

NISTIR 8068

Software Tools for XML to

OWL Translation

Thomas Kramer

Benjamin Marks

Craig Schlenoff

Stephen Balakirsky

Zeid Kootbally

Anthony Pietromartire

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.8068

http://dx.doi.org/10.6028/NIST.IR.8068

NISTIR 8068

Software Tools for XML to

OWL Translation

Thomas Kramer

Craig Schlenoff

Zeid Kootbally

Anthony Pietromartire

Intelligent Systems Division

Engineering Laboratory

Benjamin Marks

Swarthmore College

Stephen Balakirsky

GTRI Georgia Tech

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.8068

June 2015

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Willie May, Under Secretary of Commerce for Standards and Technology and Director

http://dx.doi.org/10.6028/NIST.IR.8068

Abstract

This paper describes a set of closely related C++ software tools
for manipulating XML (eXtensible Markup Language) schemas and
XML instance files and translating them into OWL (Web Ontology
Language) class files and OWL instance files. They include: (1) an
XML schema parser, (2) an XML instance file parser generator, (3)
the instance file parsers generated by the XML instance file parser
generator, (4) an XML schema to OWL class generator, (5) a domain
instance XML to OWL translator generator, and (6) the domain in
stance XML to OWL translators generated by the domain instance
XML to OWL translator generator. These tools have been applied to
information models for kitting environments and kitting plans. The
main focus is on the last three tools, which differ significantly from
existing resources. The paper also discusses differences between OWL
and XML schema that make translation difficult, and how the tools
overcome the difficulties. The tools were built at the National Institute
of Standards and Technology in support of the Agility Performance of
Robotic Systems.

Keywords : automatic, C++, information model, generator, ontology,
OWL, schema, software, tool, translator, XML, XSDL

ii

1 Introduction

The IEEE Robotics and Automation Society’s Ontologies for Robotics and
Automation (ORA) Working Group is dedicated to developing a knowledge
representation for robotics and automation. As part of this working group,
the Industrial Robots sub-group is tasked with studying industrial applica
tions of the knowledge representation. One of the first areas of interest for
this subgroup is the area of kit building or kitting, which is a simple but
non-trivial example of an assembly process. This is a process that brings
parts that will be used in assembly operations together in a kit and then
moves the kit to the area where the parts are used in the final assembly. It is
anticipated that utilization of the knowledge representation will allow for the
development of higher performing kitting systems and will lead to the devel
opment of agile automated assembly. The Agility Performance of Robotic
Systems (APRS) project at the National Institute of Standards and Technol
ogy is working in collaboration with the ORA group to develop information
models related to kitting, including a model of the kitting environment and
a model of a kitting plan.

Early in its existence, the ORA group made a commitment to use OWL
(Web Ontology Language) [10, 11, 16] for its models. As the authors used
OWL, difficulties arose as described in Section 3. The models being built
lent themselves to a more structured object model approach of the sort used
in languages such as EXPRESS [17], C++ classes [22], and XML Schema
Definition Language (XSDL) [6, 7, 8, 26]. It was decided to use XSDL as
the language for initial modeling in the APRS project and to produce OWL
models from the XSDL models. One author already had experience with
XSDL and was building C++ software tools for manipulating XML schemas
and instance files. To make the translation work easier and more reliable,
additional C++ tools were built for that purpose.

Much research has been devoted to translating XML into OWL. A com
parison between existing utilities can be found in [1, 3, 27]. Nevertheless,
the existing software has many limitations. In some cases, the software con
verts only XML Schema [25] or requires an existing OWL ontology [20]. The
majority of tools incorporate information from either XML schema files or
XML instance files, but not both [4, 14, 15]. This precludes the creation
of accurate OWL instances from XML instances that conform to an XML
schema. Additionally, existing utilities do not scale well with input size or
complexity, either requiring human verification and restructuring of the con

1

verted file [15] or limiting the potential complexity of XML schema files by
only analyzing a single schema at a time [14]. Finally, most tools are imple
mented using mappings encoded in XML stylesheets [24, 27, 28], which seem
to scale in exponential time with the length of the converted document [4].
For all of these reasons, a different, scalable approach is needed.

Analogous research has been done in translating EXPRESS into OWL
[2]. Many of the translation issues encountered in that work are the same as
those found in XML to OWL translation.

The remainder of this paper focuses on the tools and how the translation
tools were tailored to deal with the differences between OWL and XSDL.
Section 2 describes the tools. Section 3 describes key differences between
XSDL and OWL. Section 4 gives details about the software in the tools, and
Section 6 presents conclusions and future work.

Reserved words from XSDL and OWL or from sample files are set in
this font.

2 The Tools

Figure 1 shows the tools, the file types the tools manipulate, and the con
nections among them. The tools all run from a command window; they have
no graphical user interfaces. This makes them independent of any operating
system.

The files (domain.xsd and domain.owl) on the left side are information
model files. They show how instances of information should be structured.
For example, a point might be modeled in an information model as x, y, and
z coordinate values. The files on the right side (domain-instance.xml and
domain-instance.owl) are instance files that contain specific data instances
that conform to an information model. For example, a specific point in an
instance file might be (1, 2, 3), corresponding to the x, y, z model. Many
instance files may correspond to a given information model.

The subject matter area of an information model is called its domain.
The tools on the left and in the middle of Figure 1 are domain independent.
Each tool will work with any XML schema that meets that tool’s restrictions
on the usage of the XSDL. The restrictions vary among the tools. The tools
on the right side of the figure are domain dependent. They take as input
only XML instance files in the domain for which the tools were generated.

A typical scenario for using the tools is as follows.

2

XML schema
parser

domain.xsd

domain instance
XML parser
generator

domain instance
XML parser

domain
instance.xml

domain.owl

XML schema
to OWL class

translator

domain instance
XML to OWL

translator generator

domain instance
XML to OWL

translator

domain
instance.owl

file generated
automatically

KEY

software tool from
automatically

generated code

software tool from
hand written code

file generated
by user

tool reads and
writes files

tool reads or
writes file

dashed line indicates
instance file on right
conforms to model
file on left

A B D

F G

I J

H

E

C

Figure 1: Software Tools, Model Files, and Instance Files

3

•	 An XML schema model, domain.xsd, is built. There is no representa
tion of building it on Figure 1.

•	 Optionally, the XML Schema Parser is used to check that domain.xsd
is valid (Arrow A).

•	 The domain.xsd file is processed by the Domain Instance XML Parser
Generator to generate code for parsing XML instance files that conform
to domain.xsd. A Domain Instance XML Parser is compiled from the
code (Arrows B and C).

•	 An XML instance file, domainInstance.xml, conforming to domain.xsd
is built. There is no representation of building it on Figure 1.

•	 Optionally, the Domain Instance XML Parser is used to check that
domainInstance.xml conforms to domain.xsd (Arrow D).

•	 The domain.xsd file is processed by the XML Schema to OWL Class
Translator to produce the domain.owl file, which is the OWL model
equivalent to domain.xsd (Arrows E and I).

•	 Optionally, an OWL tool is used to check that domain.owl is valid.

