
Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
Technology Administration

National Institute of

Standards and
Technology

Nisr
.''l^.I'lr

INST OF STAND S

N!ST

PUBLICATIONS

NIST Special Publication 500-216

Proceedings of the

Digital Systems

Reliability and Nuclear

Safety Workshop
(NUREG/CP-0136)

Editors:

D. R. Wallace, B. B. Cuthill

L M. Ippolito, L. Beltracchi

-QC
100

.U57

199^1

#500-216

7he National Institute of Standards and Technology was established in 1988 by Congress to "assist

industry in the development of technology . . . needed to improve product quality, to modernize

manufacturing processes, to ensure product reliability . , . and to facilitate rapid commercialization ... of

products based on new scientific discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S.

industry's competitiveness; advance science and engineering; and improve public health, safety, and the

environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national

standards of measurement, and provide the means and methods for comparing standards used in science,

engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized

by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic

and applied research in the physical sciences and engineering and performs related services. The Institute

does generic and precompetitive work on new and advanced technologies. NIST's research facilities are

located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their

principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Technology Services
• Manufacturing Technology Centers Program
• Standards Services

• Technology Commercialization

• Measurement Services

• Technology Evaluation and Assessment

• Information Services

Electronics and Electrical Engineering
Laboratory
• Microelectronics

• Law Enforcement Standards

• Electricity

• Semiconductor Electronics

• Electromagnetic Fields'

• Electromagnetic Technology'

Chemical Science and Technology
Laboratory
• Biotechnology

• Chemical Engineering'

• Chemical Kinetics and Thermodynamics
• Inorganic Analytical Research
• Organic Analytical Research

• Process Measurements
• Surface and Microanalysis Science

• Thermophysics^

Physics Laboratory
• Electron and Optical Physics

• Atomic Physics

• Molecular Physics

• Radiometric Physics

• Quantum Metrology

• Ionizing Radiation

• Time and Frequency'
• Quantum Physics'

Manufacturing Engineering Laboratory
• Precision Engineering

• Automated Production Technology
• Robot Systems
• Factory Automation
• Fabrication Technology

Materials Science and Engineering
Laboratory
• Intelligent Processing of Materials

• Ceramics
• Materials Reliability'

• Polymers

• Metallurgy

• Reactor Radiation

Building and Fire Research Laboratory
• Structures

• Building Materials

• Building Environment
• Fire Science and Engineering

• Fire Measurement and Research

Computer Systems Laboratory
• Information Systems Engineering

• Systems and Software Technology
• Computer Security

• Systems and Network Architecture

• Advanced Systems

Computing and Applied Mathematics
Laboratory
• Applied and Computational Mathematics^
• Statistical Engineering^

• Scientific Computing Environments^

• Computer Services^

• Computer Systems and Communications^
• Information Systems

'At Boulder, CO 80303.

^Some elements at Boulder, CO 80303.

NIST Special Publication 500-216

Proceedings of the

Digital Systems

Reliability and Nuclear

Safety Workshop
September 13-14, 1993;

Rockville Crowne Plaza Hotel;

Rockville, Maryland

(NUREG/CP-0136)

Editors:

D. R. Wallace, B. B. Cuthill

L. M. Ippolito, L. Beltracchi

Systems and Software Technology Division

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

March 1994

U.S. Department of Commerce
Ronald H. Brown, Secretary

Technology Administration

Mary L. Good, Under Secretary for Technology

National Institute of Standards and Technology

Arati Prabhakar, Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer

systems technology within the Federal government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and

related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 500 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and

academia.

National Institute of Standards and Technology Special Publication 500-216
Natl. Inst. Stand. Technol. Spec. Publ. 500-216, 348 pages (Mar. 1994)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1994

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

ABSTRACT

The United States Nuclear Regulatory Commission (NRC), in cooperation with the National

Institute of Standards and Technology, conducted the Digital Systems Reliability and Nuclear

Safety Workshop on September 13-14, 1993, in Rockville, Maryland. The workshop provided

a forum for the exchange of information among experts within the nuclear industry, experts from

other industries, regulators and academia.

The information presented at this workshop provided in-depth exposure of the NRC staff and the

nuclear industry to digital systems design safety issues and also provided feedback to the NRC
from outside experts regarding identified safety issues, proposed regulatory positions, and

intended research associated with the use of digital systems in nuclear power plants. Technical

presentations provided insights on areas where current software engineering pracdces may be

inadequate for safety-critical systems, on potendal soludons for development issues, and on

methods for reducing risk in safety-cridcal systems.

This report contains an analysis of results of the workshop, the papers presented, panel

presentations, and summaries of discussions at this workshop.

KEY WORDS

Configuration Management, Digital Systems, Formal Methods, Human Operations, Nuclear Power

Plants, Nuclear Safety, Software Engineering, System Reliability, Verification and Validation

Certain trade names and company products are mentioned in the text or identified. In no

case does such identification imply recommendation or endorsement by the National

Institute of Standards and Technology, nor does it imply that the products are necessarily

the best available for the purpose.

iii

ANALYSIS OF RESULTS

The Digital Systems Reliability and Nuclear Safety Workshop was held on September 13-14,

1993, in Rockville, Maryland. This workshop, sponsored by the United States Nuclear

Regulatory Commission (NRC) in cooperation with the National Institute of Standards and

Technology (NIST), was co-chaired by Mr. Leo Beltracchi of the NRC and

Ms. Dolores R. Wallace of NIST. The workshop provided a forum for the exchange of

information among experts within the nuclear industry, experts from other industries, regulators

and academia.

The 263 participants came from the District of Columbia, 30 states within the United States, and

10 other countries. While most participants represented nuclear industry vendors, utilities, or the

NRC, many came from other power industries (e.g., fossil power) national laboratories, and other

U.S. government agencies.

This workshop was designed to respond to the need for a forum on the conversion of nuclear

power plant (NPP) safety systems to digital technologies. Many analog hard-wired process

control systems and safety systems within NPPs are wearing out and frequently are being

replaced with systems using digital technology. There are unique design and safety issues in the

development and assurance of safety systems using digital instrumentation and control (I&C)

systems. The NRC is developing regulatory positions and review guidelines to address these

safety issues.

This workshop continued an in-depth exposure of the NRC staff and the nuclear industry to

digital systems design safety issues, and also provided feedback to the NRC from outside experts

regarding identified safety issues, proposed regulatory positions, and intended research associated

with the use of digital systems in NPPs. While this workshop principally addressed the software

engineering issues for safety-critical digital systems, the opening speakers provided a system

overview and perspective to promote an understanding of the broader issues of safety systems

and of the relationship between digital system design issues and the overall development and

assurance of safety systems.

The workshop began with welcoming remarks^ from Commissioner Kenneth C. Rogers (NRC),

Mr. Eric S. Beckjord (Director, Office of Nuclear Regulatory Research, NRC) and

Dr. J. Ernest Wilkins, Jr. (Chairman, Advisory Committee on Reactor Safeguards, NRC). These

speakers identified the benefits of using digital technology in safety systems while acknowledging

the risks and the need for regulation and guidance from the NRC.

The next set of speakers provided regulatory, research, and industry perspectives on digital

upgrades. Mr. William T. Russell (Associate Director for Inspecdon and Technical Assessment,

Office of Nuclear Reactor Regulation, NRC) presented the regulatory perspective. Mr. Leo

'Each speaker's complete presentation is included in the body of this document.

v

Beltracchi (Senior Project Manager, Office of Nuclear Regulatory Research, NRC) stated the

research perspective. Mr. Richard J. Blauw (Commonwealth Edison Company) and Mr. Paul K.

Joannou (Ontario Hydro) provided the industry perspective.

Three technical sessions followed the opening sessions. The first technical session gave an

overview of the state of practice and research in the three major components of digital safety

systems: hardware, software and human operations. The second technical session focused on

the software engineering issues inherent in developing high integrity systems. The third technical

session focused on the methods for reducing risks in the software development process.

The final workshop session was a panel presentation followed by an open question and discussion

period. The panel consisted of academic and industry experts on the risks of safety-critical

digital technology. The NRC asked the experts to address these four quesdons:

1. Are the proper issues being addressed?

2. What other issues need to be addressed?

3. Are proposed NRC regulatory posidons complete and correct?

4. What are the considerations for further research?

Following the panel, the audience asked quesdons, challenged the panelists' posidons, and

provided their own opinions. The result was a valuable dialogue on the future use of digital

technology within the nuclear industry, and the open regulatory and technical issues.

At the close of the meeting, Mr. Robert Mullens presented a short position paper written by

Mr. Wayne Glidden (Duquesne Light Company) on behalf of the Nuclear Udlities Software

Management Group (NUSMG). Mr. Franklin Coffman (Chief, Human Factors Branch, Office

of Nuclear Regulatory Research, NRC) and Dr. Cecil Thomas (Deputy Director, Division of

Reactor Controls & Human Factors, Office of Nuclear Reactor Regulation, NRC) summarized

the workshop issues.

Welcome and Opening Statements

Commissioner Kenneth C. Rogers (NRC), in his opening remarks, observed that while the use

of digital technology in I&C systems has proliferated, the exisdng NRC criteria for analog

systems are inappropriate for digital technology. Regulators and industry must apply knowledge

from other industries' experiences and from academia about digital I&C systems to the nuclear

industry. The nuclear industry has been slow to adopt digital technology, compared with other

industries (e.g., avionics, chemical, transportation, and defense). Commissioner Rogers

encouraged the nuclear industry to propose and implement, subject to NRC approval, new digital

I&C systems. He ended by suggesting that the NRC may have delayed use of digital technology

by not having standards and acceptance criteria in place.

Mr. Eric S. Beckjord (Director, Office of Nuclear Regulatory Research, NRC) called on the NRC
to address the public safety issues, form complete and proper regulatory positions, and undertake

vi

appropriate research as these digital upgrades occur. While digital systems may be more reliable

and perform more functions than analog systems, the purpose of using digital systems is to

improve operator performance. Specifically, the use of digital technology should help in I&C
systems by reducing the false trip rate, improving process control, and improving the man-

machine interface. For example, digital systems have the ability to present information in a more

clear and coherent manner, which may help the operator make a quicker and more reliable

decision.

Some of the techniques used to ensure analog safety systems are inappropriate or need adaptation

for digital systems. For example, the principle of diversity as used in analog systems is based

on the belief that the elimination of common-mode failure is not possible by quality alone. For

software, the effecdveness of diversity is hard to measure and may affect more than the design.

Software testing, configuration control, security control, and formal methods need more study and

use in the design of digital safety systems.

Dr. Ernest J. Wilkins, Jr. (Chairman, Advisory Committee on Reactor Safeguards, NRC) has been

interested in the nuclear industry's udlization of digital technology for some time and has

commented to the NRC on the obvious advantages and disadvantages of digital technology for

I&C systems. Dr. Wilkins' posidon is that the regulations developed before the electronic

revolution are inappropriate to the reguladon of computerized funcdons in NPPs. Currently, there

is no standard review plan or guide that could help both the Commission and the industry know
what is expected of them. Dr. Wilkins affirmed a need for a method to assure correctness of the

specificadon and advocated the use of formal verificadon and validation (V&V) procedures.

Formal V&V procedures assure the correctness of the implementation of the "correct"

specificadon. Dr. Wilkins proposed condnuing recruitment by the NRC of addidonal staff with

appropriate digital I&C background to augment current staff capabilities.

Issue Perspectives for Nuclear Power Plants

In this session, Mr. William T. Russell (Associate Director for Inspection and Technical

Assessment, Office of Nuclear Reactor Reguladon, NRC), Mr. Leo Beltracchi (Senior Project

Manager, Office of Nuclear Regulatory Research, NRC), Mr. Richard J. Blauw (Commonwealth

Edison Company), and Mr. Paul K. Joannou (Ontario Hydro) provided regulatory, research, and

industry perspectives on digital upgrades.

Mr. Russell covered highlights of NRC positions intended to facilitate ongoing reviews. The

reviews include those for the advanced boiling water reactors, the Combustion Engineering

System 80+, and retrofits on operating reactors. He provided a basis for evolving positions on

quality and diversity, and he described a block approach for performing diversity assessments.

The NRC staff recognizes the potential for enhanced safety and reliability that digital systems

bring to the nuclear industry. The staff also recognizes the challenges to safety that are unique

to digital systems implementation. An item used in the process for assessing quality of advanced

reactors is the Design Acceptance Criteria (DAC). The NRC specifies top-level system

requirements and a detailed design process from system performance requirements through V&V.

vii

The process is broadly based on lEC 880 [IEC880]. This covers the approval of the design

process, not the approval of the actual design of the system.

The four major elements, according to Mr. Russell, of the NRC's diversity position are the

following:

1. The applicant shall assess the defense-in-depth and diversity of the proposed I&C
system to demonstrate that vulnerabilities to common-mode failures have been

adequately addressed.

, 2. In performing the assessment, the vendor or applicant shall analyze each

postulated event in the analysis section of the safety analysis report (SAR) using

best estimate methods. The vendor or applicant shall demonstrate adequate

diversity within the design for each of these events.

3. If a postulated common-mode failure could disable a safety function, then a

' diverse means, with documented bases that the diverse means is unlikely to be

subject to the same common-mode failure, shall be required to perform either the

same function or a different function. The diverse or different function may be

performed by a non-safety system if the system is of sufficient quality to perform

the necessary function under the associated event conditions.

.4. A set of controls located in the main control room shall be provided for system

level actuation and control of critical safety functions. The displays and controls

shall be independent and diverse from the safety computer system identified in

Items 1 and 3.

Mr. Beltracchi presented an overview of the NRC research activities and stressed the need to

define a technical basis for digital system requirements. A technical basis comprises the

following:

.1. A requirement has been clearly coupled to safe operations.

2. The scope of the requirement is clearly defined.

3. A substantive body of knowledge exists and the preponderance of evidence

supports a technical conclusion.

4. A repeatable method exists for correlating relevant characteristics with

performance.

5. A threshold for acceptance can be established.

viii

Mr. Beltracchi led the audience through the history of NRC's regulations, which included an

analysis of standards used within the nuclear industry. Only two standards cite digital systems.

Mr. Beltracchi also identified two major regulatory areas of digital upgrades for the NRC to

address: the diversity requirements for safety algorithms and computer unique requirements. He
presented an outline for a framework for an NPP safety system. When completed, this

framework would provide guidance in organizing the digital system requirements for the

hardware, software and the human operator components.

Mr. Blauw voiced a concern in his presentadon that while the top-level view or design of digital

systems may appear simplistic, the implementation of safety reguladons is complex. The nuclear

industry must look at other industries for process control and monitoring. He will be working on

the revision of American Society of Mechanical Engineers (ASME) standard on Nuclear Quality

Assurance (NQA), Part 2.7 [ASMENQA2] to explain differences between design verificadon and

V&V, differences between configuration control and configuration management (CM), and

documentation issues. Mr. Blauw described his experiences with implementing digital systems

in which the concern was the cost-effecdveness of providing the necessary assurance of the safety

of these systems. Mr. Blauw then described the IEEE Standard 7-4.3.2 "Standard Criteria for

Digital Computers in Safety Systems of Nuclear Power Generanng Stadons" [IEEE7432]; utilides

were involved in developing this standard^. This standard is intended to be used with IEEE

Standard 603 "Standard Criteria for Safety Systems for Nuclear Power Generadng Stations"

[IEEE603].

He also indicated that the Nuclear Udlities Management and Resources Council (NUMARC) will

publish a digital upgrade guideline which recommends a licensing approach, and that the Electric

Power Research Insdtute (EPRI) will publish other guidelines. The standards and guidelines

address some principal issues for system design models including project management,

configuration control, failure and error analysis management, and independent review. Currently,

a major problem is that plant drawings and other forms of design documentation are not under

configuration control and are frequently incorrect with respect to the current plant configuradon.

Ontario Hydro of Canada has vast experience in applying digital system technology in a NPP.

Mr. Joannou described some of the issues encountered while licensing the Darlington Reactor

Station, which used a fully computerized shutdown system. One problem was lack of a widely-

accepted definition of "good enough" software; the deficiency led to joint development between

Ontario Hydro and Atomic Energy Canada Limited (AECL) of a family of software engineering

standards, guidelines and procedures for NPP protective, control, and monitoring software. Major

issues addressed by AECL and Ontario Hydro include the reviewability of the software, safety

functions, ambiguides in requirements specifications, software reliability and software

maintainability. One of the problems is that the use of software analysis techniques, such as

reengineering and hazard analyses, is cosdy. The industry needs to develop cost-effecdve

analysis methods. The new standards and guidelines developed during this experience provide

^This standard was officially approved by the IEEE Standards Board at their meeting on September 15, 1993.

ix

rules for documentation, test types (statistically valid, trajectory-based random tests, systematic

tests), software CM (SCM), audits, qualifications of personnel and independent V&V.

Technical Session on Digital Safety Systems for Nuclear Power Plants

Mr. A.L. Sudduth (Duke Power), Dr. John C. Cherniavsky (National Science Foundation (NSF)),

and Dr. Lewis F. Hanes (nuclear industry independent consultant) discussed the problem of

replacing an analog with a digital control system in a NPP from the different perspectives of

hardware, software, and human factors. These different views of the problem resulted in different

definitions of the problem and led to different approaches to solving the defined problem.

Mr. Sudduth provided a hardware view of replacing an analog with a digital system from the

perspective of a senior engineer involved in digital upgrades for control systems in fossil fuel

plants. His concerns are to maintain or improve the level of safety available from the new

system, but also to minimize the downtime for the plant. Mr. Sudduth proposed several alternate

hardware designs using proven components to improve safety. To minimize plant downtime,

Duke Power used a complete control-room simulator to speed up the process of testing the new
system in a setting which closely approximates the actual control room and for training personnel

to work with that new system. Digital upgrades for Duke Power now require only 3 months of

downtime.

Dr. Cherniavsky provided a software view of the problem of installing a digital upgrade of an

analog system from a research perspective. He discussed the research supported at NSF in the

High Performance Computing Communications Initiatives and placed that within the larger

context of NSF software research support. The NSF has a continuing interest in topics related

to safety-critical software. In the past, NSF has funded formal methods research and, in the

future, may develop a Center for Software Safety studies.

Dr. Hanes provided a human factors view of the problem of converting a control system from

analog to digital displays. Dr. Hanes raised issues across the entire system lifecycle including

new requirements that might be imposed on these systems, a better understanding of

anthropometrics and biomechanics, designing these systems to provide the information the

operator needs when he or she needs it, and intelligent aids to support the operator's decision

making after the system is in operation. Dr. Hanes drew on experience in other industries to

identify ways that a digital system can improve crew performance, enhance plant safety, and

avoid problems encountered in those industries.

Each speaker's discussion of methods for addressing the problems reflect their experience and

expertise in a specific technology. Mr. Sudduth viewed the conversion of control systems as

essentially a solved problem from a hardware perspective. The hardware is available and in use

in fossil plants which have an established conversion process. The use of digital control systems

has supplied substantial data on the human factors issues in converting plants, but these issues

are not entirely resolved and still require more research according to Dr. Hanes. In contrast,

X

software engineers are just beginning to grapple with some of the issues in developing safety-

critical systems according to Dr. Cherniavsky.

Technical Session on Software Engineering

The technical session on software engineering focused on techniques for improving the software

development process. The premise of all the speakers in this session was that software developed

using the methods generally in use today does not meet the needs of high integrity systems. The

speakers identified two general areas of concern. The first two speakers focused on the need to

provide accurate specifications. The last two speakers moved the discussion into the need to

design, implement, and test systems to meet the specifications.

Dr. John Knight (University of Virginia) focused on the need to separate the functions of systems

engineers and software engineers, and to ensure an effective interface between them. His point

was that software engineers do not have the system or application knowledge to make decisions

about the behavior of the full system. Deciding what the system should do under each set of

circumstances is the job of the systems engineer. Software engineers need to receive a precise

system specification including all the assumptions and constraints that the systems engineer

expects the software to maintain.

Dr. John McHugh (Portland State University) focused on the need to provide a nonambiguous

communication mechanism for the systems and software engineers. This mechanism should be

some form of formal specification understandable both to system and software engineers.

Dr. McHugh acknowledged the difficulty of learning formal specification languages and

understanding formal specifications. While the use of explanatory text can mitigate some of

these problems, it introduces a new problem in defining which of the two specifications is

controlling, the formal or the English language one.

Mr. Robert M. Poston (Interactive Development Environments) focused on the need for and

benefits of providing tool support for developing a formal specification. Developing a formal

specification is difficult and labor intensive. Mr. Poston discussed the use of tools that make the

process less "user-hostile" by allowing the developer to create the specification in diagrams which

can transform into an easily understood notation. The developer can then che:k the produced

specification. Another advantage of a formal specification in a defined notation is that a test

generation tool can take that specification and produce test cases.

Dr. Barbara B. Cuthill (NIST) moved the discussion from the requirements specification to the

design and implementation portions of the software lifecycle. Specifically, she discussed general

features of object-oriented design (OOD) and C+-i- development. Dr. Cuthill enumerated risks

and benefits of using OOD and C++ with respect to specific criteria important to safety-critical

systems such as functional diversity. While she did not form a final conclusion, she presented

many of the issues that need to be addressed as OOD and C++ become more widely used in

industry.

xi

The need for traceability of the requirements, design, code and test cases back to a set of

nonambiguous specifications provided a common thread that all the speakers identified as

important and discussed in some form. Dr. Knight began by discussing the need for systems

engineers to establish complete specifications. Dr. McHugh condnued by discussing how systems

engineers can provide nonambiguous specificadons. Mr. Poston discussed the methods for

generadng test cases traceable to the specifications while Dr. Cuthill discussed m.ethods for

designing and coding the software while maintaining traceability. While each of the speakers

also addressed other important issues in the development of safety-cridcal systems, each one

returned to this theme of traceability and maintaining the link between the phases of the software

development lifecycle.

Technical Session on Risk Reduction

The technical session on risk reduction provided interpretadon on both the problems in achieving

and assuring the safety of high integrity software and possible soludons to the problems. The

speakers. Dr. Winston Royce (TRW, Inc.), Ms. Anne-Marie Lapassat (Commissariate a I'Energie

Atomique), Mr. H. Ronald Berlack (Configuradon Management Intemadonal), Dr. Lance A.

Miller (Science Applications Internadonal Corporadon), Ms. Charlotte O. Scheper (Consultant),

Mr. Kyle Y. Rone (IBM), Dr. William Everett (AT&T), and Mr. Roger U. Fujii (Logicon, Inc.),

provided insights from their experiences in defense, nuclear, space, and communicadon industries.

Dr. Royce idendfied the following six areas of concern with regard to safety-cridcal systems, and

elaborated on their meaning during his presentation:

1. Safety-cridcal systems are implemented in the wrong languages.

2. There are not enough tools for safety-cridcal systems development.

3. There is insufficient analysis and distribudon of error measurement data.

4. There is no organizational certification.

5. There is no people certification.

6. There is infrequent graspability of the full system funcdonality.

Ms. Lapassat, whose presentation preceded Dr. Royce's, and the six speakers immediately

following Dr. Royce, provided some techniques for addressing most of these problems.

While several speakers discussed the need for and availability of good tools, the only speaker in

this session to focus on tool development was Ms. Lapassat. She discussed simuladon, testing

and audidng tools for independent evaluadon of the software in NPPs developed for the French

nuclear regulatory agency. These tools focused on testing the control system to see if it met the

required timing constraints by simulating real-time, normal and abnormal operation.

Other speakers discussed tool availability and usage in relation to support for specific processes.

Mr. Berlack focused on the importance of SCM and that organizations need to have both the

tools and processes in place to support CM. Dr. Miller focused on the need for organizations

to support V&V and to use automated V&V test tools whenever possible.

xii

Two complementary techniques were discussed as ways to manage the complexity of large

software projects: CM and reuse. Mr. Berlack strongly endorsed the use of CM as a means of

communicating between the systems and software engineers and maintaining traceability. Good
CM tools can provide a mechanism for tracing the impact of one change on the overall system.

Dr. Miller reiterated this need for CM to trace and allocate requirements to all the development

artifacts (e.g., specifications, code) as a means of supporting V&V.

Ms. Scheper described typical approaches for certifying and reusing software components. She

provided an alternative approach to simplifying complex systems through the certification of

reusable components. Ms. Scheper developed a certification framework for software for high

integrity systems. Software components are maintained with the requirements they meet. The

framework grades the requirements and component based on the level of confidence that the

component meets the specification, the level of criticality of the software, and the level of

assurance used to test the software.

Three of the speakers discussed the need for and use of empirical data on the software

development process and software error measurement. Mr. Rone discussed the need for models

of error discovery. Dr. Everett addressed the question: "Can we apply software reliability

engineering techniques to safety-critical systems?" Dr. Everett discussed the test acceleration

methods that isolate safety-critical functions for extensive testing to achieve higher estimates of

reliability. Dr. Miller also discussed the use of models to estimate the numbers and types of

errors remaining in a system. Many speakers and members of the audience agreed that public

availability of error data would provide valuable information but that it is not realistic to expect

companies to release this data.

While no speaker directly addressed Dr. Royce's call for certifying an organization's capabihty

to produce safety-critical software, several speakers discussed the need for organizations to

implement repeatable processes supported by CM. These capabilities are necessary to

establishing a corporate ability to produce software. Both Mr. Berlack and Mr. Rone identified

process definition as a required precondition for an organization to produce useful metrics data.

Without a defined process, it is not clear what the collected data means across different projects.

Mr. Rone linked the production of usable metrics data to quality, cost, and schedule planning.

The speakers also linked process definition, metrics collection, project planning, and V&V
activities to CM. Mr. Berlack explicidy discussed the link between CM and the establishment

of consistent planning, traceability, formal releases, change management, status accounting and

audinng. All of these capabilities are important for an organization to define its software

development process. Mr. Fujii and Dr. Miller discussed the need for CM and specifically

traceability to support a V&V process.

Mr. Fujii discussed software V&V in the context of the system, i.e., software V&V is a systems

engineering discipline that evaluates software as part of the entire system, including hardware,

xiii

human operators, and other interfacing software (e.g., operating systems, printers). He provided

guidance on estimating the cost of software V&V based on two concerns:

1. The criticality of system-specific functions and other system parameters (e.g.,

security, usability, maintainability, and performance).

2. Risks of the development environment (e.g., system architecture maturity,

processor technology suitability, development methodology, maturity of

development tools and aids, staff skills, schedule, and software application

maturity).

The criticality analysis process requires traceability from system functions to all other

components to define the system behavior and to trace the implementation of the system

functions through all system documentation and code.

Mr. Fujii described a system safety framework that assists in estimating how much of the

software to analyze and test. In modern systems the interaction of software with the hardware,

human operators, and other software elements is more complex and interwoven in the total

system solution than existed previously. The system performance functions must be specified

and analyzed. Software V&V must also analyze the allocation of the system requirements to

ensure that critical requirements are traceable and are allocated so as to make integration and

testing less difficult and time-consuming.

No speakers in this session addressed the other two issues that Dr. Royce mentioned: language

selection or developer certification; however, speakers in other sessions, the panelists in the last

session, and many audience members discussed and debated these issues.

In this session, like the previous technical session, two major themes were the importance of

maintaining and verifying the traceability of specifications across a complex system, and

maintaining the system context for the software. Mr. Berlack discussed the use of CM as a

vehicle for communication between the systems and software engineers because it provides the

mechanism for tracing the elements of development artifacts back to the specifications. Dr.

Miller emphasized the importance of traceability to V&V activities. Mr. Fujii emphasized the

need for systems engineers not only to be able to trace the specification to the design

implementation but to be heavily involved in the software V&V process since it is the systems

engineers who know how the full system, not just the software, should behave. Ms. Scheper also

emphasized the need to understand the requirements on software in the context of a full system

to be able to select reusable software components and catalog those components correctly.

Panelist Perspectives

Four experts in safety-critical software or systems areas were invited to be on a panel to discuss

the application of the workshop to NRC activities. These were Dr. John Knight (University of

xiv

Virginia), Dr. John McHugh (Portland State University), Dr. Winston Royce (TRW, Inc.), and

Dr. Joseph Naser (EPRI). They were asked to address the following four questions:

1. Are the proper issues being addressed?

2. What other issues need to be addressed?

3. Are proposed NRC regulatory positions complete and correct?

4. What are the considerations for further research?

The speakers addressed these quesdons generally. While the panelists did agree that issues

addressed at the workshop are proper and important for the assurance of software in safety

systems, they posed the questions differendy and provided a background against which the

questions should be discussed. No one questioned the appropriateness of the issues discussed by

workshop presenters. Rather, the context for the discussion was the major issue. The panelists

agreed that the consequences of software failure reladve to system behavior should drive

assurance activities and that the cost-effectiveness of those activides is also a major

consideration. Among the panelists and speakers there was some dissension about the goal of

achieving perfect software; many felt that there is an unacceptably tolerant attitude toward

software error. The panel members presented ideas on how the context of consequence of failure

and cost effectiveness will influence how the remaining questions should be addressed.

Dr. Knight used a general approach for addressing the questions. With respect to the proper

issues, he stated that first the consequences of failure must be identified and then one can

determine if the right issues are addressed reladve to the (potential oO failure. If the

consequences are significant, then the question is to identify how to avoid failure to the extent

possible. Dr. Knight suggested that those topics which need research are those identified as

potential failure areas, but which were not yet addressed in the workshop. He offered two

considerations:

1. Ensure that the acdviues proposed for regulation are appropriate

2. Ensure that the people building the digital systems are doing what is intended.

With current requirements, there are plenty of opportunities for ambiguity and

misunderstanding of the requirements.

To help define the requirements, steps might be taken to investigate the applicadon of the body

of software engineering knowledge specifically to the problems of the nuclear industry by

performing more analyses of design methods, languages, and other technologies relative to their

advantages and disadvantages to fulfilling the requirements of avoidance of failure in digital

systems.

Dr. John McHugh cited the lack of the use of science and mathemadcs in software engineering

compared to the scientific and mathemadcal bases in other engineering fields. Without such a

background in software engineering, demonstradon of compliance to "principles" may be difficult.

The disciplines of engineering need to be applied to software problems. He perceived that the

XV

utilities are unwilling to conduct the research into the best, safest, and most appropriate ways to

control plants. Yet, there is a need for research in both the safety and operating control areas,

because these are likely to be based on more elaborate models than in the past with expectations

of higher degrees of operational efficiency. Dr. McHugh believes someone must take a

prescriptive role, not an advisory role, to tell industry what they must ao to measure safety.

From Dr. Royce's perspective, the most important issue is to overcome the tolerance for errors

in software. Whether the workshop and the NRC are addressing the right issues and whether the

regulatory position is right are related directly to the consequence of failure. Software is error-

prone; software is the stringing together of lines of logical elements. While people skilled in

mathematics and science tend to be skilled in logic, there is no higher principle in software than

logic. Humans develop and judge software. The effort to discover and remove the errors is

cosdy, and no one is willing to pay for the effort. Research is expended on how to design and

how to code software, not on discovering why errors exist at all, or on error finding techniques

like requirements analysis. The consequence of failure must be understood to remove that

tolerance for error among the buyers, sellers and builders of software and promote research into

error discovery and removal.

While several workshop presenters discussed the benefits of using digital systems. Dr. Naser

claims this topic is no longer an issue because there is agreement on the benefits of digital

systems. The major issue to be addressed by the NRC is how to allow safe implementanon of

digital systems in a cost-effective manner. An approach may be to stabilize the licensing process

with well-defined requirements for qualification. This entails the following steps:

1. Definition of a technical basis for the well-defined requirements and a process for

achieving them. The basis should incorporate compensating factors (e.g.,

operating experience, software development techniques, and error repordng)

against lack of a formal process.

2. Descripdon of requirements for system acceptance.

3. Use of system behavior as the driver for the requirements.

Consequence of failure with plant safety as highest goal.

Application of defense-in-depth to work around imperfections.

4. Application of knowledge from other industries. This may lead to use of proven

systems, reusable software, and use of new technology (e.g., artificial intelligence

to assist operators).

xvi

In summary the panel provided the following advice:

1. Specify the consequences of failure relative to system behavior.

2. Apply software technology from other application domains which have been

developed from mathematics.

3. Define acceptance criteria, which address the software process with a technical

basis, software product quality, and cost-effectiveness.

Questions and Discussion after Panel Presentations

Many members of the audience took the opportunity in the discussion session to comment on the

entire workshop or on presentations from other sessions.

One frequent comment from the industry participants was that the focus of the workshop had

been on the problem of developing safety-critical software while the nuclear industry was

concerned about safety-critical systems. These comments from the audience echoed comments

from the speakers. Many of the speakers insisted that systems engineers and application experts

must specify the software requirements for these systems and be involved in the entire

development process.

A second group of comments from the industry participants related to the need to bring in more

of the experience of other industries in converting to digital systems. Digital control hardware

used in other industries may be useful to the nuclear industry; however, the embedded software

for these controllers may need adaptation. There is considerable experience in the fossil fuel,

chemical and other industries with safety-critical control systems, and the nuclear industry needs

to draw on that experience.

A third group of comments related to the inherent complexity of the software required for safety

systems in NPPs. There was debate among the speakers and the audience on this point. Many
of those in the nuclear industry contended that the current safety systems and the software to run

the digital safety systems were actually fairly simple. This debate existed in part because

different audience members and speakers had different perspectives on the problem. One

perspective was that safety systems based on analog hard wired technology are easier to

understand. Some people included the entire control system while others narrowed the focus to

only the smaller safety system. Another reason for the disagreement was that the system

engineers tended to view the safety system at a high level as having a simple overall function,

and the software engineers tended to think of the system as lines of code which is analogous to

the level of resistors and capacitors for systems engineers. The software engineers also tended

to assume that the simple analog systems would be replaced by more complex equipment that

would perform more functions for the operator. Others argued that while this added functionality

might theoretically improve safety, the problems of certifying that the more complex software

was accurate made the additional functionality no longer cost-effective.

xvii

While most speakers accepted conversion of NPPs to digital systems as a given, others felt that

the conversion would not produce safer plants and would not be cost-effective. The speakers and

audience agreed that all upgrades were costly. Specially fabricated analog parts would be far

more costly then buying off-the-shelf digital equipment; however, the hidden costs of digital

equipment were a major concern. The nuclear industry needs to know how the digital hardware

and software can be certified for use and what the cost of this certification will be. The digital

hardware and software used in the upgrades may still have to be custom designed and built. In

addition, the nuclear plants will have to retrain their work force on the new equipment.

What the discussion illustrated was the need for systems engineers who understand the nuclear

industry's application needs and the software engineers who know how to embed reliable

software in systems to agree on a common vocabulary. The systems engineers or applications

experts and the software engineers were frequently talking about the same problem, but from

different perspectives. These different perspectives tended to confuse the issues under discussion.

NRC Closing Remarks

At the close of the meeting, Mr. Franklin Coffman (Chief, Human Factors Branch, Office of

Nuclear Regulatory Research) and Dr. Cecil Thomas (Deputy Director, Division of Reactor

Controls and Human Factors, Office of Nuclear Reactor Regulation) summarized the workshop

issues.

Mr. Coffman provided the following, tentative list of issues that resulted from the conference.

• 1. The means to obtain a complete and precise translation of a using organization's

needs into design specifications. This included the issues surrounding the role of

formal methods for specification capture and analysis.

2. The question of allocating the requirements between the hardware and the

software while defining the interface requirements between the digital system, the

i driving software, the human operators and maintainers, the plant systems, and the

power conversion phenomena. Yet it is the total system that is to be evaluated

including the consequences of software failure on the total-system's performance.

3. The issues surrounding the role of hazard analysis for defining the level of detail

at which fault-tolerance is required.

4. Questions on doing common-mode-error analysis and questions on the technical

basis for criteria to invoke diversity as a defensive measure. The questions

include considerations of the net-benefit of diversity.

5. The question of adequate reliability metrics for important systems' properties like

complexity, and the relationships of the metrics to the degree of safety obtained.

xviii

6. The potential for a response-time hazard in digital systems because they are

incremental (in contrast with the continuous nature of analog-hardwired systems).

7. The issue of the role of specification-based and statistical testing requirements and

acceptance criteria.

8. The acceptance or certification of Commercial Off-The-Shelf software for safety-

critical applications.

9. The issues associated with the transition from analog to digital including

10CFR50.59 reviews and Unreviewed Safety Questions.

10. The issues associated with the net benefits to a system's reliability from

developing software using structured processes and structured languages, and

improved languages.

11. The questions associated with the use of CASE tools for design specifications,

testing design, and safety reviews.

12. The role of V&V and the degree to which different techniques assure reliable

software, and the degree to which the V&V must be independent of the designer.

13. The issue of standards or conventions for controlling software configurations.

14. Questions concerning the need to qualify or certify compilers and operating

systems.

15. Questions of adequate isolation of non-safety related software from safety-related

software.

16. Questions on the degree of domain knowledge needed by developers of software

for nuclear applications.

17. Generally, the need for a comprehensive framework/outline for the scope and

content of the technical basis and acceptance criteria for digital I&C systems.

18. The question of the need for further research and subsequent workshops on topics

such as hardware and human factors.

19. Interest in the possibility of the NRC initiating a process where error experience

is collected, analyzed, characterized, and distributed.

20. The impact of the trend toward the use of blocks of experienced code versus the

conventional development of code.

xix

Summary and Conclusions

Many speakers reinforced the need for a technical basis for regulatory requirements. Speakers

in the technical sessions agreed on the need for defining software requirements in the context of

system requirements and for the traceability of those requirements across the entire software

lifecycle. While there was some debate among the speakers and audience about the degree of

complexity inherent in safety systems, the speakers agreed that systems engineers need to clearly

state the requirements, constraints, and assumptions for the safety system. One difficulty in

communicating the requirements is that the terminology of the nuclear systems and software

engineering communities are different. These differences can lead to miscommunications about

the requirements which may have a safety impact. For example, in system development, the

design phase includes the development of the software requirements and the software design.

In the nuclear industry, design specifications could be system design specifications, the software

requirements specification, and functions allocated to the operator. This problem is evident in

the study of standards and guidelines conducted by NIST for the NRC [NUREG5930]. Another

problem identified in that study and discussed by speakers in this workshop is the requirement

for CM because most of the guidance documents did not invoke CM during the entire life cycle,

nor was the impact on SCM clear.

Several speakers emphasized the importance of precise specifications which are traceable and

maintainable throughout the development process. Dr. Knight introduced the subject by stressing

the importance of systems and application engineers completely specifying the software

requirements, and that software engineers are not qualified to make decisions about the system.

Dr. McHugh, Mr. Poston, and Mr. Berlack all discussed the means for systems and software

engineers to specify nonambiguously the requirements and maintain the traceability of those

requirements through the software development process. Dr. McHugh endorsed formal methods

as a precise means of specifying requirements. Mr. Poston agreed that formal methods were a

good choice, but advocated the use of tools to make the process easier and permit traceabihty

between the tests and the requirements. Mr. Berlack stressed CM as a mechanism for precise

continuing communication between the systems and software engineers. The CM method can

allow the systems engineer to see how the software engineers allocated the requirements. Dr.

Hanes also stressed the importance of maintaining the requirements allocation. Dr. Cuthill

discussed maintaining traceability of the requirements through the design and coding phases. Mr.

Fujii emphasized that software V&V had to refer back to the system specifications and involve

system engineers. Finally, Ms. Scheper discussed the need for maintaining the system context

for software components kept in a reuse library so that they can be included in future systems

appropriately. Her approach for certifying software components and making them available for

reuse in other systems could reduce the aggregate cost of software certification.

Another theme of all the technical sessions was the need for better acceptance and V&V testing.

Mr. Fujii emphasized that software V&V can make a significant contribution to analyzing the

allocation of functions, early in the system development. Mr. Poston, Ms. Lapassat and

Dr. Everett stressed the need to automate testing. Measuring the reliability of software is a non-

trivial problem but a measure of reliability is important for assuring safety. Mr. Rone,

XX

Dr. Everett and Dr. Royce proposed partial solutions to the problem including incorporating

specification-based testing and statistical testing. Dr. Royce also cited the value of a structured

process and structured process language for effecting reliability.

Other major issues discussed by the speakers concerned the need for (system and software)

hazard analysis requirements, fault tolerant requirements, and common mode error and diversity

requirements.

Tables 1, 2, and 3 present a summary of the issues addressed from another perspective. This

summary divides the topics discussed into the problems that the speakers identified, the

theoretical solutions they proposed and any experience based solutions offered. These topics are

further grouped by life cycle process. Table 1 contains topics raised in the software requirements

and design processes. Table 2 contains topics for the processes of implementation and integration

and installation, operations, and maintenance. Table 3 includes topics in the V&V and quality

assurance areas.

While the speakers generally agreed on the importance of these issues, there was, at times, a

discrepancy between what the speakers believed to be the issues facing the nuclear industry and

what the audience (nuclear industry and regulatory personnel) believed to be the important issues.

xxi

Table 1. Requirements and Design Lifecycle Phases

Requirements Design

Problems

lUcl lllllcU

Dr. Knight

Formal methods not enough

Software engineers not qualified to deal with

systems issues

Dr. Royce
Pp\A/ tni^lc

System too complex to understand

Mr. Rone

System too complex

Thonrofi^al
1 1 IcUlcULidl

Solutions

nr Mrl-iiinh

Use formal, precise specifications

Mr, Poston

Use tools to generate specification & test cases

nr riithill

OOD is potentially useful

Dr. Miller

Allocate functions to operators

Application

Experience

Mr. Joannou

Formal specification (Parnas)

Defined process

H Developed OASES Framework

Tools for consistency checking

Mr. Blauw

Standard IEEE P-7-4.3.2

NUMARC Digital Upgrade Guideline

Mr. Joannou

Fail safe and self check features

Defined process

Mr. Sudduth

Probabilistic Risk Assessment

Alternate fault tolerant architectures

Fault tree and Failure Modes and Effects

Analysis (FMEA)

Markov Models

Table 2. Implementation/Integration and Operation/Maintenance Lifecycle Phases

Implementation & Integration Installation/Operation/Maintenance

Problems

Identified

Dr. Royce

No error measurement

Languages not designed for safety

Dr. Hanes

No guidelines for reviewing human interfaces

Define extent of automation

Theoretical

Solutions

Dr. Cuthill

C++ is potentially useful

Ms. Scheper

Levels of criticality assurance for reusable

software artifacts

Dr. Cuthill

00 & C++ simplify maintenance

Mr. Russell

Self-diagnostics and testing

Dr. Hanes

Intelligent displays and aids

Computerized procedures

Application

Experience

Mr. Berlack

Software Configuration Management

Mr. Berlack

Software Configuration Management

Mr. Joannou

Defined acceptance criteria

xxii

Table 3. Verification/Validation and Quality Assurance

Validation Quality Assurance

Problem

Identification

Dr. Royce

No people certification

No organization certification

Ttieoretical

Solutions

Mr. Poston

Tool generated tests from requirements

Dr. Miller

Fault specific verification

Cost benefit tradeoff for V&V

Automation of V&V methods

Mr. Rone & Ms. Olson

Define development process

Develop quality plan

Use cost, schiedule & error detection models

Configuration management

Ms. Scheper

Levels of certification for reusable s/w

Application

Experience

Mr. Joannou

Software fiazard analysis (Leveson)

Guided inspection of software

Mr. Fuji!

Estimation of V&V necessary

Process to select V&V methiods

Mr. Sudduth - Simulation of system for

testing

Mr. Berlack

Configuration & change management

Status accounting and auditing

Subcontractor control

Mr. Fuji! - System safety framework

Mr. Joannou

Train personnel in methodologies and retrain as

necessary

Dr. Everett - Isolation of safety-critical

components for test acceleration

Mr. Sudduth

Use proven components

Ms. Lapassat

Tools for independent verification

Software simulation & modeling tools

Ms. Lapassat

Tools for independent auditing

xxiii

The speakers and audience seemed to disagree on the following:

1. The degree to which software may be a safety concern.

2. Simplicity versus complexity of the software needed in digital systems.

3. The perceived cost of assuring software versus the cost affordable by the nuclear

industry.

The speakers and audience seemed to agree on the following:

1. Standards and criteria should develop from a defined technical basis, which is not

currently available.

2. There are plenty of benefits from using digital systems, such as self-diagnostics

and less chance of human error, but operators must remain in charge.

3. There are opportunities to make improvements in some known failure classes

(omitted function, unintended function).

4. A definition of diversity for software is needed.

5. Future workshops should address other components of NPPs (e.g., hardware,

human operators).

6. The software engineering concepts presented at the workshop were not strongly

connected to the problems faced by the nuclear industry, i.e., their vendors would

be more suitable to deal with these issues.

The aggregate of technical presentations and issue perspectives leads to the conclusion overall

that many of the management and technical problems of digital systems are not sufficiently

mature for regulation. Research to define technical solutions and research into existing solutions

in other industries is necessary.

References

[ASMENQA2]
ASME NQA-2a-1990, Part 2.7, "Quality Assurance Requirements for Nuclear Facility

Applications," The American Society of Quality Engineers, 1990.

[IEC880]

lEC 880, "Software for Computers in the Safety Systems of Nuclear Power Plant

Stations," International Electrotechnical Commission, 1986.

xxiv

[IEEE603]

IEEE Std 603-1980, "Standard Criteria for Safety Systems for Nuclear Power Generating

Stations," The Institute of Electrical and Electronics Engineers, Inc., 1980.

[IEEE7432]

IEEE Std. 7-4.3.2-1993, "Application Criteria for Programmable Digital Computer

Systems in Safety Systems of Nuclear power Generating Stations," American Nuclear

Society, 1993.

[NUREG5930]
"High Integrity Software Standards and Guidelines," Wallace, Dolores R., Laura M.

Ippolito, D. Richard Kuhn, NUREG/CR 5930, U. S. Nuclear Regulatory Commission,

September 1992. (Also published as National Insdtute of Standards and Technology

NIST SP 500-204.)

XXV

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

2 THE NUCLEAR REGULATORY COMMISSION AND THE ADVISORY
COMMITTEE ON REACTOR SAFEGUARDS 3

2.1 Welcome: Commissioner Kenneth C. Rogers 5

2.2 Welcome and Opening Statement: Mr. Eric S. Beckjord 9

2.3 Welcome and ACRS Perspective: Dr. J. Ernest Wilkins, Jr 13

3 ISSUE PERSPECTIVES FOR NUCLEAR POWER PLANTS 17

3.1 Presentation on NRC Regulatory Positions and Guidelines:

Mr. William T. Russell 21

3.2 NRC Research Activities: Mr. Leo Beltracchi 31

3.3 Industry Perspecdve on Digital Upgrades: Mr. Richard J. Blauv/ 47

3.4 Experiences from Applicarion of Digital Systems in Nuclear Power Plants:

Mr. Paul K. Joannou 61

3.4.1 Questions: Mr. Paul K. Joannou 78

4 DIGITAL SAFETY SYSTEMS FOR NUCLEAR POWER PLANTS 79

4.1 Hardware Aspects of Safety-Critical Digital Computer Based

Instrumentation and Control Systems: Mr. A.L. Sudduth 81

4.1.1 Quesdons: Mr. A.L. Sudduth 105

4.2 Software Aspects for Safety-Critical Systems: Dr. John C. Cherniavsky . . 107

4.3 Human Aspects for Safety-Critical Systems: Dr. Lewis F. Hanes 109

4.3.1 Quesdons: Dr. Lewis F. Hanes 130

5 SOFTWARE ENGINEERING FOR HIGH INTEGRITY SYSTEMS 131

5.1 Interacdon Between Systems and Software Engineering in Safety-Critical

Systems: Dr. John Knight 133

5.1.1 Quesdons: Dr. John Knight 136

5.2 The Role of Formal Specifications: Dr. John McHugh 139

5.2.1 Questions: Dr. John McHugh 145

5.3 Specificadon-Based Testing: What is it? How Can It Be Automated?:

Mr. Robert M. Poston 149

5.3.1 Questions: Mr. Robert M. Poston 160

5.4 Applicability of Object-Oriented Design Methods and C-i-i- to Safety-

cridcal Systems: Dr. Barbara B. Cuthill 163

5.4.1 Questions: Dr. Barbara B. Cuthill 191

xxvii

6 METHODS FOR REDUCING RISKS IN SOFTWARE SYSTEMS 193

6.1 Automated Tools for Safety-Critical Software: Ms. Anne-Marie

Lapassat 197

6.1.1 Questions: Ms. Anne-Marie Lapassat 211

6.2 The Risks of Safety-critical Systems: Dr. Winston Royce 213

6.2.1 Questions: Dr. Winston Royce 216

6.3 Integrated Modeling of Software Cost and Quality: Mr. Kyle Y. Rone and

Ms. Kitty M. Olson 219

6.3.1 Questions: Mr. Kyle Y. Rone 224

6.4 Software Reliability for Safety-Critical Applications: Dr. William Everett

and Mr. John Musa 225

6.4.1 Questions: Dr. William Everett 227

6.5 Software Configuration Management for Safety-critical Systems:

Mr. H. Ronald Berlack 229

6.6 How Much Software Verification and Validation is Adequate for Nuclear

Safety?: Mr. Roger U. Fujii 247

6.6.1 Questions: Mr. Roger U. Fujii 254

6.7 Fault-Specific Verification (FSV)~An Alternative VV&T Strategy for High

Reliability Nuclear Software Systems: Dr. Lance A. Miller 257

6.8 Certification of Software for Reuse in Safety-Critical Applications:

Ms. Charlotte O. Scheper 267

6.8.1 Questions: Ms. Charlotte O. Scheper 274

7 PANEL: APPLICATION OF WORKSHOP TO NRC ACTIVITIES 275

7.1 Presentations 277

7.1.2 Presentation by Dr. John Knight 277

7.1.2 Presentation by Dr. John McHugh 278

7.1.3 Presentation by Dr. Winston Royce 279

7.1.4 Presentation by Dr. Joseph Naser 280

7.2 Questions and Discussion 283

8 PREPARED STATEMENTS 305

8.1 NUSMG Presentation: Mr. Wayne Glidden (presented by Mr. Robert

Mullens) 305

9 NRC CLOSING REMARKS 309

9.1 Closing Remarks: Mr. Franklin Coffman 309

9.2 Closing Remarks: Dr. Cecil Thomas 313

10 SUMMARY AND CONCLUSIONS 315

11 REFERENCES 321

xxviii

APPENDIX A WORKSHOP AGENDA 323

APPENDIX B AUTHOR INDEX 329

APPENDDC C FINAL PARTICIPANTS LIST 331

xxix

1 INTRODUCTION

The Digital Systems Reliability and Nuclear Safety Workshop was held on September 13-14,

1993, in Rockville, Maryland. This workshop, sponsored by the United States Nuclear

Regulatory Commission (NRC) in cooperation with the National Institute of Standards and

Technology (NIST), was co-chaired by Mr. Leo Beltracchi of the NRC and

Ms. Dolores R. Wallace of NIST. The workshop provided a forum for the exchange of

information among experts within the nuclear industry, experts from other industries, regulators

and academia.

The 263 participants came from the District of Columbia, 30 states within the United States, and

10 other countries. While most participants represented nuclear industry vendors, utilities, or the

NRC, many came from other power industries (e.g., fossil power) national laboratories, and other

U.S. government agencies.

This workshop was designed to respond to the need for a forum on the conversion of nuclear

power plant (NPP) safety systems to digital technologies. Many analog hard-wired process

control systems and safety systems within NPPs are wearing out and frequently are being

replaced with systems using digital technology. There are unique design and safety issues in the

development and assurance of safety systems within digital instrumentation and control (l&C)

systems. The NRC is developing regulations and guidelines to address these safety issues.

This workshop continued an in-depth exposure of the NRC staff and the nuclear industry to

digital systems design safety issues, and also provided feedback to the NRC from outside experts

regarding identified safety issues, proposed regulatory positions, and intended research associated

with the use of digital systems in NPPs. While this workshop principally addressed the software

engineering issues for safety-critical digital systems, the opening speakers provided a system

overview and perspective to promote an understanding of the broader issues of safety systems

and of the relationship between digital system design issues and the overall development and

assurance of safety systems. The intention is that future workshops will focus on the hardware

and the human operadon components of these systems. The final workshop in the series will

provide a forum to discuss a total framework for the development and assurance of all

components of digital safety systems for NPPs.

The workshop began with welcoming remarks from Commissioner Kenneth C. Rogers (NRC),

Mr. Eric S. Beckjord (Director, Office of Nuclear Regulatory Research, NRC) and

Dr. J. Ernest Wilkins, Jr. (Chairman, Advisory Committee on Reactor Safeguards, NRC). These

speakers idendfied the benefits of using digital technology in safety systems while acknowledging

the risks and the need for regulation and guidance from the NRC.

The next set of speakers provided regulatory, research, and industry perspecdves on digital

upgrades. Mr. William T. Russell (Associate Director for Inspection and Technical Assessment,

Office of Nuclear Reactor Reguladon, NRC) presented the regulatory perspective. Mr. Leo

Beltracchi (Senior Project Manager, Office of Nuclear Regulatory Research, NRC) stated the

1

research perspective. Mr. Richard J. Blauw (Commonwealth Edison Company) and Mr. Paul K.

Joannou (Ontario Hydro) provided the industry perspective.

Three technical sessions followed the opening sessions. The first technical session gave an

overview of the state of practice and research in the three major components of digital safety

systems: hardware, software and human operations. The second technical session focused on

the software engineering issues inherent in developing high integrity systems. The third technical

session focused on the methods for reducing risks in the software development process.

The final workshop session was a panel presentation followed by an open question and discussion

period. The panel consisted of academic and industry experts on the risks of safety-critical

digital technology. The NRC asked the experts to address these four questions:

1. Are the proper issues being addressed?

2. What other issues need to be addressed?

3. Are proposed NRC regulatory positions complete and correct?

4. , What are the considerations for further research?

Following the panel, the audience asked questions, challenged the panelists' positions, and

provided their own opinions. The result was a valuable dialogue on the future use of digital

technology within the nuclear industry, and the open regulatory and technical issues.

At the close of the meeting, Mr. Robert Mullens presented a short position paper written by

Mr. Wayne GUdden (Duquesne Light Company) on behalf of the Nuclear Utilities Software

Management Group (NUSMG). Mr. Franklin Coffman (Chief, Human Factors Branch, Office

of Nuclear Regulatory Research, NRC) and Dr. Cecil Thomas (Deputy Director, Division of

Reactor Controls & Human Factors, Office of Nuclear Reactor Regulation, NRC) summarized

the workshop issues.

2

2 THE NUCLEAR REGULATORY COMMISSION AND THE ADVISORY
COMMITTEE ON REACTOR SAFEGUARDS

In the opening session, Commissioner Kenneth C. Rogers (NRC), Mr. Eric S. Beckjord (Director,

Office of Nuclear Regulatory Research, NRC), and Dr. J. Ernest Wilkins, Jr. (Chairman,

Advisory Committee on Reactor Safeguards, NRC) welcomed participants to the conference.

Commissioner Rogers observed that while the use of digital technology in I&C systems has

proliferated, the existing NRC criteria for analog systems are inappropriate for digital technology.

Regulators and industry must apply knowledge from other industries' experiences and from

academia about digital I&C systems to the nuclear industry. The nuclear industry has been slow

to adopt digital technology, compared with other industries (e.g., avionics, chemical,

transportadon, and defense). Commissioner Rogers encouraged the nuclear industry to propose

and implement, subject to NRC approval, new digital I&C systems. He ended by suggesting that

the NRC may have delayed use of digital technology by not having standards and acceptance

criteria in place.

Mr. Beckjord called on the NRC to address the public safety issues, form complete and proper

regulatory positions, and undertake appropriate research as these digital upgrades occur. While

digital systems may be more reliable and perform more functions than analog systems, the

purpose of using digital systems is to improve operator performance. Specifically, the use of

digital technology should help in I&C systems by reducing the false trip rate, improving process

control, and improving the man-machine interface. For example, digital systems have the ability

to present information in a more clear and coherent manner, which may help the operator make

a quicker and more reliable decision. Some of the techniques used to ensure analog safety

systems are inappropriate or need adaptation for digital systems. For example, the principle of

diversity as used in analog systems is based on the belief that the elimination of common-mode
failure is not possible by quality alone. For software, the effectiveness of diversity is hard to

measure and may affect more than the design. Software testing, configuration control, security

control, and formal methods need more study and use in the design of digital safety systems.

Dr. Ernest J. Wilkins, Jr. (Chairman, Advisory Committee on Reactor Safeguards, NRC) has been

interested in udlization of digital technology for some time and has commented to the NRC on

the obvious advantages and disadvantages of digital technology for I&C systems. Dr. Wilkins'

position is that the reguladons developed before the electronic revolution are inappropriate to the

reguladon of computerized functions in NPPs. Currendy, there is no standard review plan or

guide that could help both the Commission and the industry know what is expected of them. Dr.

Wilkins affirmed a need for a method to assure correctness of the specification and advocated

the use of formal verificadon and validation (V&V) procedures. Formal V&V procedures assure

the correctness of the implementation of the "correct" specification. Dr. Wilkins proposed

condnuing recruitment by the NRC of addidonal staff with appropriate digital I&C background

to augment current staff capabilides.

3

2.1 Welcome: Commissioner Kenneth C. Rogers

WELCOMING ADDRESS
COMMISSIONER KENNETH C. ROGERS

U.S. NUCLEAR REGULATORY COMMISSION

DIGITAL SYSTEMS RELIABILITY AND
NUCLEAR SAFETY WORKSHOP

ROCKVILLE CROWNE PLAZA HOTEL
ROCKVILLE, MARYLAND
SEPTEMBER 13, 1993

Good morning, ladies and gentlemen. On behalf of the NRC Commissioners and our staff, I am
pleased and honored to welcome you this morning to this two day workshop on Digital Systems

Reliability and Nuclear Safety. We are pleased to sponsor this workshop in cooperation with the

National Institute of Standards and Technology (NIST). This joint cooperation is quite

appropriate in view of the long history of NIST initiatives with industry and government related

to the development of digital computer systems.

As you know, the primary concern of the NRC is the protection of the public health and safety.

A major component of the NRC's defense-in-depth philosophy is the control and safety systems

associated with nuclear reactors. Until quite recently, these instrumentation and control (I&C)

systems have all been analog systems, and I must say that for several reasons the nuclear industry

in the U.S. has been slow in adopting the new digital technology in their plants. However, in

part due to lack of available replacement parts for old systems, and in part due to the

overwhelming advantages of digital over analog systems, that can no longer be ignored, the

regulated community is starting to move toward digitization of nuclear power plant I&C systems

at an escalating pace.

With the immediate prospect of increased proliferation of the use of digital technology for these

I&C systems, it is essential that suitable performance criteria and standards applicable to these

systems be developed and promulgated as soon as possible. The existing criteria, while

appropriate for analog systems, are not entirely adequate for digital systems. The sooner new

criteria for the digital systems are developed, the sooner we will all have assurance that these

systems will perform their designed functions reliably. NRC will then have confidence to

approve and license these systems for use and, finally, broader implementation will take place

of digital technology in the nuclear industry with concomitant benefits.

There already exists a vast storehouse of information on digital computer systems that can be

applied to design issues by the nuclear industry and it behooves the regulators and the industry

to fully call upon that knowledge. NRC has co-sponsored this workshop to facilitate the

5

dissemination and exchange of relevant digital technology information between outside experts

and the NRC staff and the nuclear industry. I am pleased to note that representatives of the

nuclear, communications and computer industries, academe, national laboratories and the

international community, as well as NRC staff members are participating in this workshop and

will share their knowledge and expertise with us. I look forward to learning what you have to

say.

I do not want to leave you with the impression that the NRC has not been acdvely involved with

these digital I&C issues for some dme. We have. NRC has staff with many years of experience

in working with and designing digital I&C systems, serving on nadonal and internadonal

standards committees, and writing regulatory guides and standards. They have concentrated on

specific design questions and issues as they have arisen. I also know that there are many in the

U.S. nuclear industry who have taken positive steps toward integradng digital technology into

their I&C systems. Some nuclear plants have begun to install digital control systems, such as

the Eagle 21, and we hope and expect this usage to accelerate. NUMARC has been developing

guidelines to be used by licensees in evaluadng I&C digital system upgrades, and NUMARC
staff members have been discussing the guidelines with the NRC staff and NRC's Advisory

Committee on Reactor Safeguards. However, those acdons have not been sufficient. It is up

to those in the nuclear industry, where the ultimate nuclear safety responsibilities lie, to propose

and, subject to NRC approval, implement the new digital I&C designs that will carry their plants

forward into the next century.

Of course we have witnessed the benefits of digital systems in the nuclear industry for many
years through the use of full-scope control room simulators. While the first simulators may have

relied on analog technology, these devices have evolved over the years to highly complex digital

systems that have proven invaluable for operator training and qualification as well as for

permitting plant design engineers to test the effects of proposed modifications prior to their actual

implementadon. However, compared to the chemical, aviation, transportation, and

communication industries, and the military, the nuclear industry has been slow in adapting digital

technology to its plants.

The potential benefits that can be achieved with digital technology very likely go far beyond

what we have been able to see to date. People are beginning to design control systems using

fuzzy logic, expert systems, neural networks, and other intelligent technologies. These intelligent

control systems can complement the human intelligence of the operators, significantiy easing the

burden of the operators and improving the safety of nuclear plants. There may eventually be

proposed a control system with so sophisticated a human and computer interface that it could

result in a kind of symbiosis resulting in a new control partnership between man and machine.

Regulators of today would have a great deal of difficulty accepting such a system, but in time,

with demonstrated performance, it could be found acceptable.

The Department of Energy (DOE) is supporting research at the Idaho National Energy Laboratory

(INEL) on various issues related to advanced digital control technology, and the NRC is doing

the same at Oak Ridge National Laboratory (ORNL). The NRC is also participating with the

6

Organization of Economic Development (OECD) in the Halden Reactor Project in the areas of

man-machine interface and advanced I&C systems. It is unfortunate that we do not presently

have in the U.S. more man-machine laboratories of the same caliber as exists at Halden. The

NRC staff is studying possible ways to enhance U.S. capability in this important area.

NRC itself may have delayed the implementation of digital technology in nuclear plants by not

being sufficiently aggressive in developing comprehensive, well established, standards and

acceptance criteria that are applicable to digital systems. We intend to improve our performance

in this regard. This workshop could be another important step in developing these standards and

criteria. That is why you are all here. This meeting should provide an excellent opportunity for

the exchange of the latest information relevant to the application of digital technology to the I&C
systems used in nuclear reactors. I am pleased to see that we are taking this important step

together toward realizing the long overdue benefits of this challenging technology.

Again, welcome. May you have a very fruitful meeting.

7

2.2 Welcome and Opening Statement: Mr. Eric S. Beckjord

Welcome and Opening Statement

Eric S. Beckjord, Director

Office of Nuclear Regulatory Research

U.S. Nuclear Regulatory Commission

Washington, DC 20555

Good morning. I am pleased to add my welcome to this Workshop on Digital Systems and

Nuclear Safety. The Nuclear Regulatory Commission in cooperation with the National Institute

of Standards and Technology is sponsoring the Workshop. In my introduction I will touch on

3 topics: the purpose of the meeting, the opportunities and problems associated with digital

control technology for NPPs and finally a fable that I think speaks to this Workshop.

The purpose of the Workshop is to discuss the application of advanced digital systems technology

to operations and control of nuclear power plants, now and in the future, in ways that will

enhance safety. In particular the NRC expects to hear from experts outside of NRC on safety

issues and R&D related to state-of-the-art digital systems in NPPs. In preparation for this

Workshop, the NRC has provided staff draft technical position papers on regulatory review of

digital systems for replacement of original control systems in operating plants, and in proposed

advanced NPPs. We welcome your comment on these papers in the course of the meeting, and

we intend to take account of your comments, and the important ideas that arise at the meeting,

in making the draft papers final.

The people at this Workshop are internationally recognized experts. You are developers, users,

and researchers of digital I&C. You are applying digital I&C in the nuclear industry and other

industries including aerospace, telecommunications, defense, software engineering, and

universities.

The Workshop provides the opportunity to talk about the introduction of advanced digital systems

in future nuclear power plants and the retrofitting of advanced digital systems into currently

operating plants. We seek to verify that:

(1) the proper public safety issues are being addressed,

(2) the anticipated regulatory positions are complete and proper, and

(3) the appropriate research needs are being considered.

Whatever the NPP instrumentation and control functions, I believe that digital technology today

can do better than the analog technology employed in operating plants. I do not rule out hybrid

approaches, and economics will be a factor in making the choices. But there are also realms of

application that analog systems cannot enter such as expert systems, fuzzy logic, and neural

networks. There are obvious opportunities for these, and many not yet thought of. The question

9

is whether these opportunities can be realized so that safety will be maintained or enhanced along

with the other potential operational advantages. I hope this Workshop will stimulate thinking and

, dialogue in this direction.

My own view of running nuclear reactors is that the operator must always be in charge as well

as responsible for all activities including safety. Accordingly the developments yet to evolve

should help the operator to do the job better, as a consequence of the better control and

appropriate information being organized and made evident to the operator in real time. One
concern that I have, having experienced a catastrophic hard disk deletion on my own PC, is the

equivalent, someday, in a high digital technology control room. In the incident I experienced all

that was at stake was a few hours of learning how to put programs and files back in place: not

a bad learning experience, but certainly not the kind of training tolerable in the NPP,

I turn now to discuss some specific opportunities and problems in application of digital I&C to

NPPs. Examples of opportunities include:

1. False trip rate reduction

Testing of independent reactor protection system channels is necessary to assure proper

function and reliability. I&C technicians performed this task in original equipment of

operating NPPs. Although a simple task in principle, the chance of error is significant

in practice, and the result was a high incidence of false trips. Computer controlled testing

readily solves the problem and can eliminate false trips from this cause.

2. Improved process control

Water level control in reactor vessels and steam generators can be unstable and cause

trips, especially at low power. When water level falls, intuition says to increase feedwater

flow. The paradox is that increased feedwater flow increases subcooling, decreases the

steaming rate, and can actually cause water level to fall even further. Computer control

of water level, by means of thermal-hydraulic models in combination with the usual

process variables can provide much more accurate control, and maintain water content

within required limits much better than the original analog signal controllers.

3. Improved person-machine interface

Digital computer systems have introduced the concept of "chunking" wherein important

process variables are integrated into information and displays to make interpretation

clearer and quicker. Chunking does that by collecting and formatting variables to a

higher, abstract level, and presenting the information to the operator already, in effect,

interpreted. The B&W Pressure-Temperature plot for monitoring operation of the primary

coolant system and heat-transfer to the steam generator is an example of chunking.

10

Examples of problems include the following:

1. Diversity

The elimination of common-mode failure in a safety function is an important goal that

system quality alone can not achieve. Diversity together with quality can do so.

However, diversity in safety functions is expensive, and I know of no generally accepted

measure for the effectiveness of added diversity. The value of diversity in digital systems

is more of a problem than in analog systems, because the range of opportunities for

employing it is broader, through language, programming, the use of models, etc. I see

a need for more attention to the question of how to measure the effectiveness of added

diversity.

2. Software Program Testing

Software program testing is necessary to establish that conn^ol and advisory functions are

performed according to specifications. There are several classes of failure to consider.

One is simply the failure to perform a safety function. This is easy to test, by

establishing the conditions that require the safety function, and observing the response.

A second, and much more difficult class to test for is the unintended function that could

cause an unprotected safety problem. The failure of the AT&T telephone system several

years ago is an example of an unintended function. A modification of the original

program, thought to be minor at the time, introduced the error, and when the specific

combination of conditions occurred that activated the fault, the system collapsed.

3. Configuration Control

It is reasonable to expect that there will be modifications from time to time, as a result

of experience with early software versions, or a new requirement, or the discovery of an

improvement. Configuration control should be exercised to assure that errors will not be

introduced as a result of changes. There is also the possibility of discovery of a software

logic problem, but that the corrective action is lost or forgotten. The Bruce Unit 4

refueling machine accident was such a case: the end result, some of you may know, was

that the program instructed the refueling machine to move down 3 feet while the brakes

were engaged. It did move, broke a pipe and caused a small break loss-of-coolant

accident which was brought under control. However, such an experience is not welcome.

The security of control programs is an important aspect of configuration control. Obviously it

is necessary to preclude the possibility that any person or organization could modify control and

protection system programs with malicious intent.

11

4. Formal Methods

Another concern is that deviations from the design specifications might occur during the

development of the software. Procedures are needed to verify that each step of the

development is compatible with the intent of the specification. One approach is to

employ the mathematical methods to verify and validate software. These methods are

formal and have the potential to prove theoretically that the final product is coincident

with the design specification.

It is my hope that the opportunities and problems of applying digital I&C technology to NPPs

now and in the future will enter the discussions in very productive ways at this Workshop.

I will close with a reading of Aesop's fable about the crow and the pitcher which I think is a

story about technological innovation, written about 2500 years ago:

A crow, on the verge of dying with thirst, spied a pitcher in the distance and flew

to it with joy. But when he arrived, he discovered to his grief it contained so

little water that he could not possibly get at it, despite all his efforts. At one point

he decided to turn the pitcher over and break it. However, he was not strong

enough to succeed. At last, seeing some small pebbles nearby, he gathered them

and dropped them into the pitcher one by one. By this means the water gradually

rose to the brim, and he could quench his thirst with ease.

At the risk of using an analog at a digital I&C workshop, I suggest that the living water in the

pitcher is the opportunity for introducing digital instrumentation and control in NPPs.

Imaginadon, expressed by Aesop in terms of the crow using the pebbles, is what we need to

realize the opportunity.

12

2.3 Welcome and ACRS Perspective: Dr. J. Ernest Wilkins, Jr.

WELCOME AND ACRS PERSPECTIVE

DR. J. ERNEST WILKINS,]R?
Chairman of the Nuclear Regulatory Commission's

Advisory Committee on Reactor Safeguards

[as edited from transcript]

Almost exacdy one year ago ACRS sent a report to the Chairman of the NRC in which it

commented on some of the obvious advantages and disadvantages of digital technology for

instrumentation and/or control systems, with particular reference to their implications for nuclear

industry regulators. The Committee observed that the NRC staff had, at that time "concentrated

its attendon on the vulnerability of digital systems to certain kinds of common-mode failures,

principally through programming errors introduced into the software." The Committee

recommended that the NRC staff revisit some of the less desirable proposed regulatory

requirements, augment staff capabilities in the digital technology area, and look at other industries

which have dealt with similar problems.

In November of 1992, the Committee responded to the staff's research program defining the

environmental qualification requirements needed for digital instrumentation and control systems.

Although this research program would uldmately study several environmental features, such as

temperature, moisture, and smoke, the staff inidally concentrated on electromagnetic radio

frequency interference. The Committee recommended that, "The direction of the program be

reassessed to account for some kind of risk ordering of a suite of likely stressors," and repeated

its earlier recommendation that the staff look for relevant industry experience.

The Committee wrote its most significant letter in this area to the NRC Chairman on March 18,

1993. This letter was the outcome of a series of meetings conducted by the ACRS Subcommittee

on Computers and Nuclear Power Plant Operadons to explore the regulatory and safety

implications of the trends toward digital technology in both existing and proposed nuclear

reactors. In these meedngs the subcommittee sampled views of industry, the staff, nuclear

vendors, and others, both within and outside the nuclear community. Some of the observadons

contained in that letter follow:

"It is important not to develop a tabloid mentality about new technology."

^This talk gave Dr. Wilkins' personal opinion of the position of the Nuclear Regulatory Commission's Advisory

Commiliee on Reactor Safeguards (ACRS). ACRS has been interested in the utilization of digital technology in

nuclear power plants including the specific topics discussed in this workshop.

13

"One should not regard the various horror stories about catastrophic failures of major

computer systems as the norm."

"Computerization provides an opportunity, not a threat."

"It is misleading to bandy failure probabilities about as if they have the same meaning

as they do for familiar mechanical and electrical components."

"Formal verification and validation procedures can assure that the code correctly expresses

the specifications."

The NRC must be "sure of the requirement, in order to generate verifiable software, for

precise no-nonsense attention to the specification of the functions to be implemented."

"The gist of our concerns is that the regulatory procedures developed during the decades

preceding the electronic revolution are inappropriate to the regulation of computerized

functions in nuclear power plants."

"Neither the staff, nor the Commission, has established what could be described as a

standard review plan, or even a regulatory guide, that could help both the staff and the

industry know what is expected of them."

"Our recommendation is that a workshop and study with the charter to produce such a

plan be commissioned to be done by the National Academies of Science and

Engineering."

These are several of the remarks, observations and recommendations of the ACRS over the past

year. It is frequendy the fate of advice from advisory groups to be received with great applause

and then quiedy deposited on a shelf to gather dust. ACRS is more fortunate in this regard. The

staff and the Commission have made sincere efforts to respond to some of the ACRS suggesdons.

This is not a sycophantic acceptance; the staff has changed its views on appropriate reguladons

in significant ways. Ultimately, the staff may propose rules and regulations that the Committee

can enthusiasUcally endorse to the Commission.

The staff has tried to recruit new employees who have a suitable background in digital

technology instrumentation and control for the purpose of augmenting the staff's capabilities in

these areas. This effort has not been as successful as ACRS wished, partly because individuals

with a background in this area are in great demand everywhere and partly because the financial

exigencies facing Government agencies have made recruiting difficult.

Finally, the staff has endeavored to solicit assistance and information from external sources. It

has had meetings with its regulatory counterparts in other countries and has benefitted from the

exchanged of information. It also holds frequent discussions with the nuclear industry,

14

particularly with Nuclear Utilities Management and Research Council (NUMARC) and to some

extent the staff has sought information from individuals outside the nuclear industry.

Although the staff did not follow the Committee's advice to commission the National Academies

to hold a workshop, it did organize the present workshop in cooperation with the National

Institute of Standards and Technology and has assembled in this room a significant group of

outside experts. Because the purposes of the present workshop are less ambitious in comparison

with the interests and concerns of the Committee, the attendees need to keep the larger picture

in mind also.

15

3 ISSUE PERSPECTIVES FOR NUCLEAR POWER PLANTS

In this session, Mr. William T. Russell (Associate Director for Inspection and Technical

Assessment, Office of Nuclear Reactor Regulation, NRG), Mr. Leo Behracchi (Senior Project

Manager, Office of Nuclear Regulatory Research, NRC), Mr. Richard J. Blauw (Commonwealth
Edison Company), and Mr. Paul K. Joannou (Ontario Hydro) provided regulatory, research, and

industry perspectives on digital upgrades.

Mr. Russell covered highlights of NRC positions intended to facilitate ongoing reviews. The

reviews include those for the advanced boiling water reactors, the Combustion Engineering

System 80+, and retrofits on operating reactors. He provided a basis for evolving positions on

quality and diversity, he and described a block approach for performing diversity assessments.

The NRC staff recognizes the potential for enhanced safety and reliability that digital systems

bring to the nuclear industry. The staff also recognizes the challenges to safety that are unique

to digital systems implementation. An item used in the process for assessing quality of advanced

reactors is the Design Acceptance Criteria (DAC). The NRC specifies top-level system

requirements and a detailed design process from system performance requirements through V&V.
The process is broadly based on lEC 880 [IEC880]. This covers the approval of the design

process, not the approval of the actual design of the system.

The four major elements, according to Mr. Russell, of the NRC's diversity position are the

following:

1. The applicant shall assess the defense-in-depth and diversity of the proposed l&C
system to demonstrate that vulnerabilities to common-mode failures have been

adequately addressed.

2. In performing the assessment, the vendor or applicant shall analyze each

postulated event in the analysis section of the safety analysis report (SAR) using

best estimate methods. The vendor or applicant shall demonstrate adequate

diversity within the design for each of these events.

3. If a postulated common-mode failure could disable a safety function, then a

diverse means, with documented bases that the diverse means is unlikely to be

subject to the same common-mode failure, shall be required to perform either the

same function or a different function. The diverse or different function may be

performed by a non-safety system if the system is of sufficient quality to perform

the necessary function under the associated event conditions.

4. A set of controls located in the main control room shall be provided for system

level actuation and control of critical safety functions. The displays and controls

shall be independent and diverse from the safety computer system identified in

Items 1 and 3.

17

Mr. Beltracchi presented an overview of the NRC research activities and stressed the need to

define a technical basis for digital system requirements. A technical basis comprises the

following:

1. A requirement has been clearly coupled to safe operations.

2. The scope of the requirement is clearly defined.

3. A substantive body of knowledge exists and the preponderance of evidence

supports a technical conclusion.

4. A repeatable method exists for correlating relevant characteristics with

performance.

5. A threshold for acceptance can be established.

Mr. Beltracchi led the audience through the history of NRC's regulations, which included an

analysis of standards used within the nuclear industry. Only two standards cite digital systems.

Mr. Beltracchi also identified two major regulatory areas of digital upgrades for the NRC to

address: the diversity requirements for safety algorithms and computer unique requirements. He
presented an outline for a framework for an NPP safety system. When completed, this

framework would provide guidance in organizing the digital system requirements for the

hardware, software and the human operator components.

Mr. Blauw voiced a concern in his presentation that while the top-level view or design of digital

systems may appear simplistic, the implementation of safety regulations is complex. The nuclear

industry must look at other industries for process control and monitoring. He will be working on

the revision of American Society of Mechanical Engineers (ASME) standard on Nuclear Quality

Assurance (NQA), Part 2.7 [ASMENQA2] to explain differences between design verification and

V&V, differences between configuration control and configuration management (CM), and

documentation issues. Mr. Blauw described his experiences with implementing digital systems

in which the concern was the cost-effectiveness of providing the necessary assurance of the safety

of these systems. Mr. Blauw then described the IEEE Standard 7-4.3.2 "Standard Criteria for

Digital Computers in Safety Systems of Nuclear Power Generating Stations" [1EEE7432]; utilities

were involved in developing this standard''. This standard is intended to be used with IEEE

Standard 603 "Standard Criteria for Safety Systems for Nuclear Power Generating Stations"

[IEEE603].

He also indicated that the Nuclear Utilities Management and Resources Council (NUMARC) will

publish a digital upgrade guideline which recommends a licensing approach, and that the Electric

Power Research Institute (EPRI) will publish other guidelines. The standards and guidelines

This standard was officially approved by the IEEE Standards Board at their meeting on September 15, 1993.

18

address some principal issues for system design models including project management,

configuration control, failure and error analysis management, and independent review. Currently,

a major problem is that plant drawings and other forms of design documentation are not under

configuration control and are frequendy incorrect with respect to the current plant configuration.

Ontario Hydro of Canada has vast experience in applying digital system technology in a NPP.

Mr. Joannou described some of the issues encountered while licensing the Darlington Reactor

Station, which used a fully computerized shutdown system. One problem was lack of a widely-

accepted definition of "good enough" software; the deficiency led to joint development between

Ontario Hydro and Atomic Energy Canada Limited (AECL) of a family of software engineering

standards, guidelines and procedures for NPP protective, control, and monitoring software. Major

issues addressed by AECL and Ontario Hydro include the reviewability of the software, safety

functions, ambiguities in requirements specifications, software reliability and software

maintainability. One of the problems is that the use of software analysis techniques, such as

reengineering and hazard analyses, is cosdy. The industry needs to develop cost-effective

analysis methods. The new standards and guidelines developed during this experience provide

rules for documentation, test types (stadstically valid, trajectory-ba.sed random tests, systematic

tests), software CM (SCM), audits, qualifications of personnel and independent V&V.

19

3.1 Presentation on NRC Regulatory Positions and Guidelines: Mr. WilJiam T. Russell

REGULATORY PERSPECTIVE ON DIGITAL
INSTRUMENTATION AND

CONTROL SYSTEMS FOR NUCLEAR
POWER PLANTS

William T. Russell

Associate Director for

Inspection & Technical Assessment

The NRC staff recognizes the

potential for enhanced safety and
reliability that digital systems
bring to the nuclear industry.

The staff also recognizes the

challenges to safety that are

unique to digital systems
implementation.

