
A111D3 3Tfibfia

^^^^^
United States Department of Commerce
National Institute of Standards and Technology

NIST

PUBLICATIONS

NIST Special Publication 785

Proceedings of CIMCON '90

Albert Jones, Editor

-QC—
i 100

.U57

#785

1990

C.2

NATIONAL INSTITUTE OF STANDARDS &
TECHNOLOGY

Research Information Center
Gaithersburg, MD 20899

DATE DUE

1

Demco. Inc. 38-293

NIST Special Publication 785

Proceedings of CIMCON '90

Albert Jones, Editor

Center for Manufacturing Engineering

National Institute of Standards and Technology

Gaithersburg, MD 20899

May 1990

U.S. Department of Commeice
Robert A. Mosbacher, Secretary

National Institute of Standards and Technology

John W. Lyons, Director

National Institute of Standards U.S. Government Printing Office

and Technology Washington: 1990

Special Publication 785

Natl. Inst. Stand. Technol.

Spec. Publ. 785

533 pages (May 1990)

CODEN: NSPUE2

For sale by the Superintendent

of Documents
U.S. Government Printing Office

Washington, DC 20402

Table of Contents

Toward a Global Architecture for Computer Integrated Manufacturing
A. Jones and E. Barkmeyer, NIST 1

A Scaleable Architecture for CIM Shop Floor Control
S. Joshi and R. Wysk, Penn State University, A. Jones, NIST 21

CAM- I CIM Reference Model
R. Boykin III, CAM- 1 35

A Reference Model for Computer Integrated Manufacturing From the View
Point of Industrial Automation

C. Van Haren, James River Corp. and T. Williams, Purdue University 42

An Approach to Implementing CIM in Small and Medium Size Companies
R. Young, North Carolina State University and J. Vesterager,
The Technical University of Denmark 63

Highly Extendable CIM Systems Based on an Integrated Platform
R. Weston, A. Hodgson, I. Coutts, I. Murgatroyd, and
J. Gascoigne, Loughborough University of Technology 80

Server Networks: A CIM Architecture Design Environment
L. Zeidner, Boston University 95

RIA: Reference Model for Industrial Automation
M. Bohms and F. Tolman, TNO 114

Manufacturing System Design Methodology: Execute the Specification
R. Judd, R. Vanderbok, M. Brown, and J. Sauter,
Industrial Technology Institute 133

An Integrated CIM Architecture: A Proposal
D. Chen, B. Vallespir and G. Doumeingts, GRAI Laboratory,
University of Bordeaux 153

Towards a Distributed Control Architecture for CIM
M. Johnson and J. Kirkley III, Digital Equipment Corporation 166

CIM-OSA - A Vendor Independent CIM Architecture
R. Panse, IBM Germany 177

CIM-OSA - An Illustrative Example of How to Apply the Modelling
Framework

D. Beeckman, Gap Gemini Sesa 197

Progress Towards Standards for CIM Architectural Frameworks
D. Shorter, SD-Scicon pic 216

Design to Product and Esprit 384 - Two Roads to Open CIM
P. Fehrenbach and S. Sanoff, GEC-Marconi Research Centre 232

i i i

The Development of a CIM Architecture for the RAMP Program
E. Litt, Battelle Memorial Institute 251

Implementation of the RAMP Architecture at an Established Site
D. Jung, Battelle Memorial Institute 266

An Approach to Develop and Maintain Data Quality
K. Hankins, Watervllet Arsenal 287

Organizing for Integrated Manufacturing
J. Ettlie, University of Michigan 300

The Reconciliation of MIS and Manufacturing for Integrated
Manufacturing

B. Fossum, Factorial Systems, Inc. and J. Ettlie, Univ of Michigan.... 306

Toward a New CIM Architecture for Sandia Laboratories
J. Yoder, Sandia National Laboratory 326

Distributed Knowledge Based Systems for Computer Integrated Manufacturing
S. Ram and D. Carlson, University of Arizona, A. Jones, NIST 334

Uniform Dataflow Software System for Global CIM Applications
H. Sparks, MTS Systems Corporation 353

Integrated Information Modeling for CIM
G. Spur, K. Mertins, and W. Sussenguth, Fraunhofer Institut Berlin.... 373

A Systems Theoretic View of Computer Integrated Manufacturing
F. Biemans and C. Vissers, North American Philips Corporation 390

Structured Development of a Generic Workstation Controller
R. Wendorf and F. Biemans, North American Philips Corporation 411

Architecture of a Facility Level CIM System
G. Harhalakis, M. Ssemakula, and A. Johri, University of Maryland 430

A Cooperative Shop Floor Control Model for Computer- Integrated
Manufacturing

J. Ting, University of Michigan 446

The Importance of Decompositions in CIM Control Architectures
W. Davis and D. Thompson, University of Illinois, L. White,
Case Western University 466

Developing a CIM Architecture for Educational, Research, and Technology
Transfer Activities

R. Woolsey, B. Dallman, R. Kapperman, W. Foraker, S. Lesko, R. Vicroy,

and L. Heath, Indiana State University 487

CIM Architecture: One Perspective
A. Anderson, T. Jenne, and K. Mikkilineni, Honeywell 506

LIST OF AUTHORS 525

i V

TOtfARD A GIJOSAL ARCHITECTURE FOR GOKFDTER INTEGRATED
MANOFACTDRING

ALBERT JONES AND EDWARD BARKMEYER

ABSTRACT. This paper discusses several issues related to the design and
implementation of a global architecture for Computer Integrated
Manufacturing systems. It describes separate architectures for production
management , information management , and data communications

.

1. Introduction

Many companies are trying to integrate their manufacturing equipment with
computer-based decision- support systems, control systems, information
management systems, and communication networks. A popular name for this
process is Computer Integrated Manufacturing (CIM) . Our view is that the
basis for achieving this integration lies in the design and implementation
of a global architecture for CIM.

We believe that such a global architecture must integrate separate
architectures for business, production, information, and communications
management [BAR89, JON89] . This paper discusses issues related to the

design, implementation, and integration of the last three.

2. Production management

Production management functions, as we use the term, can be divided into
three groups: manufacturing data preparation (MDP) , production planning,
inventory control, and shop floor control (SFC) . We discuss MDP and SFC.

2.1 Manufacturing data preparation

Manufacturing Data Preparation (MDP) includes those activities which
generate and update the data needed to drive the remaining production
management functions. MDP functions include design engineering, process
planning, NC programming, robot programming, and inspection programming.
Table 1 shows the way these functions are carried out today and, we believe,
the way they will be carried out tomorrow.

Table 1. Evolution of MDP functions

MDP TODAY MDP TOMORROW

HUMAN BEINGS

COMPUTER ASSISTED

OFF-LINE

NO INTERACTION

COMPUTERS

HUMAN ASSISTED

ON-LINE

INTEGRATED SYSTEM

1

Currently, as indicated in the table, MDP consists of many hiiman-

intensive, computer-assisted, activities. These activities are typically
carried out far in advance of when their output is actually needed.
Moreover, there is little or no exchange of ideas or information (before or
after the fact) among the design engineers, process planners, and
manufacturing engineers who perform those functions.

The trend toward "Just- in-Time" manufacturing and "Concurrent"
engineering" is providing the impetus to change all of this. There is a big
push to automate and integrate MDP functions as much as possible with
computers doing most of the work and humans beings reviewing the decisions.
In addition, there is an attempt to begin the execution of these functions
closer to the time the part actually goes on the floor. This gives the
decision-makers more accurate information about the state of the
manufacturing equipment that they may wish to use. This, of course, can
dramatically decrease the probability of selecting a piece of equipment
which is either over-capacitated or broken. This can reduce shop floor
congestion and improves plant performance.

The heterarchical structure described in [HAT85, DUF86] provides the
basis for an MDP architecture. In such a heterarchy, there are no
supervisors, hence no direct control. All entities are treated as co-
operating equals in a negotiation process to carry out a complex task. In
MDP, that task is to generate all the manufacturing data for each part. All
decisions - best design, alternative process plans, etc. - are reached
through mutual agreement and information is exchanged freely among the
participants. This exchange of information takes place through the global
database. It includes a standard description and definition of the part to

be made as input, computer-based methods for executing the various
functions, and standard data exchange formats.

The input to MDP consist of a complete part description, a portion of
which is used by all of the functions. An international effort has been
underway for several years to develop a standard product description. It is

called PDES/STEP [SMI88] . Version 1 has already been submitted to the

international standards community for comments. Second, commercial products
are available which perform all of the internal functions. Some are fully
automated, but most are not. Finally, there is the problem of data exchange
formats. At this time, for example, it is not possible to take the output
from an arbitrary design package and use it as input to an arbitrary process
planning package. More work is needed to define both the contents and
formats for these data structures.

2.2 Shop floor control

Almost all of the proposed shop floor control architectures are multi-

level hierarchies. Each module in this structure has one supervisor, but

may have many subordinates. The design of these hierarchies is usually
based on three guidelines [ALB81]

o Levels are introduced to reduce complexity and limit
responsibility and authority,

2

o Each level has a distinct planning horizon which decreases
as you go dovm the hierarchy

o Control resides at the lowest possible level.