•	 The domain.xsd file is processed by the Domain Instance XML to OWL
Translator Generator to generate code for a translator that translates
XML instance files conforming to domain.xsd into OWL instance files
conforming to domain.owl. The Domain Instance XML to OWL Trans
lator is compiled from the code (Arrows F and H).

•	 The domainInstance.xml file is processed by the Domain Instance XML
to OWL Translator to make the domainInstance.owl file, which con
forms to domain.owl (Arrows G and J).

•	 Optionally, an OWL tool is used to check that domainInstance.owl is
valid.

In the scenario just described, the step of running the Domain Instance
XML Parser Generator may not be skipped because the parser code it pro
duces is reused for building the Domain Instance XML to OWL Translator.
The steps of the scenario that build code are taken only once, but the steps
that deal with instance files (Arrows D, G, and J) may be repeated many
times.

4

2.1 XML Schema Parser

As indicated by Arrow A on Figure 1, the XML Schema Parser (henceforth
xmlSchemaParser) reads and writes XML schema files. It is able to handle
almost all of XSDL. When it runs, it reads an input file, stores it in terms of
a C++ class model of XML schemas, and reprints it in a file with almost the
same name as the input file; “echo” is appended to the file name. The output
file is formatted to be easily readable for humans who can read XSDL files
directly. While it runs, the xmlSchemaParser prints what it is reading in the
command window in which it is running. If there is any syntax error, the
xmlSchemaParser stops reading at the point where the first error occurred,
prints an error message, and exits; no output file is generated.

In comparison with commercially available tools and free tools, this xml-
SchemaParser has few advantages for general use1 . However, since it uses
a YACC-Lex parser, it is very fast. It runs in O(N) time where N is the
number of lines in the schema file. Also, it has one set of specialized op
tions that were developed for another project. That is, the user has a choice
of how documentation nodes are handled when the output file is generated.
XSDL documentation nodes may be (1) deleted entirely, (2) formatted auto
matically for human readability, or (3) printed in a single string (for input to
some other automatic formatting tool). In the second option, documentation
nodes that have been specially formatted (as evidenced by extra indenting
on one or more lines) are not reformatted. There is another option for retain
ing comments or removing them. That option has a simple implementation
but requires that comments be located in the schema only where annotation
nodes are allowed.

2.2 Domain Instance XML Parser Generator

The Domain Instance XML Parser Generator (henceforth xmlInstanceParser-
Generator) reads an XML schema that models a particular domain and writes
software for a parser that reads and writes XML instance files conforming to
the schema. This is indicated by Arrows B and C on Figure 1. Because it gen
erates five files in three different languages, the xmlInstanceParserGenerator

1Certain commercial/open source software and tools are identified in this paper in
order to explain our research. Such identification does not imply recommendation or
endorsement by the authors or NIST, nor does it imply that the software tools identified
are necessarily the best available for the purpose.

5

is by far the most complex of the tools described in this paper. For a schema
up to several thousand lines long, however, it runs in a fraction of a second
on an ordinary desktop or laptop computer. If the number of complexTypes
in a schema file is N , the time taken by the xmlInstanceParserGenerator is
O(N2).

The files that are generated from the domain.xsd XML schema file (where
domain may be any name allowed by XSDL and C++) are:

domain.lex – a Lex file for a lexical scanner used by the YACC parser.

domain.y — a YACC file for a parser for XML files in the domain.

domainClasses.hh — a C++ header file defining classes for the domain.
Each class has two constructors, a destructor, and a printSelf function.

domainClasses.cc – a C++ code file implementing the classes.

domainParser.cc – a C++ code file with a main program.

If the XML schema file on which the xmlInstanceParserGenerator is oper
ating includes one or more other XML schema files, a pair of domainClasses
C++ files is generated for each additional schema file, but there is still only
one Lex file, one YACC file, and one main program file.

After the xmlInstanceParserGenerator has finished running, further pro
cessing builds a Domain Instance XML Parser. The flex Lex processor
[5, 19] is used to generate the C++ file domainLex.cc automatically from
domain.lex. The Bison YACC processor [5, 13] is used to generate domainY
ACC.cc and domainYACC.hh automatically from domain.y. The four (or
more) .cc files are then compiled and linked in the usual way, i.e., by using
a Makefile in any operating system that uses standard Makefiles or by using
Visual Studio for MS Windows [12]. As described in Section 4, an additional
object file is also linked in.

In comparison with commercially available code generation tools, and
good free tools, the xmlInstanceParserGenerator has few advantages for gen
eral use. The principal advantage to the authors is that we understand the
code and can add any functionality we need. In addition, the many months
invested in writing the code paid off in minimizing the time it took to build
the XML Schema to OWL Class Translator, and the Domain Instance XML
to OWL Translator Generator, each of which required only a week or so.
Another advantage is that all output code files are carefully formatted to be

6

http:domainYACC.hh
http:domainLex.cc
http:domainParser.cc
http:domainClasses.cc
http:domainClasses.hh

human readable - if the reader is familiar with the language in which the file
is written.

Another useful feature of the xmlInstanceParserGenerator is the ability
to preserve changes made manually to the automatically generated domain
Classes.hh header file if the input schema is modified and the header file is
regenerated. If the arguments to the command that starts the xmlInstan
ceParserGenerator include -h domainClasses.hh, where domainClasses.hh is
the old manually changed header file, any allowed changes in the old header
file will be transcribed into the corresponding positions in the new header file
that is generated. Two types of changes to header files are allowed. First,
immediately after the list of #includes near the top of the file, a // style
comment line may be inserted followed by more #includes. Second, immedi
ately before the right curly brace that closes each class declaration, a // style
comment line may be inserted followed by any lines that are syntactically cor
rect in that position (for example, an attribute declaration or a constructor
declaration). To accomplish the transcription of the latter type of changes,
when the xmlInstanceParserGenerator starts, it reads the old header file and
builds a map from class names to lists of character arrays containing the
changes. When the new header is being printed, just before the printing of
each class ends, the map is checked and the contents of the list of changes for
that class are copied into the new header file. At the same time, “done” is
put at front of the list to indicate that the changes for that class have been
transcribed. After the new header file has been generated, the change map
is checked to be sure all changes are marked done. If a change is not marked
done, that implies that a class defined in the old header file is not present in
the new one, and a warning message is printed.

Any manually written code implementing changes in the header file, such
as a new constructor, should be put into a separate .cc file, not into domain
Classes.cc. There is no problem with having multiple .cc files to implement
a single .hh file, but it is not possible to use a second header file to modify
classes defined in a first header file. Hence, making changes to the original
header file is necessary to change classes, and some method of preserving the
changes is desirable. Changing an underlying information model and adding
attributes and functions to classes to support building an application are
both frequently done, so being able to preserve manual changes to header
files is valuable.

The subset of XSDL that can be handled by the xmlInstanceParserGen
erator is more limited than that for the xmlSchemaParser. In particular, it

7

http:Classes.cc
http:domainClasses.hh
http:domainClasses.hh
http:Classes.hh

handles only schemas in which all type definitions are at the schema level,
and it cannot deal with multiple namespaces. The xmlInstanceParserGener
ator does not generate code to verify that an instance file satisfies key and
keyref constraints in the schema.