21

ADVANTAGES
• Safety (reduced operator errors)

• Stability, no drift

• Accuracy
• Reduced susceptibility to S/N effects

• Multiplexing, fewer cables
• Self diagnostics
• Low power requirements
• Cost
• Parts availability

• Graphic displays

• Fault tolerance/avoidance

DISADVANTAGES

• Complexity
• Requires extensive V&V
• Subtle failure modes
• Complex testing, trouble shooting
• Susceptibility to common mode

failure

22

COMMON MODE FAILURE

• Identical hardware/software in

redundant channels

• Software reliability cannot be quantified

• Software errors may result in a common
mode failure

• Compensated by quality and diversity

REGULATORY REVIEW BASES
FOR ADVANCED REACTORS

• Existing regulatory requirements

• Hardware/software quality and diversity

• EPRI Utility Requirements Document

23

DIVERSITY
Requirement for diversity based on:

• Discussions with experts
- N. Leveson (University of Wasliington)
- B. Littlewood (City University, London)
- D. Parnas (Queen's University, Canada)
- J. Rushby (SRI International)

• Discussions witli outside organizations
- NASA, NIST, IBM, CSC, TRW, SEI, Siemens

• Discussions with foreign regulatory agencies
- Nil (United Kingdom), AECB (Canada),

DSIN/IPSN (France)

• NRC Digital System Reliability Workshop

QUALITY

• Hardware/software integrated

development process - industry

standards and EPRI requirements

• Addresses hardware/software
cliange process over life of plant

• Top level design and process

requirements subject to NRC
inspection

24

DIVERSITY POSITION

1 . The applicant shall assess the

defense-in-depth and diversity of the

proposed instrumentation and
control system to demonstrate that

vulnerabilities to common mode
failures have been adequately

addressed.

DIVERSITY POSITION (cont'd)

2. In performing the assessment, the

vendor or applicant shall analyze

each postulated event that is in the

analysis section of the safety analysis

report (SAR) using best-estimate

methods. The vendor or applicant

shall demonstrate adequate diversity

within the design for each of these

events.
25

DIVERSITY POSITION (cont'd)

3. If a postulated common-mode failure

could disable a safety function, then a
diverse means, with documented
bases that the diverse means is

unlikely to be subject to the same
common-mode failure, shall be
required to perform either the same
function or a different function.

The diverse or different function may
be performed by a ncn-safety system
if the system is of sufficient quality to
perform the necessary function under
the associated event conditions.

DIVERSITY POSITION (conrd)

4. A set of safety-gi^ade controls located
in the main control room shall be
provided for system-level actuation
and control of critical safety
functions. The displays and controls
shall be independent and diverse
from the safety computer system
identified in Items 1 and 3.

26

DIGITAL RETROFITS
• Reactor trip systems

- Eagle 21 (Westinghouse)
- Spec 200 micro (Foxboro)

• Radiation monitoring systems
- NUMAC (GE)
- Others under 10 CFR 50,59

• Diesel generator load sequencers
- PLC-based (Allen Bradley)

• Auxiliary feedwater control system
- Woodward

• Plant safety monitoring system
- Westinahouse

OPERATING REACTOR
DIVERSITY

Assessed based on Items 1, 2, and 3

of advanced reactor position

Applied to RPS and ESF retrofits

Example - Reliance on ATWS
mitigation system to liandie loss of

RPS
27

HOW IS DIVERSITY ASSESSMENT
PERFORMED?

• Analyze l&C system function in design basis
events

• Identify common functional elements (blocks)

• Postulate failure of similar blocks

• Evaluate system response using best-estimate
methods

WHAT ARE BLOCKS FOR
PURPOSES OF DIVERSITY

ANALYSIS?

A to D Converter - Not considered a

block in diversity analysis when:

Single input/output

Simple, can be fully tested

Extensive operational history
28

MULTIPLEXER SYSTEM

A/D

Multiplexer

Decode
&

Process

Block

Considered a block for diversity

analysis when:
- Multiple inputs / multiple outputs

- Complex, cannot be fully tested

- Limited operational history

TRIP UNIT SYSTEM

Multiple inputs

(temperature,

pressure, power,
flow, etc.) from
four different

(isolated)

channels

Trip

Unit

1

Trip

Unit

2

Trip

Unit

3

Trip

Unit

4

Redundant
outputs

from each
trip unit

29

DIVERSITY EVALUATION

Review scope
- Software language
- Hardware
- Function
- Signal
- Design (including design team)

Diverse if:

- All above are different

- Different function with same software

language and same vendor
- Different vendor with same function

Case-by-case review for other implementations

30

3.2 NRC Research Activities: Mr. Leo Beltracchi

NRC RESEARCH ACTIVITIES

Leo Beltracchi

U.S. Nuclear Regulatory Commission

Washington, DC 20555

LO ABSTRACT

This paper identifies and describes safety issues related to the design, development, and

qualification of reliable digital computer systems for nuclear power plants. It also describes the

U.S. Nuclear Regulatory Commission's research program on these issues. The paper discusses

an evaluation of the initial standards for hard-wired based safety systems. The lessons learned

in developing these standards provides guidance in the design and use of digital technology in

nuclear power plants. Also, this evaluation discusses how the content of the standards should

lead to a framework of design criteria and the related acceptance criteria that can be used for

computer-based safety systems. The opinions and viewpoints expressed herein are the author's

personal ones and they do not necessarily reflect the criteria, requirements, and guidelines of the

U.S. Nuclear Regulatory Commission (NRC).

2.0 INTRODUCTION

Analog, hard-wired technology is the dominant technology for nuclear power plant

instrumentation and control systems and safety systems within the United States. The design,

development, and qualification of safety systems is governed by General Design Criteria (10 CFR
50, Appendix A), published by the NRC, and by industry developed standards (See Section 6.1,

Standards). The General Design Criteria present top level requirements and are generally

independent of implementation technology. However, the standards amplify these top level

requirements and contain requirements and guidelines reflective of safety issues associated with

the use of hard-wired technology. Digital technology will replace ageing hard-wired technology

in nuclear power plant safety systems; standards should be revised to reflect safety issues

associated with the use of digital technology. This paper describes several of the safety issues

associated with the design and development of computer-based, safety systems.

There are many unique design and safety issues for digital systems. For example, digital systems

operate in a discrete fashion whereas analog systems operate in a time-continuous fashion when

executing a function. Thus, software execution time in computing a safety function is an

important design performance issue for digital systems. Also, computer programs are more

difficult to test than analog hard-wired systems. For example, tracing a sensor signal through a

computer program is usually more difficult than signal tracing through hard-wired systems.

31

Furthermore, the loss of a safety function by common cause failure due to environmental factors

must also be considered.

Because of the difficulty in establishing reliable stored logic, digital systems are usually more

complex than analog systems. Much of this difficulty stems from the lack of a systems

engineering approach in the design of digital systems. Leveson and Turner's (1993) analysis of

the Therac-25 Accidents concluded:

; "Accidents are seldom simple - they usually involve a complex web of interacting

events with muldple contribudng technical, human, and organizational factors."

"The problem of accidents in complex systems must be approached from a system

engineering point of view and all possible contribudng factors considered and

handled."

The safety concern is that an inadequate design process can lead to errors in the final product,

which may lead to the loss of a safety function.

A computer-based, safety system consists of hardware and software to implement the desired

safety funcdons. There are also human interfaces from which humans monitor operadon and

perform maintenance on the system. Several of these elements are discussed next in the context

of a need for a framework of design criteria for computer-based, safety systems.

3.0 DISCUSSION

3.1 Standards

A standard encodes a body of knowledge and accepted pracdces. The development of industry

standards for the design of nuclear power plant safety systems first began about the dme the

NRC published General Design Criteria (10 CFR 50, Appendix A). Section III, "Protecrion and

Reacdvity Control Systems," Appendix A, 10 CFR 50 idennfies ten criteria for the design of

protecdon safety systems. These criteria idendfy the basic performance requirements and design

principles for a protection system and are generally independent of the implementadon

technology. In order to expand on the General Design Criteria and identify specific design

requirements, the nuclear industry developed standards, such as IEEE Standard 279-1971 and

IEEE Standard 308-1971 (R1980). See Section 6.1, Standards, for the dtle of each of these

standards and subsequent standards defined in this paper. IEEE 279 defines specific requirements

for the design of protection systems, while IEEE 308 defines specific design requirements for

Class IE electrical systems. A reliable source of electrical power is necessary to operate the

protecdon system.

32

In reviewing these standards, it is important to understand the definitions used for terms in these

documents. IEEE Standard 308-1980 identifies a safety system as follows:

"Those systems (the reactor trip system and an engineered safety feature, or both,

including all their auxiliary supporting features) which provide a safety function."

While this appears to be a reasonable definition, it is incomplete. A human system is also

necessary as part of the safety system. Operators and maintainers are key elements of the human
system necessary to manually initiate a safety action, monitor, adjust, and maintain a safety

system. The data in Table A-2.5, Reactor Scram Signals, (NUREG1272, 1992) indicates

operators are significant initiators of manual reactor scrams. No safety system is able to operate

for the life of the plant without the support of a human system. A better definition of a safety

system is then:

Those systems (the reactor trip system and an engineered safety feature, or both

including all their auxiliary supporting systems and a human system) which

provide a safety function.

The author reviewed IEEE Standard 279-1971, IEEE Standard 308-1971, and ANSI N18.8-1973.

ANSI N18.8 identifies requirements for the preparation of a design basis for systems that perform

protective functions; however, it was never published as a standard Furthermore, it appears to

be an overview type of standard for the design of a plant. In fact, ANSI N18.8 was developed

after (in 1973) the aforementioned standards. Concerning design basis, ANSI N18.8 states

that:

"...safety systems and their auxihary systems shall be adequate to assure that events

caused by a station transient, a failure, an act of nature, or accidental act do not produce

effects that will prevent the degree of control over the containment or movement of

radioactive material that is deemed acceptable for the event."

Clearly, the safety system must be tolerant of hazards to ensure the successful operation of the

safety function.

While ANSI N18.8 was never published as a standard, its contents were integrated into earlier

versions of ANSI/ANS 51.1-1988 and ANSI/ANS 52.1-1988. Consideration of design basis

accidents is necessary prior to the design of a reactor trip system. Analysis of the design basis

accidents is necessary to establish the performance requirements of the reactor trip system to

maintain safety functions. Thus, ANSI N 18.8- 1973 logically should have preceded IEEE

Standard 279-1971. This is a lesson learned from the review of previous standards; that is

standards should include a top-down prescription. Another lesson learned is the need to specify

the role of the human system as part of the safety system in the design process.

ANSI/ANS 50.1-Draft 6 is a draft standard that will eventually replace both ANSI/ANS 51.1-

1988 and ANSI/ANS 52.1-1988. The new elements in the draft standard reflect an increment

33

in the knowledge base when compared to ANSI N18.8. ANSI/ANS 50.1 -Draft 6 sets design

requirements for safety grade and non-safety grade equipment. In addressing the overall safety

design criteria, the document discusses six elements:

1) a general approach,

2) deterministic analysis,

3) probabilistic risk analysis,

4) industry codes and standards,

5) safety analyses, and

6) design criteria for specific plant systems.

These elements form the start of a framework for design criteria. However, the framework does

not address the use of digital computers and it barely addresses the human system.

The six elements in ANSI/ANS 50.1 -Draft 6 define a two step approach to desigA^The first five

elements define potential safety issues and a design basis for the plant. The sixth element, design

criteria for specific plant systems, defines unique requirements for plant systems such as the

reactor protection system and these requirements define the second step in the design process.

The requirements are stated in the form of a standard. IEEE Standard 603-1980, which replaces

IEEE Standard 279-1971, identifies requirements necessary to design a reactor protection system.

A short discussion of some of the safety issues associated with the design of computer based,

safety systems in the context of ANSI/ANS 50.1 -Draft 6 type of standard elements follows next.

These issues include: a possible need to identify diverse means of achieving a safety function,

time response requirements of the safety system, and fault tolerance requirements.

A highly likely source of a common software error is a poor design process (Neumann, 1992).

The most challenging part of the design process is to specify a complete set of requirements for

a system. The problem becomes, what is the acceptance criterion for a complete set? A possible

acceptance criteria is the operating history of the developed and installed system. However, this

represents trial and error, which is unacceptable for nuclear safety. The most likely acceptance

criterion for the completeness of a set of requirements is engineering judgment.

Leveson (1993) advocates the use of hazard analysis as part of the system design process in the

use of digital computers for high integrity applications. System ha::ard analyses should be

conducted at the start of the design process. The goal of hazard analysis is to identify the weak

points in the system design and then to specify fault tolerant response(s) for implementation in

the computer system. The hazards analysis serves an important role to identify threats to and

potential failures of the safety system. Also, a hazard analysis may be a preliminary step to a

probabilistic risk analysis (PRA). Furthermore, hazard analyses and PRA have a common goal

in detecting and responding to potential operational faults.

One form of risk that is difficult to assess is the adequacy of the system design process. How
does a designer measure the completeness of the set of design requirements to meet the stated

34

goals of the safety system? The omission of a key design requirement for a safety system may
result in the loss of a safety function. In an on-going NRC sponsored study (Personal

communication with Mr. Carl Johnson, NRC) on common cause failure event cause, it was found

that 54 percent of these failures of plant hardware components were due to design or installation

faults. Another 30 percent of the causes were due to test and maintenance faults.

In an unrelated study, Mr. Fujii (1993) reports that for small systems, 53 percent of the software

errors were caused by an improper understanding of the interacdon between the system and the

software design. Furthermore, for large systems, the number jumps to 63 percent. These figures

resulted from the analysis and examinadon of software errors in complex command and control,

avionics, and cridcal medical control systems. Although these errors were identified from

diverse, non-nuclear applications, the results of this study are very similar to the result from the

on-going NRC sponsored study discussed earlier. An important lesson from these studies is the

need for a systemadc, rigorous effort in establishing design requirements to minimize errors in

the final product.

In summary, fault tolerance requirements for a computer-based, safety system should be

developed from hazard analyses and PRA studies. Also, to minimize the risk of design error, a

systematic, rigorous effort is necessary in establishing and verifying design requirements.

The use of digital technology in safety systems provides an opportunity to compute safety

functions directly from monitored plant parameters. For example, one critical safety function is

to maintain a cool reactor core. A cooled core maintains the geometry of the core and of the

passageways for the inserdon of control rods. Insertion of the control rods are necessary to shut

down the reactor upon threat to a critical safety funcdon. A measure of core cooling is the

Departure from Nucleate Boiling Rado (DNBR). An algorithm for DNBR would include coolant

temperature, pressure, coolant flow, and reactor power as input data. A trip set point is also

necessary.

A funcdonally diverse measure of core cooling would be hot leg subcooling. The subcooling of

the hot leg coolant is determined from coolant temperature, pressure, and saturadon temperature,

which is a function of pressure. A subcooling trip set point and response dme must also be

specified through scenario analysis to establish the limidng design basis event. The use of a

functionally diverse means of achieving a safety funcdon should reduce the risk to a common
cause design error; however quantifying the risk reduction may be difficult.

A framework of design criteria for a computer-based, safety system should contain a time

response performance requirement. A dme response requirement is necessary because a computer

requires a finite amount of time to process stored safety logic but the system must react in

sufficient time to maintain the safety funcdon. The analysis of limidng design basis events

develops important performance data for each safety funcdon in the design of computer-based,

safety systems. The limidng design basis events help to determine the time response

requirements of a safety system. The time response of the safety system must then be divided

and allocated to sensor response time, computer response dme to calculate the safety algorithm,

35

and the response time of the actuator. The specification of computer response time is an

important parameter for the performance of the processor. The processor must complete the

execution of the program within the allotted time.

In summary, deterministic analyses are necessary to identify and document each safety function,

diverse means of achieving a safety function, time response of the safety system, and the sensor

data necessary to implement each function,

ANS-50,1 -Draft 6 identifies basic design requirements for a nuclear power plant; it does not

identify design requirements for plant systems. However, it does identify other standards that

contain requirements for the design of plant systems. For plant safety systems, it identifies IEEE
Standard 603-1980 and IEEE Standard 308-1980 as standards containing system specific

requirements. These standards do not contain requirements for computer-based safety systems.

One standard that addresses application criteria for computer-based safety systems is IEEE-7-

4,3,2-1993. This standard was developed to augment IEEE Standard 603-1980 because of the

uniqueness of software in computer systems. The standard contains requirements for software

development, hardware-software integration, computer system validation, and verification. lEEE-

7-4,3,2 also identifies criteria in specifying requirements for computers used as part of a safety

system. Moreover, it specifies computer specific requirements to meet the criteria of IEEE
Standard 603-1991. IEEE Standard 603-1991, IEEE Standard Criteria for Safety Systems for

Nuclear Power Generating Stations, provides system level hardware criteria for safety systems.

IEEE 7-4.3,2 endorses the use of IEEE software standards. One purpose of these software

standards is to control the development process and thereby minimize the potential for error in

the application software. In developing software for a safety application, a designer should select

and use standards to cover all elements of the development process such as requirements analysis,

design, and test. Furthermore, project type standards for quality assurance, verification and

validation, and configuration control are also identified and should be used to minimize the

potential for error in the final product.

ANSI/ANS 58.8(Draft, Revision of 1984 Standard) establishes time response design criteria for

safety-related operator acdons. The criteria are used to determine the minimum response time

intervals for safety-related operator actions, such as manually inidated reactor trip. The draft

standard also contains general guidance for instrumentation and controls necessary to support

safety-related operator acdons. However, this draft standard is not directly linked to safety

system design standards, e,g, IEEE Standard 603-1980 and ANSI/ANS 50,1, Draft 6,

The human system is not included in the plant system in ANS 50.1 -Draft 6. One reason for not

identifying this system may be because the human system is one of the most flexible systems in

the plant. However, the human system is an important support system necessary for the

successful operation of the plant's safety system. Much of the information necessary to generate

emergency operation procedures comes from the design analyses for safety systems. Safety-

related operator actions for interacting with safety systems must be specified during the design

36

process as part of the effort in establishing requirements for safety systems. ANSI/ANS 58.8

(Draft, Revision of 1984 Standard) is a first step in this direction, but it must be integrated with

the appropriate design standards for safety systems.

In summary. Figure 1 shows the relationship among the major standards for the design of safety

systems. ANSI N18.8(1973, no longer valid), ANSI/ANS 51.1-1988, ANSI/ANS 52.1-1988, and

ANSI/ANS 50.1, Draft 6 define requirements for the design basis of safety systems. IEEE
Standard 308- 1972(R 1980) defines requirements for Class IE electrical systems necessary to

operate safety systems. ANSI/ANS 58.8(Draft, November, 1992) establishes time response

design criteria for safety related operator actions. However, this standard is not integrated with

and cross referenced to the other standards identified in Figure 1. Finally, IEEE Standard 603-

1980 identifies requirements necessary to design a reactor protection system. ANSI/IEEE-ANS
7-4.3.2-1982 and its successor IEEE Standard 7-4.3.2-1993 is the only standards that identify

design requirements for the use of digital computers in safety systems. However, these standards

do not identify all of the requirements necessary for the design of a computer-based, safety

system. Based on NUREG/CR-5930 and the review of ANSI/ANS 50.1- Draft 6, it appears that

standards for the design of safety systems need to include computer unique design requirements.

Because many standards and disciplines are involved it is important to establish a framework of

design criteria to ensure a reasonable degree of completeness in the specifications.

3.2 Outline Of A Framework Of Design Criteria

The outline of a framework of design criteria for a computer-based, safety system in Figure 2

is based on the review of standards and lessons learned. This outline is a functional version of

the standards presented in Figure 1, with some additional detail. The goal of the example system

identified in Figure 2, the reactor trip system, is to operate the NPP safely. The design basis

must identify all functions performed by the safety system. These functions must then be

allocated to the individual systems within the safety system. Furthermore, deterministic analyses

would be performed to identify the limiting design basis events.

Plant design basis events would also be identified, analyzed, and documented. The plant events

analyzed could include system and component failures as well as challenges from environmental

hazards. Also, emphasis could be placed on identifying vulnerabilities and environmental

limitations to develop acceptance criteria for qualifying the hardware of digital systems. The

susceptibility of digital systems to electromagnetic interference (EMI) and radio-frequency

interference (RFI) is a major concern. Furthermore, the operational history of safety systems and

the challenges to safety systems could also be considered (NUREG 1272, 1992). In summary,

a plant hazard analysis and then a probabihstic risk analysis identify threats to safe operation.

Fault tolerance and response requirements to hazards could be determined and specified as part

of the design basis.

Figure 3 presents a conceptual model of a system design and development life cycle based on

the discussions in this paper. Once system requirements and functions have been established,

they must then be allocated to hardware, software, and humans. After completion of this step,

37

the next efforts for software development could be detailed design, coding, unit tests, and unit

integration followed by software test and validation. Similar efforts could also be done for

hardware development and for the human system. Environmental qualification of the hardware

could be an important step in the development process. The design requirements for the human
interface will impact the software design and the hardware design, and this relationship is not

illustrated in Figure 3. The integration of the hardware, software, and human interfaces could

be necessary to construct the system. Once assembled, the system could be then subjected to test

and validation in response to pre-established system requirements.

Not shown in Figure 3 are the verification activities for the various steps in the design and

development life cycle. Effective verification activities early in the design and development life

cycle minimizes the resources that would be needed to detect and correct problems later in the

life cycle. Furthermore, the lessons learned from the verification and validation activities provide

important information for updating the standards and guidelines used in the design and

development process.

In summary, the design and development process for digital systems consists of many activities

and the use of many standards. To minimize the potential for ertors in these activities,

consideration could be given to the development of an overview standard.

4.0 RESEARCH PROGRAMS

4.1 Hardware Programs

Most operating plants in the U.S. contain instrumentation and control (I&C) systems that were

designed over 25 years ago. As these systems age, maintenance and support costs increase due

to obsolescence, lack of original equipment support, and increased testing requirements. On the

other hand, major advances in the electronic industries have produced products that were never

envisioned during the original design process of nuclear power plants. In order to benefit from

these evolving technologies, the NRC initiated two research programs to perform confirmatory

research, and develop a technical basis for acceptance criteria for hardware qualification of digital

I&C systems which will be used in existing nuclear power plants and in the proposed new plants.

First, under the auspices of the NRC, the Oak Ridge National Laboratory (ORNL) is conducting

a study with a view to identify functional and environmental issues arising from the application

of new technologies to the instrumentadon comprising the next generation of nuclear power

plants. The purpose of this program is to develop an understanding of the technical issues

involved in evaluating long-term properties of advanced digital instrumentation and control

systems. Emphasis has been placed on identifying vulnerabilities and environmental limitations

that could be imposed on microprocessor-based systems in nuclear environments.

Second, ORNL is developing a technical basis for evaluadng the susceptibility of digital systems

to electromagnedc interference (EMI) and radio frequency interference (RFI). IEEE Standard

1050-1989 was found for the most part to do an adequate job of specifying electromagnetic

38

compatibility design and installation practices that are applicable to nuclear power plant

environments. Relevant military standards are MIL-STD-461C and MIL-STD-462. These

standards were found to be reasonable starting points from which to begin an evaluation of

relevant test criteria and methods for nuclear power plant applications. The results from this

study are currently under internal review.

In summary, the objectives of these programs are to:

* To develop regulatory guidance on susceptibility to EMI and RFI,

* To develop regulatory guidance on the qualification of digital I&C hardware.

4.2 Software Programs

A clear need exists for standards and a technical basis for acceptance criteria for the use of

digital computers in safety systems. There is not yet however, a clear consensus on the safety

issues and the technical basis for their resolution in the area of digital technology. Generally,

a technical basis exists when:

1. The topic has been clearly coupled to safe operations.

2. The scope of the topic is clearly defined.

3. A substantive body of knowledge exists and the preponderance of the evidence

supports a technical conclusion.

4. A repeatable method to correlate relevant characteristics with performance exists.

5. A threshold for acceptance can be established.

Establishing a technical basis for the use of computer-based systems could be a significant, time

consuming and expensive effort.

One means by which part of the technical bases are being developed is by the NRC's
participation in the Organization for Economic Cooperation and Development (OECD) Halden

Reactor Project. The OECD Halden Reactor Project is one of Europe's largest experimental

laboratories conducting research on fuels, materials, man-machine interfaces, and advanced

instrumentation and control systems. One area of interest to the staff is the Halden Project's

research on the use of formal methods and theorem provers for the design of computer-based

safety systems. Another area of interest is the research on the effectiveness of various software

test techniques (Dahll, Barnes, and Bishop, 1990).

The NRC is also conducting other research to estabUsh the technical basis for guidelines and

acceptance criteria on the use of digital computers in nuclear power plant safety systems. The

objectives of some of these programs are as follows:

* To identify and document the positive and negative attributes resulting from the use of

standards and computer aided software engineering (CASE) tools when used in the

39

design, development, evaluation, and certification of high integrity software for nuclear

power plant safety systems,

* To evaluate the feasibility of (Phase A) and develop and test (Phase B) a prototype CASE
tool for assessing the degree of functional diversity within software safety systems,

* To independendy evaluate, test, and improve guidelines for use in the audit of computer-

based, safety systems,

* To develop system classificadon guidelines and qualitadve reliability measures,

* To develop and document guidelines for verifying and validadng expert systems,

* To review and assess software languages for use in nuclear power plant safety systems,

* To assess how digital technology changes human actions and error rates, systems

unavailability, and core damage frequency; and to improve methods for analyzing this

human performance in PRAs.

These programs are starting to produce useful products. A survey and assessment of

conventional software verification and validation methods has been published (NUREG/CR-
6018). Also, an assessment of standards and guidelines for high integrity software has been

published (NUREG/CR-5930). The results from these studies are helping to idendfy a need to

clarify the "safety system" versus "software" issues and to establish a framework of design

criteria for computer-based, safety systems. The NRC is now in the process of formulating

additional research with the objective of identifying and documenting a framework of design

criteria. The first step in this direction is the integration of research products to develop the

technical basis for regulatory positions on software. This effort will survey the existing research

programs within the NRC and other industries and integrate the relevant products into a matrix

of requirements versus technical basis. The end product will be to develop and document the

technical basis for regulatory use. A second step is necessary to refine the technical basis for

computer-based, safety systems.

5.0 CONCLUSIONS

The design and use of digital computers to perform safety functions within nuclear power plants

must be guided by guidelines, standards, and acceptance criteria. While the existing set of

standards provide useful information, they do not provide all of the requirements necessary for

the use of digital computers. While some effort exists to revise standards, such as the effort that

resulted in IEEE 7-4.3.2 Standard Criteria for Digital Computers in Safety Systems of Nuclear

Power Generating Stations being updated in 1993, additional effort could be needed to revise

existing standards to incorporate the use of digital computers. To ensure a comprehensive

approach to the development of standards and regulatory guidelines, a need exists for a

40

framework of design criteria. The framework could include a requirement for a systematic

approach to define, classify, and allocate functions to hardware, software, and humans. Finally,

a technical basis could also be necessary for the computer unique requirements and guidelines

to support the framework and to provide acceptance criteria.

6.0 REFERENCES

6.1 Standards

American National Standards Institute, ANSI N18.8, October, 1973, Criteria for

Preparation of Design Basis for Systems that Perform Protective Functions in Nuclear

Power Generating Stations (Trail use and comment).

American National Standards Institute/American Nuclear Society, ANSI/ANS 51.1-1988,

Nuclear Safety Criteria for the Design of Stationary Pressurized Water Reactor Plants.

American National Standards Institute/American Nuclear Society, ANSI/ANS 52.1-1988,

Nuclear Safety Criteria for the Design of Boiling Water Reactor Plants.

American National Standards Institute/American Nuclear Society, ANSI/ANS 50.1, Draft

#6, Nuclear Safety Design Criteria for Light Water Reactors, January 1993.

American National Standards Institute/American Nuclear Society, ANSI/ANS 58.8-1984,

Time Response Design Criteria for Safety-Related Operator Actions.

American National Standards Institute/American Nuclear Society, ANSI/ANS 58.8, Draft,

Time Response Design Criteria for Safety-Related Operator Actions, November, 1992.

American National Standards Institute/Institute of Electrical and Electronics Engineers-

American Nuclear Society, ANSI/IEEE-ANS-7-4.3. 2- 1982, Application Criteria for

Programmable Digital Computer Systems in Safety Systems of Nuclear Power Generating

Stations.

Institute of Electrical and Electronics Engineers, IEEE Standard 279-1971 , IEEE Standard:

Criteria for Protection Systems for Nuclear Power Generating Stations.

Institute of Electrical and Electronics Engineers, IEEE Standard 308-1972, IEEE Standard:

Criteria for Class IE Electrical Systems for Nuclear Power Generating Stations (IEEE

Standard 308-1980, a later version).

Institute of Electrical and Electronics Engineers, IEEE Standard 603-1980, Criteria for

Safety Systems for Nuclear Power Generating Stations.

41

Institute of Electrical and Electronics Engineers, IEEE Standard 1050-1989, Guide for

Instrumentation and Control Equipment Grounding in Generating Stations

Institute of Electrical and Electronics Engineers, 7-4.3.2-1993, Standard Criteria for

Digital Computers in Safety Systems of Nuclear Power Generating Stations.

MIL-STD-416C, Electromagnetic Emission and Susceptibility Requirements for the

Control of Electromagnetic Interference.

MIL-STD-462, Measurement of Electromagnetic Interference Characteristics.

6.2 Articles and Books

Dahll, G., Barnes, M., and Bishop, P., "Software Diversity - A Way To Enhance Safety?"

Second European Conference on Software Quality Assurance, Oslo, Norway, May 30 -

June 1, 1990.

Fujii, R., "Software Engineering for Instrumentation and Control Systems," Nuclear Plant

Instrumentation, Control, and Man Machine Technologies, Oak Ridge, TN, April 19-21,

1993.

Leveson, N.G. and Turner, C.S. "An Investigation of the Therac-25 Accidents," COMPUTER,
pas 18-41, July 1993.

Personal Communication with Mr. Carl Johnson, NRC.

Neumann, P.G., "Illustrative Risks to the Public in the Use of Computer Systems and Related

Technology," ACM SIGSOFT, Software Engineering Notes, Vol. 17, No. 1, pas 23-32,

January, 1992.

U.S. Nuclear Regulatory Commission, "Survey and Assessment of Conventional Software

Verification and Validation Methods," NUREG/CR-6018, April 1993.

U.S. Nuclear Regulatory Commission, Licensing of Production and Utilization Facilities, Title

10, Code of Federal Regulations, Part 50, Appendix A: General Design Criteria for

Nuclear Power Plants and Appendix B: Quality Assurance for Nuclear Power Plants.

(Published Yearly)

U.S. Nuclear Regulatory Commission, "Analysis and Evaluation of Operational Data, 1991

Annual Report," NUREG-1272, Vol. 6, No. 1 and No. 2, July 1992.

U.S. Nuclear Regulatory Commission, "High Integrity Software Standards and Guidelines,"

NUREG/CR-5930,September, 1992.

42

CO

I

00

00m
z

00

00
in

I L.
C/) 0)Z X3

„ «

Z o
c Z

E
u
*^
Vi
•Si

(0
u

00 00
00 00

cc cc

in m
z zs cc

z z
CE CC

3)

re

c
MB

a

T3

re

C
re

03

0^

=3

03

43

Outline of a Framework of Design Criteria for a Computer-Based Saftey System

Goal: Operate NPP Safely

Development Process Guidelines

and Standards

Software Design

Standards and Guidelines

Quality Assurance Standard

Verification and Validation

Standard
' Configuration Management
Standard

Reactor Trip Saftey System:

Function Allocation and

Requirements

Design Basis Data Base

• Identify and Document
All Functions

• Deterministc Analyses

Saftey Functions

Limiting Design

Basis Events

Response Times
Single Failure Criteria

• Hazard Analyses
• Probablistic Analyses

Support Systems
e.g. Class 1 E Power

System

Reactor Protection

System

—AC Power Systems

—DC Power Systems

—Vital Instruments and
Control Power System

—Distribution System

— Load Groups

Human Interfaces

— Hardware

— Digital

— Analog

— Software

—Human Interfaces

Human System

—Operators

— Maintainers

— Trainers

—Engineering

Support

1—^Administrators

Figure 2: Outline of a Framework of Design Criteria

44

LU
CO

m
I-

>
CO

CO
Hi
CO
>-

S2 z ^

CO ^
111 ^
CO CO

CO
_J
<
o

<
>-
LU

t
<
CO

o
Oco

CC CO

CO

LU i=

LU
CC

o
LU

o
I-<
o
o

o

LL

- ^ ^
LU _J
t- CD
CO <
> m
CO O

CC
Q_

LU
H
CO
•>

CO

o
I-
o

CO w
J—

is
< LU

t o
_J CC

SiO m

UJ
QC
<
Q
QC<

A
LU
I-<o
CC
CD
<
LL

LU
CC

o
o
CC
Ol

V
CO

is

CO

CO

LU O
LU
CC

LU
CC

Cl LU
CC CC
<

CO

tf2

uu
en
o
o

is
CO <
LU O
^ o
LUUJ

< CO

CO
1-
2:
UJ 0

1—
LU <

LU CC

WAR EQU
ANI

t CC

o
CO

LU
o

t- <
CO
LU CC
I- UJ

LU
o<
Li-

ce
LU
h-

0 IE
2 <

1 ^
F CC

CO
LU

UJ
o

CC CO
LU LU
1- Q2

CD2
2
<
CC

UJ CD
> O
UJ CCQ CL

CO

v; CO

< 7^

CD

< LU

O 2
O
_J CL

<o
CO

<
CC
CDm

CO
>
CO

<
9
<>

CO
UJ

LU
h-
co
>-
CO

g
I—
o
2
3

CO
1-
2
LU

LU

2 cn

< ZD

ZD UJ
I CC

O

ff to

« oo c
-D 2C 3
»-

CO >^

Q
e|
o E
to O

CD
CD >^

Q.
O .52

T3 c/2

O TO

11
c: o
8^
CO
0}

Ll

45

3.3 Industry Perspective on Digital Upgrades: Mr. Richard J. Blauw

A UTILITY PERSPECTIVE ON DIGITAL UPGRADES

Richard J. Blauw
Commonwealth Edison Company

presented to:

Digital Systems Reliability and Nuclear Safety Workshop
September 13-14, 1993

Rockville Crown Plaza Hotel

Rockville, MD

Abstract

Nuclear utilities face the need to upgrade aging and obsolete safety related and other critical

equipment. This is the result of operation and maintenance concerns for reliability and

maintainability. Digital technology is an option for these upgrades.

A number of utilities have attempted exercising the digital option. The regulatory licensing

results have been inconsistent and have raised a variety of issues. These issues and the

subsequent licensing uncertainties have caused some utilities to temporarily drop digital

technology as an upgrade option.

Resolution of these issues and the need for regulatory stability is driving the development of

industry standards and guidelines. These will provide guidance to support consistent design and

implementation of digital upgrades. Successful completion of these documents is necessary for

renewed consideration of the use of digital technology.

This paper will present a utility perspective on how project management, configuration control,

and a rigorous design process can serve to address the present regulatory issues. These issues

include commercial grade dedication, reliability, electromagnetic interference, and failure and

error management. This perspective is consistent with the standards and guidelines development

effort.

47

Introduction

Nucleair utilities face the need to upgrade aging

and obsolete safety related, and other critical

equipment. These upgrades are needed to address

concerns associated with reliability and increased

maintenance activity. These activities can have a

profound impact upon component avedlability

and maintaining personnel radiation exposure As

Low As Reasonable Achievable. Minimizing the

number of mechanical components through the

use of digital technology will improve mainte-

nance efficiency, and comjjonent and system

reliability.

The need for digital Instrumentation and Control

(I&C) in the Advanced Light Water Reactor

(ALWR) has been recognized. The basis for this

need, though, is different than that for existing

reactors. The lessons learned from upgrading

aging equipment should be factored into ALWR
design and licensing efforts. However, care should

be exercised in attempting to apply the ALWR
concepts to digital upgrades on existing nuclear

power plsmts.

This paper will present a utility perspective on

how project management, configuration control

£md a rigorous design process can serve to address

present issues. These issues include commercial

grade dedication, reliability, electromagnetic in-

terference, and failure and error management,

This perspective is consistent with standards and

guidelines development efforts.

Most of this information is based upon experi-

ences gjiined through the development of pro-

posed revisions to Institute of Electrical cind

Electronics Engineers (IEEE) P-7-4.3.2, Amer-

ican National Standard, Standard Criteria for

Digital Computers in Safety Systems of Nuclear

Power Generating Stations.

Additionally, information is based upon:

• support ofemergency diesel generator performance

monitoring and governor control systems for Zion

Nuclear Power Station, and

work supporting the development of the Nuclear

Management& Resources Council (NUMARC) Digi-

tal Upgrade Guideline,

• work associated with the Work Group Computer"

Software under the American Society ofMechanical

Engineers* Nuclear Quality Assurance Committee,

• work with the Nuclear Utilities Software Manage-

ment Group,

support for the Station Blackout Diesels at Dresden

and Quad Cities Nuclear Power Stations.

History ofIEEE P-74,3,2

In July of 1990, efforts were initiated to revise

ANSI/IEEE-ANS-7-4.3.2-1982. This was

based upon the need to reflect au-rent computer

software and hardware design practices in this

standard. The need for a clearer definition of the

relationship of this standjird to its mother docu-

ment, IEEE Std 603-1991, Standard Critena for

Safety Systems for Nuclear Power Generating

Stations, was also deemed necessary. As such, the

working group chose to replicate the IEEE Std

603-1991 format in P-7-4.3.2. This provided a

framework to maintain focus on existing safety

system design criteria. The working group chose

to provide amplification for those safety system

design issues which are unique or perceived

unique to computer hardware, software, or firm-

ware. It should be clearly understood that when

a computer is to be used as a component ofa safety

system, both IEEE Std 603 and P-7-4.3.2 should

be used to define all of the design criteria.

48

Much of the revision effort was focused on the

following safety system criteria: quedity, equip-

ment qualification, system integrity, indepen-

dence, and reliability. In addition, electromagnet-

ic environment issues were addressed under the

safety system design basis.

It should also be understood that IEEE Std

603-1991 and IEEE P-7-4.3.2 usage of the phrase

"safety system" is consistent with the

10CFR50.49 usage of the phrase "safety related

electric equipment". There is, therefore, a one-

for-one relationship between the standards and

regulation.

NUMARC Digital Upgrade
Guideline

No consensus document exists which presents

guidance to a design approach for microprocessor

based digital systems. In work efforts associated

with the development ofIEEE P-7-4.3.2, this was

informally identified as a future effort item.

There are many existing standards for specific

requirements and design techniques. None

provide overall digital system development ap-

proach recommendations.

In recognition of the industry wide impact of

current regulatory digital upgrade concerns,

NUMARC hais initiated development of am indus-

try position on this subject. This effort is directed

toward delineation of a digital upgrade design

process. This will include defining failure modes,

and recommendations to minimize their affect

upon nuclear plant safety. This guideline will also

provide plant data based recommendations to

electromagnetic related issues. These defintions

and recommendations vdll be embodied within a

structured approach to system design. This

guideline will help to fill the void identified during

the IEEE P-7-4.3.2 development.

With Nuclear Regulatory Commission staff in-

volvement, this effort should result in clarifica-

tion of an appropriate digital upgrade design and

licensing methodology. Completion of this guide-

line is critical to utility digital upgrade efforts.

49

System Design Model

The issues of concern (e.g., commercial grade

dedication, electromagnetic interference, reliabil-

ity, verification and vadidation) may be addressed

through project msLnagement, configuration con-

trols, and a systematic approach to the design

process.

Project Management and
Configuration Control

At the onset of system design and implementa-

tion, project scope and roles should be clearly

defined. This project management task is a

cornerstone for successful completion of a safety

related system digitsd upgrade. This task should

include definition of the methods for configura-

tion control of the configuration items produced

during design and implementation activities, and

subsequent operation and maintenance activities

should be identified. Procedures and standards

should be identified to support the design process.

These procedures £ind standards should address

design verification activities to be performed and

by whom. Finally, it should also provide delinea-

tion of any required commercial grade dedication

efforts.

The level of design verification and commercial

grade item dedication activities might be based

upon a sub-categorization of safety related sys-

tems. This graded approach would allow empha-

sis to be placed upon those safety related systems

for which a failure would have a significant

impact upon safety (e.g., the Reactor Protection

System and Engineering Safety Feature Actuatio-

n Systems), and a lower level of emphasis upon

systems for which a failure would have a reduced

impact on safety. Ajoint Electric Power Reseau-ch

Institute (EPRI)AJtility working group dealing

with issues ofVerification and Validation (V&V) is

working to define softweu-e design activities levels

based upon a safety related system sub-catego-

rization.

In addition to scope and roles definition, digital

upgrade configuration baseline establishment

should be performed. This should be accom-

plished through verification of existing plant in-

formation including, wiring diagrams, schematic

drawings, equipment and system alarm and trip

setpoints, and any other applicable engineering

calculations and assumptions. This verification

eliminates nuclear plant digital upgrade base in-

formation uncertainty. This information is the

foundation of the entire design, installation, and

testing effort.

Design Process

A rigorous design process should exist for the

development ofsafety related digital upgrades. As

stated in the introduction, no currently used

standairds define a system level development

process. Numerous standards delineate criteria

and requirements to be met. None offer guidance

in the steps which should be performed. The

developing NUMARC Digital Upgrade Guideline

should help address this void. This guideline will

delineate how current issues of concern can be

dealt with during safety related system design.

An inherent element of the design process should

be the identification and resolution of Abnormal

Conditions and Events (ACEs) which have the

potential to defeat the safety related function.

ACEs include external events as well as condi-

tions internal to the computer hardware or

software. P— 7.4.3.2 provides details of ACEs

which could be introduced during specific activi-

ties of the design process. ACEs consideration is

necessary to provide Eissurance that the computer

50

and the remaining components of the safety

related system wUl respond when exposed to

realistic normsd and abnormal situations, includ-

ing potenticd common mode failures.

Analysis techniques, such as Failure Modes and

Effects Analysis (FMEA) or Fault Tree Analysis

(FTA), are among the methods recommended to

identify ACEs requiring attention. These analy-

ses should be of sufficient detail to include

consideration of utilized software. During the

design and implementation, periodic reviews

should be performed to confirm the analysis

results. The analysis should be updated as

appropriate. This periodic review provides assu-

rance that identified failure modes are properly

addressed, thus minimizing design errors.

Specific requirements should exist for design

verification throughout the design process, from

requirements definition to installation and check-

out of the final product. P— 7-4.3.2 provides

considerations supporting an integrated verifica-

tion approach.

Figure A depicts a view of an example design

process. At the onset of ssifety related system

design, requirements £ire allocated to non—com-

puter hardware and to the computer. A secondary

edlocation is made of computer requirements to

computer hardware and software, and their in-

tegration. Design verification should be perfor-

med at the conclusion of requirements allocation.

This verification provides confidence that ap-

propriate allocation of requirements has been

made. During requirements allocation, the

FMEA/FTA could be initiated to address system

level failure concerns.

The next activity of this design model is the design

and implementation of non-computer hardware,

computer hardware, and computer software. The

system level FMEA/FTA should be amplified to

address computer hardware and software, and

non-computer hardware failure possibilities.

This information becomes input to the design.

Design verification should be performed follow-

ing completion of design and implementation.

Computer hardware and software design verifica-

tion testing is intended to provide confidence of

the correct applicable requirements implementa-

tion. It can be accomplished through one of three

approaches. The first approach would include

design verification ofthe test plans, test cases, and

test results to provide confidence that the test

developer has considered both normal and abnor-

mal situations in assuring that the non-computer

hardware, computer hardware, and computer

software components perform correctly. In this

approach, the designer would be able to be the

preparer of the test plans and cases, the executor

ofthe tests, and the reporter of the test results. A
second approach would have an independent

party develop the test plans, and test cases,

execute the tests, and report on the results. A

third approach would include design verification

of the test plams and test cases, design verifier

execution and reporting of the tests and test

results, respectively. The emphasis here is design

verification should not be a duplication of docu-

mented work performed, so long as the require-

ments for verifier independence are met.

Computer hardware and software integration

activities should be performed following comple-

tion of applicable design, implementation, and

test activities. This integration may include

testing activities to satisfy the designer that all

software requirements which were dependent

upon computer hardware and the computer hard-

ware requirements which were dependent upon

software have been met. In addition, testing

should confirm the computer hardware and soft-

ware failure detection and response mechanisms

51

Non.-compiUer'

Hardware Req
(IEEE Sld 603- 1991)

Hardware Design

&
ImplemerU

Safely System Requiremenls
Design Basis

Computer Requirements

Hardware Req
(IEEE Std 603-1991

Integration Req
(P-7-4.321

Computer Hardware
Design, Implement &

Test

Software Req
(P7-4.32)

Software Design,

Implementation &
Test

(NQA-2a l990 Part 2.7)

Computer
Integration

System
Testing

(Factory

Acceptance

Testing)

Site Acceptance Testing

System Accepted For Use

Figure A
L

function properly. Design verification of these

activities should be performed.

As is practical and feasible, testing of the integra-

tion of the computer with a portion of the

hsu-dware design should be performed during

factory acceptance testing. This testing should

begin to confirm that the original requirements

have been implemented. However, this testing

should not be based only upon requirements.

Realistic scenarios such as loss of power, failure of

components, loss of communications, and other

failures identified in the FMEA/FTA should be

played out to assess the ability of the computer

and the non—computer hardware to respond in

an appropriate manner. Design verification for

factory acceptance testing can be accomplished in

one of the three approaches previously described.

Upon completion of the factory acceptance test-

ing, site acceptance testing should be performed

to confirm the correct implementation of require-

ments which were not tested during factory

acceptance testing. Site acceptance testing is

intended to confirm that the system is compatible

with the plant and to provide eissurance that no

52

shipment or installation damage occurred. This

should include testing of field instrumentation

output thru to the safety related system output.

The three design verification approaches de-

scribed previously would be applicable for site

acceptance testing.

This example of a design process approach in-

herently has the level ofindependent reviews and

tests (i.e., V&V) necessary to produce a system

which has a high quality level and assurance of

proper and correct operation. No additional

independent activities should be necessary. This

is to say that no additional activities are necessary

to address what is known as V&V

53

Design Process Issues

Through a systematic approach to design, current

issues can be addressed in a planned and orderly

manner. These issues include commercial grade

dedication, reliability, electromagnetic interfer-

ence, and common cause failures. These issues

should be address during the course of safety

related system design from a system engineering

perspective. As stated earlier, this is the current

direction of the efforts associated with the devel-

opment of the NUMARC Digital Upgrade Guide-

line.

Commercial Grade Dedication

One key commercial grade dedication area which

requires attention is commercial vendors develop-

ment and control process. Believing that one can

completely test the commercial grade computer in

a manner similar to what has been done for other

commercial grade items is inaccurate. Utilities

are beginning to develop and implement pro-

cesses for understanding the internal structure of

such items as pipes and valves (e.g., non-destruc-

tive examination). In the same manner, a dedica-

tor needs to understand the internal structure of

the computer, including the software, upon which

a particular application is built. This means that

an evaluation baised upon nuclear industry stsoi-

dards must be performed on the vendor's comput-

er hardware and software development and con-

figuration control processes.

Many vendors have procedurcd control of then-

design process. In some cases this results in

documentation consistent with non-nuclear com-

puter standards. This documentation should be

reviewed and evaluated by technically knowledge-

able people representing the utility. This review

could serve as an offset for lack of independent

reviews by the vendor. Compensating factors,

such as product maturity, product stability and

operating experience in a similar application

(Prograimmable Logic Controller opening valves

or starting pumps in a refinery), may serve as an

offset in those situations where documentation is

lacking.

Another compensating factor may be evidence of

product stability. An established configuration

control process and error notification will help

provide the necessary evidence of (or lack of)

product stability. No one type of compensating

factor should be used in lieu of a documented

design process. Combinations of operating expe-

rience, configuration control, and error notifica-

tion may give an appropriate confidence level in

the overall quality of the commercial product.

The utility needs proper evidence to support

commercial dedication. The fact exists that as a

result ofthis detailed dedication effort, a vendor's

product might be eliminated from consideration

for safety related purposes.

Acceptance levels for compensating factors

should be defined. These levels might be based

upon safety related system sub-categorization.

This might edso include definition of coramercisd

grade dedication activities which are and are not

acceptable.

The dedicator should test the product for accept-

ability with safety related system requirements.

This testing is in addition to the previously

described vendor evaluation. A document, detail-

ing the functional and performance requirements

which the computer must be able to satisfy to

perform its safety related function, should be

prepared and approved. This document should

serve as the basis for commerciad computer test

development, acceptance, and execution. The

54

results should be summarized and approved. The

level of testing should be conunensurate with the

sub-categorization.

The commercial dedication process should be

viewed as supplementing commercisd documenta-

tion and not as a design control avoidance

mechanism. In point of fact, the utility must

shoulder all responsibility for the installed pro-

duct, including any reporting requirements.

Reliability

The need for a quantitative reliability estimate is

dependent upon the design approach employed -

probabilistic or deterministic. The former is

based upon a Probabilistic Risk Assessment

(PRA) resulting in system reliability goals used as

an input to the design process. It should be noted

that the PRA process focus for existing US

reactors is identification of potential vulnerabili-

ties. It is not necessarily for the determination of

system reliability goals for use as design input.

The draft Supplement to International Electro-

technical Committee (lEC) 880, Software Impor-

tant to Safety for Nuclear Power Plants, indicates

that under certain conditions, a 10"^ probability of

revealed failure can be predicted. A reliability

ranging between 10"^ and 10"^ may be achievable

based upon a rigorous design process and dynamic

testing. These estimates are predicated upon good

design practice and product testing.

System design is typically performed in a proce-

duredly oriented, or deterministic manner. There-

fore, a qualitative view of reliability is more

appropriate. Emphasis should be placed upon a

rigorous design process to achieve reliability.

Identification of Abnormed Conditions and

Events (ACEs) throughout system design or

through a Failure Modes and Effects Analysis

(FMEA) or Fault Tree Analysis (FTA) should be

considered. The use of an FMEA or FTA is

suggested by IEEE Std 603-1991 for addressing

reliability. Our focus should be on the design

process, identification of ACEs, and testing, not

on so strongly upon generating a PRA number.

While the probabilistic approach may have merit

for the design of the next generation of reactors,

it is not an approach consistently used for. up-

grades to existing nuclear plant systems.

Electromagnetic Interference

Electromagnetic Interference/Radio Frequency

Interference (EMI/RFI) and other electromagnet-

ic cpncems have received a significant amount of

attention. P-7-4.3.2 states that the computer

must be able to function in the environment to

which it will be exposed. This environment

includes electromagnetic fields. A joint EPRI/

Utility group effort is presently working to define

a process for meeting this requirement. Final

recommendations will be consensus standards

and plant data based.

Initial attempts to address this issue have in-

cluded development of an EMI/RFI map, repres-

enting both the atypical and a "worst case"

transient environment. This approach attempts

to demonstrate that the mapped emissions levels

are sufficiently less than the susceptibility levels

for which the equipment was tested. However,

IEEE Std C62.41-1991, ANSI/IEEE Recom-

mended Practice on Surge Voltages in Low-Volt-

age AC Power Circuits, states that "While short-

term monitoring of an individued site often gives

some useful information, the environment is so

dynamic that the analysis of a brief period may

not give a good prediction of the future environ-

ment."

It would seem that whUe mapping may have some

Limited value, focus should be upon proper design

techniques, installation techniques, and testing.

Proper equipment shielding and grounding

55

should serve to protect both the computer and

surrounding equipment. Appropriate tests

should be executed to confirm the adequacy of

these actions.

Component and system test evidence strongly

indicates that some of the analog components in

a digital upgrade (e.g., analog power supplies)

may be more susceptible to EMI than the digital

components. Licensee Event Reports provide

evidence that EMI (i.e., RFI from walkie talkies)

has been a contributing factor in plant tremsients

for many years. It should be understood that the

EMI/RFI issue pertains to both analog and digital

systems; it is not unique to digital systems.

Subcommittee 6 (SC-6) of IEEE's Nuclear Power

Engineering Committee has agreed, in principle,

to deal with this as a system requirements issue.

This effort will be initiated at the SC-6 Fall 1993

meeting.

Managing Failures and Errors

Safety related system failure and error manage-

ment is a design issue which requires attention.

Determination of Abnormal Conditions and

Events (ACEs) through the use ofa Failure Modes

and Effects Analysis (FMEA) or Fault Tree

Analysis (FTA) is a practical method for this

effort. Design decisions can be made to address

the failures identified. Use of an analysis tech-

nique allows the emphasis to be on the cause of

failures and errors instead of the effect (e.g.,

software common mode failures).

Software common cause failures are the result of

design deficiencies. These may in turn lead to

common mode failures. Common cause failures

may be the result ofcommon hardware, software

or components; common personnel, languages or

tools; common documentation practices; similar

internal interface points, such as voting system

inputs, or input interfaces; common processes

such as detection of states, algorithms, signal

conversion, or voting. It should be recognized

that these are design related issues and should be

dealt with at that level. Two methods which may

address common cause failure concerns are the

separation of design teauns and analysis of the

signed trajectory path through the software. This

analysis, as detailed in the Draft Supplement to

EEC 880, is used to <x)nflrm independence of

common modvdes or software developed with

common tools. Draft Supplement to lEC 880

provides additional detail regarding software

trajectories.

IEEE Std 379-1988, section 5.5, indicates that

common cause failtu-es not subject to single

failure analysis include those that can result from

design deficiencies or manufacturing errors.

Design qualification and quality assurance pro-

grams are intended to afford protection from

design deficiencies and manufacturing errors.

This guidance should be equally applicable to

digital and analog system design. Therefore, for

analysis pxirposes, the assumption that a software

common mode failure could occur should not be

required.

However, if one must assume the potential of a

common mode failure due to software, the focus

should be on the successful completion ofa safety

function, not on the necessary completion of a

safety related task. Recognition ofthe existence of

backup systems should be given (e.g., BWR core

injection at low pressure using either LPCI or

core spray, manual actions in leu of automatic

ones). These echelons of defense have been a

foundation of plant safety. Common cause fedlure

concern should be limited to those situations

when the safety function may not be accom-

plished, not when one level of a defense echelon

may be lost. Overemphasis on common cause/

common mode failures at the software component

level has overshadowed the design processes and

56

techniques which can serve to minimize failure

and error potential.

Through performance of an FMEA or FTA,

system level management of failure and errors

can be emphasized. Use of various design tech-

niques such as watchdog and deadman timers can

be employed to identify a failure and provide an

acceptable response (e.g., warn, alarm, or place-

ment in the appropriate preferred failed mode).

In addition, a design process similar to the model

described earlier should be followed. This is

consistent with the guidance provided in IEEE

Std 379—1988. Emphasis should be placed upon

the design process which addresses failure and

error identification, and testing to provide assur-

ance that the implemented design can identify

and respond correctly.

57

Recommendations

As stated earlier, use of a rigorous design process

with appropriate levels of design verification

should be acceptable to address concerns for

common cause failures, software reliability, and

EMI. Successful completion of the NUMARC
Digital Upgrade Guideline is a key element to

provide consistency in the design ofdigital upgra-

des. With any process, improvements can always

be made. One such potential area ofimprovement

is delineation of requirements.

Studies have shown that the majority of design

problems associated with software occur as speci-

fication faults. In particular this occurs in the

English language translation of requirements to

a designed computer program. Industry stan-

dards (e.g., IEEE P-7-4.3.2, IEEE Std 1012-1986,

NQA 2a-1990 Part 2.7) place emphasis upon

stating compete and unambiguous requirements.

This is a basis for assuring that the fined validated

system complies with the requirements. Atten-

tion should be given to techniques which would

facilitate specifying of requirements and design

verification processes. Combinations of text and

graphical techniques (e.g., SAMA logic diagrams,

state transition diagreims, truth tables) may be a

vehicle to minimize the potential for specification

faults. Some ofthese techniques are used today in

the computer and control system markets.

Another recommendation is use of analysis tech-

niques such as FMEA or FTA to identify Abnor-

mal Conditions and Events, and to address both

safety related system reliability and the single

failure criterion. It should be understood that for

these to accurately reflect the safety related

system and all its components, one must consider

the affect of the computer.

Finally, EPRI and EPRI/Utility groups efforts

addressing commercial grade Programmable

Logic Controllers (PLCs) usage, Verification and

Validation, and EMI should be encouraged and

expeditiously completed.

58

Closing

The current uncertainty in the licensing arena

has had a significant impact upon Commonwealth

Edison including the cancellation and deferment

of safety related digital system implementations.

These actions resulted directly from the licensing

experiences for Zion Nuclear Power Station's

digital protection system upgrade, and other

utility licensing attempts.

Eagle-21'^ Digital Reactor
Protection System

The design approach used in the Zion Station

Reactor Protection System (BPS) replacement is

compatible with the systematic design approach

presented. This replacement employed Westing-

house Electric Company's Eagle-21™ product.

During Commonwealth Edison's design and im-

plementation efforts, EMI mapping of the area

where Eagle-21™ was to be installed was con-

ducted. Based upon analysis of Westinghouse

testing documentation, Commonwealth Edison

believed that Eagle-21'™ would be suitable for the

environment. In addition to environmental

suitability, the Westinghouse Design and V&V
process, and test results were evaluated and found

acceptable. Additionally, a review ofdocumented

NRC concerns from other utility digital upgrades

was performed to identify unaddressed issues.

None were found. The conclusion was reached

that Eagie-21'™ was a qualified system for

Commonwealth Edison use.

This replacement was subjected to an extremely

detailed NRC audit. As a result of the audit,

Commonwealth Edison was required to perform

additional EMI mapping and testing. No new

EMI related concerns were identified. Additional

analysis was adso required to address the concern

ofcommon cause feiilure. An extensive defense in

depth analysis was conducted. In support of this

analysis, extensive simulator scenarios were

executed, and a detailed review of normal and

abnormal procedures was performed. The re-

quirement for this effort did not seem to be based

upon any documented technical basis or NRC
staff position. Complying with these require-

ments was not without financial, scheduling and

manpower impact.

One key point should be clearly tmderstood. NO
DESIGN CHANGES WERE REQUIRED as a

result ofthese additional efforts. This serves as a

successful validation of the design approach pres-

ented.

The defense in depth analysis took credit for the

existence of the Anticipated Transient Without

Scram (ATWS) system. As a result, the NRC
encouraged Commonwealth Edison to place an

Administrative Technical Specification on this

Balance of Plant system.

Emergency Diesel Generator Control
and Monitoring

Significant efforts have been undertaken to im-

prove the reliability of Zion Station's emergency

diesel generators. This included the implementa-

tion of a safety related Programmable Logic

Controller (PLC) based emergency diesel genera-

tor control system and a non-safety related

Distributed Control System for data acquisition

and performance monitoring.

Prior to Eagle-21™ licensing efforts, a wide range

of available options, from relay rack to PLC to

Versa Module Eurocard CVME) bus architecture,

were considered. Emphasis was directed toward

the two latter options, both digital based. No

evidence of previous NRC review of a VME based

59

system existed. However, evidence ofNRC review

and approval of PLC based digital upgrades did

exist. Believing that this familiarity would facili-

tate licensing efforts, the conservative non state-

of-the-art PLC option W21S selected. However, sis

a result of the Eagle-21™ licensing effort, the

decision was made to utilize 1960s hardwired

relay technology. This method has allowed Com-

monwealth Edison to proceed with the imple-

mentation under 10CFR50.59 and avoid the

uncertainties associated with NRC approval of a

digital system.

Even though the digital control system was

dropped, Commonwealth Edison is moving for-

ward with the implementation of the non-safety

related DCS. This action was taken due to the

distinct need for data to assist in improving the

reliability of the diesels.

It is believed that elimination of moving parts is

a key element of overall improved system reliabil-

ity. A PLC implements relay ladder logic with

minimal use ofmoving parts. While the reliability

of the Zion Station emergency diesel generators

will be improved, it may not be to the level which

would have been possible with a PLC.

Emergency Diesel Generator
Governor

As part of additional efforts to improve the

reliability of Zion Station's emergency diesel

generators, a digital based governor installation

was proposed. A final course of action has yet to

be determined. It is hoped that stability in the

licensing arena would allow the decision to be

based upon technological considerations rather

than regulatory ones.

Author's Observations

There are significant safety and cost benefits

associated with digital systems. However, the

uncertainty in the licensing arena has led to many

utilities adopting a "wait and see" attitude. Only

with the adoption of a consistent practical digital

upgrade approved process, will the utilities realize

these benefits.

Has all the attention which has been given to

digital upgrades resulted in improvements to

safety? Based upon the lack of documented,

quantifiable evidence, it is doubtful.

Contributions

The significant technical and editorial contribu-

tions of the following individuals is acknowledged

and greatly appreciated

J. Katrenak

J. Lasky

R. Mason

J. Matras

T. Randolph

R. Reeves

References

IEEE P-7-4.3.2, American National Standard,

Standard Criteria for Digital Computers in Safety

Systems of Nuclear Power Generating Stations,

Draft?

IEEE Std 603-1991, Standard Criteria for Safety

Systems for Nuclear Power Generating Stations,

EEC 880, Software Important to Safety forNuclear

Power Plants

IEEE Std C62.41-1991, ANSI/IEEE Recom-

mended Practice on Surge Voltages in Low-Volt-

ageAC Power Circuits

60

3.4 Experiences from Application of Digital Systems in Nuclear Power Plants:

Mr. Paul K. Joannou

Experiences from Application of Digital Systems in Nuclear Power Plants

Paul K. Joannou

Ontario Hydro

700 University Avenue

Toronto, Ontario

MSG 1X6

ABSTRACT

Digital systems have been integral to CANDU nuclear power plants from their inception 25

years ago. The four most recently commissioned CANDU generating units at our Darlington

Nuclear Generating Station have the highest degree of incorporation of digital systems of the

20 units operated by Ontario Hydro. Darlington was the first CANDU plant to use digital

systems for the complete safety shutdown function. The use of digital systems in the

shutdown systems at Darlington led to some licensing issues that required a substantial effort

by Ontario Hydro and Atomic Energy Canada Limited (AECL), the designers of the shutdown

systems, to address. Our years of experience with digital systems and our experience in

addressing the Darlington licensing issues were used to develop an approach to engineering

digital systems for nuclear power plants. The approach is documented in a family of

standards, procedures and guidelines. This paper defmes the licensing issues that needed to

be addressed for Darlington shutdown systems, defines the expectations of the regulator and

the utility with respect to the approach, describes the approach itself, describes the issues that

still require further work, and describes the status of the work program that is in place at

Ontario Hydro and AECL to address outstanding issues and continually improve the approach.

BACKGROUND

Ontario Hydro and AECL have a long history of successful application of digital systems

within CANDU nuclear power plants. Our first plant was the single unit Douglas Point

Nuclear Generating Station that was commissioned in 1968. This station used a digital

system for process monitoring. The station was owned and designed by Atomic Energy

Canada Limited (AECL) and was operated by Ontario Hydro. In each subsequent station the

use of digital systems has increased. The Pickering A Nuclear Generating Station is a four

unit 540 MW per unit station commissioned from 1971 to 1973. It made use of dual

redundant digital control computers to control reactor neutron flux, as well as other major

control tasks. It provided process monitoring of both analog and contact inputs. Each of the

subsequent four unit stations Bruce A, Pickering B and Bruce B made evolutionary

improvements on the use of digital systems. Increased number of process inputs and outputs

were added as more control and monitoring functions were added. Evolutionary

improvements to the operator interfaces were also made with improved usage of colour CRTs.

Digital ^ stems are also used for control of fuel handling machines, operator information

systems and in various other control and protective applications.

61

The design expertise for the major digital systems has been provided by AECL, General

Electric Canada and Ontario Hydro. The performance of our nuclear stations routinely scores

in the top ten of the world's reactors and the digital systems are credited as one of the

contributors to this success.

Our most recent station, Darlington, makes more use of digital systems than any of its

predecessors. Some of the key areas of increased usage were the use of an Ontario Hydro

designed programable logic controller (PLC) for nuclear system discrete logic that had been

implemented using relays in previous stations, and the use of digital systems for both reactor

shutdown systems.

The use of digital systems to implement the reactor shutdown function in both shutdown

systems led to licensing difficulties with our regulator, the Atomic Energy Control Board

(AECB). AECL, the designer of the shutdown systems, had developed prototype digital

shutdown systems around 1980 to determine their feasability. Feedback from the AECB at

that time indicated that there was no inherent problem with the use of digital technology in

the shutdown systems. A rigorous software quality assurance program was put into place, and

development was started in the early 1980s. An AECB audit of the project in the late 1980s

resulted in some audit findings that ultimately left the AECB with a lack of confidence in the

software. The AECB hired an external consultant. Dr. David Pamas, to provide an expert

opinion on the adequacy of the software. Dr. Pamas' report identified several areas for

improvement in the software. Over a two year period Ontario Hydro and AECL expended

substantial effort making changes to the software to try to address identified areas of concern

expressed by the AECB and Dr. Pamas. Ultimately, the confidence of the AECB was gained

and they were convinced that the software was safe and that Darlington could be licensed, but

by this time the delay in getting a license contributed to several months of delay in

commissioning the station. Several months delay translated to many tens of millions of

dollars when interest charges and replacement energy costs were taken into account.

One of the key problems during the two year period was that there was no widely accepted

definition of what constituted good enough for software used in safety critical applications

such as shutdown systems. Available standards did not provide the measurable acceptance

criteria that was needed. As a result of our two years of effort to convince the regulator of

the acceptability of the software a license was granted to Darlington. The license was only

granted for the short term though. In the medium term, the AECB wanted the software

redesigned to make it more easily reviewable and modifiable, so that the effort required to re-

gain confidence each time a change is made to the software, will not be as great as for the

initial version. The AECB also required that agreement be reached on the standard that will

be used as the basis of the re-design.

This led directly to the strategy by AECL and Ontario Hydro to jointly develop a family of

standards, procedures and guidelines that document the acceptable practices for software

engineering of software used in nuclear power plant protective, control and monitoring

applications. This joint program has been coordinated by a committee called the Ontario

Hydro / AECL Software Engineering and Standards (OASES) committee. The OASES work

program has resulted in a scheme for categorization of software applications with respect to

62

nuclear safety, a high level standard defining the methodology independent requirements for

each software category and detailed procedures documenting specific methodologies that we
have developed for some of the processes where adequate methods were not readily available.

The standard for safety critical software and its associated procedures are being applied by

Ontario Hydro for the development of a digital trip meter to replace an obsolete analog trip

meter at our Pickering Nuclear Generating Station. They are also being applied by AECL for

the development of two shutdown systems for the South Korean Wolsong 2 Nuclear

Generating Station. The experience gained in applying them will be used to update them

before their application to the Darlington shutdown system software re-design project

DARLINGTON SHUTDOWN SYSTEM LICENSING ISSUES

During the two year period that we tried to convince the AECB of the acceptability of the

software various issues were raised that needed to be addressed. Below the issues are

described along with the actions that were taken to address each issue. The issues have been

grouped into the areas of reviewability issues, safety issues, functionality issues, reliability

issues and maintainability issues.

Reviewability Issues

One of the key issues was the reviewability of the software. Review of the software is one of

the methods by which the regulator gains confidence in the software. In order to be

reviewable, a design documentation organization must be used that describes the design in

increasing levels of detail, or decreasing levels of abstractions, so that a reviewer may fully

understand the intended functionality of the software, then understand the partitioning of the

software into design modules along with their interactions, and finally to understand the code

that implements each module. At each step, the documentation must be organized to facilitate

third party review.

The reviewability of the software is also affected by the structure of the software design.

Most designs are sufficiently complex that a reviewer cannot review the whole system at

once, but rather must review the design on a per module or group of modules basis. If the

design has not resulted in loosely coupled modules with high cohesion, then to gain an

understanding of the functionality of an individual module is difficult since the reviewer must

concurrently understand the relevant interactions with other modules.

For the initial version of the Darlington shutdown system trip computer software, the AECB
and it consultant felt that the software design and documentation were not adequate to allow

sufficient review of the software. In response to these issues, the software was restructured to

increase its reviewability, the software design documentation was improved and the code

commentary was improved.

63

Safety Issues

Gaining confidence that the behaviour of the software would be predictable over time and

safe in the presence of failures were other issues of concern to the AECB. The issue of

predictable behaviour had been addressed in the original design by having a very simple

control flow structure to the software design. The software in each trip computer consists of

initialization code that ran upon startup, followed by an infinite loop that repetitively called

the same sequence of routines on each pass of the loop. One change that was introduced to

address the issue of predictable behaviour was to ensure that each variable in the software

was initialized to a known state at the beginning of the main program loop, to the maximum
degree possible (some variables needed to retain state information between program passes to

implement the trip computer- functionality and hence could not be initialized at the beginning

of each pass). The initial value of each variable was chosen to be a value that would result

in safe behaviour of the software in the presence of expected failures, eg flags used to track

the trip state of each trip parameter were initialized to the "tripped" state and therefore would

have to be written to by each trip module to set them to the "untripped" state.

Self checking software was included in the initial version of the trip computer software to

detect hardware and software failures, and to then put the system into a safe state. One issue

centered about the rationale for the degree of self checking software. The self checking

software adds complexity to the software design and hence there is a tradeoff between adding

self check software to increase the ability of the system to behave safely in the presence of

failures verses decreasing the reviewability and reliability of the software through increased

complexity. In response to this issue a review was done of the extent of self checking

software which resulted in a smaller set of self checks that were balanced the degree of self

check verses complexity equation.

Functionality Issues

Another concern raised was that of ambiguities within the requirements specification

documents. The AECB found instances where they felt that the requirements specification

was ambiguous and therefore they could not be confident that the software implementers

actually interpreted the requirements in the same manner that the system designer, that

produced the specification, intended.

To address this issue a more formal requirement specification was added to the document

hierarchy between the textual requirements specification and the software design description

documents. The more formal requirements specification was written using a notation that Dr.

Parnas had used to specify the requirements for the A-7 aircraft while he was working at the

Naval Research Laboratories. The formal notation was useful in producing a requirements

specification that was uniquely interpretable.

64

Reliability Issues

Demonstrating to the AECB that the software was adequately reliable required more rigorous

unit, system and validation testing than was originally established. An independent consultant

was hired to review the adequacy of the testing performed and to recommend additional test

cases.

The degree of diversity between the software within the trip computers of each shutdown

system was also an issue. Diversity between the two shutdown systems is a regulatory

requirement which had been addressed by using different hardware platforms (General

Automation verses DEC), different implementation languages (Fortran and GA-assembler vs

Pascal and DEC-assembler), and independent design teams for each of the shutdown systems.

To address the concern an analysis was done of all Software Change Requests generated for

each shutdown system trip computer during development and verification in order to

demonstrate that no SCRs from the different trip computer designs would have resulted in a

common mode error.

The reliability concern was also addressed by performing statistically valid, trajectory-based

random tests to demonstrate that the probability of failure of the software was less than the

10"* failures per demand that was required of it. The reliability demonstration was done by

performing 7000 test cases, where each test case was randomly chosen to model one of six

accident scenarios that the shutdown systems are designed to protect against.

Maintainability Issues

The AECB also had concerns with the ability to maintain the level of confidence in the

software after changes are made to the software during its in-service period. The issues were

associated with the adequacy of the design trails that documented the traceability of high level

safety requirements through the design documentation into the software implementation, and

the degree of understanding of the design rationale for the design decisions made during the

design process. The concern was that without adequate documentation of these aspects of the

design, future maintainers may make design change decisions that are inconsistent with the

design decisions that were the basis of the original design. To address this issue the design

principles that were the basis of the design decisions were documented, and supplementary

design notes produced to document specific analyses that were done as a basis of some key

design decisions.

Another related issue was with respect to the degree to which the development procedures

would allow future maintainers to reliably make changes to the software with sufficient

configuration control and re-verification. All project procedures were reviewed, and improved

where deemed necessary.

65

EXPECTATIONS ON THE USE OF DIGITAL SYSTEMS

As the designers and operators of nuclear power plants, AECL and Ontario Hydro have

expectations that the following benefits will be realised from the use of digital systems:

• higher system reliability

• higher availability because of self-annunciation of failures

• increased safety due to higher availability of safety systems

• increased production due to higher reliability, availability and better algorithms to

avoid spurious trips

• improved human-machine interfaces

• more reliable, quicker design changes

• lower cost solutions

• integration of data with other plant control and monitoring systems

As the regulators, the AECB's expectations on digital systems used in safety related

applications within nuclear power plants seem to be:

• adherence to an appropriate standard for the engineering of the digital system

explicit criteria to decide if software is acceptable

• use of well defined and appropriate production processes

• design and construction consistency

• design and production rigour

• confirmation that requirements are correct and complete

independent verification that requirements are fully satisfied

• adequate testing

• reliability estimation

• third party reviewable documentation

• maintenance at low risk

• coherent, rationale structure consistent with design principles

• use of competent, well qualified staff

OASES FAMILY OF STANDARDS, PROCEDURES AND GUIDELINES

The experience gained in developing and licensing the software for the Darlington shutdown

systems, along with our common needs, led directly to formulating a joint Ontario Hydro and

AECL strategy for developing a set of standards, procedures and guidelines for software

engineering.

The joint approach made sense from many perspectives. The highly specialized skills

required for safety critical software development were scarce and hence required a pooling of

the small number of software engineers at AECL or Ontario Hydro who had the background

to carry out such work. The effort to address the problems was significant and the joint

approach allowed pooling of limited funds. Both companies had to interface to the same

66

regulatory body, the AECB. The activities to address the problems are being coordinated by

a joint committee called OASES (Ontario Hydro/AECL Software Engineering and S.tandards).

The first task we worked on together was a high level standard for software engineering of

safety critical software. As discussed in the previous sections, we felt that there was no agreed

upon measurable definition of acceptability for the engineering of safety critical software.

Until such a standard existed we felt that the licensing of future designs with the AECB
would not be practical. A working group of AECL CANDU and Ontario Hydro staff prepared

the Standard For Software Engineering of Safety Critical Software that was issued for trial

use in December of 1990.

This standard defines the software engineering process, the outputs from the process and the

requirements to be met by each output The requirements are expressed in methodology

independent terms so that variousTechniques for software engineering may be used to meet

the requirements of the standard. This allows the standard to be used to assess the

acceptability of various proposed techniques and allows for techniques to evolve without

requiring changes to the standard.

This high level standard is intended as part of a framework of standards which consists of the

following components:

i) a guideline defining the procedure for categorizing software with respect to the effect

of its failure on nuclear safety (with safety critical as the most stringent category).

ii) a high level standard addressing the overall software engineering process for each

category.

iii) for each category, sets of standards, procedures, and guidelines to be used to perform

specific activities within the software engineering process.

iv) a guideline defining how to qualify pre-developed' software for use in each category.

The high level standards for software engineering define the requirements on the software

engineering process, the outputs from the process, and the requirements that must be met by

each output. The requirements are specified to be as measurable as possible, but do not

unnecessarily constrain the methodology used to produce the output. For example, in the

standard for safety critical software the requirements on the softwaie requirements

specification output specify that the specification must define the required behaviour of the

software using mathematical functions but does not specify which notation or format should

be used.

A set of specific standards, procedures, and guidelines are then developed for each of the

categories. These specify the detailed methodology to be used in producing the outputs

'pre-developed software refers to software that has been procured or developed for a previous project; i.e. already existing software

67

specified by the corresponding high level standard for the category.

Any of the specific standards, procedures, and guidelines may consist of or reference

industrial and international standards provided that they conform with the appropriate high

level standard.

The majority of our work to-date has been with safety critical software engineering. Over the

last 2 years, we have used the high level standard as the basis for developing the detailed

methodologies to be used in all phases of the software development cycle. Detailed

procedures and tools to support the methodologies have been produced. Both AECL and OH
are in the middle of projects that implement these methodologies for the first time. Ontario

Hydro is designing a digital trip meter for retrofit to the Pickering B station while AECL is

using these new methodologies in the new Wolsong units 23,&4 (in Korea) for the safety

shutdown systems.

We have applied this framework concept for software in the lower categories of safety

criticality as well. Our categorisation guideline assumes 4 categories of software criticality

from category 1 (safety critical) to category 4 (no safety impact). To date we have prepared

high level standards for categories 2 and 3. These standards are aimed at the more complex

systems that typically comprise category 2 and 3 systems in the station, such as reactor

control (category 2) and plant display systems (category 3).

One area that is quickly emerging is that of qualification of pre-developed software. As the

software industry evolves, it is becoming clear that for the future, we will be using

commercial off-the-shelf software more and more. Since we are putting such emphasis on the

software engineering processes for our developed software we must also determine what

constitutes adequate quality for pre-developed software. It seems that although this area is one

of interest to many groups, very little consensus on how to accomplish the task has been

attained within the community. In the interim, to support projects such as the Bruce

Rehabilitation Project, we are issuing a guideline for trial use that suggests techniques for

selection of pre-developed software as well as describing qualification criteria such as strong

usage history, fitness for use, maintainability, etc. Currently we are gaining experience in the

application of the guideline with the intent of updating the guideline to reflect our experience

gained. It is hoped that over time a standard for qualification of pre-developed software can

be produced that provides objective acceptance criteria, but this has proven difficult to attain

to date.

In order to achieve a national approach for software engineering in the nuclear industry, we
have initiated a Canadian Standards Association (CSA) committee to produce a set of CSA
standards under the N290.14 grouping. Participants include all the nuclear utilities, AECL
CANDU, the AECB, GE Canada, and other interested parties such as nuclear industry

software consulting companies. Several meetings have already been held and it has been

decided to wait until the second revision of each OASES standard is produced before issuing

them as CSA standards.

Participation in OASES has evolved from our beginnings with just AECL CANDU and

68

Ontario Hydro to now include AECL Research at the ChalJc River Labs which plays a major

role in the development and maintenance of our software development tools as weU as taking

a leading role in areas such as reliability testing. Other companies such as GE Canada have

also been involved in OASES due to their involvement with the fuel handling control

computers and retubing projects.

ENGINEERING OF SAFETY CRITICAL SOFTWARE

The high level standard for safety critical software, category 1, documents our approach to

engineering of safety critical software. One of the main purposes of producing the standard

was to document a set of acceptance criteria for safety critical software, so that we could

reach consensus between ourselves and the AECB on what consistituted "good enough".

AECB comments on drafts of the standard were addressed and the AECB has accepted

revision 0 of the standard as the basis for development of the safety critical software for the

Pickering Digital Trip Meter project within Ontario Hydro.

The fundamental principles which were the basis of the requirements in the high level

standard for safety critical software are described below.

A planned and systematic Software Engineering Process must be followed over the entire

lifecycle of the software. Both the original development and any revisions must be treated

as an integral, continuous and interactive process. Any changes must be verified to the

same degree of rigour as the original development.

In order for software to be "engineered" it must be developed according to a planned and

systematic process that has been designed to produce software of the required quality. In

order to maintain the quality, all revisions made to the software until its retirement should

also be performed according to a planned and systematic process.

The plan must adopt a specific model for the software engineering process breaking it down
into well defined activities, the inputs they require, and outputs they produce. The scope of

work for each activity must be unambiguously described. The plan must also specify the

approach and methodologies to be used for the activities. Detailed standards and procedures

must be in place before work can commence.

The plan must specify suitable facilities, tools, and aids to be used for the software

engineering process and identify the necessary support personnel required to maintain and

manage the facilities.

The plan must be revised when there are major changes to either the software scope of work

or to the organizational structure.

Periodic audits must be performed to verify that the software engineering process is being

conformed to and that the product is of acceptable quality.

69

Documentation must be prepared to clearly describe the required behaviour of the software

using mathematical functions written in a notation which has a well defined syntax and
semantics.

Mathematical functions provide a mechanism for completely, precisely and unambiguously

specifying the required behaviour of the software.

By having the behaviour of the outputs specified by mathematical functions the following

advantages are achieved:

i) the requirements will be more complete since input domain coverage can be checked

to determine if the required behaviour of tlie outputs has been specified for the

complete, valid range of each input and for aU combinations of inputs that affect each

output

ii) the requirements can be uniquely interpreted since the notation has a well defined

syntax and semantics. This will avoid misinterpretation of the requirements by the

various users of the requirements specification; i.e. the specifier, the designer, the

verifier, the validator, and the auditor.

iii) the mathematical representation facilitates the use of mathematical verification

techniques that allow the design to be transformed into a mathematical function form

for direct comparison with the requirements. This provides an effective mechanism for

demonstrating that the software conforms to its requirements.

The outputs from each development process must be reviewed to verify that they comply

with the requirements specified in the inputs to that process. In particular, those outputs

written using mathematical functions must be systematically verified against the inputs

using mathematical verification techniques or rigorous arguments of correctness.