It Is Important to note that, In practice, the decomposition Into levels
corresponds to the specific arrangement of equipment on the shop floor. In
addition, planning horizons are assigned somewhat arbitrarily.
Consequently, major differences exist In the number of levels and functions
assigned to each level from one implementation to another. At the moment,
there are no quantitative methods available to compare different designs or
to determine the "best" design for a particular application.

2.2.1 System decomposition

We propose to decompose the system in a somewhat different manner - based
on the frequency of interaction and coordination required among the various
decision-makers. In this case, the decision-makers are the control modules
and the decisions they make are planning and scheduling. That is, given the
Information provided by MDP, they determine exactly how and when to execute
their assigned task. Consequently, we propose [JON90] to mathematically
formulate and decompose the planning and scheduling problems, thereby
forming a decomposition of their respective decision spaces. It is this
"spatial decomposition," that determines the number of levels in the shop
floor hierarchy. It will depend on the physical arrangement of the
equipment on the shop floor, the amount of coordination and Interaction
required to manufacture the company's products, and the sophistication of
the computer hardware in the facility.

ADAPTATION

RECULATION

ADAPTATION

ornvozATJON

REGU1>T10N

ADAPTATION

OPTIMIZATION

RECULATION

ADAPTATION

OPTIMIZATION

RECfLATlON

Figure 1. Hierarchical shop floor control system.

3

We next estimate the frequencies at which the planning and scheduling
problems in different levels must be solved and the corresponding
information sets updated. We note that, for most implementations, this
automatically produces a "temporal decomposition" of the same system. This
happens because the frequency with which the planning and scheduling
problems are solved in the highest level may be dramatically different from
the frequency with which they are solved in the lowest level. We stress
that these frequencies should be determined not merely assigned. Villa
[VIL86] and Yamamoto [YAM85] have discussed some of the stability issues
associated with the selection of these frequencies.

As shown in figure 1, each module in this hierarchical structure
performs three major control functions: adaptation, optimization, and
regulation. These functions generalize those developed in [ALB81, SAR85,
and JON85]

.

2.2.2 The adaptation function

The adaptation function (the adapter) generates a run-time production
plan which will enable each job to be completed within the specified time
limits. It is also responsible for changing an existing plan when conditions
make it no longer feasible (see fig. 2). This run-time production plan
will be one of the alternatives contained in the process plan generated by
MDP. It will contain 1) the list of tasks assigned to each subordinate, 2)

precedence relations among those tasks, and 3) proposed durations for each
task.

,

SUPERVISOR

JOBS.UM7T
TIMES A
ATnuBin^s

UPDATEDUMTT
TIMES. MAJOR
BUIORS THAT CANNOT
BER£S(XVED

GENERATE OPTIMAL RUN TIME PLANS

FOR NEW JOBS

REVISE EXISTINC RUN-TIME PLANS

WHEN PROBLEMS OCCUR

CANDIDATE PLANS
APfUORmES

EV'ALUATIONOF
PRODUCTION PLANS

Figure 2. The adaptation function.

4

For a new job, this involves several steps. First, the adapter retrieves
the process plan previously generated by MDP. The process plan contains all
the possible alternatives for making this part. The adapter will select
feasible ones, based on the current state of the system. This set of
feasible alternatives is passed to the Optimizer where they are ranked by
one or more performance criteria. The adapter will use these rankings to

select the run-time plan. It then requests the optimizer to schedule the

part using the selected run- time plan. It will calculate the start and
finish times for the job based on that plan and passes them up as feedback
to the supervisor. If additional resources are needed, these will be
passed up as well. The run- time plan is put into the database for later use
by the adaptation function of subordinates.

The feedback information from the Optimization function is used to
determine the viability of the current production plan. Whenever shop floor
conditions evolve to the point that supervisory constraints cannot be met
with the current production plan, a new one must be created. The adapter
must now specify a new set of a candidate production plans to meet these
constraints. This, of course, may not be possible. Uhen this happens, it

will be necessary to negotiate a new set of limit times with the supervisor.

2.2.3 The optimization function

The optimization function (the optimizer) performs three major activities
(see fig. 3).- It evaluates proposed production plans from the adaptation
function. It generates a list of tasks and corresponding start/finish times
for subordinates - a schedule. Finally, it resolves, if possible, any
conflicts and problems with the current schedule identified by the
regulation function.

ADAFTATION

CANDtDATI riANS EVALUATION OF
ntODUCTX)N PLANS

EVALUATE CANDIDATC PRC»UCnON
PLANS FROM PLANNLNG FUNCTION

CENERATC UST OF TASKS AND
SCHEDULES FOR SUBORDINATES

UPDATE SCHEDULES BASED ON
FEEDBACK FROM RECLIATION

TASKS. UMIT

ATnUBUTES

MAJOK ERRORS
THATCAVNOTBE
RESOLVED

REGULATION

Figure 3. The optimization function.

5

As discussed above, the optimizer evaluates alternative production plans
for each Job. This analysis Is performed to determine the Impact that each
plan would have on the rest of the workload (I.e., the active schedule if it
were selected) . This impact can be analyzed in terms of one or more
performance measures passed down by the adapter. They can include tardiness
of current jobs, utilization of subordinates, load on the system, and
throughput, among others. The optimizer will prioritize these alternatives
and pass the results back to the adapter which will make the final
determination

.

Sometime after the adapter selects the production plan to be used by
subordinates in completing the job, the optimizer schedules all of tasks in
that plan. The performance measures used in the scheduling analysis must be
consistent with those used in generating the plan. A scheduling rule is

found which optimizes those performance measures. The resulting schedule is

then used by the adapters of each subordinate in generating their run- time
plans. These times are also passed up to adapter so that it can update its
own estimates of job completion.

The d3mamic evolution of subordinate systems can cause delays which make
the active schedule infeasible. The regulator detects such a situation and
invokes the optimizer to resolve any conflict as quickly as possible. A two
step process is envisioned. First, the impact of the delay must be
determined using a technique such as perturbation analysis [SUR84] or match-
up scheduling [SAL88] . The outcome of this analysis determines the
viability of the current objectives, scheduling rule and run-time plan.
They remain viable as long as there is enough slack in the original schedule
to absorb the ripple effect of the delay. The optimizer can change
objectives and scheduling rules, but it cannot change the current run-time
plan. In either case, a new schedule can easily be generated using the
method described in [DAV88] . Whenever rescheduling is insufficient, a new
run- time plan is required. The procedure described above is followed. A new
plan is selected, which eventually results in a new schedule.

2.2.4 The regulation function

The regulation function (the regulator) provides the Interface between a

module and its immediate subordinates (see fig. 4). It has three major
activities. It releases jobs to subordinates: monitors subordinate feedback
on those jobs; and guides subordinate error recovery. The job release
strategy depends on the capabilities of the subordinate. If the subordinate
can only manage one job at a time, which is the case with most controllers
today, then the regulator will release one job at a time. A new job is

released when the previous one is completed. If the subordinate can handle
several jobs concurrently, then the regulator will assign jobs on a need-to-
know basis. Feedback data from subordinates is used to determine if any
unexpected problems have arisen. The regulator has the authority to resolve
minor conflicts or error conditions provided the resolution does not violate
any of the limit times in the current schedule. When that happens, the

problem is passed up to the optimization function and, possibly, the

adaptation function for resolution.

6

OTTINaZATION

jOBS.UMrr
TIMES A
ATTIUBUTES

UPDATZDUMTT
TIMES. MAJOR
ERftORS THAT CANNOT
BE RESOLVED

RELEASE JOBS TO EQUIPMENT

MONTTOR EQUIPMENT FEEDBACK

SUPERVISE ERROR RECOVERY

lOBS.UMrT
TIMES A
ATTWBLTES

UPDATED LIMIT

TIMES. MAJOR
ERRORS THAT CAWOT
BE RESOLXXD

SUBORDINATE
ADAPTATION

Figure 4. The regulation function.

2.2.5 Impact on Process Flans

The output from MDP that is used most frequently by controllers in the
shop floor hierarchy are process plans. They contain the information needed
to manufacture, transport, and inspect parts. In the long run, controllers
at all levels will use process plans to determine how to plan, schedule and
execute assigned jobs. This requires several changes from existing process
plans. First, they must have a multi-level structure which parallels the
control hierarchy. Second, process plans at each level must provide
alternate processing sequences, with precedence relations, through
subordinates. In addition, algorithms are needed to perform backtracking so
that controllers can recover from problems. Third, plans at different
levels must have the same general structure (AND/OR graphs are one
possibility) . This simplifies the software development and allows for
standardization. Finally, since computers will be responsible for
processing it, this information must be provided in a consistent,
error-free, and machine -readable format.

2.2.6 Inq>leBentation issues

Implementation questions fall into two classes: structural and
functional. The structural questions are 1) How many levels? 2) With what
frequency should functions at each level be performed? and 3) When, if

ever, does the structure change? Jones and Saleh [JON90] have outlined
approaches to answering all of these questions. The functional question is

"What methodologies should be used to execute the three functions

-

adaptation, optimization, and regulation?" As for the first two, the

7

method described in [ERS86] combined with the framework described in [DAV88]
is most promising. It is attractive because it combines the best features
of mathematical programming, expert systems, and simulation. In addition,
it can be used to perform the adaptation and the optimization functions at
every level in the hierarchy.

