NATIONAL BUREAU OF STANDARDS REPORT

8131

EXPERIMENTAL FIRES IN ENCLOSURES C.I.B. TEST RESULTS
by

D. Gross

U. S. DEPARTMENT OF COMMERCE MATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE
Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standardsincludethe development and maintenance of the national standards of measurement and the provision of means and methods for making measure ments consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and struc tures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications, including assistance to industry, business and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Central Radio Propagation Laboratory Ionospheric Predictions provides datafor determining the best frequencies to use for radio communications throughout the world. There are also seven series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, Technical Notes, Commercial Standards, and Simplified Practice Recommendations.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 ($\$ 1.50$), and Miscellaneous Publication 240, July 1957 to June 1960 (includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington, D.C., 20402.

NATIONAL BUREAU OF STANDARDS REPORT NBS PROJECT
 NBS REPORT

November 27, 1963
8131

EXPERIMENTAL FIRES IN ENCLOSURES C.I.B. TEST RESULTS

by
D. Gross

IMPORTANT NOTICE

NATIONAL BUREAU OF S for use within the Government and review. For this reason, 1 whole or in part, is not auth Bureau of Standards, Washin, the Report has been specifical

$$
20-2+2020
$$

ress accounting documents intended is subjected to additional evaluation Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015. re listing of this Report, either in the Office of the Director, National jy the Government agency for which copies for its own use.
U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

> by
> D. Gross

Abstract

The results of a series of model fire experiments performed under an international cooperative program are reported.

1. Introduction

Following the original suggestion by the British Joint Fire Research Organization (J.F.R.O.) in 1959, for a systematic investigation of the growth of fires in rooms using small-scale modeis [17, a preliminary series of tests under the sponsorship of the Working Party on Fire Research of the Conseil International du Batiment (C.I.B.) was undertaken by eight laboratories in six countries including the U. S. National Bureau of Standards [2]. The results from that series of eight tests were analyzed by J.F.R.O., who concluded that too great a variation existed between laboratories to permit the start of a larger program without more detailed specification of experimental techniques. More specific test procedures were subsequently suggested in both report form [3] and through a series of letters.

Ten laboratories in eight countries are participating in the current program and this report is the summary record of tests performed at N.B.S.

2. Experimental Procedures

2.1 Test Schedule

The testing scheme outlined in reference [3] provides for examining the effect of six parameters on the rate of burning, temperature and radiation in a compartment containing a wooden crib and a single window opening. The parameters, with the number of combinations in parentheses, were: Shape (5), Scale Size (3), Window Opening (3), Fire Load, or Quantity of Fuel (3), Fuel Dispersion (3) and Fuel Dimension (4). In addition, one laboratory was to examine the effect of wind speed in three directions.

The tests assigned to each laboratory were divided into two series. Series l comprised eight tests each repeated so as to provide an estimate of experimental variation and to establish a common base between laboratories. The Series 2 program assigned to NBS was considerably larger than could reasonably be handled and was deferred.

2.2 Test Compartment

The compartment was constructed according to detailed drawings provided by a cooperating laboratory, Brandveiligheidsinstituat T.N.O., Holland. It consisted of an angle steel framework and asbestos-cement sheets held together with screws (see Figure I). An asbestos-cement board partition was used for those tests requiring a compartment only one-half the overall length of 2 meters. The width and height were 2 meters and 1 meter, respectively. A removable window assembly was constructed as a single member rather than in two halves.

The prescribed properties of the asbestos sheets were as follows:

Thickness:	$0.95 \mathrm{~cm}(3 / 8 \mathrm{in})$.
Density:	$1.5 \mathrm{~g} / \mathrm{cc}$
Thermal Conductivity:	$0.00085 \mathrm{cal} / \mathrm{sec} \mathrm{cm}{ }^{\circ} \mathrm{C}$

Although an asbestos-cement board of these properties was obtained and used in the initial program in 1959, it was found to be no longer available on this continent. Therefore, and because of the severe fire exposure to which the compartment walls were to be subjected, it was considered necessary to purchase and use the currently available "Superbestos," rated by its manufacturer, Atlas Asbestos Co. Itd., Montreal, to possess a higher degree of thermal stability during fire exposure. It had the following properties:

$$
\begin{array}{ll}
\text { Thickness: } & 0.95 \mathrm{~cm} \\
\text { Density: } & 0.67 \mathrm{~g} / \mathrm{cc} \\
\begin{array}{c}
\text { ThermaI } \\
\text { Conductivity: }
\end{array} & 0.00029 \mathrm{cal} / \mathrm{sec} \mathrm{~cm} \mathrm{oo}
\end{array}
$$