Stepwise refinement is an important concept not only because it allows the developer to

tackle several more manageable problems instead of one large one, but also because it allows

the verifier to more effectively perform review. It is very difficult to review software listings

to determine if they represent a solution to the right problem. It is much more manageable to

first verify that the requirements are correct, then verify that the design description correctly

satisfies the software requirements, and then, finally, verify that the code satisfies the design

description.

As mentioned earlier, mathematical verification provides an effective mechanism for

demonstrating conformance to specifications. Mathematical verification is most effective

when it is integrated into the design process.

This means that the requirements specification uses mathematical functions to specify the

required behaviour of the software system in terms of system inputs and outputs, the design

description uses mathematical functions to specify the required behaviour of each program in

70

terms of its program inputs and outputs and that the code provides a representation of a

mathematical function of the program outputs in terms of program inputs.

The design description can therefore be mathematically verified against the requirements

specification and the code can be mathematically verified against the design description.

The structure of the software must be based on "Information Hiding" concepts.

Information hiding is a software design technique in which the interface to each software

module is designed to reveal as little as possible about the module's inner workings. It was

developed by Dr. D.L. Pamas in 1972 and is described in reference [3]. In this way, if it is

necessary to change the functions internal to one module, the resulting propagation of changes

to other modules is minimized. This results in modules that are loosely coupled or

independent of each other as much as possible.

Loosely coupled modules are easier to review since the reviewer can focus on the module

under review instead of the dependencies between several modules. Also, loosely coupled

modules mean less interaction between various software developers which results in higher

productivity.

Those functions of the system which are most likely to change and the form those changes

are likely to take should be identified by the engineer responsible for preparing the system

requirements. Based on this information the software engineer designs software to localize

and isolate these functions to facilitate the potential changes.

Both systematic and random testing must be performed to ensure adequate test coverage.

Testing is the process of executing a program with the intent of finding errors. Errors may
consist of non-conformance with the requirements specification or the design description, or

incorrect object code produced by the compiler or assembler. It is impractical to exhaustively

test the software because the number of test cases to provide every input combination

(exhaustive input testing) or to cause every path through the software to be executed

(exhaustive path testing) is too large. The question is therefore "What set of tests, less than

exhaustive tests, constitutes an adequate set of tests?".

Adequate test coverage must be accomplished through a combination of systematic white-box

and black-box test cases along with randomly generated test cases. The design of the black-

box and white-box test cases should be such that a predefined coverage is accomplished that

should uncover many of the most common errors. The purpose of the random test cases is to

improve the effectiveness of the test cases by compensating for false assumptions and biases

of the tester.

Testing must be composed of different overlapping activities which use the code, the design

description, the software requirements and the system requirements as a basis for establishing

71

test cases and reviewing test results. Test reports are required to demonstrate that adequate

test coverage has been achieved successfully.

Reliability of the safety critical software must be demonstrated using statistically valid,

trajectory-based, random testing.

As discussed above, it is not practical to exhaustively test software. As a result the software

will be placed in service with the knowledge that it may encounter a combination of input

conditions never tested for and for which the software may fail to meet its requirements. It is

essential that this degree of uncertainty be quantified so that it can be shown to be consistent

with the reliability requirements of the overall system.

It is possible to use random testing as a means of determining the probability that a software

product will encounter an input sequence that will lead to errors. From this it is possible to

determine the number of random test cases required to demonstrate a specific reliability value.

[2]

To use random testing as a means of measuring software reliability it must be trajectory based

and statistically valid. To this end the following requirements must be met:

i) For each test case, the initial values of the test inputs must be randomly selected from

the set of input values for which the system does not take action (i.e. the test starts in

a normal system state).

ii) For each test case, the final values of the test inputs must correspond to values for

which the system must take some action (i.e. the test ends with the system in an

accident scenario state).

iii) The time period of the each test case must be sufficiently long to ensure that the

effects of the retained memory of the software do not invalidate the statistical validity

of the tests.

iv) The behaviour of the test inputs over the test period must be defined by a time-related

function which corresponds to the function that the input would assume during an

accident scenario. The function must include the effects of instrument response times,

signal noise, and any other characteristics that are known about the inputs.

v) The initial values, final values, and time related function must be consistent with what

the software would experience during an actual accident scenario.

72

Configuration management must be maintained throughout the entire life of the software to

ensure up-to-date and consistent software and documentation.

The objective of Configuration management is to identify the configuration of a software

system at discrete points in time for the purposes of systematically controlling changes to the

configuration and maintaining the integrity and traceability of the configuration over the entire

lifecycle of the software. Configuration management of the outputs of the processes must be

maintained to ensure that the correct version of each output is being used at any point in time.

The objective is also to control all changes made to the software. Software engineering is

iterative in nature since changes to requirements, design, code, and verification procedures

occur at many points during the process. Change requests must be formally documented and

reviewed to assess the impact of the change requested, to approve or reject the request, and in

the event of approval, to decide on the scope of the change to be made, and~to issue an

approved change request to the appropriate personnel for action.

Configuration management also provides an ongoing analysis of encountered errors which is

used as input to the continuous improvement of the standards and procedures.

Audits must be performed periodically to ensure that the software and all development-

related processes conform to standards and procedures.

To provide assurance that the planned, systematic software engineering process is being

followed, periodic audits must be performed. This is important both with respect to

improving the development process and with respect to demonstrating to a licensing authority

that the software was developed using a disciplined software development process.

Deficiencies and non-conformances must be followed up in a timely manner.

Ongoing training must be undertaken to ensure that personnel have the skills required to

perform their jobs.

Since software engineering is a relatively new field, there is not yet a definition of the

minimum set of skills that a software engineer must possess. This problem is also

complicated by the fact that software is being introduced in areas where personnel are not

familiar with the specialist techniques required to develop safety critical software.

Therefore it is necessary that the skills required to perform the various software engineering

processes be identified and compared with the skills of the individuals performing the

processes. Training must be undertaken to make up for any deficiencies and be tailored to

the various software engineering roles (e.g. designer, verifier, validator, auditor).

73

Verification of the software must be carried out throughout its entire life. All changes to

an output must be verified in the same way as the original output.

Between the time software is first released for use and its final retirement it undergoes

changes to correct detected errors and to respond to modifications and enhancements in

requirements. To ensure that the software does not degrade over time, the level of

verification must be maintained. The verification of changes must therefore be performed in

the same manner and to the same degree of rigour as changes would be verified during initial

development

Independence of design and verification personnel must be maintained to help ensure an
unbiased verification process.

The effectiveness of the verification process is greatly enhanced when personnel other than

the designers perform the verification. Independence of the verifiers provides a perspective to

the verification that is not biased by the design of the software but is strictly based on the

available documentation.

Because verifiers will become intimately involved in the internals of the design and code

during the course of performing their work, it is necessary that they not be involved in the

fmal validation of the software against the original system requirements. For this work to be

performed objectively, it is necessary that it be carried out by an independent validator whose

perspective is strictly from the requirements.

Besides the designer, verifier, and validator, it is necessary to identify a fourth independent

role to act as an overseer of the entire software engineering process. This role, known as

auditor, will ensure that all standards, procedures, and guidelines established for the project

are being followed correctly.

Analyses must be performed to identify and evaluate safety hazards associated with the

computer system with the aim of either eliminating them or assisting in the reduction of

any associated risks to an acceptable level.

To provide adequate confidence that the safety critical software will operate in a safe manner

at all times an analysis must be performed whose purpose is to identify any failure modes that

may lead to an unsafe action, and then either eliminate them or, where possible, ensure that

the failure mode can be detected and the system put into a safe state.

74

EXPERIENCE TO DATE WITH THE FRAMEWORK

To date the framework has been successful in meeting many of its objectives.

One of the biggest concerns after the Darlington shutdown system software problems was that

the regulatory risk associated with using digital technology in safety systems would be too

great to allow their use in future projects. This would have been unfortunate since digital

technology offers some real benefits. Having reached initial consensus on the standards and

procedures, by virtue of ongoing review by the AECB, has alleviated concerns to the point

that the Pickering Trip Meter project and the Darlington Re-design project have received

management approval within Ontario Hydro. AECL CANDU is proceeding with the

development of two shutdown systems for the Wolsong 2 stations. Without the OASES
framework, it is questionable if the risk associated with any of these projects would have been

acceptable.

We have found that the use of mathematical functions in a tabular format to be of great value

in our specifications. One of the major concerns with their use was theii degree of

understandability for safety, system and human factors designers who would have to review

them. Experience has shown that the reviewers have found them to be reviewable and an

effective way to capture requirements. Several areas have been noted for improvement in this

area and are being investigated for incorporation in the next revision of the procedures.

The specifications have been useful in finding areas of incompleteness in the higher level

specifications and for assisting in identifying areas of complexity. The tools have proved

useful in automating a number of consistency and completeness checks that can be performed

on the specifications.

Since most of the issues for Darlington had been centred on the software, our concentration

has been on software engineering. We have found that more of our emphasis needs to be

placed in the area of systems engineering. AECB expectations in this area are focused on

ensuring that the safety and system requirements are accurately captured, and that the system

engineering process adequately demonstrates that they have been met. Another area of

concern is the adequate incorporation of human factors engineering in the system level

engineering process,

AECL CANDU has also found that the framework can also be applied to systems that use a

block function language. One of the two Wolsong 2 shutdown systems is based upon an

ABB platform that is programmed in a block function language.

The framework has also been applied to form the basis of the Software Quality Management

and Assurance program for our Bruce A station, which is currently undergoing a major

rehabilitation. The framework has provided a common, rationale basis for the degree of

rigour being applied to software in the various applications covered by the rehabilitation.

75

CHALLENGES AHEAD

We have made considerable progress since OASES started; however, there are a number of

challenges that need continued attention. The fact that software engineering is a relatively new
frontier with advances being made constantly requires we keep abreast of these activities and

integrate them into our methodologies on a selective and practical time frame.

Secondly, we need to be able to address evolving regulatory requirements. The AECB have

tended to make strong suggestions about software engineering techniques that appear

promising and we need to be aware of these approaches and make informed defendable

judgments about their practicality, and suitability for our applications.

Thirdly, we must ensure that our methodologies are cost effective. A lot of the newer

requirements are aimed at achieving a higher degree of demonstrability of having produced

high reliability software. We must ensure that any techniques applied significantly add to the

achieved safety/reliability of the system, or significantly add to the degree of assurance of

having achieved safety/reliability. If the processes that we must use for safety critical

software are not cost effective, the utilities will end up substituting non-appropriate

technology as a misguided means of risk avoidance, and possibly missing opportunities of

increasing the safety of systems.

We believe that through the OASES or team approach across members of the nuclear

engineering community, we are able to meet the above challenges. Our concept of a

framework of standards has been accepted as the basis for developing a set of N290.14

standards for the CSA. The OASES Standard For Software Engineering of Safety Critical

Software has been received positively by international organisations such as the National

Institute Of Science and Technology in the United States. Our methodologies, procedures,

guidelines, and tools are being applied in projects within Ontario Hydro and AECL. We have

been keeping abreast of international developments in software engineering and maintain

contacts with key gurus in Canada, the United States, and Europe. By trying promising

approaches we are able to select appropriate techniques and discard unsuitable ones. The

biggest benefit of the team approach is that the costs are shared. Software engineering for

safety critical systems has too big a price tag for one group alone. By working together, we
have been able to keep our individual costs reasonable, and have been able to reach a

consensus on an industry approach to software engineering.

CONCLUSIONS

Software has unique problems associated with its use in systems requiring high reliability.

The problems are not unique to the nuclear industry. Ontario Hydro and AECL have applied

their knowledge and experience in the design of computer systems for control to address these

new issues by forming a joint group called OASES. The OASES group has created a

framework of standards covering all categories of safety criticality. As we move forward

towards our goals, we face a number of formidable challenges which we feel we can

overcome through the team approach we have adopted across the nuclear industry.

76

REFERENCES

[1] lEC 880 "Software for Computers in the Safety Systems of Nuclear Power Stations".

[2] Pamas, D.L., Schouwen, A.J., and Kwan, S.P., "Evaluation of Safety Critical Software",

Communication of the ACM, Vol. 33, Number 6, June 1990, pp 636-648.

[3] Pamas, D.L., "On the Criteria to be Used in Decomposing Systems into Modules",

Communications of the ACM, Vol. 15, No. 12, December 1972, pp. 1053-1058.

77

3.4.1 Questions: Mr. Paul K. Joannou

QUESTION: GORDON HUGHES (Nuclear Electric): What reliability values are associated

with your software categories? What is the combined non-reliable claim for the two diverse

systems on Darlington for the most critical fault?

MR. JOANNOU: We have a guideline for categorizing the reliability value associated with the

software. For a system m the safety-critical software category, the associated system reliability

requirement is 10'^, plus having the most significant category of consequence of error. We try

to demonstrate that the software has a reliability of 10'' and hence is not a major contributor to

system unreliability of 10"^ I guess the answer is 10"'*.

MR. HUGHES: Does that have units? 10 ' what?

MR. JOANNOU: Well, that's a probability of error upon demand.

This is combined reliability shown for the two diverse systems. I've tried to get this

answer and I keep getting different answers from different safety analysts. One of the questions

is whether or not you claim that the systems are so diverse that you can just get a 10'^ system

out of two 10^ systems?

The requirement for the two shutdown systems together is 10"^ reliability. We've tried

to demonstrate that the software is lO'* in each one. I guess nobody sat down and showed me
a very clear analytical equation that maps that, but I guess the overall reliability for the two

shutdown systems is 10"^.

QUESTION: DR. LANCE A. MILLER (SAIC): I understand that you set your threshold at

10"*. How do you assess the reliability of some component of new software? If you have a

module, what do you do? Do you use a MUSA model or some other kind of software reliability

model to estimate the reliability of the new software module, that you don't have data on?

MR. JOANNOU: We don't try to assess the reliability of a module of software. All we try to

establish is for something like a trip system what is the system reliability requirement and then

given the role of the software what's the equivalent software reliability requirement on the

software within that system. In terms of the degree of rigor we apply, we use the reliability plus

the consequence of error to determine what degree of rigor to apply, a Category I standard of

rigor, or Category II, et cetera. Within Category I we have a particular activity which tries to

demonstrate the achievement of a particular software reliability target in terms of this trajectory-

based random testing. But it's not done on a per-module basis; it's done on a software system

basis.

78

4 DIGITAL SAFETY SYSTEMS FOR NUCLEAR POWER PLANTS

Mr. A.L. Sudduth (Duke Power), Dr. John C. Cherniavsky (National Science Foundation (NSF)),

and Dr. Lewis F. Hanes (nuclear industry independent consultant) discussed the problem of

replacing an analog with a digital control system in a NPP from the different perspectives of

hardware, software, and human factors. These different views of the problem resulted in different

definitions of the problem and led to different approaches to solving the defined problem.

Mr. Sudduth provided a hardware view of replacing an analog with a digital system from the

perspective of a senior engineer involved in digital upgrades for control systems in fossil fuel

plants. His concerns are to maintain or improve the level of safety available from the new
system, but also to minimize the downtime for the plant. Mr. Sudduth proposed several alternate

hardware designs using proven components to improve safety. To minimize plant downtime,

Duke Power used a complete control-room simulator to speed up the process of testing the new

system in a setdng which closely approximates the actual control room and for training personnel

to work with that new system. Digital upgrades for Duke Power now require only three months

of downtime.

Dr. Cherniavsky provided a software view of the problem of installing a digital upgrade of an

analog system from a research perspecdve. He discussed the research supported at NSF in the

High Performance Compudng Communications Initiadves and placed that within the larger

context of NSF software research support. The NSF has a condnuing interest in topics related

to safety-critical software. In the past, NSF has funded formal methods research and, in the

future, may develop a Center for Software Safety studies.

Dr. Hanes provided a human factors view of the problem of converdng a control system from

analog to digital displays. Dr. Hanes raised issues across the endre system lifecycle including

new requirements that might be imposed on these systems, a better understanding of

anthropometrics and biomechanics, designing these systems to provide the information the

operator needs when he or she needs it, and intelligent aids to support the operator's decision

making after the system is in operation. Dr. Hanes drew on experience in other industries to

idendfy ways that a digital system can improve crew performance, enhance plant safety, and

avoid problems encountered in those industries.

Each speaker's discussion of methods for addressing the problems reflect their experience and

expertise in a specific technology. Mr. Sudduth viewed the conversion of control systems as

essentially a solved problem from a hardware perspecdve. The hardware is available and in use

in fossil plants which have an established conversion process. The use of digital control systems

has supplied substantial data on the human factors issues in converting plants, but these issues

are not entirely resolved and still require more research according to Dr. Hanes. In contrast,

software engineers are just beginning to grapple with some of the issues in developing safety-

critical systems according to Dr. Cherniavsky.

79

4.1 Hardware Aspects of Safety-Critical Digital Computer Based Instrumentation and
Control Systems: Mr. A.L. Sudduth

Hardware Aspects of Safety Critical

Digital Computer Based Instrumentation
and Control Systems

A. L Sudduth, Engineering Consultant

Duke Power Company
Charlotte, NC

INTRODUCTION

During the last 20 years, instrumentation and
control ^sterns based on digital computer
technology have come to be used widely

throughout industry. Included are applications

that are of a safety critical nature — that is,

where the consequences of failure of a device or

system could have substantial adverse impact on

the public The successful application of digital

corrputer technology In the aerospace ar>d

process industries for monitoring and control,

and the benefits that this technology offers when
conpared to the analog technology of 25 years

ago, require that consideration be given to the

more widespread application of digital computer
technology in US nudear stations as obsolete

monitoring and control systems are replaced.

The purpose of this paper is to examine

hardv\^re aspects of safety critical digital

control and instrumentation systems. It will

discuss how to acNeve adec^ate measures of

system reliability and how to ensure that the

required level of reliability is achieved.

Special techniques for design of the hardware

architecture of a digital computer based
monitoring and control system that are able to

make the system sir>gle or even double failure

proof are discussed Examples of hardware

architectures which achieve high reliability

are given, including those currently in use in

US nuclear stations or expected to be applied in

the future.

COMPARISON BETWEEN ANALOG AND
DIGITAL MONITORING AND CONTROL
SYSTEMS

Nuclear stations in the US were constructed

with process control systems based on analog

hardware. In particular, the safety critical

portions of process control, the reactor

protection systems, were generally of

electronic analog design. Examples include the

Westinghouse 7300 series and the Bailey 860
series. Both of these architectures were used i n
industrial process control and in fossil fueled

power stations as well as nuclear stations. The
safety related portions of sequential control

(such as diesel generator load sequencing) was
implemented almost universally with relay

logic, using discrete relay devices hardwired

together. In addition, the non critical portion of

the control in most stations was originally

analog, and pneumatic for the most part,

particularly for stations constructed in the

1 960's and early 1 970's. Digital computers in

nuclear stations were used solely for

monitoring purposes (the Operator Aid

Computer, or OAC) or for control of specialized

systems such as the main turbine. Though there

were limited exceptior^, such as the

Combustion Engineering Reactor Protection

Computer system, digital systems were rx>t used

for any important control functions in nuclear

power stations in the US.

For the non critical portions of nuclear station

control, particularly for closed loop control of

secondary systenns, that situation is changing

rapidly, as pneumatic instrumentation and
control are being replaced by distributed digital

systems such as the Bailey Net-90 and
Westinghouse WDPF. Digital systems are also

beginning to be applied in systems that are

"important to safety," such as the control of

feedwater in both PWR's and BWR's. The two
areas of nuclear station control that have been
least affected by modemization are the safety

critical systems, such as Reactor Protection arxl

relay based sequential control, and the operator

interface in the control room, which remains a

benchboard and vertical board system with hard
controls and indicators.

This section will examine some of the major
hardware differences between analog and digital

implementations of process control arxl

monitoring systems, and some of the differences

between a digital computer based process

control system and more common computing
devices, such as desktop computers. Of course,

the underiying difference between analog and

digital technologies is in the manr^er in which
physical variables (process states) are

81

represented in the system. In an analog system,

these variables appear as voltage levels or

current levels, with values in electrical units

directly proportional to the quantities they

represent. Thus a process temperature might

have a range of 0-500 °F, and appear in the

system as a value between 0 and 5 volts. In

contrast, digital quantities are encoded
numbers. The analog value is converted to a

digital value by a sampling system, and the

digital value is represented as a binary

number, as are all values in a digital computing

device. Rather than varying smoothly over a

range, digital representations of process

variables are discontinuous.

In the earlier days of computing, the

representation of analog quantities by digital

numbers using sampling was of cofKem because

of errors due to quantization and roundoff.

Because of industry experience in the

representation of numbers in digital form, such

as the standards for floating point numbers
developed by IEEE, and the rapidly advancing

use of 32 and 64 bit architectures in

inexpensive digital systems, problems with

issues such as quantization error or roundoff

are practically non-existence in current digital

systems. Another area of concem, that of

adequate sampling rates to avoid aliasing

errors, while it may apply in certain aerospace

applications, is not a problem in power stations

because underlying rates of change of process

states are not rapid enough to require unusually

fast sampling rates.

A more significant distinction in architecture

involves modularization issues, including

intermodular communication. If we look

carefully at a typical analog control system, we
would find that even though the system is

basically modular, almost every module has

been customized in some way. This is because

the application programming and tuning of such

a system are explicit in the design of the analog

circuit. Thus by looking at the schematic of an

analog control module, we can tell its function

exactly. In contrast, a typical digital control

system consists of many modules of only a few

types. If we examine the schematic of one of

these modules, we would have no clue as to its

specific function in the control strategy of the

process.

Control strategy appears in firmware and
software programming of a typical digital

processor. Rather than performing a single

function, as do most analog hardware modules, a

digital processor performs many hundreds of

arithmetic operations involving tens to

hundreds of separate variables or process
states. To determine the function of a digital

processor module, it is necessary to examine
the software programming (applications code)

for that module. Digital systems also have much
more interprocessor communications than did

typical analog systems. One consequence of the

inter]Drocess communications feature is that

much more complex strategies may be
implemented in a digital system, such as

multivariate control of a process. Multivariate

control is seldom used in analog systems. The
tradeoff in the additional capability available in

digital systems is a significant increase in

system complexity. It apparently this

complexity exceeds the comfort level of many
regulators, as the difficulties in acceptance of

digital technology in nuclear stations indicate.

A typical hardware architecture for a digital

control system processing channel is shown in

Figure 1. The input and output conr>ections to

the process sensors and actuators are handled

by the I/O processing module. In this module,

such tasks as engineering unit conversion,

signal validation, and simple filtering and
compensation are carried out. The data from the

1/0 processor appears on the I/O bus, which is

generally implemented as a standard hardware

bus. The processor module receives input from

two sources — the I/O bus and the data

highway, processes those inputs as dictated by

its application software programming using its

local memoty storage as a conventional

computer does, and places its output on the data

highway and on the local I/O bus, where
applicable. The data highway controller

connects the processor to the highway,

providing the required protocol conversions,

since the data Nghway is generally a Local Area

Network. Not shown in this picture are support

systems such as power supplies. A typical

system consists of 10 or 20 of these

subsystems, all identical in hardware. When
configured into a system, additional hardware

functions are added, such as special interfaces

to hardware devices (such as serial data links

82

or connections to Logic Controllers), additional

computing support for off-line (not real time)

functions, and the human-computer interface

connections for operators and management
personnel. A typical layout of such an
integrated system is shown in Figure 2.

Intermodule communication in analog systems
is carried over wires, with one wire per

variable. Using an electrical meter, one may
measure the electrical analog value on any of

these wires and thus the value of the variable

being carried by the wire. In contrast,

intermodular communication in digital systems
is handled by hardware bus architectures, such

as MultiBus, and data highways carrying

computer network traffic, such as Ethernet or

Token Bus. The communication busses and
highways carry multiple variables; indeed a

typical data highway (single wire) carries all

of the input-output values that any of the

modules in the control system needs to do its

work, perhaps as many as 1 0000 variables.

There is a difference in the manner in which

analog and digital systems interface with the

real world. Instruments and actuating devices

are for the most part still analog devices, thus

the interface to an analog system is more
natural. To talk to these devices a digital

system must use analog to digital conversion

(A/D or sampling) for its inputs and digital to

analog (D/A) systems for its outputs. Thus
digital systems add additional levels of

complexity in the signal path. The opposite is

true of the human interface. It is much easier

and cheaper to create a well-engineered

operator interface for a digital system than to

develop a well-engineered analog interface

using discrete hardware devices. The discrete

devices that make up a typical nuclear station

benchboard require too much physical area to

be as effective in conveying information as a

well-designed interface based on CRT screens.

Despite considerable effort in human factors

engineering over the years since the TMI
incident, deficiencies in control room design

noted by the Kemeny Commission have been

addressed but not eliminated due to the lack of

flexibility created by the dependence on discrete

devices. The CRT screen, and a pointing device

such as a touchscreen or mouse, has proven to

be very effective in providing an innovative

human interface that contributes to improved

operator performance, while retaining a degree

of adaptability far greater than that of current

nuclear station control rooms.

We may compare a digital control system to a

network of desktop computers. Within each
system, each processor receives a set of inputs,

processes these into a set of outputs, and uses

data storage, such as RAM memory. In both

systems, the processor executes two software

programs — an operating system program and

an application program. Generally we think of

the application program as being under the

control of the operating system program. One
of the most obvious hardware differences

between networked deslctop computers and a

distributed digital control system is the need
for a real time information interface. The
collection of inputs and outputs is gathered

together into a communication or data highway.

The structure of this highway may be
completely hardwired, such as a hardware bus,

or it may be implemented usir>g a computer
network through the addition of a suitable

network interface and an extension of the

operating system. Data must pass anxjng

processors connected to this highway in a

predictable manner, so that real time operation

can be assured.

A second needed hardware change is an upgraded

clock which operates at the system level.

Because monitoring and control systems are

real time computing systems, and the actions of

distributed processors must be synchronized

among the processors, the clock is much more
important in these systems than in desktop

computers. If we were to place a priority on
the tasks that must be accomplished in order for

our system to maintain operability, ensuring

the integrity of the real time clock would be at

the top of the list.

The third needed change is the addition of more
sophisticated hardware interrupt capability.

Hardware interrupts are used in many desktop

computer systems, but generally only to

service peripheral equipment, such as disk

drives, or to indicate irreparable errors in

processing, such as division by zero. In our

monitoring and control system, we need some
hardware interrupts which can be used to

change the task or mission of the system when
required by external influences. For example,

83

if a system failure caused a previously standby

controller to take over for the primary

controller, it would be accomplished in many
architectures through the use of hardware

interrupts. At the system level, if an
emergency condition were detected, a hardware

interrupt could be used to guarantee that

processors switch to the tasks required to

respond to the emergency.

There are other changes that we might include

in order to speed up the processing in our
system, some of which are beginning to appear

in high end desktop computers. The inputs and
outputs could have caches and buffers to adjust

for their slow speed. We might add additional

reliability features such as parity checked

memory (not used on all desktop computers) or

multiple processors. But in the end, the basic

architecture of a distributed digital system for

monitoring and control Is not significantly

different from the architecture used in today's

networked desktop computer systems. The
microprocessors are generally the same (Intel

80X86 or Motorola 680X0), communications
channels are the same (RS-232, IEEE 802.4),
and peripherals are similar (floppy and hard

disk drives). Most of these systems provide

interfaces to commonly used minicomputers,
such as the VAX family, or to the newer RISC
based processors, such as the Sun
SPARCStation. In summary, there is nothing

exotic or unusual in the basic digital control

system hardware architecture, nor does it take

extraordinary skill or effort to configure or

maintain these systems. A detailed discussion of

digital hardware architecture is contained in

Williams (1984).

ASPECTS OF HIGHLY RELIABLE DIGITAL
HARDWARE

High reliability implies that equipment
operates free of faults and failures. We use the

term fault to refer to a point type of failure

occurring in a localized area of a larger system.

An example would be the failure of a specific

component on a circuit board that renders the

board incapable of performing its function. A
failure is the consequence of a fault — some
aspect of the digital system is unable to

complete its mission, resulting in a possible

adverse impact on the controlled process. This

might be the initiation of an inappropriate

control action or the failure to initiate a

required action. Our overall objective in

achieving high reliability is the avoidance of

failures. It is obvious that it is impossible to
design electronic circuitry that will be free

from faults.

Our ability to achieve the uninterrupted

monitoring and control of a process involves a

combination of fault avoidance techniques arxi

the achievement of the required degree of fault

tolerance. The next section will discuss these
twin aspects of reliable hardware systems.

FAULT AVOIDANCE

Fault avoidance is important for digital systems
as it was for analog. There is a need to achieve

the highest level of reliability of individual

components and assemblies to minimize the
challenges to fault tolerance features.

The techniques for achieving satisfactory levels

of hardware reliability in digital systems are

similar to those used for high reliability analog
systems. These techniques include:

1 . Selection of high reliability components - -

digital components are available with certified

levels of reliability based on sample testing.

However, the specification of high reliability

components for digital systems is made more
complex by the complexity of individual

components themselves. If VLSI is used in the

fabrication of certain components, testing for

quality assurance is more difficult than it was
for commonly used analog components. There
are many standard VLSI components on the

market, such as the established microprocessor

families and their associated support

microcircuits, for which high reliability

versions may be obtained. Thus at the

component level, the use of custom fabricated

components should be minimized, and a quality

assurance program established for all

components. Techniques commonly applied to

analog components, such as required burn-in

periods, are applicable.

The requirement of high reliability components
for digital systems must be carefully evaluated

as part of the overall reliability program in

84

order to avoid unnecessary costs. If fault

tolerant architecture is to be used, then part of

the incentive, and part of the benefit, for using

expensive high reliability components is

eliminated. Analytical techniques that establish

quantitative measures of system reliability

should be applied to ensure that the additional

cost of high reliability electronic components
can be justified by a measurably significant

improvement In system reliability.

2. Application of components suitable for the

operating environment — here again the

techniques of highly reliable design are similar

to those used for analog devices. Standards have

been established for the operatingienvironments

to which electronic components and asserT±)lies

are subjected, and established standards require

that appropriate qualification testing be

performed. Qualification of digital systems for

envirorvnent must include all relevant adverse

environmental conditions, including

interference from electromagnetic fields.

3. Testing of components, subassemblies, and

integrated systems — in addition to

qualification testing of components described

previously, integrated system level testing is

required for digital systems because of the

integrated nature of the digital architecture.

The modular nature of digital systems, the

distribution of operations and functionality, the

complex nature of interprocess communication,

and the interaction between hardware and
software all dictate that an integrated test of the

system is required.

4. Establishment of installation procedures ~
the routing of system cables and establishment

of proper system grounding are crucial to the

integrity of the system and avoidance of common
mode faults. There are differerK:es between the

typical vendor test floor and the environment of

a power station. This need is best met by a

carefully designed installation that is described

in detail for the organization that will do the

installation. The provision of highly reliable

auxiliary systems, such as uninterruptable

power and cooling, has the same importance for

digital control systems as they did for analog

systems.

There are some unique features of digital

systems which should be considered when

hardware reliability is discussed. Failure

modes of digital systems vary, depending on the
architecture (e.g., typical failure modes of TTL
logic are not the same as those of CMOS).
Though digital components tend to follow the

first part of the classic failure curve (Figure

3), it is not clear that there is a wear-out
period as in the classical sense. Obsolescence

appears in most cases prior to true wear-out
response of digital hardware.

FAULT TOLERANCE

In spite of all of the best design and testing

techniques applied for high reliability, the long

term operation of the system fault-free cannot
be acNeved. The system must therefore be
designed to be tolerant of hardware faults. The
design of fault tolerant digital hardware has
been an active research issue for many years,

and this paper will provide only an overview of

some of the latest work. Papers by Rennels

(1984) and Siewiorek (1991), and the book

by Lala (1985).

Fault tolerance is the ability of a system to

experience some type of fault, to avoid having

that fault propagate into a system failure, and to

be able to achieve its mission in spite of the

fault. Thus the fault tolerance required for a

system is very much a function of the mission

and the nature of the faults expected, as well as

the accessibility of the system for repair. For
applications in power stations, we can restrict

our discussion to real time process monitoring

and control systems, whose mission is to

protect the health and safety of the public and

the investment of the owners, and which is

reasonably accessible for repair. In that case,

we can describe the following required features

of a fault tolerant system to be used in a safety

critical application:

1 . The system must provide complete coverage

for hardware faults ~ Coverage is defined as

the fraction of all possible faults to which the

system may be subjected for which the system

is able to continue to carry out its mission

following occurrence of the fault. Complete
coverage implies that the mission continues for

any hardware fault occurring independently and

randomly of any other fault.

85

2. The system must provide effective fauit

masking and recovery -- A fault will

eventually have an effect on the system,

necessitating some combination of masking and

recovery. Fault recovery is the process of

ensuring the continuation of the system

mission; fault masking involves preventing the

effects of the fault from propagating in a

manner that affects the controlled process.

Complete masking implies that no recovery is

necessary, but if the fault cannot be completely

masked, fault recovery, which requires some
amount of time, must be performed by the

system. The time available to recover from a

fault varies from application to application. If

the system is controlling a loop with very fast

dynamics, the loss of control for a few hundred

milliseconds may be enou^ to produce

catastrophic results. Luckily, power station

systems do rK>t have such fast dynamics, and a

delay of a few seconds is not generally critical.

However, avoidance of unnecessary alarms and
transients would dictate that fault masking is

preferable to fault recovery, the fault masking
scheme should be as effective as possible

consistent with costs, and the time for recovery

should be kept short.

3. The system must provide unambiguous
diagnostics — since the effects of faults will be

masked from the process or contravened by
recovery actions initiated by the fault tolerant

features, there must be some way to inform the

operator of the occurrence of a fault so that

repairs may be initiated.

4. The system must provide graceful

degradation — since the time to repair a fault

will not generally be zero, the system will be

operated for periods of time in a faulted

condition. The degree of reliability of the

system in a faulted condition must be adequate to

ensure that its mission is not compromised. It

is also highly desirable from the owner's

standpoint that the system be able to continue

normal productive operation during this time,

as the economic consequences of shutdown, and

the plant degradation associated with frequent

shutdowns, are to be avoided. A desirable

feature would be the continued performance of

the mission, though perhaps with degraded

reliability, after the occurrence of two
independent faults.

5. The system must be repairable without
compromising the mission - the need for

continued performance of the safety critical

functions of the station, as well as the need for

continued production, dictate that repairs be
achieved while operating. The system must then

provide for the graceful reintegration of the

repaired unit into the process and the re-

establishment of the previously unfaulted

condition.

These features of the fault tolerant system have

been acWeved though the work of a number of

researchers, and successful fault tolerant

systems have been constructed for real time

process contrcrf and nrKDnitoring. A subsequent

section will review several of these systems ~
two classical systems developed from research

with hardware based fault tolerance, and two
systems currently in use or under development
by utilities for power stations — after more
background information on fault tolerant

architectures is discussed.

HARDWARE ARCHITECTURES FOR FAULT
TOLERANCE

We previously discussed fault avoidance as a

technique to improve the reliability of a digital

system and listed some of the desired features of

a fault tolerant system — wide coverage,

minimal recovery time, hot repairs, etc.. We
will now look at hardware architectures which

implement fault tolerance. The important

aspects of fault tolerance for which this

architecture must be designed include fault

detection, diagnosis, assessment,

reconfiguration, repair, and return to service.

In a fault tolerant architecture, faulty

information processing channels must be

detected before they cause or contribute to a

system failure. One method for detecting faults

is to augment the application program or

operating system so that the processor executed

some form of self testing program periodically.

Such features are implemented in a very

limited way on a typical desktop computer; we
would need a more sophisticated program in a

control and monitoring system processor. For

example, we might devote a small fraction of

every cycle to the execution of a limited self

checking program that could verify the

86

integrity of memory and the status of

communication channels. Indeed, just the

ability to execute the operating system arx:!

application program over and over within the

time allocated for each cycle is itself a test of

system integrity, and a special circuit called a

watchdog timer has been used in some
applications for this purpose.. A module of a

digital control system that executes some form

of self diagnosis periodically is called a Self

Checking (SC) module.

The problem with a channel containing only a

single self checking module is that if the module

fails the test, indicating that it contains a

potential fault, there is nothing with which to

replace it. Such a system is not fault tolerant;

the best we can hope is that it quits trying to

influence the process once it determines that it

is faulty and turns control over to the operator.

We also have the problem with a single module

that its failure mode may not lead to a clear

decision on its integrity. It may be so faulty

that it thinks it is OK and continues to try to

execute. The result could be inappropriate

control action or failure to take a needed action.

It is obvious therefore that to achieve hardware

fault tolerance, we must provide some form of

hardware redundancy. There are many methods
for achieving fault tolerance through hardware

redundancy. This paper will examine four of

the most common.

Dual Redundancy

Dual redundancy implies the addition of a secorKi

processor to a control channel. The second

processor provides the backup needed to ensure

fault tolerance if one of the processors fails.

There are several ways of configuring such a

system. One commonly emptoyed method is to

use two self checking processors, one

considered to be the master and one the slave.

Both processors run identical application and

operating system programs. The output of the

master processor is normally accepted by

downstream units. Periodically both

processors run their self checking diagnostic

programs; if the master fails the diagnosis,

then the slave takes over. The basic idea of dual

redundancy is shown in Figure 4.

There are several variations of the basic dual

redundant architecture. Some of these are

shown in Figures 5, 6, and 7. If the two
processors are running synchronously (that is,

using the same clock) then it is possible to have

a third unit that compares the outputs. Upon
detection of a discrepancy between the outputs,

both processors are ordered to execute

diagnostic software. The arbitrating unit then

selects which processor to use and serxis a

message to the system that a processor failure

has occurred. Comparison may also be done by
routing the output of each processor to the input

of the other processor, letting them detect any

discreparKies. The processors may then freeze

their outputs momentarily while executing

diagnostic software, then the processor that

decides that it Is operable may proceed. Other

variations are given in the literature cited in

the references.

All of the dual redundant hardware

architectures have key features in common.
Such systems are limited in their ability to

mask the effects of the fault. The degree to

which the process is affected by a fault depends
on the ability of the system to identtfy the

faulty processor and switch in the output of the

operable processor quickly, and to dispose

successfully of any processing work that fails to

be completed while the switchover is going on.

This makes the system susceptible to some
situations in which it will not be single failure

proof. For example, if the fault is transient or

intermittent, self diagnostic software may not

detect the preserve of the fault and

identification of the operable processor may not

be possible. When control is transferred from
a faulted processor to an unfaulted one, there

may be a transient created in the system while

the previously bypassed processor is integrated

into the system. If an external arbitrating unit

is responsible for initiating diagnostics or

causing a transfer between processors, it

becomes a common mode failure point. Finally,

during the time that the faulty processor is

being identified and disabled and the second

processor is taking over, certain critical

actions may fail to occur. Though they may
execute successfully in the next cycle, the fault

may propagate into a failure.

Triple Modular Redundant

87

Triple redundant system (also called triple

modular redundant or TMR) use three identical

processor channels running in parallel. This is

a very common form of hardware redundant

system and is widely used in safety critical

digital control and monitoring systems in

aerospace applications. In analog form, it

appears commonly in current nuclear station

protection systems. The use of triple systems

is becoming more widespread as the cost of

computing hardware has decreased. The basic

idea of TMR is shown in Figure 8.

In a TMR system, three processors running the

same application program (though not

necessarily the same software) in parallel each
generate outputs which should be nearly

identical under unfauited conditions. These

outputs are compared by a voting or
auctioneering circuit and a single one of the

outputs is selected to be passed on to sttosequent

units. If one of the processors begins to deliver

outputs which are different from the other two
due to the presence of a fault, the arbitrating

circuit will select one of the two unfauited

signals to pass on. The effects of the faulted

processor are thus masked from the rest of the

system, and the mission continues with no

discontinuity. One of the simplest of these

auctioneering circuits is called a median select,

because it picks the processor output in the

middle as being the unfauited one.

The advarrtages of TMR over dual redundant

systems were studied in a research project

sponsored by EPRi (Kisner and Battle, 1992).
The results of this study are summarized in

Table 1. Since the arbitrating circuit selects

from among three signals, under a single fault

assumption it will always be able to select the

output from an operable processor. Thus a TMR
system is truly single fault proof. Since a

previously bypassed processor does not have to

be integrated into the system when one
processor becomes faulty, there is no potential

system transient created by the occurrence of a

fault. It is not necessary that any self testing

software be run in any of the processors

because there is no dependence on diagnostic

software to detect a fault. This design is so

effective at masking a processor fault that

attention must be paid in the design to ensure

that faulty processors are identified by some
auxiliary means.

A TMR system may also provide for graceful

degradation by configuring itself into a dual

redmdant system once one of the processors has
been determined to be faulted. This

reconfiguration could be done by having the

processors begin to execute some type of self

checking code that can arbitrate operability if

their outputs begin to deviate significantly.

Quad Redundancy

An even higher degree of reliability may be
obtained through the use of four processors.

Quad redundancy comes in two forms — one
that is an extension of dual redundant systems
(a sort of doubled dual redundant system called

dynamic quad redundant) and one that is an
extension of TMR (called static quad redundant).

The disadvantage of such systems is the increase

in cost and complexity of supplying four

channels and the associated auxiliary units that

handle module checking and reconfiguration.

A dynamic quad redundant system uses a pair of

dual non-self checking redundant processors.

All four processors are running identical

programs, so that comparisons may be may
between the outputs of each pair. As long as

both outputs of a pair are in agreement, that

pair is considered operable and its output may
be passed to downstream units. When there is

disagreement, the pair is considered faulty, and
the redundant pair takes over. Note that upon
the occurrence of the first failure, it is rxjt

necessary that the specific faulty processor be
identified, only that the pair that contains the

fault be isolated and identified — a more simple
determination to make. In a variation of this

scheme, self checking processors are used, but

the self checking feature is not used unless one

pair of processors is found to be faulty through

a disagreement in their outputs. The remaining

pair then continues to operate, but with self

checking enabled and one of the processors

becoming the master.

In a static quad redundant system, an additional

processor is added to a TMR system. Once a

faulty processor has been identified by a

significant deviation in its output from that of

88

the other two processors, the apparently faulty

processor is disabled and the fourth processor

is substituted for the faulty one. This restores

that TMR configuration of the system.

Note that quad redundant systems have the

capability to retain some degree of fault

tolerance in the face of the occurrence of a

single fault, though the effects of the second

fault may not be as effectively masked as the

first one was. In the case of static quad

redundant systems, the degree of fault tolerance

is not degraded by the occurrence of the first

processor fault; therefore the static quad

system may be considered double fault proof.

Arxjther advantage is that the time available for

repair of the first fault is greatly increased

over that of the TMR system without affecting

system reliability.

The next section of the report will discuss

examples of fault tolerant architectures that

have been developed and implemented — two
pioneering research efforts sponsored by NASA,
and two applications that are currently being

used or proposed for nuclear station control.

EXAMPLE FAULT TOLERANT
ARCHITECTURES

Fault Tolerant Multiprocessor (FTMP)

An extensive research program over many
years produced a fault tolerant central

computer design that could be used for control

in safety critical situations (Hopkins, Smith,

and Lala, 1978). FTMP was developed under

the sponsorship of NASA Langley, with much of

the work performed at Draper Labs. The

predicted performance of this system was an

overall failure rate of 1
0" ^ failures per hour.

The objective of FTMP was to produce a fault

tolerant architecture not dependent on software

for management of the fault tolerant features of

the design. It was recognized that imbedding the

fault management features in the operating

system or in the application software (it had to

go one place or the other) created nightmares in

the validation of the system. In addition,

software based fault tolerant schemes are

highly dependent on the ability of software to

arbitrate faulted and unfauited behavior,

another rather nightmarish problem. It was
corKluded that if one could accomplish the

requirement to arbitrate behavior by simply
comparing results of application programs in

hardware, a more robust system would emerge.

The FTMP consists of multiple modules,

arranged in triples for redundant calculation; a

set of spare modules that may be substituted for

a faulted member of a triple; and the associated

management software and hardware. A triple

may be assigned to any of the system tasks, and

may be dynamically reassigned if conditions

require. The members of a triple operate

synchronously, so that voting may be done on a

bit-by-bit basis. The basic architecture is

shown in Figure 9.

Intermodule communication is handled by two
levels of redundant highway. The lowest level

consists of a memory highway, which permits

interprocessor communication by shared

memory. Each module contains private or cache

memory that buffers the communication with

the memory highway while providing for local

storage. The upper level highway provides for

interfacing of processor modules to higher level

management functions, such as data

input/output, operator interface, and

configuration control. Each processor is

connected to the highways by bus isolation

circuits that prevent the propagation of low

level module faults through the highways.

Software Implemented Fault Tolerance
(SIFT)

The SIFT program was another effort by NASA,
Langley, to study and develop a hardware

architecture for a fault tolerant computer
system for aircraft control (Wensley, et. al.,

1978). The majority of the development work
was done by SRI International of Menio Park.

This system depended on hardware for the

isolation of faulted processors, which were
detected by software programs designed

specifically to monitor the health of the

processors. The basic architecture of SIFT is

shown in Figure 10.

89

An important advance in thinking about digital

system reliability was precipitated by the work

on SIFT, Up to that time, researchers had been

concerned with failure modes — that is, trying

to isolate and characterize the manner in which

digital hardware failed. It was thought that if

such low level failure modes could be identified

and categorized, techniques for identifying the

faults could be made more effective. The SIFT

project researchers recognized that the specific

manner of hardware failures was less

important from a reliability standpoint than the

system level effects that such failures produced.

Accordingly, the emphasis was on identifying

processors which were not producing correct

results at the system level, and the isolation of

these failures from influencing the behavior of

the controlled system.

The genera! method of fault isolation was
through the use of private memory. Each
processor was provided with a section of

private memory into which its results were
placed. Thus no processor failure could corrupt

at the system level; at worst, the failure

created problems only in that processors

private memory. It was not necessary to

determine the specific hardware origin of the

incorrect results in private memory - it could

be processor failure or memory failure - only

that the results in a particular private memory
were faulty.

The manner of determination of faulty results

was through the use of triple redundant
processors for each critical task. The results of

three processors (the contents of their private

memories) were passed to the system through

redundant highways and compared by software

based voters, and the voters selected a norv-

faulty set of results to be passed to the system
as the control demands and indications

necessary for accomplishment of the system
level tasks. Once the voter had made a selection,

it had also in effect provided diagnostic

information, because the signals from the non-

selected processors were now suspect. Further

software based checking was used to identify a

failed processor unit, and the system had the

capability to reconfigure itself to replace a

faulty unit and restore full redundant operation.

The effects of a faulty processor were masked
from the system by this triple redundant

scheme, and there was no associated recovery

time.

Other important aspects of high reliability

digital schemes examined in the SIFT project

include synchronous vs. asynchronous operation

of the processors. It was found that exact

synchronization of tasks was not necessary, but

periodic resynchronization of processors clocks

was required. This might be characterized as

"closely asynchronous " operation. It was
recognized that synchronous systems introduce

additional common mode failures associated with
maintaining a master clock for the system, but

truly asynchronous systems could, for a variety

of reasons, get so far out of cinch that Incorrect

results could be produced.

Using a Markov reliability model for the

system, its failure rate was predicted at less

than 10"^ per hour. Assuming a double fault,

with reconfiguration, the failure probability

was calculated to be less than 1
0"^ ^ per hour.

An attenpt was made to commercialize the SIFT

design (Wensley, 1987, and Wensley and
Harclerone, 1982), and a series of research

projects sponsored by EPRI looked at this

architecture for possible applications in

nuclear stations. It is a commentary on the

demand for such products at the time that the

commercialization was unsuccessful, though the

system itself had many desirable features which
should be considered seriously in future fault

tolerant hardware designs.

Westinghouse Digital Feedwater Control

The Westinghouse Digital Feedwater Control

System has been installed at several

Westinghouse PWR plants. The following

discussion relates specifically to the

installation at the Catawba Nuclear Station. A
detailed discussion of the design of this system
is contained in Eastman, et. al. (1987).

Eariy operation at Catawba 2 indicated that the

control of feedwater (steam generator level)

was particular difficult for both the operator in

manual control and for the analog feedwater

control system. These difficulties are related to

the design of the steam generator in this unit. It

90

became apparent that the algorithms for control

which had been adequate traditionally in the

industry would result in unsatisfactory levels

of reliability.

In order to increase the effectiveness of control,

the feedwater at Catawba 2, which consisted of

Westinghouse 7300 based analog control, was
replaced with a digital system using

Westinghouse WDPF digital hardware. The

result has been greatly improved feedwater

control by the automatic system, and enhanced

reliability of the station when compared to the

analog control system. The Westinghouse

system is discussed in detail in other documents
— this paper will deal specifically with the

hardware design of the system and the

reliability experience.

The Westinghouse WDPF system is a dual

redundant asynchronous system. The
architecture of this system is shown in detail in

Figure 1 1 . Each processor executes software

which performs self-checking functions,

including watchdog timing. Should the self

checking features determine that the master
processor is producing potentially faulty

results, control is transferred to the backup

processor. The operator is notified that such a

transfer has occurred. Due to the time

constants associated with the feedwater control,

the time delay for transfer from the primary to

the backup processor does not affect system

dynamic response. There have been several

successful instances at Catawba 2 where a

master processor failure has caused a transfer

to tjie backup processor. There has been a

single hardware related system failure, caused

by incorrect spare parts being used to effect a

processor replacement. Overall experience has

shown a significant improvement in feedwater

system reliability through the use of the digital

feedwater control system, and plant personnel

are pleased with the system.

Foxboro/B&W Owners Group Advanced
Control System

Control of the B&W PWR plants has from the

beginning been more complex than that of

Westinghouse or CE PWR plants. The Once

through steam generator in these designs

dictates that control of the reactor and the steam

plant must be much more tightly integrated

than is necessary in systems using

recirculating steam generators. The B&W
plants came equipped with a system called the

Integrated Control System (ICS) which is very

similar to the coordinated control system used

on supercritical fossil stations. The ICS was
implemented in various vintages of Bailey

analog control hardware.

Recognizing that the Bailey ICS systems were
becoming obsolete, and that design problems in

these systems had led to several incidents of

improper control system behavior in these

stations, the B&W Owners Group initiated a

research and development program to deliver a

digital control system which could replace the

ICS and eliminate the potential for

inappropriate interactions between the controls

and the power station systems. This extensive

program, carried out over a number of years

and involving many technical personnel at the

affected utilities, has resulted in the

devetopmerrt of the Advanced Control System
(ACS), a distributed digital system which
replaces the ICS.

The reliability of the ACS is assured by the

extensive of TMR architecture. All critical

system instrumentation and the associated

processors are triplicated, as are the voters

which select the control demands to send to the

plant. The system is implemented using

hardware from the Foxboro Intelligent

Automation (I/A) series, which itself provides

a number of fault tolerant features, including

the ability to remove from service and replace

almost all system hardware components while

the system is operating without an effect on

system output.

One of the features of the development effort on

this project was a careful analysis of the

hardware related failures which had caused
problems in the ICS, then incorporating

specific design features in the ACS which would
ensure that these problems would not recur.

Another innovation was the construction of an

integrated test facility in which the actual

hardware and software to be installed in a

station was tested using a high fidelity

simulation. This integrated test facility is

discussed in more detail in a later section.

91

HARDWARE BASED COMMON MODE
FAILURES

A common mode failure disables the fault

tolerant features of a system. Therefore it is

necessary to analyze hardware designs for

possible common modes failure points, then

take appropriate action to eliminate them. The

three major hardware sources of common mode
failures are the sensors and final control

devices, the input-output bus, the power
supplies, and the data highway.

Sensors and final control devices may be

supplied with the same level of redundancy as

processors, but this is done only for the most
critical channels. It is more common to have

only a angle sensor associated with a process

measurement and a single final control device,

such as a valve. If all redundant processors

receive signals from a common sensor or

supply output to a common device, then a fault

in the input-output system could represent a

common mode failure. This is a common mode
failure in analog control architectures as well,

but digital control systems provide more
capability to avoid adverse effects of sensor

failures. It is common for all input channels to

be provided with some form of signal validation

capability and a set of active limits on the value

passed to the processor. For example, if a

sensor is expected to provide a signal that

ranges from 4 to 20 ma, the input channel is

designed to recognize an input outside of this

range and to reject the sensor signal as

defective. The channel may then be frozen at the

last value considered to be valid, and the

operator notified of a sensor failure. More
sophisticated signal validation features, such as

rate of change checking or analytical

redundancy, are also possible with digital

systems.

On the output side, the digital to analog

converter that supplies signals to actuators and
final control devices may also be supplied as a

redundant design. A self checking feature,

which consists of a sampler and comparison
circuit, may order the swapover from one D/A
to another if the master circuit appears to be
producing an inconsistent output.

The input-output bus is responsible for

communication between the input and output
devices (and their signal conditioning and
sampling circuitry) and the processors.

Because data from all of the sensors connected to

a particular processor channel is required by
all of the redundant processors in a subsystem,
it is placed on a hardware bus that is accessible

to all of the processors. A significant hardware
problem on the I/O bus would therefore disable

all of the redurxJant processors.

Power supplies are another possible common
mode failure point, though the problem here is

almost identical to the power supply problem
involved in analog control system architectures.

One additional complicating factor in digital

control systems is the distribution of

processors throughout the station, as opposed to

the centralized nature of analog systems. It is

necessary to ereure that a highly reliable

power source is available at all locations of

processor cabinets. It is standard practice to

provide this power through rectifier-inverter

combinations, with battery backup. Within

individual processor cabinets, redundant power
supplies are installed, and it is possible to

deenergize, remove, and replace a power supply

without interruption of service in that cabinet.

One of the most critical points in the system for

common rvode failures if the data highway. The
data highway is a computer network, and it is

shared among all of the processors in the

system, those which perform control

calculations and those which provide interface

to the operator. Thus if a data highway becomes
inoperable, the system loses all communication
capability and all control and monitoring

functionality is lost. Recognizing the critical

nature of an operable data highway,

manufacturers have provided features to ensure

its integrity.

The data highway is almost always redundant.

Processor output is isolated from the highway

by highway controllers that provide protection

for the processor in the event that one of the

redundant data highways becomes inoperable.

The system is designed to switch transparently

from one highway to the other. Highways are

also protected against external problems. The
redundant highways may be routed so that they

92

are separated, except when they come togetfier

at a cabinet. If external magnetic or electric

fields may be a problem, it is possible to use

fiber optic cables for the highway that are

unaffected by external fields. It should be

possible to break or short one channel of the

redundant highway without affecting the system
operation.

One final possible source of common mode
failures needs to be discussed. If there is an

error in system hardware design, then that

error will appear in all modules. Such a

structural weakness has the potential to create

a common mode failure, since all modules would
be affected the same way under identical

conditions. The best defense against a faulty

design is an extensive operating history of a

particular design in the field, under a variety of

conditions and controlling a variety

processes. This is why the most logical course

of action in adopting digital control and
monitoring systems in nuclear stations is to use

the widely applied offerings from commercial
vendors. These ^stems have thousands of

processor-years of application experience,

active users groups that work to share

information and improve the product, and a

large number of well trained and experienced

application engineers and technicians available.

The fault tolerant features of these systems
have been shown to be successful for a number
of challenges. To undertake or require a custom
development for nuclear applications is an

invitation to an unsuccessful program that will

significantly hinder the ability of utilities to

take advantage of the many improvements
possible through the application of digital

systems in nuclear stations.

understand these methods, some basic ideas arxi

definitions are required.

The probability of system failure F(t) is the

probability that the system will fail sometime
between time 0 and time t, given that it was
operable at time t. The reliability R(t) is 1

-

F(t). The failure density function f(t) is the

derivative of F(t) with respect to time,, and the

hazard function is

z(t) = f<t)
.

1 - F(t)

It is the hazard functbn that is most often used
to describe the performance of a system, since

it has units of failures/unit time. If we plot the

hazard function versus time for typical

electronic components, it produces the famous
"bathtub curve." In eariy stages of operation,

an electronic system suffers from so-called

"infant mortality" as weak parts fail early

under normal operational stresses. This early

period is followed by a long period of constant

failure rate, called the useful life period. The
end of the useful life period is marked by an
increase in failures due to components reaching

the end of life.

Specific steps are taken during manufacture and
factory test to eliminate the eariy failures, so

that we may assume that equipment placed into

plant service is operating in its useful life

period. If we take the constant failure rate

during that period to be equal to I, then we get

the following equations for our three important

constants

ESTABLISHING THE LEVEL OF SYSTEM
RELIABILITY

Hardware Analysis

Quantitative methods are available that can be

used to assess the reliability of safety critical

digital systems and perform comparative

analyses of various fault tolerant options.

These methods are based on the development of

various models of the system. In order to

f(t) = ^e-^^

F(t) = 1 - e-^^

R(t) = e
-At

This constant

documented in

failure rate, X, is what is

MIL-HDBK-217D for many

93

electronic parts. Such an assumption may not

necessarily hold for certain types of VLSI

circuits, and alternative techniques of assessing

individual component reliability may be
necessary.

Mean time to failure (MTTF) is the expected

value of the reliability, R(t). Mean time to

repair (MTTR) is the expected value of the

repair time for the system. Mean time between

failures is the sum of these two expected values:

MTBF = MTTF + MTTR

Finally, system availability A(t) is the

probability that a system is operational at time

t If a system is unrepairable, then A(t) =

R(t), If a system can be repaired and kept in

service, the limit of A(t) as t gets very large is

a constant, A, which has the value

MTTF + MTTR

One of the most common methods for modeling

the reliability of a system and performing a

quantitative assessment is through the use of

Markov models. A Markov model consists of a

set of mutually exclusive states that represent

the possible conditions of the system with

respect to the operability of its components and

subsystems, along with a set of transitional

probabilities that represent the probability of

state transitions. Markov models are

particularly useful for evaluating the relative

reliability of various redundancy schemes.

When Markov modeling of reliability is

combined with the other aspects of the

objectives of system reliability, such as the

necessity for fault masking vs. a penalty for

recovery time for unmasked faults, it is

possible to arrive at a reasonable assessment of

whether the reliability of a particular system
is adequate to meet the needs of the critical

application. For example, it is possible to show
whether a particular digital computer based

replacement of an analog controllable leads to

greater or less reliability.

Further discussion of the use of reliability

modeling of fault tolerant digital systems may
be found in Mathur (1971) and Ng and
Avizienis (1980).

Integrated Testing of System Reliability

The compactness and modularity of digital

control and monitoring systems make possible

the construction of integrated system testing

facilities that were not possible with analog

^stems. The basic architecture of such testing

facilities involves control and monitoring

hardware identical to that installed in the plant

interconnected with a simulation model of the

plant process. Such a facility has multiple uses
in ensuring the operability and reliability of

the plant:

1 . The facility may be used to test and verify

all of the software to be installed in the system.

This includes the application software and the

graphics software that provides the operator

interface. There is a significant cost advantage

in reducing the length of a startup by ensuring

that software is essentially correct.

2. All of the fault tolerant features of the

system may be tested by imposing various

hardware faults on the system and assessing

their effects. This includes imposing failures at

all system inputs and outputs, faults on the

processor boards themselves, and faults in the

power supplies. The capability of the system to

be repaired on line without adverse effects on

system operability can also be tested.

The importance of this type is testing cannot be
overemphasized. A Failure Modes and Effects

Analysis (FEMA) can never be as good as an

actual hardware test. Such testing in the past

has been prohibitively expensive or only

partially complete. With the declining cost of

hardware and the modularization and

standardization provided by digital systems, it

is now a feasible measure to provide assurance

that the system will perform as required by the

specifications.

3. The facility may be used as a training

simulator for plant operators. By duplicating

the human-machine interface to be used in the

control room, as well as the actual inputs and

94

outputs of the control system, a simulator that

is much more complete and realistic than any

currently in use in the industry can be provided

at a much lower cost

4. An integrated test facility is a research and

development laboratory for tall types of

advanced technologies. These new technologies

include computer based operator aids using Al,

advarx;ed control strategies and methods, new
ways of integrating facility management and

plant operation, and the development of

predictive maintenance programs.

Two such facilities have been recently

completed and will be described below.

The Duke/EPRI Mobile Simulation Facility was
developed to integrate a Westinghouse WDPF
control and monitoring system with a

simulation model that could be used for training

station operators at several plants in the Duke
Power system. This facility consists of two
mobile units containing a complete WDPF
control system, including operator consoles and

processors, and a set of networked 486 based

computers that run a simulation model of the

plant for which training is desired. The
interface between the simulation model and the

control system takes place at the 1/0 bus level

through the use of common memory. The

Westinghouse hardware consists of processor

and memory units, as well as power supplies

and cabinets, identical to those installed in

power stations. The software that is run on the

WDPF equipment is identical to the software

run in the power station, and the operator

interface screens are also the same as in the

plant. The hardware layout of the mobile

simulator facility is shown in Figure 1 2.

This facility has been used for the devebpment
of the control application software for a

supercritical fossil station with about 3500
I/O points, and is currently being used to train

the operators for this facility. Feedback from

the operators and from the control designers

has been very positive. Because this is a fossil

station application, there is not a systematic

program for the assessment of failure modes

nor testing of fault tolerant features of the

system, but if this were a requirement, the

facility would perform these tasks very well.

In this facility, the 1/0 processing channels are

not present, and the interface takes place at the

I/O bus level, this is, at the output of the I/O

circuitry. The same basic architecture may be

used to construct a system that includes the

complete I/O channels as well as the processors.

The B&W Owners Group test facility at the

Davis Beese nuclear station training center is

an additional applrcatkxi of an integrated test

facility for digital control and monitoring

systems. This facility uses a Foxboro I/A

digital control system interfaced to a simulation

model developed as a training model for the

Rancho Seco nuclear station. Special hardware
interface equipment has been constructed to

convert the outputs of the simulation nxxiel to

the physical signals that would be expected from
the plant (e.g., 4-20 ma) and the outputs from

the control system are converted to a digital

demand signal for input to the simulation model.

Thus the entire digital control system,

including all of its I/O equipment, the processor

channels, the operator interface, and the power
connections and other terminals are duplicated

in the test facility. The software used in the

test facility is identical to that to be installed in

the B&W Advanced Control System when it is

implemented at a station.

For this facility, a comprehensive testing

program to assess the fault tolerant features of

the control system is being performed. A
complete hardware Failure Modes and Effects

test is also being performed. Combined with a

software validation effort, a high degree of

assurance will be obtained that the level of

reliability of the system is adequate to meet its

specification requirements.

Both of the described facilities are fully

operational now. One of their great advantages

is that the basic architecture of digital control

systems enables facilities like these to be used

for a variety of power stations. Development of

a simulation model of the particular facility is

necessary, but a modular simulation

development system is being used to simplify

this step. The control system application

software is identical to that used (or to be used)

in the power plant. The basic architecture may
be used with control systems manufactured by

Westinghouse, Bailey, Foxboro, and Forney.

95

REFERENCES

Eastman, M. C, K. A. Gaydos, K. F. Graham, M.

H. Lipner, N. P. Mueller, C. N. Nasrallah, A. K.

Negus, R. E. Paris, W. F. Schaefer, J. B.

Wachio, and D. D. Woods, Advanced PWR Steam
Generator - Feedwater Control System, EPRI

NP-4919-LD, April, 1987

Hopkins, A. L, T. B. Smith, and J. H. Lala,

"FTMP -- A highly Reliable Fault Tolerant

Multiprocessor for Aircraft," Proceedings of

the IEEE, Vol. 66, No. 10, October, 1978, pp.

1221-1239

Kisner, R. A. and R. E. Battle, Fault Tolerant

Architecture: Evaluation Methodology, EPRI

TR-1 00803, August, 1992

Lala, P. K., Fault Tolerant and Fault Testable

Hardware Design, Prentice Hall, Englewood

Cliffs, NJ, 1985

Mathur, F. P., "On Reliability Modeling and

Analysis of Ultrareliable Fault Tolerant Digital

Systems," IEEE Transactions on Computers,

Volume C-20, No. 11, November, 1971, pp.

1 376-1 382

Ng, Y. W. and Avizienis, A. A., "A Unified

Reliability Model for Fault Tolerant

Computers," IEEE Transactions on Computers,

Volume C-29, No. 11, November, 1 980, pp.

1002-1011

Rennels, D. A., "Fault Tolerant Computing ~
Concepts and Examples," IEEE Transactions on
Computers, Vol. C-33, No. 1 2, December,

1984, pp. 1116-1129

Siewiorek, D. P., "Architecture of Fault

Tolerant Computers: A Historical Perspective,"

Proceedings of the IEEE, Vol. 79, No. 12,

December, 1991, pp. 1710-1734

Wensley, J. H., L Lamport, J. Goldberg, M. W.
Green, K. N. Leavitt, P. M. Melliar-Smith, R. E.

Shostak, and C. B. Weinstock, "SIFT: Design and
Analysis of a Fault Tolerant Computer for

Aircraft Control, " Proceedings of the IEEE, Vol.

66, Number 10, October, 1978, pp. 1240-
1255

Wensley, J. H., "Fault Tolerant Computers
Ensure Reliable Industrial Controls,"

Electronic Design, Vol. 29, No. 1 3, reprinted in

V. P. Nelson and B. D. Carroll, Fault-Tolerant

Computing, The IEEE Computer Society Press,

1987

Wensley, J. H. and C. S. Harclerone,

"Programmable Control of a Chemical Reactor

Using a Fault Tolerant Computer," IEEE
Transactions on Industrial Electronics, Vol. lE-

29, No. 4, pp. 258-264

Williams, T. J., The Use of Digital Computers in

Process Control, Instrument Society of

America, Research Triangle Park, NC, 1 984.

96

Table 1. Comparison of Dual and Triple Redundant Architectures

Triple Dual
Fundamental Operating Compare Duplicate

/nf /oWt7/o

Check Hardware

Decision Metfiodology 2 out of 3 majority voting Self Checking of hardware

fninnsic uompiexiues increaseo naroware - Muuiiionai oonware
- Diagnostic Software

~aUU r\t?o/JU/ /ot; CiiUl lllaoKlliy CfJUi UK^ltiOliUfl

^fa fir LJyi IdiHIL^

_ Pail riMt^r Mf^f^h^ni^miciii \jv\^i ivi\^y^i icii noil 1 1 vvy/ IC 1 1 kJk^GOOkJI sjWIlLft III /y

- Fault C^nuf^rT^n^ 100%
- Sas/s for coverage Inherent operating principle Vendor Experience base and

K^ICiiU /o

Reliance on Coverage data 0% 100%
Unique common mode failure

potential

- Software

- Voters (if not redundant)

- diagnostics coverage
- transfer mechanisms
-EMI/RFI
- operating systems

Industry based availability

experience

100% 99%

V&V Required Moderate High due to fault tolerant

software requirements

Hardware dependencies None FT pairs must be identical

Software dependencies None FT software must match

Overall Cost (as % Installed

system cost)

13-18%> 10-15%

97

Data Highway

Highway
Interface

To Other Controllers
and Operator Consoles

Process Controller

I/O Bus

Input-Output
Processors

Plant Sensors and Actuators

Figure 1. Typical Digital Control System Hardware Architecture

(Processor Level)

Local Area Network

RS-232 Interface to

Interface Local
Controllers

Distributed Processors

Figure 2. Typical Digital Control System Hardware Architecture
(System Level)

98

Figure 3. Traditional Hardware Failure Curve

Processor 1

Processor 2

Switch

Figure 4.

Modules)

Basic Dual Redundant Architecture (Self-Checking

99

Checker

Processor 1

Switch

Processor 2

Checker

Figure 5. Dual Redundant System (External Checking)

Processor 1

Processor 2

Comparator Switch

Figure 6. Dual Redundant Synchronous System

100

Processor 1

Watchdog

Processor 2

Comparator Switch

Watchdog

Figure 7. Dual Redundant Synchronous with Cross Checking and

Watchdog Timers

Processor 1

Processor 2

Processor 3

Voter

Figure 8. Triple MOdular Redundant (TMR) Processors

101

MEMORY
MODULE

IE
BC fcJJ BIGS fcd BG

II

MEMORY
MODULE

I

BG 1^ BIGs""m^

MEMORY ACCESS BUSES S

n
II
PROCESSOR
AND CACHE
MEMORY

6C BIGS td BG

PROCESSOR
AND CACHE
MEMORY

INTERFACE ACCESS BUSES 5

I/O

ACCESS
UNIT

MEMORY
MODULE

ecTd BIGS k=l BG I

3
NOTE: BG • BUS GUARDIAN

BIGS BUS ISOLATION GATES

TO/fROM SYSTEM

PROCESSOR
AND CACHE
MEMORY

TO
I/O

ACCESS
UNIT

-5
TO/FROM SYSTEM

Figure 9. Architecture of Fault Tolerant Multiprocessor (FTMP)

Control computer
module

CRT
terminal

Floppy
disks

Communicator

Microprocessor

Memory

I/O control

Communicator

Microprocessor

Memory

I/O control

Process interface module

Computer
interfaces

Process interfaces

Digital in/out

Analog in/out

Terminal module

Terminal module

Terminal module

Communicator

Microprocessor

Memory

I/O control

Control

computer
modules

User wiring

Figure 10, Architecture of Software Implemented Fault Tolerant
(SIFT) System

102

REDUNDANT DATA HIGHWAY

> TO OTHER UX3PS

CONTROL
LOOP

PROCESSOR

SHAPED
MEMORY

DATA HIGHWAY

DATA HIGi-WAY
CO^fTROU_ER A

MIA.TIBUS A

I/O I^aERFACE

COrfTROL
LOOP

PROCESSOR
e

SHAfED
MEMORY

DATA HIGHWAY
CONTROLLER B

MULTIBUS B

WATCHDOG TIMER I/O IhfTERFACE
B

0106 -PROCESS 1/0- BUS

CONTACT
OUTPJTS

ANALOG
oirrpuTs

A/M
STATION
INTERFACE

CONTACT
INPUTS

ANALOG
INPUTS

I/O SIGNAL CONDITIONING CARDS (Q-LISE)

Figure 11. Westinghouse Digital Feedwater Control (WDPF)

103

q:
111

V)

q:

a.

3
CL
Q

Q

CO PC

LU
Q
2tr
Q.

i ns

q:
CD
2:m 0
0

HMd
IIV

m
-J

<
cr:

CD

<
a:

CO o

3
CO

cr
h-

Q.

CD

CO

Oi

tu

0
INS!

ONS

a

a8A3>j

ivna ivna

S.HdO

HAAd HMd
l^d ITV

Figure 12. EPRI/Duke Mobile Simulator Trailer Layout

104

4.1.1 Questions: Mr. A.L. Sudduth

QUESTION: GREG CHISHOLM (Argonne National Lab): Is there any ongoing work directed

towards developing a fault tolerant platform that will be qualified for use in nuclear reactor

protection systems, that is a network architecture in this process, or independent, and that

supports a general scheme of failure detection, isolation, and reconfiguration?

MR. SUDDUTH: I don't know of any work like that going on today. If you look back at the

work that NASA sponsored in the late 1970s at SRI and NASA-Langley, you find that people

proposed these things. In the case of SIFT, somebody actually went out and tried to build one

and sell it. Basically what we do is we go to vendors. We go to the Baileys and the Foxboros

and the Westinghouse guys and we say, "What are you building and how well does it work?"

I think if the nuclear industry undertakes a process whereby they decide to custom develop

something for themselves, 10 years from now you'll still be sitting in this room talking about

how are we going to make it work. So, you've got to do the same thing. You're going to have

to go to the people who are selling these things in the commercial arena, look at what they offer,

perhaps you could influence their design by saying, "Look, you know, if you just tweaked it here

and tweaked it there you could make it better and you could sell one to us." But you're not

really going to be able to go out and develop something unique to this industry, nor do I really

think that's necessary, because what we have now from our vendors is perfectly adequate for the

uses we're going to put it to.

QUESTION: BRIAN TOLLEFSON (BG&E Calvert Cliffs): When installing the Westinghouse

system, how long did it take, in general, to fine tune the system, and during that time period how
many trips occurred and what were the nature of the problems?

MR. SUDDUTH: Boy! When we first started this work back in the mid-1980s we really didn't

know what we were doing and we had a really hard time. It was a difficult effort. We were

helped by the fact that the plants that we initially started installing this equipment on were in

extended shutdowns, that is they were taken out of service for two or three year periods of time

in which complete renovation of the whole plant was going on. The digital system would go in

6 months to a year before the station was returned to service and then the operators and

everybody would have a chance to play with it for a while.

That worked pretty well and generally we were able to get the systems back up and

running. But, of course, you never actually finish one, and we're still tending some systems that

have been in service for 5-6 years now.

Our new approach, which is the simulator-based approach, we hope will alleviate that.

For the plant I'm currendy working on, there is a 12-week outage from the time the unit comes

off the line until it comes back with a complete digital system. The system has to work basically

the first time that it's plugged in. The way we're going to guarantee that it does is that we test

it in the simulator, and the simulator test probably has been going on almost a year. There is a

very good possibility-we've got our fingers crossed anyway—that the number of errors in the

system will be very low when it actually goes into the working plant, but it's a good question.

105

The real answer is these systems have a real steep learning curve. It's very difficult to

learn how to implement them properly, to get the software right, and to get the hardware installed

correctly, so that you don't have problems. We have, finally, after almost 8 years, learned how
to do the Westinghouse system right, and so we have a lot of confidence that we'll be able to

install it in the future with extremely short outages.

QUESTION: MIKE ENGINEER (Fluor Daniel/M&O): What kind of data highway failures

have you experienced? During transience have you experienced saturation of data highway

communication? Have there been any problems with data collisions or mysterious false-trips?

MR. SUDDUTH: I assume due to data highway problems?

We have had only one major catastrophic highway problem, and that happened when a

worker struck an arc on the highway conduit with a welding machine. That caused such a

disruption in the system that the whole world went down. Somebody asked me, "Well, how can

you run a plant if you don't have any hard panels? What does the operator do when the

computer goes away?" Well, it's a relatively simple question. In the fossil station we look

around and decide what position everything in the plant ought to be in, in order to make the plant

safe, and then if the computer goes away everything goes to those positions. Now, if there's

something that we can't set that way we do have to put it on a hard panel. There are a certain

limited number of controls—as 1 mentioned, maybe a 2-foot square hard panel—which we give

the operators, but basically that's not been a problem.

I guess I should mention, we did have one other highway problem that occurred at our

Catawba Nuclear Plant. There they have the Westinghouse Eagle Digital Control System and

the problem there was a configuration management problem. When they did a repair to the

system and plugged in a new processor board that board did not have the right hardware rev

level. Before the board was even energized it corrupted both highways and brought the system

into a big transient. The operator was then able to recover a B-water level, or a steam generator

level, and the plant was tripped. So, you've got to be careful about a lot of things.

We've not had any problems with data collisions because the Westinghouse System uses

the Token Bus architecture so there are no questions. However, you can saturate a highway—not

from a transient state—because the highway basically passes the same amount of information

regardless whether you've got a transient or not. It's really all the same. Every variable gets

passed on the highway every time, all the time, regardless of what's going on in the plant. But

eventually you can get so much stuff on the highway that you can't make the highway work any

more, and then you have to do this tremendously boring task called splitting the highway which

takes about 3 months and is real difficult to do.

No mysterious false trips in the system that we know of. We know exactly what's caused

all the problems in the digital system.

106

4.2 Software Aspects for Safety-Critical Systems: Dr. John C. Cherniavsky

Software Aspects for Safety-Critical Systems

Dr. John Cherniavsky

National Science Foundation

[as edited from transcript]

Dr. Cherniavsky represented the National Science Foundation (NSF) and the other government

agencies outside of the NRC and NIST which are interested in the use of high integrity systems.

NSF is an independent agency of the Federal Government established about 40 years ago to

promote and advance scientific progress. It only sponsors research; it does not conduct any

research. Last year, NSF received 57,000 proposals and made 20,000 awards for a total of about

$2.3 billion. Since NSF only has 1,200 employees, it makes extensive use of advisory groups

and used 60,000 outside reviewers to make 200,000 reviews last year. NSF makes awards to

academic, industrial, non-profit and Government recipients. NSF also works with other agencies,

particularly ARPA, the Department of Energy and NASA.

NSF contains seven directorates. The Computer and Information Science and Engineering (CISE)

Directorate funds the work of interest to this group. CISE has a budget of $230 million. CISE

contains six divisions. The Computer Computation Research (CCR) division supports software

engineering among other areas. CCR has a budget of $46 million. The software engineering

program has a budget of $4.36 million. This is the home of most of the computer science

research, software research, and research in software V&V.

This funding primarily goes to support university-based research though a small amount goes to

small business via the Small Business Innovative Research (SBIR) Grants. They typical size of

a grant is $50,000-$60,000 per year.

There have been some other opportunities in the software engineering area. Three or four years

ago, there was a Formal Methods Initiative which attracted at least 60 proposals of which four

were funded. NSF has also supported the Center for Research in Real-time Intelligent Complex

Computing Systems at the University of Massachusetts at Amherst and the ARCADIA project.

NSF has also provided some limited software safety support. There is not a large university-

based research community in this area, and NSF would like to encourage the development of

such a community. NSF has supported

individual researchers like Nancy Leveson and John Knight

the early formal methods, and temporal logics work

mutation analysis tool development at Purdue

research in the underlying mathematics necessary in assuring the correctness of systems

107

This last may be the most important in the long term.

NSF has had discussions with other organizations including NIST, Mitre, and Argonne to identify

targets of opportunity to strengthen research in high integrity systems. One proposed project was

a Center for Software Safety Studies funded at a level of $2-$4 million a year over the long term.

Another proposal was to fund postdoctoral support for software safety researchers in real

environments where they can get their hands on real system problem. NSF will condnue

pursuing joint agency initiadves in this area with NRC, NASA, the Department of Energy and

NIST.

One current initiadve is the High Performance Compunng Communications Inidative. This has

identified grand challenge problems (for example, weather prediction, vision research,

computational fluid dynamics, and urban flow problems). The CCR division would like to look

at grand challenges in the complex systems area. It is just as important to build complex systems

as it is to be able to build systems that will solve grand challenge problems. Some examples of

complex systems are aircraft control systems, the space stadon, muldmedia interacdve

telecommunicadons networks, banking and stock systems, and automated factories. These

systems share many characterisdcs. They are large, real-dme, and interacdve, and the failure of

these systems has serious financial and safety consequences. NSF is currendy investigating an

inidadve that would ask for proposals for the underlying science that would help us build these

systems correcdy.

Dr. Cherniavsky can be reached on EGOS. His email is jcc(5)nsf.gov, and his phone is (202)

357-7349. Please call or write if you have any questions or suggesdons for NSF in this area.

108

4.3 Human Aspects for Safety-Critical Systems: Dr. Lewis F. Hanes

HUMAN ASPECTS FOR SAFETY-CRITICAL SYSTEMS

Lewis F. Hanes
Consultant and

Adjunct Professor
Industrial and Systems Engineering Department

The Ohio State University
2023 Wickford Road

Columbus, Ohio 43221
(614)-487-8655

ABSTRACT

This report addresses crew, i.e., human, aspects of the
widespread introduction of digital technology into nuclear power
plant control rooms. Such changes as increased levels of
automation, intelligent electronic displays, and compact work
stations influence crew situation awareness, workload, etc. The
overall impact is expected to be enhanced safety, although such
challenges as automation complacency and access to information in
multi-dimensional space must be handled. In considering design
certification for safety, it is desirable that guidelines be
available. Since digital technology is developing more rapidly
than accepted guidelines, regulatory emphasis is placed on the
design process and verification and validation. The lack of
adequate guidance creates a need to assess knowledge from other
applications already experienced with digital technology (e.g.,
foreign nuclear and fossil plant upgrades, commercial aviation),
and to perform application research on such topics as automation
and information management.

INTRODUCTION

Digital technology is having a major impact on the design of
upgrades for existing nuclear power plant (NPP) control rooms,
and advanced control rooms for evolutionary and passive plants.
Control room hardware, software, and crew roles and tasks are
being affected. This document is concerned with the crew, i.e.,
human, aspects of these design changes.