3. Issues in data management

3.1 Overview

The main purpose of a data management system in a CIM environment is to
support functions in the production management architecture with timely
access to all essential data. It is essential to design and implement a

data management architecture which is separate from but integrated with the
production management architecture. It allows the two structures to be
developed independently, provided their interrelationships are well
understood. There are, however, many characteristics of a CIM environment
which make this approach difficult to implement. Su et. al. [SU86] have
discussed this at length, and we now present a brief discussion of these
characteristics

.

3.1.1 Heterogeneous system environment. The computers and production
equipment which make up these CIM systems will be purchased from a variety
of vendors over a long period of time. This implies that data is likely to

be physically distributed across a network of heterogeneous computers.
These local repositories will have a wide range of data access, storage,
management, and sharing capabilities. The CIM data management architecture
must make these differences transparent to users, i.e., users simply make
requests and receive data. In CIM systems, the users are production
management functions. In addition, users should not be concerned about the
effort required to satisfy their requests. To achieve these goals, the data
system must provide users with a common method of accessing information.
The data system must deal with the problem of translating requests in the
common form to operations on the underlying data repositories, wherever and
whatever they may be. This implies transmission and translation of
component operations to the appropriate database management systems,
assembly of information from multiple sources, and conversion of the

information to the form the user expects.

3.1.2 Real-Time Operations. A variety of data is used by computer systems
that control shop-floor equipment to make real-time decisions. If that data
is not present when it is needed, erroneous decisions or no decision may be

made, resulting in processing delays and reduced plant throughput. To

complicate matters, some of that data may be shared by several users with
different "real-time" access requirements. This implies that the data
system must enable asynchronous interchanges of information between
production processes which are effectively communicating with one another.

This in turn requires the replication of some information units on two or

more systems and the frequent and timely updates of those units.

3.1.3 Data delivery and job scheduling. Highly- automated systems are highly

dependent on electronic information. It is important to realize that data

delivery, like material delivery, takes time and must be included in the

8

planning of each job. Actual part production cannot start until all of the
required information is transferred to the computer responsible for
controlling the process performing that production. The notion that this
transfer is effectively instantaneous is becoming obsolete as the speeds of
automated systems themselves increase. This means that data is quickly
becoming a critical resource which must be scheduled. Poor "data
scheduling" will lead to delays, bottlenecks, and idle equipment.
Therefore, the scheduling decisions made by the data manager have a direct
impact on the scheduling decisions made by the production scheduler. This
implies the need for coordination between the data scheduling function in
the data management architecture and its counterpart in the production
management architecture. To the author's knowledge, this type of
integration does not happen in any existing CIM system.

3.2 What Constitutes an Architecture

To meet the requirements and constraints described above, a data
management architecture must address three major concerns: data modeling,
database design, and data administration.

3.2.1 Data Modeling. Developing a "conceptual model" of all the information
involved in the entire production management spectrum is critical to the
success of any integrated data management system for CIM. Because the
amount of information is so large, a "divide -and-conquer" approach to

performing the analysis must be taken. Experts on individual functions in
the production management architecture will perform the analysis and develop
a conceptual information model for each functional area. This results in
models for product data, process plans, CAD designs, knowledge bases, etc.

Then the resulting "component" models must be integrated into a single
"enterprise model." The enterprise model is the conceptual representation
of the global information base.

This integration must be based on the identification of common real-
world objects and concepts, rather than trying to identify the "common data"
elements. A "conceptual model," therefore, must represent the relationships
among information units as arising from the real -world objects to which they
apply. The organization of these information units, as stored in a given
data system, is of secondary importance. Several powerful modeling
techniques are available now which allow representation of the real-world
objects themselves, as well as the information units which describe and
distinguish them. Using such a technique, one can distinguish a concept
from its computer representation. This avoids problems with multiple
representations of the same concept or similar representations of somewhat
different concepts. This capability is vital to the development of an
integrated data model.

From this enterprise model, it is possible to extract subsets which
represent "views" of the global information base possessed by individual
production management processes. But the processes actually want to use
data, and they want that data organized in a specific way, which we call an
"external view." An external view is an interchange representation and is

one of the elements of the interface between data management functions and

the production management functions. Generating these views correctly is a

matter of considerable current research interest [MAR87]. They are extremely

9

important because they make the abstract objects disappear and the modeled
information tinlts acquire specific physical representations.

3.2.2 Database design

Having arrived at a global enterprise model, we have the problem of
mapping this model onto live databases. We must now choose systems,
organizations and representations for the information units in the model.
This process is called database design. It must result in databases which
are consistent with the model and tuned to the timing and access
requirements of the production management functions that use them. Because
of the evolutionary nature of CIM, it is not possible to start this process
from scratch. There are vendor- supplied databases and data systems, which
are difficult to alter or augment. There are also "legacies" - large
reservoirs of previously developed Information which already have an imposed
organization. Moreover, even when one has total freedom of design, the
design of databases to perform optimally under the multitude of views
possessed by different production functions is a black art. The only
solution which meets production management requirements and the legacy and
autonomy constraints is to divide up the data Itself into multiple databases
serving specific production functions well. Since much of that data must be
shared, two problems result:

a) partitioning - some production functions must simultaneously
access information stored in two or more databases, and /or

b) replication - some data must be stored simultaneously in
two or more different databases, and maintained consistently.

The available options for the placement of databases in the CIM computer
system complex, and for the selection of specific data management systems to

support them, are dictated to a large extent by the architecture of the
"global" data administration system.

3.2.3 Data Administration. The administration portion of the data
management architecture provides the data services controlling access to all
data:

- "query processing," which is concerned with the Interface
to user programs, the Interpretation of the data manipulation
language, and the validation of user transaction requests,

- "transaction management," which is concerned with the

identification of databases participating in a given
transaction, transaction scheduling and conflict resolution, and

- "data manipulation," execution of the operations on the databases.

There are three control architectures for data administration systems which
have been used with varying degrees of success in various business
applications: centralized data and control, distributed data and control,

and hybrid systems.

The totally centralized approach is the traditional design, the simplest.

10

and the most workable. Whether this is a feasible architecture for CIM in

the long-rxin is unresolved. There are currently available high-speed,
internally redundant, fault- tolerant, integrated centralized systems. But
even if such systems can keep pace with the growing demands and
time-constraints of automated production systems, the centralized
architecture is not workable from the point-of-view of subsystem autonomy.
Vendors of design and planning systems, for example, cannot assume that
every customer will have such a facility, and will therefore develop local
databases and data services to meet the needs of the products they provide.
Consequently, the nominally centralized architecture will in fact consist of
a collection of autonomous systems copying information to and from a single
centralized facility, according to some externally- specifled plan. At best,
if the external plan provides uniformly for concurrency control, security
and the like, what results is centralized data with distributed control.

The canonical architecture for the totally distributed approach (fig. 5)

consists of local data management systems which process locally originated
and locally satisfiable requests and negotiate with each other to process
all other requests. In this case, difficult problems of concurrency
control, distributed transaction sequencing and deadlock avoidance occur and
must be resolved by committee. While there has been considerable research
in these areas, satisfactory solutions have not been found. Moreover, the
d3mamic evolution of CIM leads to the problem of configuration changes in
the complex, which requires informing all existing participants and
modifying their distribution information.

The hybrid architecture depicted in figure 6 attempts to combine the best
features of both centralized and distributed architectures. Subsystem
autonomy and high throughput are achieved by allowing local data systems to
process locally originated operations on local data. Operations which
transcend the scope of a local system are sent to a centralized "global
query processor" for distribution to the appropriate sites. The global
query processor acts as a central arbiter for resolving the characteristic
problems of distributed transactions and for handling configuration changes
in the data administration system itself. There are a number of ways of
implementing such an architecture, but they are all characterized by
standardized interfaces between the local data systems and the global query
processor.

We note that many new commercial distributed data systems are of this
hybrid variety, but in general, they have not yet resolved the control
problems associated with distributed transaction management to the extent
necessary to provide robust support for CIM [TH088]. Unless the local system
is aware of potentially global consequences of local changes, and can
propagate those correctly, the integrity of the global information bases is

always in doubt.

3.3 Our Approach

It is our view that separating the query processing and transaction
management functions from the data manipulation functions, producing a

layered hybrid architecture, is essential for effective distributed data
management in CIM systems. Each module within the layered architecture now
manages a queue of database operations resulting from the decomposition of

11

Common Network

Figure 5. Distributed data systea with distributed control.

Figure 6. Distributed data systes vitfa hybrid architecture.

12

some complex query. Each query decomposition can be posed as an
optimization problem having both static and dynamic characteristics.
Techniques used to solve the static problem within a centralized system
[CHU86] work equally well here. But, not much is known about approaches to

solving the dynamic optimization aspect of query decomposition problems in a

distributed environment.

Once this decomposition has been comple*ted, the resulting operations must
be scheduled and sequenced. These scheduling problems and job scheduling
problems have similar characteristics. Scheduling these database operations
is complicated by the difficulty involved in 1) estimating the time required
to complete a given operation, 2) obtaining a "due date," and, 3)

coordinating the database operations across multiple layers which may be
involved in the completion of a single complex query. Little is known about
approaches to solving these problems.

These real-time decisions must be integrated into the data management
architecture. We have already discussed some of the problems in integrating
decision-making into a distributed computing architecture. Furthermore, as

noted above, these scheduling decisions must be integrated with the job
scheduling decisions that are made in the shop floor control architecture.
To the authors knowledge, no research is being done to address this critical
problem.

