.

o System utilization and performance re-

ports.

o Levels of security.

5. Conclusion

At this moment the technical team is

putting down the final design specifications for

the prototype. Report and screen layouts have

been completed and all the programs to be

written have been identified. The actual proto-

type test period begins the last week in 3uly; one

week from now. We are optimistic that this

application prototyping strategy will provide the

information needed to assure a successful re-

design of CBO's major data processing

applications.

315

Operating System Performance Meters

317

Performance Evolution in a Large Scale System

Richard S. Brice
J. Wayne Anderson

Los Alamos Scientific Laboratory
Los Alamos, New Mexico

This paper documents the evolution of system performance in an
operating system from its initial use by a few friendly users in
October 1978 to its present state. The system, DEMOS, was developed
for the Cray Research Inc. (CRI) Cray-1 computer at the Los Alamos
Scientific Laboratory (LASL) by staff members in the LASL Computer
Science and Services Division. Some important features of DEMOS
architecture are described. It is shown how the robustness in the
design permitted major reduction in overhead to be achieved with only
minor software changes. Particular emphasis is placed on file system
design and performance because much of the system overhead reduction
occurred as a result of changes to this system component. Also, some
predictions are made regarding performance resulting from proposed
modifications

.

Key words: System tuning; message overhead; capabilities; modular
design.

1 . Introduction

In October 1978, the DEMOS operating
system, which was developed at the Los
Alamos Scientific Laboratory, became avail-
able for use by friendly users at LASL on
the Cray-IA computer. Hardware to support
I/O included 7 channels, 7 disk control-
lers, and 13 Cray Research, Inc. (CRI) DD19
disk drives. Sustained I/O rates were
expected to be in the 20-60 Mbit/s range
[1]. This rate approximates the maximum
for a single channel/contoller/disk (35
megabits). Initial measurements showed
that the system would support only half the
minimum range value at an overhead ranging
from 50% to 80% of the CPU. What had gone
wrong? Could it be fixed? What would the
fix cost?

In this report, we analyze the DEMOS
design and its underlying assumptions. We
show how minor changes enabled the system
to support the anticipated I/O workload

with acceptable overhead, and we quantify
the improvement expected from further
enhancements

.

In Sees. 2 and 3 we present brief
overviews of DEMOS architecture and its

implementation, and the file system design.

Detailed descriptions can be found in Refs.

1 and 2. In Sec. 4 we present some

measurements, problems, and solutions

encountered early in the evolution. In

Sec. 5 we present some recent (and as yet

unsolved) problems and speculate on

performance gains that might be achieved by

alternate solutions to the problems.

2. DEMOS Architecture

The fundamental computational process

in DEMOS is called a task. A task consists

of a program and its associated state

information, a memory area, and a link

table that provides capability-like access

to resources in the computing system [3].

319

In the simplest case the terms "task" and

"user job" may be synonymous, although a

user job usually consists of many tasks,

active either serially or in parallel.

One designated task, called the

kernel, assumes ownership of the hardware
interrupt facility and access to all

executable memory when the machine is

deadstarted. The kernel contains hardware
I/O drivers, interrupt management, the

basic intertask communication mechanism,
and the link creation/manipulation
facility. Other system tasks are not
distinguished from user tasks; however,
they are able to acquire some special
capabilities (links) as a side effect of

the order in which they are created at

system deadstart. How this happens is

explained in the following descriptions of

links, task communication, and the

switchboard task.

2.1 System Calls

A system call allows tasks to

communicate with the kernel. To make a

system call, tasks place parameters in

particular registers (for example, an ID

defining the service desired and pointers
to data areas) and then execute an inter-

rupt instruction. The kernel fields the

interrupt, performs the service if appro-
priate, and restarts some task. Typical
system calls are move data (from one

address in memory to another), send/receive
message, and create/destroy link.

2.2 Links

A link is a qualified pointer to the

task that created it. When creating a link

(pointer to itself), a task can endow the

link with properties describing the link's

use and disposition. Link properties
include permission for (or restriction
from) duplicating the link or giving it to

some other task and specification of how

the link is to be used. For example, a

communications link allows messages to be

sent to the creating task and a data link

allows access (through a system call) to

the creating task's memory. The physical
realization of a link also contains other

detailed information that allows the

creating task to determine, on receipt of a

message, which of its links is being used

by the message sender.

A task creates a link by first con-

structing a data area describing the link's

desired properties and then executing the

appropriate system call. The kernel

responds by creating a link, placing its

physical realization in the task's link
table (inaccessable by the task), and
returning to the task an integer
representing the location of the link in
the link table. A task uses the link by
including this integer in a system call.
The link can be used as a message or data
path to the creating task. The message or
data path is established when the creating
task gives the link to another task. When
a link is given to a task, the physical
realization is removed from the giving
task's link table and written into the
receiving task's link table.

2.3 Task Communication

A task can communicate with another
task only if it has a link to that task.

The communication is straightforward. A
task wishing to send a message constructs
the message in its memory area in a format
that has been agreed to by the receiving
task. The message area includes a header
(to be used by the kernel) and a data area.