Exhibit 1 provides an overview of the topics presented in this
report. Changes caused by digital technology impacting on crew
roles and tasks are described. These changes affect factors
influencing the crew as it performs required tasks. Based on
these changes, safety is enhanced, but also, challenges to safety
must be addressed. In reviewing the design changes due to
digital technology, the Nuclear Regulatory Commission (NRC)
utilizes guidance documents. Regulatory positions are influenced
by the availability and applicability of such documents. The
nuclear power industry has limited experience with the effects of
digital technology on human performance, and the guidance

109

documents are not complete. Therefore, it is important to
transfer knowledge from related applications and to perform
priority applications research.

high

EXHIBIT 1. Document Overview

-

* Changes with Digital Technology
* Factors Influencing Task Performance
* Potential Safety Issues
* Regulatory Positions
* Research Needs

CHANGES ATTRIBUTABLE TO MODERN TECHNOLOGY

Important changes in crew roles and tasks, and human-system
interfaces (HSI) are occurring in advanced control room designs.
A review of upgrades, plants recently becoming operational, and
advanced control rooms under design reveals some of the changes
(references 1,2,3,4,5,6,7, and 8). These changes are presented
in Exhibit 2.

EXHIBIT 2. Representative Changes with Digital Technology.

* Increased Levels of Automation
* Intelligent Electronic Displays Providing

- Integrated & Graphical Information
- Operator Aids & Advice
- Computerized Procedures Integrated with Plant Data
- Alarms that are Prioritized & Filtered
- On-Line Access to Extensive Stored Data

* "Soft" Controls on Displays
* Large Dynamic Overview Displays
* Compact Work Stations

AUTOMATION

Automation is used extensively in operating NPPs. The crew is
not involved directly in many control tasks that can be handled
more reliably by automatic control systems. New advanced control
room designs incorporate even higher levels of automation. For

110

example, some advanced plants are being designed for automatic
control of startup, power level change and shut down (8).

Three types of automation can be described: control, information
and management (9) . Control automation involves "closed-loop"
operation of NPP components and subsystems. An initializing
event causes control actions to occur without operator
participation.

Information automation involves providing the crew with
information about the state of the NPP, the process, systems,
subsystems, etc. Information automation can involve at least two
situations. System designers determine what information should
be available for display depending on plant and process state.
This information is formatted and presented to the crew
automatically when certain plant and process conditions exist.
For example, alarm information is presented on annunciator
displays when an alarm set point is exceeded. In a second
situation, a crew member requests that information be displayed.
The process of collecting the requested information, formatting
it, and presenting it may be performed automatically.

Management automation directs control automation in the
performance of the requested change. The crew establishes goals
which are accomplished by automated systems. An example is
automatic power level change. An operator communicates that
power should be increased from 78% to 85%. The management
automation system commands automated control systems to take
appropriate actions. The information automation system provides
the crew with the information needed to monitor progress of the
power change.

INTELLIGENT ELECTRONIC DISPLAYS

Electronic information and display capabilities are being
incorporated in upgrades (1) , new control room designs
(2,3,4,5,6,7), and have been included in operating plants, such
as Toshiba plants in Japan (8) . Electronic information and
display capabilities are made possible by modern computers,
electronic display devices, electronic data bases, high speed
data communications networks

,

^intelligent software and logic,
graphic display hardware and software, etc. When configured
properly, these technological capabilities provide major changes
in the form of data and information provided crew members.

Hard-wired indicators in conventional NPP control rooms can show
only the sensed data to which they are connected. Since there
are many sensors and parameters of importance to the crew during
the various phases of plant operations, ,large control boards are
filled with indicators. The reconf igurable (soft) electronic
displays permit the sensor and parameter values to be presented

111

only when required by the crew. The number of indicators can be
reduced dramatically. In fact, the Nuplex 80+ Advanced Control
Complex is being designed to provide 70% few indicators and 60%
fewer alarms for the crew members to handle as compared to
earlier Combustion Engineering control complexes (5). This
reduction in display devices provides the opportunity to design
much more compact work stations.

The display configuration in many conventional control rooms
requires crew members to move physically around the control
center, locate and read many indicators sequentially; to remember
these display values; to recall from human memory and/or
reference documents additional data; and to integrate and analyze
these data mentally to create information upon which to act. It
is impressive how well trained crew members can perform this
activity. With information automation, however, the needed data
are collected, integrated and analyzed, and presented in a
unified textual, graphical, or combined form with little or no
crew involvement.

There have been numerous efforts to design and provide
intelligent operator aids and advisors (e.g., 8,10,11). These
devices are intended to provide crew members with diagnostic,
problem solving, and response planning support.

Another electronic information and display feature that provides
an opportunity for improved crew performance is electronically
displayed procedures that are integrated with operating plant
data

.

There are situations in a conventional control room when many
events are occurring simultaneously and in rapid succession. An
example is during the onset of a scram. Visual and auditory
alarms, flashing displays, and similar kinds of events pepper the
crew with data. A well-designed electronic information and
display unit draws attention to events that are important, but
suppress data that interfere with crew task performance. Much
work has been devoted to developing alarm system guidelines (12)
and new alarm systems (1, 13).

The availability of data stored electronically in local data
bases or available over communications networks may enhance the
quality of crew performance. Improved crew performance can
occur, of course, only when the crew member's task can benefit
from access to the data, the data can be obtained and used in a
timely manner, and the process of obtaining the data does not
interfere with the other tasks being performed.

"SOFT" CONTROLS

Advanced control rooms are being designed with touch screens

112

(e.g., the French EdF N4 control room, reference 14). These
panels are easy to use for selecting menu options, and for
pointing at objects of interest. Touch controls are "soft" in
the sense that a given control surface area can represent
different controlled variables depending on state of the process
and plant. In conventional plants controls are each dedicated to
one function. The capability provided by "soft" controls to
reduce the total number of controls in an advanced control room
facilitates the use of compact work stations.

LARGE OVERVIEW DISPLAYS

Large display panels that can be seen throughout the control room
are being included_ in new control room designs (e.g., 4,5, and
6) . These displays typically provide an integrated plant
overview and high level alarms. These displays should facilitate
crew discussions of the overall state of the plant and process.
In addition, the large displays should permit non-crew members to
become familiar with and monitor plant status without interfering
with the operating crew.

COMPACT WORK STATIONS

Electronic displays and "soft" controls are being incorporated
into compact work stations (e.g., 3,4,5, and 6). These work
stations typically permit a seated operator to access extensive
information about the plant and process, and to control those
elements of the plant that he or she is authorized to control.
The work stations contain several electronic displays and input
devices, such as the mouse, trackball and touch screen.

Compact work stations eliminate the travel time required with
conventional control rooms for the crew members to move between
displays and controls on the instrument boards. Relationships
between displayed parameters and controls may be more obvious
because of the proximity made possible by the work stations.
Conversely, the shift supervisor and other crew members cannot
observe from a distance the physical location of a worker at the
instrument board and know the part of the plant/process being
attended

.

CREW ROLE AND FACTORS INFLUENCING TASK PERFORMANCE

The control room crew will continue to be an integral part of
upgraded and new NPP systems (e.g., see 1,2,3,4,5,6,7 and 8).
The plant will not be designed for fully autonomous control, in
which the crew has no role in operation, monitoring is limited to
fault detection, system goals are self -defined, and the crew
normally has no reason to interfere (see 9). The role of the
crew, in fact, will continue to involve monitoring, supervising,
and backing-up automated systems. The upgraded and new designs,
however, will require less manual control.

113

The crew role, as described above, requires the crew to perform a
variety of tasks. The nature of these tasks will be impacted by
the application of digital technology. For example, higher
levels of control automation with associated integrated graphical
display presentations may make the crew's task primarily one of
monitoring and detecting deviations from plan. In contrast, the
crew's task associated with the same plant state with
conventional control and display may be more response planning
and execution of control actions.

Performance of the crew is influenced by the nature of the tasks
and the methods by which modern technology is incorporated into
the human-system interfaces. Some of the factors influencing
task performance that are affected by digital- technology are
listed in Exhibit 3.

EXHIBIT 3- Some Factors Influencing Task Performance.

* Situation Awareness
* Workload
* Attention
* Alertness
* Crew Skill & Coordination
* Anthropometrics & Biomechanics
* Physical Environment
* External Communications & Structure

Situation awareness is concerned with maintaining within the crew
knowledge of the state-of -affairs of special or critical
significance in the context of ongoing activities. Knowledge of
importance may relate to systems and process status and trends,
ongoing tasks being performed, the interactions between states,
trends, and tasks, and all within the immediate past, present,
and near-future time frames (see 15 and 16) . The use of digital
technology to provide integrated graphic displays in which data
from a variety of sources are combined in a meaningful manner may
enhance crew situation awareness.

Workload involves the mental and physical activities of the crew
with regard to its capabilities. Highly automated control
systems may result in a very low workload, possibly causing
alertness problems. Conversely, failure of an automated control
system may result in a workload level that exceeds the crew's
capability to respond properly. The result may be a crew
performance problem, possibly impacting on safety.

Attention is concerned with the crew concentrating on one aspect

114

of the current situation when that aspect involves information
that should be known at that point in time. As an example,
advances in alarm prioritization and filtering should help direct
crew attention to relevant elements of the situation (12 and 13)

.

Alertness involves maintaining in the crew a wide-awake attitude.

Crew skill is concerned with proficiency in performing required
tasks. Crew coordination deals with providing capabilities for
the crew members to act in a harmonious combination, when
required, and to perform tasks and activities in an acceptable
and timely fashion. Coordination may involve communications,
leadership, interpersonal and group climate, conflict resolution,
and decision-making. The commercial airline industry program in
cockpit resource management has been successful in improving crew
coordination {e.g., 17 and 18).

Anthropometrics and biomechanics involve human body dimensions
and movement patterns, respectively. Such dimensions are
important in the design of compact work station. Improper work
station configuration may result in fatigue and dif f icult-to-see-
and-reach displays and controls.

The physical environment of an advanced control room must be
designed so that room lighting does not cause glare and
reflections from display surfaces. Noise levels must be
controlled so that the crew members are able to communicate
verbally (important for crew coordination). Ambient temperature,
air flow, and other factors may influence the level of alertness,
especially during night shifts (19).

External communications and structure is concerned with the
support capabilities available and the methods by which
information is communicated to the crew. Technical support
centers and emergency operating facilities are examples of
support and information sources. An issue with digital
technology is the method by which information is communicated to
the crew. Will voice communication be the primary method, or
will the information be delivered on display surfaces?

POTENTIAL SAFETY ISSUES

Changes in crew tasks and the human-system interfaces in upgraded
and advanced control rooms are expected to impact on plant
safety. The prediction is that overall impact will be positive,
based in part on the experiences in other industries (e.g.,
commercial air transport, see references 9 and 20). It is

important to consider both enhanced safety and challenges to

safety resulting from the application of modern technology.

115

ENHANCED SAFETY
Exhibit 4 lists capabilities provided by digital technology that
have the potential to enhance safety.

EXHIBIT 4. Potential Safety Issues: Enhanced Safety.

* Automation Reduces Workload & Error Opportunities
* Intelligent Displays

- Direct Attention & Support Situation Awareness
* Intelligent Aids

- Support Problem Solving & Decision Making
- * Computerized Procedures Reduce Workload & Errors^

* Large Displays & Compact Work Centers
- Support Crew Coordination

Higher levels of automation create opportunities for improved
performance. With control automation the number of human
execution errors should be reduced. Control actions and
sequences of control actions performed automatically are no
longer performed by crew members. Thus, opportunities for human
errors of execution are eliminated

-

Automation should reduce the crew workload. In the case of
control automation, the operator's role becomes one of monitoring
the progress of the control sequence, as contrasted with the
efforts required for manual control. Information automation has
the potential of reducing workload, also. Presentation of
appropriate information on the displays with minimum thought or
action by the crew reduces workload and provides a high level of
interface transparency. Three potential advantages of reduced
workload include the following.

* Shifts the emphasis of the crew members from being
equipment operators to being system managers. The
crew members will have more workload capacity available
to develop and maintain an overall perspective on the
plant and process (situation awareness) , and to implement
decisions through the management automation system.

* Improves crew situation awareness by having available
appropriate information provided by the information
automation system, and spare mental capacity resulting
from reduced workload to place information in proper
perspective

.

* Reduces the number of crew members required to control
the plant safely through the reduced workload, although
regulatory requirements may net permit this advantage
to be implemented- In this regard the Electric Power
Research Institute's (EPRI) Advanced Light Water Reactors

116

(ALWR) man-machine requirements specify the main control
room design be such that a single reactor operator can
handle normal operations (7)

.

A well-designed intelligent display system should enhance the
level of situation awareness within the crew members- For
example, important relationships between data can be shown
graphically. Explicit rendition of these relationships may make
obvious the overall situation and the events occurring in that
situation. This overall view supports the role of the crew in
managing and directing operations.

Intelligent display systems can provide information that might
otherwise by ignored. Information automation can retrieve and
present relevant data that the crew might not have time to access
or knowledge of availability with conventional display.

The intelligent display systems may direct crew attention to
information of importance. Color and other coding cues can be
used to highlight the information of importance. Information
that does not need to be attended to at that point in time can be
suppressed.

Intelligent operator aids and advisors have the potential to
reduce the mental workload by performing faster data collection,
analysis and interpretation activities. Crew members may have a
better understanding of the situation because of the increased
ability to monitor ongoing events. The crew should not need to
be involved in details being handled by the electronic
capabilities. In addition, crew performance quality should be
improved. The operator aids and advisors should provide the crew
with the best possible information upon which to take actions.
The crew, because of lack of knowledge or under the stress of the
situation, may not develop information of equivalent quality.

Computerized procedures provide the potential to reduce workload
and errors. It is sometimes difficult for a crew member to
identify and locate the correct procedure in a paper manual.
Another problem is that it is difficult to move between several
procedures in multiple event situations. Computer control and
presentation of procedural information should reduce the
opportunity for human error because the wrong procedural step is
not displayed when an action is required. The mental workload
should be reduced because the crew member has to attend only to
the procedure of importance at that point in time.

Large overview displays and compact work stations should support
crew coordination. The crew may be in close proximity to each
other because of the small sizes of the compact work stations.
This arrangement should facilitate communication. In addition,
the overview display viewable by all crew members provides a

common view of the plant and process states. This should

117

facilitate decision-making in which all crew members contribute
knowledge

.

CHALLENGES TO SAFETY

Exhibit 5 lists issues that may present challenges to safety.

EXHIBIT 5. Potential Safety Issues: Challenges to Safety.

* Increased Isolation of Crew from Plant & Process
* Automation Complacency
* Access to Information in Multi-Dimensional Space

- High Workload to Obtain Needed Information
- Keyhole Effect & Fixation Errors
- Display Thrashing & Navigation Difficulties

* Human Errors with Automated Systems

The higher level of automation with the associated increase in
monitoring activities may cause the crew to be more isolated from
the plant and on-going process then with conventional control
rooms. The crew may be less involved mentally with plant and
proces state and transitions. This should not be a problem if
adequate situation awareness and alerting mechanisms are
provided. However, if technology is not utilized properly to
provide this information to the crew, then crew performance
problems are possible in event of an emergency.

Automation complacency is closely related to the isolation issue
discussed above. Complacency may involve lulling a crew into a
state that induces it to over-rely on the automation system. A
provocative discussion of some of the problems with automation
experienced in the commercial air transport industry is contained
in reference 21.

Automation may create additional problems for crew members. It
is stated in a report on automated air transport cockpits that,
"Pilots who fly the glass cockpit often say tnat they have never
been busier, even though automated cockpits are supposed to
relieve workload. As it turns out, the new cockpits realign work
more than relieve it," (18, p. 50). Billings (9), in an extensive
evaluation of aircraft automation, provides similar findings.
John K. Lauber, a member of the National Transportation Safety
Board, is quoted in reference 21 (p. 67) as saying, "We have left
some gaps and run ahead of our ability to teach humans" how to
use sophisticated cockpit equipment such as flight management and
flight director systems properly. Although the technology and
reliability of automated systems are impressive and have

118

benefited the airlines, "what is missing are principles, rules
and guidelines defining the relationships between that technology
and the humans who must operate it."

It should be emphasized that NPP control rooms and aircraft
cockpits, and the control responsibilities of control room crews
and cockpit crews, differ in many ways. For example, high
workloads occur in automated cockpits when air traffic control
reroutes the flight or alters the runway assignment in the final
few minutes prior to landing. Although an analogous situation in
NPPs is not obvious, other situations can be described in which
crew workload could be higher than in conventional control rooms.
For example, the crew may need information not currently provided
by the display system. The crew may need to think about where
the information is stored, how to retrieve it, and operate
numerous controls to display the desired information. In
contrast, the desired information may be on the display board in
a convenient location with the conventional control room.

Another potential problem with automation is that crew members
may not have the necessary skills to perform manual actions if
the automated system malfunctions or fails. Of course, training,
procedures and operator aids can provide the knowledge required
if manual intervention is required.

High levels of automation may create a problem related to low
workload and operator alertness. In fact, the levels of
automation currently in use in NPPs result in extended periods of
time during which crew workload is low. A survey at five Swedish
NPPs showed that control room operators estimate their major task
to be purely passive monitoring (22). Overall, the operators
estimated that 55% to 68% of working hours involved this task,
while controlling the process required only about 5% of their
time. The operators reported an even higher proportion of time
during the night shift being devoted to passive monitoring
(between 63% and 73%) . With increased levels of automation being
incorporated into advanced control room designs, unless
meaningful operator activities are planned, passive monitoring
will occupy an even larger percentage of operating crew work
time

.

A low workload level is associated with reduced levels of
alertness. Workers who are not alert, given the opportunity,
tend to make more errors, and be more accident-prone (19). In
fact, a low workload level occurring during the night shift may
increase the probability of operators dozing on the job (e.g.,
the occurrence of sleep recorded through EEG-measurements among
Swedish NPP operators) (22)

.

Digital technology capabilities open the window to the crew for
tremendous amounts of information- Access to this information in
a timely fashion, however, may present challenges to the crew.

119

Some questions have been reported in using electronic information
and display capabilities (23, 24, and 25). Examples of problems
include

:

* Inability to access desired displays and controls, and/or
excessively long selection paths to get to the desired
display (the interfaces to the data are not transparent,
causing increased mental workload)

.

* High mental workload related to display selection and
window management.

* Crew members getting "lost" in the display structure.
* Display "thrashing," where relevant plant parameters and
controls are distributed across multiple displays forcing
crew members repeatedly to switch among displays to -

accomplish a given task.
* Tunnel vision and keyhole effects where the crew member
becomes narrowly focussed and loses situation awareness.

* Mode errors, where a display is misinterpreted and an
unintended action is taken.

* Fixation errors, where an incorrect situation assessment
is formed based on incomplete information.

Human errors are of concern with conventional and with upgraded
and advanced control rooms. The key, of course, is the
consequences of human error. Some types of error are mentioned
above. Many human errors associated with operating controls to
display desired information would have limited consequences. The
error can be corrected. Errors occurring in response to an
emergency plant condition, however, may have more severe
consequences and corrections may be more difficult. For example,
crew actions based on erroneous expectations of automatic system
sequences could have an impact on safety. As with the commercial
aviation industry, the nuclear power industry must be concerned
about potential human errors caused by higher levels of
automation and information access.

REGULATORY POSITIONS

The process by which advanced control room designs are being
reviewed and certified by the NRC is very different from the
control room reviews performed following the Three Mile Island
Unit 2 accident (26) . The NRC Action Plan developed in response
to that accident required NPP licensees and license applicants to
perform detailed control room design reviews (DCRDRs) to identify
and correct design deficiencies (27). The NRC issued guidelines
for use by utilities in conducting DCRDRs (NUREG-0700) . This
document consists of human factors guidelines adapted to NPP
control rooms, and additional guidelines as required.

Exhibit 6 identifies some of the factors involved in advanced
control room design certification.

120

EXHIBIT 6. Regulatory Positions: Advanced Control
Room Design Certification.

* Human-System Interfaces (HSI) Not Designed
* NRC Reviewing Design Process & Results
* Guidance Documents

- NRC NUREGs
- DoD Standards & Specifications
- EPRI Guidelines
- IEEE, lEC, & ANSI Guidelines & Standards
- NASA Guidelines

Detailed control room and human-system interface designs are not
yet available for the new evolutionary and passive reactor
plants. This is creating problems for the NRC and the nuclear
power industry. NUREG-0700 does not contain adequate guidance
with regard to higher levels of automation and electronic
information management and display. Other NRC and industry
consensus standards and guidelines are limited in applicability.
The human-system interface technology is advancing rapidly, and
the human factors guidance documents have not kept pace.

The NRC has adopted a control room design certification process
that involves evaluation of the preliminary design and the
implementation plan that describes the human factors program
elements required to develop a detailed design specification
(26) . The design elements addressed in this review process
include

:

* Human factors engineering (HFE) program management.
* Operating experience review.
* Systems functional requirements analysis.
* Allocation of functions.
* Task analysis.
* HSI design,
* Plant and emergency operating procedures.
* HFE verification and validation.

There are some guidance documents available that are useful.
These documents include NRC NUREGs (e.g., 0700 and 0800),
military standards (e.g., AR 602-2, MIL-STD-46855 and MIL-STD-
1472D) , EPRI guidelines (e.g., NP-3659 and NP-3701) , IEEE
guidelines (e.g., 1023), international guidelines (e.g., lEC
964), ANSI standards (e.g., ANSI HFS-100) , and NASA standards
(e.g., NASA-STD-3000) . This list of guidance documents is not
intended to be complete. Rather, the list demonstrates that some
guidance is available, but that the guidance has not been
synthesized. The control room designers and NRC reviewers do not
have a document equivalent to NUREG-0700, although Brookhaven

121

National Laboratory is preparing a NUREG document to provide
guidance, A problem with this proposed NUREG is that only
limited guidance is included about automation and electronic
display and information management.

Guidance documents are available to provide reasonable guidance
for three of the design process elements (see Exhibit 7) . Even

EXHIBIT 7. Regulatory Positions:
Guidance Document Applicability to Design Process Elements.

* Reasonable-Guidance
- Human Factors Engineering (HFE) Program Management
- Operating Experience Review
- System Functional Requirements Analysis

* Limited Guidance (Areas Not Fully Addressed)
- Allocation of Functions (Automation Trade-offs)
- Task Analysis (Cognitive & Decision Tasks)
- HSI Design (Limited Technology Experience)
- Plant & Emergency Operating Procedures (Computerized)
- HFE Verification & Validation (Measurement & Extent)

through technology impacting on automation level and the human-
system interface is changing rapidly, the HFE program management
process and methods for system functional requirements analysis
are reasonably robust. The available guidance has been applied
in many different system development efforts in a variety of
application areas, including military systems incorporating
modern technology. The process and methods have been found to be
somewhat insensitive to detailed technology concerns.

The operating experience review element is not impacted
significantly by digital technology. This element involves
review of the literature and operator interviews. Methods for
reviews and interviews are known, and not complicated

.

Only limited guidance is available for the remaining design
process elements (see Exhibit 7). The functions allocated to
the crew are influenced by automation decisions. There is
continuing research by NASA (18,28, and 29) and the Germans (30),
among others, related to automation effects. Billings (9) has
developed limited guidelines for human-centered automation, but
these are under review.

Although task analysis has been part of the HFE field for many
years, it is only recently that cognitive task analysis has come
into existence. Cognitive task analysis is especially useful in

122

describing
experience
available

.

decision-making activities,
with cognitive task analysis

Because of limited
only limited guidance is

Guidance in the HSI design and operating procedures elements is
limited because of rapid technological changes. Adequate
guidance documents have not been developed to reflect fully such
features as intelligent operator aids and computerized procedures
integrated with plant process data.

Because of the limited guidance available, the nuclear power
industry and the NRC are placing great importance on the HFE
verification and validation (V&V) element. Since guidance for
some of the other design process elements is somewhat limited,
V&V provides an opportunity to determine if the system design is
safe. Two of the important limitations in guidance available for
V&V relate to measurement and extent of the evaluation. Many
different human and system parameters may be measured during the
V&V activity. A key question not answered completely in guidance
documents is. What should be measured? It is very expensive to
collect, analyze, and interpret measurement data on complex
systems, such as control rooms. The evaluator needs guidance on
important performance indicators, especially as related to
automation and modern HSIs.

A related issue is the extent of the V&V. The possible
conditions that can be tested are many. It is not feasible to
evaluate every possible condition and scenario. Only limited
guidance is available on how to select those conditions and
scenarios that should be subjected to V&V.

RESEARCH AND OTHER ACTIVITIES

It is clear from the discussion above that modern technology is
going to have a major impact on the crew's tasks, and on the
human-machine interfaces in the control room. Technological
innovations in automation, electronic information and display,
and compact work stations clearly provide the opportunity for the
crew to concentrate on managing and directing plant operations.

The crew need not be as directly involved in detailed control
activities as in the past. The crew members should have a

greater awareness of the state of the plant and process at all
times, be supported by electronic aids when difficult problem-
solving and decision-making are required, and have adequate
workload capacity to devote to high priority issues. Thus, the
performance of the crew and the entire NPP system has the
potential of being much better than with conventional NPPs.

These desirable performance results, however, will not occur if
the nuclear power industry introduces these technology features
without adequate concern for the needs and wants of the various

123

types of people who will be operating the plants. For example,
news stories describe an airline crash in which a mode error may
have occurred. It is suggested that the flight crew thought the
autopilot was in one mode when, in fact, it was in another mode
(31) .

These observations about problems with technological features
should not be viewed as pessimistic. Other related activities,
such as fossil fuel power plants, electronic dispatch control
centers, process control plants, military aircraft, and
commercial airliners have been upgraded successfully. Although
some human performance problems have been encountered, the
overall results have been positive. For example, a recent report
J 20) states that no commercial airline aircraft loss has
occurred, to date, from a fully coupled, automatic landing. It
seems reasonable that the nuclear power industry should be even
more successful in its move to new control room technology.

There are several research and other activities that should be
considered in making the transition to upgraded and new control
rooms. Accomplishing these efforts and incorporating the results
into control rooms will increase the likelihood of successful
operations. Exhibit 8 contains a list of some of these efforts.

EXHIBIT 8. Research and Activities Needed
to Support Transition to Digital Technology.

* Knowledge Transfer (Lessons Learned)
- Foreign Nuclear & Fossil Plant Upgrades
- Commercial Aviation, DoD & NASA

* Automation: Crew Involvement & Skill Maintenance
* Information Management, Presentation & Control
* Situation Awareness & Decision Making
* Human Errors in Design Process
* Verification & Validation

A large amount of relevant knowledge applicable to NPP control
room upgrades and new designs is available. It is important to
review, access, and document relevant experiences, lessons
learned, opportunities for enhanced performance, and
problems related to human performance in nuclear power
and other industries in which modern technology is in
use or in test. Examples of information sources include:

* nuclear - EdF N4, Japanese ACR designs, CANDU, Sizewell B,

Swiss experience with the AWARE computerized alarm
handling system.

124

* Commercial aviation - 747-400, MD-11, A320.
* U.S. Navy - Tactical Decision Making Under Stress
project which was created in response to the USS
Vincennes incident in which the ship's crew
accidently shot down a commercial airliner.

* NASA - programs dealing with automation.
* U.S. Air Force - Pilot's Associate program.

The knowledge available is of importance to all planned control
room upgrades and new designs. Therefore, it may be desirable
for several elements of the nuclear power industry and concerned
government agencies to work together to develop the lessons
learned and knowledge transfer.

Research is needed to develop guidance and guidelines on how to
keep the crew alert, knowledgeable about system goals, aware of
plant and process state and availability of resources to handle
abnormal and accident conditions at all times. This activity is
needed because high levels of control automation may adversely
affect the potential for acceptable human performance. In
addition, guidance and guidelines are needed on maintaining crew
skills so that in situations of automated system failure, the
crew can intervene successfully.

Guidance and guidelines are needed on how crew members should
control information displays and access needed information. This
activity is important because crew members should not be
distracted from their primary tasks by the need to think about
and operate controls concerned with data access and presentation.

Situation awareness is important with increased levels of
automation. A problem is that clear guidance on how to provide
such awareness is not available for NPP applications. Similarly,
operator aids to support decision making are feasible
technically. Guidelines are needed on their use.

Guidance and guidelines are needed on how to detect and reduce
human errors in the design process. With control and information
automation, some opportunities for human errors may be displaced
from control room operators to automated system and electronics
information and display designers.

A meaningful evaluation program to verify and validate the
upgraded and new control rooms is needed. The industry needs to
be sure that the challenges have been handled successfully. As
with the knowledge transfer activity, it may be desirable for
several elements of the nuclear power industry and the government
to work together to develop and implement a V&V program.
Important changes in control room design caused by technological
advances in automation, information management and control,
"soft" control, compact work stations, and large overview
displays are not unique to any one advanced control room design.

125

Some of the V&V issues are generic to nearly all designs.
Because of the potential magnitude of the V&V effort, a common
approach is worth consideration.

CONCLUSION

Modern technology is being introduced into NPP control rooms.
The capabilities provided by this technology will enhance crew
performance, resulting in increased plant safety, reliability and
availability. Challenges to crew performance exist, however,
because of the important shift in the crew's tasks, and methods
for communicating with the remainder of the system. The nuclear
power industry should learn from relevant experiences in and out
of the industry. The industry should also support development of
guidance on the especially challenging issues facing the
introduction of modern technology.

ACKNOWLEDGEMENT

Material presented in this report is based, in part, on an
unpublished presentation entitled, "Challenges and Opportunities
of Modern Technology on Crew Performance ,

" made by the author at
the American Nuclear Society Topical Meeting, "Nuclear Plant
Instrumentation, Control and Man-Machine Interface Technolgies ,

"

Oak Ridge, TN, April 18, 1993.

REFERENCES

1. J. Easter, and L. Lot. Backfitting a fully computerized alarm
system into an operating Westinghouse PWR: A progress report

-

"1992 IEEE Fifth Conference on Human Factors and Power
Plants." New York; IEEE, 1992.

2. B. Lee, K. Chang, and J. Yang. Korean Standard Nuclear Plant:
Safer, simpler, easier to build. "Nuclear Engineering
International," Aug. 1992, pp. 29-35.

3. J. Malcolm, G. Hinton, and J. Pauksens . Human machine
interface design in new CANDU control centers. "1992 IEEE
Fifth Conference on Human Factors and Power Plants." New
York: IEEE, 1992.

4. K. Iwaki. Progress of I&C system and control room design
in TEPCO nuclear power plants. "1992 IEEE Fifth Conference
on Human Factors and Power Plants. "New York: IEEE, 1992.

126

5. D. Harmon- Nuplex 80+: An evolutionary approach to meeting
ALWR requirements. "1992 IEEE Fifth Conference on Human
Factors and Power Plants." New York: IEEE, 1992.

6. J. Carrera, J. Easter, and A, Negus. Human engineering
considerations in the man-machine interface design for
the AP600 plant. "1992 IEEE Fifth Conference on Human
Factors and Power Plants." New York: IEEE, 1992.

7. R. Fink, and E. Rumble. ALWR man-machine interface
requirements. "1992 IEEE Fifth Conference on Human Factors
and Power Plants." New York: IEEE, 1992.

8. K. Monta, J. Itoh, and M. Makio. An advanced man-^machine
system for PWR nuclear power plants. "1992 IEEE Fifth
Conference on Human Factors and Power Plants." New York:
IEEE, 1992.

9. C. Billings. Human-centered aircraft automation: A concept
and guidelines. "NASA Tech. Memo." No. 103885, Aug. 1991.

10. J. Ketchel, and J. Naser. A human factors view of new
technology in nuclear power plant control rooms. "1992
IEEE Fifth Conference on Human Factors and Power Plants."
New York: IEEE, 1992.

11. K. Kang, S. Cheon, and S. Chang. Development of an expert
system for performance evaluation and diagnosis in nuclear
power plants. "1992 IEEE Fifth Conference on Human Factors
and Power Plants." New York: IEEE, 1992.

12. R. Fink, R. Williges, and J. O'Brien. Appropriate choice of
alarm system technologies: EPRI research. "1992 IEEE Fifth
Conference on Human Factors and Power Plants." New York:
IEEE, 1992.

13. D. Harmon, and T. Starr. Alarm and status processing and
display in the Nuplex 80+ Advanced Control Complex. "1992
IEEE Fifth Conference on Human Factors and Power Plants."
New York: IEEE, 1992.

14. M. Peyrouton, and M. Pirus. Progress on N4 I&C Architecture.
"Proceedings of the Topical Meeting on Nuclear Plant
Instrumentation, Control, and Man-Machine Interface
Technologies." La Grange Park, IL: American Nuclear
Society, April 18-21, 1993.

15. N. Sartar, and D. Woods. Situation awareness: A critical
but ill-defined phenomenon." International Journal of
Aviation Psychology," 1991, Vol. 1, pp. 45-57.

127

16. R. Pew, Y. Tenney, M. Adams, A. Huggins, and W. Rogers. A
principled approach to the measurement of situation awareness
in commercial aviation. BBN Report No. 7542 prepared for NASA
Langley, June 1991.

17. R. Helmreich, J. Wilhelm, J. Kello, W. Taggart, and R.
Butler. Reinforcing and evaluating crew resource management:
Evaluator/LOS Instructor Reference Manual. NASA/University
of Texas Tech. Manual 90-2, Rev. 1, June 26, 1991.

18. D. Hughes. Pilots, Research Studies Give Mixed Reviews to
Glass Cockpits." Aviation Week," March 23, 1992, pp. 50-51.

19. M. Moore-Ede. Observing human operator alertness at night in
power plants. "1988 IEEE Fourth Conference on Human Factors
and Power Plants." New York: IEEE, 1988.

20. P. Proctor. Industry Group Begins Wordwide Safety Push.
"Aviation Week," June 7, 1993, pp. 99-100.

21. E.H. Phillips. Pilots, Human Factors Specialists Urge Better
Man-Machine Cockpit Interface- "Aviation Week," March 23,
1992, pp. 67-68.

22. K- Dahlgren. Shiftwork, work scheduling and their impact upon
operators in nuclear power plants. "1988 IEEE Fourth
Conference on Human Factors and Power Plants." New York: IEEE
1988.

23. E. Roth, R. Mumaw, and W. Stabler. Human factors evaluation
issues for advanced control rooms. "1992 IEEE Fifth
Conference on Human Factors and Power Plants." New York:
IEEE, 1992.

24. D. Woods, S. Potter, L. Johennesen, and M. Holloway. Human
interaction with intelligent systems: Volume I - trends,
problems, new directions. Columbus, OH: The Ohio State
University CSEL Report 1991-001, May, 1991.

25. D. Woods. The price of flexibility. "Proceedings of
International Workshop on Intelligent User Interfaces."
ACM, Jan. 1993.

26. W.T. Russell. Advanced Reactor Control Room Design and
Licensing. "1992 IEEE Fifth Conference on Human Factors and
Power Plants." New York: IEEE, 1992.

27. A, Ramey-Smith, Nuclear Power Plant Control Room Design
Reviews: A Look at Progress. "1985 IEEE Third Conference
on Human Factors and Power Plants." New York: IEEE, 1985.

128

28. J. P. Jenkins. Human Error in Automated Systems: Lessons
Learned from NASA. "Proceedings of the Topical Meeting
on Nuclear Plant Instrumentation, Control, and Man-Machine
Interface Technologies." La Grange Park, IL: American
Nuclear Society, April 18-21, 1993.

29. B-W. Henderson. NASA Ames Pushes Automation Toward Human-
Centered Design. "Aviation Week," March 23, 1992, pp. 69-70.

30. M. Mecham. German Center Studies Cockpit Automation.
"Aviation Week," July 26, 1993, p. 38.

31. J.M. Lenorivitz. French Government Seeks A320 Changes
Following Air Inter Crash Report. "Aviation Week," March
2, 1992, pp. 30-31.

129

4.3.1 Questions: Dr. Lewis F. Hanes

QUESTION: FRED PAULITZ (NRC): What is being done to separate information that

maintenance should have and that may be different from what the operator needs regarding both

system and component failures?

DR. HANES: I can't really respond as to exacdy what is being done, but I can comment on

what should be done. Certainly there should be a task analysis of the operator information needs

with regard to the maintenance, to the status of systems, and to the status of components. Where

there is a need for the operating crew to have this information available, it should be made

available.

With regard to the maintenance people, again, there ought to be a task analysis of what

the information needs are of the maintenance people and where there is an overlap, there should

be some consolidation. People should address how the information is being presented to make

sure that there aren't any conflicts, that both people share the information, and that access to that

information, control of that information, is handled in a proper manner. So, really task analysis

and then evaluation of the results of those analyses is the way, in my judgement, that it should

be handled. I really can't speak to how the various vendors are handling this.

130

5 SOFTWARE ENGINEERING FOR HIGH INTEGRITY SYSTEMS

The technical session on software engineering focused on techniques for improving the software

development process. The premise of all the speakers in this session was that software developed

using the methods generally in use today does not meet the needs of high integrity systems. The
speakers idendfied two general areas of concern. The first two speakers focused on the need to

provide accurate specifications. The last two speakers moved the discussion into the need to

design, implement, and test systems to meet the specifications.

Dr. John Knight (University of Virginia) focused on the need to separate the functions of systems

and software engineers, and to ensure an effective interface between them. His point was that

software engineers do not have the system or application knowledge to make decisions about the

behavior of the full system. Deciding what the system should do under each set of circumstances

is the job of the systems engineer. Software engineers need to receive a precise system

specification including all the assumptions and constraints that the systems engineer expects the

software to maintain.

Dr. John McHugh (Portland State University) focused on the need to provide a non-ambiguous

communication mechanism for the systems and software engineers. This mechanism should be

some form of formal specification understandable both to system and software engineers.

Dr. McHugh acknowledged the difficulty of learning formal specification languages and

understanding formal specifications. While the use of explanatory text can mitigate some of

these problems, it introduces a new problem in defining which of the two specifications, the

formal or the English language one, controls.

Mr. Robert M. Poston (Interactive Development Environments) focused on the need for and

benefits of providing tool support for developing a formal specification. Developing a formal

specification is difficult and labor intensive. Mr. Poston discussed the use of tools that make the

process less "user-hostile" by allowing the developer to create the specification in diagrams which

the tool can transform into an easily understood notation. The developer can then check the

produced specification. Another advantage of a formal specification in a defined notation is that

a test generation tool can take that specification and produce test cases.

Dr. Barbara B. Cuthill (NIST) moved the discussion from the requirements specification to the

design and implementation portions of the software lifecycle. Specifically, she discussed general

features of object-oriented design (GOD) and C++ development. Dr. Cuthill enumerated risks

and benefits of using GOD and C++ with respect to specific criteria important to safety-critical

systems such as functional diversity. While she did not form a final conclusion, she presented

many of the issues that need to be addressed as GGD and C++ become more widely used in

industry.

131

The need for traceability of the requirements, design, code and test cases back to a set of non-

ambiguous specifications provided a common thread that all the speakers identified as important

and discussed in some form. Dr. Knight began by discussing the need for systems engineers to

establish complete specifications. Dr. McHugh continued by discussing how systems engineers

can provide non-ambiguous specifications. Mr. Poston discussed the methods for generating test

cases traceable to the specifications while Dr. Cuthill discussed methods for designing and coding

the software while maintaining traceability. While each of the speakers also addressed other

important issues in the development of safety-critical systems, each one returned to this theme

of traceability and maintaining the link between the phases of the software development lifecycle.

132

5.1 Interaction Between Systems and Software Engineering in Safety-Critical Systems:
Dr. John Knight

Interaction Between Systems and Software

Engineering in Safety-Critical Systems

John Knight

University of Virginia

[as edited from transcripts]

There are three areas of concern:

1. When is software to be considered safe?

2. What, exactly, is the role of the software engineer?

3. How do systems, or sometimes applications, engineers and software engineers

interact with each other?

My views in this area are different from many others. He thinks that we are experiencing some

loss of reliability or dependability because important details tend to be forgotten.

One problem is that the definition of software safety is intuitive; software is safe if it does no

harm. The problem with this definition is that software engineers need to know precisely what

software safety is and what is expected. Software engineers have to know when software is good

enough and when it is not good enough. Others such as regulatory agencies and the legal system

also need to know what to require and how to respond to accidents to lessen the chance of

reoccurrence. It is very important that we have a clear, precise definition of software safety.

Software operates in a complete system, and, like most components of a complex system, is

never a hazard in isolation. This does not mean that software safety can only be defined in the

context of system safety as others have said. Software engineers are not qualified to deal with

systems engineering issues such as defining the nuances of the safety actions required for nuclear

power systems. Software engineers should not decide the actions a system will take for

unspecified inputs. The terms "hazard" and "risk" are inappropriate for software specifications

for a safety-critical system; the specification should contain the required treatment of the hazard.

To prevent software engineers making these decisions, they need a clear, precise delineation of

responsibility. The systems engineer should decide what the software has to do. The software

engineer should decide how to implement it.

133

Unfortunately, many software engineers do not receive complete or useful functional or non-

functional specifications. For example, in the aerospace industry, there are requirements that the

probability of failure be less than 10"' per hour. Sometimes the software engineers receive

precise probabilities like this and sometimes they do not. The systems engineers determine these

requirements; however, it is impossible to demonstrate that software meets a failure rate this

small. Verifiable levels of quality should appear in more safety-critical specifications.

The specification should support distinguishing responsibilities. The specification should include

desired system behavior and undesired events. Components of the specified system should have

required assurance levels which may differ by component. In the resulting system, an undesired

event should be traceable to a defect in the implementation which is the software engineer's

responsibility or a defect in the specification which is the systems engineer's responsibility.

The use of a specification that will require and associate with it various assurance levels will

provide a better specification of a safety-critical system. It is not enough to use the system's

history to tell if it is safe, because knowing after an undesired event is not good enough. Instead,

the software must meet the specification with a certain probability, and the software engineer has

to verify that. These are two distinguishable activities: the implementation acdvity yielding the

software and the verification acdvity assuring the software's conformance to the funcdonal and

non-functional specificarions. If safety is the satisfactory compledon of that verification, then

there is a criteria for formally judging software to be safe. It seems reasonable to ask that

software be subjected to appropriate analyses like other engineered artifacts.

The clear, precise specification is the communication mechanism between the applicadon and the

software engineers. Software engineers should not keep quiet if they see a problem, but society

should not depend on software engineers to find funcdonal deficiencies. Applicadon engineers

who are concerned with hazards and the ensuing risks, have a responsibility to build complete,

formal, unambiguous specificadons including all the funcdonal and non-funcdonal requirements.

One problem with this approach comes if the specificadon pushes the non-funcdonal

requirements such as the dependability levels up to this 10'^- 10"' per hour figure. There is no

dependable development technology for, no way to guarantee and no way to demonstrate this

level of dependability.

Another problem is verifying that the specificadon itself is adequate. We need better

specificadon capture techniques and better specificadon analysis techniques. At Virginia, we are

trying to deal with these issues. We have defined the nodon of a specificadon capture process.

There is a great opportunity for progress in this area because specificadon capture is typically

non-rigorous. We would like to define a process for capturing specifications that is rigorous and

dependable, repeatable, and sufficiently rigorous for mathematical analysis. We want to separate

software safety issues of concern to the software engineer and specificadon safety issues of

concern to the systems engineer. The introduction of formal specificadons has introduced formal

analysis techniques but without constraints on the requirements, yet. We want to push rigor into

the specifications capture process to have greater confidence in the specifications.

134

We tried to build a formal specification for a safety-critical system of some magnitude and we

started with systems engineering techniques like fault trees and failure analysis, and we found

this very difficult. For example, getting software elements into a fault tree caused 2 or 3 major

revisions in the specifications which should not have happened, but it did point out the need for

more rigorous specifications. One useful technique we found was information flow modeling.

Many safety analysis techniques rely on energy flow; therefore, its appropriate that computer-

based systems use information-flow. By tracing information flow paths from a source to a sink,

the engineer can find all the potential places that information can be distorted and these locations

dictate the specifications on the software needed to react to that distortion.

In, conclusion, there are serious safety requirements in more and more applications. Software

engineers are not tied to any particular industry and may have to deal with safety issues in any

of them. It is very hard to build software well, and building safety-critical software is even

harder. We are trying to formalize some elements of this so that we know exactly what we are

supposed to build. The major concern is that the software engineer is only qualified to deal with

software engineering issues and should not have the responsibility to define systems issues. It

is also time to think about licensing software engineers if they are going to build software for

safety-critical applications. Finally, formal specification is the right thing to do.

135

5.1.1 Questions: Dr. John Knight

QUESTION: MARK SERHAL (Wolf Creek Nuclear Oper.): In principle, what is the

difference between software specifications developed by application engineers and other

specifications developed for hardware components?

DR. KNIGHT: In principle, I don't think there is any difference there. That's actually a very

helpful question. One of the things that has been occurring is that there is quite a lot of

opposition to formal specification of software because some of it involves mathematics, and a

lot of people feel that that's not appropriate. Yet, when it comes to hardware specification it

seems to me that engineers in many industries are quite happy with the mathematics of electrical

circuits. They're quite happy with the formalness of specifying things using many different kinds

of mathematical notation, and software engineering has really, I think, been somewhat behind in

that.

So, in response to that question, I think that's exactly the point; there really shouldn't be

any difference. The applications engineers understand what they want from any component and

specifying it in a manner that is mathematically complete is all that I'm really asking for.

QUESTION: DR. LANCE A. MILLER (SAIC): There is a flaw in your argument. V&Ver's
only can do testing, not systems engineering. You say that system engineers are not qualified

to assess software for problems.

DR. KNIGHT: No. I said that software engineers were not qualified to make decisions about

the application. I have no comment about the systems engineers because I don't know that field.

DR. MILLER: My point is that the V&Vers are the only ones qualified to look for risks and

hazards in software. The systems engineers are not qualified to do that.

DR. KNIGHT: Well, the role of verification and validation is really to provide the confidence

that you require between the implementation and the specification. The validation step is, of

necessity, informal because you can't be sure that what you're looking at is what you wanted.

Validation, the process of showing that what you have is what you really want, by definition is

informal, and you're stuck at that point. The systems engineer has to look at it and make,

basically, a very educated guess about what's going on.

When it comes to verification, we're trying to show that the implementation does what

the specification said, and that could be undertaken by basically anybody who understands both

sides, the implementation and the specifications.

QUESTION : RAY DiSANDRO (Philadelphia Electric Co.): Prior to licensing a software

engineer, what assurance does the customer and the regulator have that a software vendor

constructed their software modules in the safest way, i.e., no nested do loops, a qualified math

package, and so on?

136

DR. KNIGHT: Well, I'm not a vendor of software, but I do have an opinion about that. I think

it's really quite depressing that software comes with no warranty whatsoever. When you

purchase it, you usually have to purchase some sort of maintenance contract with it, and the

software industry has somehow gotten away with this. I don't think any other engineering

discipline has managed to do that. If other people were to manufacture products and sell them

with the degree of quality that the software industry does, and without a warranty, they'd go out

of business.

It's quite remarkable that this continues and that the community puts up with it, and I

have no response to this question other than that we should all demand better.

QUESTION : WILLIAM D. CHRIST (Westinghouse Electric) If the software of a large system

is to consist of a number of loosely coupled modules, rather than monolithic blocks of code, then

many of these modules will have functions that are related to the computer system design rather

than to the application domain, for example, I/O processing software. Who is responsible for the

functional specification of these functions and how does this relate to the separation of

responsibilities?

DR. KNIGHT: Another great question. That really is a topic that I should have addressed, but

it would have taken a litde too long. I will try and encapsulate it here. That really raises the

difficulty of trying to get a point over in a rather closed fashion when it's a much more elaborate

point than that.

The issue is really the difference between specificadon, design, and implementation. The

question is addressing the problem of a large system, in which we have perhaps many separate

processes running which are connected over a network and in which the distinction between the

implementation, the design and the specification is rather blurred. The specification then

becomes something that is sort of mired in with the design. There are elements of such a system

for which we want a formal specificadon like the interface between the I/O subsystem and

something which uses it.

Now, is that part of the design? Well, some would say it is. Is it just specification?

Well, no, clearly it isn't. But really it comes down to the central argument that 1 think we've

been trying to make here this afternoon that what we want is a vehicle of communication

between those responsible for different elements. If somebody is building an I/O subsystem and

they are going to provide that interface to other developers, then what we're arguing for is a

formal specification of what that interface is; therefore, applying these kinds of ideas in sort of

a recursive way. This gentleman clearly understood what I was getdng at and nailed me right

to the mast on that one, and that was a great question. Thank you. I hope I answered it.

QUESTION: JIM DUKELOW (Battelle Pacific Northwest Labs): You have lifted a burden

from the software engineer and placed it on the system engineer. Are they qualified? Will they

understand software well enough to write good specs? Should they, the systems engineers, be

licensed to build safety-critical systems.

DR. KNIGHT: Well, I don't Uke to think of this as having lifted any burdens. I like to think

of it as having defined some new ones. We're asking for more formalism on everybody's part.

137

The software engineer has to analyze the specification. The applications engineer and other kinds

of engineers, given the previous question, have to be prepared both to read, write and analyze

these kinds of things. So, it's not really a case of moving a burden. It's a case of perhaps

defining a burden, that we were thinking of subconsciously or ignoring before, a little more

precisely. I don't think that the systems engineer or the applications engineer are being dumped
on or given some new kind of responsibility that they are not really trained for. It's really a case

of making them think more carefully about what their role is.

And in dealing with the question of interaction, all we're really asking for is that the

applications engineer be able to comprehend these specifications and understand the limitations

of what's going on. It's not a tremendous imposition to understand some formal notation

sufficiently well to communicate. It's not the case here that we're demanding that applications

engineers understand all the nuances of software. That's precisely what we're trying to avoid.

QUESTION : You said a reliability requirement in commercial aviation for events that must be

extremely improbable indicated a failure probability of less than 10"'. Under what protocol or

reliability model does the FAA accept such a claim?

DR. KNIGHT: The requirement is an imposed requirement at the digital system level. It's not

a software requirement. And nothing is said about how it's going to be demonstrated. It's up

to the manufacturer to do that. Currently, I don't think any of them are doing anything other

than claiming that they meet it. Everybody knows that it's very hard to demonstrate; so, there's

very litde that can be done.

On the regulator's side, it's a statement that this is what is supposed to be met, and on

the developer's side, there's generally frank admission that it's just not possible to demonstrate

that kind of number. I hope that answered the question.

DR. NASER: If I could add just one more thing, because I asked the same question of one of

the aerospace developers of how you do this, in part it is a sort of a consensus process. They've

agreed that if I go through a certain process then that satisfies the requirement and then that's

as far as it goes.

138

5.2 The Role of Formal Specifications: Dr. John McIIugh

The Role of Formal Specifications

John McHugh*

13 September 1993

The purpose of proof is understanding; the purpose of specification is com-

munication.

Abstract

The role of formal requirements specifications is discussed under the premise that

the primary purpose of such specifications is to facilitate clear and unambiguous com-
munications among the communities of interest for a given project. An example is

presented in which the failure to reach such an understanding resulted in an accident

at a chemical plant. Following the example, specification languages based on logical

formalisms and notations are considered. These are rejected as failing to serve the com-
munications needs of diverse communities. The notion of a specification cis a surrogate

for a program is also considered and rejected. The paper ends with a discussion of the

type of formal notation that will serve the communications role and several encouraging

developments are noted.

1 Introduction

Any useful complex system is the concern of a number of diverse communities. In [6],

ParncLS identifies the reviewers required for each phaise of the development of nuclear power

plant computer systems. In almost every phase, the reviewers are drawn from more than

one discipline. For these reviewers to evaluate a common work product, the product must

be represented in a way that is comprehensible to all the parties. In addition, each party

must reach the same understanding of the meaning of the product. Consider the following

example which is based on an actual incident [5] from the early days of computerized process

controls.

The specification for the plant read, in part: "In case of an alarm, hold the variables

constant and call the system operator." The relevant portions of the system are shown are

shown in figure 1. The computer controls valves that admit catalyst into the reactor vessel

and cooling water into the condenser. The computer can receive alarm signals from various

components of the system, including the low oil level alarm shown as coming from one of

the gear boxes in the system.

When the system was first put into operation, it failed with the following scenario:

1. TheTeactor was charged

'Tektronix Professor, (Computer Science Department, F'ortland State Univer.sity, F'ortlancI, OR

139

(jearbox
)

—

LC

Computer

Figure 1: Fragment of a Chemical Plant

2. The catalyst valve was opened to start the reaction

3. The cooling valve was closed to allow the reaction to reach operating temperature

4. A low oil alarm was sensed. This later turned out to be a spurious condition.

5. The valves were held as indicated, the catalyst valve open and the cooling water valve

closed, while the operator was notified of the (spurious) low oil condition.

6. The reaction proceeded unchecked.

7. The reactor overheated and vented its contents.

The proximate cause of the mishap was the failure of the chemical engineer who designed

the system and the programmer who implemented it to reach a common understanding of

the term "variable" as used in the specification fragment. To the engineer, the variables

of the system are the temperature and pressure in the reaction vessel. To the programmer

the variables were the valve positions under the control of the program. The two views

are linked by the control laws of the reactor system and the chemistry of the particular

reaction under control, but these were not part of the specification. While this story

appears to exhibit an almost unbelievable lack of understanding on the part of both the

engineer and the programmer, many developers of specification languages, especially those

in purely academic settings seem determined to create languages that can easily lead to

similar sitxiations.

140

2 Standards for Requirements - Does Formalism Fit?

lEC Standard 880 [1] says, in part,

A2.9.1 The software functional requirements shall be presented in a manner
which is easy to understand for all user groups. The presentation shall be suffi-

ciently detailed, free from contradiction, and non-redundant as far a^ possible.

The document shall be free of implementation details, complete, consistent, and

up-to-date.

A2.9.3 The software requirements document is intended to be used by:

• its authors, i.e. plant specialists;

• the customer, client, or final user;

• the software system development team;

• the software system verification team;

• assessors and licensing personnel;

These meta requirements or requirements on requirements emphasize the communica-

tions role by explicitly calling for a representation that is understandable by all parties to

the system design and evaluation and by explicitly naming a diverse set of user groups.

The additional meta requirements; freedom from contradiction, completeness, etc. are

characteristics that we usually ascribe to what computer scientists refer to as "Formal

Specifications." These specifications are typically couched in languages based on predicate

calculus, set theory, or possibly a higher order logic. While precise and supporting analyses

based on theorem proving, the formal specification languages of the computer scientist often

fail to satisfy the communications role that is the primary concern of lEC 880 and similar

standards. The reasons for this situation are not completely clear. A contributing factor

is that the background of many of the members of the formal methods community is in

mathematics and logic rather than in engineering. This seems to create a bias towards no-

tations based on predicate calculus and other terse symbologies. This is unfortunate since

even most programmers' eyes tend to gla^e over when confronted with an 3 or a V and

while many in the reviewing community have substantial mathematical backgrounds, their

mathematics is not directly based in logic. The result is that notation hinders communica-

tion rather than facilitating it. Languages such as "Z" which is particularly rich in notation

have achieved limited success, especially in Britain and Europe, primarily through extensive

educational efforts. Even with these efforts, it appears that relatively few potential users

who have taken a "Z" course actually adopt the notation.

Interspersing formal language with informal prose is a substantial aid to improving

the readability and understandability of a formal description, especially a terse or highly

symbolic one. Indeed, much of the success that "Z" has had may be due to the practice

of embedding "Z" specifications in expository material. It has been suggested that parallel

formal and informal specification or requirements documents be developed and maintained.

This brings to mind the adage:

Never go io sea with two chronometers; take one or three.

141

If we have both prose and formal definitions, one must be considered to be the standard.

Typically, prose is not completely unambiguous. If the prose version is considered to be the

standard, it is likely that the formal version represents one (of possibly many) allowable

interpretations. On the other hand, if the formal language is the standard, it is incumbent

on all users to understand it so as to avoid reaching an understanding of the prose that is

at odds with the formal language. In this case, the prose can, at best serve as illumination,

rationale, and example material. In either ca^e, we must allow for errors in translation and

be prepared to appeal top the primary standard in order to resolve any problems that arise.

The precise semantics associated with formal specification languages is a specific anti-

dote for ambiguity. In addition to avoiding ambiguity, we would like requirements specifi-

cations to be consistent and complete. By consistency, we mean that the specifications do

not contain any contradictory requirements. Completeness is more subtle. Intuitively, a

set of requirements is complete if it covers all possibilities that might arise in the operation

of any system built to satisfy the requirements. Failing to specify the behavior for some

portion of an input range can be detected by analysis of the requirements, but possible sit-

uations that are not reflected at all in the requirements set cannot be detected by formally

analyzing the set. For example, if the requirements state that a system must operate over a

given range of temperatures, but do not say what its behavior should be outside that range,

analysis of the requirements should be able to identify the omission. On the other hand,

if the requirements make no mention of a need for the system to operate in a corrosive

atmosphere, no amount of analysis of the requirements wiU detect the omission. Formal

specification languages do not automatically ensure either consistency or completeness, but

they often provide ways in which a given set of requirements can be analyzed to ensure

that it is consistent or complete in the sense of specifying a total behavior.

A formal specification that contains a contradiction is said to be unsound. The logician's

concern is that the contradiction could be used to generate a false hypothesis which, in turn

could be used to prove any desired proposition using the property of logical implication that

says that FALSE implies Anything. As a consequence of this fear, some theorem prover

based systems require an extreme form of completeness that leads to over specification.

In developing requirements we are usually careful to avoid specifying a solution to the

problem. We want to leave the discovery of an appropriate implementation to a later

time and, usually, to a group of designers who are closer to the details of the particular

components that are available to work with. At the requirements level, we are willing to

take the risk that there is no way to realize a particular function and do not feel the need

to explicitly demonstrate that this risk is unfounded by including in the requirements the

details of one way to realize the function. Tools that enforce this level of detail are of little

use in formalizing requirements since it makes us specify in great detail precisely those

things about which we care least. Since there is no way within the formalism to indicate

which portions of the specification are critical and which ones are not, the immaterial

becomes an essential part of the system to be preserved as the system evolves or is moved

to a new host.

An extreme case of over specification "is the Use of an existing implementation as a

de facto formal specification for a new implementation. Brooks [4, Ch. 6] discusses the

consequences of this approach in some detail, noting that in ennilating the IBM 1401 on

the IBM 360 it was necessary to preserve undocumented functionality as much of the 1401

142

programming community relied on these accidental behaviors of the original 1401.

3 Animation and Synthesis

Many developers of formal specification languages provide facilities for executing their spec-

ifications, either directly (animation) or by the mechanical production of executable code

from the specification. In either case, this is not appropriate at the requirements level cis

it necessitates a high degree of over specification because the specification must embody a

complete solution to the requirements. Even at the design specification level, this approach

is dubious for safety critical systems with real-time constraints as it is unlikely that either

the animator or the synthesizer will be able to meet non-functional requirements for per-

formance, robustness, etc. In the case of synthesis, the synthesizer may contain additional

domain specific knowledge that will be embodied in the resulting program, but is not easily

available for examination and review. David Parnas makes an interesting observation about

the execution of specifications in a recent paper [7]. In the paper, he discusses the role of

mathematics in programming, taking the engineering viewpoint that design is a creative

activity and that mathematics is primary useful to analyze and validate designs.

Program derivation from requirements appears analogous to deriving a bridge

from a description of the river and the expected traffic. Refining a formal spec-

ification to a program would appear to be like refining a blueprint to produce

a bridge. Engineers always make a distinction between the product and the

description of it. This seems to be lost in the computer science literature on

programming and software engineering.

4 What do we really need?

If we believe that the primary goal of specification is improved communication among

designers, customers, users, developers, and regulators, then it is clear that some form of

mathematicaUy ba^ed specification and requirements representation is useful. Only a math-

ematically based notation can ensure freedom from ambiguity and only an unambiguous

notation can be successfully analyzed for properties such as completeness and consistency.

As we have seen, the mathematical jargon usually associated with specification languages

directly rooted in a formal logic seems to hinder communication rather than facilitate it.

Fortunately, there are alternatives.

Parnas uses formal mathematical specifications in his work, but he attempts to cast

them in a form that facilitates communication. His tabular specification form has been

used successfully in the design of the shutdown system for the nuclear power plant at

Darlington, Ontario [2, pp 46-69]. Leveson has developed a highly readable notation for

specifying the requirements for complex systems. This notation has been used to develop

the requirements specification for a collision avoidance system for the FAA [2, pp 150-162].

The same study [3] gives other examples, some succ^sful and others not, of the use of

formal specifications in the development of computer systems. This study is interesting in

that it points out the role of non technical factors in the application of formal methods to

a variety of projects. The successful projects seem to have a high level of organizational

143

vision and a willingness to experiment with untried techniques as well as a realization that

business as usual will not produce the needed results.

The study provides evidence that formal specifications can serve the primary role of

facilitating precise communications that we have outlined. The lEC 880 meta requirements

that requirements specifications be free from implementation details and that they be up

to date are subjective and can only be met through suitable administrative and managerial

procedures. The meta requirements that specifications be complete and consistent can

largely be met by analyzing formally represented requirements with suitable tools.

5 Conclusions

Formalism for its own sake is useless. The formal methods community has often been its

own worst enemy, placing emphasis on issues that are of little importance to its customers.

Ignoring the communications aspect of specifications will, at best result in software that

does the wrong thing perfectly.

Determining what software ought to do seems to be the most dilficult part of the

development process. The precision of formally based specifications can aid in this process.

Once a suitable requirements specification has been developed and agreed upon, the ability

to analyze formal specifications and to show that implementations are consistent with them

offers added advantages.

References

[1] International Electrotechnical Commission. Software for computers in the safety systems

of nuclear power stations. lEC Standard, 1986. Publication 880.

[2] Dan ('raigen, Susan Gerhart, and Ted Ralston. An international survey of industrial

applications of formal methods, volume 2 case studies. NISTCGR 93/626, U.S. Depart-

ment of Commerce, National Institute of Standards and Technology, March 1993.

[3] Dan Craigen, Susan Gerhart, and Ted Ralston. An international survey of industrial

applications of formal methods, volume 1 purpose, approach, analysis, and conclusions.

NISTCGR 93/626, U.S. Department of Commerce, National Institute of Standards and

Technology, March 1993.

[4] Frederick P. Brooks, Jr. The Mythical Man-Month. Ajddison Wesley, 1975.

[5] T. Kletz. Human problems with computer control. Hazard Preventioji, pages 24-26,

Mar/Apr 1983.

[6] David L. Parnas. Software for computers in the safety systems of nuclear power sta-

tions. Final Report for contract 2.117.1, Computing and Information Science, Queen's

University, Kingston, Ontario K7L 3N6, March 1991. Based on lEC Standard 880.

[7] David L. Parnas. Mathematics of computation for (software and other) engineers.

In Third International Conference on Algebraic Methodology and Software Technology,

AMAST, The Netherlands, June 1993. University of Twente.

144

5.2.1 Questions: Dr. John McHugh

QUESTION: DORELLE RAWLINGS (Sorrento Electronics): Why can't both prose and

formal definitions be the standard? The intended meaning must be consistent with both forms

of specification so the two forms provide constraints on the meanings of the specification.

DR. McHUGH: In principle, yes; in practice it usually doesn't work that way. Every time that

I have seen an attempt to maintain both definitions as joint standards the question of this doesn't

say the same thing as that arises at some level of detail or subdety, and ultimately you wind up

having to decide which one is right and which one has to change. It's often a much more

difficult process to do it in practice.

QUESTION: Nuclear power safety systems are simple. Do you really need formal methods?

DR. McHUGH: Okay. First of all, I'd like to point out that the existence of this question is

the counter-example to Bob Poston's statement that everybody agrees that formal methods and

formal specs for these systems are desirable. I can only offer the evidence that for a conference

that has a fairly strong emphasis on the formal aspects, at least 200+ people showed up to discuss

it. I have never built a nuclear reactor safety control system. If they are all that simple I don't

understand why it takes years to license them and years to evaluate them.

QUESTION: I have a question I'd like to address because I have been involved in the building

of a nuclear reactor protection system using digital methods, and I think maybe the problem is

that nuclear reactor protection, the actual nuclear reactor protection functionality, is not all that

complicated, but that doesn't mean that the systems aren't.

DR. McHUGH: Right.

QUESTION: What you find if you actually get out into the real world and try to do this stuff

is that the complexity is not in implementing the protection functions. The complexity is in

implementing software that supports the architecture of the system itself, things like input/output

processing and that sort of thing, which are not domain-specific but are specific to the system.

DR. McHUGH: I think that addresses it in a very good way. I mean, if I were to give this

programming, as an example, in an introductory computer science class, the students would come

up with a very naive view of the problem solvable in some tens of lines of code. But, in fact,

if you tried to demonstrate that the system would work in the real world with the real sensors,

the timing constraints, the possibility of failures in various components and so on that you have

to deal with, the protection of that simple concept becomes a much more complex one. Once

it starts to get more complex, you start running the risk of getting it wrong and getting something

that will not work when you need it to, or work when you don't need it to, or all of the other

things. While conceptually we're dealing with something which is very simple—let the man with

the ax cut the ropes so the rods drop in at the right time-in fact we're dealing with something

that is much more difficult to realize than that.

145

QUESTION: There are many formal methods, (e.g., VDM, Z). Which one is the most cost-

effective, reliable and practical? How much does the formal method buy you for system

reliability in the practical world? Can you provide some real-world examples?

DR. McHUGH: Okay. I'll take those in reverse order. For the real-world examples what you

should do is you should obtain the study published at NIST, An International Survey ofIndustrial

Applications ofFormal Methods, NIST GCR 93/626. Dan Craigen (ORA Canada), Susan Gerhart

(Applied Formal Methods) and Ted Ralston (Ralston Research Associates) conducted this study.

They looked at applications of formal methods in a variety of commercial and semi-commercial

projects and have written a rather nice report that I've seen abstracts of and presentations from,

and I suggest you get a hold of that. That will give you an idea of the scope of some of the

things that have been done.

The best figures that we have on quantitative improvements in reliability come out of

some of the cleanroom experiments that have been done at IBM Federal Systems Division and

by a facility at the University of Maryland. They typically see an order of magnitude decrease

in errors that manifest themselves at the system level compared to the previous techniques that

IBM had been using for those kinds of developments at a marginal increase in system

development cost. I mean not a statistically significant increase, but right in the same ball park

as business as usual. Why everybody doesn't go for that order of magnitude I've never been able

to understand.

As far as effectiveness and cost-effectiveness, give me a break. We don't know the

answer to that question for any kind of software development methodology. Nobody is willing

to put up the money required to develop enough replicates of large-scale systems using different

methodologies and comparing the results. I mean we've got lots of anecdotal evidence that lots

of things seem to provide some improvement, but I can't give you solid comparisons. 1 wish 1

could. If somebody wants to help me develop a dozen 2-million line systems as replicates of

each other to get some firm measurements on, I'd love to do it. I haven't been able to figure out

anybody who is willing to pay for that kind of thing, and it's really hard to do controlled

experiments in this area. Things don't scale. Everything works pretty well for a 100 line or a

200 line program. And when you go up into the few hundred thousand lines it's hard to get

comparisons because they cost too much to do two of them, or three of them, or 200 of them,

to get control on the experiments.

So, there is a bit of literature emerging, but not a whole lot, in those areas. The people

who are using them seem to be happy. Read the report that Dan and Susan and Ted put together.

QUESTION: GUSTAV DHALL (OECD Halden Reactor Project): To show the safety of a

spec, would it then be necessary to model the process in the same formal language as the spec?

In this way one can prove the safety assertion on the specification.

DR. McHUGH: That would be a nice luxury. Typically you don't have it. But, yes, what

you'd really like would be a model of the environment to play your model of the system against

and prove the properties of them. The trouble is that we don't speak the same language when

we talk about modeling the physical system. I don't know how to represent, in the kinds of

specifications that I use for programming language logic, the physics of the system that is being

146

controlled by the process control. Typically what we do is abstract from some other kind of

model of the exterior system some input/output behaviors and then verify that our model

specification of the system control behavior matches the output behavior that we think we ought

to have given the input behavior. But there is the Oracle problem. If we're not real sure about

what it ought to do, or what the answers ought to be exactly, it's very hard to validate it that

way, and that's part of the requirements capture problem. Since we don't have a complete

understanding of the universe that the program is supposed to interact with, the expected results

come down to a lot of peoples' best judgement, a lot of discussion and a lot of careful educated

guesses at the very top level of this thing. Lx)wer down it's easier.

QUESTION : STEVE HARPER (SAIC): To what extent do the suites of ADA-9X address the

wrong language portion of [Dr Royce's] presentation, especially if I believe one is developed for

a safety-critical system?

DR. McHUGH: As the co-author of the safety and security annex for ADA-9X, I can give a

little bit of background on that. In the early requirements phase for ADA-9X the requirement

that the language have a formal semantic definition, which was a requirement in the original

ADA requirements and not met by ADA-83, was reiterated. The distinguished reviewer panel,

which was basically in control of what got in and what didn't, soundly defeated that on the

grounds that it was useless and impossible and that they had done very well without it in the past

and they would continue to do very well without it in the future.

There was some work that led to what was called the ADA-9X language precision team

which did some formal studies-Dan Craigen was part of that team, I was part of that team-to

look at specific issues, and I think that made some very useful contributions to the development

of the ADA-9X language.

The concept of annexes came along later. The ground rules for annexes were fairly

stringent. They could not change the meaning of anything in the base language. Most of the

annexes were added in terms of particular packages, which is not an appropriate mechanism for

safety or security where what we're really looking at is assurance. The best thing that has come

out in the annex as it stands now is an ability to cause certain features of the language not to

have to be supported for some applications. There is a pragma that basically will allow you to

say that, "My program isn't going to use tasking, so you don't have to provide any tasking

support." Now, exacdy how this is going to be validated remains up in the air and the language

lawyers are having a field day with some of the things. But the things that are in the current

annex are directed more towards providing predictable execution and better assurance for the run-

time behavior of ADA-9X programs than they are to new features in the language.

147

1.3 Specification-Based Testing: What is it? How Can It Be Automated?:

Mr. Robert M. Poston

SPECIFICATION-BASED TESTING:

WHAT IS IT? HOW CAN IT BE AUTOMATED?
by Robert M. Poston

The Primary Testing Reference

Software testing should begin with a written

requirements specification. A spedfication states

how software is expected to behave and describes

operational characteristics (performance, reliability,

etc.) of the software. A specification serves as a

reference or base to test against, giving rise to the

name, specification-based testing. Should analysts

or designers fail to write a specification, then testers

are obliged to write their own specification to test

against Specifications written by testers may be

called test plans or test objectives.

For a long time, we in the software industry

tried to avoid writing specifications. We wanted to

code without taking time to write any description

of how software was supposed to behave. Today

we realize that we cannot develop software — that

will work as expeaed — without a written speci-

fication. Not only do testers need specified-behav-

ior information in order to detect deviations from

expectations, but other software practitioners must

have that information, too. Designers must know

how software is expected to behave when they need

to change or repair designs; programmers must un-

derstand what programs are supposed to do, so they

can write code that performs as expected and so

on. In a well-planned software project, specified-

behavior infonmation is not left to float around in

people's heads. Rather, the information is recorded

systematically and made available to all who need

it in a requirements specification from the first day

of development to the last day of maintenance. The

written specification then becomes the definitive

reference for software development and testing.

Other Testing References

Some experts believe that software testing

should be based on code. Others think it should be

based on profiles of the software under test or on

statistics about the software. Code-based, profile-

based, and siatistically-bascd testing all have ad-

vantages. However, each of ihcsc testing mcUiods

149

also has a serious limitation. No one of these meth-

ods, by itself, can produce test cases that demon-

strate whether or not software worics as specified.

Using these methods without a specification will

lead to inconclusive testing. Only when combined

with specification-based testing do these methods

prove useful.

Consider code-based testing, for example.

What good is it to test code against itself? Code-

based testing merely shows that code is exercised.

But does the code work the way it is supposed to?

Have any functions been omitted, or does the code

perform functions that were never intended? Only

by referring to a specification will testers know that

software worics as specified.

Most testing experts advising our industry to-

day, whether advocates of specification-based test-

ing or not, say that a requirements specification is

necessary for testing (and of course, for develop-

ing) software. John Musa, a leading proponent of

software reliability testing, stresses that testing

should start with an operational profile. An opera-

tional profile is a description of inputs to software

under test. The speed, volume, and probabilistic

distribution of inputs are defined in the profile. All

this information comes from a requirements speci-

fication.

William Howden, well-known spokesman for

functional testing, says tiiat functional testing de-

pends on a test oracle. An oracle is a person or tool

that judges if software passes or fails a given test.

To make this judgment the oracle must be famiUar

with the requirements specification.

Tom McCabe, an early supporter of control

flow or complexity-based testing, tells his clients

that tests should be derived for the purpose of ex-

ercising ever>' statement, branch, and control flow

path in the code. McCabe also says that in order

to judge whether or not software passed a test, test-

ers must know what the software is expected to do.

Testers must have a requirements specification to

icsi asainsi.

The list of testing experts whose techniques de-

pend on requirements specifications goes on and

on: Elaine Weyuker championing data flow testing

and Richard DeMillo advancing mutation testing,

etc. The message here is that no matter what school

of testing or software development we follow, we
need a specification.

Specification-Based Testing

Since the specification is the definitive refer-

ence for software testing, many practitioners are

moving to specification-based testing. Increasingly,

developers and testers are asking about the speci-

fication-based testing process and how to automate

each step in ttie process.

What is the testing process?

The testing process is easy to remember. Start,

as illustrated in Hgure 1, with a well-written re-

quirements specification that carefully describes

how software is supposed to behave. Create test

cases directly from the specification. Run or exe-

cute the test cases. TTien evaluate the test cases to

make sure they have covered all functions, inputs,

outputs, and structures of the software imder test.

Create, execute, evaluate!

How do we get a correct and testable

requirements specification?

Correct and testable requirements information

is unambiguous, consistent, and complete. A word

in a requirements specification is unambiguous if

it has one, and only one, definition. A requirements

specification is said to be consistent if eadi of its

words is used in one, and only one, way. Consider

for example, the word "report." In a requirements

specification "report" must be used either as a noun

or a verb. To use "report" as both a name and an

action would make the specification inconsistent.

Completeness from a tester's point of view means

that requirements contain nec^sary and sufficient

information for testing. Every statement must have

a defined input, fimction, and output

We once faced two big jobs when developing

a requirements specification. Rrst, we had to figure

out what the requirements were diuing a problem

or needs analysis. Then we had to record correct

requirements in a way imderstandable to other peo-

ple or tools. We had to know what to write about

and then we had to write carefully what we knew:

both difficult tasks.

Today we can cut the woric of recording re-

quirements dramatically through the use of auto-

Figure 1. Specification-Based Software Testing Process

150

mated tools. But we still need to know what to

record. If we do not understand what a software

ptxxluct is supposed to do, no tool can provide that

understanding for us. Ill-conceived requirements

arc still the number one cause of unfinished or sel-

dom-used software products, and that problem can-

not be automated away.

On a brighter note, as soon we have an idea of

what our requirements will be, tools can help us

organize our ideas and prevent gaps in our thinking.

As we record requirements information in tools,

they can verify correctness and testability. There-

fore, people who use automated tools during re-

quirements specification are more likely to produce

correct, testable requirements than those who de-

velop requirements manually.

(Note: From here on, various kinds of auto-

mated tools will be discussed. The superscript, ^

,

that appears (rfter certain tool names or types in-

dicates that more information about these tools is

listed in the Tool Directory at the end of this paper.)

How do we record requirements with

tools?

Requirements information can be captured by

tools in one of two ways: textually or graphically.

We can write the information in sentences and para-

graphs, or we can draw the information in pictures

and diagrams. In either the textual or graphical

method, we can record information informally

without rules or formally according to rules. Dis-

cussed next are tools that enable analysts to capture

requirements information textually or graphically,

with or without rules.

Recording textual requirements informally

The most common computerized requirements

recorders are the text editor and word processor. In

workplaces where people use text editors or word

processors to write specifications, requirements

usually are recorded in a natural language such as

Enghsh. The only rules applied to the writing are

the syntactic or grammar-and-punctuation rules of

the natural language; semantic rules that restrict

meanings and use of meanings, such a word may

have only one meaning or a word may be used in

only way, are not applied. So we say the natural

language used in the specificalion as well as the

specification itself are informal, because neither ad-

heres to semantic rules.

Informal specifications may appeal to develop-

ers and end users who are not familiar with fonnal

languages. If the natural language of developers

and users is Eiighsh, they will need no training to

read an informal specification written in English.

On the other hand, these people may have difficulty

reading a formal-language specification without

training.

Unhappily, the benefit of easy-to-read informal

specifications is outweighed by a major disadvan-

tage. An infonnal specification does not incorpo-

rate semantic rules, yet automated verifiers as well

as tools such as design, code, and test generators

depend on semantic rules to parse and verify infor-

mation. The information in an infonnal specifica-

tion, then, cannot be checked by tools for

correcmess. Neither can that information be proc-

essed automatically for output to other tools. Infor-

mal specifications condemn us to manual
verification, testing, and development

Recording textual requirements formally

We need not reject text editors and word proc-

essors for specification writing, however We can

use those tools successfully for capturing specifi-

cations in English, if we apply a few simple se-

mantic mles to our writing. Once we write the

specification in rule -restricted English, we can em-

ploy a tool called a language verifier ™ to check

that tiie content of the specification conforms to the

rules. By applying semantic rules to specification

writing, we begin to fonnnalize the specification,

making it ever more tool usable.

An easy way to apply semantic rules to our

writing is to use a formal, textual specification lan-

guage called the Semantic Transfer Language

(STL) that appears in IEEE Standard 1175, 1991.^

The STL is immediately familiar and comfortable

to anyone who reads English. A sample STL sen-

tence appears in Figure 2. The STL's greatest ad-

vantage lies in its expressive power, but we also

notice right away how simple and efficient the STL
syntax is. An STL sentence begins witii a capital-

ized keyword and ends with a period. Action is the

keyword in the sentence in Figure 2. STL sentences

may contain any number of clauses in any order.

Clauses start witli a kcyphrase and end with a scmi-

151

colon. Keyphrases are italicized for easy identifi-

caiion in Figure 2. Commas separate items or

words in a list as seen in the "uses" clause. These

arc the only syntactic rules specifiers need to know
to write STL sentences.

Rgure 2. Sample STL Sentence

Action AOl

is allowed in state normal

;

receives eventitem waming_interrupt

;

transmits event safety_action1
;

uses datahem water_temperature_reading,

water_temperature_base
;

produces dataitem safety_action_report ;

tias duration tme maximum 3 ;

has duration time unit "second".

Whereas syntactic rules concern the form and

structure of a language, we know that semantic

rules bear on the meanings a language conveys. Vo-

cabulary is the vehicle through which meanings are

expressed. Ideally for software developers and test-

ers, a formal language would have a large enough

vocabulary for specifiers to say anything necessary

about software behavior. Then developers and test-

ers could draw on a formal-language specification

for complete behavioral information. But tool de-

velopers cannot build big enough scanners and

parsers (yet) to accommodate unlimited vocabular-

ies. Therefore, formal languages processed by tools

are restricted in vocabulary size.

With vocabulary limitations in mind, the crea-

tors of the STL designed a tool-manageable lan-

guage with a large enough vocabulary to enable

requirements writers to describe software behavior

thoroughly. As shown in Rgure 3, writers can de-

scribe actions, infonnation (which includes data

and relationships among data), logic, states, events,

and connection paths with the STL. Other formal

languages are available in our industry, but none is

as well-suited to automated, specification-based de-

velopment and testing as the STL.

Recording graphical requirements

informally

Bubbles and lines started to fill thousands of

CASE-tool (Computer-Aided Software Engineer-

Figure 3. STL Concepts

Each special

purpose language

enaoles specifiers

to describe a

specific, limited

perspective (view)

of a software

product.

State TransKion View
Actions (State Transitions)

Events

Data Flow View

Actions (Processes)

Data Definitions

Data Structures

Logical View

Pre-conditions

Post-conditions

(Proof of Correctness or

Cause-Effect Grapfiing)

Entity-Relationship View

Data Definitions

Data Structures

Data Relationships

The STL enables specifiers to write a complete

description of a software product^

Actions (transformations of data, control, and states)

Examples: Processes, transactions, methods, services, functions

Information (subject of and control of actions)

Examples: Data definitions, data structures, data relationships

Logic (conditional constraints on actions)

Examples: Input data validations, comparisons of data elements

States (evolution and context for actions)

Examples: Screens, levels in menus, system initializations

Events (time-based external synchronization of actions)

Examples: Operator actions, arriving messages

Connection Paths (connections among actions)

Examples: Data flows, network connections

152

ing-tool) screens in the mid-1980s, when many of

us first realized we could tool draw attractive pic-

tures of our specifications, instead of writing them
in boring old text Graphical specification was a

fresh, fun-to-practice idea, but as with many things

new, we had to work out some kinks in our imple-

mentation of the idea.