2.3 Domain Instance XML Parsers

A Domain Instance XML Parser reads and writes XML instance files intended
to conform to the domain.xsd information model. This is indicated by Arrow
D on Figure 1.

The main program in domainParser.cc provides a text-based user inter
face, calls the YACC parser, and calls the routine that reprints the input
XML instance file in the output XML instance file. As with the xmlSchema-
Parser, the name of the output file is almost the same as name of the input
file; again, “echo” is appended to the file name. The Domain Instance XML
Parsers require strict conformance of instance files to the syntax implied by
the domain.xsd schema. Also like the xmlSchemaParser, while it runs, a Do
main Instance XML Parser prints what it is reading in the command window
in which it is running. If there is any syntax error, the parser stops reading
at the point where the first error occurred, prints an error message, and exits;
no output file is generated.

While a Domain Instance XML Parser does not check conformance of
instance files to any key and keyref constraints that may be present in
domain.xsd, it does check that all values of the XML built-in ID type in an
instance file are unique and that every IDREF value is the value of an ID.

If the number of lines in an XML instance file is N , the time taken by a
Domain Instance XML Parser is O(N).

2.4 XML Schema to OWL Class Translator

The XML Schema to OWL Class Translator (xmlSchemaOwlClassGenera
tor) reads XML schema files and writes OWL files declaring OWL classes.
This is indicated by Arrows E and I in Figure 1. The xmlSchemaOwlClass-
Generator outputs one OWL class file for each input XML schema file.
Each class file defines a syntactically complete OWL ontology. An XML
schema file may be input either by being named in an argument to the
xmlSchemaOwlClassGenerator or by being included in the named file or
in another included file. Each OWL class file that is output contains an

8

http:domainParser.cc

information model with the same meaning as the corresponding model de
fined by an XML schema file. The correspondence between the content of
an XML schema file and that of the corresponding OWL class file is de
scribed in Section 3. That section also describes restrictions on the subset
of XSDL that may be used in a schema from which an OWL class file is to
be generated.

If the number of complexTypes in a schema file is N , the time taken by
the xmlSchemaOwlClassGenerator is O(N 2).

2.5	 Domain Instance XML to OWL Translator Gener
ator

The Domain Instance XML to OWL Translator Generator (xml2owlGenerator)
reads an XML schema and writes code for a Domain Instance XML to OWL
Translator. This is indicated by Arrows F and H on Figure 1. The user
provides a base name for the files to be generated on the command line that
starts the xml2owlGenerator. If the base name is “domain”, the code files
the generator writes are:

owlDomainClasses.hh – a C++ header file defining classes for the do
main.	 Each class has two constructors, a destructor, and a printOwl
function.

owlDomainClasses.cc – a C++ code file implementing the classes.

owlDomainPrinter.cc – a C++ program with a main routine.

The constructors and destructors that are generated are identical to those
produced by the xmlInstanceParserGenerator.

The xml2owlGenerator does not generate Lex and YACC files. The ones
generated by the xmlInstanceParserGenerator are used instead. However,
when domainYACC.cc is compiled, owlDomainClasses.hh is included rather
than domainClasses.hh. The four .cc files are compiled and linked in the
usual manner. As described in Section 4, two additional object files are also
linked.

If the number of complexTypes in a schema file is N , the time taken by
the xml2owlGenerator is O(N2).

9

http:domainClasses.hh
http:owlDomainClasses.hh
http:domainYACC.cc
http:owlDomainPrinter.cc
http:owlDomainClasses.cc
http:owlDomainClasses.hh

2.6 Domain Instance XML to OWL Translators

A Domain Instance XML to OWL Translator reads an XML instance file
conforming to domain.xsd and writes an OWL instance file conforming to
domainClasses.owl. This is indicated by Arrows G and J on Figure 1. The
two files have the same information content. The correspondence between
the content of the XML instance file and that of the OWL class file is
described in Section 3.

The Domain Instance XML to OWL Translators are very fast. If the
number of lines in an XML instance file is N , the time taken by a Domain
Instance XML to OWL Translator is O(N). In an unexceptional test, a test
file with 129,000 lines was translated in 0.45 seconds.

2.7 Limitations

The four handwritten tools shown in Figure 1 have different levels of ca
pability in handling XML schema files. The xmlSchemaParser can handle
almost any XML schema file. The xmlInstanceParserGenerator can han
dle only schemas in which all type definitions are at the top level and has
other limitations that are not described in this paper. The translation tools
(xmlSchemaOwlClassGenerator and xml2owlGenerator) have all the limi
tations of the xmlInstanceParserGenerator plus others that are described
below.

3 XSDL and OWL

This section briefly describes XSDL models in Subsection 3.1, XML instance
files in Subsection 3.2, OWL models in Subsection 3.3, and OWL instance
files in Subsection 3.4. The descriptions of languages and file formats are
sufficient only to support the explanation of translations. Full descriptions
may be found for XSDL in [6, 7, 8, 26], for XML in [9], and for OWL in
[10, 11, 16]. XSDL and OWL versions of the same small complete model are
shown in Subsections 3.1 and 3.3. XML and OWL versions of the same small
instance file conforming to the model are shown in Subsections 3.2 and 3.4.

Finally, Subsection 3.5 provides additional discussion of problems with
using OWL that are circumvented by using the translation tools.

10

3.1 XML Schemas

XSDL is an object-oriented information modeling language. A model written
in XSDL is called an XML schema. Data members may be represented in
the model as elements. The contents of a schema normally include a root
element and a number of type definitions. Objects are modeled as instances
of complexTypes that may have elements. XSDL also includes built-in data
types such as ID, integer, and string and supports specializations of built-
in data types in simpleTypes. The following line.xsd schema file illustrates
how a two dimensional Line might be modeled in XSDL using PointType
and VectorType. The line numbers in this figure and subsequent figures are
for the reader of this paper and are not included in the actual text of the
files.

1. <?xml version="1.0" encoding="UTF-8"?>
2.

3. <xs:schema
4. xmlns:xs="http://www/w3/org/2001/XMLSchema"
5. elementFormDefault="qualified"
6. attributeFormDefault="unqualified">
7.

8. <xs:element name="Line"
9. type="LineType">

10. <xs:annotation>
11. <xs:documentation>
12. Root element
13. </xs:documentation>
14. <xs:documentation>
15. owlPrefix=ax
16. </xs:documentation>
17. </xs:annotation>
18. </xs:element>
19.

20. <xs:complexType name="BaseType"
21. abstract="true">
22. <xs:sequence>
23. <xs:element name="Name"
24. type="xs:ID"/>
25. </xs:sequence>
26. </xs:complexType>

11

27.

28. <xs:complexType name="LineType">
29. <xs:complexContent>
30. <xs:extension base="BaseType">
31. <xs:sequence>
32. <xs:element name="Point"
33. type="PointType"/>
34. <xs:element name="Vector"
35. type="VectorType"/>
36. </xs:sequence>
37. </xs:extension>
38. </xs:complexContent>
39. </xs:complexType>
40.