4. Issues in coimiiunications

The CIM communications system provides those functions needed to transmit
messages between computer programs executing production and data management
tasks. In planning an integrated CIM network, we believe that three ideas
are fundamental:

1) that the production management and data management programs
themselves use one common connection service specification for
communication with other programs, regardless of function or
location;

2) that the physical networks are transparently interconnected,
so that any program could conceivably communicate with any related
program anywhere in the CIM complex;

3) that the technology and topology of subnetworks are chosen
to provide optimal communications responsiveness for the primary
functions

.

In this section we describe a CIM communications architecture whose
design is based on these ideas. This architecture ensures that ANY
production management or data management architecture that is deemed to be

desirable can be conveniently constructed with the CIM network as-built.

4.1 Types of conimunicatlon

Communications can be divided into two classes: those WITHIN computer

systems, and those ACROSS computer systems. The first type is often

referred to as "interprocess communication" while the second is often

13

called "network conununlcation.

"

Interprocess communication is dependent on features of the operating
system. Many systems provide no such facility at all, or provide only for
communication between a "parent" process and "child" subprocesses which are
created by the parent. On such systems the coordination of multiple
production management and data management activities is extremely difficult.
On the other hand, properly implemented "network communication" software
provides for the case in which the selected correspondent process is

resident on the same computer system as the process originating the
connection. That is, the proper solution for the future is to make local
interprocess communication a special case handled by the network software.
This solution has the added advantage that all communications by a
production management or data management process, regardless of the location
of the correspondent process, have the SAME interface.

The accepted paradigm for network communication is the Open Systems
Interconnection Reference Model (OSI) which separates the concerns of
communication into seven layers [DAY83].

1. Physical layer deals with cables, connectors and signals,
and the protocols for controlling access to a shared medium.

2. DataLink layer deals with packaging the signals into
elementary messages (called frames), checking for errors in
transmission and (perhaps) recovering lost frames. It provides the control
and checking for the physical link.

3. Network layer deals with making logical end-to-end
connections out of one or more physical connections, i.e., finding
a path that gets a message from station A to station B.

4. Transport layer controls and checks the end-to-end
connections so that complete messages are delivered in logical
order and without losses

.

5. Session layer distinguishes separate processes or functions
communicating between the sane two stations, and implements rules
for message flow between those processes or functions.

6. Presentation layer converts between local data
representations and interchange data representations.

7. Application layer deals with establishing links between
processes providing network service to the actual applications software.

Traditionally, "network communication" has meant concentration on the lower

four layers and "exposure" of the Transport layer to production management
programs. The important aspect of this model is that it foxnnalizes and

separates the logical process-to-process link (in layers 5-7) from the

physical network service considerations (in layers 1-4). By exposing only

the Application layer service, which implements a common program-to-program
communications capability, to the production management and data management

programs, we insulate them from the networking concerns. (We note that even

14

local interprocess communication has elements of layers 1,2,5, and 7.)
Consequently, we believe that it is meaningful and proper to build an
Application layer interface which is common to ALL program-to-program
communications, both "local" and "networked."

4.2 CIN network architecture

A great deal of flexibility is created by implementing the OSI model. On
one hand, a single physical medium can multiplex many separate process-to-
process communications. On the other hand, a given process -to-process
connection can use several separate physical connections with relays between
them. This gives rise to the general CIM network architecture shown in
figure 7. Ideally, all stations on the network implement common OSI
protocol suites in the intermediate layers (3-5) and some globally common
protocols for moving data sets in layers 6 and 7. In addition, other
standard application layer protocols will be shared among systems performing
related functions. The choices of protocol suites in the Physical and
DataLink layers and the connectivity of individual stations will vary. They
will depend on the physical arrangement and capabilities of the individual
stations, and their functional assignments and performance requirements.
There may be one physical network, or many. All of these separate physical
networks, however, must be linked together by "bridges" that implement the
proper Network layer protocols. This results in a SINGLE LOGICAL NETWORK on
which any given production management or data management process can connect
to other process regardless of location. We note, that because this
architecture is layered, multiple subnetworks become transparent to our
interprocess communication paradigm.

The Manufacturing Automation Protocols (MAP) concept of one physical bus
connecting all factory-floor stations may be appropriate for some
manufacturing facilities. It is not, however, general enough to meet all
communications requirements of the CIM systems of tomorrow. However, the
"enterprise networking" concept [MAP88]

,
connecting MAP control networks

with Technical Office Protocols (TOP) engineering networks, demonstrates
that the generalized CIM network architecture is, in fact, currently
practical. We believe that this will lead customers to demand, and vendors
to produce, products consistent with that architecture.

It is likely that emerging physical networking technologies will, in
time, make the physical layer standards selected by MAP/TOP obsolete. This
will lead to the addition or substitution of subnetworks with new physical
and datalink protocols to current CIM networks. Nevertheless, the
transparent, multiple subnetwork architecture we advocate should result in

little or no impact on process -to-process communication and on CIM networks
already in place. At the same time, adherence to at least the layering, but
preferably also the intermediate layer protocol suites, in various types of

"gateway" machines, provides for the transparent interconnection of
subnetworks based on proprietary, or nonstandard protocol suites in the

lower layers.

4.3 Technology

There are now many standard protocol suites for the DataLink and Physical

layers, and there will soon be more. They all provide frame delivery and

15

integrity checking; some provide for reliability and recovery, others defer
those considerations to the transport layer. The real distinguishing
characteristics among these standards are the signalling technologies and
the sharing algorithms. Loosely speaking, the signalling technology
determines the raw transmission speed, the relative immimity to electronic
noise, and the cost. The sharing algorithm determines the nature of network
service seen by the station. There are generally three choices:

a) connection to one other station or one other station at a
time, with fixed dedicated bandwidth (point-to-point, time- and
frequency-division)

;

b) connection to multiple stations simultaneously, with
variable bandwidth with fixed lower and upper bounds depending
on the number of stations connected to the medium (token bus and ring)

;

c) connection to multiple stations simultaneously, with variable
bandwidth from zero to the bandwidth of the medium depending on
the traffic generated by all stations connected to the medium (CSMA/CD)

.

In general, engineering and administrative activities, which have infrequent
and variable communications requirements, can tolerate and use the type (c)

seirvices more effectively. The production control activities, which have
frequent and regular messaging requirements, however, prefer type (a) or (b)

services

.

There are also several "standard" protocol suites for the intermediate
layers as well. But in this area, the differences are historical rather
than functional. It is clear that the existing intermediate layer protocols
will be THE standard in the near future. In the upper layers, standards are
still evolving. Here the only problem will be to determine the suite of
protocols necessary to a given production management or data management
function.

4.4 Topology

Topology is that aspect of network design which concerns itself with the

connection of stations to subnetworks and the interconnection of the

subnetworks. Topology is at least as important as bandwidth and access
protocols in determining the effective performance of integrated networks.
Processes which need to communicate frequently should be directly connected,

or connected to a common bus/ring, if at all possible. Only two factors
should really motivate dividing a network into subnetworks:

(a) the feasibility or cost of connecting all of the

potential stations to the same physical network;

(b) the ability of the single network to carry the

total traffic load.

Several varieties of bus/ring networks have limitations on the total

number of stations which can be connected, or on the total cable length.

When this limit is reached, partitioning is unavoidable. In addition, the

performance of most bus and ring networks is inversely proportional to the

16

Legend:

Fj Filter/Repeater© Bridge (Physical Relay) Router (Internet Relay)

Gateway (Message Relay
^

' or Protocol Converter)

Legend:

0ZJ] Netwotl(ed Host
' (Attachnoent point for others)

S(Sub)Networ1(
Controller

Figure 7. Generalized CIM network.

NH

T

NH

XI
NO

Gateway to Other Sites Router (Internet Relay)

0 Networked Host FTTI {Sub)Networti

(Attachment point tor others) Controller

Figure 8. Ideal single site CIM network.

<£)

17

number of stations or volume of messages placed on the network. When the
performance of a subnetwork degrades the performance of the primary
production management or data management functions using It, It Is time to
partition that subnetwork or replace the networking technology. The former
Is usually adequate, easier and cheaper; and adherence to the OSI model
should make It Invisible to the communicating processes.

Ideally, the generalized CIM network architecture In figure 7 will be
implemented in the much more restricted form depicted In figure 8. There Is

a common "spine" or "backbone network" which connects to ALL subnetworks,
although some the of the subnetworks may be directly Interconnected. This
architecture guarantees that the maximum number of relays on any process -to-
process connection Is two. While this Is not always practicable. It Is, In
our view, always the desirable goal for the network architecture of a single
site.

6. Summary

In this paper, we have asserted that developing a system architecture is

one of the key ingredients for a successful CIM implementation. We have
argued that such an architecture has three Interrelated management
components: production, information, and communications. We have discussed
many of the problems Impeding the Integration of the functions within and
across these components

.

In production management, we examined the problems Involved in automating
and Integrating human decision-making Into a hierarchical, distributed,
computer architecture. In data management, we discussed the Impact of the

CIM environment on data modeling, database design, and data administration.
And, we argued for a hybrid architecture for administration of that data. In
the area of communications, we stressed three principles that should guide
the design of CIM communication systems. We used those principles In
proposing a generalized architecture for CIM communications which is

Independent of the production and data management architectures.