Severe cracking was experienced nonetheless during the first preliminary test, so that a means of patching was required. The method which proved most satisfactory and was used several times during the program, involved a light spray application of a fire-resistant gypsum plaster with perlite aggregate (avg. applied density $0.43 \mathrm{~g} / \mathrm{ec}$ g thermal conductivity $\left..00028 \mathrm{cal} / \mathrm{sec} \mathrm{cm}{ }^{\circ} \mathrm{C}.\right)$ The same plaster was also applied by trowel to fill in large cracks.

Test were conducted only after preheating and drying of the compartment to remove moisture absorbed by the asbestos-cement sheets and the plaster. This was done by burning a minimum of 40 kg of scrap wood at the start of each day's testing and. where possible, by consecutive testing. AIl tests were conducted in the prescribed sequence during the period October 18 to November 4. 1963.

After the first few tests, a noticeable distortion of the window opening was observed and which remained fairly constant throughout the series. Whereas the original design opening was 48 cm , the opening becare barrel-shaped and varied from approximately 4.8 .0 cm at the top and bottom to approximately 49.5 cm near the center.

2.3 Wood Cribs

The fuel consisted of wood sticks of nominally square section arranged in cribs with a lattice-type construction. The type of wood prescribed was spruce with a density of $0.39 \mathrm{~g} / \mathrm{ce} \pm 10$ pereent when oven dry. The wood used wat seleat, grade Engelmann spruce (Picea engelmannit) which was smooth-sawed to size and preassembled into cribs using a thermosetting urea resin adhesive and a small quantity of nails. Details of the construction, composition and average density of each crib are given in Table $1 . C r i b s$ were conditioned to constant weight in an atmosphere controlled at $73 \pm 2 \mathrm{~F}$ and 50 ± 5 percent rh. Prior to test, each crib was adjusted to its prescribed weight by the addition or removal of wood. The average molsture content of each crib at the time of test is also IIsted in Table I. In each cases the crib weight comprised the spruce crib, the gIue and the fiberboard wicks, but excluded the weight of nails and kerosene.

2.4. Weight Measurements

The tests were performed with one side of the compartment approximately 1.5 meters from the wall of a very large and essentially draft-free room. The compartment was suspended in a steel cradle so that its floor was approximately I meter above the building floor. The entire cradle and compartment was suspended and weighed by means of a commercial load cell of the strain gage type. In order to prevent load cell erros due to thermal effects, a cooling water jacket was placed around it. The temperature of the load cell case was monitored in all tests and never exceeded $46^{\circ} \mathrm{C}$, the permissible temperature limit for complete conformance to specifications. The load cell output was adjusted to $0.0662 \mathrm{mv} / \mathrm{kg}$ ($0.0300 \mathrm{mv} / \mathrm{Ib}$) and checked out perfectiy before and after the test program using known weights. The millivolt output signal was digitally recorded at one minute intervals.

The compartment was levelled prior to each test and required slight relevelling (by means of sliding weights) during a few tests. No account was taken of the buoyancy effect, the magnitude of which might possibly be 4 kg for the scale 1, shape 221 compartment with 160 kg lead.

It was found in a typical test that the weight of the compartment and crib would decrease to a minimum value, corresponding to approximately 1 to 10 kg negative, and regain approximately 5 kg upon cooling to room temperature. The weight of ashes was usually between 0.2 and 0.7 kg 。

2.5 Temperature Measurements

Thermocouples for indicating "ceiling" and "floor" temperatures were of 0.0508 cm (0.020 in。) diameter ($\mathrm{B} \& \mathrm{~S} 24$ gauge) chromel and alumel wires with asbestos and glass, silicone impregnated insulation. The beads were bare and unshielded. The thermocouples were inserted through a small hole in the top of the compartment and new thermocouples were used for each test. Temperatures were recorded directly and automatically Indigital form at one minute intervals.