41. <xs:complexType name="PointType">
42. <xs:complexContent>
43. <xs:extension base="BaseType">
44. <xs:sequence>
45. <xs:element name="X"
46. type="xs:decimal"/>
47. <xs:element name="Y"
48. type="xs:decimal"/>
49. </xs:sequence>
50. </xs:extension>
51. </xs:complexContent>
52. </xs:complexType>
53.

54. <xs:complexType name="VectorType">
55. <xs:complexContent>
56. <xs:extension base="BaseType">
57. <xs:sequence>
58. <xs:element name="X"
59. type="xs:decimal"/>
60. <xs:element name="Y"
61. type="xs:decimal"/>
62. </xs:sequence>
63. </xs:extension>
64. </xs:complexContent>
65. </xs:complexType>
66. </xs:schema>

12

Figure 3: Diagram of XML schema line.xsd

Figure 2: line.xsd schema file

A graphical view of the line.xsd XML schema is given in Figure 3. In the
figure, elements are shown as white rectangles. Three of the four complexTypes
(LineType, PointType, and VectorType) are depicted as large shaded rect
angles surrounded by dashed lines. The BaseType is not shown because it is
never used as the value of an element. The irregular octagons are connectors
joining a parent element to the elements in its type. Each type in the figure
has two connectors because each of them is an extension of the BaseType
and inherits the Name element from it.

In general, the translation tools require that input schemas have a com
pletely uniform style of using XSDL. For example, XSDL does not require
that type definitions in a schema have names and be at the top level of the
schema, but in XML to OWL translation, we allow only schemas that meet
those conditions. Requiring a uniform style does not limit what may be

13

modeled in any way.
In order that element names may be very similar to type names, we have

adopted the conventions that all type names (and only type names) must end
in Type, and that wherever it is reasonable to do so, the name of an element
will be the name of its type with the Type suffix removed. For example,
PointType is the type of the Point element of LineType.

Another requirement on complexTypes that we have imposed in order to
support translation to OWL is that every complexType must have a Name
element of ID type. The ID type is used to ensure that every Name for a
named object in an instance file is unique throughout the file.

One complexType (child) may be derived from another (parent) by ex
tending or restricting the parent. Restrictions of complexTypes are awkward
and verbose in XSDL and are not allowed in schemas used with the transla
tion tools. Extensions usually add elements. The child has all the elements
of its parent plus any that are added by the extension. XSDL does not pro
vide any method for a child type to have two parent types. In modeling
terms, that means multiple inheritance is not possible. In the schema file
above, the BaseType, which provides the Name element, is the parent of the
other three types.

The scope of element names in XSDL is local to the type in which the
element appears. In the example above, for instance, both Point and Vector
have X and Y elements.

Several restrictions on the use of XSDL in schemas that are to be used as
input to the translation tools have already been mentioned. Others follow.

Attributes not allowed : XSDL attributes are not allowed. It is always
straightforward to replace an XSDL attribute with an element hav
ing exactly the same semantic content. Thus, disallowing attributes
limits input syntax but not input semantics.

Namespace not allowed : XSDL and OWL both provide for using prefixes
to implement separate namespaces. However, they do this at different
levels of granularity. XSDL allows multiple schema files in a single
namespace (or no namespace) while OWL puts each ontology file in
its own namespace. No schema file that is to be processed by the
translation tools may have a namespace or use a prefix.

OWL prefix specification required : In OWL, each namespace (i.e., file) must
have a different prefix. One of these may be the empty prefix which is a

14

bare colon (:). In the translation tools, the empty prefix is reserved for
OWL instance files. The xmlSchemaOwlClassGenerator outputs one
OWL ontology file for each input XML schema file. Some method
of assigning a unique non-empty prefix to each output OWL file is re
quired. The method that has been implemented is to require that there
be a documentation node containing the prefix in each XML schema
file. The text of the documentation node is of the form owlPrefix=ax,
where the ax may be any combination of characters allowed for OWL
prefixes. That documentation node should be placed in the root
element of the XML schema if there is a root element, or, if not,
anywhere else documentation nodes are allowed. All such prefixes
must be different. A colon will be added to the end of the prefix when
it is used. In Figure 2, owlPrefix=ax is on line 15.

Handling of Key Limited : The handling of XSDL key is limited. This is
because XSDL keys are element-based and apply only to specified
instances of a type, while OWL hasKey statements are type-based and
apply to all instances of a type.

Global Element Only for Root : An element may be declared at the top
(global) level of a schema only if it is the root element. In this case it
should appear before any type definitions.

Specialized Use of ID and IDREF : An XML instance file is a hierarchy that
is structurally a tree. It is often the case in model building that we want
the value of an element in one part of a tree to be in some part of the
tree other than being directly below the element. In a model of a family
tree, for example, the value of a cousin element will normally be that
way. To deal with elements of this sort in XSDL, the usual method is to
assign an identifier unique among all objects to each object that might
be the value of some distant element. Then the value of the element
would be the identifier. Any system processing the tree would be aware
that when an identifier is the value of an element, the intent is really
that the value of the element is the object identified by the identifier.
The Name element of ID type discussed earlier, which is possessed by
every instance of every complexType, serves as an identifier. References
in an XML schema to Name identifiers must be of type IDREF (which is
XML’s built-in type for references to IDs). To enable translation, in the
XML to OWL tools, it is also required that each element of type IDREF

16

have an annotation node with an appinfo node inside it that gives the
name of the type of thing the IDREF is referencing. A file snippet with
an example of that is given in Figure 4. The value of the DesignName
element will be the name of an instance of KitDesignType, presumably
to be found in a list of designs given elsewhere in the model.

1. <xs:complexType name="KitType">
2. ...
3. <xs:element name="DesignName"
4. type="xs:IDREF">
5. <xs:annotation>
6. <xs:appinfo>KitDesignType</xs:appinfo>
7. <xs:annotation>
8. </xs:element>
9. ...

10. </xs:complexType>

Figure 4: schema file snippet with IDREF

Other items not handled The following XSDL constructs are not usefully
handled by the translation tools: choice, fixed, keyref, maxLength,
maxOccurs of a sequence, minLength, minOccurs of a sequence, mixed,
pattern, ref, list, substitutionGroup, unique. For some of these,
if the construct appears in a schema, the XML to OWL tool will print
an error message and exit. For others, the tool will print a warning
message and ignore the construct.

3.2 XML Instance Files Conforming to XML Schemas

Under the XML standards, an XML instance file conforming to an XML
schema must be in a different format than the schema and must contain
different sorts of statements. An XML statement naming the XML schema
file to which an instance file corresponds is normally given near the beginning
of the instance file. Many different instance files may correspond to the same
schema.

The form of an instance file is a tree in which instances of the elements
of each type are textually inside the instance of the type.