Our conclusion is that a great deal of work must be done in the areas of
system design, automated decision-making, and other manufacturing- related
technologies before the dream of computer integrated manufacturing becomes a

reality.

7. References

[ALB81] Albus, J., Barbera, A., and Nagel, N.
, 1981, "Theory and Practice

of Hierarchical Control," Proceedings of 23rd IEEE Computer Society
International Conference.

[BAR89] Barkmeyer, E. , 1989, "Some Interactions of Information and Control
in Integrated Automation Systems," Advanced Information Technologies
for Industrial Materials Flow, 39-57, Springer-Verlag, New York, NY.

[CHU86] Chu, W. , 1986, ed. , Distributed Systems, Vol. II: Distributed Data

Base Systems, Artech House Inc., Dedham, MA.

18

[DAY83 Day, J. and Zimmerman, H.
, 1983, "The OSI Reference Model,"

Proceedings of IEEE, Vol. 71, No. 12, 102-107.

[DAV88] Davis, W. and Jones, A., 1988, "A Real-time Production Scheduler for
a Stochastic Manufacturing Environment," International Journal of
Computer Integrated Manufacturing, Vol. 1, No. 2, 101-112.

[DUF86] Duffie, N. and Piper R.
, 1986, "Non-hierarchical Control of a

Flexible Manufacturing Cell," Proceedings of the International
Conference on Intelligent Manufacturing Systems, Budapest.

[ERS86] Erschler, J,, Roubellat, F. , and Thomas, V., 1986, "Real-Time
Production Scheduling for Parts with Limit Times," Technical Report
No. 86063, Laboratory for Analysis of Automated Systems, Toulouse,
France

.

[HAT85] Hatvany, J., 1985, "Intelligence and Cooperation in Heterarchical
Manufacturing Systems," Robotics and Computer Integrated
Manufacturing, 2(2), 101-104.

[JON85] Jones, A., and McLean, C, 1985, "A Production Control Model for
the AMRF ,

" Proceedings of the International ASME Conference on
Computers in Engineering.

[JON89] Jones, A. , Barkmeyer E. , and Davis, W.
, 1989, "Issues in the Design

and Implementation of a System Architecture for Computer Integrated
Manufacturing," International Journal of Computer Integrated
Manufacturing special issue on CIM architecture, 2(2), 65-76.

[JON90] Jones, A. and Saleh A., "A Multi-level/Multi- layer Architecture for
Intelligent Shop Floor Control," International Journal of Computer
Integrated Manufacturing special issue on Intelligent Control, (to

appear)

[MAP88] MAP and TOP Version 3.0 Specifications, 1988, Society of
Manufacturing Engineers, Detroit, MI, USA.

[MAR87] Mark, L.
, 1987, "The Binary Relationship Model - 10th Anniversary,"

University of Maryland Institute for Advanced Computer Studies,
Technical Report UNIMACS-TR-87-50

.

[SAL88] Saleh, A., 1988, "Real-time Control of a Flexible Manufacturing
Cell," Ph.D dissertation, Lehigh University, Bethlehem, PA.

[SAR85] Saridis, G. , 1985, "Foundations of the Theory of Intelligent
Controls," Proceedings of IEEE Workshop on Intelligent Control.

[SMI88] Smith, B. and Rinaudot, G. (eds.), 1988, Product Data Exchange
Specification, NISTIR 88-4004, NIST, Gaithersburg, MD.

[SU86] Su, S., 1986, "Modeling integrated manufacturing data with SAM*,"
Computer, Jan., pp. 34-49.

19

!

i

[SUR84] Suri, R. and Dille, J., 1984, "On-Line Optimization of Flexible I

Manufacturing Systems Using Perturbation Analysis," Proceedings of
the First ORSA/TIMS Special Interest Conference on flexible

I

nanufacturing, 15-17. '

[THOSE] Thomas, G. et. al. 1988, "Heterogeneous Distributed Data Systems for
i

Production Use," ACM Computing Surveys Special Issue on Distributed '

Data Systems, Association for Computing Machinery, New York, NY.

[VIL86] Villa, A. and Rossetta, S., 1986, "Towards a Hierarchical Structure
|

for Production Planning and Control in Flexible Manufacturing
Systems," Modeling and Design of Flexible Manufacturing Systems
(Elsevier Science, Amsterdam).

[YAM85] Yamamoto, M. and Nof, S., 1985, "Scheduling/Rescheduling in the
Manufacturing System Environment," International Joximal of
Production Research, 23 (4)

.

!

I

20

A SCALEABLE ARCHITECTURE FOR CIM SHOP FLOOR CONTROL
BY

DRS. S. JOSHI*, R. WYSK*
AND

A. JONES*

*The Pennsylvania State University

*National Institute for Standards and Technology

Abstract

This paper presents a generic architecture for the shop floor control of CIM systems. In the

paper a 3-level control hierarchy is presented. Task decomposition for each control level is

discussed along with a set of control grammars. The architecture is illustrated using an

existing CIM system at Penn State University. Examples and implementation issues are also

included.

1. Background

Computer Integrated Manufacturing (CIM) has existed, in concept, for several years. While

it is still generally believed that CIM can have a major positive impact on U.S. productivity,

it is far from commonplace in American factories. The high costs of software development,

maintenance, and integration are among the most prominent reasons for our slow evolution to

CIM. That is, while many computer packages have been developed to address specific

manufacturing tasks like scheduling or process planning, they fail to provide the "hooks"

needed for total Manufacturing System integration. This happens because these programs are

1) developed by different vendors, on different hardware platforms, 2) not meant to be

integrated with programs from other vendors, and 3) not part of a overall CIM architecture.

This paper addresses these topics as they relate to the generation of a shop floor control

system (SFCS) for CIM. The objectives of the paper are to show a generic flexible cost

effective, scaleable architecture to plan, schedule and control shop floor actions. This will

eventually lead to a reduction in the time required to convert a manufacturing system design

into an operational system.

By scaleable, we imply an architecture where the complexity of individual elements comprising

the controllers can be adjusted according to the size and function of the system, and retain the

flexibiUty of the system.

2. The Proposed System Architecture

In this paper a prototype hierarchical shop floor control system (SFCS) consisting of several

levels is described. The detail of the cell and workstation levels for CIM is also presented.

The equipment includes NC machining centers, robot systems, AGVs, or any other computer

controlled manufacturing equipment and related tooling resources. We will assume that the

cell controller periodically receives a list of jobs, with associated due dates from an emulated

Master Production Scheduler. For each job, a process plan will be retrieved either from a

21

database or as a file transfer. The SFCS will determine the sequence of activities necessary

to execute that process plan. This involves the selection of a specific process routing and
activities, scheduling of all activities at both the cell and equipment levels, coordinating those

activities across the equipment, monitoring activities, job tracking, and some error recovery.

To our knowledge, no system exists which distributes and integrates all of these functions

within and across levels of a control hierarchy.

2.1 Architecture

A "systems approach" to this problem is essential to achieve the level of integration that is

required for CIM. A primary component of any system theory is the definition of the state

of the system. For any complex system like manufacturing, the definition of the system state

could involve thousands of variables, some discrete, some continuous, many stochastic. As
the system evolves in time, those variables take on many different values. The goal is to

define a set of decision rules which govem the way in which that evolution takes place.

These rules can be generated "off-line" or "on-line", and are invoked to "control" how and

when the system changes.

Since the complete problem is too large and with complex interactions, a decomposition of

the problem is necessary to create a series of well defined solvable subproblems [1]. The
need for decomposition, creates the necessity of providing clear and well defined "hooks" to

integrate the various decomposed problems into an integrated whole. The ability to effectively

decompose and define the necessary "functional hooks" provides the scaleability in the

architecture.

A 3-level hierarchical decomposition of the SFCS is proposed, as shown in Figure 1. Each

controller performs 3 main functions - planning, scheduling and control, with typical

architectural characteristics for each level shown in Table 1.

Planning

Scheduling

Control
Cell

Planning

Scheduling

Control
Workstation

Planning

Scheduling

Control

Planning

Scheduling

Control

Planning

Scheduling

Control
Equipment

Figure 1. Proposed System Architecture.

22

Table 1. Typical Architectural Characteristics.

Egutpment Workstation Cell

EXAMPLES

Hardware

Lathe, Mill, T-IO
Bridgeport Series 1

IBM 7545 Robot

Robot tended

Machine Center,

Cartrac Material

Handling System

Variable Mission

System, Several

Integrated

Workstations

Pnnfml lAr

Hardware

Mark Century 2000,
Accuramatic 9000,

Custom-single-

board system

Allen-Bradley

PLC-4, IBM-PC/AT,
etc.

VAX 1 1/750,

SUN Workstation,

etc.

Type

Controller

Single-board

processors. Machine

tool controller,

Servo-Controller, etc

PLC, PC
Minicomputer

PC, Microcomputer
Super-

Minicomputer

Lanauaoe

Application

Assembler, Part

programming. Robot

programming, etc.

C, Lodder logic,

Pascal and other

sententual languages

C, LISP, FORTRAN
and other high

level languages

Memory/Size

Requirements

Bk - 128k RAM
plus custom ROM,

EPROM, etc.