2.6 Radiation Measurements

Window (opening) radiation was monitored by Radiometer "H/I4" for all tests and the calibration provided by J.F.R.O. (and checked at NBS) was used for conversion of millivolt output readings to intensity values in cal/sec cm^{2}. This radiometer was mounted on an outrigger frame attached to the compartment and at a distance of 2 meters from the compartment face for all tests. Except for the first test (NBS No.I, C.I.B. No. 1), all succeeding tests were conducted using a sheet metal screen immediately in front of the radiometer so as to minimize the contribution of radiation from flames above the window opening [4].

Flame radiation was monitored by a similar radiometer placed centrally 10 cm above the top of the compartment and in the plane of the opening. It was fabricated at NBS according to the published description [5], and its cone was blackened to reduce reflections [4]. Radiometer "R I" was used for all tests with the exception of Test Nos. 7, 15 and 16 (NBS chronological designation), where Radiometer " $R 2$ " was used.

Calibration curves for the three radiometers used are shown in Figure 2.

2.7 Data Recording

Data were automatically recorded in digital form by means of a scanning and recording system [6] programmed to provide a complete set of readings at one minute intervals. since the measuring potentiometer contained two balancing slidewires, it was possible to obtain both direct temperature readings (with the use of chromel-alumel thermocouples) in the range 0 to $1400^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{C}\right.$ accuracy) and millivolt readings in the range 0 to 14.00 mv ($\pm 0.04 \mathrm{mv}$ accuracy). For those cases in which the output from the flame radiometer exceeded 14 mV , a 10 mv bucking signal was used to extend the range of the potentiometer to 24 my .

For the scanning sequence used, the actual measuring times for each one minute cycle were as follows:

Time				
min:sec				
Laclosure Weight, mv	0	$\begin{gathered} 0: 00 \text { (and each succeeding } \\ \text { minute) } \end{gathered}$		
Vindow Radiation, mv	31	0:08	"	
Plame Radiation, mv	32	0:09	"	
Veiling Temperature, oc		$0: 10$	"	
Soor Temperature, oc	34	$0: 11$	"	

In the listins and analysis of data, however, it was assumed that all readings were made at the time corresponding to the weinht reading.
3. Results

Tine results of the sixteen tests performed in the prescribed sequence are listed in the standard form at the end of this report. Statistical averages were computed as requested for the time periods corresponding to 80 and 55 percent of the initial weight ($80 / 55$) and to 55 and 30 percent of the initial weight (55/30). The radiation and temperature averages were based upon the appropriate measured values at oneminute intervals, with no attempt at curveIfting or interpolation. However, the rate of weight loss averages were based upon the interpolated 30, 55 and 80 percent times from a smooth curve drawn through the oneminute readings. Table 2 presents a summary list of all average values for the test series.
4. Observations

The following additional observations were visually noted during the test series:

The entire crib was not fuvolved in flaming simultaneously, out rather burnins proceeded from the front third, where the kerosene-soaked wicks were icaited, toward the rear. After ourning had involved the front face of the crib, the increasingly taller flames were bent backwards by the inrush of air.

The normal pattern of air inflow at and near the floor level, then up and around at the rear of the compartment, and the exhaust of hot gases and flames at the ceiling level was then always obvious. However, for those tests with only 1/4. window opening, strong fire whirls were observed in the front corners of the compartment near the start of the test. These flaming vortices, which rose directly toward the ceiling and were drawn out of the window opening, lasted only until the burning had increased sufficiently to establish the normal pattern.

It was observed that with the $1 / 4$ window opening the exiting flames and gases filled a larger portion (up to two-thirds) of the window opening than with the full open window (up to one-third). In addition, the flames extended to a greater height outside the compartment (up to 3 meters) in those tests with the $1 / 4$ window opening.

During the major portion of those tests with the full window opening, a definite pattern of flame pulsations with accompanying "swoosh" sounds was noticed. These pulsations occurred with a frequency of approximately one per second. In both instances of a test with a $1 / 4$ window opening (C.I.B. 3), a single rapid burst or mild explosion followed by momentarily increased flaming was observed.

The crib retained its lattice structure until almost the entire weight loss had occurred and then gradually crumbled, this again proceeding from front to rear as the charcoal glowing took place. The weight of the remaining ashes never amounted to more than one percent of the initial crib weight.