The following line1.xml XML instance file conforms to the line.xsd XML
schema. Names of elements in the schema become XML tags in the instance

17

file (e.g., <Point>). The line1.xml file models a line that passes through the
origin and lies on the Y axis.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <Line
3. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4. xsi:noNamespaceSchemaLocation="../xmlSchemas/line.xsd">
5. <Name>Line_1</Name>
6. <Point>
7. <Name>Point_1</Name>
8. <X>0</X>
9. <Y>0</Y>

10. </Point>
11. <Vector>
12. <Name>Vector_1</Name>
13. <X>0</X>
14. <Y>1</Y>
15. </Vector>
16. </Line>

Figure 5: XML instance file line1.xml conforming to line.xsd

In XSDL, there is a rule that a valid instance of a complexType must
have valid instances of the required elements of the type in the order given
in the schema, and elements are required unless explicitly made optional
in the schema. Thus, for example, the Line 1 instance of LineType shown
above is valid since it has a valid Name element followed by a valid Point
element followed by a valid Vector element. If it did not have those valid
elements in that order, it would not be valid.

3.3 OWL Class Model

OWL is designed to support automated reasoning and is set theoretic. It
is much more atomistic than XSDL, in that several OWL statements not
required to be in any particular order are typical necessary to represent the
equivalent of one XSDL complexType definition. OWL has several different
but equivalent syntaxes. The OWL functional-style syntax has been used in
the translation tools.

Here is the OWL lineClasses.owl ontology file equivalent to the line.xsd
schema file in Subsection 3.1. The lineClasses.owl file was produced by

18

the xmlSchemaOwlClassGenerator. The first section of lineClasses.owl is
a header. The other four sections (starting with a class declaration) each
correspond to one of the four complexType definitions in line.xsd. The first
five lines of the header are boilerplate used in all OWL files. The sixth line
declares that the prefix ax should be used with this ontology. That prefix
is specified in a documentation node of the root node of line.xsd. The be
ginning of the ontology name http://example/line/lineClasses.owl is
provided by the user as an argument to the xmlSchemaOwlClassGenerator.
The generator adds · · ·Classes.owl to the end – where · · · is line in this
case.

1. Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)
2. Prefix(owl:=<http://www.w3.org/2002/07/owl#>)
3. Prefix(xml:=<http://www.w3.org/XML/1998/namespace>)
4. Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)
5. Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)
6. Prefix(ax:=<http://example/line/lineClasses.owl#>)
7. Ontology(<http://example/line/lineClasses.owl>
8.

9. Declaration(Class(ax:Base))
10.

11. SubClassOf(ax:Line ax:Base)
12. SubClassOf(ax:Point ax:Base)
13. SubClassOf(ax:Vector ax:Base)
14. DisjointUnion(ax:Base
15. ax:Line
16. ax:Point
17. ax:Vector)
18.

19. Declaration(Class(ax:Line))
20.

21. Declaration(ObjectProperty(ax:hasLine_Point))
22. ObjectPropertyDomain(ax:hasLine_Point ax:Line)
23. ObjectPropertyRange(ax:hasLine_Point ax:Point)
24. InverseFunctionalObjectProperty(ax:hasLine_Point)
25. FunctionalObjectProperty(ax:hasLine_Point)
26. EquivalentClasses(ax:Line ObjectIntersectionOf(
27. ObjectSomeValuesFrom(ax:hasLine_Point ax:Point)
28. ObjectAllValuesFrom (ax:hasLine_Point ax:Point)))
29.

19

http://example/line/lineClasses.owl

30. Declaration(ObjectProperty(ax:hadByPoint_Line))
31. InverseObjectProperties(ax:hasLine_Point
32. ax:hadByPoint_Line)
33. ObjectPropertyDomain(ax:hadByPoint_Line ax:Point)
34. ObjectPropertyRange(ax:hadByPoint_Line ax:Line)
35.

36. Declaration(ObjectProperty(ax:hasLine_Vector))
37. ObjectPropertyDomain(ax:hasLine_Vector ax:Line)
38. ObjectPropertyRange(ax:hasLine_Vector ax:Vector)
39. InverseFunctionalObjectProperty(ax:hasLine_Vector)
40. FunctionalObjectProperty(ax:hasLine_Vector)
41. EquivalentClasses(ax:Line ObjectIntersectionOf(
42. ObjectSomeValuesFrom(ax:hasLine_Vector ax:Vector)
43. ObjectAllValuesFrom (ax:hasLine_Vector ax:Vector)))
44.

45. Declaration(ObjectProperty(ax:hadByVector_Line))
46. InverseObjectProperties(ax:hasLine_Vector
47. ax:hadByVector_Line)
48. ObjectPropertyDomain(ax:hadByVector_Line ax:Vector)
49. ObjectPropertyRange(ax:hadByVector_Line ax:Line)
50.

51. Declaration(Class(ax:Point))
52.

53. Declaration(DataProperty(ax:hasPoint_X))
54. DataPropertyDomain(ax:hasPoint_X ax:Point)
55. DataPropertyRange(ax:hasPoint_X xsd:decimal)
56. FunctionalDataProperty(ax:hasPoint_X)
57. EquivalentClasses(ax:Point ObjectIntersectionOf(
58. DataSomeValuesFrom(ax:hasPoint_X xsd:decimal)
59. DataAllValuesFrom (ax:hasPoint_X xsd:decimal)))
60.

61. Declaration(DataProperty(ax:hasPoint_Y))
62. DataPropertyDomain(ax:hasPoint_Y ax:Point)
63. DataPropertyRange(ax:hasPoint_Y xsd:decimal)
64. FunctionalDataProperty(ax:hasPoint_Y)
65. EquivalentClasses(ax:Point ObjectIntersectionOf(
66. DataSomeValuesFrom(ax:hasPoint_Y xsd:decimal)
67. DataAllValuesFrom (ax:hasPoint_Y xsd:decimal)))
68.

69. Declaration(Class(ax:Vector))

20

70.

71. Declaration(DataProperty(ax:hasVector_X))
72. DataPropertyDomain(ax:hasVector_X ax:Vector)
73. DataPropertyRange(ax:hasVector_X xsd:decimal)
74. FunctionalDataProperty(ax:hasVector_X)
75. EquivalentClasses(ax:Vector ObjectIntersectionOf(
76. DataSomeValuesFrom(ax:hasVector_X xsd:decimal)
77. DataAllValuesFrom (ax:hasVector_X xsd:decimal)))
78.

79. Declaration(DataProperty(ax:hasVector_Y))
80. DataPropertyDomain(ax:hasVector_Y ax:Vector)
81. DataPropertyRange(ax:hasVector_Y xsd:decimal)
82. FunctionalDataProperty(ax:hasVector_Y)
83. EquivalentClasses(ax:Vector ObjectIntersectionOf(
84. DataSomeValuesFrom(ax:hasVector_Y xsd:decimal)
85. DataAllValuesFrom (ax:hasVector_Y xsd:decimal)))
86.)