In their eariy days of inexperience, most CASE
tool users recorded graphical specifications infor-

mally. With little regard for formal technique, they

started to draw data flow diagrams. The diagrams

contained abstract or logical representations but no

explicit descriptions of software behavior or opera-

tion. With data flow diagrams, software practitio-

ners could see processes and data flow clearly as

well connectivity among processes. But it was dif-

ficult to build or test software (that would work as

expected) from ttiese diagrammed specifications,

because they did not contain detailed behaviorial

or operational information. Specifically, the dia-

grams did not contain data definitions that provide

information about structure, relationships, and val-

ues of data. Neither did the diagrams contain the

condition (logic), event, timing, state, performance,

or error handling information that software devel-

opers need. CASE tool users and developers had

to stop and rethink where they were going with

graphical specification.

Recording graphical requirements

formally

Tool users and developers have arrived now at

a better understanding of how to specify require-

ments graphically. To gain this understanding, users

and developers first had to re-examine the data flow

diagram. In the data flow diagram, a process could

be represented with a circle, a unit of data in motion

with an arrow, and data retained over time with a

pair of lines. The circle, arrow, and line-pair sym-

bols (i.e., the graphical vocabulary), and what these

symbols could represent, comprised a simple

graphical language called the data flow language.

The language could be supplemented with process

specifications and data dictionaries. But the data

flow language, even when augmented with process

specifications and data dictionaries, was so vocabu-

lary-limited that it permitted only partial specifica-

tion of software behavior. Other graphical

languages with greater expressive power were

needed.

By the late 1980s the software industry was

inundated with popularized graphical languages —
each targeted at a specification niche. For example,

the decision tree was offered as a diagram language

to help specifiers express logic. The state transition

and event trace diagram gave specifiers a way to

record information about context (i.e., states) and

time (i.e., events). Entity relationship and entity

history diagrams were niche graphical languages

good for specifying relationships among imits of

data.

Unfortunately, each niche language was created

in isolation from the others with no common se-

mantic rules to govern meanings among the lan-

guages. The result was compartmentalized
languages in whidi a piece of data could mean one

thing in one kind of diagram such as a decision

tree and something entirely different in another

kind such as a state transition or entity relationship

diagram. Sharing information across niche lan-

guages was difficult.

In the 1990s, another crop of graphical lan-

guages came to industry attention. This time they

were the object languages: Object-Oriented Analy-

sis; Object-Oriented Structure Design; Object-Mod-

eling Technique, etc. These languages are

composites of the ruche languages. Although se-

mantic rules do not prevail among the composite

languages, each composite, usually containing two

to five niche languages, is fairly self-complete and

is overiaid by a set of semantic rules. These r\iles

make the composite, object languages quite formal,

verifiable, and tool usable.

In light of tool-processable object languages,

many specifiers are looking at graphical specifica-

tion anew. Specifiers now can create a testable,

graphical specification with a CASE tool that util-

izes an object language.™ They can draw pictures

of software to be built and supplement the pictures

with textual descriptions according to the semantic

rules of an object language. Once specifiers have

recorded requirements in a tool, they can direct the

tool to produce a specification in either a text-and-

picture hard copy ready for distribution and review

or a text-only file suitable for processing by tools.

At least two CASE tools offer push-button test case

153

generation directly from processed specification in-

formation.^

How are test cases created from a

specification?

Until the advent of powerfid infoimation-cap-

turing tools in the late 1980s, most professionals

tested software after it was defined, designed, and

coded. They exercised a more or less finished prod-

uct to see if its major parts would woric. When peo-

ple accustomed to this test-after-coding approach

first come to specification-based testing, they may
be confiised by the idea that testing should start by

creating test cases from a specification at the fiont

end of software development before a product is

designed. Indeed, specification-based testing

dianges the way we view the software life cycle

and how the testing process fits into the cycle.

Test execution Q.e., running test cases) and test

evaluation still have to begin after software is de-

veloped. However, by shifting the creative work of

planning, designing, and preparing for testing to the

front end of the software development life cycle,

test cases can be developed as software is devel-

oped. (See Figure 4.) The parallel activities usually

enable the project manager to cut time from the

development schedule. Yet, the tester finds more
time to design high quality test cases, because test-

ing activities were started early.

This front-end testing approach does not woric

without a test case generation tool however. In

the days before this tool was available, if we had

developed test cases against requirements too soon

in the development life cycle, reqirirements would

have changed (as they invariably do) and rendered

the test cases invalid. AH the woric that went into

designing, generating, documenting, and tracing

test cases probably would have been lost with the

change of a requirement. Either we wouldliave had

to discard the cases and start from scratch to de-

velop them again in accordance with the changed

requirement, or we would have started a painstak-

ing effort to try to modify the test cases.

Then came the automated test case generator.

(A test case suitable for automatic processing is de-

scribed in Figure 5.) The test case generator takes

formally-recorded specification information, treats

it as though it were a knowledge base or data base,

and applies test design rules to this base to create

test cases automatically. A test case generator is

often compared to a compiler. Much as a compiler

Figure 4. New Schedules for Software Testing

Development Time

Old
Way of
Testing

Define

Requirements

Design

Software

Write

Programs

Debug (Rework) Requirements,

Designs, Programs, & Tests

Define Test

Objectives

Create | Run 1 Evaluate 1

Tests 1 Tests | Test
. . . J J J

Testing

New
Way of
Testing

Define

Requirements

Design

Software

Write

Programs
Debug (Rework) Requirements,

Designs, Programs, & Tests

Tools Design and | Tools Run 1 Tools Evaluate;

Write Test Cases | Test Cases | Test Cases
|

Testing

Development Time

154

Figure 5. Test Case Definition

reads and analyzes source code, a test case gener-

ator reads and analyzes specification information.

A compiler uses algorithms (i.e., rules) to produce

object code; a test case generator uses rules to cre-

ate test cases. Functional testing, boundary value

analysis, cause-effect graphing, and state- and

event-diiected testing are among the groups of rules

or test design techniques that a test case generator

incorporates. Complex manipulations of data go on

inside a test case generator, then, but the user sees

very little of such goings-on. The user just inputs

specification infomiation, pushes a couple of keys,

and awaits an output of test cases.

Automation makes large productivity and qual-

ity gains possible during test case generation. In-

dustry statistician, Capers Jones, reports in his 1991

book titled Applied Software Measurement that

software testers in the United States produce an av-

erage of 30 to 300 test cases per staff month.'^

And, as Jones points out in his book, the quality

of manually-developed test cases is questionable.

(Are such test cases complete? Are they redundant?

Are they even worth running?) In contrast, a good

test case generator will produce 300, very reliable

test cases in less than 30 seconds without any hu-
TDman intervention.

Finding errors early has long been considered

a good idea in the software development commu-
nity. Specification-based lest case generators have

taken that idea one step further into error preven-

tion. If people know how a product will be tested

before ihey start to build the product, they usually

will create a product that will pass its test cases.

With automated generators and front-end develop-

ment, reliable test cases can be available as soon

as information is specified. So from the outset of

their work, designers can use those cases as refer-

ences against which to develop correct, specifica-

tion-consistent designs free of most probable errors.

Designers can then deliver their high-quality de-

signs to programmers who can practice error pre-

vention during coding.

How should test cases be run?

To run or execute test cases, we invoke soft-

ware under test and apply inputs (documented in

test cases) to the software. When the software proc-

esses the inputs, it will produce outputs known as

actual outputs. We compare the actual outputs to

exp&ct&d outputs to see if software passes or fails

its lest cases. We may expect to see certain outputs,

because we have seen such results when simUar

software ran in the past. We may use a mathemati-

cal calculation or a scientific method to predict out-

puts the software will produce. When actual and

expected outputs from one test case are equal or

are within allowed tolerances, we say software

passes that test case. When actual and expected out-

puts from one test case are not equal or close to

each other, the software fails to pass that test case.

Test execution is an important activity that

lends itself to automation. Automated test execu-

tion is particularly useful for running old tests on

new or changed code to see if new or changed code

affects old code (regression testing).

The following scenario shows how testers

benefit by moving from manual to automated test

execution. Suppose a tester needs to test a function

in a data base containing a mailing list. For the

fimction to delete an entry, data must be available

to delete. The tester nonmally prepares to test the

delete function by adding a particular name such

as David Jones to the data base. By entering the

name, David Jones, into the data base, the tester

has set up the initial data state for testing the delete

function. The tester has changed the data base from

its original or reference data state. Then the tester

must set up the function state for "delete" by getting

to the screen where the delete function is accessi-

ble. This setup or initialization effort is necessary

A TmI CaM Is a set of jnlormation in a document

or tile that contains

A unique ktentiTer or name ttial distinguisttes tliis (est case

from all others

A Sst of actions to be exercised by this test case

A isl of names and values for nputs (stimuli or causes)

that will cause actions to be exercised

(Inputs include input data, intial events

initial slates and pre-conditions.)

A list of outputs (responses or dfects)

that m\ result from actions being exercised

(Outputs include output data, p(^-events

final slates and post-condiions.)

155

before a test case for the delete function can be

run.

Now the tester is ready to exercise a test case

for the delete function. The tester executes the de-

lete function by pressing a key. The name, David

Jones, disappears from the screen. The test case has

been exercised.

However, the tester should have questions at

this point Did the delete function remove the name,

David Jones, from the screen but not from the data

base? Did the delete function erase all Joneses from

the data base? Did it delete the entire data base?

Did deleting David Jonej interfere with other

names in the data base? To answer these questions,

the tester must clean up.

Qeanup in test execution involves two activi-

ties: checking side effects or confirming results and

returning the software under test to its original

state. When testers check for side effects, they find

answers to the questions just asked. By querying

the data base for the name, David Jones, the tester

can confinn that David Jones is no longer present

in the data base. By comparing (usually with a

comparator program) the data base as it existed be-

fore test execution to the data base after execution,

the tester can detect any unintentional changes in

the data base.

After checking for side effects, the tester re-

turns the data base to its reference or original data

state. Most testers return to the reference data stale

by reversing any changes made during test execu-

tion. Had the tester found, for example, that all the

Jonses were deleted during test execution, the tester

would have to re-enter all Jonses that were in the

original data base. Another way to return to the

reference data state is to restore the data base by

copying it from off-line to on-line storage.

Manual execution of one test case has just been

described in three steps: setup, exercise, and

cleanup. Some testers exercise test cases in a pre-

scribed sequence so that one test case sets up for

the next one or cleans up after the previous one.

Running test cases in a planned sequence mini-

mizes execution work but does not eliminate it.

Any way we approach it, manual lest execution

is hard work. It also is expensive, inefficient, and

unnecessar}'. Most commercially-available lest exe-

cution tools, commonly called capture/replay or re-

gression testing tools , will record setup, execu-

tion, and cleanup commands in scripts for automat-

ic replay. Working from scripts, automated test

execution tools can run thousands of test cases

without intervention from the tester. Even better,

outputs from test case generators can now be exe-

cuted automatically by capture/replay tools. In one

button push we can get integrated tools to create

test cases and run them for us while we have a cup
TD

of coffee.

How do we evaluate test cases?

Once we run test cases, we must find out if all

the test cases working together did an adequate job

of testing. This brings us to the final activity in the

testing process labeled in Figure 1 as "Evaluate Test

Quality and Software Quality."

Evaluating one test case is easy. Software either

passes or fails the test case. But how do we know
that the test cases we ran satisfied the purpose of

specification-based testing? Did the test cases dem-

onstrate requirements, find failures, and exercise

code?

To measure how well test cases demonstrate re-

quirements, testers often complete four actions.

First, they count how many requirements must be

demonstrated. This count may be labeled TR for

total requirements to be demonstrated. Next, testers

trace each requirement to all test cases which ex-

ercise that requirement. Then they count all test

cases that software has processed correctly (i.e.,

passed test cases). When all test cases which exer-

cise one requirement pass, the requirement passes.

The count of all passed requirements is called PR.

Finally, to report how well requirements were cov-

ered, testers may calculate a requirements coverage

faaor by dividing PR by TR. This four-step pro-

cedure yields an objective measurement of how
thoroughly requirements are demonstrated.

A little more work is needed to measure how
well test cases find failures. While most testers

count failures, many do not know how many fail-

ures were in software before testing began. When
testers do not how many failures were present to

begin with, they cannot make not make an accurate

assessment of how well they have probed for fail-

ures. Neither do most testers know how many fail-

ures were left in software lo be passed on to

156

customers. If testers cannot predict how many fail-

ures customers will find, testers cannot evaluate test

quality in tems of failure coverage. To assess ac-

curately how well test cases cover failures, testers

arc beginning to apply software reliability theory.

John Musa and co-authors, Anthony lannino and

Kazuhira Okumoto, enlighten testers about this the-

ory in their book called Software Reliability.
^

The last type of test quality evaluation that

many testers perform is called code coverage meas-

urement In this effort testers use tools called in-

strumentors and dynamic analyzers to

measure which statements, branches, and paths in

the code were and were not exercised by test cases.

Any code not exercised by specification-based test

cases is called extra code.

To help us evaluate testing, our industry offers

three important automated tools: Tracers to help

TD
measure requirements coverage; Reliability Pre-

dictors to help measure and predict failure cover-

age; ^ and Analyzers to help measure code

coverage.^ These tools are for sale from commer-

cial suppliers. Some are offered free of charge from

selected vendors and educational institutions.

In Figure 1 the activities in the specification-

based testing process are shown without tool sup-

port Illustrated in Figure 6 is the same testing

process improved by automation. A separate tool

is available to back every testing activity shown in

Figure 6. Our industry's job for the future is to

make each tool perform its function more effec-

tively and to make all these tools v/ork together

more efficiently throughout specification-based

testing.

157

Tool Directory

Following are examples of particular types or caie-

g\Jl &Vo \jl \AJ\JU> lllCllUOllCii 111 Ullo UoL/Cl. Ill IllUol valCKvJ

2. QA Robot

Software Quality Automation

1 Parker Street

Lawrence, MA 01843
nAO trv^n^ €ir*pk /^f rv>f* ciffnilor t/\/\]o ovroilot^l/^ in this c/\fViiro«*Anco iiicrc oic uuici dUiiiiar uxiio aVdUdoic 111 mc soiiwarc

inausiiy. 800-228-9922

Language Verifiers Capture/Replay Tools Integrated with Test Generators

1. T 1. XRunner
Interactive Development Environments Mercury Interactive

595 Market Street, 10th Roor 3333 Octavius Drive
San Francisco, CA 94105 Santa Clara, CA 95054
fiAA 000

408-982-0100

2. SoftTest 2. CAPBAK
Bender & Associates Software Research Inc.

P.O. Box 849 625 Third Street

Laricspur, CA 04939 San Francisco, CA 94107
4i3-yz4-yiyo 800-942-7638

CAbb lools Utilizing Object Languages Requirements Coverage Tracers

L Software through Pictures (StP) 1. RTM
Interactive Develoi»nent Environments Interactive Development &ivironments
595 Market Street, 10th Floor 595 Market Street, 10th Floor

San Francisco. CA 94105 San Francisco, CA 94105
600-888-4331 800-888-4331

2. Excelerator 2. Teamwork/RqT
INTERSOLV Cadre Technologies

3200 TowCT Oaks Blvd. 222 I?ichmond Street

Rockville, MD 20852 Providence, RI 02903
3U1-ZJU-3ZIXJ 401-351-5950

CASE Tools with Test Case Generation Capabilities Reliability Prediction Tools

1. Software through Pictures (StP) 1. SQA Manager
Interactive Development Environments Software Quality Automation
595 Market Street, 10th Floor 1 Parker Street

San Francisco, CA 94105 Lawrence, MA 01843
onn OOO /ini 508-689-0182

2. Teamwork 2. RELIA
Cadre Technologies Free Software Foundation, Inc.

222 Richmond Street 675 Massachusetts Avenue
Providence, RI 02903 Cambridge, MA 02139
AC\'\ 1C1 COCA

617-876-3296

Test Case Generators Code Coverage Tools

1. T 1. Tcov
Interactive Development Environments Free Software Foundation, Inc.

595 Market Street, 10th Floor 675 Massachusetts Avenue
San Francisco, CA 94105 Cambridge. MA 02139
OAA OOO A11^

617-876-3296

2. SoflTest 2.TCAT-PATH
Bender & Associates Software Research Inc.

PC. Box 849 625 Third Street

Larkspur, CA 94939 San Francisco, CA 94107

800-942-7638

Capture/Replay or Regression Testing Tools

1. AutoTester

AuloTesler Inc.

8150 North Central Expressway

Dallas, TX 75206

214-363-6181

158

References

*IF.F,F. Std 1175, 1991, Trial-Use Standard Reference

Model for Computing System Tool Interconnec-

tions, IEEE Press, New York, NY. 1992.

Capers Jones, Applied Software Measurement: Assur-

ing Productivity and Quality, McGraw-Hill, Inc.,

New York, NY. 1991.

J.D. Musa, A. lanino and K. Okumoto, Software Re-

liabilityrMeasurement, Prediction, Application,

McGraw-Hill. Inc., New York, NY, 1987.

About the Author

Robert M. Poston became president of the PEI

Division of Interactive Development Environments

in April 1993 after serving as president of Program-

ming Eiivironments, Inc. from 1981 to 1993. Prior

to his presidencies, he held technical and manage-

rial positions in the computer industry for 15 years.

He is well-known as the originator of the software

testing tool called T. Mr. Poston has been promi-

nent in IEEE activities since 1970. From 1984 to

1987 he served on the editorial staff of IEEE Soft-

ware magazine. Recently, he headed the standards

effort to develop IEEE Std. 1175. Mr. Poston is the

recipient of numerous professional and industry

achievement awards and is recognized around the

world for his lectures and seminars on software en-

gineering subjects.

159

5.3.1 Questions: Mr. Robert M. Poston

QUESTION: A.L. SUDDUTH (Duke Power): Could a logic diagram in standard format linking

blocks of elements from a standard library be considered a software specification? If not, what

additional features would be required of a standard logic diagram in order to make it a

specification? Can we take advantage of domain-specific knowledge in producing a formal

specification methodology, or must formal specifications be generic to the domains?

MR. POSTON: Yes! Okay, "Could a logic diagram in standard format linking blocks of

elements from a standard library be considered a software specification?"

If that logic diagram were expressed in a formal syntax the answer is yes, because that

boils down to a subset of predicate calculus and that boils down to basic decision tables. So, it

would have to be formatted rigorously, but then it could be considered a specification. Decision

trees work. They're not the best, but decision trees do work.

"If not, what additional features could be required of a standardized logic diagram in order

to make it a specification?"

First, express it in a formal language, or translate it. Hopefully your decision tables are

in trees, or your logic diagrams are in magnetic form. If they're not, then this is wrong. If they

are, reformat them into a table format, put them into a decision table, and hopefully add a little

more. You know, those upside-down A's and those backward L's, they're really not that

dangerous, particularly for people that deal with logic diagrams. You're only adding a few

constructs. So, move them to a formal language.

"Could we take advantage of domain-specific knowledge?"

Well, yes. Domain-specific knowledge usually comes out in how the logical equations

are expressed. You express things like temperature range (e.g., in this area, below this, above

that, that's a safe area) and you've already put domain- specific knowledge into that decision tree.

Whether or not you could apply domain-specific knowledge using an AI tool to help you express

that knowledge, that's a completely different subject. It's a much more powerful subject. And
there is a lot of research going on in that area.

QUESTION: GREG MILLER (EG&G Falcho): You're using software to generate

specifications, create test cases and so on. How do you justify the adequate reliability of this

host of tools? Must you also validate the tools on a case-by-case basis and, is this done

manually?

MR. POSTON: I am a tool vendor. I will sell you a tool if you're not careful. Given that as

background, never trust the tool. Always check it.

QUESTION: WILLIAM D. CHRIST (Westinghouse Electric): If we could produce a tool that

would take a specification and produce test cases that guarantee that the code conforms to the

spec, shouldn't we be able to produce a tool that would generate code that is guaranteed to

conform to the spec?

160

MR. POSTON: No. They're nowhere near the same. Code generation has got a thousand and

two trade-offs that test cases don't. Well, take a simple sort routine. How fast is it? How much

memory does it take up? Test cases don't have that problem. Generating test cases is infinitely

easier than generating code for the general purpose applications. They are nowhere near the

same.

161

5.4 Applicability of Object-Oriented Design Methods and C++ to Safety-critical Systems:

Dr. Barbara B. Cuthill

Applicability of Object-Oriented Design Methods and C++
to Safety-critical Systems

Barbara B. Cuthill

National Institute of Standards and Technology

September, 1993

Abstract

This paper reports on a study identifying risks and benefits of using a software development

methodology containing object-oriented design (GOD) techniques and using C++ as a

programming language relative to selected features of safety-critical systems development. These

features are modularity, functional diversity, removing ambiguous code, traceability, and real-time

performance.

1 Introduction

This paper reports the results of a preliminary study identifying risks and benefits of applying

object-oriented design (GOD) and C++ relative to selected key features of safety-critical systems

development. Safety-critical systems are typically real-time systems for v/hich the failure to

operate correctly could result in loss of life or substantial property damage. The features

important to the design, implementation and testing of such systems include modularity,

functional diversity, removing ambiguous code, traceability, and real-time performance. GGD
and C++ can provide benefits to developing systems with these features but can also introduce

new risks to incorporating these features if not used carefully.

The IEEE's Glossary of Software Engineering Terminology [54] defines object-oriented design

as "a software development technique in which a system or component is expressed in terms of

objects and connections between those objects." It defines an object as "an encapsulation of data

and services that manipulate that data" and encapsidation as the "technique of isolating a system

function within a module and providing a precise specification for the module" [54]. GGD is

ultimately a simple but powerful paradigm of creating types for objects or classes consisting of

narrow well-defined interfaces to blocks of data structures and functions operating on those data

structures. These interfaces limit access to the data and functions of a class and define its

external behavior.

GOD should improve the readability, quality and maintainability of software. A domain expert

should find GG designs and programs easier to understand because GGD can incorporate domain

models, such as those developed as part of a domain analysis, into the design. For example.

163

OOD can model real-world objects such as sensors and hardware controllers as separate software

components with defined behavior. OOD should improve the quality of software because

developers can reuse encapsulated portions of the analysis, design or tested code in new systems.

Since the interface to an object should be the only means of accessing the object, module

interfaces should be simpler making component integration easier. Easier component integration

allows for the easier extension and maintenance of an OO system by limiting module interaction.

OOD is only one part of the software development life cycle. Without programming language

support for OOD, programmers will have difficulty maintaining the OOD restrictions on system

design. There are several general purpose languages with OO features (i.e., C++, ADA) and

special purpose OO languages (i.e., SMALLTALK, CLOS, EIFFEL). This study focuses on C++
because it is an extension of a language popular for safety-critical systems development. C++
[4, 5] extends C with constructs for the creation and manipulation of objects and classes.

2 Key features of Object-Oriented Design and C++

2.1 Background in Object-Oriented Development

The design phase of the software development life cycle starts with products of the requirements

analysis for the target system and develops a design through several transformations from a

sketchy design meeting the requirements into an easily codeable form. OOD, if part of an overall

OO development methodology, begins with the results of an object-oriented analysis (OOA) of

the system requirements and, after several refinements, provides the design for implementing the

system as an object-oriented program (OOP). (See Figure 1) OOA, OOD and OOP should flow

smoothly. A good analysis can become the initial design. Similarly, with programming language

support, the final design should be trivial to code. With compatible methods, tools, languages

and notations, the process of going from analysis through design to code should not have

boundaries. Unfortunately, the actual transitions are rarely smooth since there are few OO
methodologies supporting more than a small part of the lifecycle [27].

Requirements
»> OOA

Requirement Analysis/

initial Design

OOD
Final Design

Refined Design OOP
Program

Figure 1: Connections among OOA, OOD, and OOP.

De Champeaux et al. [28] created a template for OOD methods describing the most common
elements of those methods. De Champeaux's template decomposes OOD into three interleaved

phases, a. class design phase, a system design phase and a program design phase. The class

design phase is a bottom up process of defining the system's objects and classes, describing their

internal and external behavior and composing complex objects from simple objects. Objects and

classes may mimic real-world objects (e.g., hardware controllers) or represent and manipulate

164

collections of data in the domain (e.g., lists, queues). The system design phase is a top-down

process of defining partitions of the system according to control information supplied by the

requirements, and needed class interactions. This phase also defines the resource management
facilities required. The program design phase applies performance and resource constraints to

the design. The program design streamlines resource use and communication requirements and
replaces poorly performing components. Replacement can include combining classes or partitions

or revising the operations required in a class or partition. Figure 2 illustrates these design phases

and how each effects the design. While an OOD method should contain all three phases, each

method interleaves these phases differently, even interleaving the design phase with parts of the

OOA or OOP phases.

Class Design Phase System Design Phase Program Design Phase

1.1 Data Req. 3.1 Control

1.1.1 Information

1.1.2 3.1.1

1.1.3 3.1.2

1.2 Function 3.1.3

1.2.1

1.2.2

1.2.3

Subsystem-l

(Class-l)

^messages

Subsystem-2

(ciass-2)

i
T messages

^CIaSS-33 y ^CIass-63 ^

^ubsystem-7^

(class-l)

^messages

r \Subsystem-2

(ciass-2)

^messages

^CIass-3) ^ ^CIass-6} J

Subsystem-lC'2

(Class- 1)
-^-^(Class-2&6)

^messages

(ciass-3}

Figure 2: Phases of Object-Oriented Design.

Good OOD interleaves the design phases to develop pieces of the design in a bottom-up fashion

using knowledge of the overall requirements to put those pieces together into subsystems or the

final system. OOD provides the opportunity for a structured mix of bottom-up and top-down

methods. This combination better captures the information in typical requirements documents

which mix abstract and detailed information. Lubars, Potts and Richter [63] present a case-study

using OOD methods for designing the mission planning subsystem of the Tomahawk Weapons

Control System [TWCS]. This exercise applied OOA and OOD methods to a system with a large

set of requirements (approx. 500 pages). The study used bottom up techniques to develop the

individual classes from the data and low-level requirements and top-down techniques to partition

the system and organize the classes into subsystems from the high-level and control requirements.

165

This study illustrated the usefulness of OOD for combining the two techniques in a large real-

time system with complex requirements.

2.2 Current Limitations on the use of OOD and C++

While OOD and C++ can enhance software development, they are not cost free and cannot

enforce or replace good software development practices. Developers will not use any difficult

methodology consistently unless they see advantages to using and receive support for doing so.

Because generating a good, consistent OOD is difficult, a developer could ignore or deliberately

bypass OOD and C++ constraints. As with any substantial technological advance, organizational

adoption of OOD requires substantial investment in training in the chosen methodology and the

tools to use that methodology. Developers with experience in starting new object-oriented

projects strongly endorse extensive training in OO methodology as well as in specific OO
languages and tools [1, 2, 45, 71]. Software tools for generating and browsing through classes

substantially aid the OOD process, but selecting a set of compatible tools appropriate to an OOD
method and learning to use the tools well requires considerable time and effort. One expert in

the area recommends six months of immersion in OOD training [2]. As with any adoption of

new technology, management must commit to the change and be willing to accept failure on the

first projects using the methodology [30, 70]. In addition, OOD does not reduce the need for

careful design reviews and a quality assurance program to enforce the use of good development

practices.

One potential problem in moving an organization to using OO development methods is the

proliferation of such methods, notations and languages. Many OO methods provide only sketchy

explanations of how to use the method and none cover the full lifecycle [27]. Consequendy, each

OOD method has its own notadon and object model providing slightly different characteristics

and default operadons for objects. These differences may become very important especially

when developers need to change or compare models or notadons [73]. Many surveys of object

models and OOD methods are available [e.g., 26, 27, 28, 29, 30, 31]. A study submitted to the

Internadonal Standards Organization (ISO) [56] surveys the 00 notations. This paper focuses

on selected fundamental features of OOD but does not provide details about any pardcular OOD
method.

Like OOD methods, there is no standard C++ yet. Consequently each C++ compiler accepts a

slightly different version of the language; however, the variations are minor with most developers

accepdng Stroustrop's definition [4]. Unfortunately, many C++ compilers are actually

preprocessers producing C code giving a C programmer the opportunity to bypass the C++
language constraints completely. This study describes C++ features which are broadly agreed

on and does not discuss the details of what one compiler will accept and another will not. This

study also examines only the C++ code and does not consider the C or assembly code produced

during compilation.

This study examines key features of OOD and C++ on which there is broad agreement. The

OOD features are common to almost all OOD methods. Most C++ compilers implement the C++

166

features; however, the C++ features are specific to C++ and do not generalize to other OO
languages.

2.3 Key Features of Object-Oriented Design

Most GOD methods support the creation of an GOD consisting of the definition of groups of

class hierarchies and objects and controlling software for manipulating the objects using the

provided interfaces [e.g., 2, 9, 11, 12, 20, 26, 28, 29, 31]. The classes, objects and controlling

software should be traceable to the requirements and specific elements of the code There is

general agreement that the following features define significant characteristics which as a group

differentiate GOD from non-GGD methods:

Encapsulation - A mechanism for limiting the accessibility of a data structure or group

of data structures to a set of operations manipulating the data and a set of operations

providing a well-defined interface to that data. The data and the operations accessing the

data are treated as a single unit.

Abstraction - A mechanism for recognizing and representing the underlying similarity

of objects and operations in a given domain. Class and hierarchy definitions typically

provide data abstraction in an GGD.

Inheritance - A mechanism for deriving new specialized definitions from existing,

general definitions by incorporating the general definition and extending or adding detail

to it.

Refinement - The process of adding detail to an object-oriented description of a system

without altering the basic form of the description.

Polymorphism - This is the ability to reference instances of more than one class via a

single function call or operation. A base class and its derived classes can all provide

different definitions of a single function. A function call using a parameter of the base

class could apply any of the derived functions depending on the exact type of the

parameter.

While the details of each GOD method are slighdy different and each implements these features

differendy, most GGD methods encourage the production of designs with all of these features.

2.4 Key features of C++

Stroustrop [4, 5] designed C++ to extend C to support the key features of OOD and GOP. While

there are a number of languages explicitly supporting GO features (e.g., SMALLTALK), C++

has the advantages of general acceptance and compadbility with C for reladve ease of learning

and use. While an GOD can theoretically be implemented in any language (e.g., X windows

toolkit, an OOP, is implemented in C), consistently maintaining GO features with no

167

programming language support requires disciplined programmers to maintain OO restrictions

themselves. It also requires that programmers duplicate or reimplement features that the language

could provide. The important extensions provided in C++ to support OOD and OOP follow:

Classes - These are named aggregates of data elements and operations (termed methods).

Classes define types of objects.

In-Line Functions - The compiler expands these functions at compile time directly

inserting them into the body of the code. This process is very similar to macro

expansion; however, depending on the implementation, the compiler may generate short,

uncomplicated functions in-line automatically.

Templates - These are class or function definitions which the developer can customize

for parameters of specific data types.

Call by reference - Functions can contain reference parameters creating implicit pointers

to the calling arguments avoiding the explicit passing or explicit selection of variable's

addresses. While many other programming languages have call by reference (e.g.,

FORTRAN, PASCAL), C does not possess this important feature.

Type-Safe Linkages (or strong typing) - The arguments of a function call must match,

directly or through inheritance, the number and type of parameters in the function

definition unless the function has specified optional parameters with default values.

Classes are the central mechanism for encapsulating, abstracting and inheriting information and

for defining types of objects. Support for classes is an important feature of OOD, OOP and C++.

C++ provides a number of options for defining access to the elements of classes, manipulating

classes and for supporting class inheritance. C++ features for class definition follow:

Public elements or methods - This is a definition of a data structure or function within

a class which is accessible by any routine inside or outside the class. Public elements and

methods define the interface for the class.

Private elements or methods - This is a definition of a data structure or function within

a class which is only accessible from routines defined within the class or to specifically

declaxtd friend classes and functions.

Protected elements or methods - This is a definition of a data structure or function

within a class which is accessible only to members of the class and to members of any

classes derived from that class.

Friend functions or classes - Friend functions and classes can access protected and

private data and methods. A class definition can include friend declarations.

168

Derived Classes - These classes inherit from other classes.

Base Classes - These classes supply data and methods for derived classes to inherit.

Function and Operator Overloading - The same function or operator name can refer

to several alternative definidons provided each function definition has a different

signature (i.e., different sequence of parameter definidons).

Dynamic Run-Time Binding - For overloaded functions, the selection of the correct

function definition is held until the types of the calling parameters is identified at run-

time.

Mandatory Methods - These are funcdons in a base class which all derived classes must
inherit and may not redefine.

Virtual Functions - These are functions in a base class which all derived classes must

inherit but may redefine.

Pure Virtual Functions - These are funcdon signatures in a base class which all derived

classes must supply.

2.5 Relationship of key features of C++ to OOD

Since Stroustrop designed C++ to support OOD, it is not surprising that key features of C++
support key features of OOD. Table 1 illustrates this correspondence. C++ programmers can

implement abstracdons of the central features of objects or funcdons through classes or templates.

Classes in C++ correspond to classes in OOD. Templates allow developers to define general

classes and functions which they can later tailor with specific type definitions; however, not all

C++ compilers support templates.

C++ support for inheritance includes support for funcdon and operator inheritance and for

tailoring the inherited information. The base class specifies funcdons and data structures that the

derived classes inherit and any access restricdons on that information. The base class can also

include requirements on what functions the derived classes must contain. For example, a base

class can require the derived class to supply a definidon for a funcdon (pure virtual funcdon),

provide default functions that a derived class can change (virtual funcdons), or require a derived

class to use specific funcdons (mandatory methods). The base class also controls which data

elements are inherited by declaring those data elements protected or public. C++ supports

polymorphic function calls allowing several classes derived from a common base class to each

provide a definidon for the same funcdon name.

C++ support for polymorphism includes type checking function calls to select the correct copy

of the function, funcdon and operator overloading and dynamic run-dme binding. The linker

169

Table 1: Relationship between OOD and C++ Features

00 Feature C++ Support

Abstraction Classes

Temnlates

Inheritance Derived Classes

Mandatory, Virtual, and Pure Virtual Functions

Function and Operator Overloading

Polvmornhism Run-Time Bindine

Type-Safe Linkages (strong typing)

Function and Operator Overloading

Refinement Base Classes

C++ as design notation

Encapsulation Classes

Public, Protected and Private Data

Public, Protected and Private Methods

Inline Functions

must resolve overloaded function or operator calls at run-time since the specific type of the

parameters may not be known undl run-time. For example, if the base class animal has derived

classes dog and cat, all three classes could define versions of the polymorphic funcdon likes-

food. When the program invokes this function with a parameter of type animal, the linker cannot

choose the correct version of the function to use undl the exact type of the calling parameter

(dog, cat or some other animal) is available. If a funcdon call contains arguments that do not

match any signature for that function name, the linker should not select a particular version. This

restriction requires C++ to use type-safe linkages.

C++ support for encapsulation is primarily support for classes and for access restrictions on

information within classes. Classes can have public, protected and private data and functions.

These different restrictions allow the developer to define an appropriate interface for accessing

the data by only declaring as public those functions which should be part of the interface. The

developer can use these restrictions to control access to the data and functions within the class

definition. C++ requires the declaration of all access restrictions within the class definition. C++
also supports inline functions allowing the encapsulation of small blocks of code without

performance penalties.

C++ supports refinement through very general mechanisms for implementing object models. C++
notation has also been used as a design notation. The flexibility of C++ allows for the

implementation of designs developed using a variety of OOD methods.

170

3 OOD and C++ Reinforcing Features of Safety-critical Software

This study examines how OOD methods effect four software design principles, generally

applicable to good software development but especially important for safety-critical software

systems.

Modularity - A good system should consist of logically separate, defined components

with defined interactions and limited access to data.

Functional diversity - A safety-critical system requires multiple, provably separate

sequences of functions to provide independent checks on the data produced.

Traceability - An auditor should be able to map user requirements, statements in the

analysis, elements of the design and lines of code to each other.

Removal of ambiguity - Safety-critical systems should not have ambiguous code or code

that may not always have predictable effects.

This section contains four subsections, one on each of the above software development principles.

Each subsecdon contains four parts. The first part is on the OOD features which support the

incorporation of the design principle. The second part is on the suppon C++ provides for

implementing designs incorporadng the principle. The third part is on the potential risks OOD
and C++ bring to incorporadng the design principle. The fourth is a summary of the advantages

and disadvantages of OOD and C++ with respect to the design principle.

3.1 Modularity

OOD Features Supporting -

Information hiding through encapsuladon is central to OOD. Encapsulanon is a mechanism for

encoding abstract data types by packaging the data structures with the functions manipulating

those data structures. Encapsulation requires narrow well-defined interfaces to data structures

and the operations for those data structures providing more support for modular design and

information hiding than traditional structural design methods. Since in a consistent OOD data

are only accessible through defined interfaces and only functions encapsulated with the data can

manipulate it, consistent use of OOD encourages and even enforces modular programming.

OOD also supports modularity through abstraction. By abstracting common elements of the

design into classes and creating inheritance hierarchies with the common features of these classes,

OOD reinforces the development of modular systems.

171

C++ Features Supporting -

C++ supports encapsulation and abstraction by defining classes as a programming language

construct. C++ classes can encapsulate data structures by allowing the user to narrowly define

the interface to those structures through the use of private and protected data structures and

functions within classes. Private or protected data in a class are only available using functions

defined within the class or its derived classes. The developer can keep the interface to the data

narrow by defining a minimal number of the class functions public (i.e., available outside the

class). To improve the efficiency of using functions to examine data structures rather than

examining the data structures direcdy, inline funcdons allow the definidon of small blocks of

code as functions without performance penalty.

Risks -

The definition and use of classes in OOD and C++ for developing more modular programs can

pose risks for safety-critical systems. One problem idendfied in [26] is the problem of creadng

too many classes and objects so that the system becomes unmanageable or has severe

performance penalties [63, 71]. Because creadng classes is a bottom-up process, it is easy to

generate a large number of classes without creadng manageable groups of classes. An accurate

representation of the domain may include a large number of classes which are unnecessary for

addressing the immediate problem. Askit and Bergmans [26] discuss the tendency of developers

to create elaborate class hierarchies for reuse when only a small number of those classes are

necessary for the current application. While the investment in creadng an accurate, complex

class hierarchy to represent a domain may pay off in its reusability in future projects, for a

pardcular project, the effort may require a substandal investment including more tesdng and

result in a performance penalty. The performance penalty can be substandal and effect the

usefulness of real-dme systems (e.g., [71]).

The problem of managing a large number of classes is similar to the general problem of

managing a large design; however, top-down structured design methods have evolved to meet this

need. Developers using OO methods can miugate the risk by parddoning or grouping class

definidons. Developers have proposed a variety of methods for grouping classes (e.g. ensembles

[29], clusters [21] or class categories [9]) or pardtioning the design (e.g., into subsystems [9, 10,

29] or layers [44, 52]). Since OOD is sdll evolving and each of these methods uses a slighdy

different radonale for creadng groups of classes, no one method has universal acceptance. The

only consensus is that good OOD pracdce for large system design alternates between top-down

system parddoning and bottom-up class definition to mitigate the risks of either creating an

unmanageable collection of classes or a system partition which does not reflect class interaction

[26, 63].

One example of an OOD method attempting to mitigate these risks in large system development

is the European Space Agency's Hierarchical Object-Oriented Design (HOOD) methodology [8,

15, 16] which was explicitly developed for large, complex, real-time, distributed systems. The

HOOD methodology provides guidelines for decomposing abstract parent objects into more

172

detailed child objects for representing subsystems and developing an OO class hierarchy from

the domain objects. There are available toolkits supporting the HOOD method (e.g., IPSYS
HOOD Toolset).

Alternatively, Yamazaki, Kajihara, Ito and Yasuhara [44, 52] developed an in-house OOD method

for a large telecommunications company that they are now publicizing to also address the need

for better OOD methods for large systems. Their approach creates a layered architecture (e.g.,

hardware, subsystem, function) and associates entities in the requirements with specific layers.

The developer then positions objects corresponding to the entities found during requirements

analysis in the appropriate layer.

Another potential problem for developing modular designs is that arbitrary inheritance schemes

or overuse of the friend declaration can bypass the development of good modular designs. The

friend declaration bypasses normal access restricdons on class information. Inherited methods

which add to the interface for accessing a class of objects make defining that interface more

difficult. A developer can create abstractions of classes which capture important common
information to develop the inheritance hierarchy providing a more modular design and reuse of

common data and functions within the system; however, inherited data structures and functions

make defining what an individual class does or can access more difficult. There is no good

mechanism, and few auditing tools, for collecting all of the inherited information applicable to

a class into a single location for purposes of examining the full definition of what an object does

and which other objects can access its information.

Summary -

While there are potential risks to using OOD and C++, both provide strong support for

modularity. Encapsulation is a mechanism for information hiding, and information hiding is a

large part of why modular designs are desirable in large systems including safety-critical systems.

C++ provides constructs supporting encapsulation and allows for the easy conversion of class

access constraints into code. A major benefit of OOD and C++ is the explicit support of modular

design and information hiding in the methodology. This support encourages the development of

modular designs and their conversion into modular programs.

For OOD and C++ to support modularity, developers must make consistent use of their features.

No design method or language choice alone will force developers to write modular programs.

Developers still need a good software development process including design reviews and a

quality assurance process to reinforce the use of OOD encapsulation and the accurate translation

of class definitions into C++.

173

3.2 Functional Diversity/Redundant Software Components

OOD Features Supporting -

OOD supports functional diversity primarily through encapsulation. Encapsulation is a product

of the object model which is central to OOD. Conceptually, the object model contains

independent objects which exchange messages as needed. The actual operations and data

necessary for the operations are hidden from every other object. The object model supports

multiple objects or classes of objects which perform the same or similar functions but are

completely independent of each other. Encapsulation, by providing a mechanism for limiting

access to both functions and data within classes supports functional diversity.

For example, a system can include a pressure sensor class of objects and a temperature sensor

class of objects with instances representing the actual states of pressure and temperature sensors.

In Figure 3a, these two classes are completely independent of each other. The functions

contained in the pressure sensor object cannot access the data or functions contained in the

temperature sensor object except through the designated interface functions. In Figure 3a, the

only interface functions are the display-pressure and display-temperature functions. Calculations

made within the pressure sensor object would be completely independent of and provide a check

on calculations made within the temperature sensor object.

C++ Features Supporting -

C++ supports encapsulation by providing class definitions as discussed in the previous section.

By defining data as private or protected within a class definition, the programmer can limit access

to that data from functions outside the class definition or from derived classes inheriting from

that class definition.

C+-I- class definitions also include an inheritance mechanism allowing base classes to force the

creation of new operations in a derived class. If a function is a pure virtual function in a base

class, each derived class inheriting from that base class must include a separate implementation

of that funcdon. This enforced function creation reinforces funcdonal diversity since a pure

virtual funcdon definidon requires separate function definidons to exist in each class derived

from that base class. For example, in Figure 3b, there is a base class, sensor, with a pure virtual

function, test-value. This declaradon requires the derived classes pressure and temperature sensor

to each provide a separate implementadon of test-value. These funcdons would be polymorphic,

possessing the same name but operadng on different classes derived from the same base class.

Risks -

While private and protected restricdons within classes and pure virtual funcdons forcing the

creation of new funcdons support functional diversity, inheritance can also allow unintended

connections between functions and data. Classes can inherit data structures and funcdons from

one or more base classes directly and from additional base classes indirectly. Since a class can

174

(Pressure Sensor Class ^

Private Data

Pressure

Private Function

Test-Pressure

Public Function

Display-Pressure

3

7
Pressure Sensor Object 1

r Temperature Sensor Class

Private Data

Temperature

Private Function

^(j^st-Temperature^

Public Function

(pisplay-Temperatur^-

Temperature Sensor Object 1

Pressure Sensor Object 2

Temperature Sensor Object 2

(a): Encapsuiation and Functional Diversity

Sensor Class

Private Data

Value

Private Function

Test-Value

Public Function

Pure

-{^ Display-Value

Virtual Function

Pressure-Sensor Class

Test Value ^

Temperature-Sensor Class

C Test Value J

(b): Inheritance and Functional Diversity

Figure 3: OOD and Functional Diversity.

175

inherit from a series of classes through a hierarchy, a careless developer may not be aware of all

the data and functions inherited by a new derived class. Overuse of inheritance mechanisms,

especially multiple inheritance, and the use of friend declarations can create risks for enforcing

both modularity and functional diversity requirements on systems if the developer does not

explicitly watch for unintended connections among all the classes.

Summary -

Encapsulation by limiting access to data supports the creation of alternate methods from different

classes accessing different data. C++ implements encapsulation through classes which can have

private and protected data and functions limiting both access to and inheritance of that

information. C++ class definitions can also require the creation of separate functions in derived

classes through the definition of pure virtual functions. Alternatively, inheritance and friend

declarations can create risks because these create unintended connections between classes and

hide those connections in complex class hierarchies.

3.3 Traceability of Requirements to Design and to Code

OOD Features Supporting -

OOD should bridge the gap between the requirements and the code without performing

translations or radical transformations of the design. The results of an OOA (object-oriented

requirements analysis) should become the basis of the OOD which should become the OOP
through a process of refinement and the addition of detail to the original design. There should

be no sharp breaks or translations between phases of the lifecycle [21, 28]. To support

traceability and the reusability of designs, there is a consensus among researchers that decisions

forcing a particular implementation for any part of the design should be delayed as long as

possible to make the gap between design and code narrower [44]. A more general design can

also be available for reuse early in the design process of a subsequent system [68].

OOA provides the requirements analysis and initial design supporting traceability of the

requirements, requirements analysis and initial design for OOD methods. OOA provides this

traceability because it mixes bottom-up and top-down techniques just as requirements documents

mix abstract and detailed requirements. Some methods [e.g., 14, 62] suggest collecting the

significant terms in the requirements and turning the nouns into objects and the verbs into

functions. While this approach is simplistic and impractical for large requirements documents,

it does provide traceability and is useful for small problems or components of large systems. For

large systems and requirements documents, abstract information is useful for organizing classes

and breaking the problem into subsystems. The large OOA example mentioned in Section 2.2

[63] also showed the flexibility and traceability ofOOA methods because the organization of the

analysis as well as the details of the initial classes could be traced to specific requirements.

The OOD method should maintain the traceability of the design to the initial requirements

through each refinement of the design to the actual code. Coplien [3J defines the isomorphic

176

structure principle as a goal for OOD methods. This principle states that the implementation

structure and design abstractions should be parallel and easy to relate throughout the development

process. The preferred method for maintaining this relationship is to refine the design throughout

design development rather than radically changing the design. Coplien uses this principle as a

criteria for analyzing OOD methods. He also defines a non-sequential series of steps for an OOD
refinement process preserving the underlying data model. These steps follovc':

Idendfy the endties in your apphcation domain

Identify behaviors of the entities

Idendfy reladonships between enddes, particularly subtypes

Create a C++ design structure from the entities

Implement

Fine-tune

Test

The developer should iterate through the steps to arrive at the final system; however, different

portions of the target system may be at different points in the design process.

Coplien's approach is similar to other approaches in OOD [3]. One of the typical reasons cited

for using OOD methods is the traceability of the requirements, design and code to each other

[e.g., 3, 63].

C++ Features Supporting -

C++ supports OOD traceability by providing programming language structures for classes and

objects and enforcing a variety of restrictions on class construction. C++ has been very popular

for OOD because it is flexible enough to allow for the implementadon of many of the object

models assumed by the OOD methods. Those features of the language idendfied in Table 1 as

supporting the various features of OOD also support the traceability of OOD elements into C++
constructs.

Risks -

A significant handicap to traceability is the lack of OO methods or tools for the full software

lifecycle. Most OO methods cover, at most, only one portion of the life cycle [27] typically only

the requirements analysis or design portion. This parddoning requires the use of multiple

methods, tools and processes at different stages of the software lifecycle. If the developer does

not choose the methodologies for his development process carefully, not all the selected methods,

tools and processes may be compadble or support OO development.

Even when developers are only working with OO methods, these methods could be based on

different object models with different properties for classes and objects. There may be minor or

extreme differences among notations, languages, and CASE tools, in the default restricdons on

classes, the funcdons performed on or with objects, and the limitations on inheritance. If the

177

developer is using tools or methods incorporating two or more different object models, the

developer must translate between the two. This translation requires a defined mapping between

the object models potentially changing the design or system in the process. This translation also

makes tracing a requirement through its incarnations in the OOA, OOD and OOP more difficult

since changes in the available properties of objects and classes may change how the design and

program incorporate a requirement.

Thompson [73] proposed an object lifecycle scenario in which an object undergoes a number of

transformations in the course of its development and use to illustrate the problem of incompatible

object models. For example, a developer can use an object definition tool to develop a class, use

a simulation tool to simulate the behavior of the class, store the class definition in a database or

repository and use a coding tool to develop a C++ definition of the class. All of these tools and

storage mechanisms can use different object models. These different models require multiple

translations corrupting the original class and object definitions. This scenario reflects the current

state of object technology with multiple competing object models embodied in the available tools

and proposed in current standards. Selecting tools, methods, and notations which have

incompatible object models prevents easy traceability in different phases of the lifecycle.

Summary -

Ideally, OOD supports traceability because it is a process of gradual refinement of the design

details without major transformations and it is much easier to trace requirements through a design

if the process involves refinement rather than translation. The requirements analysis and design

documents should more closely map to the original requirements and domain analysis documents

allowing the customer to understand the design better. There have been a number of successful

examples of using these techniques to provide traceability. (e.g., [63])

To achieve traceability, the notation, tools, and implementation language must support

compatible, if not identical object models. It is very easy to select incompatible tools or methods

and have to translate among them. Developers must consider this issue when establishing the

development process and selecting the methods, notations and tools to support that process.

3.4 Removal of Ambiguity

OOD Features Supporting -

This is a problem with C coding somewhat mitigated by C++. OOD is not relevant to this

problem.

178

C++ Features Supporting -

C++ eliminates some of the sources of ambiguity present in C while introducing others. The

sources of ambiguity problems from C that C++ mitigates follow in Table 2. Primarily, C++
offers type checking features and methods of avoiding explicit identification of addresses or use

of pointers.

Table 2: Features Mitigating Ambiguity

Source of Ambiguity in C C++ Features Mitigating Problem

Easy implicit conversions Conversions not allowed

Operator overloading

Incompatible function calls and

signatures allowed

Type-safe linkages (parameter

checking)

Operator overloading

All calls by value, passing pointers Explicit memory management

functions (ex. constructors,

destructors, copy constructors, new,

delete)

Call by reference

One of the major sources of confusion in C programs was the explicit use of address-of (&)

operators and the use and nesting of contents-of (*) operations. These operations were essential

because C only supported the passing of parameters by value. C++ supports the use of reference

parameters allowing the programmer to eliminate the explicit use of pointers under some

circumstances. C++ also allows the creation of constant references or parameters that cannot

change during function execution which C did not support prior to the adoption of ANSI C.

Memory management has generally been simplified and hidden from the programmer. The

simplification allows the programmer to avoid explicitly allocating and deallocating specific

blocks of memory and eliminates some sources of errors since the programmer does not need to

calculate the size of a memory block. Explicit unrestricted use of pointers and memory features

makes program tracing, auditing and understanding more difficult.

Risks -

Even though C++ midgates some problems, it introduces some new ones primarily through its

support for inheritance, polymorphism and operator overloading through dynamic or run-time

linking. If there are several polymorphic versions of functions (i.e., several functions with the

same name operadng on different types), the linker will have to choose among them or indicate

the possible choices depending on the types of the arguments involved. Since the types of the

179

arguments may not be available until run-time, the version of the function used may not be

known until runtime. This is true if the program declares the arguments to be instances of the

base class to which all the versions of a polymorphic funcdon apply rather than the derived

classes used in the function signatures.

Essentially all polymorphic or overloaded functions are hidden branching statements in the

program which an auditor inspecting the code may find difficult to trace. The options for

polymorphic function calls and overloaded operators may be buried in several different classes

scattered throughout the system. This scattering would make it difficult for the auditor to

identify and collect the different oprions and all the possible branches the linker has available at

any one point. If the options are too scattered, the auditor may not even be aware that an

operator or function is overloaded.

4 00 and Real-time systems

Most safety-critical systems are real-time systems, and real-time systems have specific temporal

requirements. Real-dme systems include temporal characteristics associated with distributed

components which may vary over dme. A real-dme control system must classify and encapsulate

the behavior of these characteristics [34]. Classification is important for identifying the

characterisdcs, and encapsulation is important for associating the characterisdcs with the correct

components. A real-dme system must use these temporal characterisdcs to recognize changes

in the environment and adapt its control algorithms to these changes.

4.1 Advantages

Object models, as used in OOD methods, show promise for modeling the behavior of real-dme

distributed systems because object models consist of independent objects exchanging messages

which require the receiver to take some action. One definidon of OOD is "a design and

implementadon methodology which attempts as much as possible to compose the software of

software objects which correspond to or encapsulate 'real' or 'physical' objects [34]." This

definidon comes from researchers who view OOD principally as a tool for the development of

real-time systems. In many real-dme domains, the environment that the system controls or

mimics consists of controllers acdng independendy either serially or asynchronously to

accomplish a goal. An actual process may require hundreds of separate controllers each having

limited knowledge of the overall system and may require that the system have the ability to

dynamically reconfigure itself. OOD can provide better models of the actual controllers and

other interacdng hardware components in a real-dme domain than tradidonal data models.

Encapsulated objects are a direct model for software controllers since each object can have a

narrow interface and dghdy controlled interacdon with the other objects (software controllers).

Changes internal to an object should have only a limited effect on the other objects in the system.

This is analogous to changes internal to one controller having a limited effect on other

controllers. Similarly, the reconfiguration of objects or controllers should have only a minimal

effect on other objects or software controllers in the system [46].

180

The instability of the temporal characteristics of many real-time domains is another reason for

choosing OOD over traditional software development methods [34]. Because temporal

characteristics may not remain static over the life of the system and may not even be known until

run-time, a real-time system must implement adaption algorithms for entities which minimize the

impact of temporal changes on other entities. Objects by encapsulating temporal characteristics

and behavior provide a mechanism for isolating those characteristics and behaviors to only those

elements or objects directly effected.

There are several examples of deployed real-time systems developed using OOD methods [34,

46]. One example is in Kotchev et al. [46] which describes control software for a manufacturing

process. This process consists of distinct phases with different types of activities conducted in

each phase. The control software is an OOP supporting the deployment of independent

controllers transferring control at established points in a process. Another example is the

telecommunications software described in [34].

4.2 Problems encountered

The primary problems encountered with OOD in real-time systems relate to performance. Large,

complex class hierarchies can produce very slow programs in part because over use of

encapsulation and inheritance can add to the overhead in running C++ programs both from

additional function calls and the need to dynamically locate the correct version of a polymorphic

function. Performance must be taken into account at all phases of the development of real-time

object-oriented systems [1, 2, 71].

5 Long Term Advantages of OOD

There are potential long-term advantages to OOD, discussed by a number of researchers, in

addition to those cited in support of specific features of safety-critical systems. These long term

advantages include the potential reusability of object-oriented code both within projects through

inheritance hierarchies and between projects, the reduced cost and effort of maintaining code and

the reduced cost of extending the code as the environment changes. These long term advantages

should increase software development productivity and software product quality.

5.1 Reusability of Verified Code

One method of improving software productivity and quality and potentially reducing development

costs is the reuse of verified software development artifacts in the creation of new systems.

Software development artifacts include components of the design, code, and analysis of a system.

Rubin [68] identifies problems with the implementation of indexing schemes to identify specific

items for reuse that the use of OOD methodologies can mitigate and some OOD can exacerbate.

He identifies as a fundamental indexing problem the development of a representation for reusable

artifacts. The lack of a standard notation or representation has hindered reuse efforts, but the

definition of a narrow interface to objects as OOD methods provide has made the problem of

181

defining a representation "tractable" [68]. Further, a narrow interface to the objects simplifies

the generation of queries and reasoning about the capabilities of objects. However, inheritance

schemes by hiding some of the interface can complicate the representation and reasoning process.

Rubin [68] also identified two qualities of software development artifacts which effect the

artifact's reusabihty. The qualities are the abstraction level and the complexity of the object.

The abstraction level is the extent to which the artifact is dependant on a particular domain or

implementation. By encouraging the development of abstract designs and the identification of

common features of designs cutting across domains, OOD encourages the production of abstract,

therefore, highly reusable components. The use of abstraction at the design or analysis level

early in the software development process can potentially provide the greatest long term savings

from reuse.

The second quality, the complexity of the software artifacts, is important because as the

complexity of the artifacts increases, they become more difficult to understand and reuse. OOD
through the encapsuladon of data and operadons in objects encourages modular development and

information hiding. The developer intending to reuse the artifact need only understand its

interface to know if a selected object is appropriate for a new application.

Stark [71] is less optimistic about the possibilities of general reuse of common artifacts, but

emphasizes the benefits of reusing artifacts within a single domain. Using the experiences of

NASA-Goddard's Software Engineering Laboratory (SEL), Stark cites an increase in the reuse

of code from a baseline of 20-30% of new systems to 75-80% of new systems in a single domain

over a seven year period in SEL projects using OO methods. Reuse of artifacts in projects

outside the specific domain was much less common. Stark credits the difference to the

developers understanding of the system artifacts associated with their domain and the difficulty

of capturing that information for other developers. Stark and SEL conclude that OO methods

promote reuse by proving a means to generate designs that accurately reflect the domain. Stark

did cite, as a cost of reuse, OOD's neglect of other important issues especially run-time

efficiency.

5.2 Ease of maintenance

Maintenance "is the performance of those activities required to keep a software system

operational and responsive after it is accepted and placed into production." [55] Using OOD can

significantiy decrease the effort required to perform all three functions.

OOD tends to isolate faults by encapsulating data and functions within a single object or class.

Since objects and classes have narrow interfaces, only changes to these interfaces will effect other

classes. Changes within a class will only effect that class. Encapsulation generally limits the

scope of errors and the scope of fixes to those errors.

Encapsulation also simplifies isolated improvements to the system. An OO system can, for

example, change representation schemes or searching algorithms without effecting parts of the

182

system outside the class containing the scheme or searching algorithm. Substitution of poorly

performing components is easier with only a narrow interface to those components.

5.3 Extensibility

Similarly, developers can easily enhance a system by adding new classes of objects especially

if those classes are derived from existing base classes. For example, if the system has a base

class sensor and derived classes temperature- sensor and pressure-sensor, it should be easy to

add a new class humidity-sensor also derived from sensor. Any functions which accept sensors

will accept humidity-sensors. The new class would have a similar interface to the other derived

classes including specific polymorphic functions which would have to be defined for all three

classes.

Traditional methods of development do not easily accommodate the evolution of a software

system to encompass new features or changes in the environment. OOD potentially can

accommodate new objects or variations on existing objects in a given environment, and since

good OOD encapsulates the functions operating on a given structure in an object, the effects of

changes to that structure should be hidden within the object.

6 Conclusions

OOD is a valuable design methodology for real-time safety-critical systems because it can

provide a more direct model of the domain than traditional design methods and can reinforce the

use of development principles important to safety-critical systems (e.g., modularity, functional

diversity, traceability and removal of ambiguity). OOD by modeling independent controllers as

separate objects can isolate the functions and temporal characteristics of those objects and better

model the actual hardware under software control. OOD has now been used in a number of

large, successful real-time systems especially in the telecommunications area.

OOD also reinforces software development principles important to the development of safety-

critical systems. The OOD properties of encapsulation, abstraction, inheritance and refinement

reinforce the safety-critical design features of modularity, functional diversity and traceability.

Encapsulation and abstraction reinforce the development of modular code with narrow interfaces

to separate blocks of data and functions by making information hiding central to OOD.
Encapsulation also supports functional diversity because objects encapsulate both data and

functions supporting the development of independent functions operating on independent data

elements. The inheritance properties of objects can also support functional diversity by forcing

the creation of new functions. OOD supports traceability because objects can provide a direct,

understandable model of the real world. With careful selection of compatible 00 development

methods, tools and notations, the requirements, requirements analysis, initial design, intermediate

designs, final design and code should all be traceable to each other. OOD is effective because

it takes good software development practices and formalizes their use within the design paradigm.

Table 3 summarizes the advantages ofOOD and C-f-4- development methods with respect to these

safety-critical features.

183

Use of an object-oriented programming language is essential for the consistent use and

deployment of an OOD. C-i~i- supports OOD and is compatible with a popular language used

in safety-critical systems. C4-+ provides a number of features (see Section 2.3) which support

the easy transference of OOD into code. C++ also provides features making C a safer language

primarily by minimizing the need to directly manipulate pointers and memory and by providing

type-safe linking.

Even though OOD and C-I-+ provide a number of benefits, OOD and C-i-i- are not a panacea.

Table 3 also summarizes the risks of OOD and C++ development with respect to the safety-

critical systems features. These techniques will reinforce good practices and the features

important to the development of safety-critical systems, but will not supply those features by

themselves. In addition both introduce new risks which the careful selection or definition of a

development methodology can mitigate. The use of C++ and OOD must be part of an overall

software development process reinforcing quality development practices.

Table 3: Summary of the Risks and Benefits of OOD and C++

Benefits Risks

OOD C++ OOD C++

Modularity Encapsulation Classes with access restrictions Class hierarchy

complexity

Inheritance

Base/derived classes

Function & operator

overloading

Functional Diversity Encapsulation

Polymorphism

Classes with access restrictions

& required function definitions

Dynamic run-time binding

Function & operator overloading

Inheritance Function & operator

overloading

Traceability Refinement Support for OOD Lack of Compatible OOA, OOD, and OOP
methods, notations, languages and tools

Removal of

Ambiguity

Type-safe linl(ages

Call by reference

Memory management

Operator & function

overloading

Dynamic run-time binding

Real-Time Systems

Development

Encapsulation

Object model

Refinement

Classes Class hierarchy

complexity

Performance

Bibliography

C++ Programming

[1] Carson, John H. The C++ Programming Language. Lecture Notes, John H. Carson

Associates, 1993.

184

[2] Carson, John H. Object-Oriented Programming and the C++ Programming Language.

Lecture Notes, John H. Carson Associates, 1993.

[3] Coplien, James O. Advanced C++; Programming Styles and Idioms. New York: Addison-

Wesley Publishing Co., 1992.

[4] Mancel, D. and W. Havanas. "A Study of the Impact of C++ on Software Maintenance" from

Proceedings: Conference on Software Maintenance, pp.63-69. Los Alamitos, CA: IEEE Computer

Society Press, 1990.

[5] Stroustrap, Bjame. The C++ Programming Language, Second Edition. Addison-Wesley, 1991.

[6] Stroustrap, Bjame and Margaret Ellis. The Annotated C++ Reference Manual. Addison-

Wesley, 1990.

Object-Oriented Design Methodologies

[7] Alagar, V.S. and K. Periyasamy. "A Methodology for Deriving an Object-Oriented Design

from Functional Specifications" from Software Engineering Journal, Vol. 7, Issue 4, pp. 247-263,

July, 1992.

[8] Aslett, M.J. "An Overview of the HOOD Method" from IEE Colloquium on An Introduction

to Software Design Methodologies, pp. 5/1-4. London: lEE, 1992.

[9] Booch, G. Object-Oriented Design with Applications. The Benjamin Cummings Publishing

Company, Inc., 1991.

[10] Coad, P. and E. Yourdon. Object-Oriented Analysis. Prentice Hall, 1991.

[11] Coad, P. and E. Yourdon. Object-Oriented Design. Prentice Hall, 1991.

[12] Cox, Brad J. and Andrew J. Novobilski. Object-Oriented Programming: an Evolutionary

Approach. New York: Addison-Wesley Publishing Co., 1991.

[13] EVB. An Object-Oriented Design Handbook for ADA Software. Frederick, MD: EVB
Software Engineering, Inc., 1985.

[14] Fayad, Mohamed E., Louis J. Hawn, Mark A. Roberts, and Jerry R. Klatt. "Using the Shlaer-

Mellor Object-Oriented Analysis Method" from IEEE Software, March, 1993.

[15] HOOD Working Group. HOOD Reference Manual. (HRM/91/07A'3.1) Noordwijk,

Netherlands: European Space Agency, 1991.

185

[16] HOOD Working Group. HOOD User's Manual, Issue 3.0. Noordwijk, Netherlands:

European Space Agency, 1990.

[17] Hull, M.E.C., A. Zarea-Aliabadi and D.A. Guthrie. "Object-Oriented Design, Jackson System

Development (JSD) Specifications and Concurrency" from Software Engineering Journal, Vol.

4, Issue 2, pp. 79-86, March, 1989.

[18] Jackson, M. System Development. Englewood Cliffs, NJ: Prentice Hall, 1983.

[19] Lieberherr, Kar. J., Paul Bergenstein, and Ignacio Silva-Lepe. "From Objects to Classes:

Algorithms for Optimal Object-Oriented Design" from Software Engineering Journal, pp. 205-

228, July, 1991.

[20] Meyer, B. Object-Oriented Software Construction. Hemel-Hempstead, England: Prentice-

Hall, 1988.

[21] Nerson, Jean-Marc. "Applying Object-Oriented Analysis and Design" in Communications

of the ACM, Vol. 35, No. 9, September, 1992.

[22] Rumbaugh, J. et al. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[23] Shlaer, Sally and Stephen J. Mellor. Object-Oriented Systems Analysis. Prentice-Hall, 1988.

[24] Wirfs-Brock, R. et al. Responsibility-Driven Design. PYentice-Hall, 1990.

[25] Yonezawa, A. and Tokoro, M., editors. Object-Oriented Concurrent Programming. MIT
Press, 1987

Surveys of Object-oriented Design Methodologies

[26] Askit, Mehmet and Lodewijk Bergmans. "Obstacles in Object-oriented Programming" in

Proceedings of the Conference on Object-Oriented Programming: Systems, Languages and

Applications. ACM, 1992.

[27] Blair, Gordon, John Gallagher, David Hutchinson, and Doug Shepherd. Object-Oriented

Languages, Systems and Applications. NYC: John Wiley and Sons, 1991.

[28] De Champeaux, Doug Lea and Penelope Faure. "The Process of Object-Oriented Design"

in Proceedings of the Conference on Object-Oriented Programming: Systems, Languages and

Applications. ACM, 1992.

[29] De Champeaux, Doug Lea. "Object-Oriented Analysis and Top-Down Software

Development" in Proceedings ofthe European Conference on Object-Oriented Programming, pp.

360-375, 1991.

186

[30] Fichman, R.G. and C.F. Kemerer. "Object-Oriented and Conventional Analysis and Design

Methodologies" from Computer, Vol. 25, Issue 10, pp. 22-39, October, 1992.

[31] Wirfs-Brock, R. and R. Johnson. "Surveying Current Research in Object-Oriented Design"

in Communications of the ACM, Vol. 33, No.9, pp. 104-124, September, 1990.

[32] Ziegler, Bernard P. Object-Oriented Simulation with Hierarchical, Modular Models. New
York: Academic Press, 1990.

Applications of ODD Methodologies

[33] Arefi, P., C.E. Hughes, and D.A. Workman. "The Object-Oriented Design of a Visual

Syntax-Directed Editor Generator" from Proceedings of the 13th Annual International Computer

Software and Applications Conference, pp. 389-96. Washington: Computer Society Press, 1989.

[34] Bihari, T., P. Gopinath, and K. Schwan. "Object-Oriented Design of Real-Time Software"

from Proceedings: Real Time System Symposium, pp. 194-201. Lx)s Alamitos, CA: IEEE
Computer Society Press, 1989.

[35] Boettcher, C.B. and R. Poster. "Object-Oriented Design of Radar Warning Receiver

Application Software" from Proceedings: lEEEIAIAA 10th Digital Avionics Systems Conference,

pp. 550-554. New York: IEEE, 1991.

[36] Bower, W., C. Seaquist, and W. Wolf. "A Framework for Industrial Layout Generators"

from IEEE Transactions on Computer-Aided Design ofIntegrated Circuits and Systems, Vol. 10,

Issue 5, pp. 596-603, May, 1991.

[37] Campbell, W. "A C Interpreter for Scheme - an Exercise in Object-Oriented Design" from

Software Engineering Journal, Vol. 6, Issue 4, pp. 130-136, July, 1991.

[38] Cappellini, V. and A. Del Bimbo. "Image Processing System Based on Object-oriented

Design" from Sixth Multidimensional Signal Processing Workshop, pp. 21-22. New York: IEEE,

1989.

[39] Chang, A.-M., P.K. Kannan, and B.O. Wong. "Design of an Object-Oriented System for

Manufacturing, Planning, and Control" from Proceedings of Rensselaer's Second International

Conference on Computer Integrated Manufacturing, pp. 2-8. Los Alamitos, CA: IEEE Computer

Society Press, 1990.

[40] DaPonte, P., Nigro, L., and Tisato, F. "Object-Oriented Design of Measurement Systems"

from IEEE Transactions on Instrumentation and Measurement, Vol. 41, Issue 6, PP. 874-880,

December, 1992.

187

[41] Evans, C. "Construction of an Object-Oriented User Interface" from lEE Colloquium on

Application and Experience of Object-Oriented Design, pp. 8/1-3. Lx)ndon: lEE, 1989.

[42] Fayad, M.E., L.J. Hawn, M.A. Roberts, and J.R. Klatt. "Mission Generation System (MGS):

an Application of Shlaer-Mellor's Object-Oriented Method" from Proceedings: lEEEIAIAA 10th

Digital Avionics Systems Conference, pp. 91-96. New York: IEEE, 1991.

[43] Ganti, M., P. Goyal, R. Nassif, and S. Podar. "An Object-Oriented Application Development

Environment" from COMPCON Spring '90: Thirty-Fifth IEEE Computer Society International

Conference, pp. 348-355. Los Alamitos, CA: IEEE Computer Society Press, 1990.

[44] Kajihara, K., S. Yamazaki, T. Yamashita, and M. Ito. "An Application of Object-Oriented

Design for Communication Control Systems" from Proceedings: Fourteenth Annual International

Computer Software and Applications Conference, pp. 43-51. Los Alamitos, CA: IEEE Computer

Society Press, 1990.

[45] Knolle, Nancy T., Martin W. Pong, and Ruth E. Lang "SITMAP: a Command and Control

Application" from Applications of Object-Oriented Programming, ed. by Lewis J. Pinson and

Richard S. Wiener. NYC: Addison-Wesley Publishing Co., 1990.

[46] Kotchev, B., A. M. Levy, P. Petrov, and R. Patrashkov. "Structuring the application software

for Real-Time Process Control" from Proceedings: EUROMICRO '90 Workshop on Real-Time,

pp. 189-196. Los Alamitos, CA: IEEE Computer Society Press, 1990.

[47] Lahti, G., I. Ashkenazi, C. West, and B. Morgan. "Embedded Software for the CEBAF RF
Control Module" from Conference Record of the IEEE Particle Accelerator Conference, Vol. 2,

p. 1290-2. New York: IEEE, 1991.

[48] Menga, G., Morisio, M., and Mancin, M. "A Framework for Object-oriented Design and

Prototyping of Manufacturing Systems" from Proceedings: IEEE International Conference on

Robotics and Automation, Vol. 1, pp. 128-135. Los Alamitas, CA: IEEE Computer Society Press,

1991.

[49] Mock, Mary. "DoubleVision: A Foundation for Sciendfic Visualization" from Applications

of Object-Oriented Programming, ed. by Lewis J. Pinson and Richard S. Wiener. NYC: Addison-

Wesley Publishing Co., 1990.

[50] Taylor, J.M. "Cooperative Compudng and Control" from lEE Proceedings E: Computers and

Digital Techniques, Vol.137, Issue 1, pp. 1-16.

[51] Wu, Thomas C. "Development of a Visual Database Interface: An Object-Oriented

Approach" from Applications of Object-Oriented Programming, ed. by Lewis J. Pinson and

Richard S. Wiener. NYC: Addison-Wesley Publishing Co., 1990.

188

[52] Yamazaki, S., Kajihara, K., Ito, M., and Yasuhara, R. "Object-Oriented Design of

Telecommunication Software" from IEEE Software, Vol. 10, Issue 1, pp. 81-87, Jan., 1993.

[53] Yang, L., M.A. Perkowski, and D. Smith. "Object-Oriented Design of an Expandable

hardware Description Language Analyzer for a High-Level Synthesis System" from Proceedings

of the Twenty-Fifth Hawaii International Conference on System Sciences, Vol. 2, pp. 529-538.

Los Alamitos, CA: IEEE Computer Society Press, 1991.

Reference Works

[54] "Glossary of Software Engineering Terminology." ANSI/IEEE Standard 729-1983.

[55] "Guideline on Software Maintenance." Federal Information Processing Standard 106,

Department of Commerce, National Bureau of Standards, U.S., 1984.

[56] "Survey of Diagrams on Charting Techniques in the Area of Inference-Based Systems and

Object-Oriented Programming" New Work Item, ISO/IEC JTC1/SC7/WG1 1, 1993.

Additional Papers on GOD Topics

[57] Anderson, B. "Process and Reusability in Object-Oriented Programming" from lEE

Colloquium on Application and Experience of Object-Oriented Design, pp. 4/1-3. London: lEE,

1991.

[58] Atkinson, Colin. Object-Oriented Reuse, Concurrency and Distribution: an ADA-based

approach. NYC: Addison-Wesley Publishing Co., 1991.

[59] Buescher, T.W. and R.T. Wilkinson. "Requirements Modeling for Real-Time Software

Development" from Proceedings of the IEEE National Aerospace and Electronics Conference,

Vol.2, pp. 613-617. New York: IEEE, 1990.

[60] Coleman, D. and F. Hayes. "Getting the Best from Objects: the Experience of HP" from lEE

Colloquium on Application and Experience of Object-Oriented Design, pp. 6/1-3. London: lEE,

1991.

[61] Cooling, I.E. and T.S. Hughes. "The Emergence of Rapid Prototyping as a Real-Time

Software Development Tool" from Second International Conference on Software Engineering for

Real Time Systems, pp. 60-64. London: lEE, 1989.

[62] Lieberherr, K.J., and I.M. Holland. "Tools for Preventive Software Maintenance" from

Proceedings: Conference on Software Maintenance, pp. 2-13. Washington: IEEE Computer

Society Press, 1989.

189

[63] Lubars, Mitchell, Coline Potts, and Charles Richter. "Developing Initial OOA Models" from

Proceedings: 15th International Conference on Software Engineering. IEEE, 1993.

[64] Manel, Dennis and William Havanas. "A Study of the Impact of C++ on Software

Maintenance."

[65] McGregor, D.R. "Reusability - the Major Promise and Challenge of the Object-oriented

Approach" from IEE Colloquium on Application and Experience of Object-Oriented Design, pp.

7/1-6. London: lEE, 1991.

[66] Mitchell, R.J. "Improving Object-Oriented Software Design" from lEE Colloquium on

Advances in Optimisation, pp. 2/1-4. London: lEE, 1989.

[67] Randell, B., and J.-C. Fabre. "Fault and Intrusion Tolerance in Object-Oriented Systems"

from Proceedings: 1991 International Workshop on Object-Orientation in Operating Systems, pp.

180-184. Los Alamitos, CA: IEEE Computer Society Press, 1991.

[68] Rubin, K.S. "Reuse in Software Engineering: an Object-Oriented Perspecdve" from

COMPCON Spring '90: Thirty-Fifth IEEE Computer Society International Conference, pp. 340-

346. Los Alamitos, CA: IEEE Computer Society Press, 1990.

[69] Satoh, Ichiro and Mario Tokoro. "A Formalism for Real-Time Concurrent Object-Oriented

Programming" from Proceedings: Conference on Object-Oriented Programming Systems,

Languages, and Applications, pp. 315-326. ACM, 1992

[70] Smith, Dennis, Cliff Huff, Ed Morris, and Paul Zarrella. Software Engineering Environment

Evaluation Issues. Technical Report. Pittsburgh, PA: Software Engineering Institute, 1993.

[71] Stark, Michael. "Impacts of Object-oriented Technologies: Seven Years of SEL Studies"

from Proceedings of the Seventeenth Annual Software Engineering Workshop, NASA Goddard

Space Flight Center, 1992.

[72] Walker, I.J. "Requirements of an Object-Oriented Design Method" from Software

Engineering Journal, Vol. 7, Issue 2, pp. 102-113, March, 1992.

[73] Workshop Report: Workshop on Application Integration Architectures. NIST Special

Publication, NIST, 1993.

190

5.4.1 Questions: Dr. Barbara B. Cuthill

QUESTION: JAMES CHELINI (Raytheon): You stated that C++ is compatible with a

language popular for writing safety-critical systems, I assume C. Is C chosen because it's good

for developing critical systems, or because it is widely available in school and commercial use

and, by default, has been used in critical systems? What limitations would you impose on the

C++ OOD implementation?"

DR. CUTHILL: C is being used. That's the point. It's there. It's what's being used. Whether

that was the best choice, it's what we have.

When using C++, there have to be limitations on the use of inheritance, function

overloading, polymorphism. These things create ambiguities and their use has to be limited.

Possibly it can't be supported at all in safety-critical systems. I think that's an issue that has to

be looked at further.

QUESTION: DR. JOHN McHUGH (Portland State University): With the exception of explicit

inheritance, every advantage that you attribute to C++ is done, and done better, in ADA83, which

is standardized and much more portable. ADA9X will have inheritance. C++ allows all the

faults of C. Why would anyone use it?"

DR. CUTHILL: I have not looked at ADA. What we need is an examination of C++, ADA9X,
EEFEL. We need a study of all of these and their benefits for safety-cridcal systems. We need

that kind of a study, we need that kind of research. It's not there.

DR. McHUGH: Those studies have been done.

DR. CUTHILL: Well, I'd like to know your references.

DR. McHUGH: Okay.

MS. DOLORES R. WALLACE (NIST): Barbara was actually asked to look at C++, which is

what she did.

QUESTION: How do you measure objectively the increase in modularity using OO techniques

versus other approaches, and how do you model the trade-off with performance prior to

implementadon?

DR. CUTHILL: There are simulation languages, packages, that will let you look at performance

trade-offs. Also, the problem is overly complex inheritance hierarchies- nd there are complexity

metrics for checking for that. As for the first part, measuring the increase in modularity, I don't

have a good answer for that except that encapsulation makes informadon hiding central to the

design process. So, it is a key part of the design method and is supported by the method, which

should make the designs more modular and provide better enforcement of modularity.

191

6 METHODS FOR REDUCING RISKS IN SOFTWARE SYSTEMS

The technical session on risk reduction provided interpretation on both the problems in achieving

and assuring the safety of high integrity software and possible solutions to the problems. The
speakers, Dr. Winston Royce (TRW, Inc.), Ms. Anne-Marie Lapassat (Commissariate a I'Energie

Atomique), Mr. H. Ronald Berlack (Configuration Management International), Dr. Lance A.

Miller (Science Applications International Corporation), Ms. Charlotte O. Scheper (Consultant),

Mr. Kyle Y. Rone (IBM), Dr. William Everett (AT&T), and Mr. Roger U. Fujii (Logicon, Inc.),

provided insights from their experiences in defense, nuclear, space, and communication industries.

Dr. Royce idendfied the following six areas of concern with regard to safety-critical systems, and

elaborated on their meaning during his presentadon:

1. Safety-critical systems are implemented in the wrong languages.

2. There are not enough tools for safety-critical systems development.

3. There is insufficient analysis and distribution of error measurement data.

4. There is no organizational certification.

5. There is no people certification.

6. There is infrequent graspability of the full system functionality.

Ms. Lapassat, whose presentadon preceded Dr. Royce's, and the six speakers immediately

following Dr. Royce, provided some techniques for addressing most of these problems.

While several speakers discussed the need for and availability of good tools, the only speaker in

this session to focus on tool development was Ms. Lapassat. She discussed simulation, testing

and auditing tools for independent evaluadon of the software in NPPs developed for the French

nuclear regulatory agency. These tools focused on testing the control system to see if it met the

required timing constraints by simulating real-time, normal and abnormal operation.

Other speakers discussed tool availability and usage in relation to support for specific processes.

Mr. Berlack focused on the importance of SCM and that organizations need to have both the

tools and processes in place to support CM. Dr. Miller focused on the need for organizations

to support V&V and to use automated V&V test tools whenever possible.