The header includes an integer representing
a displacement into the sending task's link
table. A system call then causes the
kernel to gain control, select the
specified link from the sending task's link
table, determine which task created the

selected link, and copy the data from the

message area onto a queue of messages for

the task that created the link. The
receiving task will receive the message
only by issuing a receive message system
call. The receiving task can selectively
receive messages from specific subsets of

the links it has given out by enabling
reception only on those links with certain
properties. The desired properties are

specified when the receiving task issues

the receive message system call.

A task owning a data link to the

memory area of another task can access the

other task's memory area through a move
data system call. The mechanism is similar

to the send message system call; however,

the task whose memory is being accessed is

not actively involved in the transaction.
The data is moved by the kernel

.

2.4 Switchboard Task

Some means must exist for tasks to

exchange the links required to establish

initial communication. The switchboard

task fulfills this function. During system

initialization, following a deadstart, the

kernel creates the switchboard task and

forges a link to it. The forged link is

given to each task as it is created. Since

320

all system tasks are created at deadstart
prior to creation of any user tasks, system
tasks are able to use the switchboard to
their advantage. They do this by creating
a number of links to themselves and then
giving the links (along with a name by
which the link should be referenced) to the
switchboard. Properties of some links
specify that they may be duplicated; thus,
the switchboard may give copies of these
links to any task that asks for them by
name. Other links given to the switchboard
may not be duplicated and can be given only
to the first task that asks. Those
nonduplicatable links that give system
tasks their special privileges are obtained
from the switchboard during system
initialization, leaving only the nonspecial
(duplicatable) links to be obtained by the
user tasks. Each user task, when created,
is given copies of a few standard links to
the system; for example, to the switchboard
and to the file system.

3. DEMOS File System

The DEMOS file system software
consists of four memory resident tasks: the
directory manager, request interpreter,
buffer manager, and disk manager. As each
of the four tasks is discussed below, the
design philosophy of the DEMOS file system
will emerge. Also, some potential
bottlenecks and sources of system overhead
will become evident.

3.1 DEMOS Directory Manager

DEMOS files have hierarchical names
that are implemented through special files
called directory files. Data stored in a

directory file establishes a correspondence
between file names and files. The direc-
tory files may be visualized as nodes in a

tree. Directories point to other files,
which may be directory files or data files.

All leaf nodes are file descriptors that

contain such information as the file's

owner, classification, size, and the

location on a disk of the file's data. For

each file descriptor, there is a unique

path through the directory tree from the

system root directory to the file

descriptor.

The directory manager has access to

the system root directory (and thus

implicitly to all files) by virtue of a

special link obtained from the switchboard

at system deadstart time.

Each user task, when created, is given

a link to the directory manager. This link

is the only communication path between user

and file system guaranteed by DEMOS. The
link allows the user to send messages to
the directory manager. Through parameters
embedded in silch messages, the user may
request the directory manager to create or
open files, or may inquire about the prop-
erties of some file. The directory manager
processes requests by using the services of
the other three file system tasks. A
successful create or open request causes a

new link to be created and returned to the
user by the directory manager. During
processing of the open/create request, a

correspondence between the new link and the
file it represents is established by the
request interpreter to support processing
of future transactions on the file. The
user task sends messages containing
requests for file processing (for example,
read, write, and seek) through the newly
created link to the request interpreter.

In summary, the directory manager
serves as the standard user interface to

the file system, has access to all

files/directories, controls file access
through information contained in the

directories, and processes user directory
requests by obtaining services from the

other file system tasks

.

3.2 DEMOS Request Interpreter

The request interpreter serves as the

user interface to the file system for all

transactions on open files. It uses

services provided by the buffer-manager and

disk manager to process user requests.

Files are initially created with no

data in them and no space on the disk

allocated to them. As data is written to

the file, blocks are allocated on a disk to

hold the data. A block contains 4096 bytes

and occupies a sector on the disk.

Programs do not have to deal with blocks

,

however, and may read or write

(sequentially or randomly) any number of

logically contiguous bytes in the file.

The user reads or writes the file by

sending the appropriate message to the

request interpreter through the link

created at file open time. The request

interpreter updates current logical file

position pointers and then requests buffers

from the buffer manager to hold the data.

The request to the buffer manager is made

through a special link obtained by the

request interpreter from the switchboard

task at system deadstart.

Once the buffer manager has supplied

the requested buffers, the request

321

interpreter moves data to/ from the user
space from/ to the buffers. Implicit in
this transaction are data links, supplied
by the user and buffer-manager tasks that
give the request interpreter access to user
and buffer manager memory. A user request
that exceeds the size of available buffer
memory space is fragmented into transac-
tions of acceptable sizes by the request
interpreter and the buffer manager as

buffer space becomes available. A user
request for N disk blocks will be processed
as some number K distinct requests within
the file system, where 1 <= K <= N.

Fragmentation is logically transparent to
the user.