Figure 6: lineClasses.owl OWL class file

For each XSDL type defined in the XML schema, an equivalent OWL type
is declared in the OWL ontology that is generated by the Class Translator.
Also, for each element (other than Name) of each XSDL complexType, an
OWL property is declared. If an XSDL type is a simpleType, the OWL
equivalent is a DatatypeDefinition, and when it is used as the type of an
element, the equivalent OWL property is a DataProperty. If the XSDL
element type is a complexType, the OWL equivalent is a class, and when
it is used as the type of an element, the equivalent OWL property is an
ObjectProperty. The suffix Type is removed from the XSDL type name in
order to make the OWL class name or DatatypeDefinition name. XSDL
has built-in data types, such as xs:decimal. OWL uses many of the XSDL
built-in data types directly. For these, translation is straightforward. For
example, xs:decimal becomes xsd:decimal. The translation of line.xsd to
lineClasses.owl provides examples of conversions of complexType and built-in
type, but not simpleType.

The Name element required in every XSDL complexType has no counter
part in the OWL class equivalent to the complexType. In an OWL instance
file, objects are usually named by a NamedIndividual declaration, so they
do not have to be modeled in OWL classes. If there were a counterpart

21

to the XSDL Name in the equivalent OWL class, each object of the class
would have two names: the explicitly modeled one and the one assigned by
the NamedIndividual declaration. The purpose of requiring the XSDL Name
is so that XML instances of complexTypes will have names that can be used
as the OWL instance names.

In the OWL class file above, almost all statements about a given prop
erty or class are clustered together. This is not a requirement of OWL; it is
a feature of the xmlSchemaOwlClassGenerator. After the header, the order
of statements in an OWL ontology file is irrelevant.

As shown in Figure 6, the DataPropertys and ObjectPropertys are all
declared globally in the ontology, not locally in a class. Hence, a method
is required for making property names (such as x and y) that were local in
XSDL be global in OWL. This has been done by constructing the property
name by concatenating has with the XSDL type name (which is global), an
underscore, and the XSDL element name. Thus, for example, we have the
property names hasPoint X, hasPoint Y, hasVector X, and hasVector Y.
Since the XSDL type names are unique within a schema file, and the element
names are unique within a type, the OWL property names are unique within
the ontology file.

In OWL, the domains and ranges of properties are specified using ex
plicit DataPropertyDomain, DataPropertyRange, ObjectPropertyDomain,
and ObjectPropertyRange statements.

If an XSDL element can occur at most once in a complexType, then
a FunctionalDataProperty or FunctionalObjectProperty statement for
the OWL property equivalent to the element is made.

If an XSDL complexType has one or more elements that are not optional,
for each such element, an OWL EquivalentClasses statement is made say
ing that all members of the OWL class equivalent to the XSDL complexType
and only members of that class have the OWL property equivalent to the
element.

If an XSDL element of complexType can occur at most once, an OWL
InverseFunctionalObjectProperty statement is made.

For each objectProperty, an inverse property is declared along with its
domain and range. In the sample OWL instance file of Figure 6, hadByPoint Line
is the inverse of hasLine Point. An explicit InverseObjectProperties
statement is made to formalize the relationship of the two properties. Simi
larly, hadByVector Line is the inverse of hasLine Vector. In XSDL, under
the line.xsd schema, an instance of a VectorType cannot be a PointType or

22

a LineType. In OWL, absent a statement to the contrary, a Vector could be
a Point or a Line. To prevent that from being possible, the last statement in
the Base class section of the OWL class file states that the Line, Point,
and Vector classes form a DisjointUnion of the Base class. That means
both (1) that no instance of Line, Point, or Vector can also be an instance
of one of the others and (2) that any instance of the Base class must be
an instance of one of its subtypes. The use in OWL of a disjointUnion
(which implies both 1 and 2) rather than a disjointClasses (which would
imply only 1) occurs because the BaseType was declared to be abstract in
line.xsd.

The line.xsd and lineClasses.owl files do not use all XSDL and OWL
constructs. The xmlSchemaOwlClassGenerator generates additional types
of OWL statement corresponding to other XSDL constructs, as follows.

•	 An XSDL include statement is translated into an OWL import state
ment.

•	 XSDL simpleTypes are translated to OWL DatatypeDefinitions.

•	 XSDL comments are not translated.

•	 An XSDL documentation node in a type definition or immediately
after the file header is translated into an OWL AnnotationAssertion.
The text of the documentation is modified to reflect the facts (1) that
type names do not end in Type in OWL, (2) that the Name element is
not used in OWL, and (3) that the term element is not used in OWL.

•	 An XSDL documentation node in an element definition is not trans
lated.

•	 An appinfo in an element of type IDREF is translated by making
the type of the range of the OWL objectProperty equivalent to the
element be the type identified by the appinfo. For example, the
OWL range statement for the OWL property corresponding to the
DesignName element on the third line of Figure 4 would be:
ObjectPropertyRange(kt:hasKit DesignName kt:KitDesign).

23

3.4 OWL Instance Files

OWL has no built-in distinction between an instance file and a model file.
Instance definitions and class definitions can be mixed in the same file. A
ClassAssertion about an instance may even implicitly declare a new class
(if the name of an existing class is misspelled, for example). The authors,
however, have adopted the convention that statements about instances must
be put into separate files from statements about classes that do not deal
with instances. OWL files with statements about instances are being called
instance files. We have also adopted the convention that an OWL instance
file must have an OWL Import statement that names the class file to which
the instance file corresponds. As in XML, many different instance files may
correspond to the same model (i.e., class) file. The translation tools write
instance translators that read one XML instance file and write one OWL
instance file each time the translator is used.

Here is line1.owl, the OWL equivalent of the line1.xml. The line1.owl
file conforms to the lineClasses.owl OWL class file. The line1.owl file was
produced by owlLinePrinter, an instance translator produced automatically
from line.xsd by the xml2owlGenerator. The line1.xml file was used as input
to the owlLinePrinter.

1. Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)
2. Prefix(owl:=<http://www.w3.org/2002/07/owl#>)
3. Prefix(xml:=<http://www.w3.org/XML/1998/namespace>)
4. Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)
5. Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)
6. Prefix(:=<http://example/line/line1.owl#>)
7. Prefix(ax:=<http://example/line/lineClasses.owl#>)
8. Ontology(<http://example/line/line1.owl>
9. Import(<file:lineClasses.owl>)

10.

11. //***
12. // 1 start ax:Line Line_1
13. Declaration(NamedIndividual(:Line_1))
14. ClassAssertion(ax:Line :Line_1)
15. ObjectPropertyAssertion(ax:hasLine_Point
16. :Line_1 :Point_1)
17.

18. //***
19. // 2 start ax:Point Point_1

24

20. Declaration(NamedIndividual(:Point_1))
21. ClassAssertion(ax:Point :Point_1)
22. DataPropertyAssertion(ax:hasPoint_X :Point_1
23. "0.000000"^^xsd:decimal)
24. DataPropertyAssertion(ax:hasPoint_Y :Point_1
25. "0.000000"^^xsd:decimal)
26. // 2 end ax:Point
27. //***
28.