256k - 1 Meg RAM
1 Meg - 60 Meg
Hard drive

512k - 4Meg RAM
10 Meg - 1 Gigabyte

Hard drive

RESPONSE
TIME

< IOexp(-3) sec < 1 sec < 20 sec

MACHINES/
INTERCONNECTS

1 - 1 connect 1 - many
1 - (1,81 Machine

tools

1 - (1,50) Material

handling

1 - many
1 - (1,151

Workstations

For the proposed SFCS, planning is the activity responsible for selecting/updating the process

plan to be used in executing assigned jobs and generating revised completion times for those

jobs. Cell level process plans contain routing summaries for each job. Each workstation plan

contains the operations to be done and the information necessary to generate part programs

or their equivalent At each level, scheduling is responsible for evaluating candidate process

plans and generating/updating expected start and finish times (the schedule) for the activities

in the selected plan. Control is responsible for interfacing with all subordinates and other

applications. It initiates start-up and shutdown, issues commands to perform assigned

activities, uses feedback to monitor the execution of those activities, and oversees error

recovery. We emphasize that these functions are executed at different fiiequencies within the

same level and across separate levels.

The equipment level corresponds to the physical devices such as Numerically ControUec' (NC)

machines, robots, measuring and inspection machines, material handling devices, programmable

fixtures, etc. The equipment is usually controlled by a device controller which determines

the various capabilities of the equipment. The equipment may perform a single or variety of

operations on a part

The workstation level as defined in the hierarchy, corresponds to several integrated pieces of

equipment. At the simplest level, a workstation could be a robot tending a single machining

center, along with the requisite fixtures, buffers, and sensors. A more complex workstation

could be a single robot tending several NC machines. As an example, a rotational workstation

could consist of a robot and several machines (NC turning centers, NC grinders, etc.)

23

I

performing various rotational operations. The definition of what constitutes a unit operations

determines the configuration, size and individual characteristics of a workstation. The notion

of a unit operations is vital to the definition of a workstation.

A cell is viewed as several integrated workstations, coupled by material transport workstations.

The primary activity of the cell is to provide organizational control of the workstations.

A key element of this architecture is the fact that each level controller performs the same

functions—planning, scheduling and control. Execution of commands by each controller occurs

from a top-down execution. Figure 2 shows the functional breakdown of the control

architecture for the various tasks associated with each function at each level. In case of

failure and error recovery, the information and requests flow in a "bottom-up" manner, both

with each controller and between the different levels as shown in Figure 3. Table 2 illustrates

the functions typically associated with each level.

Planning

Scheduling

Master Production Schedule (MPS) and Pertabatlon

(Requirements, Analysis. Capacity. Planning.

Bill of Material Processing. Workload Balancing)

Look AHEAD REAL-TIME Expert Sceduler

£. S. rule list based on

MPS Evaluation System

Deadlock detection

and avoidance

Simllatlon

Analysis

CELL

Control

REAL-TIME Controller

Planning

Control

Planning

Scheduling

Process Plan generation and retrieval

Communication processor

(Grammars and States)

Material Flow Planning

(Sequence Input to resource requirements output)

State table/Ladder logic Formulation

(Resource sequence generation, pathplannlng. etc.)

Ladder Logic Exectlon/Program Downloading

Detailed Process Planning

select tools

Refine Path Plans

6. M. T code specification

Operation Sequence Generation

Determine order/sequence of operation

WORKSTATION

EQUIPMENT

Control Affect Control of Equipment

Figure 2. Functional Breakdown of Control Architecture.

i

t

i

24

Table 2. Function Breakdown of Control Architecture.

Functlons^**^ Equipment Workstation Cell

Planning

Planning

Horizon

Tool selection,

parameter speci-

fication, tool path

rertnement, Gjn.T

code, tool asslgn-

mATtf to slots lob

setup planning

Mil Usees - Minutes

-Resource allocation

Jobs

-Batch splitting and

equipment load

balancing

llnutes - Hours/Days

Batching, Workload

balancing between

workstations.

Requirements

Planning

-Task allocation to

workstations

Hours - Days/Weeks

Scheduling

-Operation

sequencing at

Individual

equipment

-Sequence

equipment level

subsystems
-Deadlock detection

and avoidance

-Gantt chart or E. S.

based scheduling

-Buffer management

-Assignment of due

dates to Individual

workstations

-Look ahead ES/

simulation based

scheduling

-Optimization base(

tech

-Batch sequencing

Control

-Interface to

workstation

controller

-Physical control

(motion control at

NC and robot pick

and place level) -

-Execution of control

programs (APT,

AML, etc.)

-Monitor equipment

states and execute

part and Information

flow actions based

on states

-Syncromize actions

between equipment

(e.g. robot and

machine while

loading/unloading

parts)

-Ladder logic

execut ' ir,

Organizational

control of work-

stations. Inter-

face with MPS,

generation of

reports, etc.

Command
Execution

Input from higher

level controller

Planning

Scheduling

Control

Output to lower

level controller

Error Recovery

Figure 3. Command Execution and Error Recovery Flow.

25

2.1.1 Detail Architecture of Workstation Controller

The workstation controller (Figure 4) can be the most complex controller in the proposed

architecture. It receives commands firom the cell controller, and plans the activities of the

various equipment to successfully insure completion of activities in the desired time frame.

The expert scheduling system forms the- "brain" of the controller. It uses a simulation model
coupled with expert system logic to determine future course of action [2,3]. Thus the effects

of die decision can be previewed before execution. The simulation is based on actual shop

status maintained in the database, incorporates flexible process plans, and utilizes deadlock

detection, avoidance and recovery modules to determine "best" part movement strategy. This

enables dynamic routing/re-routing of parts in case of machine failure or other unforeseen

circumstances.

P]annjng_

Input

from

Cell
I

I

Planning

Algorithm

Output

from I

Cell

n r
Scheduling Control

Process

Plans

I

simulation

Expert

Scheduling

System

Deadlock

Detection and

Avoidance

ir

II

I I

next action^

Status

Database

Control

Logic

Error

Detection and

Recovery

-
I"

To

Equipment

From

Equipment

Figure 4. Detail of Workstation Controller.

The error recovery module, houses requisite error recovery algorithms/procedures and is

invoked when commands cannot be completed as requested. The error recovery module

determines the type of error, viable actions for recovery, interface with scheduler to determine

efficiency/performance of the recovery strategy, initiate actions to effect the requisite part and

information flow required to complete the recovery process.

The dynamic deadlock and detection avoidance and recovery provides algorithms and

procedures required to maintain the system in a deadlock free state where possible, and to

initiate recovery from an unavoidable situation [4].

It should be noted that many of the same lanctions and activities will be performed at both

the Workstation and Cell levels. The concept of unit operations is the discriminator between

these levels.

26

2.1.2 Process Plan Representation

Process plans play an important role in the definition of the control structure, as well as in

defining alternative sequences of operations that must be known by the planning and

scheduling modules. The need for alternatives manifests itself in two important ways

(i) it provides the dynamic schedules with various altematives available at any

instant

(ii) the process of creating control software to implement the scheduling actions

requires that altematives be known apriori, so that control software can provide

for the necessaiy links in the control architecture.

A process plan representation is required that is capable of representing all multi-level

interactions and possible precedence that occur among tiie planning and processing decisions.

An AND/OR precedence graph based representation is proposed as a compact representation

of the process plan [5]. The hierarchical nature of CIM control makes the graph

representation even more attractive. Figure 5 shows the use of hierarchical graphs to represent

different levels of process planning required. The cell level process plan indicates that the part

must visit four workstations, and two alternative sequences exist ({W1-W2-W3-W4}, {Wl-
W3-W2-W4)) based on the precedence requirements. Within each workstation there may be

alternate routes through machines, and this is represented by the expanded graph of the cell

level node. In the example, if the part is processed at workstation, Wl, then the two
alternative machine sequences that exist are ({M1-M2-M3), {M1-M2-M4}). The individual

machine nodes at the workstation level can be further expanded to represent the alternate tools

and tool sequences. In the example, the part can be processed at machine Ml using the two

tool altematives ({T1-T2), {T3)).

The process plan disaggregation parallels the decomposition in the control architecture. This

ensures that the altematives are provided for decision making at every level.

3. Functional Activities

3.1 Planning

This function determines the best among several candidates that appear in the process plan.

The selection is based upon an analysis to predict the impact that each candidate will have

on capacity, potential bottienecks, and other system performance measures. Littie has been

done in this area. We expect to use the same approach for carrying out this analysis that we
are proposing for the scheduling function.

27

Node Wl
Expanded

Node Ml

Cell Level

Plan

Workstation

Level

Equipment

Expanded Level

Figure 5. Hierarchical Decomposition of Process Plans.

3.2 Scheduling

Current approaches to scheduling are inadequate for the type of distributed scheduling

proposed. They typically do not include the complex constraints arising from material

handling and tool management; allow multi-criteria optimization; provide for the coordination

of distributed schedulers across hierarchical levels: and do not condition the decision upon the

current state of the system.

There are four major issues which must be addressed before this approach can be implemented

in a real system: state definition at each level; robust schedules; statistical analysis and rule

selection; and error recovery.

State definitions for the cell and workstation have been defined in [6], but littie has been done

to develop efficient data structures. At this point, we expect to use some type of AI

knowledge representation scheme. This allows us to capture the dependencies that exist

between the two and to have efficient updating procedures.