Dark, dense smoke was common to all tests, and for those tests with 80 and 160 kg eribs, the entire building of over $3000 \mathrm{fin}^{3 \prime}$ became completely smoke-logged with visibility at eye level reduced to as little as 25 cm .

5. Acknowledgments

I am pleased to acknowledge the aid of John Klein and James Turner in the assembly of the cribs and of David Newman in the efficient performance of the tests and in the summary of the data. Edward Bender, Garnett Robinson and Melvin Womble assembled the compartment and attended to its repair and maintenance throughout.

6. References

[I] Lawson, D. I., "International Co-operation in Modelling Fires, A Suggested Programe, ${ }^{\text {n }}$ F.R.W.P./G.T.F. No. 59/11 (U.K.), June 1959.
[2] Gross, D., Ward, Do and Shoub, H. "Fires in Model Rooms, Results of Preliminary Experiments Under an International Cooperative Program," NBS Technical Report No. 6888, July 1960.
[3] Thomas, P. H., and Mather, J. "Proposals for Next Stage of C.I.B. Programe on Fires in Compartments, ${ }^{11}$ C.I.B./C.T.F. No. 61/49 (U. K_{\circ}), September 1961.
[4] Letter from P. H. Thomas, dated April 2, 1962.
[5] MeGuire, J. H. and Wraight, H. "A Radiometer for Field Use," J. Sci. Inst. 37, p. 128, April 1960.
[6] Gross, D., Bailey, W. H., Bender, E. W. and Robertson, A. F. "Central Furnace Control and Recording Facility," NBS Technical Report No. 7015; November 1960.

NBS No.	CIB No.	Designation	Crib No.	$\frac{\text { Stick }}{\text { Height }}$	$\frac{\text { Size }}{\text { Width }}$	Packing Density	Weight Nails	$\begin{gathered} \text { Weight } \\ \text { Glue } \\ \text { (wet) } \end{gathered}$	$\begin{gathered} \text { Test } \\ \text { Weighte } \end{gathered}$	$\begin{aligned} & \text { Mean D } \\ & \text { As } \\ & \text { Condi. } \end{aligned}$	$\begin{gathered} \text { ensity } \\ \text { Dry } \\ \text { Basis } \end{gathered}$	Moisture Content ${ }^{\text {c }}$ Dry Basis \qquad
				cm.	cm		kg	kg	kg	$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{g} / \mathrm{cm}^{3}$	\%
1	1	221-20-1/4	8	1.99	2.09	0.91	0.73	0.58	79.3	.4 .16	-	-
2	7	221-20-1	3	1.98	1.95	1.05	0.22	0.83	79.8	.4 .21	.391	7.6
3	4.	221-40-1/4	16	1.98	2.09	0.91	0.53	1.64.	160.0	.395	.366	7.8
4.	0	221-4.0-1	7	1.99	2.00	1.00	0.38	1.67	160.0	.409	.377	8.4
5	6	211-4.0-1/4.	14.	1.98	2.09	0.91	0.18	1.16	80.0	.402	.369	8.9
6	3	211-20-1/4.	15	1.98	2.09	0.91	0.12	0.36	4.0 .0	.4 .08	.385	6.0
7	Y	211-4.0-1	11	1.99	2.13	0.88	0.16	0.81	80.0	.407	.367	10.9
8	9	211-20-1	12	1.99	2.13	0.88	0.12	0.4 .1	4.0 .0	.4 .05	.373	8.5
9	Y	211-40-1	9	1.99	2.13	0.88	0.14	0.90	80.0	.398	.367	8.4
10	1	221-20-1/4.	1	1.98	1.93	1.07	0.29	0.96	80.0	.4 .08	.376	8.5
11	0	221-40-1	4	1.99	2.00	1.00	0.87	1.4 .4	160.0	.4 .06	.374	8.5
12	9	211-20-1	10	1.99	2.13	0.88	0.07	0.32	4.0 .0	.434	.396	9.6
13	6	211-40-1/4	5	1.99	2.00	1.00	0.19	-	80.0	.407	.371	9.7
14.	3	211-20-1/4	6	1.99	2.00	1.00	0.08	0.31	4.0 .0	.4 .65	.4 .22	10.1
15	7	221-20-1	2	1.98	1.93	1.07	0.10	1.01	80.0	.4 .14	- 378	9.6
16	4	221-4.0-1/4	13	1.99	2.13	0.88	0.4 .9	1.68	160.0	.391	.358	9.3