29. ObjectPropertyAssertion(ax:hasLine_Vector
30. :Line_1 :Vector_1)
31.

32. //***
33. // 2 start ax:Vector Vector_1
34. Declaration(NamedIndividual(:Vector_1))
35. ClassAssertion(ax:Vector :Vector_1)
36. DataPropertyAssertion(ax:hasVector_X :Vector_1
37. "0.000000"^^xsd:decimal)
38. DataPropertyAssertion(ax:hasVector_Y :Vector_1
39. "1.000000"^^xsd:decimal)
40. // 2 end ax:Vector
41. //***
42. // 1 end ax:Line
43. //***
44.)

Figure 7: OWL instance file line1.owl conforming to lineClasses.owl

The first five lines of line1.owl are the same boilerplate used for lineClasses.owl.
As indicated by the eighth line of the file, the instances constitute an

ontology.
As seen in the file, Line 1 is not defined using a hierarchy. Rather, the def

inition is given by a set of Declarations of NamedIndividuals, ClassAssertions,
ObjectPropertyAssertions, and DataPropertyAssertions, all of which
occur at the top level of the file. The owlLinePrinter, however, has used
comments to divide subsets of the statements hierarchically into groups and
used integers to indicate the hierarchical level of each group. This hierarchy
matches the hierarchy of the Line root element of line1.xml.

Notice that the ax prefix is used in front of all the class and property
names occurring in the OWL class file, but no prefix is used for the items

25

introduced in the instance file. The OWL spec provides that if one ontology
imports one or more other ontologys (as on the ninth line of line1.owl), a
prefix must be assigned to all but one of the ontologys (as on the sixth and
seventh lines). The sixth line explicitly assigns the empty prefix to the items
introduced in the instance file. We decided that instance files should use
the empty prefix. Hence, every class file must have a prefix that is not the
empty prefix.

The values of the Name elements in the XML instance files are used as
the names of the objects in the OWL instance file.

If more than one NamedIndividual is created of any given instantiable
class, under OWL’s open world assumption, unless a statement is made
to the contrary, the individuals may be the same individual with two dif
ferent names. Since, as in XML instance files (where it is implicit), the
intent is that all NamedIndividuals be distinct, if there are two or more
individuals in an instantiable class, at the end of the OWL instance file a
DifferentIndividuals statement that lists all the individuals is made for
the class. The sample file above has only one individual in each instantiable
class, so it contains no such statement. Since all the instantiable classes
or their ancestors are explicitly made disjoint in either a disjointClasses
statement or a disjointUnion statement, NamedIndividuals of different
classes cannot be the same individual.

3.5	 OWL problems obviated by using the translation
tools

A number of features of OWL [10, 11] and Protégé [16], a tool available for
building OWL ontologys, make it impractical to build OWL models and
instance files directly. The primary reason for this is that user errors in
spelling the names of NamedIndividuals, properties, and classes are not
recognized as errors.

OWL’s open world assumption allows that anything might be true that
is not explicitly ruled out (1) by OWL statements directly, or (2) by rea
soning from statements that have been made. The Open World assumption
is appropriate in some contexts, however the kitting domain may be readily
handled under a closed world assumption. Using an open world assumption
introduces difficulty without providing any advantages.

Also, if the name of a class, property, or individual is used without being

26

explicitly declared as such in the file (as happens when a name is misspelled),
that class, property, or individual is implicitly declared. Protégé does pro
vide some help with spelling by having an auto complete window to use when
expressions are being constructed. A misspelled term will appear as one of
the choices while the user types, if the first few letters are correct.

Another problem is that, while constructing an OWL file, it is easy to
omit OWL statements one intends to make. Omitting any one statement or
any set of statements after the header in either lineClasses.owl or line1.owl
will not be an OWL error and will not cause Protégé to flag any error or give
any warning. The same would be true of many other OWL files.

Finally, Protégé does not check completely whether an OWL file conforms
to the OWL spec. For example, if an OWL instance file imports an OWL
class file and the prefix declared for both files is the empty prefix, no error
will be signaled, even though the OWL spec says explicitly that this is not
allowed.

Some of these issues can be detected, and research aimed at developing
better OWL consistency checkers is ongoing [18, 23]. One utility, Pellet,
offers some support for advanced reasoning and debugging [21]. In our tests,
the Pellet command line linter was able to detect spelling errors within OWL,
but Pellet was unable to detect a missing statement. Further, Pellet seems to
support OWL XML syntax, but was unable to parse functional style syntax.
Limitations still remain.

The use of an undefined type in an XML schema file is an error, and
readily available XML tools will detect and flag it. Similarly, a missing
element in an instance file will be detected and flagged. If an IDREF is
made to an ID that has not been used, that will be detected and flagged.
If a portion of an XML schema file is omitted, in many cases, that will be
detected when the file is read, and in most cases an error will be signaled if
an instance file is read that conforms to the complete intended schema file.
Thus, almost all spelling errors that will pass in OWL will fail in XML, and
most errors of omission that will pass in OWL will fail in XML.

The translation tools do not make spelling errors or errors of omission.
Hence, by using them on tested XML schemas and instance files, correct
OWL files may be produced. In addition, it is easier to work with XML files
since (1) they are structured while OWL files are not, and (2) XML files are
about half as long as the equivalent OWL files.

27

4 Software Details

As mentioned previously, the source code for the four hand-written XML
to OWL tools (all of which take an XML schema file as input) is primar
ily in C++. All of them use xmlSchemaClasses.cc (classes for representing
XSDL structures), xmlSchema.y (the YACC parser for schema files), and
xmlSchema.lex (the lexer used by the YACC parser). In order to deal with
XSDL pattern constraints, the xmlSchemaParser and the xmlInstanceParser-
Generator also use a second YACC-Lex parser built from pattern.y and pat-
tern.lex. Each of the four tools has a C++ file dedicated to its particular job
in addition to the other files. The largest of those is xmlInstanceParserGen
erator.cc at over 11,000 lines.

The source code for three of the four tools defines a generator class con
taining all the functions needed for the tool as well as a set of variables for
data about the XML schema being processed. The xmlSchemaParser does
not need a generator class since it does not process included files and is
not generating anything new. The YACC parser in the xmlSchemaParser
builds a model of the input schema. The rest of the xmlSchemaParser just
needs to print out the model. In the xmlSchemaOwlClassGenerator and the
xmlInstanceParserGenerator, if include commands are used in the schema,
so that more than one schema file is to be processed, a separate instance of
the generator class is created for each included file. In those tools there
is one or more additional output files for each additional input file. The
xml2owlGenerator outputs the same number of files regardless of the num
ber of included schema files, so it requires only one instance of its generator
class.

The source code for the automatically generated domain instance XML
parsers and domain instance XML to OWL translators was partially de
scribed in Subsections 2.2 and 2.5 of Section 2. To help with writing XML
instance data, these tools also link in an object file compiled from the hand
written domain-independent xmlSchemaInstance.cc file. The OWL instance
file writer needs help from that file because primitive OWL data is XML data.
The domain instance XML to OWL translators also link in the object file
compiled from the hand-written domain-independent owlInstancePrinter.cc
file, which contains a set of functions that know how to print specific types
of OWL constructs.