Two complementary techniques were discussed as ways to manage the complexity of large

software projects: CM and reuse. Mr. Berlack strongly endorsed the use of CM as a means of

communicating between the systems and software engineers and maintaining traceability. Good
CM tools can provide a mechanism for tracing the impact of one change on the overall system.

Dr. Miller reiterated this need for CM to trace and allocate requirements to all the development

artifacts (e.g., specifications, code) as a means of supporting V&V.

Ms. Scheper described typical approaches for certifying and reusing software components. She

provided an alternative approach to simplifying complex systems through the certification of

reusable components. Ms. Scheper developed a certification framework for software for high

193

integrity systems. Software components are maintained with the requirements they meet. The
framework grades the requirements and component based on the level of confidence that the

component meets the specification, the level of criticality of the software, and the level of

assurance used to test the software.

Three of the speakers discussed the need for and use of empirical data on the software

development process and software error measurement. Mr. Rone discussed the need for

organizations to use models of error discovery. Dr. Everett addressed the question: "Can we
apply software reliability engineering techniques to safety-critical systems?" Dr. Everett

discussed the test acceleration methods that isolate safety-critical functions for extensive testing

to achieve higher estimates of reliability. Dr. Miller also discussed the use of models to estimate

the numbers and types of errors remaining in a system. Many speakers and members of the

audience agreed that public availability of error data would provide valuable information but that

it is not realistic to expect companies to release this data.

While no speaker directly addressed Dr. Royce's call for certifying an organization's capability

to produce safety-critical software, several speakers discussed the need for organizations to

implement repeatable processes supported by CM. These capabilities are necessary to

establishing a corporate ability to produce software. Both Mr. Berlack and Mr. Rone identified

process definition as a required precondition for an organization to produce useful metrics data.

Without a defined process, it is not clear what the collected data means across different projects.

Mr. Rone linked the production of usable metrics data to quality, cost, and schedule planning.

The speakers also linked process definition, metrics collection, project planning, and V&V
activities to CM. Mr. Berlack explicitly discussed the link between CM and the establishment

of consistent planning, traceability, formal releases, change management, status accounting and

auditing. All of these capabilities are important for an organization to define its software

development process. Mr. Fujii and Dr. Miller discussed the need for CM and specifically

traceability to support a V&V process.

Mr. Fujii discussed software V&V in the context of the system, i.e., software V&V is a systems

engineering discipline that evaluates software as part of the entire system, including hardware,

human operators, and other interfacing software (e.g., operating systems, printers). He provided

guidance on estimating the cost of software V&V based on two concerns:

1. The criticality of system-specific functions and other system parameters (e.g.,

security, usability, maintainability, and performance).

2. Risks of the development environment (e.g., system architecture maturity,

processor technology suitability, development methodology, maturity of

development tools and aids, staff skills, schedule, and software application

maturity).

194

The criticality analysis process requires traceability from system functions to all other

components to define the system behavior and to trace the implementation of the system

functions through all system documentation and code.

Mr. Fujii described a system safety framework that assists in estimating how much of the

software to analyze and test. In modern systems the interaction of software with the hardware,

human operators, and other software elements is more complex and interwoven in the total

system solution than existed previously. The system performance functions must be specified

and analyzed. Software V&V must also analyze the allocation of the system requirements to

ensure that critical requirements are traceable and are allocated so as to make integration and

testing less difficult and time-consuming.

No speakers in this session addressed the other two issues that Dr. Royce mentioned: language

selection or developer certification. However, speakers in other sessions, the panelists in the last

session, and many audience members discussed and debated these issues.

In this session, like the previous technical session, two major themes were the importance of

maintaining and verifying the traceability of specifications across a complex system, and

maintaining the system context for the software. Mr. Berlack discussed the use of CM as a

vehicle for communication between the systems and software engineers because it provides the

mechanism for tracing the elements of development artifacts back to the specifications. Dr.

Miller emphasized the importance of traceability to V&V activities. Mr. Fujii emphasized the

need for systems engineers not only to be able to trace the specification to the design

implementation but to be heavily involved in the software V&V process since the systems

engineers know how the full system, not just the software, should behave. Ms. Scheper also

emphasized the need to understand the requirements on software in the context of a full system

to be able to select reusable software components and catalog those components correctly.

195

Automated Tools for Safety-Critical Software: Ms. Anne-Marie Lapassat

Digital Systems Reliability

and Nuclear Safety Workshop

Automated Tools for Safety-Critical

Software

Anne-Marie Lapassat

LETI(CEA-Technologies Avancees)

DEIN-CE/S F91191 Gif sur Yvette Cedex

September 13-14, 1993 Rockville, MD

197

Abstract

In Prance, the licensing process of nnclear power plants includes

a detailed survey of the nuclear reactor Instrumentation and Control

and in particular of the Protection System which is classified as a

Safety Critical System.

The Safety of such a system is mainly insured by the quality of the

development process including separated tecims for development and

validation. However, before acceptance, an independent evaluation is

realized by Institute for Protection and Nuclear Safety (IPSN), com-

prising a critical examination of the documents, an assesment of the

code quality, an identification of the critical software components, a

choice and preparation of tests cases, and dynamiccd verifications of

consistency and robustness.

To help that Independant Verification &Validation (IV&V) pro-

cess, the tool CLAIRE-OST was developed at CEA-DEIN to cover

dynamical verifications. Ba^ed on the priciple of test by simulation,

it is independant of the specification methods and languages used by

the Safety Critical System Provider and it is flexible enough to allow

different types of modelling and categories of test.

Further development consists of helping the generation of test

cases, based on proof techniques and formal models of specifications.

1 Requirements of IV&V
Applications to be evaluated:

Safety Critical I&C systems are real-time applications and one important

requirement for the evaluation is the possibility to verify temporal specifica-

tions, watch-dogs and synchronizations bewteen components.

They are multi-microprocessors applications and the verification of links

or independancies axe of interest. The real installation is made of a great

amount of microprocessors and hardware components.

They are fault-tolerant, they must detect and manage defaults on the

installation, the instrumentation and themselves.

IV&V environment

The team realizing IV&V, has not generally a physical item of the system

to be verified and at the begining, they could only inspect the documents,

that is the main reason which oriented us toward a simulated environment.

198

They may have successive and quite different types of systems to analyse.

For example, in the case of the french nuclear park, which is quite homo-

geneous, IPSN has to manage in parallel evaluations of SPIN P4 evolutions

and of SPIN N4, plus other systems, all of them using different hardware tech-

nologies, architecture type, and languages. SPIN P4 is based on a M6800
technology and asynchroneous commimications for hardware part, manual

methods of development and assembler language for software. SPIN N4 is

based on M68000, local networks for hardware, and the C language code used

for developing the softwaure is generated from a formal specification.

2 Objectives of CLAIRE-OST Tool

The objective was to produce a software tool cJlowing:

• to simulate a code with an exact representation of its execution on the

target microprocessor;

• to represent every nominal interactions between the software on its

microprocessor, and its environment such as inputs from acquisition

systems, ajid outputs toward display and actuators. The temporal

aspects as well as functional ones had to be represented;

• to describe cind simulate abnormal interactions such as failures on ac-

quisition systems . .
.

, in order verify the behaviour of the code when

defaults occur;

• to introduce defaults on the microprocessor and its memory and to

verify their detection;

• to represent and play test sequences;

• to introduce an observer able to compare expected values to test results;

• to keep preparations and results of test in order to replay the same test

sequences in particular after evolutions of the software.

The result was an event simulator associated with emulators of micropro-

cessors, a system for modeling and simulating real time environment.

199

The first version of OST Cfool for Simulation and Test) accommodated
only one emulated microprocessor, the second one allowed emulation of sev-
eral codes and their environment.

A graphical editor allows one to model and generate the complete test

environment according to the rules of our real time model.
The complete CLAIRE toolset is represented by the following figure where

dotted lines represent non-automated functions:

Test

Interface

description

MOST

Generation
;

Observer

definition

Figure 1: The CLAIRE Toolset

200

3 Simulation Priciples : OST
The structure of the OST simulator is given in fig, 2:

Test Sequences

Envifonmeni

Intertace

stmulalors trace

Figure 2: The Structure of the OST Simulator

Each interface (microprocessor emulators, environment interface, test se-

quences interface) is activated when an event addresses it. When activated,

it executes what is required by that current event, eventually creating new

events and returning control to the scheduler.

An event is a command to be executed at an explicit date. For example,

every modification of a variable of the simulated system will be the result of

an event:

• At time 500ms Modify the variable THRESHOLD with the value 56.

Execution of the next instruction of the microprocessor code will be em-

ulated at the occurence of an event:

• At time 501ms Execute current instruction FU4-

201

Time evolves with the Date of execution of the current event, an interface

started by an event works in nvl virtual iime, but may generate delays. The
date of execution are always explicit and the simulation works in virtual time.

The environment model is structured in modules themselves made of

PROCEDURES which are the Active Units of the simulation. Each proce-

dure is activated at the occurance of an event modifying a certain variable,

which -is a signal, when it starts executing calculations, and creates new

events at the current time (execution in null virtual time) or with a delay

and returns to the scheduler.

The microprocessor code emulators are commercial that were interfaced

with the tool imder the following conditions:

• The emulators accept step by step simulation and may save and restore

their context (register and memory).

• The emulators eJlow themselves to consult and modify their context.

When integrated, every emulator is able to work in parallel, this means

that an application may be made of two M68000 and two InSOSl micropro-

cessors. For example, if you are testing the interaction of calculation codes

communicating via network controllers.

With that real time model of simulation, we are able to model the real

time behaviour of pairallel systems. The tool is of course able to simulate

without the microprocessor code and in this case, we apply to verification of

the specifications.

4 Graphical description : MOST
The graphical description tool MOST gives the user a mean to develop his

test model under the rule described above. It automatically generates the

complete simulation application and insures a lot of coherency verifications.

MOST supports a top-down structured data-flow analysis simular to a

SADT description. The intermediate nodes may be systems, subsystems or

interface modules, the terminal leafs will be microprocessor code, or a test

sequence, or an interface procedure. Every data exchange must be described

with MOST, the procedural actions are necessarily introduced by the user

into each procedure under MOST control.

202

When the description is ready for simulation, the complete simulation

code is generated and linked to run the simulation.

Figures 3 to 6 present different levels of an application description with

MOST.

• Figxire 3 represents the higher level with the name 'GVA' of the appli-

cation.

• In Figure 4, we see the first level structure with the component *.GVA1'

which is the code \mder test and the two subsystems: "ENV is the

.GVAl environment and represents its inputs and outputs, "SCTRL" is

the observer and models the on-line varification of the .GVAl 4- ENV
behaviour compared to expected results.

• Figure 5 gives the structure of "ENV" which in this ccise is made of

environment modules.

• Figure 6 is the lower development of one of ENV's modules with the

procedures and their starter variables defined.

The data-flow links are input, when they enter the left part of a compo-

nent, output when they start from the right side, input and output on the

top.

203

G VA

Figure 3: Global structure of the application GVA (Alarm Panel)

204

$CTR L

Figure 4: Application GVA is made of a code .GVAl, its environment ENV
and the observer SCTRL.

205

DEMAR

$CAPT

BTON

$OPER

CORREC

Figure 5: Module structure of ENV

206

*Out

T CRL
%PCTRL

•XT

Figure 6: Lower Procedure structure of SCTRL

207

5 Results analysis : TRAS
TRAS tool uses the results of a simulation which is a sequence of temporal

evolutions of every variable the user declares to be surveyed. This concerns

evolution of values and also traces of passages on surveyed addresses in the

emulated micro-processor code.

Temporal windows are determined by conditions on values and dates of

evolutions of the variables, and graphical representation of evolution may be

interactively requested by the user.

The types of presentations are graphical curbs of values, chronograms,

and histograms- In paxedlel, tables of evolutions may be presented.

Prom the execution traces of surveyed addresses, TRAS may present the

branch coverage of a test campaign, the histogram of nimoiber of execution of

code of nodes of the control diagram or cumulated execution times on each

branch of code.

6 Tests Preparation

CLAIRE toolset does allow the execution of the different types of test. The

interface description allows more or less detailed modeling of interactions

between the code and its simulated environment and in particular it is easy

to verify that the code detects defaults of its interfaces such as wrong input

values, wrong synchronizing

The possibility of modifying simply the context of the micro-processor

code allows the user to chose parts of the code to be simulated and in an

rV&V environment, the user may determine critical software components

and apply them a higher level of test. The user may also inject defaults and

measure the detection.

The determination and generation of the test sets are not automated in

CLAIRE but serveral ways are under study and tools that should assist the

user:

• One of them consists of determining by Hoare proof techniques, the

logical condition to execute a branch of code. A prototype tool OST-

GEN developed at IPSN helps to do it then calculates test sequences

fulfilling the conditions;

208

• A similar method using MALPAS tool allows to express critical con-

ditions, to calculate the logical condition on inital values of vcuriables.

Solutions of the logical condition are possible scenarios leading poten-

tially to the critical condition. That method is the theme of a study.

7 Description of the Observer

The observer is modeled by the CLAIRE user according to its needs. It will

represent, for example the calcxilation of variables, theoretical evolutions plus

the comparison every n cycles of a calculation. An alarm is sent to the user

when the difference becomes greater than the tolerance value. It may also

be the expression of a property that must cilways be fulfilled plus an action

when that property becomes false.

The CLAIRE user describes to the observer part of his simulation envi-

ronment in exactly the same way eis the other description environment and

it will be generated with the whole application.

8 Conclusion

The first version of CLAIRE toolset was delivered in 1987, it consisted of

the GST simulator, in a mono-microprocessor version and with the M6800

emulator. The environment and test sequence description were written in

a special Pascal-like language with temporal features. With that first tool,

units of the protection system SPIN P4 of PWR 1300MW were analyzed,

critical software components were exhaustively teste. The branch coverage

of standard test sequences was measured.

Emulators of M68000, In8086 and In8051 were introduced and in 1990

we produced a multi-microprocessor version able to simulate an application

with several codes.

The graphical description and Test Environment generation MOST was

delivered at the beginning of 1992 and was used to model and simulate SPIN

N4 units.

In 1993, we replaced the simulator part with a new one. The environment

is now described in the C language and is greatly more pwoerful. The per-

formances of the simulation are largely increased. The TRAS tool is being

209

delivered at the end of 1993.

Further development concerning tools to assist the test generation and

to automate the verification of properties either during the simulation, by

generation of observers or at the phase of result analysis.

210

6.1.1 Questions: Ms. Anne-Marie Lapassat

QUESTION: HERB HECHT (SoHar, Inc.): What kind of malfunctions or faults have you

detected?

MS. LAPASSAT: In fact, on the P4 version of SPIN we detected only very minor faults. We
never detected faults in software protection.

QUESTION: DORELLE RAWLINGS (Sorrento Electronics): You talked about virtual time

in the simulator. How do you verify that target system timing aspects and order of execution are

really adequately represented in the simulator?

MS. LAPASSAT: Yes. I think we are able to model temporal specs with special instructions.

In the fourth version of the simulator it was with a special language manipulating the time. We
are in a position to model the time actions. With a standard language, we generate C code and

we explore every possibility to model any type of interaction of temporal interaction. In fact,

we made an hypothesis on temporal interactions and we described that hypothesis. We wanted

the code to record that hypothesis, but you can represent any model of time.

211

6.2 The Risks of Safety-critical Systems: Dr. Winston Royce

The Risks of Safety-critical Systems

Winston Royce

TRW, Inc.

[edited from transcript]

Dr. Royce identified the following six areas of concern with regard to safety-critical systems:

1. Safety-critical systems are implemented in the wrong languages.

2. There are not enough tools for safety-critical systems development.

3. There is insufficient analysis and distribution of error measurement data.

4. There is no organizational certification.

5. There is no people certification.

6. There is infi^equent graspability of the full system functionality.

While a newcomer to nuclear safety-critical systems, I have worked on many systems for which,

if the system failed, human life would be at some risk.

The first area of concern is languages, which is the starting point for all programmers. All

predictions to the contrary language development and language technology are not dead, and C++
and ADA are proof of that. Languages in use today typically require compilers that produce

efficient code and that compile reasonably quickly. In addition, current languages and compilers

tend to have semantic debugging features and features aimed at reducing error latency rates;

however, these languages are the wrong choice for safety-critical software applications.

Choosing a language for safety-critical software development should begin with a different

perspective that focuses on the elimination of errors. This perspective forces the developer to

compromise efficiency and productivity. There are languages which provide semantic features

and inherent self-checking of these semantic features to certify that certain error types are not in

the code; however, almost no one uses these languages. The languages we use today do not

provide this self-checking.

There are problems with our current language choices. For example, the object-oriented coding

world has received little criticism; however, there is a problem with dynamic binding. When a

programmer uses it heavily, it makes a program hard to debug, hard to understand and hard to

trace. It is even difficult for a programmer to scan his own code and have any chance of tracing

through it and determining how the compiler will bind some polymorphic function at run time.

For safety-critical applications, we may have to restrict or prohibit the use of dynamic binding.

213

Another example, is the ADA tasking statement. This is a powerful semantic feature particularly

valuable for real-time distributed processing; however, it cannot be turned on in safety-critical

applications because it allows time critical errors such as race conditions and deadlocks to

develop. Debugging race conditions and deadlock conditions is an extremely difficult job. While

ADA has some wonderful error detection features for the development of safety-critical systems,

it needs an inherent semantic checker on the use of tasking. While tasking is a desirable

semantic, it is also an error-prone one.

These are two examples of very advanced semantics which the C++ and ADA proponents argue

for strenuously as virtues of the language which I believe are error prone. Compilers for safety-

critical systems should give up some of these features or certify their correctness.

While there are some tools, there are not enough tools because safety-critical software is largely

going to have to be tool-based, not human-based. To develop safety-critical software will require

the use of tools which restrict the programmer's creativity but prevent and detect errors.

Reasonable people should learn to put up with this restriction.

While claiming there are no error measurements is an exaggeration, there is a lack of analysis,

dissemination and use of the measured errors. The development process should change based

on these errors. Currently, there may be changes on individual projects based on error rates, but

not changes on a broader scope. Almost all big software projects measure software errors and

require these errors to be formally logged and dispositioned. There is a need for error collection

on a wider scope. The Defense Department or the Nuclear Regulatory Commission should

collect these errors, and classify them by type so that the industry can know which errors are the

most common. The treatment of this type of information should be analogous to the way the

federal government keeps records on the cause of death as listed on individual's death

certificates. These statistics are used to guide federal research spending, medical school

curriculums and insurance company activities. Similarly, government, academia and industry

should use knowledge of software error rates to plan which errors to go after in a concerted way

through changes in practices and tools. We also need to develop mechanisms for certifying that

common errors have been eliminated from software. This is one way to get a step closer to

certifiably correct programs.

While I am culturally opposed to cerdfication of people and organizations, I advocate both. If

organizations had to keep track of their errors and publish them, 1 would like to see the Defense

Department and the Nuclear Regulatory Commission use these rates when awarding contracts and

force the corporate world to worry about this. These rates would be analogous to the SEI

methodology evaluation scheme which acquisidon commands roudnely use. This scheme has

brought great attendon to methodology issues. I would like to see someone do the same thing

with errors.

While certifying people is the hardest part to talk about, there are some programmers, designers

and requirements analyzers who are better than others. Not everyone has equal talent and skills

214

in these areas. If the worry is about errors, then people have to take tests and be qualified just

as doctors or lawyers are and the weaker individuals must be weeded out.

The last point is the question of graspability. Errors are higher in systems when the people who

use, test, and build the systems cannot fully grasp the system they are building, testing, or using.

It's particularly noticeable now with distributed systems. Software designed for one arithmetic

register was much easier to understand than software designed for heterogenous networks with

upwards of 30 mini-registers requiring parallel or concurrent programming. It is very hard for

a very good programmer to grasp the enure system that he is trying to build. This leads to

errors. There is a need for system engineering or architectural tools which permit the builder,

the program manager, the testers, etc. to understand what is going on in the entire system.

215

6.2.1 Questions: Dr. Winston Royce

QUESTION: DR. JOHN McHUGH (Portland State University): For over a decade I have been

trying to get my hands on the kind of error data that you're talking about. Are you offering to

make available to the research and the industrial community TRW's error rate data and error data

for their projects? If so, I would like to talk to you about it off-line.

DR. ROYCE: No, I'm not. I'm not empowered to do that, and I hope you understand the

sensitivity. I didn't speak to that. To admit you make errors and give the actual statistics, when
you're threatened by the fact your error rate may be higher than a competitor, is tough.

DR. McHUGH: This is exacdy the reaction that I've run into. I really think that it is

unconscionable in safety-critical areas for companies to consider both the process by which they

develop software and the results of that process as proprietary. I think the public interest

demands that all of those things be made public.

DR. ROYCE: Well, I agree with you totally, John, and while I can't do it, I'll work my level

best to provide you the data, or any other group such as you. The quesdon is not that one

company do it, it's that all companies do it.

DR. McHUGH: Thank you. It sounds like the regulatory people have an item for their agenda.

DR. ROYCE: They've got the power to make it happen.

QUESTION: GUSTAV DAHLL (OECD Halden Reactor Project): That was a very interesdng

speech, but I have some comments on this. You're saying that you should go for statistics on

errors or faults which were most common. My impression is that the dangerous faults are not

the ones which are the most common, the programming faults, but the dangerous faults are the

faults inherent from the wrong specification because they repeat throughout the process. These

faults don't come out undl the product is in use and probably result from a misunderstanding.

DR. ROYCE: I wouldn't disagree with that a bit. I tried to keep my ideas simple and within

25 minutes. But obviously the most common error may be sort of trivial in terms of its

consequences. You kind of need a weighing factor that has to do with the importance of the

error in terms of the degree of catastrophe as well as its frequency of occurrence. I agree totally

with your idea.

QUESTION: DR. JOHN KNIGHT (University of Virginia): Could you expand on your bullet

three on people certification, what you think that might involve and how it might be

administered?

DR. ROYCE: Well, a potential way is for an acquiring organization-it could be a state, it could

be the Federal Government, it could be a body of either the state or the Federal Government-to

simply put together some kind of test and ask that programmers pass it and they receive a sort

216

of certification, and in bidding any of these jobs only certified programmers and designers can

be used.

QUESTION: KOFI KORSAH (Oak Ridge National Laboratory): What are the possibilities of

making software open to scrutiny, just like you can design a system where you have circuit

diagrams in your manuals and they are open to scrutiny; what are the possibilities of making the

software also open to scrutiny?

DR. ROYCE: Scrutiny? I thought you meant open as in open systems, which you'll notice I

didn't mention, because it's just one more source of error. Open to scrutiny? Of course. I mean

every logical step should be open to scrutiny. I don't think eyeballing it is going to help much

though, but open to scrutiny in the sense of the acquiring organization, or an independent V&V
team, or a user group bringing in their own tools and executing them on the software. Since I

do believe it's beyond scrutiny in the sense of eyeballs, code should be entirely open to scrutiny

in the sense of test tools.

217

6.3 Integrated Modeling of Software Cost and Quality: Mr. Kyle Y. Rone and
Ms. Kitty M. Olson

INTEGRATED MODELING OF SOFTWARE COST AND QUALITY

Kyle Y. Rone and Kitty M. Olson

IBM Corporation

3700 Bay Area Blvd.

Houston, Tx. 77058-1199

ABSTRACT

In modeling the cost and quality of software

systems, the relationship between cost and quality

must be considered. This expUdt relationship is dic-

tated by the criticality of the software being developed.

The balance between cost and quality is a viable soft-

ware engineering trade-off throughout the life cycle.

Therefore, the ability to accurately estimate the cost

and quality of software systems is essential to providing

reliable software on time and within bvidget.

Software cost models relate the product error rate

to the percent of the project labor that is required for

independent verification and validation. The criticality

of the software detennines which cost model is used to

estimate the labor required to develop the software.

Software quality models yield an expected error dis-

covery rate based on the software size, criticality, soft-

ware development environment, and the level of

competence of the project and the developers with

respect to the processes being employed.

INTRODUCTION

Software cost and quality engineering is a system-

atic approach to estimating, measuring, and controlling

cost and quality. This discipline provides the vital link

between the concepts of economic analysis and the

methodology of software engineeiing. The tasks

involved in software cost and quality engineering are

complex, and individuals with the knowledge and skill

required are scarce (DeMarco 1982; Putnam and Myers

1992). The accuracy and consistency of the software

cost and quality estimates are often questionable

(Kemerer 1987). There is a definite need to improve

modeling and sitnulation of software costs and quality

using knowledge-based tools and to improve the accu-

racy and consistency of the results (Boehm 1987).

Viable software cost and quality modeling

depend on a quantitative historical database. Past

experience in managing large software projects, such as

the Space Shuttle Primary Avionics Software System

(PASS), illustrates that axxurate cost and quality esti-

mates based on reliable historical data are essential to

software planning and program management. Over the

past 17 years the Federal Systems Company (FSQ has

collected extensive data ftom the National Aeronautics

and Space Administration (NASA) projects and other

software development projects. This historical data-

base of software metrics includes source lines of code,

productivity rates, and mor rates for more than 250

projects. This data provides the basis for the software

cost and quaUty models (Rone 1990).

SOFTWARE LIFE CYCLE COSTING

Software systems are historically late and over

budget. A recent General Accounting Office study

pointed out that a majority of the software systems

studied sustained substantial cost oveiruns and serious

schedule slippages. Accurate labor estimates based on

reUable data for software size, productivity, and error

distribution are essential to software plaiming.

The standard Rayleigh curve models the typical

build-up of staff during the requirements and design

phases, the peak at implementation, and the tail-off

during the testing phase (Putnam and Myers 1992).

Figure I illustrates the staffing profile for an ideal

project. During sustaining engineering, a minimum
level of critical skills is required for effective mainte-

nance. This steady-state staffing level forms the

support line. It includes critical skills for requirements,

design, implementation, testing, and management. The

support line is a function of system size, produrtivity

rate, and the unique sldll requirements for the software

system being maintained. In Figure 1 the area below

the support line and above the maintenance tail of the

Rayleigh curve represents the capability for new devel-

opment work.

219

Tlma

Figure I. Staffing levd modeled as a Rayldgh curve.

As shown in Figure 2 sustaining engineering

operational increments also conespond to Raylei^

curves. Each sustaining engineering effort can be

modeled as the sum of a sequence of such cun^es. The
sizing and scheduling of new development activities

should be planned to provide a stable level of effort as

illustrated by the total development line. Software

maintenance which handles Problem Reports can con-

tinue at a lower support level as illustrated by the total

maintenance line. The total development line should

not fall below the critical skills required by the project

as determined by the initial staffing model.

Figure 3 illustrates the software cost estimation

process. Modeling software cost is based on the tech-

nique of stepwise refmement. This technique involves

decomposing the software system requirements into

software ftinctional components. These components

are further decomposed into as many independent ele-

ments as possible. Decomposition terminates when-

ever a reused software element or a

Commercial-Off-The-Shelf (COTS) software product is

identified or whenever the component is decomposed

to the lowest level. The software elements and the

COTS products are sized and classified according to

release, language, complexity, and criticality.

An estimate of software size is critical to

obtaining an accurate estimate of the labor required to

develop a software system. Size is an important factor

that ultimately aft^ects the accuracy of the labor esti-

mate. For example as the the size of the software

system increases the interdependency among various

elements of the software system also increases.

• Total O«valop(n«nt
ir Total MainlManc*

•
>

8EOI Sustaining Cngh»««ilrig O Mfvtiond IncfWTWfit

•

c
B
m

/ CCQI 0% fl SOI €» WEOi o

Tim«

Figure 2. Sustaining engineering dTort modeled as a

sequence of Rayleigh curves.

Release represents either an incremental product

release, a release of the software devdopment environ-

ment, or the learning curve associated with the soft-

ware development process. Language is the

programming language in w^ch each software compo-

nent will be implemented.

Complexity, the relative (KfBculty of the software

fimction, is an important factor affecting development

costs. Some types of software systems are more diffi-

cult to develop than others, e.g., development of an

operating system compared to the development of

utiHty software. Software complexity is based on three

primary factors:

• Constraint Considerations - Constraints such as

performance, timing, or space are considered a

factor in determining complexity if they become

"critical." A critical constraint is one which will

require functional or logical design trade-offs. This

includes user imposed constraints, such as expense

and production schedules, as well as installation

imposed constraints such as hardware, software,

operation scheduling, storage, and standards.

• Interface Requirements - Addresses whether intri-

cate interfaces, either hardware, software, or human
must be defmed.

• Software Classification - Addresses software com-

plexity based on the t>pe of software operation

being developed; control, computational, device-

dependent, or data management.

Criticality is the le\ ei of eftect of a failure of a

software component. Software for certain medical

diagnostic or treatment s>5Tems, air traffic control, or

220

the Space Shuttle's PASS must not fail or human lives

could be lost. In contrast, an inventory control system

should not fail, but the impact of the failure would not

result in the loss of human life .

As shown in Figure 3 these inputs—size, release,

language, complexity, and criticality—are used by the

cost model to generate an estimate of the labor

required to develop the software components.

REQUIREMENTS
INPUTS MOOa

FlMimAL
BREMXm

W,OOO^JDC

SIZE

Release

Language

Complexity

Criticality

OASSmCMlON

o

CALCULATIONS

oDoa
ooaa
aooaDoa
r—

)

PKXXSS

I I I

PROOUCJMIY

PHOJECr FACTOR

d d d d

9
OUTPUT

FVNCTION DB/ELOPUEM

ESTIMATES
EFFORT TEST OTHER TOTAL

Figure 3. Modeling the software cost estimation process.

COST AND QUALITY RELATIONSHIP

In modeling the cost and quality of software

components, cost and quality can be traded against one

another. By attempting to minimize development

costs many projects simply defer error correction into

the product time frame where the cost of error cor-

rection is more expensive. To prevent this from occur-

ring a careful balance of product cost versus product

quality must be established. The relative trade-off

between cost and quality is dictated by the criticality of

the software component being developed.

The criticality level determines which cost model

IS used to estimate the labor required to develop a soft-

ware system. For example, a softv'. axe component clas-

sified as low criticality, will incur veriQcation costs and

indirect costs which are a relatively low percentage of

the overall total development cost. In contrast, a soft-

ware component which is classified as high criticahty,

wiU incur verification and indirect costs which are a rel-

atively high percentage of the overall total development

cost. This relationship is iUusirated in Figure 4.

Each cost model is associated with a specific

product error rate. For e.xample a low criticality cost

model may be related to a product error rate of one

error per one thousand source lines of code. Similarly,

a high criticality cost model may be related to a

product error rate of one tenth (0.1) error per one

thousand source Lines of code.

221

40-

1 \

aa.

IV*V
%
OF

PROJECT
LABOR

20-

10-

12 3 4

PRODUCT ERROR RATE <ERRORS/KSLOC)

Figure 4. Product Error Rate versus Independent Ver-

ification & Validation (IV & V) Percentage

of Project Labor

SOFTWARE LIFE CYCLE QUALITY

Since the software development process is

complex, ample opportunities exist to make errors.

Many of these software errors wUl be discovered and

corrected before delivery. Therefore, it is essential that

a project predict an expected error discovery curve. As
shown in Figure 5 the standard Rayleigh curve models

the error discovery curve of a typical project (Kan

1991). The area under the curve represents the total

number of errors inserted into the software system. By
comparing the actual error discovery rate to the

expected error discovery rate, management can judge

whether work is proceeding within expected bounds.

As shown in Figure 6 the system requirements

are fu^st decomposed into software functional compo-
nents. These components are sized and classified

according to release, criticaiity, project proficiency and

development proficiency. Project proficiency repres-

ents the level of competence of a project with respect

to their processes. Project proficiency determines how
many total errors will be inserted in the product per

one thousand source lines of code. Development pro-

ficiency represents the level of competence of the devel-

opers with respect to their process. Development

prciiciency determines the total number of errors that

Incpectloni < Proc«ss Product

>
a
_i

o /
1

ui

Tlmo 1

Figure 5. Error discovery modeled using a Rayldgh
curve.

~

will be discovered and corrected eariy in the develop-

ment cycle. The criticaiity level determines the product

error rate.

As illustrated in Figure 6 these inputs—size,

release, criticaiity, project proficiency, and development

proficiency—are used by the quality model to generate

an expected error distribution partem of early, process,

and product errors.

SUMMARY

Software now controls not only the nation's tele-

phone communication system, but everything from

sophisticated medical diagnostic equipment to the

world's fmancial systems. As software systems increase

in both size and complexity, the cost of developing

these systems rises. With ever increasing size and com-

plexity software errors become inevitable. Reliable

software on time and within budget is contingent on
accurate, timely software cost and quality estimates.

Software cost and quality models provide the

capability to quickly generate estimates for diverse

types of projects. Changes in assumptions such as size,

complexity, or criticaiity are easily factored into the

cost and quality estimates. These estimates can be

phased across time to determine if the staffing profile

or the error density is too steep at certain points in the

process. Integrated software cost and quality models

provide the information needed to effectively plan,

manage, and conirol the software development process.

222

INPUTS
REQUIREMENTS ,

.

MODEL

DBMS

NOS

OS

RJNCmNAL
BREAKDOWN

10.000 SLOC

SIZE

CALCULATIONS

Release

Criticality

Profidency

OASSinCAWN

oaoo
oaao
oaaa

9
OUTPUT

PROCESS

ERROR RATES

EARLYmtCWN

%

RELAmmCOST

c

FUNCWN EARLY

ESTIMATES
ERRORS

PROCESS PRODUCT TOTAL

Figure 6. Modeling the software quality estimation process.

REFERENCES

Boehm, B. W. 1987. "Improving Software Produc-

tivity." In COMPUTER, vol 20, no. 9 (Sept.), 43-57.

DeMarco, T. 1982.

Yourdon Press.

Controlling Software Projects,

Kan, S. H. 1991. "Modeling and Software Develop-

ment Quality." In IBM Systems Journal, vol. ."^0, no. 3.

351-362.

Kemerer, C. F. 1987. "An Empirical V'.didation of

Software Cost Estimation Models." In COMMUNI-
CATIONS of the ACM, vol. 30, no. 5 (May), 416-429.

Putman, L. H. and W. Myers.

Excellence. Yourdon Press.

1992. Measures For

Rone, K. Y. 1990. "Cost and Quality Plarming for

Large NASA Programs." In Proceedings of the Fif-

teenth Annual Software Engineering Workshop (Nov.

28-29). NASA, Greenbelt, Maryland.

223

6.3.1 Questions: Mr. Kyle Y. Rone

QUESTION: MICHAEL NOVAK (Combustion Engineering): I think you talked a little bit

about error conditions, error analysis, that we wouldn't want to release software for, but I'd like

to know do you use any of these methods to determine when to release your safety-critical

software?

MR. RONE: Absolutely.

MR. NOVAK: And, if you do, how do you use them, what levels do you assume, and what

confidence do you have in releasing software in this way?

MR. RONE: We collect this data. We collect the cost data and the quality data, schedule data,

and once a month, as we go through our processes, we look at that data and make sure that it's

consistent. If you look at process models and if you do them correctly, there is a process with

an input and an output, and there is also entry and exit criteria for each of those process steps.

We use this information. We mark special milestones in there and we call them "control points."

When we hit those points we must stop and examine the current entry and/or exit criteria and we
use that information to either shut down the process or turn it loose. In particular, we do that

at major customer milestones like when the software is turned over to independent verification

and then when it's turned over to the customer. The customer is well aware of all of these

models and this data. We sit down with the customer go through the analysis of the data and

we make a joint decision with them as to whether to proceed with the process or not. So, we
very much make use of this data, and it's saved us from disaster many, many times.

MR. NOVAK: Could you state what your confidence is as a result of using these measurements,

what confidence you have in these measurements?

MR. RONE: Our confidence level is as high as it absolutely can be. In fact, when we go to

the Cape and we sit down with all of the people involved in developing the shuttle, a meeting

is held-and it's videotaped by the way--where everybody, every developer of each component,

goes through and declares their component ready to fly. And so that's the kind of confidence

level we have. We stand up and state our part is ready. We've looked at the data. We've

looked at the analysis of errors that we've found, and we're confident that it's ready to fly.

Other than that level of confidence, I don't know what you can express.

224

6.4 Software Reliability for Safety-Critical Applications: Dr. William Everett and
Mr. John Musa

Software Reliability for Safety-Critical Applications

Bill Everett and John Musa
AT&T Bell Laboratories

In this talk, we address the question "Can Software Reliability Engineering measurement and

modeling techniques be applied to safety-critical applications?" Quantitative techniques have

long been applied in engineering hardware components of safety-critical applications. We have

seen a growing acceptance and use of quantitative techniques in engineering software systems

but a continuing reluctance in using such techniques in safety-critical applications.

The general case posed against using quantitative techniques for software components runs along

the following lines: safety-critical applications should be engineered such that catastrophic

failures occur less frequendy than one in a billion hours of operation; current software

measurement/modeling techniques rely on using failure history data collected during testing; we

would have to accumulate over a billion operarional hours to verify failure rate objectives of

about one per billion hours.

However, a case can be made for using quandtative techniques. It proceeds along the following

liens: isolate safety-critical funcdons; establish the level of processing associated with each

safety-critical funcdon; use test compression techniques along with measurement/modeling

techniques to verify objectives. Cases exist where we can verify very small failure rate

objectives in a reasonable period of test dme. These notions will be expanded on in the

following.

First, for many safety-critical applications, it is not the entire applicadon that is safety-critical but

only certain functions that are safety-critical. For such applications, safety-critical functions

should be isolated to a few software modules and care taken to prevent interactions with other

modules in the application. We can then focus on measuring/modeling the reliability of these

few modules to insure objectives are being met.

Second, we can take advantage of differences between "operational time," i.e., the time the

application is active; and "processing time," the time spent processing instructions in the software

module. It is a module's "processing time" that is a measure of the stress imposed on a software

module that may lead to failure.

For some applications; the processing time associated with critical functions may represent a

small fraction of the operational time. This opens the door for "test acceleration" where we can

simulate the passage of a large amount of operational time in a reasonable test interval. Some

225

examples are discussed, in particular, the testing of planetary probe navigation/maneuver

software.

Although the above example is not intended to be an all-encompassing approach, it does show
the possibilities for quantitatively certifying that high reliability levels have been attained for

specific critical functions.

Let's contrast the above with the current alternative commonly followed for certifying safety-

critical software. This approach stresses the use of particular processes and practices in

developing safety-critical software. There are problems with this approach. First, we don't have

a quantitative understanding of the relationship between these processes/practices and the

resulting software produced. Second, software engineering is in a state of flux with new
processes and practices emerging. Again, we do not have quantitative techniques for assessing

the affect of new processes/practices on the reliability of the software produced.

So where does this leave us????? We propose that in the future we need to invest more in

applying software reliability measurement and modeling to safety-critical software; to supplement

the current approach of certifying the quality of the development process. We need to establish

a better climate that encourages industry to (1) apply more reliability measurement/modeling

techniques, (2) stimulate the emergence of new measurement/modeling techniques. Industrial

experience in applying measure/modeling techniques will stimulate their refinement and

enhancement. Unfortunately, the current climate of the economy and standards for safety-critical

software do not contribute to either (1) or (2) above. The current wording in standards gives no

incentive to companies to invest in reliability measurement/modeling methods for software.

226

6.4.1 Questions: Dr. William Everett

QUESTION: DR. LANCE A. MILLER (SAIC): Yes, Bill. In explaining your cumulative
error curves, presumably that's performed on a single version of a program. How do you feel

about the assertion by some that once one of those defects is repaired you're dealing with an

entirely different computer program, so any historical data now is invalid, so now you must
perform this error check over again from the start?

DR. EVERETT: Some of the reliability models and some of the methods we use take into

account that error repair is not perfect. In fact, we put it in and you can put it back in. In terms

of throwing out all the data which you have, you've got a lot of software there that you've

already exercised in a number of different ways, you know, that may not depend on the particular

area in which you made that error repair. So, I think throwing all that data away is wrong. I

think you're really doing an injustice too because especially in the safety-critical area we rely a

lot on using our history data because we have so few failure occurrences.

DR. MILLER: I guess that's the point. It's not my decision especially, but the point is you

don't know what areas of the code you've affected by making a change. You can make some
assumptions. But the conservative approach is you don't know so you need to start over. Do
you disagree with that?

DR. EVERETT: I disagree with it.

QUESTION: GREG MILLER (Idaho National Engineering Laboratory): There seems to be

a magic number of 10"'' failures per demand brought up as a maximum reliability that one might

be able to use by following a very well-defined prescribed process. What I'm getting at is that

some have advocated that following your process allows you to assume that you have reliability

at least of 10"''.

DR. EVERETT: That's news to me and I don't know how you can do it right off. Maybe the

10"^, I have seen that come around because of this testing figure. How much can you test in

terms of processing and how many test hours do you accumulate to verify a particular project?

Once you get up to about 10"^ or lO"'' hours you're getting into, what a lot of large projects

dedicate for a testing cycle, 3 to 4 or 5 months, so maybe that's where the number came from.

But magically saying, "If I follow this process the most I can hope to get is 10"''," unless you can

associate a model that shows you where that measurement came from, I don't know whether you

can say it.

QUESTION: WILLIAM D. GHRIST (Westinghouse Electric): Two questions basically. One

is that I don't understand where the correlation is between the probability of errors in the

software, the probability of detecting them, and just plain ordinary execution time. If you

execute a piece of code one time in a particular circumstance and it doesn't fail, it doesn't make

any difference whether you execute that for one more time or a million more times it's not going

227

to fail. The real idea is that the failure is only going to turn up if you execute it in different

ways, not for a specific amount of time.

DR. EVERETT: That's true. And one of the assumptions we've made, and especially what we
do in a lot of our commercial projects, is we simulate operation, placing telephone calls. We'll

select randomly particular calls being made. Now, one particular call may go through the code

and execute in exactly the same way, but that call, interacting with another possible call, is where

we can possibly begin uncovering failures that result from the interactions between things going

on.

MR. CHRIST: But it's not clear to me that that's correlated with execution time though.

DR. EVERETT: Again, if you look at the software and the stress that we can place, we can

make assumptions about the way we're executing it in terms of forcing us to move down certain

paths and to encounter a particular fault and encounter it under just the right conditions that cause

a failure then that's what a lot of this is based on.

MR. CHRIST: Yes. You didn't seem to address at all the idea that experience of testing code

is one of the less effective ways of finding errors in it. Inspection and analysis generally find

most of the errors in the code, not the testing of it, and where does that fit into this?

DR. EVERETT: That's been our observation too. There has been too much testing to analyze,

let's test quality at the end, and in our practice we're trying to move that further back into the

process. One of the things we have found is to at least orient our testing toward measurement,

making testing more of a measurement process, rather than a bug finding process. This is

forcing us to now go back and set objectives and define usage of the product in terms of things

we call an operational profile. It is changing behavior. We find our testers now are going out

and visiting customers' sites in order to characterize operational behavior and actually

participating in setting reliability objectives because they need this information to test the

product.

228

6.5 Software Configuration Management for Safety-critical Systems:
Mr. H. Ronald Berlack

SOFTWARE CONFIGURATION MANAGEMENT FOR
SAFETY-CRITICAL SYSTEMS

H. Ronald Berlack

Configuration Management International

presented to:

Digital Systems Reliability and Nuclear Safety Workshop
Sept. 13-14, 1994

Rockville Crown Plaza Hotel

Rockville, MD

Abstract

This paper describes how the Software Configuration Management Process (SCM) can contribute

to the successful accomplishment of development and maintenance of Safety-critical Software

in the Nuclear Reactor System's environment. SCM is the management of the software product

as it evolves through development and operates in a designated system. SCM acts as a

communicator for the development/maintainer activities through the process of identification of

the software product's requirements, design and associated interfaces, establishing baselines,

managing changes, reporting status and performing audits.

229

I

INTRODUCTION

CURRENTISSUES:

The evolution ofanalog processing of signal and sensor data in the nuclear reactor

^stem has caused a valid concern that "....the software and hardware fon..computer systems

could be vubierable to design and programmmg errors that could lead to safety-significant

common mode failures" [1]. The basis of this concern is derived fi-om the use ofa collection of

single parameter configurations for analog Instrument and Control Systems (I&C) versus the use

ofshared computer systems employed in distal I&C systems. In analog systems, the means to

data flow is "hardwred" . In digital systems, data flows firom many sources of signals and sensor

information to a central or shared computer for processing and analysis. The eventual concern for

sharing is one of reliability and that the use ofthis system "can result in a design that has the

potential to propagate common mode ^ure ofredundant equipment. The loss would be greater

than analog system failures" [1]

.

The other key concern is that software errors resulting in common mode failures can

defeat all ofthe redundant channels in a protection system even ifthere is a minimum ofshared

systems. [1].

The goal, then, is to limit the probability ofthe occurrence ofcommon mode failures

associated with digital computer technology and limit the external loss offimctions in the

monitoring, control and safety systems. [1]. This is a goal that can be helped by the employment

of a Software Configuration Management (SCM) process that is promoted by top management

and accepted by the developing and maintaining personnel on a project or at a nuclear site.

The SCM process cannot solve these concerns, but an SCM process with appropriate

management authority and acceptance can be a valuable aide in assuring that the goals as stated

have been achieved.

NRC IMPLEMENTATION OF THE SCM PROCESS:

The NRC has not ignored the need for SCM nor the fact that it is important to the success

of any project. In January 1983, N.P Wilbum, et al published the Guidelines- Software

Configuration Management, HEDL-TC-2283 for the Hanford Engineering Development

Laboratory [2]. The ASQC, Energy Division is currently preparing a Configuration Management

Standard (DRAFT 8 May 1993) in "terminology that can be applied commonly throughout the

energy industry" [3]. The ANSI Standard, CRITEIUA FOR DIGITAL COMPUTERS IN

SAFETY SYSTEMS OF NUCLEAR POWER GENERATING STATIONS,. P-7-4.3.2, draft 8,

cites the SCM requirement in para 5.3.5. [4] This paragraph also states that SCM shall be

performed in accordance with ASME Publication 880, Software for Computers in the Safety

Systems of Nuclear Power Stations, 1986, clause 7.3, has a strong statement for configuration

control. [11]. The appendices of Publication 880, provide excellent check lists for reference in the

performance of SCM. Additional guidance is also cited in NQA -2a- 1990, for IEEE Standard

828-1990, Standard for Software Configuration Management Plans (ANSI). [6] Finally NIST

230

Special Publication 500-204, Sept 1992, High Integrity Software Standards and Guidelines,

D.R.Wallace, et al, cites the requirement for SCM in section 2.6.3. [7].

CONCLUSION:

The above citations certainly indicate that the need is recognized and the requirements

have been and are currently being established and promulgated to the energy community. The

remainder ofthis paper will be to show how these requirements can and should be implemented.

My thanks to Ms Linda Roy ofMAC Technical Service Company for her review of this

p^^ and for keeping it within the bounds of editorial integrity.

n

SCM OBJECTIVES, EXPECTATIONS & ASSESSMENTS

OBJECTIVES:

A fundamental objective ofSCM is to COMMUNICATE to ensure that all people on a

given development or maintenance team know:

• What is to be built, tested and delivered,

• What is being built, tested and delivered,

• What was built, tested and delivered

In addition SCM ensures that the software product is designed built, tested and

delivered/maintained as specified in "customer" requirement specifications; that the design

requirements can be traced to the final product, upward and downward; that changes are managed

in an efficient cost effective and timely manner; and that the final product is maintained and

supported in the user's environment.

SCM is successfiil ifthe SCM activities are initiated at the start of a development or

maintenance task and that planning for maintenance is started early in the project. In addition,

management support is paramount to success through delegation of authority to the SCM Activity

and by providing the necessary human and physical resources to do the job required.

Experience indicates that success is also enhanced through a central focal point for SCM
at a high management level in order to represent upper management in all matters relating to the

SCM process. This includes directing the implementation of the SCM standards and related

activities, disseminating information, and providing training.

The model for these activities are illustrated in Fig 1

.

EXPECTATIONS:

A recent survey of Software Engineers by the IEEE Working Group developing a Master

Plan for Software Engineering Standards [8] resulted in a list of user expectations for the

Configuration Management process. These are listed in Fig 2 and should be valuable guidance to

those responsible for implementing SCM and for resolving the issues and problems facing the

NRC. The ultimate objective and expectation is to reduce the percent of software errors found in

the field, illustrated in Fig 3, to zero!

231

232

o
e/3

on

>»

o

cso
w

Cm
o

TEA

I—

1

Si
o cz

CO o CJ

c:
o

IT)o CJ
CJ

O •

CJ o
CJ

oo u
W fcJDO
O CJ

PR COI a

H >-»
Ctl

CY

a
o CJ

cz

a t)
CJ

f—

'

CO c:

^OD

1
OC

'a O

O -^--^

o CJ

H CJ
o o

o
CJ

o
^ O

CJ

c:

o

o

CJ

'a
CJ

*> >->

o ' ^
o

CO cc

CJ CO
txo CO

o
c: CJ

o
tj

Cm
o >

CJ

o
CJ

c:
CJ

o
c- ^
c: o

O CO

oCO
CO
CJ
CO
CO
c:

CO

o
CO

cc

O
CJ

cc
CJ

a
o

o S
9 i— O
-a *^

C CJ

cc ^

:::: o "cc
- o :r

= o
CJ

a
">
CJ

CJ

CJ
CJ
CJ

o
cc

CJ
o
CO
CO
CC

tJD

'a

CJ

cc

XL
Cm
o
CO

cc

o
Cm

o

cr
CJ

CO
CC

o
-a
CO
COo
CJ
CJ
CC

'a
CJ

cc

cc

E
CD

cc r-

cc CJ

CO -
'—

'

V. C3

OJ
<^ --1 .M

CO

CO
CO
o

" oaCm o
CJ

5^ K

M O

M CJ

cc -3 .=
CJ

o
CJ

CJ

CO a

00

o
CJ

CC

CJ

o

00
o

a

CJ

cc

"cj

CJ

o

on ~
CC

CC

CJ

occ
CJ

'a
o

M CO
cc

CJ

cc :r

GJ M

CJ

o
-a

•-« C O XT "-J

o
CJ

CO
a

^ cc

cc Ij

CC
*—

*

CJ

o CJ r"

CJ

-a
CJ CJ

CJ o
CJ cc CO ^

—

t

CJ

Cm
o

o
on

CC

CO

o

O
CJ

CJ

'a
CJ

CJa
CJ

cc

CO
a
CJ

cc
Cm

CJ

CJ

o o\

CJ
UJ

u

CC
to
Q

CJ Q

o (-
V5

C3
•—

<

7L

c uj
r-
<—

CJ
C3
ru

CC

CO

o ?
O
</)

CJ

cc 5

5
J
co

u
o CJ ^ ^

— CO

111

(3

2> O

O 2:

is
o
u.
2
O
o

FIGURE 2

233

ASSESSMENTS:

During the past several years, the Software Engineering community has responded to the

criteria for capability and maturity established by the Software Engineering Institute to develop

reliable, quality, fail safe software. This effort was concurrent with criteria established by the

ISO/IEC TC176, Quality Committee, as ISO 9000, with ISO 9000-3, a guide for software

development.

In order to avoid headlmes such as appeared in the news papers on 29 June 1993,

"SPACE SHUTTLE COMPUTER SAFETY QUESTIONED - NASA engineers fail to adhere to

required standards for software that operates the spacecraft, study says" [9], Studying the

assessment criteria and performing an assessment will help those with development responsibility

to determine their level ofcapability and maturity and help them take corrective action to

overcome the failure mode issues facing them today.

The High Integrity Software Standards and Guidelines document, referenced earlier, is

also an assessment approach. Here, several standards most germane to the nuclear safety problem

are reviewed and assessed for their value in answer to the follov^dng questions:

"Do the requirements ofthe document provide assurance ofthe nuclear safety

system software developed, maintmned and operated according to these

requirements ?

"Will the requirements ofthe document provide NRC auditors vAth enough

information to verify that the vendor product is in compliance with the

requirements
"

In order to avoid the above referenced headline, project managers should ensure that the

applicable standards they employ, are true, correct, accurate and compliable so that software

engineers will not/cannot avoid adhering to them.

m

CURRENT SCM STANDARDS AND GUIDES

There are a number of standards and guides that have been published for use in the

government, academia and the commercial world in addition to the ones already mentioned. And

although the ASQC writers state that these documents " appear to be prescriptive and too

oriented [towards other processes] to be adaptable to the energy industry [3], I submit that they

should be reviewed and applied where applicable in order to take advantage of the expertise and

experience that went into their development for whatever process.

• IEEE Std 1042, Standard Guide to Software Configuratiom Management

. ISO/IEC/JTC 1/SC&AVG8/CD 1 2207- 1 , ISO Standard, Software

Configuration Management (DRAFT)
. ISO/ffiC/TC176AVG14, DIS ISO 9004-7, Guidelines for Configuration

Management

235

• ISO 9000, Quality Management

• Mil Std 973, Configuration Management

• Mil Std 2167A, Defense Software Development

• Mil Std 498 (DRAFT), Software Development and Documentation

• NASA Std, 2100-91, Software Engineering Dcoumentation Standard

• NASAHBKSEL 84-101, 1990, Managers Handbook for Software

Development

• FDA, Good Manufacturing Practices (GMP)
• DOE Order, 5480.CM, Operational Configuration Management Program

• DOE Std, 5489.CMXX (DRAFT) Implementation Guidelines to Operational

Configuration Management Program Standard

IV

DEFINITIONS AND ABBREVIATIONS

SAFETY- CRITICAL SOFTWARE - Software tiiat fells in to one or more ofthe following

categories (1) software whose inadvertent response to stimuli, feilure to respond when required,

response out of sequence, or response in combination with other responses can result in an

accident. (2) software that is intended to mitigate the result ofan accident (3) software that is

intended to recover fi^om the result ofan accident [9].

SOFTWARE HAZARD - A software condition that is a prerequisite to an accident [9]

CONFIGURATION MANAGEMENT - A process which ensures that the technical requirements

are clearly defined and controlled throughout the development and acquisition process and that

the acquired products satisfy the system's technical and operational requirements. The process

consists of five principal activities. A sixth can be added for Subcontractor control:

Configuration Identification - selection and identification of items which identify, describe

or define the configuration's characteristics for inclusion in the project baselines. This

activity includes provision for the unique identification ofthe items, their interfaces and

associated documents.

Configuration Control/Change Management - controlling and managing changes to the

configuration to ensure technical and operational requirements are clearly defined and

controlled. Includes analyzing the technical, cost, and schedule impacts of a proposed

change and affected documents as well as the review and approval of a duly constituted

review board (Configuration Control Board - CCB).

Configuration Status Accounting - recording and reporting the implementation of changes

to the configuration and its identifying documents.

236

Configuration Audits and Reviews - verifying that any item selected for CM meets the

functional and/or physical characteristics set forth in technical documentation and the

conduct oftechnical reviews to establish points ofdeparture and approved baselines.

Interface Control - defining and controlling the physical and functional interfaces

SubcontractorA^endor Control - ensuring that subcontractors perform SCM in accordance

with customer requirements and that vendors supply sufficient documentation to establish

documented identification and pro^dsions for notification ofchange as agreed on before

procurement ofthe vendor's product.

(Adapted fi-om ASQC Configuration Management Standard sect. 3.1 [3])

V

SAFETY- CRITICAL SCM ACTIVmES

The SCM process's acti\dties and tasks cannot provide the solution to the design and development

problems relating to digital systems and the probability ofcommon Mure. Performing the process

can, however, provide the ingredients for ensuring that a reliable and safe software product is

developed and maintained. The following activities, ifwell supported and adhered to, can help

resolve the vital issues.

PLANNING:

The preparation, agreement and issue of a well defined Software Configuration

Management Plan [SCMP] must be accomplished prior to or at the very start ofthe

development/maintenance phase. The SCMP is a means for communicating who is responsible,

what activities will be performed, when these activities will be performed, the output fi-om these

activities and the expectations that users can look forward to in performing there own tasks. The

Project/Maintenance Manager is responsible for the SCMP's implementation.

The SCM activities are Identification, Change Management, Status Accounting, Audit,

Interface Control and Subcontractor Control. All activities are initiated at the start of a software

life cycle except for Audit, which is held at a point near the end of the cycle. The output ofthe

SCM process are the reviewed and approved specifications and standards, established baselines,

with approved changes incorporated, controlled interface and accepted and approved

subcontracted products. Status reports and query capability of all actions and transactions provide

the status and results ofthese activities and subsequent products. The final configuration audit

will confirm that all ofthe expectations listed in Fig 2 are realized or indicate that corrective

action is needed

The SCMP, using EEEE Std 828-1990 [6] as a guide, must be very specific in how the

SCM process will be performed by listing the tasks associated with each activity including tasks,

functions, responsible parties, time frames, review authority, release or incorporation authority,

IV&V requirements arid provisions for maintenance and operation. As an example, the SCMP
should describe the minimum requirements for system and software documentation that includes

the who what when and where for a System Specification, System Operators Manual, Software

237

Development Files, Software Requirements Specification, Software Development Plan, Software

Design Document, Software Test Description and Software Product Specification. These

documents will provide the structured and approved baselines throughout the software product's

life cycle.

The SCMP should be consistent with the criteria ofthe definition for safety critical -

section IV. Fmal approval ofthe plan should be by cons^isus ofthe project leadership and

authentication ofthe Project Manager.

CONFIGURATION IDENTIFICATION:

It goes without saying that one cannot make changes to something that has not been

identified. Configuration Identification will support safety critical software devdopm^ by_

serving as the cornerstone for effective SCM performance. Well documented and uniqudy

identified documentation and code insures effident traceability fi'om bottom to top and top to

bottom. Performance ofthis activity insures that all software elements are in place to be able to

map out the impact ofa diange on software documents and related code. It also provides the

V&V information necessary to audit the release ofcode into the system or incorporation of

changes into an e^dsting system.

Most important part ofConfiguration Identification are the specifications or documents

that define the requirements - fimctional, physical, interface, test and qualification; the design

criteria in accordance with the requirements; the test plan, test descriptions, test procedures, and

subsequent test reports; and the version description document along with the product

specification - what was done. SCM insures these documents are concise, contain the required

content, are consistent, traceable and are closely reviewed by project experts for correctness prior

to their approval or conditional approval for fijrther development ofthe software.

The review and release documentation is also dependent on use ofuniversally agreed on

standards for preparation ofthese documents. Such standards may or developed by the NRC or

the standards are adopted fi-om the IEEE, NASA, NSA, NIST, DOD, DOE, etc.. All ofthese

organizations have grave safety critical concerns. SCM assures that one universal set of

documentation is adhered to for ease ofcommunication and commonalty ofterminology by

vmter, re\aewer and approver. The use ofprototyping is also a valuable tool for ensuring a good

"try before buy" policy especially for those software elements considered safety critical.

Prototyping the design, a peer review by a few good experts, documenting it and placing it under

configuration control by SCM vAW go along way for total assurance ofthe development of safe

software.

Software Configuration Baselines are established fi'om approved specifications and

documents as a result of project scheduled technical reviews managed by SCM. The definition,

requirements or functional baseline defines "what is required of the software product" The

Design or Allocated baseline describes "how to meet the requirements". The Product baseline

describes how the product was built, implemented, coded, etc. Baselines are a great benefit to

good, efficient requirements and change impact traceability. SCM provides a total picture of the

software product through a software hierarchy showing the parent-child relationships of the

software elements from top to bottom. Good baselines enable efficient and accurate impact

analysis that will insure that safety factors have been accounted for and have or have not been

impacted by a given change.

238

SCM also assures that documents residing in a well controlled baseline have less chance of

violating the safety elements in the softwzire product.

SOFTWARE CHANGE MANAGEMENT

Although software change management - change control - is an activity ofthe SCM
process, it is also a process in its ovm right. A process within a process. Change Management as

performed by SCM requires a strong and authoritative baseline, a good efficient status accounting

^stem and a well-defined audit plan that will insure the expedient and validated incorporation of

approved changes.

Change Management requu'es a single point of authority within the SCM process

functional ^tity and an SCM change management/processing team that enables expedient

processmg of all changes received, via manual or automated means. The authority, normally

invested with SCM, is responsible for maintaining the provisions ofthe SCM Plan and the

development ofa procedure that will enable the over all change process to proceed in a flawless

manner.

Change Management policy and procedure starts vnth top manag^ent to be implemented

by SCM and those who submit, review, incorporate and validate approved changes.

SCM insures that initiation ofa change request must be easy to understand and to handle.

For classification ofthe changes, a configuration control board (CCB) is required. Analysis for

criticality, unpact on all elements ofthe software product and coordination among impacted

organizational entities is the responsibility of software engineering and is paramount to good

control. Disposition - review- by the CCB must occur. However, approval of disposition is

delegated to the CCB Chairperson. The CCB members advise the Chair on how to dispose ofthe

given request. CCB attendance is mandatory and members must be expert in their field of

employment. The disposition and instructions to incorporate must be clear and concise.

Incorporation of an approved change cannot exceed the instructions ofthe approved

change documents in order to be validated by V&V. Additional effort requires the preparation of

a new change request. Inadequate, or confijsing instruction v*ill result in cancellation of

incorporation and a referred back to the Chairperson ofthe CCB for clarification. IV&V and

quality inspection is mandatory. Close out (completion) of the incorporation is performed by the

SCM activity, but the event should be acknowledged by the CCB Chairperson and IV&V to

verify that incorporation did indeed comply with the approved change instructions.

A well performed change management process relies of a well conceived status accounting

system to enable almost minute to minute information about a given change or series of changes.

All activity, from the time a change request is logged in to the time it is officially closed out, must

be recorded in the status accounting system and such information be available by query or report

at all times.

STATUS ACCOUNTING:

IfSCM is a communicator to ail on a software project as well as those who work with it

in support of the project, then the mechanism for communication must be planned and the

necessary physical and human resources provided.

239

Status information is derived from the software development library which is established

early in the project by SCM and the project Librarian. The library provides the work areas for

documenting and coding by the software engineers and the subsequent transfer and release into to

the project support library segment for component testing and release to the master library for

system test and eventual delivery to the user. This system is maintained by the Librarian, in

coordinadon with SCM with wdl defined need-to-know rules ofaccess to the libraiy and its

segments. The working library segment is controlled by the Programmer. The other segments are

controlled by the Librarian.

The platform for status accountmg data is the software development file (SDF) that.is

established for each defined element of software in the software hierarchy - fi-om lowest defined

and controlled element such as unit or object or class up to system level - the top element All

data including documented requirements and design and all code, test desoiptions and procedures

plus reports reside in the SDF.The data that the SDF contains are defined in a data elraients

dictionary and it is the selected elements that make up a status report in hard copy or sateen queiy

format.

SCM insures that a well planned and maintained process enables traceability.

This is vital to providuig information for impact analysis, change history for determination of

failure modes and error patterns and the rational for approval and incorporation ofprevious

changes. The key to good traceability is an efficient query system that is assessable at all times to

ail people including those at the nuclear sites and stations!. In addition to the impact analysis

requirement, the test team relies on status accounting data for quick questions and above all the

rV&V activity for validation ofapproved documentation and the verification ofchange

incorporation.

The key to good status accounting is in the selection of primary data elements that SCM
determines are important to the developers, maintainers and users. These should be selected by

consensus, but beware of selecting too many which in turn create cumbersome reports. Another

key point is the formatting of the data queried or reported. SCM provides the ability for one to

create unique reports as required as well as developing and maintaining standard reports for

management, customer and the general user.

Collection ofthe status accounting data is most important. SCM assures that only valid

and accurate data is collected to produce valid and accurate reports. If collected on a manual

basis, SCM provides for a quality inspection of such data prior to input by, many times, data entry

clerks. As more and more automated techniques and tools are employed, almost all desired data

elements can be automatically transferred into the applicable SDF such as creation of a change

request via a computer terminal. Once basic information is provided, a change number is assigned

and logged into the SDF. Collection techniques should be easy and quickly entered. The more

transparent the process is to the developer/maintainer the better the data.

CONFIGURATION AUDIT:

The Configuration Audit is the close-out activity for the SCM process. The audit is

managed by SCM to demonstrate that the original requirements in the Software Requirements

Specifications/Documents have been satisfied as attested to in the Test Report data obtained

during prescribed tests. In addition, the Configuration Audit assures that the sofl;ware code being

240

released/delivered is supported by a Software Product Specification, a Version Description

Document and a specified user/system maintenance manual that usually goes with the software

produa.

The Audit activity must be formal and carried out with carefiil planning that includes the

attendance ofthe all of the principal systems, architectural, design, test, quality and maintenance

engineers plus the SCM and Data Management personnel. There are several standards related to

re\dews and audits and their check lists, as a minimum, should be used for guidance in planning

and conducting the audits. The DEEE STd 1028-1988 Software Reviews and Audits and Mil Std

1521B are recommended references. Ifdetailed inspection is carried out during the audits, the

chances for Mures become far less than v^thout such inspection.

Normally Configuration Audits are managed by the SCM activity and Co-Chaired by the

Develop^" and User Project Managers. Many times, however, the chairs have been delegated to

the SCM activity. In eithercase, the Chairs must recognize that the audit is almost the last chance,

short ofextensive field tests, to insure that a correct and reliable "As Built to As Design" has

taken place and that the software product will meets its assigned mission requirements.

INTERFACE CONTROL:

From the issues and problems stated at the beginning of this paper, the planning for

interfaces and then- identification, control and status accounting is very important and are

important to SCM for traceability ofa change request's impact on the software product.

The most common way to initiate an interface activity is to form an Interface Control

Working Group (ICWG) to review the System Requirements and identify the interfaces on a

system to system basis. The next step is to review the Soflrware Requirements Specifications to

identify the process to process interfaces that will be required. Software Engineers can then be

tasked to develop Interface Requirements Specifications and subsequent Interface

Requirements/Design Documents for Analysis, Review and Approval by the ICWG.
Membership in an ICWG, at the system level, includes the Project Managers ofthe

interfacing systems such as a nuclear power station to a power transfer station or the hardware

generator system to the reactor system. Lead Engineers, software and hardware, representing

interfacing processes such as sensors to digital signal processors are also members along with the

quality, reliability, V&V and SCM personnel. These members are usually from the Prime

Designing/Developing activity, although those from other interfacing activities may be called in.

The Prime Designer/Developer activity's SCM is the manager of the ICWG and performs

SCM for interface specifications and documents in the same manner as development data.

In this day and time, it is also important that ICWG tasks include identification of those

interfaces associated with Local AreaAVide Area Networks and the associated Client/Server

software employed with the networks. If such networks are employed the designated

Prime/Developer's Network Manager should be a member of the ICWG.

SUBCONTRACTOR CONTROL:

Up to this point the discussion has centered on the role of SCM in the development

domain, but now SCM has to be described as a function of the acquirer's/purchaser's/buyer's

procurement of software products. The following guidance also applies to "in-house" agreements

241

for other groups to supply required software products. This could also be the person sitting next

to you who has been asked to perform some specified tasks.

There are at least three categories ofprocured products to be addressed. The first is a

software product that is fiilly developed by another software developer. Such a contract requires,

the defining ofthe acquirer's requirements for the design, development, build, test and delivery of

a software product (it may even require subsequent maintenance). The second category is the

ordering ofa modified software product that is ofifered by a developer or reseller as modifiable to

customer spedfication or as a turnkey system meeting customer specification. The third catagory,

is the purchase of "off-the-shelf software products on an "as is" basis. This is known as COTS,

computer offthe shelf software. It is also known as NDI, a non developed software item,

developed by the aquirer, but not a ddiverable element.

The first category must be careftilly planned and subcontractors that can meet exacting

standards for evaluation are selected. This includes the selectees being able to demonstrate their

understanding ofthe SCM process to the satisfaction of aquirer's SCM fimction.

Ifaquirei's SCM is to aid in assuring the integrity of safety critical software, then the

same rules applies to the subcontractors SCM! The aquirer^sSCM must therefor prepare an

SCM Statanent ofWork (SOW) section ofthe subcontractor Request for Quotation (RFP) that

cites exactly what the acquirer's SCM expects. Take nothing for granted and insure that the SCM
requirements do not get subsumed in favor of other demands. Once a selection has been made the

Contract SOW must also be explicit and require a SCM Plan that will describe how the

subcontractor will perform the SCM process. This, in turn, will require periodic, but continuous,

monitoring by SCM and the formation of a continuous interface between counterparts

throughout.

The second category should be treated the same as the first one, however, SCM must

provide for constraints applicable to disclosure of the subcontractor's design and development

process under the existing copyright and rights in data laws. Therefore agreements, sometimes

with legal assistance, must be made to obtain as much technical data as possible to enable proper

identification of the software product and to manage changes that may impact subcontracted

software within the acquirer's domain much less changes made by the subcontractor.

The third category is most difficult for SCM identification and control purposes.

HopefiiUy, SCM can obtain technical data sheets in addition to a "fuzzy" users manual to enable

adequate documentation for identification and prior notification of pending version changes to the

procured software product. This can accomplished best through direct dealing with the software

vendor. SCM stands little chance dealing with a re-seller/distributor due to agreement for re-sale

made with the vendor.

Provisions for acquiring of software must be included in the SCM plan and be a basis for

internal management audits.

242

VI

SCM SYSTEMS AND TOOLS

There are many new and innovative software development systems on today's market all

ofwhich are designed to increase productivity, quality, reliability, lower cost and make the

developer's life less tedious. Systems for development ofdocumentation provide templates that

can reduce writing time by half, and also provide the means for traceability and development ofa

document tree that in turn aids in the establishment ofthe software hierarchy. Source code control

during development sudi as CMS and SCCS is now very popular and most major developers are

using a variety ofversions for a large number ofdevelopers - large and small projects. Such

systems are good and should be evaluated in order to maintain quality and reliability ofthe

software and provide transparent controls to the developer.

Good productivity can be achieved ifthe software development system selected fits the

job at hand and does not require "stuffing" the job into the system! To prevent this, an evaluation

plan should be prepared to include the methods for selecting vendors, the criteria for evaluation

and demonstration oftheir product to prescribed benchmarks and the ultimate check list for

selection ofone, two or three trial runs before the final selection.

There are four basic SCM System models to select fi'om. No one model may meet all

requirements such as an applications program type development vs an embedded computer type

development. These models are: the check-out/check-in (co/ci), the composition, the long

transaction and the change set models.

The co/ci and composition models are programmer driven. The co/ci provides for

complete control and access to the programmer's work and allows for work to be performed on

the module by checking it out, making revisions and checking it back in with an indication ofnew
version or just a revision to the current version. The composition model allows one or more

programmers to move a version into a work area of the model and create a new version or

enhance a current version. The software product then consists ofversions of elements selected by

the programmer(s) for release. No two programmers, however, can work on the same element at

the same time.

The long transaction model is "system oriented". A team of programmers, sometimes at

several different locations, select a version of software residing in the repository to work on and

move that selected version into a work area. Once there, the programmers may work on several

elements at the same time. By consensus, the programmers will/may declare a new version and

commit it to the repository for eventual release. All versions are stored. Any version can be

selected to create the next version. This is compatible with the principles of concurrent

engineering.

The change set model is similar to the co/ci, but involves retaining the deltas created

against a fixed version of software. Several programmers can work on individual elements and log

in the deltas - adds, deletes or changes - and can then select the deltas required to make up a

desired version. This model also provides detail status of the controlled code for reports including

the information needed for good traceability and impact analysis.

Some of the more familiar SCM systems are SCCS, RCS, DSEE, CCC, Rational Rose and

Aide-de-Camp. all are adaptable to most software languages although Rational is known for Ada

243

language support and SCCS is UNIX oriented. In any case it is recommended that evaluations be

conducted and appropriate tools selected that will enhance the SCM process.

vn

TRAINING

In order to insure efficient and efifective SCM, all ofthose closely connected to the SCM
process should receive at least awareness tndning and those who actually perform tasks should

become proficient through seminars and on the job training programs. In addition, management

personnel and others in the user environment indirectly impacted should also understand ^^at

SCM is and how it works to their advantage.

A number oftrmning plans are available. Local colleges and universities have one or more

ext^ion type courses available and there are a number oftraining companies and consultants

that pro\nlde public and in-house senunars and on the job traimng assistance.

Trmning is important and once provided should be followed up on at least a yearly basis.

In addition there are number of special interest groups or assodation groups that have been and

are being formed for CM, SCM and Data Management. There is the Configuration Management

group in the Washington DC area that meets every couple ofmonths.(Contact D. Murphy at 703

406 8787) The Electronics Industries Association (EIA) Data and Configuration Management

Committee meets quarterly - twice in the DC area and includes an annual workshop that also

pro\ades a tutorial on the CM process. (Contact C. Denham, 202 457 4965)."Some ofthe groups

stress software entrepreneur, technical issues, assessment and certification requirements. All are

very good and those with an interest should attend.

vin

CONCLUSION

When Software Configuration Management has been employed on large, medium or small

projects, the processes has proven to be a vital and integral part of the software product's

development.

The SCM process should be performed on all NRC projects, especially those of a safety

critical nature to provide the means to create and control the software product's documented

identification, perform change management, status accounting, interface and subcontractor

control during development and maintenance.

Selection of an SCM system to fit the needs of a project or like projects will assist in

alleviating the software critical issues facing the NRC today.

244

REFERENCES
1. NRC Policy Issue - Digital computer Systems for Advanced Light Water Reactors,

JamesM Taylor, 16 Sept 1991

2. Guidelines Software Configuration Management, HEDL-TC-2263, N.P. Wilbum

et al, Januaiy 1983.

3. Configuration Management Standard (DRAFT), ASQC 8 May 1993

4. ANSI Std. Criteria for Digital Computers in Safety Systems ofNuclear Power

generating Stations, P-7-4.3.2, [EXPECTED] Sept 1993.

5. ASME NQA 2a 1990, part 2.7, Quality Assurance Requirements ofComputer

Software for Nuclear Facility Applications.

6. BEEE Std. Software Configuration Management Plans 828-1990

7. High Integrity Software Standards and Guidelines, NIST Special Publication,

500-204, D.R.WaUace, et al. Sept 1992.

8. IEEE Master Plan for Software Engineering Standards (DRAFT), L. Tripp, et al,

1993.

9. Space Shuttle Computer Safety Questioned, Associated Press 29 June 1993.

10. Standard for Software Safety Plans (IEEEWG DRAFT, 1993).

1 1. lEC Standard, Publication 880, Software for computers in the safety systems ofnuclear

power stations, 1986.

FIGURES
1. Configuration Management Model, H.R. Berlack, Software Configuration Management,

John Wiley and Sons, New York, 1992

2. User Expectations - Configuration Management Process Objectives - Master Plan for

Software Engineering Standards (DRAFT), L. Tripp, et al. 1993

3. Software Errors Found in the Field.

245

6.6 How Much Software Verification and Validation is Adequate for Nuclear Safety?:

Mr. Roger U. Fujii

How Much Software Verification and Validation is Adequate for Nuclear Safety?

Roger U. Fujii

Logicon, Inc.

Introduction. For over 25 years, software verification and validation (V&V) has been applied

to major DOD weapon systems, especially nuclear weapon systems, to ensure that the software

is free of catastrophic software errors. Software V&V is a systems engineering discipline that

evaluates the software as part of the entire system including hardware, human operators, and

other interfacing software. When applied from a systems perspective, software V&V has been

proven to be an effective technique for the early detection and correction of errors. Several V&V
cost/benefit case studies for the Rome Air Development Center have shown that the dollar

savings of the early detection of errors clearly offsets the cost of the software V&V.

Rule of Thumb for Estimating a Software V&V Effort. The question facing systems budget

planners and program managers is to estimate how much software V&V is adequate for nuclear

safety. The V&V effort is generally expressed as a percentage of the development effort. The

"rule of thumb" for estimating the V&V effort is that software V&V ranges from 10% to 33%
of the development effort depending on the criticality of the system. For the highly critical

software such as nuclear weapons delivery, life-threatening medical, avionics flight controls,

manned space flight, and air traffic control systems, a comprehensive and thorough software

V&V effort is required because of the obvious impact of a software error to the loss of life.

Highly critical software requires approximately 33% of the development effort to be devoted to

software V&V. For high performance systems such as the unmanned deep space probes,

financial software, telecommunications, and networking systems, where a software error may

significantly degrade the system performance or cause the system to function permanently in the

degraded mode, the "rule of thumb" for the V&V effort is approximately 20-25% of the

development effort. The criticality of high performance systems is dependent on the user's

tolerance to loss of system performance and the recovery time to fix or bridge the erroneous

portion of the system. Many other programs and systems demand a level of quality above the

standard quality assurance effort provided by the development team. When software V&V is

applied to these quality systems, approximately 10% of the development effort is used. Figure

1 illustrates the range of software requiring V&V such as quality systems requiring 10% of the

development effort to highly critical software requiring 33% of the development effort.

However, estimating software criticality is more than categorizing the type of software and the

consequences of software errors. Estimating software criticality involves a rigorous analysis of

the system functions, each function's effect on criticality criteria (e.g., safety, security,

performance), and key parameters affecting the development environment. Figure 2 illustrates

an example of these application features and development parameters which affect the criticality

247

Nuclear Weapon Systems

Digital Nuclear Power Plants

Life-Threatening Medical Systems
Manned Space Flight Systems
Critical Avionics Right Controls

Air Traffic Control

Quality Systems High Performance Critical Software

Software Systems

Figure 1 : Rule of Thumb for Estimating Software V&V

Application Features Development Parameters

Reactor Control

Critical Hardware Controllers

- Pumps/Valves
- Sensors

Man-machine Controls

Displays

Security Subsystem

Database (Key Parameters)

System Architecture Maturity

Processor Technology Stability

Development Environment Robustness

Staffs System Knowledge

Compliance with a Rigorous

Development Methodology

Schedule

Software Application Maturity

Figure 2: Software Griticality Parameters

248

of software. First, it is important to define criticality as it relates to specific system functions.

For example, criticality for a nuclear power plant could involve all reactor control functions,

interfaces to the pumps/values and sensor involved in monitoring- and controlling critical plant

coolant, control switches and console receiving operator control of critical functions, displays

functions which process and format data of critical plant parameters for display to the operator,

security functions to prevent unauthorized access to the plant software system from maintenance

personnel or other parties who may inadvertently or deliberately interfere with plant operations,

and database functions and data containing key plant control parameters. Other critical features

may include system security, easy of useability, maintainability, or specific performance features.

Next, the development environment is assessed by examining: 1) maturity of the system

architecture (i.e., is it a copy of a functioning system or is it new with no prior history of use);

2) is the processor new and invokes new technologies or is it a proven, widely used processor;

3) are there many aids and tools for the development reflecting a robust environment or are the

development aids and tools new and thus possibly error prone; 4) is the development staff

experienced in this type of system or is the technology and functionality new to the development

team; 5) is the development following a rigorous methodology or is it following an ad hoc

methodology that has unknown performance; 6) is the development schedule tight such that any

schedule or development perturbations causing more error potential in the software turning

normal functions into critical functions; and 7) is the software functionality new thus increasing

the likelihood of errors in the software or is the software based upon previous developed work

thus lessening the expected error potential.

Aggregating the detailed analysis of the features contributing to the critical of a software using

the method described above gives a clear cut method of assessing the criticality of any software.

For example, high criticality software could require less than the normal "rule of thumb" 33%
if the critical functions are well compartmentalized into small areas of the software, uses a well

defined software development environment, is not a new development but is one that follows

previously built efforts, and has a well trained staff who have developed similar programs in the

past. Therefore, part of the answer to the question of how much software V&V is adequate for

nuclear safety is determined by the scope of functions involved in the criticality of the software,

how the software is designed and architected, and how the development environment supports

or deters from the software V&V effort. Most software V&V efforts fit within the 10-33% rule

of thumb identified in Figure 1.

System Safety Framework. In the following sections, a framework will be described that will

show how to estimate how much of the software should be analyzed and tested. This detailed

decomposition approach first starts with the system framework and proceeds through definition

of safety critical requirements.

Figure 3 illustrates the overall system/software development cycle starting with the system

concept definition. The purpose of this figure is to illustrate that the software must always be

analyzed and tested from a systems perspective. The interaction of software with the hardware,

human operators, and other software elements is more complex and interwoven into the total

system solution in modern systems than existed on previous systems. Therefore, software V&V

249

(System Safety Validation)

System
Concept

System
Requirements

• Spedficatkm of Pertermance

Goals and Requirements

System

Design

Software

Requirements

Software

Design
Software

Code
Software

Test

\

Hardware

Requirements
„^ Hardware

Design
^ Hardware ^

Fabricajjion

Hardware

Assembly

and Test

User , User
^

User , User

Requirements Layouts Doc Prooedures

• Allocation of Requirements

to System Qements
(Software, Hardware, Use^

Safety Reviews

Subsystem
Integration

Figure 3: System Safety Framework

must have a systems engineering orientation for an effective criticality analysis to be performed.