3.3 DEMOS Buffer Manager

The buffer manager supplies interme-
diate storage between a user task's memory
and secondary storage (disks on the Cray
lA) . There are several reasons for buffer-
ing I/O data. In addition to the usual
reasons (for example, CPU-I/0 overlap or

read ahead/write behind) , the buffer
manager allows memory compaction (or

reorganization) to proceed in parallel with
I/O. Also, the buffer manager implements
the interface between byte-at-a-time and
block-at-a-time I/O, thus eliminating the

need for this service to be replicated in
each user task space. The buffer manager
also serves as an adjunct to the CPU
scheduler by limiting the rate at which
user tasks are allowed to complete I/O
transactions and, implicitly, their rate of
CPU usage. A transaction that is not
completely satisfied by the buffer manager
is periodically retried by the request
interpreter until it is satisfied. This
activity is transparent to most users;
however, those who have carefully balanced
their CPU and I/O requirements to match the
hardware capability and to overlap
significantly may notice a dramatic
reduction in apparent system performance;
for example, CPU and I/O usage may have
been serialized.

A user read request is received by the
buffer manager from the request interpreter
as a "fill buffers" request. If the

desired data are in system buffers, those
buffers are returned to the request
interpreter. Otherwise, the buffer manager
allocates buffers and asks the disk manager
to fill them. The filled buffers are
returned to the request interpreter.

A user write request causes the buffer
manager to allocate empty buffers (and

possibly do I/O to empty some buffers).

The empty buffers are returned to the
request interpreter. Filled buffers are
returned to the buffer manager by the
request interpreter for output to disk.

3.4 DEMOS Disk Manager

The DEMOS disk manager maintains the
logical-to-physical disk file mapping
tables and allocates/deallocates all disk
space. Physical disk I/O requests from the
buffer manager are queued by the disk
manager and sent to the kernel disk driver
in a order based on least latency, least
seek time next. In the initial version of
DEMOS, the disk manager-to-disk driver
requests were block (sector) at a time (per
device), because the disk hardware was
oriented to this size transaction. Also
the kernel disk driver did not implement
request queueing.

When the kernel disk driver notifies
the disk manager that a transaction is
complete, the disk manager notifies the
buffer manager and attempts to start
another transaction.

An attempt to extend a file requires
the disk manager to do housekeeping
associated with disk allocation prior to
initiating the user transaction. Disk
space allocation maps are retained on the
disks, so file extensions require the disk
manager to do I/O. The disk manager uses
buffer manager services in a way similar to
the request interpreter for this purpose.

3.5 User/File System Communication Costs

Figure 1 illustrates the logical
communication precipitated by a user I/O
request to an open file.

Paths ml, . .
.

, m8 represent message
paths supported by message links; paths dl

and d2 are data paths, dl supported by a

data link and d2 implemented in hardware;
paths cl and c2 are hardware control paths,
cl being implemented by hardware command
and c2 by interrupt. Paths 11 and 12

represent link creation/ inquiry system
calls

.

The kernel has been omitted from most
paths in Fig. 1 for simplicity; for
example, each of the paths, mi, requires a

send message system call and a receive
message system call, each of which inter-
rupts to the kernel for implementation.

In the simplest case a user I/O
request requires 11 system functions, 4

322

KERNEL 1 11 USER USER
TASK BUFFERS

1

1 ml

1

1

1

1 mS
1

1

1

1
12 REQUEST INTERPRETER

dl

1

1 in2 m7

BUFFER
MANAGER

BUFFERS

1

1

1 m3
1

m6

DISK
MANAGER

1

1

1

1

1

1

1
ml,

1

1

'

m5

KERNEL DISK
DRIVER j

1

1

j

i
ci

1

c2

DISK 1

manager/disk manager, along paths m2, m3

,

m6, m7 . Thus the cost of a fragmented
request becomes:

Cost = 2(6 + 2N + 4(K-1)) messages
+ 3N interrupts + N data moves (2)
+ 2 links.

Throughout the remainder of this
section and the next we will equate the
cost of all system functions. Performance
data are presented later to support this
simplification.

The cost (in system functions) for a

one-track (18-block) I/O transaction is:

Cost (min) = 84 messages + 54 interrupts
+ 18 data moves + 2 links (3)
= 158 system functions.

Fig. 1. DEMOS logical file system
organization.

send/receive message pairs, 1 data move,

and 2 link related system calls; that is,

the data was found in (or moved to) the

buffer manager buffers.

The simplest case involving a physical
disk I/O transaction also requires 11

system functions, 4 send/receive pairs, and

3 disk interrupts (paths cl and d2 are done
by hardware). This case represents I/O

between the buffer manager and the disk.

Those cases including only the disk
manager, kernel disk driver, and disk are

considered to be part of physical I/O.

A user I/O request that requires

physical disk I/O is the sum of the two

above, and requires 22 system functions.

For transactions involving N disk

blocks, paths m4, m5 ,
dl, and d2 must each

be traversed N times, and paths cl and c2,

3N times. The cost in terms of system
functions becomes

:

Cost = 2(6 + 2N) messages + 3N interrupts
+ N data moves + 2 link calls. (1)

A transaction that is broken into K
fragments by the buffer manager adds 4 x

(K-1) send/receives to the cost for

communication between the request
interpreter/buffer manager and buffer

Cost (max) = 228 messages + 54 interrupts
+ 18 data moves + 2 links (4)
= 296 system functions.