28

http:owlInstancePrinter.cc
http:xmlSchemaInstance.cc
http:erator.cc
http:xmlSchemaClasses.cc

5 Conclusions and Future Work

This paper has described a suite of domain-independent software tools that
enable the completely automatic generation of OWL model files and instance
files from XSDL model files and XML instance files. To create OWL model
files and OWL instance files, the user needs only to create XSDL model files
and XML instance files. The tools do the rest.

We are using these tools in connection with our work in robotic kitting.
The tools should be useful in other projects using OWL if the domain of the
project is controllable and XSDL is adequately expressive to build a model.

The software tools presented differ from existing utilities. By incorpo
rating both the XML schema and instance files, we are able to produce
OWL instances conforming strictly to the corresponding XML schema. In
put schema files can be complex and may include other schema files. The
produced OWL instances do not require human refactoring or manipulation.
Finally, the Domain Instance XML to OWL Translators, which are the only
tools needing to be run more than once for a given model, scale in linear time
with the number of lines in an instance file.

Future work on the XML to OWL tools might be directed towards (1)
expanding the range of XSDL syntax that the three generators can handle,
and (2) making the generators run in O(N log N) time rather than O(N2)
time. The first target for expanding the range of syntax is handling attributes
as well as elements. The speed might be improved as indicated by using more
efficient search mechanisms with lists of pointers to classes.

6 Acknowledgements

The work reported in this article was funded in part by grant number 70NANB12H143
from the National Institute of Standards and Technology to the Catholic Uni
versity of America.

References

[1] Khalid M Albarrak and Edgar H Sibley.	 A Survey of Methods that

Transform Data Models into Ontology Models. In Information Reuse

and Integration (IRI), 2011 IEEE International Conference on, pages

58–65. IEEE, 2011.

29

[2] Raphael	 Barbau, Sylvere Krima, Sudarsan Rachuri, Anantha
Narayanan, Xenia Fiorentini, and Ram Sriram. Ontostep: Enriching
product model data using ontologies. Computer-Aided Design, 44:575–
590, 2012.

[3] Ivan Bedini, Georges Gardarin, and Benjamin Nguyen.	 Deriving On
tologies from XML Schema. arXiv preprint arXiv:1001.4901, 2010.

[4] Hannes Bohring and Sören Auer. Mapping XML to OWL Ontologies.
Leipziger Informatik-Tage, 72:147–156, 2005.

[5] Doug Brown, John Levine, and Tony Mason. lex & yacc. O’Reilly Media,
October 1992.

[6] World Wide Web Consortium.	 XML Schema Part 0: Primer Second
Edition — W3C Recommendation 28 October 2004. http://www.w3.
org/TR/xmlschema-0/, 2004.

[7] World Wide Web Consortium. XML Schema Part 1: Structures Second
Edition — W3C Recommendation 28 October 2004. http://www.w3.
org/TR/xmlschema-1/, 2004.

[8] World Wide Web Consortium. XML Schema Part 2: Datatypes Second
Edition — W3C Recommendation 28 October 2004. http://www.w3.
org/TR/xmlschema-2/, 2004.

[9] World Wide Web Consortium. Extensible Markup Language (XML) 1.0
(Fifth Edition) — W3C Recommendation 26 November 2008. http:
//www.w3.org/TR/REC-xml/, 2008.

[10] World Wide Web Consortium. OWL 2 Web Ontology Language Primer
(Second Edition) — W3C Recommendation 11 December 2012. http:
//www.w3.org/TR/owl2-primer/, 2012.

[11] World Wide Web Consortium. OWL 2 Web Ontology Language Struc
tural Specification and Functional–Style Syntax (Second Edition) —
W3C Recommendation 11 December 2012. http://www.w3.org/TR/
owl2-syntax/, 2012.

[12] Microsoft Corporation. Microsoft Visual C++ 2010 Express. 2010.

30

http://www.w3.org/TR
www.w3.org/TR/owl2-primer
www.w3.org/TR/REC-xml
http:http://www.w3
http:http://www.w3
http:http://www.w3

[13] Charles Donnelly and Richard Stallman. Bison, The YACC-compatible
Parser Generator. http://dinosaur.compilertools.net/bison/,
2006.

[14] Roberto Garćıa. A Semantic Web Approach to Digital Rights Manage
ment. Doctorate in Computer Science and Digital Communication. De
partment of Technologies. Universitat Pompeu Fabra, Barcelona, 2006.

[15] Raji Ghawi.	 Ontology-based Cooperation of Information Systems. PhD
thesis, University of Borgogne, March 2010.

[16] Matthew Horridge.	 A Practical Guide To Building OWL Ontologies
Using Protégé 4 and CO-ODE Tools. The University Of Manchester,
1.2 edition, 13 March 2011.

[17] ISO. 10303-11: 2004: Industrial automation systems and integration
— Product data representation and exchange — Part 11 : Description
method: The EXPRESS language reference manual. 2003.

[18] Boris Motik, Ian Horrocks, and Ulrike Sattler.	 Adding Integrity Con
straints to OWL. In OWLED, volume 258, 2007.

[19] Vern Paxson, W L Estes, and John Millaway.	 Flex, Version 2.5.31 — A
Fast Scanner Generator. http://www.gnu.org/software/flex/, 2003.

[20] Toni Rodrigues,	 Pedro Rosa, and Jorge Cardoso. Mapping XML to
Existing OWL Ontologies. In International Conference WWW/Internet,
pages 72–77. Citeseer, 2006.

[21] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz. Pellet: A Practical OWL-DL Reasoner. Web Seman
tics: science, services and agents on the World Wide Web, 5(2):51–53,
2007.

[22] Bjarne Stroustrup. C++ Programming Language. Addison-Wesley, spe
cial edition, 2000.

[23] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L McGuinness.	 Integrity
Constraints in OWL. In AAAI, 2010.

31

http://www.gnu.org/software/flex
http://dinosaur.compilertools.net/bison

[24] Pham Thi Thu Thuy, Young-Koo Lee, and SungYoung Lee.	 Dtd2owl:
Automatic Transforming XML Documents into OWL Ontology. In Pro
ceedings of the 2nd International Conference on Interaction Sciences:
Information Technology, Culture and Human, pages 125–131. ACM,
2009.

[25] Chrisa Tsinaraki and Stavros Christodoulakis. Xs2owl: A Formal Model
and a System for enabling XML Schema Applications to interoperate
with OWL-DL Domain Knowledge and Semantic Web Tools. In Digital
Libraries: Research and Development, pages 124–136. Springer, 2007.

[26] Priscilla Walmsley. Definitive XML Schema. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001.

[27] Nora Yahia, Sahar A Mokhtar, and Abdel Wahab Ahmed.	 Automatic
Generation of OWL Ontology from XML Data Source. International
Journal of Computer Science Issues, 9(2):77–83, 2012.

[28] Mustafa Yüksel. A Semantic Interoperability Framework for Reinforcing
Post Market Safety Studies. PhD thesis, Middle East Technical Univer
sity, 2013.

32

		Superintendent of Documents
	2022-04-06T16:19:44-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