INTERNATIONAL EXPERIMENTS ON FIRES IN SIMPLE COMPARTMENTS

025．

$$
0 \varepsilon I^{\bullet} .0 \nmid \tau^{\circ}
$$

SOL દZOT
6SOT 乙モOT

U．S．National Bureau of Standard

$$
\underline{0}
$$

$$
\frac{\text { C.I.B. Test Designation }}{\text { Shape: } 221}
$$

$$
40 \mathrm{~kg} / \mathrm{m}^{2}
$$

.575
63.5

か
$+n$
∞
0 ふू．亡ั N్ల．O－ 앵

U．S．National Bureau of Standards，Washington，D．C．
N

C.I.B. Test Designation Shape： 221
Scale： 1 meter

$$
\text { Window Opening: } 1 / 4
$$

Amount of Fuel ：
Dispersion of Fuel： Dimension of Fuel
$.050 \cdot 200 \cdot .385$
.000 .030

$$
1 \text { spacing }
$$

$\begin{array}{cccccc}6^{6} & 8 & 8 & 10 & 12 & 14 \\ 54.3^{149.7} & 143.6^{136.9} & 130 . \\ 511 & 717 & 753 & 773 & 80 \\ 118 & 299 & 600 & 760 & 81 \\ .020 & .065 & .095 & .120 & .130 \\ 0 & & & & \end{array}$

${ }_{\text {L }}$ 327 ふ .005 .010 000.000 .030

Time，min

$$
808 \quad 824
$$

$$
4 \text { (NBS 3) }
$$

$$
.050 .200 .385 .500 .615 .690 .710 .755
$$

$$
2 \mathrm{~cm} . \text { side }
$$

EXPERIMENTAL RESULTS

2	$155^{4} .8$	6	$138^{8} 8$	10	$11^{\frac{1}{6} .2}$	14	96.8	18	$80^{20.5}$	22	$\begin{gathered} 24 \\ 66.3 \end{gathered}$	26	${ }_{5}^{28}$	30	44.0	34	36.2	38	29.5
159.1		149.1		126.8		105.6		88.4		73.4		60.1		48.9		39.8		32.4	
53	351	814	880	927	941	992	1005	1023	1029	1052	1068	1057	1062	1054	1008	984	937	884	803
26	41	477	882	928	949	993	1005	1003	989	991	994.	987	963	986	976	964	934	904	938
. 010	. 040	. 200	. 330	.390	. 405	. 405	.380	. 350	. 330	. 310	. 295	. 285	. 255	. 250	. 230	. 210	. 190	. 160	. 140
.005	. 030	. 260	. 560	.910	.770	. 865	. 745	.610	.515	. 480	. 405	. 355	. 375	. 205	. 125	.105	. 075	. 045	. 035
.										.									
42	44	20.6	48	15.8	52	$11^{54.2}$	56	58.2	60	62.4	64	${ }_{26}^{66}$	68	70.	72	74	76	78	80
26.5	23.6		18.2		13.4		9.0		5.9		2.9		1.4		. 0				
844	721	676	669	645	656	586	566	539	486	437	435	381	359		315				
901	866	797	749	735	688	668	654	623	$569{ }^{\circ}$	516	474	438	406		349				
.140	. 130	.120	. 120	. 115	. 110	. 095	. 090	. 080	. 070	. 060	. 050	. 045	.040		. 030				
. 050	. 030	. 030	. 030	. 035	. 030	. 020	. 020	. 015	. 010	. 010	. 005	. 005	. 000		. 000				

INTERNATIONAL EXPERIMENTS ON FIRES IN SIMPLE COMPARTMENTS
U. S. National Bureau of Standar
U. S. National Bureau of Standards, Washington, D. C. C.I.B. Test Designation
Shape: 221
Scale: 1 meter
Window Opening: 1
Window Opening: 1 Time min 160:0 Weight, $k g$ Temp. Ceiling, ${ }^{\circ} \mathrm{C}$ Temp. Floor, ${ }^{\circ} \mathrm{C}$ Window Radiation, $\mathrm{cal} / \mathrm{sec} \mathrm{cm}^{2}$
Flame Radiacion, $\mathrm{cal} / \mathrm{sec} \mathrm{cm}^{2}$