Clearly, the cost in CPU cycles of a

system function and fragmentation intro-
duced by the buffer manager are potential
sources of serious system overhead. Figure
2 represents overhead during a sustained
period of I/O transfer and illustrates
potential overhead for a transaction with N

=18. In Fig. 2, the overhead is the

fraction of time the CPU is busy managing
I/O during the elapsed time required to

perform the I/O. The x-axis represents

times (in microseconds) to perform a system

function, and the y-axis represents the

overhead fraction. Overhead curves are

shown for several values of K. Note that

disk latency and positioning times are not

included in the calculations.

OVERHEAD
FRACTION

Fig. 2.

TO 515 TOT

s/SYSTEM FUNCTION

Overhead in a 1-track (18-block)

I/O transaction.

323

Recall that the overhead in Fig. 2

includes only system function overhead and
excludes processing by the file system
tasks. File system overhead will be
incorporated in the next section.

3.6 CRAY-IA I/O Subsystem Hardware

We now describe briefly those features
of the Cray I/O hardware needed to
understand the discussion of sustainable
I/O rates. A detailed description is
found in Ref. 4.

Figure 3 illustrates the topology for
the Cray I/O components used at LASL.
Other topologies can be used. Only a

single channel is shown in this figure.
The controller has two buffers, each a disk
block (512 words) in length. This allows
data transfer between disk/controller and
channel/controller to proceed in parallel.
In this configuration, data can flow from
main memory to the disk at a sustained rate
of 550,000 word/s within a disk cylinder
and 500,000 word/s to multiple contiguous
cylinders. Data flows between main memory
and controller buffer at nearly 4,000,000
word/s

.

The controller signals that I/O is

complete as soon as data has been
transferred between main memory and
controller buffer memory. For sequential
sector output requests, this allows a

window of approximately 1.5 sector times

(1.4 ms) of elapsed time after the

controller signals I/O complete for the

file system to output the next physical
disk block. A longer delay causes a missed
disk revolution. For input, approximately
0.75 sector times (0.7 ms) of elapsed time
are allowed between completion of one
sector and a request to input the next
without missing a disk revolution.

If we assume a value for processing
time in each of the file system tasks while
satisfying a request, we can determine the

maximum value for an acceptable function
cost, where acceptable means a system

function cost that permits software to keep
pace with hardware. To keep matters
simple, we assume a task-processing cost
equal to that of a system function
(measurements confirm this within a factor
of 1.5). With this assumption, maximum
acceptable cost becomes:

COST max(input) = (700 ys)/(22 functions
+ 3 system tasks)

(5)
= 28 ys.

For output, the maximum acceptable cost is

doubled due to the way the hardware
operates. Similarly, the overhead for an
unfragmented N block request can be
determined.

OVERHEAD = 2(6 + 2N) system calls
+ N data moves 3N interrupts (6)
+ 2 links + 3 system tasks.

Again, equating the costs of the five
functions above, overhead becomes

OVERHEAD = (8N + 17)Csf

,

where Csf is the cost of a system function.
Percent overhead, that is, percentage of

time the CPU is busy managing the I/O
transaction, is then:

% OVERHEAD = 100 x (OVERHEAD) /ELAPSED
TIME. (7)

For a continuous (consecutive sectors and
no missed disk revolutions) stream of I/O

requests, I/O ELAPSED TIME becomes Tds x

N, where Tds is the time for a disk sector
to pass under the read/write heads (in our

case, 926 ys).

CONTROLLER

BUFFER 1

BUFFER 2

DISK

DISK

Fig. 3. Cray topology at LASL (1978).

324

Figure 4 is produced using values for
N of 1, 18 and a range of values for Csf in
Eq. (7).

PERCENT

OVERHEAD

^5 50 55 80 100 RO"

SYSTEM CALL COST IN ys

Fig. 4. Percent overhead for nonfragmented
I/O transactions.

When we include a fragmentation

factor, K, Eqs . (6) and (7) become:

OVERHEAD = (8N + 8K + 9)Csf (8)

and

% OVERHEAD = 100 x (OVERHEAD) /ELAPSED
TIME (9)

Figure 5 is a reproduction of Fig. 4 adding
values for K of 3 and 6.

PERCENT

OVERHEAD

7C—?(3—55

—

m im nc rar

SYSTEM CALL COST IN us

Fig. 5. Percent overhead for fragmented

I/O transactions for the case

N = 18.

Clearly Csf and K are important factors in

both overhead and sustainable I/O rates.

In the next section we present some initial

measurements of Csf, K, and I/O overhead

and rates

.

4. Performance Data Gathering

Demos supports both centralized
(kernel) and localized (system task) data
collection facilities. The kernel task
collects information describing all system
calls and interrupts in a circular main
memory buffer. Any system or user task can

extract the data from the buffer. System
tasks collect suiranary information pertinent
to their operation in their local memories.

These tables can be read by programs
running on a computer connected to one of
the Cray channels

.

The kernel buffer data are used to
reproduce a chronological trace of very
detailed system activity at the expense of
writing an enormous amount of data to disk
with the attendant high cost overhead.
Individual task data is used to determine
parameter values associated with more
global events, for example, number of
physical disk I/O requests, number of
active buffers. Both facilities are used
to extract the data in the following
sections

.