The key to developing this type of distributed system lies in the generation of robust

schedules". Robust means that the schedule remains close to optimal (relative to some

performance measures) over a realistic range of uncertainties. This means that the schedule

is rigorous enough to absorb minor perturbations. This will limit the number of reschedulings

that must be done when something goes wrong.

28

Error recovery in this context means dealing with the impact of delays. This is a two step

process: determine the impact on the current schedule and update the schedule. The first step

requires a robust data structure for the schedule which allows one to determine the "ripple

effect" of a delay on the current start and finish times. Based on this analysis, the recovery

can be a quick fix (in which a few times get revised), a major rescheduling, and/or a major

replanning.

33 Control

Control provides the mechanisms for executing actions and manages the actual flow of

information/parts between the computer/machines.

Concepts from formal language and automata theory [7] are used, and control is exercised as

a by-product of grammar recognition. In this case, each control module is viewed as a

layered parser (Figure 6). The highest layer parser is an automatically constructed push down
automata which interprets command/feedback inputs, and activates the appropriate actions.

Examples include the movement of parts in the system, consultation of schedulers, and

preparation of reports. The next layer is the Synchronization layer which is activated upon

recognition of grammatical constructs reserved for synchronization of machine interactions.

A good example is the synchronization required when a robot holding a part in a machine

fixture requests that the machine grasp the part Error actions are executed upon recognition

of error conditions and implemented via the use of the error parser.

Control Synchronization Error Lexical

Parser Parser Parser Analyzer

Control

Actions

Synchronization

Actions

Input

Error

Actions

Figure 6. Layered Parsers for Manufacturing Control.

The process involves the following steps [8]: (i) developing a formal model of manufacturing

system, (ii) creating context-free grammars for controllers, (iii) developing the parsers, (iv)

associating semantic actions with control grammars, and (v) automatic control s jftware

generation. A software generation system significantiy increases the likelihood of producing

correct control software with greatly reduced software development times [9]. Since the

control elements of the software will be generated from a formal model of the system,

automatic upgrades will be possible when changes to the system layout or product mix occur.

Additionally, the use of a formal model to generate run time software can be used to generate

the pre- and post-conditions required for theoretical proofs of correctness associated with each

action in the manufacturing system. The required "hooks" into the schedules and error

recovery are built into the control software, thus creating independence between control and

scheduling, and control and error recovery. This allows testing and using any scheduling

approach without any changes to control software.

29

4. A Prototype System

Figure 7 contains a schematic of an operational Flexible Machining Cell (FMC) at The
Pennsylvania State University. The FMC currently consists of five Workstations: a Rotation

Workstation, a Prismatic Workstation, an Assembly Workstation, a Material Handling

Workstation, and a Warehousing Workstation. It should be noted that the various Workstations

couple and uncouple from the Material Handling Workstation through predefined

couplingluncoupling points. It should be further noted that the Workstations contain from one

(1) to four (4) Equipment components, with the Rotation Workstation containing four (4)

equipment elements: a Fanuc M-1 robot, a Daewoo Puma 6 Turning Center, a Pratt &
Whimey Horizon V Machining Center and a parts inverter/queue.

KAROCX AS/RS

ROBOT

LOAD/UNLOAD VORKSTM
CONTRDLLCR

CNC RETROTIT
BRIDGEPORT

VERT. MILL

J—.
FANUC A-0

-Li, ROBOT

PRISM. VORKSTN.
CONTROLLER

CARTRAC
JN[T CONVEYOR

SYSTEM

i

HORIZON V
MACHINING CENTER

ROr. VQRKSTN.
COMTROLLER

IBM 7545
ROBOT

n
CARTRAC CONTROLLER

CELL CONTROL PC

n
ASSY VORKSTN.

CONTROLLER

NETWORK

DESIGN VORKSTATION

Figure 7. Architecture as Implemented on the Penn State FMS.

30

Control of the system is initiated by the FMC Controller - an 80286 PC based controller. The
FMC controller communicates to the Workstation controllers (also 80286 based PC's) via a

DECNST LAN using a common set of grammars. Vocabulary from the FMC controller [10]

to one of the machine workstations consists of instructions such as:

MANUFACTURE (batch)

The Rotational Woikstation then begins to plan, schedule and control the necessary equipment

required to produce the parts in the batch identified by the ptjio. The batch quantity is

variable between 1-4 (constrained by the material handling device in use). Instructions are

also sent to the material handling station to deliver the raw material to rotational workstations.

The batching task is performed at the cell controller. Table 3 lists a sample of cell-

workstation commands. If the part pt no has not been produced in the workstation previously,

process planning information will be exchanged. If the part has been produced, a resource

requirements list and part program will remain resident in memory. If the Rotation

Workstation is currendy idle and empty, the coupler (Material Handling Workstation) will be

inspected until a part pt no arrives. The workstation controller then coordinates the actions

of the various equipment using the set of commands (Table 4) for communicating with the

various equipment controllers. The management of the interactions of the equipment may or

may not require scheduling (for a single machine) or deadlock detection. If these functions

are required, they are included in the workstation controller. The degree of complexity of the

scheduling and deadlock detection can be easily adjusted to suit the scale of the FMS.

Table 3. Cell-Workstation Commands.

Cell Workstation Commands

Command Returned Values

GET STATUS - Requests the current

status or the workstation.

Block of Information detailing the

status of the workstation. Includes

Information on the current batch,

expected completion time, and

Inoperative machines.

SEQUENCE (batch) - Requests the

workstation to sequence the parts In

batch. This function win be used by

the cell controller when determining

a viable batch configuration.

Runtime of the batch

INVALID PART TYPE

INVALID BATCH
ERROR

MANUFACTURE (batch) - Requests the

workstation to start processing

batch.

Expected completion time

INVALID PART TYPE
INVALID BATCH
ERROR

The above FMC is operational and produces several parts belonging to two part families

(rotational prismatic). Early experience witii die architecture looks promising from both a

control and scaleability viewpoint. There are however many control problems requiring

significant research and development before all generic procedures will exist.

31

Table 4. Workstation Equipment Commands.

Workstation Equipment Commands

Control Function Response

Machine Tools

6ET_STATUS - Requests the

operational status of the machine.

Block of data including Information

on the currently loaded part (If any),

currently loaded NC file name, and

currently loaded tools.

6RASP (part) - Instructs the machine

to close the fixture or part chuck.

The parameter part gives the part

Information required for flexible

fixtures.

FIXTURE CLOSED
PART TYPE UNKNOWN
ERROR

RELEASE (part) - Instructs the

machine to open the fixture.

FIXTURE OPEN
PART TYPE UNKNOWN
ERROR

PROCESS (part) - Instructs the

machine to start processing the part.

PROCESSING COMPLETE
PART TYPE UNKNOWN
MACHINE DOWN
ERROR

STOP - Stops processing immediately MACHINE STOPPED

Load/Unload Robots

MOVE (part, loci, loc2) - Instructs the

robot to move part from location loci

to location loc2. Part is defined for

flexible grlppers.

MOVE COMPLETED
LOCATION INVALID

PART TYPE UNKNOWN
ERROR

MOVE (loc) - Instructs the robot to

move to the location loc.

MOVE COMPLETED
LOCATION INVALID

ERROR

GRASP (part) - Instructs the robot to

close the grlpper.

GRIPPER CLOSED
PART TYPE UNKNOWN
ERROR

RELEASE (part) - Instructs the robot

to open the grlpper.

GRIPPER OPEN
PART TYPE UNKNOWN
ERROR

STOP - Stops the robot Immediately ROBOT STOPPED

Automated Storage and Retrieval System (AS/RS)

RETRIEVE (part) - Instructs the

system to locate part and bring It

to the load/unload station. Part

could represent finished goods or

raw materials.

PART RETRIEVED
PART NOT FOUND
PART TYPE UNKNOWN
ERROR

STORE (part) - Instructs the system

to find part's storage location and

either bring the location to the

load/unload station or take the part

to the storage location from the

load/unload station.

PART STORED
SPACE NOT AVAILABLE
PART TYPE UNKNOWN
ERROR

LOCATE (part) - Requests the current

storage location for part.

PART NOT FOUND
PART TYPE UNKNOWN
ERROR

ALLOCATE (part) - Instructs the

system to allocate space for part.

SPACE ALLOCATED
SPACE NOT AVAILABLE
PART TYPE UNKNOWN

5. Summary

In this paper, a scaleable architecture for FMS control has been presented. The key elements

of this architecture are that each controller performs to same set of functions (planning,

scheduling and control), and the degree of complexity of the controllers can be scaled without

affecting the control elements.

32

Various elements of the control architecture have already been implemented at the Penn State

FMS Lab, and further research is underway towards implementation of the complete

architecture. Early experience has been promising, but further refinements may have to be

made to adjust for some implementation difficulties that may be encountered.

6. Acknowledgements

The authors would like to acknowledge Dr. Wayne Davis for some of the ideas in this paper.

Further acknowledgements are due to Drs. P. Cohen and C. Harmonosky and several students

for their help in the implementation of the architecture.

33

References

[1] Davis, W. and Jones, A., "A Functional Approach to Designing Architectures for

Computer Integrated Manufacturing", Systems, Man, and Cybernetics special issue on
Manufacturing, Vol. 19, No. 2, 164-174, March, 1989.