Time, min Weight, kg Temp. Ceiling, ${ }^{\circ}$ Temp. Floor, ${ }^{\circ} \mathrm{C}$ Window Radiation, $\mathrm{cal} / \mathrm{sec} \mathrm{cm}^{2}$

F1ame Radiation,
$\mathrm{cal} / \mathrm{sec} \mathrm{cm}^{2}$

STATISTICS

Rate Wt.	Ss $\frac{\mathrm{kg}}{\mathrm{min}}$	Ceiling	Temp. ${ }^{\circ} \mathrm{C}$	Floor	emp - ${ }^{\circ} \mathrm{C}$	Window Rad. $\frac{\mathrm{cal}}{\mathrm{sec} \mathrm{cm}^{2}}$		Flame Rad. $\frac{\mathrm{cal}}{\mathrm{sec} \mathrm{cm}^{2}}$		Time to 80% orig. wt.min
R80/55	RS5/30	$0_{2} 80 / 55$	$0_{e} 55 / 30$	$\theta_{6} 80 / 55$	$\theta_{b} 55 / 30$	I. 80/55	I.55/30	$I_{E} 80 / 55$	$\mathrm{I}_{\mathrm{f}} 55 / 30$	${ }^{+} 80$

INTERNATIONAL EXPERIMENTS ON FIRES IN SIMPLE COMPARTMENTS

Weight, kg
Temp. Ceilling, ${ }^{\circ} \mathrm{C}$
Temp. Floor, ${ }^{\circ} \mathrm{C}$
Hindow Rediation,
cal/sec cm^{2}
Flame Radiati
Flame Radiation,
cal/sec cm^{2}
STATISTICS

Rate Wt.	ss $\frac{\mathrm{kg}}{\mathrm{min}}$	Ceiling Tewp. ${ }^{\circ} \mathrm{C}$		Floor Temp. ${ }^{\circ} \mathrm{C}$		Window Rad. $\frac{\mathrm{cal}}{\mathrm{sec} \mathrm{cm}^{2}}$		Flame Rad. $\frac{\mathrm{cal}}{\sec \mathrm{cm}^{2}}$		Time to 80\% orig. wt.min
- R80/55	155/30	$0{ }_{6} 80 / 55$	$0^{55 / 30}$	$\theta_{B} 80 / 55$	$\theta_{b} 55 / 30$	İ80/55	I.55/30	$\mathrm{I}_{\underline{f}} 80 / 55$	$\mathrm{I}_{\mathrm{f}} 55 / 30$	${ }_{80}$
3.45	2.22	1027	1078	1016	1031	. 140	. 169	. 694	. 482	5.4

INTERNATIONAL EXPERIMENTS ON FIRES IN SIMPLE COMPARTMENTS
U. S. National Bureau of Standar

EXPERIMENTAL RESULTS
INTERNATIONAL EXPERIMENTS ON FIRES IN SIMPLE COMPARTMENTS
Report Form
U.S. National Bureau of Standards, Washington, D. C.
C.I.B. Test Designation Y (NBS 9)
Scale: 1 meter \quad Dispersion of Fuel: 1 spacing

\rightarrow m m m m m

8
8

08 8L 9L. TL $2 L$
용
Flame Radiation, -.005-.005-.005-.005-.005-.005-. 005 cal/sec cm ${ }^{2}$
STATISTICS

INTERNATIONAL EXPERIMENTS ON FIRES IN SIMPLE COMPARTMENTS
Report Form
U. S. National Bureau of Standards, Washington, D. C.
C.I.B. Test Designation 1 (NBS 10)
Shape: 221
 cal/sec cm

Time, min

Weight, kg
Temp. Ceiling, ${ }^{\circ} \mathrm{C}$
iemp. Floor, ${ }^{\circ} \mathrm{C}$
Window Rediation.
$\mathrm{cal} / \mathrm{sec} \mathrm{cm}^{2}$
Flame Radiation,
cal/sec cm^{2}
STATISTICS