Within the system development cycle, there are key stages in the metamorphose of the software.

The two important steps in a system development is the specification of the system performance

requirements, including any safety, security, and other special requirements. Second, the

allocation of the system requirements to hardware, software, and human operators is an

architecting choice which is a crucial determining factor to defining how the system functionality

is achieved and to identifying how much effort is needed to demonstrate that the requirements

are satisfied. In most modem, complex systems, software is behaving as the glue which ties all

elements of the system together. The allocation of requirements is therefore one of the most

important steps that define the ease or difficulty of integrating and testing the system components

at later development stages. A poor allocation will tend to spread critical requirements

throughout the system architecture making the later analysis, test, and integration effort very

difficult and time-consuming. One method to avoid last minute surprises is to conduct periodic

reviews of the product at key development milestones. At distinct review points in the software

development phase such as at the Software Requirements Review (SRR), preliminary and critical

design reviews (PDR, CDR). Test Readiness Review (TRR), and Formal Qualification Testing

(FQT), safety reviews are normally conducted to assess the safety of the system and software as

developed to that stage. Safety problems are identified at the reviews and corrective actions are

taken to create a more error safe system architecture. At each stage of the software development,

the software is verified for compliance with the previous phase's specifications and also being

validated constantly against the overall system requirements and objectives. The early feedback

loop of the software V&V analysis and test results assures the early correction of detected errors.

Latent errors or weak designs leading to the greater error potential are identified and corrected

as time permits to build a more robust system solution.

Information Criticality Analysis. Once a system architecture and critical requirements are

defined, a flow analysis can be performed to determine those portions of the system which are

impacted by each critical requirement. This flow analysis traces each requirement through the

architecture and identifies all software routines, hardware interface components, and human

250

actions which are involved in processing the critical requirement. This trail identifies the portion

of the system which must be examined by the software V&V effort. Utility functions and data

required by the critical functions are identified as part of the critical path requiring detailed

analysis and test. The criticality analysis is conducted for each defined critical

function/requirement. By tabulating all areas of the system affected by the critical functions, one
can obtain a picture of how much of the system needs the software V&V effort.

Instrumentation & Control Software Ensineerins Issues. New technologies and functionality

being considered for instrumentation and control software for nuclear power plants present unique

critical issues that require close examination during software V&V. Figure 4 lists some I&C
software engineering issues which will present some unique issues for software. If features are

designed into the software and hardware which allow plant performance (e.g., turbine efficiency)

to be modified during operations, there is concern that important safety and control features could

be altered or indirecdy influenced to cause plant error recovery or detection operations to perform

less than as expected. For safety and security features, there is a constant debate as to how much
protection and security is enough and do the safety and security features interfere with optimal

plant efficiency. For example, password controls have been used in many systems to control

authorized access. However, as evidence has shown, when the use of passwords is overdone and

required for the most simple of operations, operators begin to circumvent the protection by

pasting the password on the terminal and ignoring any warning messages associated with the

protection because they have seen similar messages too often, making the real message

indistinguishable from the normal warning messages. Many system architectures are considering

a distributed architecture that places the processing and controls close to the sensors and plant

control features (pumps/vents/values). Today, most systems utiHze a centralized control system

where all the information is funneled into a main processor for decision-making and security

control. With a more distributed architecture, more security features are required to control

access. Centralized decision-making requires more communication links between the distributed

nodes to evolve an overall picture of total plant operations. More decision-making is also being

assigned to the software since it can react faster to detected error conditions. However, there are

certain conditions where human operator decision-making surpasses any automated decision

making especially in those situadons where a complex, process flow analysis of many different

system functionality coupled with past operating history is required. A new plant architecture

must have clear cut points where the decision-making is left to the human operator. Many new

power plants are using ardficial intelHgence and expert systems to detect developing error

conditions and to aid the human operator in interpredng and responding to plant operations,

especially to emergencies and error conditions. Plant designers are also trying to create system

architectures where new technologies can easily be inserted into the system without having to

redesign and develop the system a second nme. All of these types of new performance issues

will place a stronger need to perform software V&V on the new power plant software, with

special concern and assistance required in the early system architecdng phases.

Staff/Skill Mix. The software V&V teams' experience base and skill are equally important in

determining how much software V&V is adequate. With the proper allocation of staff experience

and skills, the software V&V can be optimized to assist the development team in the early

251

System Performance Optimization

Plant Output Efficiency

Safety and Security Protection Features

Distributed vs. Centralized Control

System Fault Tolerance and Redundancy

Automated Decision Making vs. Operator Controls

Artificial Intelligence and Expert System Controllers

Plant Design Maintainability

Technology Insertion Capacity

Figure 4: Software Engineering Issues

detection and correction of errors and to identify the subtle design flaws which turn into difficult

to find errors. The author's experience has shown that the optimal staff experience is a mix

using the "one-third" rule. A software V&V consisting of one-third senior staff, one-third

mid-level staff, and one-third junior staff along with a program manager functioning as the

systems engineer produces the optimal staff experience base. Equally important is the

educational background of the staff. Because software V&V is more of a systems engineering

discipline, personnel with strong engineering and hard sciences background are better able to

evaluate whether the software solution is satisfying the real systems application. On a typical

software V&V, the staff skill mix is as shown in Figure 5 with 70% of the staff having a strong

science or engineering background. Knowledge of computer science is very beneficial but with

the use of modem high level languages and more reliable compilers and support tools, the

software V&V problem is not a coding problem but more an "engineering type" problem of

determining whether the software solution corresponds to the systems engineering solution.

Summary. Software V&V is a comprehensive analysis and test of the system and its software.

The software V&V must be performed in a system framework, especially when considering

safety where portions of safety has been allocated to the hardware, human operator, and other

interfacing software. In estimating software V&V, a rigorous, top-down approach of assessing

the criticality flow within the system architecture defines how much software V&V is needed.

For any criticality, especially safety, a detailed definition of the critical safety requirements is

essential to ensure that the criticality flow analysis does not overlook any key requirements or

portions of the design/code. As a general "rule of thumb", for high criticality and high

performance software systems, software V&V requires 20-33% of the development effort.

252

Project Manager & Junior Staff Physical Science Engineering

Systems Engineer

Staff Experience Staff Skills

Figure 5: Software V&V Staff/Skill Mix

253

6.6.1 Questions: Mr. Roger U. Fujii

QUESTION: JOHN GALLAGHER (NRC): This isn't so much a question as maybe I can give

you a data point with respect to safety-critical software in nuclear applications. There was a

meeting last year at the Royal Academy of Engineers in England talking about the Sizewell-B

software. The verification and validation effort for this project was between 300 and 350 man-

years out of a total of 500 man-years, or about 70 percent of the effort in the development

process was spent on the verification and validation activities, which is a little larger than yours.

MR. FUJH: Well, I have achieved 100 percent. But that was an unusual case. You know,

there was a 2 man development team, and I had one and a half persons on it, something like that.

But let me suggest to you that there might be something else at work because your V&V team

gets to be so smart about the system that they become an alternative for your development team.

So, when development gets into trouble, oftentimes V&V is pulled in to help out development.

All I can say is that's a fairly high number. Perhaps the development team was in trouble, and

sometimes the V&V team kind of mushrooms to that size because they're trying to solve a

problem. Wherever you classify them could be a debatable issue, but that seems to be a pretty

high number to me.

QUESTION: ALI HEKMATI (General Electric): In our particular case the safety-critical

requirements happen to be very simple. It's just simply a comparison within the process variable

and the set points and, as a result, you get a tripping. However, I was wondering, in your

experience how have you handled the verification of the operating system in the compiler? I

think as far as we're concerned that would be the most important part of our V&V.

MR. FUJH: The operating system in the compilers turns out to be, like I said earlier when I

was talking about compilers, to be one of the most critical elements of critical systems. This is

why DoD builds their own operating system for all of the nuclear weapons systems. They

literally do not acquire it off the shelf for the reason that if you're acquiring it off the shelf

generally there is no documentation that goes with it. It's also very hard to track down all of

those Trojan Horse paths that might exist there for other applications but not for your critical

application. This is an area we see as a great, great concern, that when you're starting to pick

up third party software, like an operating system, which has a lot more features in it than you

want for your application, you are exposing your system to a great deal of risk. You can perhaps

take mitigation strategies to limit that risk.

Winston Royce was talking about how the compiler was being limited. In the case of

Peacekeeper they were using ADA, and we did exactly what he said. After some early analysis

it was determined that tasking would create such a huge complication to it that tasking was

forbidden to be used as a language feature on the system. So, you can do that in order to limit

your exposure, but once you have it there you have a large effort to prove it.

MR. McCREA: Sitting in this workshop that's exactly where I see you're lacking-that the

NRC's mission, I think, is lacking~the objective, or the direction, of designing an operating

system for microprocessor software based systems. At least in our case I think that's the most

254

important part of the safety-critical systems, because the algorithms for the safety functions are

very simple and the operating system, as a component, is the most important.

MR. FUJII: Yes. I agree with you. We can take that up later as a further discussion.

QUESTION: John Knight said that formal verification is not panning out as well as we'd like,

and Winston Royce said that provable correction is 56 years away. Do you agree? And if a

mathematical-based discipline is not used in your approach to verification, how would you

characterize the discipline used? Is it just a matter of it looks good to some experts?

MR. FUJII: Well, we think that formal proofs have a lot of value because they have some rigor

that we're all trying to achieve in software analysis. In the process of applying a formal proof,

or a formal analysis, you find out a lot about the assumptions that are in the specification or

weren't in the specification. The process that one goes through in a rigorous methodical way

proves to be a lot of value.

Now, I think a lot of the speakers were talking to what the practical aspects are of

applying formal proofs of correctness. For one, since you don't have your formal specifications

written in a form to be used for formal proofs of correctness, you have to first take your

specification and essentially rewrite it in a normal proof format, and then secondly, apply this

very rigorous mathematical approach. Now, that approach is very, very complicated, and we

have used it on several projects. It becomes a highly tasking intellectual activity, taking some

of your best talent, and it does take a while to do. So, until we can solve this time problem, it

takes that much dme to do it and it does take some high-powered talent. I think that's what a

lot of the speakers were talking to in terms of the practicality, but you can use the notion that

formal proofs are trying to give you the ability to specify in a somewhat rigorous way, all of the

conditions that really describe your software and the problem you're trying to solve. So, in many

respects, a lot of the techniques that people in our business on the V&V side use, we use to

follow up that fonr.al proof of correctness without going to the actual proving side itself. So,

I believe that it has a lot of value but we have to overcome some of those obstacles before it'll

become common place in our work.

255

6.7 FauIt-SpeciHc Verirication (FSV)--An Alternative VV&T Strategy for High

Reliability Nuclear Software Systems: Dr. Lance A. Miller

FAULT-SPECIFIC VERIFICATION

(FSV)

An Alternative VV&T Strategy for

High Reliability Nuclear Software Systems

Lance A. Miller, Ph.D

Science Applications International Corporation

PO Box 1303

McLean, VA 22102

(703) 556-7079

lamiller@mcl.saic.com

257

BASIC POSITION

o Digital f & C can be safe for nuclear plants

o BUT, software notably devious, need some changes:

- Revised W&T Strategy, (with changes in devel.)

- Operator Decision / Transducer Functions must be

specifically allocated and evaluated

Need better way to evaluate level of assurance

(than IEEE 1012): e.g., a joint function of

of System Complexity and Required Integrity

258

WHAT IS FAULT-SPECIFIC VERIFICATION?

o Over time. Enumerate and Classify ALL Software Faults

"> For all Lifecycle Artifacts (Reqs., Design, .,.)

--> Between any Artifact Pairs

o Over time. Develop and Empirically Validate

a large set of W&T Methods - Specifically designed

to detect and classify EACH software fault

o Migrate all methods towards automated (formal)

Static Analysis (vs. Manual & Dynamic Testing)

o Develop, Share, and Update:

~> Data on Fault Occurrences and Classifications

~> Success rates of each Method

-> Ratings of Methods on Power, Ease-of-Use,

Cost-Benefts, etc.

259

EXAMPLES OF FSV APPLICATION

Artifacts

V&V
Fault Description Level

Reqs. Doc. Reqs. Unclear Class 3

Class 1

Method
Recommended

Manual
Semi-

Automatd

I

Static

Dynam
I i

V V

Reqs. Analysis S M

Formal Spec'n S M
Lang. (CaMera
ReFine, Z, VDM, ...)

Reqs. and Unintended
Design Docs. Functions

Class 2 Reqs. Tracing

Tool (Supertrace)

S S

Design Doc. Com. Mode Fail.

Interrupts

Non-cont. Loop

Class 2 Soft. Arch. Review S M

Class 2 Program-Graph S S
Analysis

Implemented
Source Code

Data - Schema
Violation

Incorrect Data

Referencing

(pointers, sub-s)

Class 3 Data-Model Eval'n S M

Class 1 Data-Schema S A
Checker (New)

Class 2 Cleanroom Inspctn S M

Class 1 Runtime Reference D A
Checking (New)

260

THE COMPLEAT PICTURE

Fault Specific Verification

+

Incremental Full-System Build Life-Cycle

+

TQM (Continuous Process Improvement)

+

Re-Use: Trusted Code

Ultra-High Reliability Software

261

A Polarized View of Reliability Tiieory:

o Based on Hardware Models (assumes long histories)

o Assumes Fewer Defects-Found = Fewer Defects Remain!

(Failure Rate = g[No. Faults Remaining]
)

o Assumes All Faults Equal Size, Detectability, Signifcance

o For complex systems, needed # test-cases is astronomical

o Doesn't take into account fault "testability", method Power

o Assumes more time = proportional info (calendar OR exec'n)

o Deals only w/code artifact, only for dynamic testing (random)

o Doesn't account for Intelligent testing strategy (order effects)

o Doesn't account for Dynamic Development-Process modification

o Doesn't take into account System Complexity re Defect Type

262

FSV RELIABILITY MODEL

^ FSV-Based
Empirically-Based -

1

Reliability

lAssessment

f Self-improving

Realistic

o Failures are due to faults in artifacts in ALL phases

o Faults differ in significance, detectability, correctability

o Methods differ in power, ease-of-use, cost-benefits

o IF all faults are classified, F/, have Method M/ to detect them

Rfi (t) = g[Power(Mi, Fj
)]

El

^^utation Tests

Empirical test data

estimated from^

o IF unknown faults remain, UFj,

Rp (t) = g[Power(M;, F;), Power(NJ, U^)]

estimated from: system complexity,

empirical tests, mutation

o With constant improvement in FSV data, methods, ratings, etc.

263

FAULT-SPECIFIC VERIFICATION LIFECYCLE

START Apply Fault-Specific Methods

7y Find Faults, Classify into New/Old/"Crossover"

Analyze Fault Cause, implications for methods/process

ASSESS SERIOUSNESS OF SITUATION > StopW
K^rwi^i

Flan Repair Strategy, Fix Faults, Change Process

Apply most powerful non-specific Methods

(e.g.. Random, Robustness, Domain Testing)

Find other Faults, Classify, Analyze, Fix, Change Process

Perform Regression Testing, Classify, Fix

Review Adequacy of methods, revise power/ease ratings

Recompute mapping of Faults to Methods

COMPUTE PREDICTED SYS RELIABILITY=> continue, sto|»,

change developm

Develop new methods for new faults

Improve existing methods, AUTOMATE
Revise Method Repetoire

Publish Data Analyses, New Methods

^Need Rapid Dissemination (on-line BB? NIST?) ^

264

Present Status for FSV

Classification of Need forV&V as Function of

Complexity and Required integrity (NUREG/CR-6018)

Rating method for W&T Techniques in terms of

4 POWER and 4 EASE-OF-USE Factors,

Weighting for 3 Classes of V&V (Ibid.)

Detailed Enumeration of Many Artifact Faults

(NRC/EPRI Contract Report, forthcoming)

Mapping of Recommended Method to Faults

(Ibid.)

265

i

6.8 Certification of Software for Reuse in Safety-Critical Applications:

Ms. Charlotte O. Scheper

CERTIFICATION OF SOFTWARE FOR REUSE IN SAFETY-CRITICAL APPLICATIONS

Charlotte 0. Scheper

ABSTRACT

This paper describes a process for certifying software for reuse in safety-critical applications. This
process is based on a two-tiered hierarchy of certification levels. The first, or Primary, level specifies
evaluation objectives commensurate with assurance demands of increasing levels of criticality; i.e.. it

provides graded requirements for assurance evaluation based on criticality. The second, or Secondary,
level specifies increasing levels of confidence that the certification process has met the evaluation
objectives of the Primary level. It provides graded requirements for the rigor and breadth of the
certification techniques needed to achieve the evaluation objectives given particular component and
system characteristics.

The staicture of this certification process was designed to adapt to the certification requirements of

multiple domains. It is based on a framework of evaluation techniques and tools that are comnwn
across all domains (and all certification levels). The selection and use of the techniques and tools to

accomplish the evaluation objectives specific to each of the certification levels are managed by
certification policies that are specific to a domain. The levels to which reusable components are certified

are common across all domains, but the target certification level for a component is selected based on
the derivation of domain-specific certification requirements.

INTRODUCTION

Certification provides assurance that a process or product meets a fixed set of requirements. When
viewed as an aggregate, certification policies based on current standards (e.g., DoD-Std-2168, MIL-Std-

882B, RTCA/DO-178A. ISO-9000, ANSI/IEEE-ANS-7-4.3.2-1982, and lEC 880) constitute different

levels of certification differentiated by the rigor and thoroughness of their requirements. The differing

levels of certification provided by existing standards reflect differences In the Intended applications or

uses of system components. Generally, the more critical the correct operation of the component to the

system and the more harmful the effect of system loss or misfunctlon, the more stringent the

certification policy and the more extensively the component must be tested and analyzed. On the other

hand, certain design attributes and operating characteristics of a system, such as the way In which

components are implemented and the processing constraints under which they function, may make it

more difficult to correctly implement components and may lessen the suitability of testing and analysis

methods used for their verification and validation. Therefore, the evaluation procedures used In the

certification process should vary with respect to both evaluation objectives (how extensively a

component will be tested and analyzed) and acceptable level of confidence of the evaluation techniques

(what methods can be used to attain the required level of completeness in the testing and analysis).

When the certification process addresses reusable components within a safety-critical application

domain. It has to be able to accommodate multiple levels of evaluation objectives. It is recognized that

there is a need for a graded classification of safety functions for safety-critical applications and varying

levels of assurance associated with each of the criticality levels [SECY91, 1EC45A, ANS7432, and

Waliace92]. It is also recognized that system attributes and the required level of assurance affect the

applicability and overall confidence In evaluation techniques [SECY91
,
Wallace92] . Since the reuse of

software components brings together components from diverse development projects and disperses

them to be used in new projects, a component may play a different role in the new system at a new
level of criticality. Ultimately, the reused component will have to be verified and validated with respect to

the safety requirements of the new system. The certification of reusable components for safety-critical

applications requires, then, the establishment of a multi-level certification process that (1) takes into

267

account different criticality levels and the applicability of particular assurance techniques at different

levels and for different system characteristics and (2) defines the validation procedures at different

levels in such a way that the potential reuser of a component can judge the distance between the

current level of certification and the required new level.

THE MULTI-LEVEL CERTIRCATION PROCESS

A multi-level certification process for reusable components under development at Ronfie Laboratory

[Scheper93] addresses the two aspects of certification through a two-tiered hierarchy of certification

levels and the derivation of certification requirements for a component to determine its appropriate level

of certification for a particular application. The Primary level of the hierarchy specifies evaluation

objectives commensurate with assurance demands of increasing levels of criticality; i.e., It provides

graded requirements for assurance evaluation based on criticality. A Secondary level specifies

increasing levels of confidence that the certification process has met the evaluation objectives of the

Primary level. It provides graded requirements for the rigor and breadth of the certification techniques

needed to achieve the evaluation objectives given particular component and system characteristics.

An overview of the multi-level certification

process is shown in Figure I. The certification

process uses the library structures and

databases that implement a model of the

domain to determine a target certification level

for a candidate component. The selection is

based on the certification requirements that

have been determined by an analysis of the

domain. These requirements consist of two

parts: an assignment of criticality level and a

specification of required level of confidence

(RLOC) values for a prescribed set of

component and system attributes. The
certification requirements are used to select the

appropriate certification level as follows: the

Primary certification level is selected based on

the assigned criticality level and the Secondary

certification level is selected by computing an

acceptable level of confidence (ALOC) based

on the specified RLOC values. Based on the target certification level and the relevant application

domain, the appropriate certification policy is determined. The certification policy defines the procedures

for evaluating the component. It associates certification levels with evaluation techniques based on the

evaluation objectives for each of the levels and the level of confidence ascribed to each evaluation

technique relative to each evaluation objective to define evaluation procedures. The evaluation

procedures stipulated by the policy are enacted using the available tools and methods. If the

component passes the evaluations based on the criteria established by the policy, then it becomes a

certified component.

Certification Levels. The Primary certification levels are summarized in Table I. There are three levels

based on criticality and one unevaluated level. They specify increasing assurance demands for

increasing levels of criticality; each level assumes that the assurance demands of the preceding level

have been met. The focus of the evaluations associated with the levels range from the internal

correctness of a component to more global measures of correctness such as how the component
interacts with and interlaces to other components to achieve system requirements within a particular

operational environment.

CaiddiMAaMi andXrVaots

AarUx/e-fLOC T.tue
Caiaoallcr Polcy Mapting

Sated ONioeflly

LCMl

Compul«
ALOC

OeteoTvie

Cerliiicalion

Policy

Enad
Certitteation

Procedu-es

Figure 1. Process Overview

268

Table I: Priman/ Certification Levels

Primarv LevelI 1 II 1 IvU J LJCV wl 1 nf AcciiroHi^ tflOf rfODaDllliy Level of CriticaJity

0 None MA NA

1 Implementation

Correctness

Probable Low

2 Design Coaectness improbable Medium

3 Operational Correctness Higt)ly Improbable High

Within each Primary level, a SecorKlaiy certification level specifies a level of confidence that the

evaluation objectives of the Primary level have been met. These levels are distinguished by the

Increasingly global requirements against which the component is verified and by the increasingly

sophisticated evaluation procedures used. The Secondary levels are summarized in Table II. Although

the Secondary levels are the same for each of the Primary levels and specify the application of the

same class of procedures, the particular evaluation objectives of the Primary level determine the overall

scope of the certification evaluation. Thus, although components certified at the same Secondary
levelfor different Primary levels have been evaluated using similar techniques, they will have been
evaluated with respect to different objectives and thus, ultimately, for different levels of completeness

with respect to associated error classes.

Table II: Secondary Certification Levels

Secondary Level 0 Evaluation Techniques Requirements Level Level of Confidence

0 Static Quality and

Functional Analysis

Local to Component

and/or Quality Model

0

1 Dynamic Quality and

Functional Analysis

Local to Component 1

2 Dynamic Functional and

Static Behavioral Analysis

System 2

3 Dynamic Behavioral

and/or Formal Analysis

Mission or Operational

Environment

3

Certification Requirements. Certification requirements are derived for components by a domain

analysis that classifies components according to criticality and establishes values for a prescribed set of

component and system attributes. The criticality classification is currently based on the effects of

system failure on the operational environment and on the effect of component failure on system

operational capability. It is accomplished by examining the correlation between the possible system

failure modes and their effects on the operational environment to determine the hazards that can result

from system failure, and by examining the correlation between the failure of tne component to function

269

\

correctly and deliver correct results and the system failure modes. As a result of this analysis, one of

three criticality classifications is assigned to the component: low, medium, or high. These assignments

are made as follows: low if component failure produces minor effects on system operation or if

component is used in systems whose operation poses at worst minor hazards to Ks operational

environment; medium if component failure severely limits the operational capability of the system or if

component is used in systems whose operation poses hazards to its operational environment that could

result in an inability to accomplish the goals or complete the activities of the intended nussion; high if

component failure results in catastrophic loss of system operational capabilities or if component is used

in systems whose operations pose life-threatening hazards to its operational environment. The target

Primary certification level for a component is selected according to its criticality classification as follows:

Primary Level 1 if low, Primary Level 2 if medium, and Primary Level 3 if high. It is not certain that

there is a definitive criticality classification for safety-critical applications, although two current efforts are

noted in [Wallace92]. The approach taken by this certification process should be compared to

developing approaches.

There are cun'ently four classes of component and system attributes specified for detemiining

certification requirements: requirements, implementation, verification, and usage. Each of these classes

contains a variable number of individual attritxites that specify types within the dass. For each attrft>ute

there are four possible characteristics. As a result of the donnain analysis, the appropriate characteristic

is determined for each attribute and a value is assigned to the attribute based on four distinct rankings

of characteristics. The value ranking of a characteristic is based on the effect it has on the difficulty of

verifying correctness for a component. Each of the four ranks con-esponds to a required confidence

level (RLCX)) which indicates an increasing need for confidence in the rigor and applicability of the

certification evaluation techniques. The cun-ent attribute-RLOC specification targets a broad range of

systems. It can be tailored specifically for safety-critical systems or for a particular safety-critical

application domain. The set of attributes and their associated characteristics can be selected

commensurate with the current systems in the domain, such as those used in nuclear power systems.

Also, as the state-of-the-art changes, the set of attributes can be adapted. The use of the individual

RLOCs to compute an overall acceptable level of confidence allows the difference between old and

new certification levels for a component to be objectively assessed as system requirements and

capabilities change. This ability to incorporate changes in the assignment of certification levels and the

selection of evaluation techniques provides a degree of flexibility that is desirable for regulatory

processes that have to accommodate evolving technology [SECY91].

Evaluation Framework. The evaluation framework for the multi-level certification process is the set of

techniques (and the tools and methods that support them) that are used to perform the certification

evaluations. The current framework categorizes evaluation techniques into three classes (quality,

functional, and behavioral) according to the aspect of correctness they address. Quality evaluation

addresses processes that are used in developing the software and with internal stmctures and

characteristics of code that are deemed to be either predictors of quality or detectors of anomalies that

may indicate deficiencies in quality. Quality evaluation techniques included in the framework rely on the

computation of quantitative measures based on the hierarchical quality model described in [Bowen85],

which associates user-oriented quality factors with specific software characteristics and metrics for

those characteristics.

Functional evaluation addresses the correctness of the component with respect to its functional

requirements. Three categories of techniques are included in the framework: static, dynamic, and formal

analysis. The static techniques are based on human and automated inspection. The dynamic

techniques are based on executing the component using test cases representing usage scenarios that

will exercise the code to reveal potential faults. Formal analysis techniques are based on the existence

of a formal specification and involve reviewing each level of development and proving it to be a correct

implementation of the specification at that level. The techniques to be included for functional evaluation

270

were selected based on those specified as acceptable techniques in the Rome Software Test
Handbook [Presson84].

Behavioral evaluation addresses how a component interacts with other components in the system, both
software and hardware, to meet the functional, perfomiance, and dependability requirements for that
system. It is comprised of three levels of analysis: requirements (resource requirements and allocation
concerns), design (decomposition issues such as functional allocation, granularity, partitioning and
isolation concerns), and operational (perfomiance and dependability characteristics under target
conditions and load levels). The framewor1< bases the behavioral evaluation on analytical and simulation
models that are developed hierarchically. The behavioral evaluation techniques were selected based on
the rrodel-based design and assessment methodology developed in [Scheper91]. These models
capture the analytical, simulation, and measurement information produced during the design,
devetopment. and use of the component. Within a fully model-based reuse environment, such models
would be the basis for selecting components and determining what transformations were necessary and
feasible to reuse the conponent. For systems at the upper range of performance and dependability
requirements, particularly those with complex hardware and software mechanisms to achieve those
requirement, such models are critical to the assessment process.

Certification Policy. The certification policy determines what is evaluated for each certification level

and liow by specifying the detailed evaluation objectives for each Primary level and the techniques that

can be used for each of the Secondary levels, it also defines procedures for conducting the evaluations

that specify input, output, process, and completion criteria for each technique used. Multiple certification

policies can be defined in cases where more than one application domain needs to be considered. One
certification policy was defined initially for this certification process. The evaluation objectives listed in

Table III were selected based on Rome Laboratory's work in software testing, particularly the Rome
Test Handbook [Presson84]. Particular requirements of a standard, or a consensus of the requirements

of several standards, for a specific safety-critical application can also be incorporated into the

evaluation objectives. The evaluation techniques specified by the current policy are listed in Table IV.

The confidence ratings for the quality and functional evaluation techniques used to determine

applicability to the Secondary certification levels are based on an integration of the three evaluation

paths in [Presson84] (software category or domain, test plan or objective, types of errors apt to be

encountered) to "choose the right technique at the right time to find the right errors". The confidence

ratings for the behavioral evaluation techniques are based on the work done in [Scheper91].

Table III: Evaluation Objectives

Primary Level 1 Primary Level 2 Primary Level 3

Detecl coding errors Delect data deficiencies Validate algoritfims/equalions

Detecl program logic errors Detect processing accuracy and precision errors Validate program data requirements

Detect output format errors Evaluate mission performance capabilities Validate functional and perfomiance requirements

Delect output content errors Detect design errors Validate design requirements

Detect data errors (content, format) Delect design deficienaes Validate software interface compatibility

Detect data I/O errors (transfer,

communication)

Detecl performance requirements errors Validate hardware interface compatibilily

Evaluate software performance

capabilities

Detect functional requirements errors Validate system operational capabilities

Evaluate system interface compatibilily

271

CONCLUSIONS

The multi-level certification process described in this paper specifies a method for certifying software for

reuse in safety-critical applications such as those of the nuclear power industry. It provides a range of

certification levels and associated evaluations varying from minimal inspections to rigorous testing and
behavioral analysis, based on levels of criticality and component/system attributes. The criticality

classifications established for this certification process address concerns of the nuclear safety industry

for varying levels of assurance based on criticality assessment, while addressing a more generic view

of criticality than that related specifically to safety. The use of secondary certification levels to determine

a required level of confidence from the evaluation techniques addresses the concern that the

applicability and completeness of evaluation techniques are limrted by both the required level of

assurance and specific characteristics of design attritxites and operating characteristics of the system.

The muHi-level process provides effective management of resources (time and money) by directing

more costly procedures to more critical components. Its assignment of evaluation level based on
objective requirements facilitates the selection of reusable components compatible with requirements of

Table iV. Evaluation Techniques

Secondary

Level 0

Secondary Level

1

Secondary

Level 2

Secondary

Level 3

Program Quality

Analysis

Debuggers Data-Row Guided

Testing

Assertion Checking

Reviews

Walkthroughs

Structure Analysis Performance

Measurement

Symbolic Testing

Error/Anomaly

Detection

Path Analysis Assertion Checking Formal Analysis

Structure Analysis Domain Testing Random Testing Requirements

Analysis

Path Analysis Partition Testing Mutation Testing Design Analysis

Path/Structure

Analysis

Real-Time Testing Operational Analysis

Performance

Measurement

Requirements Analysis

Random Testing Design Analysis

Functional Testing Operational Analysis

Real-Time Testing

a new system in which it will be reused. Finally, the adaptability ot the process allows future changes in

technology and regulator7 requirements to be accommodated.

272

ACKNOWLEDGEMENTS

This work was sponsored by Rome Laboratory/C3CB and the Office of the Assistant Secretary of

Defense through the DoD Data Analysis Center for Software. The author would like to acknowledge the

significant contributions of Deborah Cerino of Rome Laboratory to this work and the cooperation of

DISA/CIM and DoD Defense Software Repository System staff.

REFERENCES

[SECY91] Policy Issue Memorandum SECY-91-292. Nuclear Regulatory Commission, September
1991.

[IEC45A] 45A/WG-A3(Secretary)42. "(DRAFT) Software for Computers Important to Safety for

Nuclear Power Plants as a Supplement to lEC Publication 880." International

Electrotechnical Commission Technical Committee: Nuclear Instrumentation, Sub-

Committee 45A: Reactor Instrumentation.Working Group A3: Data Transmission and
Processing Systems, May 1991.

[ANS7432] ANS/IEEE-ANS-7-4.3.2-1982. "Application Criteria for Programmable Digital Computer
Systems in Safety Systems of Nuclear Power Generating Stations." American Nuclear

Society, 1982.

[Wallace92] D. R. Wallace, L.M. Ippolito, and D. R. Kuhn. "High Integrity Software Standards and

Guidelines." Technical Report NUREG/CR-5930, NIST SP 500-204, National Institute of

Standards and Technology, September 1992.

[Scheper93] C. O. Scheper. "Certification of Reusable Software Components." Technical Report,

Rome Laboratory, March 1993.

[Bowen85] T. P. Bowen, G. B. Wigle, and J. T. Tsai. "Specification of Software Quality Attributes."

Technical Report RADC-TR-85-37, Rome Laboratory, February 1985.

[Presson84] E. Presson. "Software Test Handbook: Software Test Guidebook." Technical Report

RADC-TR-84-53, Volume II, Rome Laboratory, March 1984.

[Scheper91] C. O. Scheper, R. L. Baker, and H. L. Waters. "Integration of Tools for the Design and

Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS)."

Technical Report RL-TR-91-397, Rome Laboratory, December 1991.

273

6.8.1 Questions: Ms. Charlotte O. Scheper

QUESTION: MEL BARNES (ADA Technology Consulting): You described a certification

system based upon functionality. We have also derived a certification scheme under the EPRI
protocol. Have you considered other non-functional requirements? For example, the software

has to be maintained, so maintainability is very important. Also, ease of use is important, so

useability is a factor that needs to be taken into consideration. And the software will likely be

moved to a different hardware platform throughout its life and so portability is an issue to be

considered in any certification. Have you any comments on that?

MS. SCHEPER: I think you're absolutely right.

The framework addresses those other things through the component attribute table that

in the paper. Well, that's not quite true. I was going to say the paper actually spelled out what

all the attributes are. But, for example, there is a dependability attribute and the values for that

are availabihty, reliabiUty, fault tolerance, safety and security. And the notion is that those sorts

of questions are more germane to selecting the actual technique and procedures to be applied than

to the overall evaluation objectives. So, yes, we're addressing those, but in a way that's a litde

bit different from EPRI.

274

7 PANEL: APPLICATION OF WORKSHOP TO NRC ACTIVITIES

The final workshop session was a panel presentation followed by an open question and discussion

period. This panel contained a mix of academic and industry experts discussing the risks of
safety-critical digital technology, especially the use of safety-critical software within these

systems. The experts were asked to address these four questions:

1. Are the proper issues being addressed?

2. What other issues need to be addressed?

3. Are proposed NRC regulatory positions complete and correct?

4. What are the considerations for further research?

The panel members were

Dr. John Knight (University of Virginia)

Dr. John McHugh (Portland State University)

Dr. Winston Royce (TRW, Inc.)

Dr. Joseph Naser (Electric Power Research Institute)

The moderators for this discussion were Mr. Franklin Coffman (Office of Nuclear Regulatory

Research, NRC) and Mr. John Gallagher (Office of Nuclear Reactor Regulation, NRC). The
panel addressed the questions by examining the overall context in which the questions were

asked. This context includes but is not limited to the following:

L The state of the nuclear industry generally and with respect to digital systems

2. The potential consequences of a software failure

3. The state of the art in software engineering

4. The state of the practice in software engineering

5. The reasons for the lack of good practice in software development

6. The current use of digital systems in related industries

Each of the speakers presented some of this information and proposed investigating other areas

listed as a means of finding the answers to the questions. The speakers agreed that Answering

the quesdons requires understanding this overall context, and understanding the context may, in

turn, provoke new questions.

Following the panel, the audience had an opportunity to ask questions, challenge the panelists

positions, and provide their own opinions. Many participants contributed to a dialogue on the

future use of digital technology within the nuclear industry, and the open regulatory and technical

issues.

275

I

III

7.1 Presentations

This section contains the edited transcript of the panelists presentations. This editing consisted

of minimal editing to correct grammar and remove extraneous references to microphone volume,

etc.

7.1.2 Presentation by Dr. John Knight

I will suggest a framework for discussing the questions. For example, on the question, are the

proper issues being addressed? To a large extent, the proper issues are being addressed. The

very fact that this meedng is taking place is impressive, but there is an orthogonal way of

addressing some of these issues.

Are the proper issues being addressed? It depends on what the consequences of failure are. I

do not understand what your applications engineers are trying to do or appreciate the nuances of

nuclear control. My perspective is that of a lay person who has typical fears of failures at

nuclear power plants. It is reasonable to ask what are the likely consequences of failure for the

digital systems that you want to build, and ask are the proper issues being addressed?

Secondly, assuming that we know the consequences of failure and that they are significant, how
can we avoid failures to as large an extent as possible? You cannot avoid all failures. How can

you avoid as many as possible? It depends on how the application engineers use digital systems.

What other issues need to be addressed? Well, if there are gaps in areas with the potential for

failure and we could address those gaps, then we should.

How can we be sure that digital systems are implemented correcdy? The NRC's document

intends that the engineers who build these systems proceed along a particular path. This path

may not be appropriate, but how can we be sure that these engineers are following the right path?

They are very competent and may have essendally no malicious intent, but there is often

ambiguity in the directions they receive. There are plenty of opportunities for misunderstanding

if the requirements are not well defined.

Another approach to the questions is to ask how can we use knowledge of what is important and

what we wish to do to avoid the consequences of failure to make sure that development decisions

are not left to chance?

My observations lead to two general points in this area. One is that there is a great deal known

about software engineering which is missing in some of these discussions. There is a huge body

of literature, for example, on testing which is a special verificadon technique, an experimental

one. This knowledge should be brought to your problems. Although the existence of this

meeting and the work at NIST and the NRC is very impressive, I would encourage you to seek

out the existing body of knowledge in fields like software processes, software testing, and

software design methods. For example, an analysis was presented of a popular programming

277

language, C++, in which various advantages and disadvantages were systematically stated. You
gained, I hope, some understanding of the benefits and the disadvantages of C++. There are

numerous other potential discussions that could be had in the programming language arena. It

is a very large, complicated field.

So, I do not want to waste too much time here. Given this meeting and interaction, I think that

things are very positive. I would suggest that there is a lot to be learned from the software

engineering literature and that in order to answer the questions about issues and so on, perhaps

these kinds of questions could act as an orthogonal driver on the discussion.

7.1.2 Presentation by Dr. John McHugh

In IEEE Standard 729, the Software Engineering Glossary, the definition for software engineering

contains a rather imprecise set of words about software life cycle and related areas. In any

reasonable standard dictionary, for example, The Random House College Dictionary or one of

the Webster's College Dictionaries, the definition of engineering contains words to the effect that

this is the application of science and mathematics to the construction of useful artifacts.

The striking difference between these two definitions is that IEEE forgot all about science and

mathematics, which are key to any engineering discipline. I notice in the audience, also, some

tendency to abandon science and mathematics when it comes to software engineering. I heard

in various talks, discussions of expert systems, neural networks and so on, as solutions to

problems. I do not know how to specify or accurately evaluate those systems in complex

disciplines. It seems that when people who are not software engineers look at software

engineering they grasp at the latest buzzwords and the latest catch phrases, rather than applying

the same kind of engineering discipline that they would apply in their own engineering area to

the problem. This is one of the reasons why we have a lot more problems with software than

we seem to have with the products of traditional engineering disciplines.

As digital systems with software go into reactor instrumentation and control systems, we are

going to have to apply the same kind of rigor to those systems that we have traditionally applied

to the mechanical, electromechanical and hydraulic systems that we are replacing.

I see some abdication of leadership in that the people who operate power plants make it very

clear that they are not in the business of doing research into ways to build them. For the most

part, I do not see the people who have built these plants in the past doing research into the best,

safest and most appropriate ways to control them. I see people saying, "Hey, we have these

controller lines that you can certainly put into your nuclear plant," but there does not seem to be

any specific analysis that looks at the kinds of risks that might be different in those cases. I see

a need for research not only in the safety and operating control areas. I suspect that there is a

potential for controls based on more elaborate models than we have had in the past to provide

higher degrees of efficiency and operation; however, better control models are realistic only if

they result in as or more reliable controls than those used in the past.

278

What I do not see is anybody taking the lead in those areas, and it may be time for someb(xly

to take some prescriptive, rather than advisory, steps. The NRC contends that it is not their role

to tell the industry what to do, but it does not seem to be the industry's role to find out what is

appropriate. Somebody needs to take the initiative if this area is going to get off dead center.

7.1.3 Presentation by Dr. Winston Royce

I want to stress one point and provide a few examples. There is a remarkable tolerance for errors

in software by all parties who use them, build them, buy them, and sell them. Stringing together

logical elements line by Une is error prone work. One of the previous speakers made a remark

about retaining mathematics and science within the definition of software engineering, but

stringing together the right, best, or acceptable lines of logic basically owes nothing to

mathematics, physics or science. Logic is man-made. It is not based on the laws of nature or

mathematics. People who are good at mathematics and good at science are very often good at

stringing lines of logic together, code in other words. This means that we software people have

no higher standard to adhere to. An antenna cannot violate Maxwell's equations. Airplane

designs cannot violate LaPlatha's equation. There is no comparable test for most software. It

is built by men and women, and men and women have to judge its correctness.

I have tried to decide why there is this remarkable tolerance for error. One partial explanation,

is that it is very hard to sell software at a high enough price. There is a tendency for the buyer

to accept a lower price and the seller to sell at a lower price because of the nature of competition,

DAFOs and Federal procurement. The result is that the price is too low. Tom DeMarco wrote

a remarkably accurate, and kind of humorous, article on this in IEEE Software two issues back

that I recommend you read.

The legacy of this nationwide long-term low-balling process is that there is not enough time or

dollars to get the errors out of the software or to go into research. The universities generally do

not do research in error creation, detection or correction. This area is under-funded. The

software builders have been low-balled down so that they cannot afford to use advanced error

finding through techniques like better requirements analysis, traceability, using tools to find

errors, or configuration management.

There is plenty of investment in software design and coding techniques. Those are the only two

essential features of software development. The way we manage software development in this

country, at least for the DoD/military world has been to minimize the investment, but not in those

two areas. Testing and other error finding methods have really suffered. The legacy we are

facing today is a partial legacy of that sort of tolerance for errors that exists in those who build,

buy and use software. One of the most important things we can do is stamp out that tolerance,

and move the industry and research community along to do better.

The error problem has a negative consequence in that you have got to judge human beings in

ways that they do not like to be judged and that we do not like to judge them. We basically

have a tolerant, democratic view that people ought to be free to create and build things, but

279

building software requires intolerance. We need to move to some method of licensing people

to prove they are qualified to build software in an error-free way, and culling out those who
cannot work that way. Some of the most creative software builders I have seen have also been

some of the biggest blunderers I have ever dealt with. There is not a correlation there. Creative

people generally are pretty good at being error-free, but there are a few that do both, and that has

got to be fixed.

7.1.4 Presentation by Dr. Joseph Naser

We have heard at this meedng that there is universal agreement on the advantages of using

digital systems. We see these advantages and the reliability improvements over analog systems.

We certainly see that as analog systems are getting older they take more effort to keep going,

and we have questions about their reliability. I think there is a general agreement that we should

move to digital systems because they offer something good.

At the same time, there is a universal acceptance that it is important to implement digital systems

safely in our plants. There is an additional factor; there needs to be a cost-effecdve assurance

of safety of the implementation of these digital systems. If we take a look at the reality of the

situation in the utility industry in nuclear power plants, compedtion is of prime importance. To
be able to implement systems you have to do it in a cost-effecdve manner so that you can

condnue to produce electricity compeddvely; otherwise you are going to shut the plant down.

If we agree that we want to put these systems that improve safety and increase reliability in the

plants, we have to fmd a way to do it cost-effecdvely.

There are a number of issues that need addressing when we talk about the cost-effecdve

assurance of safety. The first one is licensing stabilization. There was a discussion this morning

on the importance of well defined requirements when you develop software systems. The same

is true for well defined requirements if you are going to qualify those systems. We have to have

well defined requirements for licensing stabilization, or for the licensing of systems, and the

technical basis and processes for determining and using the requirements.

We need to remove the uncertainty of the effort required. If you say, "I want to put such a

system into a plant," you have to have a good idea of the requirements for accepting it. This is

the same as a software engineer who needs to be given specific requirements for a piece of

software to quote you a price and guarantee you a deliverable. When you keep coming back to

him and saying, "I need this, and this," then, as we heard this morning, the quality goes down

and the price probably goes up. Changes in licensing requirements are costiy. If the

implementation is going to be cost-effective you have to have a good basis for your starting

point.

A second area to look at is the emphasis on system behavior rather than on component behavior.

We have to make sure that we are looking at meaningful questions and not trying to assure

perfection, because we know we are not going to get there. We have to look at the consequences

of a problem and not just the existence of that problem, to identify what really needs to be done.

280

For example, a control system for a valve may have a very complex controller requiring tens of

thousands of lines of code to push this to an extreme; however, the controller may only be able

to open, close or make the valve flutter. From a safety point of view, we need to assure that the

plant is safe, no matter which one of those conditions occurs. We need to use techniques like

defense-in-depth, and our industry has considerable experience with defense-in-depth in analog

systems, while other industries have experience with defense-in-depth in digital systems.

We never expected perfect hardware, and we designed for that imperfection. We also need to

do that with software. We do not want software that is no good; we are concerned with software

reliability. We want that system to be good. We want the plants to be safe, and we also want

them to be very reliable from an operational point of view. Even if unreliable software does not

attack the plant's safety but only causes the plant to trip, this is very costly.

We also need a good technical basis for deciding how good is good enough. We need to know
when we are increasing the safety of the plant and when we are just creating more paper. There

is a feeling that we do not understand that border at the moment. What we really want is safe

plants, and we want to make sure that what we do increases safety. We also have to do it cost-

effectively, so we do not want to be just creating paper that does not help.

We also want to learn from other industries. We can look at process industries where there are

similar requirements. Fossil plants, chemical plants, oil refineries, off-shore oil rigs, and so on

have similar capabihties required and perform similar functions. These industries have

considerable digital experience that we should be able to use. The safety and control systems

in these industries are more complex than those in nuclear power plants, yet have demonstrated

high reliability with digital systems. We have considerable experience that shows that digital

systems can perform similar functions with high reliability.

When we look at the cost-effectiveness of safety systems in these other industries, we find that

they are doing more complicated jobs with extremely high reliability for at least an order of

magnitude less cost. We need to evaluate why and determine how we can work smarter in our

industry without jeopardizing safety.

We also need a technical basis for commercial grade dedication of hardware and software. In

other industries, there is digital equipment performing the funcdons we need with millions of

operating hours of experience. If I want to have a really reliable system and I have a choice

between a system with hundreds of thousands, or millions, of hours of operational experience or

a system built from scratch using formal V&V, I think I have more confidence in the one that

has proven its reliability. Choosing a system in use provides viable suppliers and people who

will support you. Customized or nuclear industry supported suppliers may not stay in business.

If you can take advantage of equipment that has being used by many industries, then you will

have that supplier independent of the demand by the nuclear industry. You also have a large user

base for feedback on the equipment.

281

We need a technical basis for deciding how to use compensating factors, such as operating

experience, software development techniques used in the development of equipment, error

reporting, et cetera, to compensate for not starting from scratch and not using a formal process.

We should also look at experience. The Department of Defense and NASA are going to

commercial grade equipment for both reliability and cost reasons. We could learn from them

how they justify it and how they are doing it.

An associated issue is the need for reusable software. We need to look for cost-effective

acceptance criteria and a technical basis for reusable software.

There are always special technologies that you want to Dut in. For example, Commissioner

Rogers and Director Beckjord mentioned opportunities for AI technologies. We also should be

developing a technical basis for cost-effective acceptance criteria for these AI technologies. If

we see opportunities for them, that means we want to use them, but it also means that we have

to know the acceptance criteria for them. We need to look at expert systems, neural networks,

fuzzy logic, all the buzzwords. Associated with these technologies are the operational aids which

will influence how the operator runs the plant.

I v/ant to reconfirm that I am not suggesting that we compromise safety, but that we find ways

to operate safely in a more cost-effective manner and have a technical basis to justify it.

282

7.2 Questions and Discussion

This section contains the edited transcript of the question and answer session. This editing

consisted of minimal editing to correct grammar and remove extraneous references to microphone
volume, etc.

QUESTION: DR. LANCE A. MILLER (SAIC): You mentioned expert systems and neural

nets. We just completed a bibliography on V&V of expert systems, and there are about 400
articles in there. There have been conferences every year since '86 on how to validate them.

The exciting thing about that work is that the knowledge base is the primary application-

dependent component of those systems and it's declarative in nature; therefore, it's open to, as

someone said, not inspection but scrutiny. In fact, there were some very formal and very exciting

programs, or formal proving programs, DEVA, CRSV, COVER, VERITES, just to name four of

them, that can identify the non-functional defects. I think it actually points to directions that

conventional programming might use, particularly the problem, for example, of validating data

bases. So, I think this is actually very scientific and mathematical.

DR. McHUGH: I need to become more familiar with that literature because my information in

that area is probably out of date but contains some real horror stories.

QUESTION: H. RONALD BERLACK (Configuration Management International): Dr.

McHugh, 729 has been superseded by IEEE Standard 610.12 in 1990. I think that you would

find that there was a revision to the definition of software engineering among a lot of other

definidons in there that were added and modernized. I think also the revision to IEEE Standard

830 on software requirements also has a definidon on software engineering.

DR. McHUGH: Okay. My understanding was that 729 is still operative. My version was never

recalled.

MR. BERLACK: We'd be very happy, for a phenomenal fee, to send you the revised one.

DR. McHUGH: That's one of the problems with the standards is the fees are phenomenal for

a person who buys them out of their own pocket.

QUESTION: MR. FRANKLIN COFFMAN (NRC): You said that we should be intolerant of

errors in software. I think the question before the NRC might be to what degree should we be

intolerant? How intolerant should we be of errors?

QUESTION: WAYNE JOUSE (University of Arizona): While sitting in attendance I've noticed

a trend, especially from the software engineers, that the standard being applied to V&V, in this

case, is as low as reasonably possible. Is this an appropriate standard?

283

DR. ROYCE: I don't have an answer for that. I can pose that question also pretty well, but I

really don't have an answer. But, in lieu of no answer, let me tell you a current trend that's

going on which reinforces the intolerance and maybe partially answers the question.

It has become common for many DoD software contractors to estimate the number of

errors that will be in the software at delivery, and fairly extensive models are now being built.

They're very like the cost models that em»erged 10 and 12 years ago, in which contractors, by

looking back through hind-sight at programs they'd previously done can estimate, or actually

measure, the errors and project what the number of errors were inside delivered systems or at any

phase in the life cycle. Contractors use these projections to deal with current systems they are

on the verge of delivering.

And generally speaking, today an error rate of about 3 per 1,000 lines of code is tolerated.

And 3 per 1,000 lines of code is going to kill people in safety-cridcal systems almost with

certainty. So, it's something at least an order of magnitude under today's sort of consensus

standard.

Kyle, as I remember, this morning quoted .06 errors per 1,000 lines of code as the

standard for flight-cridcal NASA spacecraft operations. So, I think those are sort of the current

standards.

DR. KNIGHT: In dealing with these numbers, the way that Win was extrapolating, you also

have to keep in mind the area in which the resuldng damage is going to take place. One of the

differences between military aircraft, for example, and commercial aircraft is that the military

aircraft is being flown by a pilot who understands that he's in a high-performance, possibly

experimental, aircraft and he has an ejecdon seat. In commercial aircraft the passengers are often

unaware that they are dependent on a digital system, and they certainly don't have ejection seats.

Now, on military aircraft, therefore, one would be prepared to take a certain risk with the

software, perhaps .6, or .5, or whatever the number turned out to be, but when it comes to other

systems it is often the case that we really couldn't even stand that level of defect and consequent

failure rate, which is why I put that bullet on the slide earlier about the consequences of failure.

The people involved, the aerospace people, or the nuclear people, or whatever, I think really have

to try to understand exactly what the consequences of failure are. In a military aircraft, if

something goes wrong, you can push a button and get out of there. You can't do that in a

commercial aircraft. The differences in the consequences of failure are dramadc, and that

dictates considerably to the way in which commercial aircraft software has to be built.

QUESTION: JAMES HILL (Northern States Power): Dr. Naser spoke somewhat from an

industry perspective and I felt a certain disconnect for the past two days from a lot of people in

this room because I am in an operadng nuclear plant and a lot of people talking about software

engineering without a lot of insight as to the applicadon. But I'd just like to give you a little

insight as to our perspective from an operating nuclear plant.

There can certainly be some very unique risks that may be appropriate to consider in

using software, but I regard this somewhat as analogous to nuclear power's role. People regard

nuclear power as a risk without considering the risks of alternatives, other forms of generation.

Now, to illustrate that, we came on line back in '72 and '73, and our reactor protecdon system

is initiated by a set of DC relays. Those relays are about 20 years old, and we just replaced

284

them. Now, what would be an obvious alternative for replacing relays? A programmable logic

controller. Well, we chose to replace relays with relays because the implementation of

microprocessor-based gear is very difficult to deal with.

Now, can there be a common-mode failure with hardware? Sure there can. With the

relays being installed there turned out to be an epoxy mixing problem that was a potential

common mode problem with those relays. That was examined and was found acceptable after

it was carefully examined to make sure that the nuclear plant was operating safely. The point

is that it doesn't matter if its software, or hardware, or firmware, whatever you put in, anywhere,

there's always a potential for some sort of common-mode failure. We talked a lot about software

risks without looking at some of these other hardware risks.

Another example is our analog gear which would sense reactor process signals and then

send the trip signals to these relays. We have Foxboro H-line equipment and, as I said, we
started up in '72 and '73, and the Foxboro H-line equipment became obsolete in 1968. That's

when they switched product lines. We sdll have that equipment in our plant, and now they're

beginning to replace it with Wesdnghouse equipment. These analog product lines are going to

be much more expensive than microprocessor-based gear if we look at commercial grade

products, but that's the route we're choosing to go at this time until things settle themselves out

in the industry. The picture just isn't firm enough to make any decisions on which way to go

yet, and so we're looking at that as an interim approach.

Lastly, we have a microprocessor-based alarm system. We recendy did have a failure on

that. The problem was a fuse blew in the power supply. Well, there's another hardware

problem. My personal perspective of problems with microprocessor-based equipment is that

many of the problems that I see in the industry are hardware-based, just like the one I mentioned,

or they're user problems. There has been a lot of discussion about configuration management.

When this equipment is incorporated in the plant it's very, very important to understand how it's

going to be used and to maintain it properly. But again, that's not a software problem; that's a

problem of training and qualificadon of the users of that software.

After hearing Dr. Naser's comments and other opinions from a lot of very smart people

over the last two days, I have a hard time seeing when that's going to come out as a product for

the nuclear industry use. Even if it does come out as a product and it is a product we can use,

it may still be too expensive for us to use. If we could afford to run up the Federal deficit like

was done for portable weapons systems, for instance, I'm sure we could do anything we want,

but we don't have that opdon.

I don't know what the answers are to the questions that are in the program, but I'm just

trying to give you more of a perspective from a user who is going to be the eventual customer

of the things that we're talking about producing in this workshop. Thank you.

MR. GALLAGHER: I might just add to Mr. Hill by pointing out that his plant was one of the

first ones to undertake the installation of a modem digital feedwater control system, so he speaks

with a lot of experience in dealing with this technology. It was a very successful program.

QUESTION: HERB HECHT (SoHar, Inc.): I found the workshop very stimulating and I would

like to mention two or three items that I found particularly pertinent and then follow up on what

the previous speaker said about cost.

285

First of all, we found there may be faulty software around but you can't tell it from

Suzy's software. The point is not that we develop fault-free software, but how do you certify

or how do you identify that software as fault-free. Kyle Rone, this morning, showed a very

interesting graph of how as the cost goes up as you try to certify to lower and lower levels of

reliability.

Secondly, we know about the requirements. In answer to John Knight's first question,

the consequences are unacceptable. I don't want to quantify unacceptable. The answer is not

that nothing can be done; far from it. The answer is diversity. You can produce two diverse

systems at much, much lower cost than you can certify one to the extremely high demands of

whatever standards you want to apply.

Third, if you apply these diverse systems maybe you learn something. It's not the

statistics that we need to learn, it's the nature of the faults that are in there that we need to

address.

Now, diversity was mentioned in Mr. Russell's talk, and diversity, by itself, isn't terribly

meaningful. You've got to define what is diversity, how do you certify diversity, and what kind

of diversity to require, for a given application. It's a big problem, but it's easier than to produce

fault-free software.

There is one other article that goes with diversity and that is ultimately you have to have

a selector or a combiner, or something, that distinguishes between these two or three

chronometers that we may have. Again, it's not a trivial issue, but one that should be addressed,

and I hope that these two subjects, the diversity and the combining mechanism, would be

something that the next workshop can devote itself to.

QUESTION: GEORGE C. RUDY (NUS): I have several questions and the panel can stop and

say it's too long a list, but I'm encouraged by this seminar. You brought to the nuclear industry

good insight in software. But let me ask you a couple of questions.

We now have a three-headed horse, I guess, because where is the integration of these

things? You brought to the party very, very good insights and a good admission that software

has errors, and so does engineering, or hardware engineering. You bring to the table the extreme

experience you've gained through DoD programs, as an example the NASA programs. The thing

that's really missing in all of this so far is the systems integration, bringing people together,

bringing the nuclear experts, the software experts, and so on together. That has been the big

problem even with traditional nuclear programs. There has been a tradition in the nuclear

industry—I've been in it for 30 years~that a program is ragged out due to a safety issue and

something is delivered on the dock. It may be managed or configuration control is lost. We
have examples of that in the industry right now on traditional issues, not anything to do with

computers.

The other side of the issue is it's been a tradition in the industry to meet schedule

regardless of consequences. We drop it on the dock and we fix it in the field. It isn't going to

work with these things. The mission is different. If you had the airplane out at Edwards and

it fails, you lost your crew or you got out. You can't take that risk. We can't tolerate any

upsets.

So, the issue that I ask, and it relates to several of the presentations, is a concern I have

because there was a message delivered that there are errors and you can expect all these errors.

286

Is the error on a subsystem level? What about fault tolerance system configurations? And I

guess the question on error rates, is it a system error rate or a subsystem error rate?

DR. McHUGH: Well, I'll give a stab at some of these things. The error rates in software that

we're talking about are what I guess I'll call "wholesale" error rates. I mean they're basically

measured in terms of the number of errors that are found, or believed to exist, in a certain

number of lines of code, largely independent of how that code is structured into a system. What
that means is that those errors could be absolutely deadly or benign. Unfortunately, until you

figure out where they are with respect to the functionality that you have to deliver, you don't

know. Now, that's one of the things that makes it particularly hard.

Some of the kinds of testing that you can do will tend to focus on demonstrating that the

functionality that you have to have is more thoroughly tested than the places that are seldom

entered, and that may or may not be good. It depends on when you enter those places that

haven't been tested very well.

Basically, given that any of the components in the system are prone to failure, you have

to develop some kind of an architecture that will tolerate those failures. One of the things that

we have seen with the advent of digital computers is a tendency to put more and more eggs in

one basket. For example, if we have a single processor that is supporting a number of diverse

processes, errors that appear in thjse individual processes may very well be non-interfering in

the sense that a process can produce wrong answers while the other processes continue to

produce right answers. On the other hand, an error in the underlying operating system that is

managing resources for all of those processes is a common mode error potentially to everything

that is running on that physical processor. When you look at building a system so that a single

point of failure cannot cause a system failure, there are a lot more things to look at because the

nature of the particular failures occurring in the software can either be such as to take down

many things and be a real single point of failure, or it could be relatively benign. We don't

know completely how to deal with these things.

We do knov/ work that John has done in attempting to get design diversity in replicates

of software and that the cases where software developed independently to perform the same

function fails under the same inputs are more than random occurrences would lead you to

believe. The statisdcal independence that says that if I have two idendcal circuits sitring here

on the table with nothing connecdng them, that the chance that they are both going to stop at the

same moment in the absence of something like an EMP that is going to nail them both is very,

very small. We find in software, where the errors really have to be looked at as distributed

through the input space rather than distributed through time, that we get more common failures

on inputs.

Now, intuidvely it's reasonable for this to be the case. There are portions of every

problem that are harder than other portions, and I believe when you look at the data that we

have, the hard places tend to collect more failures. It doesn't mean that the same mistakes were

made in both cases; it just means that mistakes were made in the same cases. And those are the

things that are particularly difficult to deal with.

I suspect that diversity is going to mean dealing with separate phenomenologies for the

ultimate source of the input data and for making certain that the ways in which the data are

processed are truly different. Given that most of all our software engineers seem to be trained

287

out of the same bag of tricks, there is a possibility of a common-mode failure due to a

widespread way of thinking about things. You can't really look at two pieces of software and

say that they're diverse.

MR. GALLAGHER: Certainly I would like to add that as Mr. Russell and Mr. Beckjord said

and as is in your handout, the framework for the NRC Branch technical position emphasizes both

quality and diversity. It contains 4 steps at the end which are directed towards one way of

achieving diversity. You also heard Mr. Beckjord say that he views this as an area where a lot

more work needs to be done to establish whether or not functional diversity, using the same

program structures, is adequate, or do you have to go to different types of program structures.

Those are questions that have to be asked. This is one of the efforts that's underway in the

regulatory position.

FRED PAULITZ (NRC): I have a few comments there. I suppose if it wasn't for the emphasis

on advanced reactors, all this digital equipment going into reactor protection systems may not

come into being as such. There has been a lot of applications in feedwater control, feeder-drain

control, and other non-safety portions of the plant. So, it looks like the horse got in front of the

cart here a little bit. These systems are designed, and people want to stick them in there. Now,

we're going back and saying what do we really need to prove that they are reliable.

In the seminar, the heading says, "Digital Systems Reliability," and nobody has said

anything about hardware. It's all software-oriented, and those are definitely related in that

hardware does sometimes effect software.

The speaker yesterday said that if you put things in the right little compartments that

we're less apt to get in trouble, and that if you run parallel who knows what's going to happen.

And then you mentioned the experience of a transfer of things that are already out there,

which I suspect NASA and DoD and the rest of them have, that we, in the nuclear industry,

ought to start transferring it over here somewhere and being as smart as they are, I guess.

Now, in the aircraft you mentioned you're saying there's two guys in the aircraft and you

bail out and then in commercial you've got 300 people. Just recendy, for the last year or so,

every time I get in an aircraft the first thing they tell everybody is, "Shut down those portable

computers, radios, et cetera," because one day that cracked up a plane because of those. But the

same methodology that you talked about for developing software is the same thing that has been,

and should have been done, in designing a whole new compartment in the first place. I noticed

a lot of precepts were good, and that's what we need. Thank you.

SID BHATT (Electric Power Research Institute): I have several comments I want to share with

you, and I think we have many experts who shared their wealth of information and some honest

admissions of guilt, et cetera. But they are missing some points. If I were to set up the

workshop and I had some experts, I would try to relate to the problems of the end users that I'm

trying to reach.

Point number one. Diversity, language, and programming. Very popular in the software

area. The udlity industry and the Electric Power Research Institute, they had a program, a data

emulation programming experiment, in 1978. In the udhty industry in Europe they also have

288

followed up a program with DoD and we have voluntarily shared some of this information. In

this industry we have been sensitive to public safety and we have been sensitive in knowing

about what the technology is and what is good or is bad, or where we have to watch out.

In airplanes you have to keep it flying, or you've got a problem, so-called graceful

degradation, but you're still flying, and your control system takes care of it. All people who
contributed to the nuclear power plant program, they said, "Hey, we've got a control system and

we can institute something else, separate from the control system, called a protection system."

But they need a safety net under the control system also, and we need to distinguish the safety

net which exists. So, the protection system is, and has been, a safety net activity for a long time.

By nature they are simple. Protection systems are able to implement and do some simple relay

logics with analog equipment. What I'm trying to convey is that the complexity of that program,

including the analog logic, is simple, and there have been some checks put into those kind of

design-in-depth in nuclear power plants. So, don't simplify and dramatize this by giving us

something comparable with airplanes that DoD has safety systems on and commercial doesn't.

My fourth comment. Go around and look around at what's happening in the aircraft

industry also. There is Standard 178. They actually share information internationally, and many

parties are invesdng in this including the commercial enterprises. The international airline body

worked with Lx)ckheed and others to come up with 178. They understand the limitations.

We understand that there are limitadons in software, and we are not asking for perfection.

What we are looking for is not to discount new technology, but we will be using it with care,

utmost care. We don't want to simplify it, and say that there is a common mode demon running

around. We have lived with those kind of things, handled different technologies through

diversity. Both industry and regulatory people understand that we have to live with those kind

of issues for a long time.

My fifth comment is that this is a complex decision making process, and we cannot really

dilute the emergency, timeliness, and cridcality of being able to utilize this technology and handle

it in such a way that it is in the U.S. interest, but the protecdon system has been implemented

in digital systems in other countries. For example, France and India have very similar operadons,

and they have plants operadng with digital safety systems. They have learned how to handle

technology and manage the critical safety, technical and management issues.

And these are some things which I've observed and I hope I haven't hurt anybody's

feelings, but we will progress if we try to focus on the technical basis that you've mentioned

instead of simply trying to find a solution within this workshop. So, I say, pay attention to Al

Sudduth who said, "You guys are talking, and we're already dealing with the process." The

industries know how to handle this kind of thing. Don't kid yourself. We are not born yesterday

that this is magic to us. The people at the udlides know about the technology. They can handle

it. People do come down and manage things in the nuclear area also. The quesnon is how do

we manage these three circles, the utility industry who needs to do things right so they can have

a peaceful sleep, and the regulatory people who have to manage and certify so they can also feel

comfortable. We would like to get that technical comfort level so that it is reasonable. We are

not asking for error-free code. There is going to be some errors. The question is how do we

manage and where do we go from here?

289

MR. GALLAGHER: Thank you, Sid.

You raise the issue of inversion programming. You brought that subject up. And I was
wondering if Gustav Dahl is still here? The reason I looked at him is he certainly has done a

fair amount of work in this area, and it's a subject that keeps coming up, and I don't know
whether he's willing to give his view on the status of that or not.

GUSTAV DAHLL (OECD Haldon Reactor Project): We have pursued several research

problems in inversion programming, or actually diversity based on the same specification, which

is not exactly the same as diversity in the wider sense, which includes functional diversity. The
findings we have don't differ from what has been explained earlier. You get some gain in the

reliability of the system, and our research shows that for some types of failure, but not all, we
get again what you would expect if it were completely independent. First of all, we have,

obviously, common-mode failure caused by, for example, common specification. Another

problem is error masking in which several different faults are grouped together so that the effect

of the diversity is lowered. This problem doesn't mean that you don't gain anything by diversity.

Roughly you get, for example, a 10-fold increase, but not 10 ^ So, there is a gain, but it is not

a sufficient way of gaining extremely high reliability.

MR. GALLAGHER: Okay. Thank you. Yes. I think that was a point that Herb Hecht also

made that you have to consider who is going to be the arbitrator in how you make a decision.

I think it's very important, and Dr. Naser brought this out, that the cost-benefits certainly go far

beyond just the design process. They go through the whole software life cycle. So, if by doing

something you're adding an extra burden to the latter part of the life cycle, then the cost-benefits

are very doubtful.

DR. KNIGHT: Well, based on what a couple of the questioners from the microphone were

saying, it would appear that I've upset some peoples' feelings, so let me start by saying that was

not my intention at all, and let me go through the five points that were raised by the last speaker

from that microphone.

Both speakers seemed to be concerned that I had pointed out the volume of existing

literature. That wasn't meant to be an insult to this community. It was merely to point out that

in fact outside of application domains, but just within the mainstream software engineering

literature, there really is a great deal that you might be unaware of. I know little about nuclear

engineering, and I would not expect to have access to the literature. If there are nuclear

engineers here I just wanted to point out that, in fact, a great deal might be available to you by

looking in the mainstream computer science literature rather than in the application domain.

The second comment was about diversity and the record at the EPRI. Well, I know that

literature fairly well and I wasn't aware of work done at EPRI in '78, but all I would say about

design diversity is it's an extremely complicated topic. It is by no means anything which one

can adopt as a simple, or even a moderately complicated, translation of the way in which it's

used in hardware. I would caution people that the use of design diversity is something that has

to be looked at very carefully.

The third problem was with continuous operation and the analogy that I used. As I

explained yesterday, the only application domain that I even know a httle bit about is flight

290

control systems, and so I tend to use examples from there. All I was trying to point out through

the example that I cited earlier was that there are differences in the consequences of failure in

flight control systems and that, in fact, different degrees of risic are undertaken. I wasn't

implying that the fact that those systems have to operate continuously is something that you
should take into account. It was merely a small example to try to elucidate the point that in the

domain that I understand anyway there are different consequences of failure.

The fourth point about DO- 178A and DO-178B, those are existing standards. I'm aware

of the existence of both of them, and they play a role in the aerospace industry. I don't think

they have a role especially to play in your industry, but certainly I'm aware of them.

On the fifth point, about the existence of foreign nuclear plants, as I understood it,

running successfully, I don't have any doubt that that's the case. I'm perfectly confident that you
can cite plenty examples of that form and that there is valuable experience there. And again, I

don't know what I said that caused at least some subset of people to have their feelings hurt.

That wasn't my intention.

I guess a lesson which I would like to bring out here is from my perspective as a humble
software engineer. Software engineers don't know much, and building software is hard. We
don't know very much about how to do it right. Perhaps, the real lesson in all of this is you

shouldn't listen to anything that I've been saying.

OUESTION: WAYNE GLIDDEN (Nuclear Utilities Software Management Group): I'd kind

of like to pick up on a comment that Mr. Hill made and extending that to another comment. I

love hearing a disconnect in this conference. I felt that since we got the brochure that we have

a lot of experts and a lot of people at the leading edge of software development and testing, and

that's great, but the problem is that the workshop is supposed to be on the leading edge as it

impacts the nuclear industry. I don't hear too much of that.

If the nuclear industry has got to put the effort into software that I've been hearing over

these past couple of days for what I really see is a minimal increase in the safety of that plant

that's not cost-effecdve. If we won't do it where our analog systems break down and we can't

replace them, then we will be shutdng plants down, and it won't be cost effective. As was said,

they've already canned a couple of digital replacements. There has got to be a realistic approach.

We've got to take the information we hear from academia where most progress starts and get

somebody to translate that into what it means to the nuclear industry. I think that we've missed

that in these two days. We only had two speakers from a utility in these two days. I believe that

this conference is great because we've heard what's going on, but there needs to be one more

step before we can really answer the questions that have been raised for this panel. For example,

are the reguladons going to be good? In light of what we've heard, the reguladons are going to

become more restricUve and will not be beneficial to the udlides and the nuclear industry. I'll

be out of a job, a lot of you from the NRG will be out of a job too because we will have nothing

to regulate.

MR. HILL: Yes. Diversity was discussed, and I didn't touch on that. Again that's a

consideration once it filters down to the user. Defense-in-depth, I feel, is very important for

diversity. If we talk about a diversity of product lines, for example, the feedwater control with

our Wesdnghouse WDPF, for an engineer to be qualified to properly maintain the configuration

291

of that system, he or she has to go to a 6-week school, and the technicians have to go to a 6-

week school. In addition, there's warehousing of parts to support that system. When you add

another diverse product on a site, that more than doubles the problem and I feel, again, that one

of the major roles of the utility is to properly manage the configuration and taking care of that

software/hardware system. It becomes very difficult to do when you start adding diverse product

lines. This problem should be considered.

MR. GALLAGHER: Yes. That was my comment that you have to evaluate anything you do

with respect to the impact on the whole software life cycle, and you pointed out that the

maintenance in the field is a big item there.

QUESTION: RAYMOND J. RETTBERG (GPU Nuclear Corp.): I get the impression through

this whole conversation and this last two days about all the difficulty with keeping errors out of

software. I wonder if we're talking about a different sophistication or complexity of software?

Specifically I'll pose the question, if we replace a simple, purely hardware system, such as a 2-

channel system with a microprocessor with software in it to do the same function, do we
inherently have new problems, or more serious problems, or something that we really never had

before?

DR. McHUGH: I guess I would have to ask the question of what were those channels doing?

MR. RETTBERG: Let's say it's a purely logical function, or say it's a combination of logical

function and measuring some analog inputs to decide the trip functions for example.

DR. McHUGH: Just simply a comparator? No integrators, no filters, no nothing like that? I

guess the question I would ask would be why would you want to replace something like that with

a computer? It seems like the system that you have is already very simple. You're going from

parameters that are measured in a continuous domain and effectively a continuous decision

process to one in which you have to sample and sequence them through a set of repetitive

instructions that it is going to be substantially more complex because of the structure of slicing

it up and turning it into a discrete domain and processing it in a large sequence of steps, rather

than a continuous flow.

Now, if that's all that it is doing, my intuition, if I were building a system like that, would

be to build something really simple on bare-bones processors with no operating system and no

nothing, and it wouldn't be much more complex, but it would still, in terms of parts count and

potential for hardware failures in the system, would probably be a more complex piece of

equipment, just simply because of the shift of paradigm from continuous measurements to

discrete measurements and time stepped chunks.

On the other hand, if you say, "Well, I'm going to buy a general purpose computer, with

an operating system on it and so on," you've probably added several orders of magnitude in

complexity in order to provide the infrastructure to do the simple job that you had to do. But

it almost seems to make sense to do this with custom designed logic that isn't really a processor,

or to stay over in the analog domain, if that's possible. I gather the real problem that we're

292

talking about is that nobody is making the analog equipment anymore, even though it was
perfectly adequate for the job.

MR. RETTBERG: Right. Or there may be a model, but there may be additional functions

beyond the critical functions that are the core of this thing that truly affect the safety of it. The

question was what is it fundamentally that we bring into this thing that somehow puts us into a

greater risk than we were before? Because to me that seems to be underlying a lot of what I'm

hearing and I'm not sure that in a simple system that that's a valid premise.

DR. McHUGH: I think one of the things—and John wants to say something else here--but one

of the things that I will say is that there seems to be a temptation to say, "Look, we've got all

this computing capacity that we're not really using to do that simple job. Let's use it for

something." That may be the wrong answer, because as soon as you start having that processor

doing 37 dozen other things that aren't part of that mission on the grounds that the processor is

there and it has the capacity to do it, then the complexity goes sky-high.

In the automotive world we have seen some problems when spaghetti code is in a

processor because it not only runs the fuel injection but it runs the transmission and the

windshield wipers. Separating out those functions and keeping them straight, some of which are

safety-critical at all times and others are not, has turned out to be a major mess.

We haven't had a recall in the automotive world, I think, based purely on software yet,

but if we do it'll start at about $20 million dollars or so and go up from there in terms of the cost

to the automotive company.

But, if all you want to do is replace that comparator with a computer, and the chip is

logically a $1.98 part now (a nuclear qualified one may be $198,000) and, if you dedicate it to

one simple function and forget the excess capacity it probably isn't that much more complex, but

it isn't off-the-shelf either.

DR. KNIGHT: I wanted to start answering that a litde bit by asking a question of this

community here. You've heard a couple of numbers quoted of defects per 1,000 lines of code.

Now, when you build the kinds of plants that you build, I imagine you put very large amounts

of wiring, very large amounts of piping and very large amounts of other things in them. Does

anybody ask you how many defects per foot of pipe you have?

SPEAKER: Yes.

DR. KNIGHT: They do?

DR. NASER: Yes.

DR. KNIGHT: What's acceptable? Well, this is revealing yet again how little I understand of

your business, but the thing about software is that the defects are design defects that are there

from the beginning. Software doesn't break. Pipes, as I understand it, do break. You have to

worry about that as a maintenance issue over time. You have to have defense-in-depth against

pipe breakages, but are there design defects in the piping that you have to worry about and in

the cabling associated with power distribution?

(No response.)

293

DR. KNIGHT: I really didn't think there was or I wouldn't have asked the question.

(laughter)

DR. McHUGH: You lose, John.

DR. KNIGHT: Sort of. You can then begin to deal with this software question immediately.

If you have so many thousand feet of pipe and you're prepared to accept .6 of a defect per foot,

or per 1,000 feet, or something, then the software has to be probably comparable. In other

industries the requirement when replacing an analog or a mechanical system is that the digital

system meet the demonstrated performance. So, for example, in replacing hydraulic and

electromechanical systems, the FAA's requirement is that you make the digital replacement as

good as the history has demonstrated the mechanical systems to be.

Now, because of the many thousands of operational years of exposure, the numbers are

in on the mechanical systems, and that's where that 10'^ figure comes from. I think in dealing

with that kind of replacement, that might be the kind of strategy to take. What's the

demonstrated performance of the old system? Can we meet that in a way that is reasonably

scientifically convincing?

DR. NASER: Actually this is a comment for John, and this is sort of a clarification. One of

the reasons why you hear people saying that they want to put in excess functionality really isn't

because you've got the computer there and, as he says, "I've got it there, why doesn't it do

things?" There may be some of that, but I think that if we look at the real basis, we find real

advantages. For example, if we look at problems that have occurred in the plants which have

caused plant trips, frequently that's been caused by the human, and it's the human doing things

like checking the system. So we'd like to put in additional functionality which does things like

self-testing and knowing when we need to do calibration, instead of doing calibration in a

periodic manner and doing it when we don't need it and perhaps causing more problems. I think

there are some good reasons why we want the additional functionality as well.

DR. McHUGH: Let me just reply to that. That's perfectly reasonable. The question that I was

asked there was if I want to just simply replicate the functionality, and I would argue that

probably is a very straightforward thing. I think you're right. You have very good reasons for

going further. The question is, where on the reliability versus complexity curve do we come
when we do that and do we get ourselves up into the area where we start really worrying about

whether that extra functionality is safe especially if it has been put in to make the plant run more

smoothly or for economic reasons as opposed to making it safer. I think there are some trade-

offs in there. Some of that software may very well serve to make it safer, but if it was safe

enough before, do we get unsafetys from one introduction of additional functionality and more

unsafetys in another area? I don't know. This is something that I want to look at rriore.

DR. NASER: Actually just one last comment. I think you already gave away what I was going

to say anyway. I think some of the things we're looking at, we think, are ways to guarantee or

try to assure safety. For example, there is a dynamic test system that the gentleman from AEA
made some reference to earlier. This test system makes sure the system still works by putting

signals through to actually test its capability so that you know the trip will work when you want

it.

294

MR. SUDDUTH (Duke Power): I guess one of the problems I have, since I seem to be one of

the few people who actually builds digital systems that go in power plants, is fitting the paradigm

under which I develop software into the paradigms that I've heard over the last day or so. Let

me real quickly run through what I do.

I go to a vendor like Westinghouse and I say, "Sell me a system." What they sell me is

hardware, processors and I/O networks and things like that, but they also sell me software. They
sold me an operating system. In the case of Westinghouse it's actually RMX, if you all know
what that is. That is an Intel-created real-time operating system. They also sell me a whole

library of functionality that says, you know, "These are our little modular blocks and all you've

got to do is string these things together and you've got a control system." And that's exactly

what I do. I make a drawing which represents the manner in which I'm going to string together

those Westinghouse library blocks in order to create a control system. That drawing can then

be shown to any number of control engineers in my plant, and they can all tell me exactly what

that control system is going to do. It's a completely unambiguous description of what the system

has to do.

I then create the software that implements that using all these little Westinghouse blocks.

I can actually parse that software back into a drawing and make sure I did it correctly. Then I

put the system in and test it until I'm satisfied that it works.

I'm sitting here saying, "Well, gosh, I must be doing something right because the systems

work," but I don't do any of the things that I've been hearing for the last day or so in order to

do that. So, help me figure out, is the thing that I do so far out of the mainstream of what you

all are talking about, or am I doing what you're doing, except I'm doing it differently?

DR. KNIGHT: Well, first of all, you're doing exactly what I think John and I were saying

yesterday; your diagrams, in fact, are a formal specification that you can communicate between

yourself as a computer engineer and the controls engineers, and you have a very advanced

notation, in fact, compared with what most people use. That provides you with a great deal of

security against ambiguity and misunderstanding. Then you are depending upon something which

is being provided to you by a manufacturer who presumably has put a lot of effort into various

forms of verification of those items and has a great deal of field experience with them and so you

can put a great deal of trust in them. Then you're going ahead and doing testing of those items

yourself anyway.