4.1 Some Preliminary Results

Early measurements gave average values
for costs of messages, interrupts, data
moves, and file system task processing of

120, 100, 75, and 150 ys
,
respectively.

Using these values and N=l, Eq. (6) gives:

OVERHEAD = 16(120) + 1(75) + 3(100)
+ 2(120) + 3(150)

= 2985 ys.

Clearly, from Eq. (5) the I/O software

cannot keep pace with the I/O hardware;

that is, the minimum time between
completion of sector i and a software

request for sector i+l is over three sector

times. With a stream of consecutive,

single-sector requests, only a single

sector would be read per disk revolution

without some scheme for reading alternate

or every n-th sectors. However, the

hardware read-ahead feature in the disk

controller permits a rate of two sectors of

input per disk revolution. Thus, the

predicted sustainable rate for single-

sector reads becomes

Rate (in) = 2/18 x maximum rate
= 55,000 word/s.

325

From Eq. (7) the predicted percent overhead is

% OVERHEAD = 100 x (2 x 2985)/l6667
= 36% .

The dual write-behind features in the
disk controller and buffer manager will
allow transfer of four blocks per
revolution (after the first) for single-
block writes. During the first revolution,
two blocks are buffered in the controller,
a third is queued in the kernel, and some
number (<= 15) are queued in the buffer
manager. During subsequent revolutions,
sufficient time exists for the block queued
in the kernel and one block queued in the
buffer manager to be written to disk and
two more can be buffered in the controller.
The predicted output rate is then

Rate (out) = 4/18 x maximum rate
= 110,000 word/s

for single-block requests, and the
predicted overhead is

% OVERHEAD = 100(4 x 2985)/ 16667 = 72%.

Measurements taken in October 1978 gave
values of 53,000 word/s at 42% overhead for
single-block input and 94,000 word/s at 73%
overhead for single-block output.

4.2 A Simple Nonsolution

One solution to the problem seemed
obvious: large user requests. For large
requests (for example, one disk
cylinder— 180 blocks) Eq. (6) predicts:

OVERHEAD = 16027 ys,

and from Eq. (7)

,

% OVERHEAD = 100 x 16027/1666667
= 93%.

This seems to suggest that at least large

swaps or program fetches might be done
effectively, because during a full memory
swap or load no user program desires to use

the CPU. Such swaps and loads are coimnon

in our production environment. Measure-

ments show that the average swap is between

200,000 and 300,000 words and a significant

fraction, 30% to 40%, are over 600,000

words

.

Large requests are always fragmented
due to limited buffer manager buffer space
(currently 18 disk blocks). Observed
fragmentation factor values are in the
range N/3 to N/4 for large N; that is, a

180-block request will probably be
fragmented into 45 to 60 small requests
within the file system. Equation (8)
predicts that the resultant overhead will
exceed 100% of the total CPU time. In this
case, the I/O software will not be able to
keep pace with the hardware, and disk
revolutions will be missed.

To test the predicted effect of
fragmentation and overhead on large I/O
transfers, a test was run that would first
fragment the available buffer memory among
a number of small (3-block) requests and
then attempt large (180-block) trans-
actions. Measurements showed a maximum
sustained input rate of 250,000 word/s and
output rate of 140,000 word/s. To
understand how overhead and fragmentation
produce these rates consider the following.

Assume each 180-block request is

fragmented into 60 equal sized requests of
3 blocks each. Further, note that system
tasks are prioritized in increasing order
from user to kernel drivers in Fig. 1. A
summation of processing times required by
the buffer manager, disk manager, and
kernel implied by paths in Fig. 1 gives

3,120 ps required to process each 3-block
request. This is slightly more than the
elapsed time required to read three disk
blocks (926 ps/block). On input, hardware
read-ahead covers for the slight excess and
allows reading to proceed for a while; the
system would eventually fall behind and
miss a revolution. However, no time
remains for communication between buffer
manager and request interpreter. When all

18 blocks (6 requests of 3 blocks each)
have been transferred, the buffer and disk
manager run out of work. During the

resulting missed disk revolution, the
request interpreter completes the

transaction and produces another set of six

fragmented (3-block) requests in the buffer

manager buffers. This gives an effective

rate of half disk speed or 250,000 word/s.

On output, hardware read-ahead is not

available. The disk manager falls behind

after three transfers to disk and, during

the remainder of the revolution, is able to

transfer two blocks to the controller

buffers. The result is a rate of about

five blocks per revolution or 5/18 of

maximum hardware rate, that is, 150,000

word/s.

326

The average rate is well below the
lower end of the anticipated 1/0 demand
range of 20 to 60 Mbit/s and the overhead
for these low rates is still unacceptable.

4.3 Initial Effective Solutions

A simple solution was not evident for
the fragmentation problem, so effort was
concentrated on reducing other overhead.
One improvement was obvious and simple:
increase the bandwidth along paths m4 and
m5 in Fig. 1. As a result of this
increase, a single message can contain a

request for multiple physically-contiguous
disk sectors. This did not require
implementation of request queueing in the
kernel but did permit a reduction in the
number of required interrupts from three to

one for all but the first block of a

request.