Rate Wt.	$s \mathrm{~s} \frac{\mathrm{~kg}}{\mathrm{~min}}$	Ceiling Temp. ${ }^{\circ} \mathrm{C}$		Floor Temp. ${ }^{\circ} \mathrm{C}$		Window Rad. $\frac{\mathrm{cal}}{\mathrm{sec} \mathrm{cm}^{2}}$		Flame Rad. $\frac{\mathrm{cal}}{\mathrm{sec} \mathrm{cm}}$		Time to 80\% orig. wt.min
R80/55	R55/30	$\theta_{6} 80 / 55$	$\theta_{e} 55 / 30$	$\theta_{\mathrm{B}} 80 / 55$	$\theta_{b} 55 / 30$	I.80/55	I. 55/30	$\mathrm{I}_{\mathrm{f}} 80 / 55$	$\mathrm{If}_{\mathrm{f}} 55 / 30$	${ }^{+}$
3.56	2.93	902	1028	895	1009	. 164	.156	. 250	. 216	8.0

INTERNATIONAL EXPERIMENTS ON FIRES IN SIMPLE COMPARTMENTS U．S．National Bureau of Standar

$$
08 \mathrm{~T}
$$

以 $09 I^{\circ}$
02

$$
\begin{array}{ll}
0^{\circ} & \tau \cdot \tau \\
8 S & 9 \varsigma
\end{array}
$$

$$
\begin{aligned}
& \text { Scale: } 1 \text { m؛ } \\
& \text { Window Opening: } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Shape: } 221 \\
& \text { Scale: } 1 \text { meter }
\end{aligned}
$$

\[

\]

$$
\begin{array}{cc}
& { }^{16} \\
84.7 \\
9 & \\
9 & 999 \\
2 & 995 \\
5 & .425
\end{array}
$$

$8^{\circ} 8$	$65 \varepsilon^{\circ}$	8E L°	65°	エで＊＊	566	¢ $\dagger 6$	LZOI	976	で・サ	$88^{\circ} \mathrm{S}$
087	$0 \varepsilon / S S^{\text {J }} \mathrm{I}$	$55 / 08^{3} \mathrm{I}$	$0 \varepsilon / 5 s^{\circ} \mathrm{I}$	SS $/ 08^{\circ} \mathrm{I}$	$0 \varepsilon / s^{9}{ }^{\text {a }}$	SS／08 ${ }^{\text {g }}$ \％	$0 \varepsilon / \varsigma^{2}{ }^{2}$	SS $108{ }^{2} \theta$	OE／5ç	cs／08Y
	$\frac{2^{\text {mo }} \text { Jas }}{\text { Les }}$ pey ameta		$\frac{z^{\text {mo Jos }}}{\text { IeJ }} \cdot \text { pey MopuTM }$		O．dunal 100 Lİ				$\frac{\text { utw }}{8 y} \text { ssot }^{\prime} 7 \mathrm{M} \text { ว78y }$	

$$
470444
$$

$$
18
$$

$$
\begin{aligned}
& .565,- \\
& 56 \quad 58
\end{aligned}
$$

$$
705 \quad 638 \quad 527
$$

$$
.150 .140 .135 \text {. } 120.110 \text {. } 095 \text {. 085 . 075 .070 }
$$

| .345 | .280 | .220 | .095 | .075 | .025 | .015 | .000 | -.010 | $\ldots .010$ | -.010 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 80 |

－．．010－．．010－．．010－．．010－．．010－．．010－．．010－．．015－． 015
INTERNATIONAL EXPERIMENTS ON FIRES IN SIMPLE COMPARTMENTS
D. S. Wational Bureau of Standar
D. S. National Bureau of Standards, Washington, D. C.
C.I.B. Test Desigmation 9 (NBS 12) Dispersion of Fuel: 1 spacing

$$
\begin{array}{rccccccccccccccc}
10 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\
40.0 & 38.3 & 36.1 & 31.5 & 26.1 & 21.1 & 16.8 & 13.2 & 10.4 & 7.9 & 5.9 & 4.3 & 2.9 & 1.9 & .5 & .0 \\
36 & 364 & 367 & 594 & 686 & 608 & 573 & 316 & 469 & 403 & 370 & 342 & 333 & 318 & 310 & 277 \\
28 & 203 & 558 & 709 & 688 & 107 & 789 & 725 & 506 & 419 & 337 & 339 & 360 & 325 & 324 & 300 \\
.005 & .025 & .060 & .140 & .200 & .180 & .180 & .150 & .130 & .110 & .090 & .085 & .080 & .070 & .060 & .055 \\
.000 & .005 & .015 & .075 & .095 & .070 & .060 & .045 & .030 & .020 & .010 & .010 & .010 & .010 & .005 & .005
\end{array}
$$