There are nuances to this which we could discuss, but I think what's happening is we're

using one kind of terminology and perhaps it isn't quite the one that you use, but there is a great

deal of commonality between what's going on.

DR. McHUGH: I think the thing that is important is that Westinghouse has done all the testing

of what's inside those blocks so that you can trust them without looking inside them. It looks

like there's a lot of evidence that they have. If the testing has been done properly, then what

they have done is they have taken you at least one, or two, or three, steps away from the bare

bones of the machine in giving you an abstraction on which to base your stuff which is much

closer to your problem, and that's exacdy the right way to divide the labor on that.

295

MR. GALLAGHER: I may add something to that. I used to work in the place that he's talking

about before I joined the NRC, and our general manager never understood why a fossil plant took

so few engineering hours because mainly the engineering was to assemble the system down on

the basement floor in accordance with the specifications, and then the person who was going to

use the system would come in and put the software in and check it out.

Well, for a nuclear plant there is a few things like safety analysis and lots of pre-

justifications one has to do that would prove to some reasonable level of assurance that what you

were going to build will meet all the safety requirements and regulations, and that takes an awful

lot of extra engineering that you don't ordinarily find. I know, because every Monday I used to

be confronted with this difference and it wasn't easy.

DR. NASER: Actually I'd like to make one comment. I think what you've said is certainly true

of the environment. I think probably the thing we need to question ourselves is how much extra

do we need. I think there is no question that we need some extra, but the question we have to

address is to determine how much more we need to do. I think this is one of the issues that

perhaps should be looked into at the NRC. For example, if we look at the WDPF systems that

are going into the fossil plants, going into petrochemical plants, going everyplace else, they've

really proven themselves to be very reliable. Why are they no good for nuclear plants?

MR. GALLAGHER: I think maybe there is somebody here from Westinghouse that can answer

this, but I think if you look at the Sizewell that a lot of the balance of the plant was done exactly

in that way. So, when one speaks of nuclear you have to speak of the safety system.

DR. NASER: Right. Thank you.

QUESTION: DAVID HOLCOMB (Oak Ridge National Labs): One of the comments I'd like

to raise here is that I felt a rather strong disconnect with most of the topics that the speakers have

brought up. It seems that the workshop has overlooked the basic fact that the control and the

safety functions are physically separate in nuclear power plants. The nuclear power plant safety

functions are much simpler than the safety functions of the systems in spacecraft, in flight

controls, and in medicine. It seems unlikely that higher level computer language, things like C,

C++, ADA, and all the other object-oriented and advanced computing languages, as well as the

advanced microprocessor architectures, are going to be used in the safety-critical protection

systems for nuclear power plants. What using them would require is for us to start qualifying

the circuit layouts of these advanced microprocessors, the operating systems, and the compilers,

which seems to be well beyond the scope of anybody's financial resources. It's more likely that

we'll do something with bare-bones, basic hardware and very simple direct ribbon watching with

no operating system. It just seems that advanced software and hardware architectures are going

to be restricted to the control systems to get the maximum efficiency out of our plants and stick

with as simple as possible in the protection system.

DR. McHUGH: Let me take a shot at this because I think what I've been hearing is a

substantial disagreement between parties on the nuclear industry side of this. Some of the things

that I have seen proposed and under construction for safety shutdowns on reactors are far from

296

as simple as you've described. I would suggest that taking that approach is going to lead you

to exactly the same situation that you are in with the analog systems now. If you go and put a

particular small bare-bones processor and some dedicated controllers-ADA-D, et cetera--in, in

15 years that processor isn't going to be available. You will have programmed it at a level

where it will be necessary to, in effect, rebuild that entire board up from scratch the way you

would be doing now. This is the way you would probably build a new analog board if you could

get new analog components.

But at the level of picking something which is specific to a pardcular processor and

particular converters and controllers and so on, my guess is that it's going to become obsolete

even more rapidly than the analog equipment has become in the current plants.

Now, it may be easier to re-implement it every 5 years than it is to re-implement the

analog systems, but I think you're going to have the same sort of problem. It's only if you get

away from a processor-specific system that you have some chance of having the system that you

build oudast the platform on which you put it, and it sounds like that's what has gotten the

industry into the situation of needing to convert from analog to digital for the safety shutdown

systems at the current time.

MR. HOLCOMB: One response that immediately comes to mind to this is that coding for

advanced microprocessors is just as processor-specific. It is often more so since much of the

coding takes advantage of very selecdve, often hidden, features which much of the rest of the

community won't know about. Importing the code on the next generation of advanced

microprocessors, which certainly have a very rapid turnover, is going to require another of these

huge efforts. People have mendoned here that they have 1968 hardware that they're updanng

30 years later. Let's stick with the bare-bones processor, and maybe in 15 years then you can

go to the next generadon of very simple bare-bones digital systems with the added advantage of

almost desktop manufacturing of many of the processors. Some of the digital processors aren't

that difficult to make, and it may be possible to get a sole-source of supply of some of the simple

digital processors for many years to come.

DR. McHUGH: It's possible. I honesdy don't know. I think if you build your system at a

fairly high level of abstracdon that you can probably count on the underlying libraries then you

depend on to communicate with the processor architecture itself being available. Whether they

will qualify for these kinds of applications, I honesdy don't know. I'm not sure that there is a

panacea in any of this. As of a few years ago, I think DEC would sdll build you a PDP-1 out

of their Tradidonal Products Group, for example, if you had to have one, but it would have been

an astronomical price. I suspect that 10 years from now the simple processors that are being

used as controllers would have to be custom fabricated. I know ARPA has been looking at

issues like this because the military has this problem in spades. They've got equipment deployed

that has outlived the technologies with which the equipment was built, and they are faced with

the problems of either complete re-implementations of systems, which cost billions of dollars,

or building with obsolete technologies, which costs billions of dollars. They've been looking at

ways to be able to have automated factories that will manufacture any old piece of stuff that they

need to keep systems going, but that may or may not be an answer in this area. I have a feeling

297

that technology turns over too fast for plants that last 20, 30, 40, 50 years without planning on

major refits of some kind every 10 or 15 years.

MR. HOLCOMB: I also then need to add that you should take a look at what is being proposed

by GE and Westinghouse and some of what's going on, and what people are still proposing. I

haven't seen any real proposals for very complicated protection systems. You see control

systems. But the GE system and the NUMACs have very simple comparator logic. That's all

that's sitting in there that they want to digitize. It's not that fancy.

DR. KNIGHT: Look, it's often the case this way, but I'm confused, because on the one hand

the French plants were cited as being an example of digital control systems. I'm aware of one

paper being published by that group in which they cited their development process, and the total

size of that program is in the tens of thousands of lines. The Ontario Hydro people have been

developing various kinds of control systems, and while I don't understand the details, given the

presentation they made yesterday, they're not talking about simple logic. They're talking about

something that must be tens of thousands of lines to warrant the attention they've put into it.

MR. GALLAGHER: One has to be very careful how you count lines of code, because some

people follow IEC-880, which says you have to build it without any operating system, and then

when you look at the total lines of code, it's much larger than a system built on an operating

system. That's one of the reasons why you hear such large differences in numbers. Also, as

Dr. Naser pointed out, people put into these systems code to try to get rid of problems that they

have in the present system, for instance to aid in automatic testing requires bypass and other

features, that add additional lines of code. There is a lot of interest in developing a safety kernel

that would be a very straightforward simplified system and then add on the top of that these other

features, and that's one of the things that people are looking at.

QUESTION: BRUCE MOORE (Data Refining Technology): Most of my experience is in the

chemical processing industry with digital control systems today. On the subject that's just being

discussed, one thing about a protection system is that even when you have that safety net, once

that's in place, from a practical point of view you become very concerned about challenges to

that safety net. A great deal of importance is placed on events that cause your control system

to exercise that safety net. It then becomes serious to make sure that second layer works

adequately, and I can tell you it's very uncomfortable to be a control designer and be the cause

of a safety net being exercised. You always remember that experience the rest of your life.

The second thing is I wanted to talk about is on the issue of functionality. There was a

question raised earlier: if I've got an analog box and I'm replacing it with a digital box with the

same functionaUty, what's the big deal? Well, I think one of the big deals that's been talked

about in software has to do with the difference between external functionality of a box, the way

it behaves to the outside, and internal functionality of a box, what happens on the inside.

External functionality is usually the domain of the systems engineer or the applications person;

internal functionality is often the domain of the software person. One of the very difficult

problems with building software and having it useful and cost-effective over a long period of

time is to design and implement it so that a small change in its external behavior is

298

accommodated by a small change in its internal behavior. Much of the effort that's going into

software research is in understanding how to do that and how to make software so that 5 years

after the system has been designed, if someone comes up and wants to change the way it behaves
externally, that internally people can do it without a major huge effort.

If you get back to that simpler question and you say, "I'm replacing an analog box with

a digital box," well, you're putting a whole new world of internal functionality there and that

does create a lot of complexity. Thanks.

DR. NASER: I think there are two things we need to concern ourselves with when we're talking

about this additional complexity and functionality when we're looking at functionality internal

to the box and external to the box. If we're looking at a safety system, I think, where we've
already looked at the need for defense-in-depth, so we've looked at that, depending really on

what the external response to that box is, and then I'm not sure how much difference we'd have

as far as the safety of the plant. There is certainly complexity in the box, and if you've said for

operational purposes you don't want to challenge those safety systems, it's a major difference.

MR. MOORE: Yes. I think one of the issues there is how that box interacts with you. How
do you know that that box is functioning properly? So, you know, you can get into issues of

silent players with a system that alters the internal functionality. You know, that can be a

problem.

QUESTION: DR. WILLIAM EVERETT (AT«&T Bell Labs): I'm a software engineer, but a

lot of what I'm hearing is that maybe this workshop has been structured a little bit in the wrong

way. What you've heard in these two days was about software engineering technology, and now
those of you who are out there running the plants have the challenge of molding your problems

around a solution. Maybe next year what we should have is the software engineers in the

audience and those who are in the job of running these plants up explaining and characterizing

what your problems are, what are the kinds of failures you have, and so forth, so that we can

maybe mold some solutions around your problems.

I've heard some other things too, and I think there is a language barrier here. There is

some communication problems. I hear those who are in the plants talking about failures,

reliability and so forth, and I hear the software engineers talking about errors and faults, and I

think maybe the software engineers who are going to work in the nuclear power area should be

focusing their language to the users, and that is "failures." In running the plants you're

concerned when do failures occur, how often do they occur, what's the propensity of occurring,

and what are the consequences of the failure. That's got to tie into the equation, if you want to

do anything about it you've got to measure it. That came out of Kyle's talk. You have costs

and you have schedules. If you can't measure reliability then you can't do anything about it.

You've got to tie those measures back to a lot of these technologies you've been talking about.

How will an object-oriented technology quantitatively affect reliability of the product?

MR. BHATT: What I wanted to say is the issue in the nuclear industry is how we make our

decisions on reliability and cost. We have a terminology which is something called SCRAM,
which means something happened which means we are going to temporarily shut down because

299

the safety system gave us the picture and shut down. SCRAM is already a key indicator of

importance of safety parameters and the operator and the utility people also get lost time and

money. Feedwater controller was the first one which we tried to adapt because they were the

first indicator on the SCRAM basis. Second within the line is the reactor protection system, and

that's the reason we are talking about the protection system.

QUESTION: JERRY VOSS (Tenera Operating Company): I have a couple of issues. I hear

a lot of people saying these are simple systems. These are simple systems, and they're not

anything we are going to work with. I kind of thought back to the time, for the instrumentation

people here, when we went from pneumatics into electronics, or to the electrical systems, and

everybody said, "Yes, no big deal. I take the air hose out, put a wire in here, and nothing

happens." It seemed like they were faster. It's not just the simple system. There are other

things that are involved in here, and we, as instrumentation people, have to understand that and

what that box being put in there means to us and what digital systems means to us. We can't

sit here and say it's easy, anybody can do it, and we don't have to do anything extra for it.

When we look at errors and what errors are acceptable to us, we as instrumentation people in the

design of these activities have to look at what are the functions we want done, what are the

systems in there, and we specify that function and we specify whether an error is acceptable or

not, and how we would accommodate that error or if there has to be error trapping, or whatever

we have to do in there. So, it's really based on going back to the systems people and the experts

in this area to define whether errors are acceptable and to present those definitions right up front.

"Yes, I can take an error in this area," or, "I can't take an error in this area," and give us good

specifications at the beginning and then we verify everything based on that specification.

QUESTION: WILLIAM CHRIST (Westinghouse Electric): I was trying to sit back there and

control myself, but some of the comments and questions that came up were sort of addressed to

me without people knowing it. I was intimately involved with the development of the digital

protection system that's being used on Sizewell, and so I think I can maybe clarify things a litde

bit. I'd also like to comment on a couple of statements that I think could be a little bit

misleading.

A digital-based protecdon system is not a real simple system. Just because the protection

function, from a high-level standpoint, is relatively simple and straightforward doesn't necessarily

mean that the way you implement it ends up being completely simple. There are several reasons

for that. If you think about what's in an analog system down to the level of individual

transistors, resistors, and capacitors, maybe it's not quite as simple as you think it is. When you

think down to the level of the software code that's going into the digital system you're really

thinking down to that same level.

Another aspect is a lot of the complexity that goes in there is put in there for a specific

reason to accomplish specific things. I think it is dangerous to say that more complex is

necessarily less reliable, because most of the complexity that goes into these systems is put in

there specifically to address the reliability and the integrity of the software design.

When we started on this, years back, some of the principles we tried to use in developing

our software we later learned people were calling, at least to some extent, an object-oriented

design approach. I didn't know it was an object-oriented design approach then, but we did things

300

like trying to isolate independent functions into different modules so they don't interact with each

other in peculiar ways and so you can change something here which has to do with a protection

function without having to worry about whether or not your analog input processing is going to

work with that new protecdon function you're doing, because the analog input processing was

isolated off into its own software module.

Doing that sort of thing adds complexity, but what it does, and one of our key goals, was

to take the complexity that was necessary for those sort of aspects, and for things like putting

in self-diagnosis, which improves the reliability and improves the fault tolerance and, in

particular, improves the failsafe nature of the system, taking that complexity and isolating it into

functions which could be done once and put a lot of effort into making sure they're done the

right way, verified, and not have to keep repeating that if you want to change something at the

functional level.

So, our goal was to try to recognize there was at least two different parts to the software

in these systems. There's the part that runs the system itself, and there is the part that does the

protection function. We tried to design the software such that doing the part that does the

protection funcdon is very straightforward and very simple, and by putting all the complexity into

the other part so that we could concentrate our efforts on doing that.

Now I'd like to make a couple of other clarifying comments. Number one, I think in

talking about errors we have to recognize that we can't be too simple about it. Having a fault,

or a flaw, shall we say, in the software does not necessarily have the potential to lead into a

failure. Numbers of errors per lines of code were being bandied about. I don't know necessarily

what that represents, but there are many different types of errors. There is a whole spectrum of

different kinds of errors that you can have in software, many of which have zero potential for

introducing failure into the system. You can have a discrepancy between a specification and the

code that is a discrepancy and, therefore, an error that has no functional result whatsoever. On
the other hand, you may have an error that will lead to a complete loss of the ability to do the

function.

When you talk about whether or not we can tolerate errors, you have to keep taking into

account that there are many different kinds of errors and many of them are much more tolerable

than others. The ones that keep it from performing its function are not tolerable. The ones that

are sort of like bookkeeping errors, so to speak, of the development process are a whole different

category.

I'd also like to mention in passing that in the system we developed, which has quite a

number of microprocessors, we do not use an operating system. We did not use an interrupt

system. We do use a central approach to things, and this is in conformance, by the way, with

the recommendations of IEC-880.

DR. LANCE A. MILLER (SAIC): I've heard several people from the audience give the

statement that there is a disconnect with too much emphasis on problems of software relative to

what they see is the need. I wanted to give some counter-examples from our point of view.

In 1990, John Bernard and Anne Washio from MIT published a book on expert systems

in nuclear applications and identified 300 expert systems. None of them were safety-related, but

they were all providing decision support. Since then, certainly, I know of at least 100 that

they've been involved in. The thing that I'm certainly concerned about is you talk about safety

301

systems and control systems now, and that's just the beginning. I mean, really what we're

concerned about, or I'm concerned about, is what happens if the Japanese control system gets

popular over here where for example, in the Mitsubishi control room they have a scenario in

which a gas comes in and all the operators go to sleep for 30 minutes. Everything has to run.

In that scenario you have to have every possible capability of work stations that we have and

high-level language to both program the software and to run it.

What about emergency operating procedure tracking systems? You have the operators

there and it automates the EOPs for you and makes them available to you. Obviously it's not

safety-related, but there is going to be enormous dependency on those. You're going to need

extremely sophisticated software that can keep up with the data base and to implement such a

system and yet it's a very integral system.

A third area that for the nuclear area is the management of aging plants. Things are

breaking down, and you have to really worry about it. There are a number of systems that can

help you decide, for example acoustic systems that can monitor the high-frequency characteristics

of your container vessel and through an A&S system advise you if cracks or fractures are going

to occur. The same way with turbine flows and pipes and so on. These have to be integrated

into your control systems.

All of these will require extremely sophisticated software and software environment tools

and capabilities to develop, and I think that's the area where some of us, at least, are looking

forward. It's not the back-up safety system, it's these other things that will surge once digital

gets into play.

MR. GALLAGHER: Thank you.

I think in that area there has been a lot of work done in the international arena, both by

the IAEA and by the lEC to recognize that there are different levels of importance to safety and

that based upon the level of importance to safety one tries to do the design, V&V and other

software development processes lined up with that, so that you don't go overboard and try to do

everything as though it was a Class IE system. Documents like that are now in place.

QUESTION: DAVID HOLCOMB (Oak Ridge National Laboratory): One of the hindrances

to the application of microprocessor-based protection systems in power plants is the probability

of common-mode failure that everybody talks about, but to my mind, given the relative simplicity

of the functions that they have to do, and also the high reliability they have to achieve, I think

it's possible to develop a system whose probability is not any different from the probability that

we feel is due to the hardware. I think also that we can glean something from computers that

are used in similar applications outside of the nuclear industry. For example, can any one of the

members tell me the failure rates of fault-tolerant computers due to common software as opposed

to the failure rate due to the hardware itself for, let's say, triple redundant computers?

DR. KNIGHT: If you're thinking about a system where there has been operational experience

with multiple versions running on the same computer, to the best of my knowledge that data has

never been released. The people who make the control systems, for example, on the Airbus A-

310, never got any failure data back from the operational experience with that. It's not that

people are withholding it in that case. It's that information has never been captured. I can't

302

think of any other industrial application of design diversity in that way where there is extensive

operational experience, but I'm pretty confident that the data has not been collected for the few

systems that I'm aware of.

MR. GALLAGHER: One final question, especially for the advanced light water reactors, your

regulations will be heavily based upon the control of the process because there really is no

product to look at. The only thing we can deal with is the process by which the product will be

developed. If one looks, for instance, as the SEI process maturity model it shows that you really

don't get in heavily to process management until you reach a Level 4, and so this brings up the

question, is there a connection between putting a lot of emphasis on how the process is managed

and the Level 4 that's dealt with in the SEI model? I wonder if anybody would like to comment
on that as to what this might mean?

DR. KNIGHT: Something about where others fear to tread, I will jump in. The SEI maturity

model is, as I think Win suggested this morning, is a tremendous piece of work because of the

visibility that it has brought to software. All of a sudden managers all over the country have

become aware that their companies were writing software because they had to find out what

maturity level they were at.

The thing about the maturity model though is that it really is aimed at, I think, large-scale

software development, major systems, that are being deployed in all kinds of different

Government, in particular, systems. I don't think that that model was ever designed, or would

it really fit, into these relatively small systems that I think are being discussed here, but where

we have very high dependability requirements. Perhaps what the NRC might consider is learning

from the SEI experience and developing their own maturity model. Applying it as it stands, I

don't think it's really intended for that and I don't think it would serve the purpose, if I

understood your question correctly.

MR. GALLAGHER: Anybody else?

DR. McHUGH: I agree.

MR. PAULITZ: What is being done to separate information that maintenance should have and

that may be different from what the operator needs regarding both systems and component

failures? I asked the question and it was supposedly answered before. All I was trying to point

out is in present designs, everything but the kitchen sink was brought to the operator's attention.

Somebody should know about and fix failures in the systems, but the operator should only be

concerned when it's really challenging his plant. For example, is the air pressure getting low

enough that it's going to cause a problem? The pilot and co-pilot, the operator and his assistant,

should not be cluttering up their minds with other things that shouldn't have to pay attention to.

It's true, there are a lot of things that need to be brought in, but not shared, necessarily, but

discretely sent somewhere else and somebody else should pay attention to it.

What happens in the design is that somebody put a symbol on a drawing-it was a little

triangle with an "A" in it and it was the enunciator, and we put another one in with a C and that

became the computer. So, as the tape went on, they end up with about 2,000 of them

303

somewhere, which is often confusing, and I want to relate that when a plant trips it'll probably

be like a Greek church at a sunrise service on Easter, but something should be done, even now
probably, but certainly for the future with this.

DR. NASER: If I can just make a quick comment on that? I think your point is extremely well

taken. I think that there has been a tremendous amount of effort going into control room design

reviews and things like this at the utilities to try to take a look at the alarms that are in there, to

restructure them and to try to find out which ones are really meaningful and which ones aren't.

In many cases you've seen a number of alarms removed. We've seen them improved in various

ways. But in addition to that there is work that's been going on to try to look at can you have

some sort of an alarm diagnostic and processing system which tries to take a look at the context

of the plant to determine what is really important information for the operator in that context.

So, therefore I think your point is well taken and I think there are efforts that are going on, and

I think that hopefully when we do the design for the advanced plants as well that we when we

do the design in the first place we'll have done it right in what's really meaningful.

304

8 PREPARED STATEMENTS

At the close of the meeting, an opportunity was given for short position papers to be presented.

Mr. Robert Mullens presented a paper written by Mr. Wayne Glidden (Duquesne Light Company)
on behalf of the Nuclear Utilities Software Management Group (NUSMG).

8.1 NUSMG Presentation: Mr. Wayne Glidden (presented by Mr. Robert Mullens)

Nuclear Utilities Software Management Group

Wayne Glidden

Duquesne Light Company

I am Wayne Glidden of the Duquesne Light Company, Beaver Valley Plant. I am speaking today

as a representative of the Steering Committee of the Nuclear Utilities Software Management
Group (NUSMG).

NUSMG was organized in 1989 by several utilities with the objective of providing a formal

organization which would:

L Acquire and exchange information on the regulation, processes, and programs used

to establish and maintain control over software configuration and quality.

2. Assist the membership in the implementation of quality assurance programs and

procedures which reflect these requirements.

Membership is restricted to electric utilities who have or are developing software management

programs. We currently have forty (40) members.

Our utility member representatives are required to be knowledgeable in and have practical

experience with SQA. Presently, our official representatives are fairly equally divided in

experience and responsibilities between quality assurance, engineering, operations, and

information systems.

We meet semi-annually to share information, review and discuss recent Software Quality

Assurance (SQA) developments, provide expert speakers on a variety of subjects, and provide

a forum for the betterment of member's SQA knowledge, development, and implementation. Our

next meeting is October 20-22, 1993.

305

NUSMG has established several goals to accomplish its mission;

1. Obtain active participation from representatives of each nuclear utility. As I

mentioned earlier, we presently have 40 active member utilities representing over

90 nuclear plants.

2. Provide services needed by our members to assist them in achieving compliance

with applicable requirements and SQA commitments.

3. Influence the development of practical and effective SQA in the industry, both

from a regulatory and member standpoint.

4. Establish committees, as needed, to address critical SQA issues and provide

consistent practical guidance on those issues to our members.

One of our first major actions to accomplish these goals was the completion of a self-assessment

survey of our membership. The survey resulted in the generation of a report on SQA to the NRC
through NUMARC in June, 1992. This report led to a subsequent meeting with the NRC to

discuss the report and answer questions.

We have members involved with industry workgroups such as ASME/NQA, EPRI, ANSI, and

IEEE. Information from this involvement is relayed to the rest of the membership via NUSMG
bulletins, news letters, and the semi-annual meetings.

We have an active liaison with NUMARC, and through them, are developing relationships with

regulatory bodies. We use these relationships to identify emerging SQA issues which need to

be promptly addressed by utilities. NUSMG provides a focal point for developing industry

consensus in responding to these issues.

We presently have three active committees working on issues;

1. Software commercial grade dedication.

2. Software procurement (safety related and important safety software).

3. Utility SQA program self-evaluation guidelines.

All three committees are scheduled to present final drafts of guidance documents to our

membership at the next semi-annual meeting in October. We expect that these products will be

employed by our membership and provide additional guidance for SQA development and

improvement efforts.

306

Each of the NUSMG Committee work products are related to the issues discussed at this NIST
Workshop and NUSMG would be pleased to discuss our efforts at a future meeting of the ACRS
Subcommittee on Computers in Nuclear Power or a NIST workshop.

Through our activities and relationships, NUSMG strives to be the spokesperson for the nuclear

industry in matters related to SQA, which include not only software quality assurance, but also

related issues such as the use of class IE digital systems including upgrading analog systems,

commercial dedication, and the use of software in non-safety related applications (those important

to the efficient and cost effective operation) at a nuclear utility.

Thank you for allowing me to introduce you to NUSMG. The utility community is extremely

interested in the efforts of the NRC to develop effective regulatory policies and review plans for

software driven systems. NUSMG is available to provide input to your efforts to assure that

practical regulatory programs are developed.

If there are any questions, please call NUSMG at 215-582-5945.

307

9 NRC CLOSING REMARKS

This section contains the edited transcript of the NRC closing remarks made by Mr. Franklin

Coffman (Chief, Human Factors Branch, Office of Nuclear Regulatory Research) and Dr. Cecil

Thomas (Deputy Director, Division of Reactor Controls and Human Factors, Office of Nuclear

Reactor Regulation). This editing consisted of minimal editing to correct grammar and remove

extraneous references to microphone volume, etc.

9.1 Closing Remarks: Mr. Franklin Coffman

The workshop has provided an opportunity for the NRC both to receive and to share information

concerning the orientation and focus of their programs addressing the introduction of advanced

digital systems in nuclear power plant designs and into currently operating plants.

Over the last two days, we all have listened to and participated in discussions on a myriad of

issues on software reliability and nuclear safety. Although each individual has naturally

considered the issues and occasionally reacted based upon individual perspectives with either

(1) "This makes sense", (2) "I don't agree with that", or (3) "It wasn't even discussed." There

has been a deliberate attempt to achieve the objectives of the workshop by neither tallying nor

deciding the reactions. Rather, priority was given to an intense exchange of important

information. Certainly, it is not my place to tally reactions nor summarize findings on any of

the issues discussed. Nor is it my place to identify any new issues or proposed positions.

However, it is my place to simply remind us of the issues for consideration that we have heard

discussed. The list of issues that I am about to share with you is just a list and as such is

tentative and initial. To my recollection the following twenty issues were included in the

discussions:

1. The means to obtain a complete and precise translation of a using organization's

needs into design specifications. This included the issues surrounding the role of

formal methods for specification capture and analysis.

2. The quesdon of allocadng the requirements between the hardware and the

software while defining the interface requirements between the digital system, the

driving software, the human operators and maintainers, the plant systems, and the

power conversion phenomena. Yet it is the total system that is to be evaluated

including the consequences of software failure on the total-system's performance.

3. The issues surrounding the role of hazard analysis for defining the level of detail

at which fault-tolerance is required.

4. Questions on doing common-mode-error analysis and questions on the technical

basis for criteria to invoke diversity as a defensive measure. The questions

include considerations of the net-benefit of diversity.

309

5. The question of adequate reliability metrics for important systems' properties like

complexity, and the relationships of the metrics to the degree of safety obtained.

6. The potential for a response-time hazard in digital systems because they are

incremental (in contrast with the continuous nature of analog-hardwired systems).

7. The issue of the role of specification-based and statistical testing requirements and

acceptance criteria.

S. The acceptance or certification of Commercial Off-The-Shelf software for safety-

critical applications.

9. The issues associated with the transition from analog to digital including

10CFR50.59 reviews and Unreviewed Safety Questions.

10. The issues associated with the net benefits to a system's reliability from

developing software using structured processes and structured languages, and

improved languages.

11. The questions associated with the use of CASE tools for design specifications,

testing design, and safety reviews.

12. The role of V&V and the degree to which different techniques assure reliable

software, and the degree to which the V&V must be independent of the designer.

13. The issue of standards or conventions for controlling software configurations.

14. Questions concerning the need to qualify or certify compilers and operating

systems.

15. Questions of adequate isolation of non-safety related software from safety-related

software.

16. Questions on the degree of domain knowledge needed by developers of software

for nuclear applications.

17. Generally, the need for a comprehensive framework/outline for the scope and

content of the technical basis and acceptance criteria for digital I&C systems.

18. The question of the need for further research and subsequent workshops on topics

such as hardware and human factors.

19. Interest in the possibility of the NRC initiating a process where error experience

is collected, analyzed, characterized, and distributed.

310

20. The impact of the trend toward the use of blocks of experienced code versus the

conventional development of code.

Thank vou statement

I want to openly thank Leo Beltracchi and Dolores Wallace for assembling and orchestrating a

stimulating and meaningful workshop. I want to thank the RES and NIST staff that provided

support for the conduct of the workshop.

We all thank the speakers for sharing their experience, insight, and (sometimes) specific solutions

concerning the many perplexing issues associated with software reliability and nuclear safety.

This has been a workshop rich in information.

We thank the session chairs for their attention to balancing the need for technical rigor while

complying with the logistical constraints.

I thank you all for participating and especially those who asked questions and made comments

that kept reality and candor before us.

Now Dr. Cecil Thomas, Deputy Director, Division of Reactor Controls & Human Factors, has

some final remarks.

311

9.2 Closing Remarks: Dr. Cecil Thomas

This afternoon's dialogue reminded me of an observation that was made during this summer's

Regulatory Information Conference. As Frank pointed out, I'm from the Office of Nuclear

Reactor Regulation, and we're the ones that really take the Commissions's regulations and rules

and guidance and apply them in a review of licensee's proposed changes to systems and

applications and so on. But at this summer's Regulatory Information Conference, which our

office puts on every year, it was observed that nuclear plant control rooms of the future would

be radically different than those we see today. [For example, they would be run by only two

occupants, one person and one dog, both licensed of course. Some of you may think a person

and a dog would be needed for diversity. That's not true. It's really defense-in-depth. If

something happens that suggested to the operator he should do something, the dog' s purpose is

to bite the person, and the person's purpose is to feed the dog.]

On a more serious note, the inevitable integration of digital systems with all of their advantages

and all of their disadvantages, in both present and future nuclear power plant designs, presents

the NRC with many unique challenges in carrying out its mission of protecting the health and

safety of the public, especially when dealing with such rapidly evolving technologies as we've

been talking about here. It's imperative that the NRC keep abreast of the state-of-the-art and

obtain feedback on its research and regulatory programs from those most knowledgeable. These

were the objectives of this workshop.

The outstanding presentations, the lively exchange of questions, answers and comments, and the

innumerable one-on-ones in the hallways during the breaks, in the mornings and in the evenings

have certainly fulfilled these objectives. So, I would personally like to thank everyone for their

participation in this workshop, no matter what their role, and from our point of view the

objectives have certainly been accomplished. Thank you very much.

313

1

'I

10 SUMMARY AND CONCLUSIONS

Many speakers reinforced the need for a technical basis for regulatory requirements. Speakers
in the technical sessions agreed on the need for defining software requirements in the context of

system requirements and for the traceability of those requirements across the entire software

lifecycle. While there was some debate among the speakers and audience about the degree of

complexity inherent in safety systems, the speakers agreed that systems engineers need to clearly

state the requirements, constraints, and assumptions for the safety system. One difficulty in

communicating the requirements is that the terminology of the nuclear systems and software

engineering communities are different. These differences can lead to miscommunications about

the requirements which may have a safety impact. For example, in system development, the

design phase includes the development of the software requirements and the software design.

In the nuclear industry, design specifications could be system design specifications, the software

requirements specification, and functions allocated to the operator. This problem is evident in

the study of standards and guidelines conducted by NIST for the NRG [NUREG5930]. Another

problem identified in that study and discussed by speakers in this workshop is the requirement

for CM because most of the guidance documents did not invoke CM during the entire life cycle,

nor was the impact on SCM clear.

Several speakers emphasized the importance of precise specifications which are traceable and

maintainable throughout the development process. Dr. Knight introduced the subject by stressing

the importance of systems and application engineers completely specifying the software

requirements, and that software engineers are not qualified to make decisions about the system.

Dr. McHugh, Mr. Poston, and Mr. Berlack all discussed the means for systems and software

engineers to specify non-ambiguously the requirements and maintain the traceability of those

requirements through the software development process. Dr. McHugh endorsed formal methods

as a precise means of specifying requirements. Mr. Poston agreed that formal methods were a

good choice, but advocated the use of tools to make the process easier and permit traceability

between the tests and the requirements. Mr. Berlack stressed CM as a mechanism for precise

continuing communicadon between the systems and software engineers. The CM method can

allow the systems engineer to see how the software engineers allocated the requirements. Dr.

Hanes also stressed the importance of maintaining the requirements allocation. Dr. Cuthill

discussed maintaining traceability of the requirements through the design and coding phases.

Mr. Fujii emphasized that software V&V had to refer back to the system specifications and

involve system engineers. Finally, Ms. Scheper discussed the need for maintaining the system

context for software components kept in a reuse library so that they can be included in future

systems appropriately. Her approach for cerdfying software components and making them

available for reuse in other systems could reduce the aggregate cost of software certification.

Another theme of all the technical sessions was the need for better acceptance and V&V testing.

Mr. Fujii emphasized that software V&V can make a significant contribudon to analyzing the

allocation of functions, early in the system development. Mr. Poston, Ms. Lapassat and

Dr. Everett stressed the need to automate tesdng. Measuring the reliability of software is a non-

trivial problem but a measure of reliability is important for assuring safety. Mr. Rone,

315

Dr. Everett and Dr. Royce proposed partial solutions to the problem including incorporating

specification-based testing and statistical testing. Dr. Royce also cited the value of a structured

process and structured process language for effecting reliability.

Other major issues discussed by the speakers concerned the need for (system and software)

hazard analysis requirements, fault tolerant requirements, and common mode error and diversity

requirements.

Tables 1, 2, and 3 present a summary of the issues addressed from another perspective. This

summary divides the topics discussed into the problems that the speakers identified, the

theoretical solutions they proposed and any experience based solutions offered. These topics are

further grouped by life cycle process. Table 1 contains topics raised in the software requirements

and design processes. Table 2 contains topics for the processes of implementation and integration

and installadon, operations, and maintenance. Table 3 includes topics in the V&V and quaUty

assurance areas.

While the speakers generally agreed on the importance of these issues, there was, at times, a

discrepancy between what the speakers believed to be the issues facing the nuclear industry and

what the audience (nuclear industry and regulatory personnel) believed to be the important issues.

316

Table 1. Requirements and Design Lifecycle Phases

Requirements Design

Problems

Identified

Dr. Knight

Incomplete specifications

Formal methods not enough

Software engineers not qualified to deal with

systems issues

Dr. Royce

Few tools

System too complex to understand

Mr. Rone

System too complex

Theoretical

Solutions

Dr. McHugh

Use formal, precise specifications

Mr. Poston

Use tools to generate specification & test cases

Dr. Cuthlll

OOD is potentially useful

Dr. Miller

Allocate functions to operators

Application

Experience

Mr. Joannou

Formal specification (Parnas)

Defined process

Developed OASES Framework

Tools for consistency checking

Mr. Blauw

Standard IEEE P-7-4.3.2

NUMARC Digital Upgrade Guideline

Mr. Joannou

Fail safe and self check features

Defined process

Mr. Sudduth

Probabilistic Risk Assessment

Alternate fault tolerant architectures

Fault tree and Failure Modes and Effects

Analysis (FMEA)

Markov Models

Table 2. Implementation/Integration and Operation/Maintenance Lifecycle Phases

Implementation & Integration Installation/Operation/Maintenance

Problems

Identified

Dr. Royce

No error measurement

Languages not designed for safety

Dr. Hanes

No guidelines for reviewing human interfaces

Define extent of automation

Theoretical

Solutions

Dr. Cuthill

C++ is potentially useful

Ms. Scheper

Levels of criticality assurance for reusable

software artifacts.

Dr. Cuthill

00 & C++ simplify maintenance

Mr. Russell

Self-diagnostics and testing

Dr. Hanes

Intelligent displays and aids

Computerized procedures

Application

Experience

Mr. Berlack

Software Configuration Management

Mr. Berlack

Software Configuration Management

Mr. Joannou

Defined acceptance criteria

317

Table 3. Verification/Validation and Quality Assurance

Validation Quality Assurance

Problem

Identification

Dr. Royce

No people certification

No organization certification

Theoretical

Solutions

Mr. Poston

Tool generated tests from requirements

Dr. Miller

Fault specific verification

Cost benefit tradeoff for V&V

Automation of V&V methods

Mr. Rone & Ms. Olson

Define development process

Develop quality plan

Use cost, schedule & error detection models

Configuration management

Ms. Scheper

Levels of certification for reusable s/w

Application

Experience

Mr. Joannou

Software hazard analysis (Leveson)

Guided inspection of software

Mr. Fujii

Estimation of V&V necessary

Process to select V&V methods

Mr. Sudduth - Simulation of system for

testing

Mr. Berlack

Configuration & change management

Status accounting and auditing

Subcontractor control

Mr. Fujii - System safety framework

Mr. Joannou

Train personnel in methodologies and retrain as

necessary

Dr. Everett - Isolation of safety-critical

components for test acceleration

Mr. Sudduth

Use proven components

Ms. Lapassat

Tools for independent verification

Software simulation & modeling tools

Ms. Lapassat

Tools for independent auditing

318

The speakers and audience seemed to disagree on the following:

1. The degree to which software may be a safety concern.

2. Simplicity versus complexity of the software needed in digital systems.

3. The perceived cost of assuring software versus the cost affordable by the nuclear

industry.

The speakers and audience seemed to agree on the following:

1. Standards and criteria should develop from a defined technical basis, which is not

currently available.

2. There are plenty of benefits from using digital systems, such as self-diagnostics

and decreased human error, but operators must remain in charge.

3. There are opportunities to make improvements in some known failure classes

(omitted function, unintended function).

4. A definition of diversity for software is needed.

5. Future workshops should address other components of NPPs (e.g., hardware,

human operators).

6. The software engineering concepts presented at the workshop were not strongly

connected to the problems faced by the nuclear industry, i.e., their vendors would

be more suitable to deal with these issues.

The aggregate of technical presentations and issue perspectives leads to the conclusion overall

that many of the management and technical problems of digital systems are not sufficiently

mature for regulation. Research to define technical solutions and research into existing solutions

in other industries is necessary.

319

11 REFERENCES

[ASMENQA2]
ASME NQA-2a-1990, Part 2.7, "Quality Assurance Requirements for Nuclear Facility

Applications," The American Society of Quality Engineers, 1990.

[IEC880]

lEC 880, "Software for Computers in the Safety Systems of Nuclear Power Plant

Stations," International Electrotechnical Commission, 1986.

[IEEE603]

IEEE Std 603-1980, "Standard Criteria for Safety Systems for Nuclear Power Generating

Stations," The Institute of Electrical and Electronics Engineers, Inc., 1980.

[IEEE7432]

IEEE Std. 7-4.3.2-1993, "Application Criteria for Programmable Digital Computer

Systems in Safety Systems of Nuclear power Generating Stations," American Nuclear

Society, 1993.

[NUREG5930]
"High Integrity Software Standards and Guidelines," Wallace, Dolores R., Laura M.

Ippolito, D. Richard Kuhn, NUREG/CR 5930, U. S. Nuclear Regulatory Commission,

September 1992. (Also published as National Institute of Standards and Technology NIST

SP 500-204.

321

APPENDIX A WORKSHOP AGENDA

Final

Announcement

Digital Systems Reliability and Nuclear Safety

September 13-14, 1993

Rockville Crowne Plaza Hotel

Rockville, Maryland

U.S. Nuclear Regulatory Commission

U.S. Department of Commerce
Technology Administration

National Institute of Standards and Technology

ABOUT THE WORKSHOP

Workshop Co-Chairs:

Mr. Leo Beltracchi, U.S. Nuclear Regulatory Commission

Ms. Dolores R. Wallace, National Institute of Standards and Technology

Sponsored by:

The United States Nuclear Regulatory Commission

In Cooperation- with:

The National Institute of Standards and Technology

As analog hard-wired process control systems and safety systems within nuclear power plants

wear out, they are being replaced with systems using digital technology. There are many unique

design and safety issues for digital systems. The Nuclear Regulatory Commission is

developing regulations and guidelines to address these issues. This workshop will provide state

of the art information to the Nuclear Regulatory Commission staff and to the nuclear industry.

The purposes of this workshop are to:

provide feedback to the NRC from outside experts regarding potential safety

issues,proposed regulatory positions, and research associated with the application of

digital systems in nuclear power plants, and

continue the in-depth exposure of the NRC staff to digital systems design issues related

to nuclear safety by discussions with experts in the state of the art and practice of digital

systems.

323

AGENDA

Monday, September 13, 1993

8:00 Registration; Coffee

OPENING SESSION
Chair: Mr. Leo Beltracchi, U.S. Nuclear Regulatory Commission

8:30 Welcome
Commissioner Kenneth C. Rogers, U.S. Nuclear Regulatory Commission

8:45 Welcome and Opening Statement

Mr. Eric S. Beckjord, Director, Office of Nuclear Regulatory Research

U.S. Nuclear Regulatory Commission

9:00 Welcome and ACRS Perspective

Dr. J. Ernest Wilkins, Jr., Chairman, Advisory Committee on Reactor Safeguards

U.S. Nuclear Regulatory Commission

ISSUE SESSION: PERSPECTIVE FOR NUCLEAR POWER PLANTS
Chair: Mr. Joel Kramer, U.S. NRC

9:15 Presentation on NRC Regulatory Positions and Guidelines

Mr. WiUiam T. Russell, Associate Director for Inspection and Technical

Assessment, Office of Nuclear Reactor Regulation

U.S. Nuclear Regulatory Commission

9:45 NRC Research Activities

Mr. Leo Beltracchi, Senior Project Manager

Office of Nuclear Regulatory Research

U.S. Nuclear Regulatory Commission

10:15 Industry Perspective

Mr. Richard Blauw, Commonwealth Edison Company

10:45 Break

11:00 Experiences from Application of Digital Systems in a NPP
Mr. Paul Joannou, Ontario Hydro

324

Monday, September 13, 1993 (cont.)

TECHNICAL SESSION: DIGITAL SAFETY SYSTEMS FOR NUCLEAR POWER
PLANTS
Chair: Mr. Joseph Joyce, U.S. NRC

11:30 Hardware Aspects for Safety-Critical Systems

Mr. A.L. Sudduth

Duke Power Company

11:50 Software Aspects for Safety-Critical Systems

Dr. John Cherniavsky

National Science Foundation

12:10 Human Aspects for Safety-Critical Systems

Dr. Lewis F. Hanes

Nuclear Industry Independent Consultant

12:30 Questions and Discussion

1:00 Lunch

TECHNICAL SESSION: SOFTWARE ENGINEERING FOR HIGH INTEGRITY
SYSTEMS
Chair: Ms. Dolores R. Wallace, NIST

2:30 Interaction Between Software and System Engineering for Safety-Cridcal

Applications

Dr. John Knight, University of Virginia

2:55 Formal Methods for Requirements, Specifications

Dr. John McHugh, Portland State University

3:20 Software Test Cases Derived from Formal Requirements

Mr. Robert M. Poston, Interactive Development Environments

3:45 Break

4:00 Object Oriented Design for Safety-Critical Systems

Dr. Barbara B. Cuthill, National Institute of Standards and Technology

4:25 Questions and Discussion

325

Tuesday, September 14, 1993

8:00 Coffee

TECHNICAL SESSION: METHODS FOR REDUCING RISKS IN SOFTWARE
SYSTEMS
Chair: Mr. Roger U. Fujii, Logicon, Inc.

8:30 Automated Tools for Safety-Critical Software

Ms. Anne-Marie Lapassat, Commissariate a L'Energie Atomique

8:55 Risks of Safety-Critical Software

Dr. Winston Royce, TRW, Incorporated

9:20 Software Metrics for Safety-Critical Applications

Mr. Kyle Y. Rone, IBM Houston, Texas

9:45 Software Reliability for Safety-Critical Applications

Dr. William Everett, AT&T Bell Laboratories

10:10 Questions and Discussion

10:30 Break

10:50 Software Configuration Management for Safety-Critical Applications

Mr. H. Ronald Berlack, Configuration Management International

11:15 How Much Software Verification and Validation is

Adequate for Nuclear Safety?

Mr. Roger U. Fujii, Logicon, Incorporated

11:40 Fault-Specific Verification (FSV)-An Alternative VV&T Strategy for High

Reliability Nuclear Software Systems

Dr. Lance A. Miller, Science Applications International Corporation

12:05 Certification of Software for Reuse into Safety-Critical

Applications

Ms. Charlotte O. Scheper, Consultant

12:30 Questions and Discussion

1:00 Lunch

326

Tuesday, September 14, 1993 (cont.)

2:30 PANEL: Application of Workshop to NRC activities

Moderators: Mr. Franklin Coffman - Office of Nuclear Regulatory Research

Mr. John Gallagher - Office of Nuclear Reactor Regulation

Panel Members
Dr. John Knight, University of Virginia

Dr. John McHugh, Portland State University

Dr. Joseph Naser, Electric Power Research Institute

Dr. Winston Royce, TRW Incorporated

Panel Issues:

- Are the proper issues being addressed?

- What other issues need to be addressed?

- Are proposed NRC regulatory positions complete and correct?

- What are the considerations for further research?

4:30 Questions and Discussion

5:00 Prepared Statements

5:30 NRC Closing Remarks

Mr. Franklin Coffman

Chief, Human Factors Branch, Office of Nuclear Regulatory Research

Dr. Cecil Thomas, Deputy Director, Division of Reactor Controls & Human

Factors

Office of Nuclear Reactor Regulation

327

SUPPLEMENTARY INFORMATION:

The following documents relevant to the workshop are now in the NRC Public Document Room,
located at 2120 L St., N.W. (lower Level), Washington, DC

L Draft, "Operating Reactors Digital Retrofits, Digital Systems Review Procedures,"

Ver.l

2. Draft, "Branch Technical Position (HICB), Digital Instrumentation and Control

Systems in Advanced Plants."

Two additional documents relevant to the workshop which participants may wish to review are:

L International Electrotechnical Commission Standard 880, "Software for Computers

in the Safety Systems of Nuclear Power Plants," 1986.

2. P-7-4.3.2, Draft 8, American National Standard, "Standard Criteria for Digital

Computers in Safety Systems of Nuclear Power Generating Stations."

328

APPENDIX B AUTHOR INDEX

Pa^efs)

Beckjord, Eric S v, vi, 1, 3, 9, 282, 288, 324

Beltracchi, Leo v, vi, vii, viii, ix, 1, 17, 18, 31, 31 1, 323, 324

Berlack, H. Ronald xii, xiii, xiv, xx, xxii, xxiii, 193-195, 229, 283, 315, 317, 318, 326

Blauw, Richard J vi, vii, ix, xxii, 2, 17, 18, 47, 317, 324

Chemiavsky, John C x, 79, 107, 108, 325

Cuthill, Barbara B xi, xii, xx, xxii, 131, 132, 163, 191, 315, 317, 325

Everett, William xiii, xx, xxi, xxiii, 194, 225, 227, 228, 299, 315, 316, 318, 326

Fujii, Roger U xiii, xiv, xx, xxiii, 35, 42, 194, 195, 247, 254, 255, 315, 318, 326

Glidden, Wayne 291, 305

Hanes, Lewis F x, xx, xxii, 79, 109, 130, 315, 317, 325

Joannou, Paul K vi, vii, ix, xxii, xxiii, 2, 17, 19, 61, 78, 317, 318, 324

Knight, John . xi, xii, xiv, xv, xx, xxii, 107, 131-133, 136-138, 216, 255, 275, 277, 284, 286,

290, 293-295, 298, 302, 303, 315, 317, 325, 327

Lapassat, Anne-Marie xii, xx, xxiii, 193, 197, 211, 315, 318, 326

McHugh, John ... xi, xii, xv, xvi, xx, xxii, 131, 132, 139, 145-147, 191, 216, 275, 278, 283,

287, 292-297, 303, 315, 317, 325, 327

Miller, Lance A. . . xii, xiii, xiv, xxii, xxiii, 78, 136, 193-195, 227, 257, 283, 301, 317, 318,

326

Musa, John 225

Naser, Joseph xv, xvi, 138, 275, 280, 284, 285, 290, 293, 294, 296, 298, 299, 304, 327

Olson, Kitty M. xxiii, 219, 318

Poston, Robert M. . . xi, xii, xx, xxii, xxiii, 131, 132, 145, 149, 160, 161, 315, 317, 318, 325

Rogers, Kenneth C v, vi, 1, 3, 5, 282, 324

Rone, Kyle Y xiii, xx, xxii, xxiii, 194, 219, 224, 286, 315, 317, 318, 326

Royce, Winston . xii, xiii, xiv, xv, xvi, xxi, xxii, xxiii, 147, 193-195, 213, 216, 217, 254, 255,

275, 279, 284, 316, 317, 318, 326, 327

Russell, William T v, vii, xxii, 1, 17, 21, 286, 288, 317, 324

Scheper, Charlotte O xiii, xiv, xx, xxii, xxiii, 193, 195, 267, 274, 315, 317, 318, 326

Sudduth, A.L x, xxii, xxiii, 79, 81, 105, 106, 160, 289, 295, 317, 318, 325

Wilkins, J. Ernest, Jr vii, 1, 3, 13, 324

329

APPENDIX C FINAL PARTICIPANTS LIST

Final Participants List

Digital Systems Reliability and Nuclear Safety Workstiop
September 13-14, 1993
National Institute of Standards and Technology
Gaithersburg, Maryland

Anil Agarwal

GPU Nuclear Corp.

1 Upper Pond Rd.

F1A

Parsippany, NJ 07054

USA

Michael Bangham

DHR Technologies, Inc.

10400 Little Patuxent

Ste. 310

Columbia, MD 21044

USA

Barney Bear

Siemens Power Corp.

155 108th Ave, NE
8th Fl.

Bellevue, WA 98004

USA

Iqbal Ahmed

U.S. NRC
11555 Rockville Pk.

OWFN-8H3

Rockville. MD 20852

USA

Paul Amrozowicz

Divlsbn of Naval Reactor

2521 Jeff. Davis Hwy.

NAVSEA Code 08

Washington, DC 20585

USA

Namsung Ame
Korea Electric Power Corp.

46 Wiley Rd.

Belmont. MA 02178

USA

S.VrAthava!e

U.S. NRC, OWFN
11555 Rockville Pike

MS BH3

Rockville, MD 20852

USA

Mario Barbacci

Carnegie Mellon Univ.

4500 Firth Ave.

Rm. 2410

Pittsburgh, PA 15213-3890

USA

Thomas Barger

Sandia Naf I. Labs.

P.O. Box 5800

Dept. 5931

Albuquerque, NM 87110

USA

Mel Barnes

AEA Technology Consulting

Risley, Wanington

TH4L7

Cheshire. WA6dA
UK

Allen Barth

Baltimore Gas and Electric

1650 Calvert Cliffs

1st Ftoor NOP
Lusby, MD 20657

USA

Eric Beckjord

U.S NRC

Leo Bellracchi

U.S NRC

Ron Berlack

Config. Manag. International

16 Main St

P.O. Box 118

Amherst, NJ 03031-0118

USA

John Bernard

MIT Nuclear Reactor Lab.

138 Albany a
NW12-208

CambrkJge. MA 02139

USA

Jess Betlack

MPR Assodates, Inc.

320 King St.

Alexandria, VA 22314-3238

USA

Siddharth Bhatt

EPRI

3412 HilMew Ave.

Palo Alto, CA 94303

USA

331

Debbie Blackstone

NIST

BIdg. 223, Rm. B266

Gaithersburg, MD 20899-0001

USA v ,

Richard Blauw

Commonwealth Edison Co.

125 South Clark St.

Rm. 422

Chicago. IL 60603

USA

Stephen Btazo

Bechtel Corp.

9801 Washington Blvd.

1C2(R)

Gaithersburg, MD 20878

USA

Paul Bonnett

U.S. NRC . ;

E. Thomas Boulette

Boston Edison Company

Rocky Hill Rd.

Pilgrim Nuclear Pwr.

Plymouth, MA 02360

USA

Edward Bradley

TVA

1101 Market a
Chattanooga, TN 37402

USA

Kevin Bradley

PP&L

P.O. Box 467

Berwick. PA 18603

USA

Robert Briil

U.S. NRC
Nicholson Ln.

Washington, DC 20555

USA

John Calvert

U.S. NRC
475 Allendale Rd.

King of Prussia, PA 19406

USA

Jose I. Calvo

CSN

Justo Dorado, 1

1

Madrid, 28035

SPAIN

Jim Campbell

Entergy Operations, Inc.

P.O. Box 756

M&E BIdg.

Port Gibson, MS 39150

USA

John C. Catlin

Bechtel Corp.

9801 Washington Blvd.

7A-5(W)

Gaithersburg, MD 20878

USA

James Chelini

Raytheon Company

528 Boston Post Rd.

236

Sudbury, MA 01776

USA

Michael Check

NUS
910ClopperRd.

Gaithersburg, MD 20878-1399

USA

John Cherniavsky

NSF

Matthew Chiramal

U.S. NRC
11555Rockville Pike

WFN 8H3

Rockville, MD 20851

USA

Greg Chisholm

Argonne National Lab.

9700 S. Cass Ave

MS 10

Argonne, IL 60439

USA

332

David Cleaves

The Mitre Corporation

7525 Colshire Dr.

MS NASA

McLean, VA 22102-3481

USA

Douglas Coe

U.S. NRC/ACRS
Rm. P-315

Washington, DC 20555

USA

Franklin Coffman

U.S. NRC

Robert Copyak

Arizona Public Sen/ice

411 N. Central

MS 1855

Phoenix, AZ 85004

USA

Dan Craigen

ORA Canada

265 Carling Ave.

Ste. 506

Ottawa

CANADA

Dan Crandall

TRW Systems

4243 Predras Dr. E.

Ste. 100

San Antonio. TX 78228

USA

Stephen D. Crocker

Trusted Infonnation System

3060 Washington Blvd.

Glenwood. MD 21738

USA

Barbara Cuthin

NIST

BIdg. 225. Rm. B266

Gaithersburg. MD 20899-0001

USA

Ken Cutler

Phil. Electric Company

Peach Bottom Atomic

SMB 3-2

Delta. PA 17314

USA

Gustav Dahll

OECD Halden Reactor Pro.

OS Alle 13

N-1751

Halden

NORWAY

E. Terrence Dailey

Carnegie Mellon Univ.

4500 Fifth Ave.

Rm. 2410

Pittsburgh, PA 15213-3890

USA

Thomas G. DeVille

Bechtel Corp

50 Beale St.

San Francisco. CA 94925

USA

Ray DiSandro

Philadelphia Electric Co.

965 Chesterbrook Blvd.

63A-1

Wayne. PA 19087-5691

USA

Stanley DIugolenski

ABB Combustion Engineering

1000 Prospect Hill

94204BB

Windsor. CT 06095

USA

James Dukebw
Battelle Pacific NW Lab.

P.O. Box 999

MSK8-37

Richland, WA 99352

USA

Mike Engineer

Ruor Daniel/M&O

230 S. Tryon St

DE&S. Ste. 300

Charlotte. NO 28021

USA

Larry E Erin

Westinghouse Electric Corp.

902 Garden City Dr.

Monroeville, PA 15146

USA

Paul Eshleman

Engr. & Science Assoc.

6110 Executive Blvd.

Ste. 315

Rockville, MD 20852

USA

William Everett

AT&T Bell Labs.

P.O. Box 3030

Rm. 2L-503

Holmdel, NJ 07733-3030

USA

Yang-Ching Fan

Taiwan Power Co.

242 Roosevelt Rd.

Sec.3/20F/!&C Div.

Taipei

TAIWAN

Arthur Faya

AECB
280 Slater St.

Ottawa, KIP 559

CANADA

T. Edward Fenstermocher

PLG, Inc.

1615M.St. NW
Ste. 730

Washington, DC 20036

USA

Stanley Focht

American Nuclear Insurers

29 South Main St

Town Ctr., Ste. 3005

West Hartford. CT 06107

USA

Ken France

IBM

9321 Corporate Blvd.

Rockville. MD 20850

USA

Roger Fujii

Logicon, Inc.

222 W. 6th St

San Pedro, CA 90731

USA

John Gallagher

U.S. NRC

John Ganiere

U.S. NRC
OWFN
MS8-H-3

Washington, DC 20555

USA

Ronald Gardner

U.S. NRC
799 Roosevelt Rd.

DRS, Region III

Glen Ellyn, IL 60137

USA

Frank Gee

U.S. NRC
1450 Maria Ln.

Walnut Creek, CA
USA

William D. Ghrist

Westinghouse Electric Corp.

200 Beta Dr.

Pittsburgh, PA 15238

USA

Wayne Glidden

Nuclear Utilities Software

P.O. Box 415

Birdsboro, PA 19508

USA

EdGoss
Union Electric

P.O. Box 620

MC 620

Fulton, MO 65251

USA

Ken Graff

Philadelphia Electric Co.

955 Chesterbrook BkJg.

52A-5

Wayne. PA 19087-5691

USA

333

Jim Graham John Harrison Michael Heliums

MIST Tpnpro Dnprpfinn nnmnanv Tpnnpccpp Vallpu Aiithfiritv

BIda 225 Rm B226 7272 Wisconsin Ave. 1101 Market St

Gaithersbura MD 20899-0001 Ste 300 MS LP5B(Vl^/ Wl WW

USA Bethesda MD 20814 Chattanooaa TN 57402v/i lulluiiwwMClf liV wf~ww

USA USA
Kpvin Granpv

BGchtsI Corp. Mahbubul Hassan Nolan T. Henrich

9801 Washinaton Blvd Brookhaven National Lab. Tennessee Vallev Authoritv1 w 1 1 1 1wwwww V willw y rxuLi 1wi 'i y

Gaithersbura MD 20879 Bldo 130 1101 Market St

USA 32 Lewis Road Chattanooga, TN 37401

Uoton NY 11973 USA

John Green ; USA
Dptrnit Frii^on Darvl Hpr^hhprnpr

6400 N Dixie HwvLy lAi^ 1 Iffy* Jane Haves Siemens Power Corn1 llwltw 1 UVfwl ^/wl ^>

220 TAG - Fermi 2 SAIC 2101 Horn Raoids Rdw 1 V 1 1 i^^i 1 1 1 lCllyl^iw 1 lU*

Npwnnrt Ml MD #22IVIL/ TTww

USA StP 1300 Richland WA1 liwi MCll IWf ffr^

Arlinntnn VA 22202rilllllulUli^ V ri wwwww USA
1 pwi^ Hanp^ USA
Nuclear Power Industrv Consultant Steve Hetzel

?n?T Wirkfnrd Rd Hprh Hprht Tpnnp^^pp Vallpv Airthnritv

Columbus OH 43221 SoHar Incv-^wi lai 1 M iw- 1101 Market SL

USA 8421 Wilshire Blvd Chattanooaa TN 37401V/l IQllQI 1wwMU| 11* wf~wl

Ste 201v^lw* WW 1 USA
Stpnhpn Hamrnrk Rpvprlv Hiik CA 90211 -3204

Wpotinnhnii^ Flprtrir* fV^m lompc Hillvai 1 ICO 1 1 III

Nnrthprn ^tntPQ Pnwpr

Pittsburah PA 15238 .Inhn HpflprII 1 rivi iwi 1 71 7 VJaknnadp Dr1 / 1 # ff CUWllQww VI*

USA Parifir fia^ A Flpntrin fio1 Owll IW \#iaw sJt, L.lwwli Iw Ww> Welch MN 55089f1wlw*l> IVII* wwwWw

333 Market St USA
Jeff Hansen A10E Rm 1171

EG&Glnc. San Francisco, CA 941 77 Wes Nines

PO. Box 1625 USA Ohio State Univ

MS 3860 557 Blenheim Rd.

Idaho Fails ID 83442 Connie Hpitmpvpr Columbus OH 43214

USA 111 Ik USA
Coda 5540

Percv Haralson Washinaton DC 20375 Davkl Holcomb

Sftiithpm r^ltf PriioftFi Oak RidnA NIationat Lah

P 0 Box 128 Bethel Vallev RdL^wlllwl T ullw T 1 IW*

San Clement CA All Hpkmatimi iiwixiiiGiii BIda 3500 MS-6010

USA GE Oak Ridoe TN 37831

175Curtner Ave. USA
Steve Harper MC765
SAIC San Jose. CA 95125 Edward Hoirts

1213 Jefferson Davis Hgwy. USA NUS Corp.

Ste. 1300 QIOCtopperRd.

Arlington, VA 22202 Gaithersburg, MD 20877

USA USA

334

Gary Hoscila

Detroit Edison

6400 N. Dixie Hwy.

220 TAG - Fermi 2

Newport, Ml 48166

USA

William Hudnall

ABB Gombustion Engineering

1000 Prospect Hill

MS 9420-9BB

Windsor, CT 06095

USA

Ewe! Hughes

Entergy Operations, Inc.

P.O. Box 756

M&E BIdg.

Port Gibson, MS 39150

USA

Gordon Hughes

Nuclear Electric

Barnett Way
Barnwood

GL47RS

UK

Norman Ichiyen

Atomic Energy of Canada

2251 Speakman Dr.

SPIFI

Mississauga, Ontario. I5L 3C7

CANADA

Bill Immerman

The Mitre Corporation

7525 Colshire Dr.

MSW624
McLearj,VA 22102-3481

USA

Laura Ipponto

NIST

BIdg. 225, Rm. 8266

Gaithersburg, MD 20899-0001

USA

Simi Jilek

U.S. DOE
NE-73/GTN

Washington, DC 20585

USA

Paul Joannou

Ontario Hydro

700 University Ave.

Toronto, Ontario MSG 1X6

CANADA

John Johnson

Entergy Operations, Inc.

P.O. Box B

Killona, LA 70066

USA

Carl Johnson

U.S. NRC
5640 Nicholson Ln.

Rockville, MD 20852-2738

USA

Wayne Jouse

Univ. of Arizona

Tucson, AZ 85721

USA

Joseph Joyce

U.S. NRC

Seyavash Karimian

PSE&G
Hancock Bridge

NJ 08038

USA

Thomas Kaza

Rochester Gas & Elec. Corp.

89 East Ave.

Rochester. NY 14649

USA

Dennis Kelly

GPU Nuclear Corp.

1 Upper Pond Rd.

Parisjppany, NJ 07054

USA

James Kenner

Software Engineering Tech.

12890 Edwin Dr.

Nokesville,VA 22123

USA

William Kerr

Univ. of Mich.

ACRS/USNRC
2355 Bonisteel Blvd.

Ann Arbor, Ml 48109

USA

Michael Kirk

NUMARC
1776 I. SL. NW
Ste. 300

Washington, DC 20006

USA

Judith Klein

IBM

9231 Corporate Blvd.

861/4D34

Rockville, MD 20850

USA

John Knight

Univ. of Virginia

Dept. of Computer Sci.

Thornton Hall

Charlottesville. VA 22903

USA

Shiomo Koch

Spectrum Technotogies

133 Wall St.

Schenectady, NY 12305

USA

Kofi Korsah

Oak Ridge National Lab.

Bethel Valley Rd.

Bklg 3500. MS^IO
Oak RkJge.TN 37831

USA

Joel Kramer

U.S. NRC

Henry Kwok

Westinghouse Electric Corp.

P.O. Box 598

Pittsburgh. PA 15230

USA

335

Ann-Marie Lapassat Hulbert Li George MacDonald

11 NRP II q MRP

CEN/SACLAY-IRDI/D. 11555 Rockville Pike 101 Marietta St., NW
LETI/DEIN/SUR WFN 8H3 Ste. 2900

91 19 GIF SUR Yvette Cedex Rockville, MD 20851 Atlanta, GA 30323

FRANCE USA USA

Inhn 1 QrHneJUMII LaiMilo Arthur d 1 ilionthal Prncf 1 llri^h hyl^inl^oLllilbrUinLil Mdlil^a

U.S. NRC/ACRS Niagara Mohawk Power Corp. TUV-NORD
Rm. P-315 301 Plainfield Rd. Grosse Bahnstr 2000

Washington, DC 20555 Syracuse, NY 13212 Hamburg 54

USA USA GERMANY

Dennis Lawrence William Lindblad Wayne Manges

Lawrence Livermore National Lab. U.S. NRC/ACRS Oak Ridge National Lab.

7000 East Ave. 6770 SW Raleighwood P.O. Box 2008

L-632 Portland, OR 97225-1923 MS 6007

Livermore, CA 94550 USA Oak Ridge, TN 37831-6007

USA . USA
Richard Linger

Shaw-Cuang Lee IBM Evanglos Marines

Inst, of Nuclear Energy 20221 Darlington Dr. U.S. NRC
P.O. Box 3-3 Gaithersburg, MD 20879 11 555 Rockville Pike

CAEC USA 8H3

Lung-Tan, Taiwan, 32500 Rockville, MD 20851

CHINA Pekka Liuhto USA
Finnish Centre for Radia.

Eric Lee P.O. Box 268 Ben Martin

U.S. NRC SF-00101 Computer Eng. Serv.

Helsinki, 240 Forrest Ave.

James Leivo FINLAND Ste. 102

J.M. Leivo Associates Chattanooga, TN 37405

5615Caloctin Ridge Todd Logan USA
Mount Airy. MD 21771 Pacific Nuclear

USA 1111 Paquinelli Dr. Gerardo Martinez-Guridi

Ste. 100 Brookhaven National Lab.

Harold W. Lewis Westmont. IL 60559 BIdg. 130

U.S. NRC/ACRS USA Upton, NY 11973

4184 Cresfa Ave. USA
Santa Barbara. CA 93110 Charles Longo

USA Penn Power and Light Jerry Mauck

2 North Ninth St. U.S. NRC
Paul Lewis A1-2 OWFN
U.S. NRC Allentown, PA 18101 Ste. 7

5650 Nicholson Lane USA Rodwille. MD
NLN-316 USA
Rockville. MD 20852 James Lyie

USA NIST Randall May

S. Levy Inc.

3425 S. Bascom Ave.

Campbell, CA 95008

USA

336

Subinoy Mazumdar Bruce Moore Simon Oleson

U.S. NRC Data Refining Technology 601 Caroline St.

9 C14 P.O. Box 893 Ste. 700

Washington, DC 20555 Plaquemine, LA 70765 Fredericksburg, VA 22401

USA USA USA

John McHugh Robert Mullens Lee Ostrom

Portland State Univ. Nuclear Utilities Software EG&G inc.

Computer Science Dept. P.O. Box 415 P.O. Box 1625

P.O. Box 751 Birdsboro, PA 19508 3855

Portland, OR 97207-0751 USA Idaho Falls, ID 83415

USA USA
Jim Munro

Kirklyn Melson Virginia Power Loeser Paul

Hurst Consulting, Inc. 5000 Dominion Blvd. U.S. NRC
120 E. Myrtle IN-2NW OWFN
Angleton.TX 77515 Glen Allen, VA 22553 8H3

USA USA Washington, DC 20555

USA
Carlyle Michelson Sandra Murphy

U.S. NRC/ACRS Trusted Information System Frederick Paulitz

1345 Oak Ridge Trpk. 3060 Washington Blvd. U.S. NRC
P.O. Box 2500 Glenwood, MD 21738 OWFN
Oak Ridge, TN 37831-2500 USA 8H3

USA Washington, DC 20555

Joe Naser USA
Lee Miller Electric Power Research Inst.

U.S. NRC 3412 Hillview Ave. Stephens S. Payne

5700 Brainerd Rd. P.O. Box 10412 ARC Professional Services

Osborne Ofc. Ctr., 200 Palo Alto. CA 94303 601 Caroline St.

Chattanooga, TN 37411-4017 USA 7th Fl.

USA Fredericksburg, VA 22401

Russell E. Neitert USA
Greg Miller Argonne National Lab.

EG&G Idaho, Ina 9700 S. Cass Ave. William Petrick

P.O. Box 1625 RA/208G Capri Technology, Inc.

MS 3730 Argonne, IL 6043^ 14125 Capri Dr.

Idaho Falls, ID 83415 USA Ste. 7

USA Los Gatos, CA 95030

Michael Novak USA

Lance Miller ABB Combustion Engineering

Science AppIL International Corp. 1000 Prospect Hill Bob Pikul

1710GoodrldgeDr. 93414BB The Mitre Corporation

P.O. Box 1301 Windsor, CT 06095 7525 Colshire Dr.

McLean. VA 22102 USA W779

USA McLean. VA 22102

RonaW O'Rourke USA

Jonathan D. Moffett Sorrento Electronics

Univ. of York 10240 Panders Court

Heslington San Diego, CA 92121

York Y01 5DD, USA

ENGLAND

337

Kenneth Poorman

MIT :

325 Franklin St.

#405

Cambridge, MA 02139

USA

Robert Poston

Interactive Development Envir.

4043 State Highway 33

Tinton Falls, NJ 07753

USA V

K.C. Prasad

Toledo Edison Company
5501 N. State Rt. 2

MS 3105

Oak Harbor, OH 43449

USA

David Pullen

Duke Engineering & Services
,

230 S. Tryon St.

STO-3504

Charlotte, NC 28201-1004

USA

James Raleigh

Southern Technical Services

3 Metro Center

Ste.610

Bethesda, MD 20814

USA
; , :

Ifti Rana

SOS
42 Inverness Plaza

P.O. Box 2625

Birmingham, AL 35202

USA

D.M.MadhuRao
Principal Engineer

200 Beta Dr.

Pittsburgh, PA 15238

USA

Howard Rathbun

U.S. NRG
OWFN
MS8H3
Washington, DC 20555
USA

Dorelle Rawlings

Sorrento Electronics

10240 Flanders Court

San Diego, CA 92121

USA

Ron Reeves

TVA

1101 Market St.

Chattanooga, TN 37402

USA

Michael Rencheck

Duquesne Light

P.O. Box 4

BV-SEB2

Chippingport, PA 15077

USA

Raymond J. Rettberg

GPU Nuclear Corp.

1 Upper Pond Rd.

Parsippany, NJ 07054

USA

Sang Rhow

U.S. NRC
11555 Rockville Pike

8G8

Rockville, MD 20815

USA

Thomas Roberts

U.S. DOE
Office of Nuclear Enrgy

NE-60

Washington. DC 20585

USA

Kenneth 0. Rogers

U.S. NRC

Kyle Rone

IBM

3700 Bay Area Blvd.

Houston, TX 77058

USA

Winston Royce

TRW, Inc.

12900 Federal Systems Park Dr
MSFP1/7165

Fairfax, VA 22033

USA

Steven Rudisail

U.S. NRC
101 Marietta St., NW
Ste. 2900

Atlanta, GA 30323

USA

George C. Rudy

NUS
910Clopper Rd.

EPM
Gaithersburg, MD 20878

USA

Bill Ruland

U.S. NRC
475 Allendale Rd.

King of Prussia, PA 10406

USA

William Russell

U.S. NRC

Nancy Salgacio

U.S. NRC
101 Marietta a, NW
Ste. 2900, DRS
Atlanta. GA 30323

USA

Uma Satyen

The Mitre Corporation

7525 Colshire Dr.

MSS337
McLean, VA 22102

USA

Carl Schaefer

The Mitre Corporation

7525 Colshire Dr.

MSZ646
McLean, VA 22102-3481

USA

338

Charlotte Sctieper

Consultant

708 Misty Isle Place

Raleigh. NC 27615

USA

Edward Schweibinz

U.S. NRC
799 Roosevelt Rd.

Glen Ellyn, IL 60137

USA

Philip Sedgwick

Control Systems Analysis

747 Aquidneck Ave.

Middletown, Rl 08842

USA

Gregory L Sensmeier

Sargent & Lundy

55 East Monroe

25F26

Chicago, IL

USA

Mark Serhal

Wolf Creek Nuclear Oper.

1550 Oxen Lane Corp.

WC-PDE
Burlington, KS 66839

USA

Shiv Seth

The Mitre Corporation

7525 Colshire Dr.

MSW779
McLean, VA 22102-3481

USA

Milton Shymiock

U.S. NRG
101 Marietta St., NW
DRS-PSS

Atlanta, GA 30323-0199

USA

Louis Silva

441 Gateswood Dr.

West Chester, PA 19380

USA

Lynn Simms

Logicon, Inc.

16343 Dahlgren Rd.

Dahlgren. VA 22448

USA

Barry Simon

GE Nuclear Energy

175 Curtner Ave.

MC 765

San Jose, CA 95125

USA

Ian Smith

AEA Technology Consulting

Winfrith

343/B41

Dorchester, Dorset, DT2 SDH

ENGLAND

James Smith

B & W Nuclear Service

3315 Old Forest Rd.

Lynchburg, VA 24506-0935

USA

Rick Smith

SC Electric & Gas

P.O. Box 88

563

Jenkinsville. SC 29065

USA

James Spadafore

Niagara Mohawk Power Corp.

P.O. Box 63

ISEG, R-1

Lycoming, NY 13093

USA

Deirdre Spaulding

U.S. NRC
8H3

Washington, DC 20355

USA

Jack Spraul

U.S. NRC
Rm.OWFN
MS 4H3

Washington. DC 20555

USA

339

Richard Srodawa

Detroit Edison

6100 West Warren

H-62. WSC
Detroit, Ml

USA

George Stark

The Mitre Corporation

7525 Colshire Dr.

MS NASA
McLean, VA 22102-3481

USA

Mark Stella

U.S. NRC/ACRS
Rm. P-315

Washington. DC 20555

USA

Janice Stevens

TRW Systems

12900 Federal Sys. Park

FP1/4166

Fairfax. VA 22033

USA

James Stewart

U.S. NRC
OWFN 8H3

Washington, DC 20555

USA

Jeff Stock

SC Electric & Gas

P.O. Box 88

563

Jenkinsville, SC 29065

USA

A! Sudduth

Duke Power Company

MS EC10B
P.O. Box 1006

Chartotte, NC 28201-1006

USA

Greg Suski

Lawrence Livermore Natbnal Lab.

700 East Ave.

L-632

Livermore, CA 94550

USA

Richard P. Taylor

Atomic Energy Control Board

P.O. Box 1046

Station B

Ottawa. Ontario, KIP 559

CANADA

David Theriault

Westinghouse Electric Corp.

200 Beta Dr.

Pittsburgh, PA 15238

USA

Cecil Thomas

U.S. NRC

Brian Tollefson

Baltimore Gas and Electric

1650 Calvert Cliffs

1st Floor NOP
Lusby, MD 20657

USA

Ray Torek

Electric Power Research Inst.

3412 Hillview Ave.

Palo Alto, CA 94303

USA

Lyne Tougas

AECB
280 Slater St.

Ottawa. Ontario, K1P559

CANADA

Carmen Trammell

Univ. of Tennessee

107 Avers HaH

Knoxville. TN 37996

USA

Steve Troisi

Arizona Public Service

5801 S. Winterburg

Sta. 7465

Tonopah. AZ 85354-7529

USA

Terrence Tuite

Westinghouse Electric Corp.

1740 Golden Mile Hwy.

MS 26

Monroeville, PA 15146

USA

Robert E. Uhrig

Univ. of Tennessee

306 Pasqua Engr. BIdg.

Knoxville, TN 37996-2300

USA

Louis Valeo

Westinghouse Electric Corp.

P.O. Box 79

07DD

W. Mifflin, PA 15122

USA

Carl Vrtalbo

Westinghouse Electric Corp.

4350 Northern Pike

MS410H
Monroeville, PA 15146

USA

Jerry Voss

Tenera Operating Company

7272 Wisconsin Ave.

Ste. 300

Bethesda, MD 20814

USA

John Wado
Westinghouse Electric Corp.

200 Beta Dr.

Pittsburgh. PA 15238

USA

Charles Waite

PSE&G
P.O. Box 236

MCNY7
Hancocks Bridge, NJ 08079

USA

Dolores Wallace

NIST

BIdg. 225, Rm. B266

Gaithersburg. MD 20899-0001

USA

Michael Waterman

U.S. NRC
8H3

Washington, DC 20555

USA

Luther Watson

EG&G Idaho, Inc.

P.O. Box 1625

EG&G
Idaho Falls, ID 83415-2070

USA

Robert Webb
Pacific Gas & Electric Co.

333 Market St.

A1410

San Francisco, CA 94177

USA

Amy Weiss

International Access Corp.

1901 Penn Ave.

Ste. 300

Washington, DC 20009

USA

Mark Wilken

American Electric Power

1 Riverside Plaza

20th Fl.

Columbus, OH 43215

USA

J. Ernest Wilkins

U.S. NRG

Victor Willems

Gilbert Commonwealth, Inc.

P.O. Box 11498

Reading, PA 19603

USA

Robert Williams

TVA
1101 Market St

LP 4H-C

Chattanooga. TN 37402

USA

340

John Williams Charles Youman

Univ. of Arizona SETA Corporation

Tucson, AZ 85721 6858 Old Dominion Dr.

USA Suite 200

McLean, VA 22101

Suzie Witterberg USA

U.S. NRC
OWFN, MS 11A1 Zita A. Yurko

Washington, DC 20555 Westinghouse Electric Corp.

USA 5042 Impala Dr.

Pittsburgh, PA 15239

See-Meng Wong USA

Brookhaven National Lab.

BIdg. 130. BNL George Ziff

Upton. NY 11873 TRW Systems

USA 1 Federal Sys. Park Dr.

FP1/4166

Charles Wylie Fairfax. VA 22033

U.S. NRC/ACRS USA

9610 Lawyers Rd.

Charlotte, NC 28227

USA

•U.S. GOVERNMENT PRINTING OFFICE: 1994-300-568/0300A

341

ANNOUNCEMENT OF NEW PUBUCATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

i T X kJ JL Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology— Reports NIST
research and development in those disciplines of the physical and engineering sciences in which
the Institute is active. These include physics, chemistry, engineering, mathematics, and computer
sciences. Papers cover a broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization. Also included from time to time
are survey articles on topics closely related to the Institute's technical and scientific programs.
Issued six times a year.

Nonperiodicals

Monographs — Major contributions to the technical literature on various subjects related to the
Institute's scientific and technical activities.

Handbooks — Recommended codes of engineering and industrial practice (including safety codes)
developed in cooperation with interested industries, professional organizations, and regulatory
bodies.

Special Publications— Include proceedings of conferences sponsored by NIST, NIST annual
reports, and other special publications appropriate to this grouping such as wall charts, pocket
cards, and bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and studies of special interest to

physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others
engaged in scientific and technical work.

National Standard Reference Data Series — Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed
under a worldwide program coordinated by NIST under the authority of the National Standard
Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data
(JPCRD) is published bimonthly for NIST by the American Chemical Society (ACS) and the

American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from
ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series — Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes — Studies or reports which are complete in themselves but restrictive in their

treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive

in treatment of the subject area. Often serve as a vehicle for final reports of work performed at

NIST under the sponsorship of other government agencies.

Voluntary Product Standards — Developed under procedures published by the Department of

Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all concerned interests with a basis

for common understanding of the characteristics of the products. NIST administers this program
in support of the efforts of private-sector standardizing organizations.

Consumer Information Series — Practical information, based on NIST research and experience,

covering areas of interest to the consumer. Easily understandable language and illustrations

provide useful background knowledge for shopping in today's technological marketplace.

Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB) — Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves

as the official source of information in the Federal Government regarding standards issued by
NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended.
Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,

dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work
performed by NIST for outside sponsors (both government and non-government). In general,

initial distribution is handled by the sponsor; public distribution is by the National Technical

Information Service, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology
Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

		Superintendent of Documents
	2022-04-16T04:13:12-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