For relatively large N, Eqs. (6) and

(8) become:

OVERHEAD = 16 messages + N data moves
+ N interrupts + 2 links
+ 3 tasks + (21 + 2N)Csf, (10)

OVERHEAD = (4K + 2N + 13)Csf . (11)

In addition some small amount of kernel
code to manage messages was converted to

assembly language, and the cost of a

message was reduced from 120 ys to about
75 ys.

These improvements reduced average
system function and overhead cost by about

25%. However, overhead would still be too
high for a sequence of small requests to
keep pace with the disk, and fragmentation
should continue to prevent large requests
from keeping pace. Tests confirmed the
modest reduction in overhead, a modest
increase in sustainable I/O rates, and that
fragmentation could still disrupt large
requests. Tests that attempted to avoid
fragmentation produced more encouraging but
still unsatisfactory rates.

4.4 More Complex Solutions

Several solutions to the fragmentation
and overhead problems were discussed. They
included:

(a) merge the three file system tasks,
(b) increase the number of buffers,
(c) modify the buffer manager to avoid

fragmentation for large requests,
(d) eliminate buffers and buffer

mana:ger, that is, I/O direct to
user space,

(e) treat selected I/O requests in a
special way.

Solution (a) was rejected for three
reasons; it would take much work, would not
address fragmentation, and would not reduce
overhead to an acceptable level (only by
another 20-25%).

Solution (b) was politically unten-
able; the system was already far too large.

Solution (c) seemed attractive but all
proposed schemes appeared artificial and
kludgey.

Solution (d) was undesirable since the
buffer manager satisfied (on the average)
57% of all I/O requests and 67% of all
small requests without resorting to
physical disk I/O. These figures represent
percent of total requests, not percent of
total data volume. Furthermore, changes to
the memory manager, swapper, etc., to lock
user tasks with pending I/O at a fixed
location in memory appeared difficult and
counterproductive to system throughput.

Solution (e) was chosen as the most
desirable. The special treatment consisted
of transferring the data between user
memory, a kernel buffer, and the disk one
block at a time. This required adding a

new message path between the request
interpreter and the disk manager, a buffer
per channel in the kernel, and a small
amount of code in each of the tasks.
During data moves (done by the kernel), the
current address of the task could be
checked; thus no task locking was required.
Only those user requests not satisfied by
the buffer manager and that did not require
further disk allocation were candidates for

special treatment. Typically, these
requests were swaps, program fetches

(loads), and periodic snapshots by user

codes of large tables.

For these requests, fragmentation

would be eliminated and overhead could be

sharply reduced. Initial task communica-

tion to set up the I/O transaction costs 14

system functions (now at a cost of slightly

less than 100 ps average). Processing

during the request costs an interrupt and a

data move (about 175 ps); processing to

clean up and terminate the request costs

six system functions.

327

Figure 6 illustrates the predicted
costs for processing an N block request
using the new scheme or the standard. The
standard curve shown assumes a fragmenta-
tion factor of K = N/3. The new scheme is

referred to here as buffer bypass, or
bypass I/O. The cost for an N block
request with no fragmentation is approxi-
mately the same as the cost for an N block
bypass request; only fragmentation has been
eliminated, overhead remains.

4.5 Current Workload

Several measured 24-hour periods show
that about 60% of all I/O now is treated as

bypass I/O. Another 10% to 15% of the I/O
workload could be transferred from standard
to bypass I/O by allocating a file's disk
space when the file is created rather than
when it is written. As an intermediate
step, the file system could be modified to
allocate large blocks of disk space when a

file is extended.

14000

12000

COST IN 10000

MICROSECONDS 8000

6000

9 18 27 36 45 54 63

N, IN DISK BLOCKS

Fig. 6. Relative cost of bypass and
fragmented I/O.

Figure 7 contains typical measured
rates for various sized bypass requests.

These measurements show that the system can

now support I/O rates at the upper end of

the projected range (60 X 10 bit/s).

Overhead is about 20% for small requests (N

ranges between 9 and 36 blocks) and

decreases with increasing values of N.

Overhead remains constant at about 15% once

N exceeds 5 tracks (90 blocks). The

overhead to support an I/O rate of 60 X 10

bit/s will be 30% if the requests are all

large bypass requests. This 30% overhead
reflects the fact that a program requiring
this rate for a single input or output
stream will have to merge input/output
streams for files on two different
channels

.

The average size of bypass I/O
requests is 16 blocks, and for standard I/O
the average size of a request is 4 blocks.

5. Remaining Problems

Figure 7 demonstrates that fragmenta-
tion and (as a byproduct) overhead are
significantly reduced for large bypass I/O
requests. However, rates are unacceptably
low for small bypass requests, and both
overhead and rates are unacceptable for

standard requests. To understand the cause
of low rates for small bypass requests, we

again sum processing costs of the
components

.

The cost of finishing one bypass
request and starting another is 20 system
functions and two system task times. The
sum of CPU costs for this activity is

slightly longer than the maximum window
allowed in order to continue a sequence of

I/O transactions without missing disk
revolutions. Even though the overhead is

low for large requests, (N >= 9), the

sustained I/O rate will be approximately:

Rate = maximum disk rate
X Tcount/(Tcount +1),

Fig. 7. Observed I/O rates for bypass requests.