Window Openirg: I

$$
54 \quad 56 \quad 58
$$

Amount of Frel : $20 \mathrm{~kg} / \mathrm{m}^{2}$

EXPERIMENTAL RESULTS

$$
\begin{aligned}
& \text { Time, } \\
& \text { Weight, kg } \\
& \text { Temp. Ceiling, C } \\
& \text { Temp. Floor, } \mathrm{C} \\
& \text { Window Radiation, } \\
& \text { cal/sec cm }
\end{aligned}
$$

Flame Radiation,
cal/sec cm

$$
\begin{aligned}
& \text { Shape: } 211 \\
& \text { Scale: } 1
\end{aligned}
$$

$$
60
$$

32	34	36	38
6.7	4.3	2.0	.2
1047	1016	989	939
869	847	846	842
.120	.110	.100	.085

$30.325 .3 \quad 21.217 .013 .010 .0$
-1
0
0
-1
∞
0
0
1
-1
0
0
0
$1-1$
n
0
0
1
0
0
0
0
$n-1$
∞
0
0
-1
0
0
0
1

.165 ． $160 \quad .155 \quad .150 \quad .145 \quad .130$ $\stackrel{n}{N}$
0
0
0
ㅇ．

$\stackrel{\circ}{1}$
68
66
64
62
18
$\begin{array}{lllllll}0 & \ddots & \hat{0} & 0 & n & 0 & 0 \\ -1 & 0 & 0 & 0 & - & 1 & 0 \\ & f & & & 0 & 0 & n\end{array}$

52
ZI OI 89
N N
N゙
N
$.320 .575 \quad .745 \quad .845$

.065
カサ
2

8
80.0
EXPERIMENTAL RESULTS
Weight，kg
Temp．Ceiling，${ }^{\circ} \mathrm{C}$
Temp．Floor，${ }^{\circ} \mathrm{C}$
Window Radiation，
cal／sec cm
Flame Radiation，
cal／sec cm
Weight，kg
Temp．Ceiling，${ }^{\circ} \mathrm{C}$
Temp．Floor，${ }^{\circ} \mathrm{C}$
rindow Rediation，
$\mathrm{cal} / \mathrm{sec} \mathrm{cm}^{2}$
Flame Radiation，
cal／sec cma

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D. C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. ln general, each section carries out specialized rescarch, development, and engineering in the field indicated by its titlc. A bricf description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASIIINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage. Absolute Electrical Measurements.
Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Volume
Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics.
Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.
Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research. Crystal Chemistry.
Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion Controls.
Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characterization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.
Metallurgy. Engineering Metallurgy. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition. Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.
Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer, lnorganic Building Materials. Metallic Building Materials.
Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Operations Research.
Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.
Atomic Physics. Spectroscopy. Infrared Spectroscopy. Far Ultraviolet Physics. Solid State Physics. Electron Physics. Atomic Physics. Plasma Spectroscopy.
Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic lnstrumentation.
Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Elementary Processcs. Mass Spectrometry. Photochemistry and Radiation Chemistry.
Office of Weights and Measures.
BOULDEK, COLO.

CRYOGENIC ENGINEERING LABORATORY

Cryogenic Processes. Cryogenic Properties of Solids. Cryogenic Technical Services. Properties of Cryogenic Fluids.

CENTRAL RADIO PROPAGATION LABORATORY

Ionosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.
Troposphere and Space Telecommunications. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Spectrum Utilization Research. Radio-Meteorology. Lower Atmosphere Physics.
Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Frequency Utilization. Modulation Research. Antenna Rescarch. Radiodetermination.
Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. High Latitude lonosphere Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. lonospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

Radio Standards Physics. Frequency and Time Disseminations. Radio and Microwave Matcrials. Atomic Fre quency and Time-lnterval Standards. Radio Plasma. Microwave Physics.
Radio Standards Engineering. High Frequency Elcctrical Standards. High Frequency Calibration Services. High Frequency Imperlance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration Services.
Joint Institute for Laboratory Astrophysics - NBS Group (Univ. of Colo.).