328

where Tcount is the number of tracks in the
request. This relation only states that a
track will be missed between successive
requests. The effective rate for 1-track
requests is 1/2 x maximum rate and for full
cylinder (10-track) requests, 10/11 x
maximum rate.

5.1 Some Solutions

Several solutions have been discussed
that should eliminate the missed
revolutions between successive bypass
requests. None have been implemented.
Some of the solutions are:

(a) merge some or all of the file
system tasks,

(b) implement single sector read-ahead
in the kernel

,

(c) signal output complete prior to
transmitting last block to disk,

(d) increase the number of kernel
buffers per channel.

(e) convert more of the kernel to
assembly language and further
reduce the cost of a system call
or interrupt.

Solution (a) is attractive because it
would eliminate some missed revolutions and
would reduce overhead for standard I/O.

However, a nontrivial amount of work would
be required.

Solution (b) would only eliminate
missed revolutions for bypass input
requests. A combination of (b) and (c)

would eliminate missed revolutions for
bypass input and output requests. The
drawback is that read-ahead unnecessarily
ties up the channel and disk. Notification
prior to actual 1/0 completion would allow
hardware errors to go unreported to users.

Solution (d) is attractive because it

is easy to implement and, coupled with (b),

would eliminate missed revolutions for all
bypass requests and for some standard
requests. It would cost a small amount of
trivial code and additional buffer space.
It has the same drawbacks as solutions (b)

and (c).

A combination of solutions (a), (b)

,

and (e) probably represents the best
approach from a performance and reliability
standpoint; however, it also represents the
most work and departs farthest from the
original modular design. Results of (a)

and (e) would be to reduce both overhead
and processing time between successive
requests. One current estimate suggests

that message, link and interrupt costs
could be reduced to about 50 ps with a
moderate recoding effort. A result of (b)
would be to widen the input window (see
Sec. 2.6) to be equal to that of the output
window, that is, 1.4 ms.

5.2 Predicted Effects of Modifications

Using the predicted cost of system
functions, the cost of a standard I/O
request becomes

Cost (standard) = 10 system calls
+ N data moves
+ (3+(N-l)) interrupts
+ 3 tasks.

The predicted cost of a bypass I/O request
with the proposed modifications and times
is

Cost (bypass) = 11 system calls
+ N data moves
+ (3+(N-l)) interrupts
+ 2 tasks.

The costs of standard and bypass I/O are
both reduced to approximately the same
value

.

Figure 8 shows predicted percent
overhead for bypass or standard requests.

12
j

9 18 27 36 45 54 63 72

N

Fig. 8. Predicted percent overhead for

I/O transactions.

An important point with the proposed
modifications and times is that the

processing done between the end of one

request and start of another excludes the

329

costs of all but one data move aad one
interrupt. This places the inter-request
processing time well within the 1.4-ms
window for both standard and bypass
requests. The software should be able to
keep pace with the hardware and, as Fig. 8

shows, the overhead becomes excessive only
for very small requests.

6.0 Conclusions

It continues to be our experience that
when things go wrong with the performance
of a system there will be numerous educated
guesses as to the cause and correction
required; most of them will be wrong or
ineffective.

This paper provides a detailed case
study of how one software project profited
from a performance measurement and analysis
effort that began in early design and was
continued through development, testing, and
production use of the software. We believe
that the results reported here are typical
of those for any large-scale software
development project that incorporates a

comprehensive performance measurement and
analysis component.

Acknowledgments

We thank all members of the LASL DEMOS
development staff and in particular Jim
Clifford and John Montague for providing
insight into DEMOS organization and
operation. We also thank the CRI on-site
engineers for their help in understanding
the details of hardware functions.

References

1. M. L. Powell, The DEMOS File System,
Proceedings of the Sixth Symposium on
Operating System Principles , November
1977, 33-42.

2. F. Baskett, J. H. Howard, and J. T.

Montague, Task Communication in DEMOS,
Proceedings of the Sixth Symposium on
Operating System Principles , November
1977, 23-31.

3. R. S. Fabry, Capability-Based
Addressing, CACM, 17, 7 (July 1974),
403-412.

4. Cray Research, Inc., CRAY-1 Computer
System Reference Manual , Publication
2240004 (1977).

NBS-114A (REV. 8-78)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO. 2.Gov't Accession No. 3, R«cip)e}il'$ Accession No.

4. TITLE AND SUBTITLE fv^in^T ii

i

>l.* l> c*/^ i l'nt/"'ti* r fTrcv^^\^r\^ j^^/^r ^

Proceedings of the Sixteenth Meeting of the Computer
Pprfnrmanrp Evaluation Users GrouD (CPEUG)

5. Publication Date

October 1980

5. Performing Organization Code

7. AUTHOR(S)

Dr. Harold J. Highland, Editor

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, DC 20234

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS rsfree(, aty. state, ziP)

Same as No. 9.

13. Type of Report & Period Covered

Final

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

16. ABSTRACT (A 200-word or less tactual summery of most significant inlormation. If document includes a significant bibliography or

literature survey, mention it here.)

The Proceedings record the papers that were presented at the Sixteenth Meeting of

the Computer Performance Evaluation Users Group (CPEUG 80) held October 20-23, 1980,

I

in Orlando, Florida. With the theme "CPE Trends in the 80's," CPEUG 80 focused on
' new applications that are expected to grow in the 80 's and changes that may occur

i in traditional areas during the 80's. The program was divided into two parallel

j,. sessions and included technical papers on previously unpublished work, case studies,

tutorials, and panels. Technical papers are presented in the Proceedings in their

entirety.

17. KEY WORDS (six to twelve entries; alphabetical order; capijalize only the Jirst letter of the first key '7"'
""{f" ^P''°Pf£ • „ .

separated by semicolons) Benchmarking; capacity planning; computer performance evaluation,

il

computer performance measurement; computer performance prediction; computer system

acquisition; CPE in auditing; installation management; on-line system evaluation;

'queuing models; simulation; workload definition.

1

18. AVAILABILITY [X] Unlimited

I I
For Official Distribution. Do Not Release to NTIS

|X~| Order From Sup. of Doc, U.S. Government Printing Office, Washington, DC
20402

I I
Order From National Technical Information Service (NTIS), Springfield,

VA. 22161

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF
PRINTED PAGES

316

2?. Price

$8.00

USCOMM-DC

i
liOli

sliii

idil

IE

lA

inci

ilE

ai

lien

'llio

iiilii

IlK

liCl

'«

IDlli

b lit;

NBS TECHNICAL PUBLICATIONS

!

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemishy,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

Ciosely related lo the Bureau's technical and scientific programs.

As a special service lo subscribers each issue contains complete

citations to all recent Bureau publications m both NBS and non-

NBS ff.i-dia. issued six tiiTses a year. Annual subscription: domestic

$1.1; foreign $16.25 Single copy. $.1 domcsiic: 5.^7.5 I'oreign.

NOTE: The Journal was formerly published in two sections: Sec-

tion A "'Physics and Chemistry" and Section B "Mathematical

Sciences."

I DIMENSIONS/NBS—This monthly magazine is published to in-

j

form scientists, engii cer.s, business and industry leaders, teachers,

students, and onsu'-^-ers of the latest advances in science and
' technology, w!;h prinary empi:isii on work at NBS. The magazine
1 highlight:^ J..-^d reviews such issues as energy research, fifc protec-

!

tion, bbildi:ig technology, me- ric conversion, pollution abatement,

health and safety, and con;-?;mer producv performance. In addi-

(tion, it reports ihe results of Bureau programs in measuiemeni
I standards and techniques, properties of matter and materials,

engineering standards and services, instrumentation, and
lautomatic data processing. Annual subscription: domestic $11;

j

foreign $13.75.

NOf^PERlODICALS

IVlonographs— Major contributions to the technical lileraiure on
'1 various subjects related to ihe Bufsau's scientific and technical ac-

1 tivities.

'Handbooks—Recommended codes of engineering and industrial

j

practice (including safety coJes) developed in cooperation .viih iii-

llterested ir.dusirses, picfcbSiona' organizaiiofiS. and regulatory

I bodies.

'Special Publications— Include proceedings of conferences spon-

,| sored by NBS. NBS annual reports, and other special publications
' appropriate to this grouping such as wall charts, pocket cards, and

,1 bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and

studies of special interest to physicists, engineers, chemists,

t biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world'.s literature and critically ev^ihiated

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the f(,rcgoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society
(ACS) and the American Institute of Phy.sics (AlP). Subscriptions,
reprint.s. and supplements available from ACS, 1 155 Sixieenih St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information
developed at the Bureau on building materials, components,
systems, and whole structures. The scries presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safely charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in ihem-
.selves but restrictive in their treatment of a subject. Analogous lo

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of olher

government agencies.

Voluntary Product Siandards—Developed undei |,r.

published by the Department of Commerce in Par; iO, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

cf.aracieri.*;lics of the products. NBS administers this program as a

supplement to the activities of tht ptivaie sscioi standardizing

organizations.

Consumer Information SetUi— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understiindabie language and iilustraiions provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order ihe above NBS publications from: Superintendent oj Docu-

ments, Government Printing Office, iVashington, DC 20402.

Order the following NBS publications—FIPS and NtiSlR's—from
the National Technical Information Services, Springfield. V A 22161

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Properly and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127). and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May 11, 1973) and Part6

of Title 15 CFR (Code of Federal Regulations).

.NBS Interagency Reports (N£i: lR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

I,

I BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies

are issued periodically by the Bureau:

Cryogenic Data C enier Current Awareness Service. A literature sur-

vey issued biweekly Annual subscription: domestic $35; foreign

m.
Liquefied Natural Cas. A iiteruture survey issued quarterly. Annual

sub.scription: $30.

Superconducting Devices and Materials. A literature survey issued

qu.irlerly .Annual subs^iiplion S45. Plc.l^c .send subscription o/-

ders and remittances for the preceding bibliographic services to the

National Bureau of Standards. Cryogenic Data Center (736)

Boulder. CO 80303.

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

as.M.

SPECIAL FOURTH-CLASS RATE
BOOK

1298

I

I

		Superintendent of Documents
	2022-04-16T13:42:44-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