[2] Wu, S. and Wysk, R., "An Application of Discrete Event Simulation to On-line Control

and Scheduling in Flexible Manufacturing", International Journal of Production

Research, (to appear).

[3] Davis, W. and Jones, A., "Issues in Real-Time Simulation for Flexible

Manufacturing Systems", Proceedings of the European Simulation Multiconference,

Rome, Italy, June 7-9, 1989.

[4] Yang, N. and Wysk, R., "A Procedure for Deadlock Detection in FMSs", Penn State

working paper 89-121.

[5] Mettala, E. and Joshi, S., "A Compact Representation of Process Plans for FMS Control

Activities," submitted to IEEE.

[6] Davis, W, and Jones, A., "A Real-Time Production Scheduler for a Stochastic

Manufacturing Environment", Intemational Journal of Computer Integrated

Manufacturing, Vol. 1, No. 2, 101-112, 1988.

[7] Hopcroft, J. and Ullman, J., "Introduction to Automata Theory, Languages, and

Computation", Addison-Wesley, Reading, MA, 1979.

[8] Mettala, E., Joshi, S., and Wysk, R., "CIMGEN - A Case Tool for CIM Development",

Proceedings of the FMS Conference, Boston, MA, August, 1989.

[9] Naylor, A. and Volz, R., "Design of Integrated Manufacturing System Control

Software", IEEE Transactions on Systems, Man, and Cybernetics, Vol. 17, No. 6,

1987.

[10] Smith, J., Masters Thesis, IMSE Department, Penn State, 1990 (in progress).

34

CAM-I CIM REFERENCE MODEL

HISTORICAL REFLECTION
Robert E. Boykin III

THE ENVIRONMENT ^

In 1984, Computer Integrated Manufacturing or CIM was the
budding harbinger of success in the international manufacturing
arena or so said many corporate visionaries of that era.
Virtually all corporations struggling to emerge as a leader in
the newly defined 'global marketplace' initiated programs and
projects which were hoped would position them for this future.
It was soon realized that an unorchestrated approach to CIM pro-
duced ineffective advancement of the manufacturing process
(typically referred to as islands of automation) and in some
cases suboptimized the total process to those before pre-CIM
activities.

THE CHALLENGE

This condition of the environment drove many international CAM-I
members to initiate activity within the Advanced Technical
Planning Committee (ATPC) to address this strategic CIM planning
void, ie: The Challenge. The ATPC functions in an advisory
capacity to CAM-I 's executive board and program staff. ATPC
comprises senior representatives from member organizations whose
expertise and management vision are focussed on providing advice
and guidance to CAM-I activities. This monumental task was
accepted and provided focus for numerous meetings, open forums,
constructive debates, and supplemental position papers.

It must be appreciated that this document represents only a
snapshot in research activities and should not signify the 'End
of the Journey'. Many activities within CAM-I are advancing
these concepts and in a constructive way the following
observations and analysis are made. It must first be understood
that the objective of the document was to:
A. Provide an accepted semantic platform for defining CIM;
B. provide a basis of understanding for further research;
C. view insights into the scope and potential of the CIM

Concept

;

D. And, illuminate the technological developments required
to achieve CIM.

The content of the CAM-I CIM Architecture was not intended to
provide 'THE ANSWER' to the many complexities of CIM
implementation, but rather to establish a common understanding
of some of the identified elements comprising the CIM jigsaw
puzzle. Maintaining an appreciation of a bias toward an'
industrial view, the focus on implementation intent, and an
awareness of the evolution in CIM since this release; the
material remains extremely valuable and relevant to corporate
strategic CIM planning.

35

CAM-I CIM ARCHITECTURE

SCOPE

The planning scope of the document was admittedly 'discrete
parts manufacturing oriented' but not limited in application by
product size, organizational complexity, process volume, or
diversity. Their view was enterprise wide in appreciating the
now well acknowledged understanding of the mterfunctional
activity relationships. Activities ranging from Product R&D and
marketing through production and field support were considerated
and analyzed. This enterprise-wide perspective of CIM and its
strategic contribution to corporate goals necessitated the
development of a "CIM Enterprise Architecture".

VIEWPOINT

As stated previously, the view was one from the discrete parts
manufacturing industry; but, current research indicates its
application base is much larger and can be of positive contribu-
tion to many processes and some service industries. The view is
truly strategic in vision and not hard-bound within the 'manufac-
ture product' activities of the enterprise. Notably it is prima-
rily focussed on information technology evolution and automation
facilitation within the CIM Architecture; but to a lesser de-
gree, does recognize the important contribution of organization,
human resources, and policy within a successful CIM implementa-
tion.

METHODOLOGY

Several mechanisms were employed within the document to repre-
sent and convey understandings and logical meanings to the appli-
cation and integration of CIM based concepts. First, a high
level 'Model of a CIM Enterprise' was developed (Reference At-
tachment A) . Many functions and activities were grouped
together to simplify the model at this high level.

Detailed descriptions of the major building blocks are provided
and assists in the establishment of common semantics and
comprehensions. Within this architectural representation, five
basic views or structures were developed to examine the
interdependencies and relationships of these structures to each
other (Reference Attachment B) . Each of the five structures is
explored in greater detail within Attachments A - E of the CIM
Architecture and employed IDEFO modeling variations, ANSI 3
Scheme models, and the ISO seven layer open system interconnect
standards. The concluding sections of this research work are
devoted to presentation of the technical issues, justification,
and management challenges which are presently serving as a
foundation for continued research within the CAM-I Program
structure

.

36

CAM-I Architecture Analysis

In cooperation with the international efforts within ISO TC184,
CAM-I provided the 'CAM-I CIM Architecture' for benchmarking
other similar research activities toward achieving a internation-
ally recognized conscientious on CIM Architecture (s) and support-
ing structures. A review was commissioned by ISO TC184/SE5-WG1
and contracted with The Johns Hopkins University. Their re-
sults, conclusions, and recommendations were made available in
November 1989.

ANALYSIS REVIEW

It first must be stated that the intent of the CAM-I CIM Archi-
tecture document and that of WGl initiatives are different but
complimentary. Therefore direct applicability to WGl research
should not be anticipated. Within the critique it becomes quite
apparent that the concept scope is not similar. First, the CIM
Architecture proposes an enterprise-wide view while the review
is admittedly limited to the 'product engineering functions
through manufacturing engineering and production' vision of
CIM. Secondly, the review mandates a 'computer processable
description' while the belief of many is that the strength is
within the integration and optimization of enterprise activities
rather than the concentration on computerization. And lastly

/

the CIM Architecture was intended to be of a somewhat generic
level allowing for the uniqueness of individual implementation
environments. Detailed structural levels were not provided but
have been further developed within CAM-I programs.

The viewpoint of the contracted review should be perceived posi-
tively but incomplete. It was stated and is reinforced within
CAM-I Programs that no one model can address all the CIM complex-
ities for each activity within an organization. Some of the
latest research indicates the need for two or more related mod-
els to provide this vision of success. Additionally, it was
recognized within the review that the requirement for a CIM
Architecture varies with each researcher. CAM-I 's ATPC was
attemptincf to establish a base line of research understandings
and a vision regarding CIM. The review was seeking to identify
the 'things that should be done and the relationships that would
need to exist within a CIM enterprise'. The architecture of a
CIM enterprise should be viewed as a blueprint for the future,
not a detailed migration strategy or strategic planning
roadmap. These elements are best left to the individual
implementation requirements and restrictions.

37

CONCLUSIONS AND RECOMMENDATIONS

In smnmation, the review by The Johns Hopkins University staff
was objective and constructive to the 'CAM-I CIM Architecture'.
The difference in document intent and objectives should be noted
but viewed complimentarily to the diverse semantics and concepts
explored within CIM. The CIM Architecture is a snapshot in
time, a benchmark along the CIM Journey. The general recommenda-
tion of the review was that the models were not adequate to meet
the objectives of WGl. The following improvements were recom-
mended:
o Development of a definitive organizational structure to sup-
port CIM in the new manufacturing era.
o Development of the product model concept as well as a way to
manage and control all information needed throughout the product
life cycle.
o Development of a process architecture.

38

CAM-I Supplemental Research Activities

The CAM-I ATPC CIM Architecture served its purpose well. Sever-
al research programs were initiated within CAM-I to focus on
many of the critical CIM components and concepts. These pro-
grams are conducting leading edge research into the management
and strategic planning challenges of the integrated enterprise
(Computer Integrated Enterprise Program) , the justification and
activity costing issues (Cost Management System Program) , and
optimization of the product and manufacturing process (Product
Optimization Program)

.

Specifically, the Computer Integrated Enterprise (CIE) Program
has assumed the proactive role in defining CIE and activity
relationships across the entire spectrum of the enterprise,
modelling these interdependencies with a focus on the
informational technology requirements, development of a
strategic plan for implementation, and addressing the
organizational challenges and management of this new
technological evolution. The CIE Program has confirmed the
enterprise-wide perspective of the CAM-I CIM Architecture. But
CIE is viewed as much as a management and cultural challenge as
the technology itself. CIE has been defined as "a management
approach to the integration of enterprise activities"; thus,
recognizing several critical elements. First, CIM or CIE must
be structured to support the goals and objectives of the
enterprise at the highest level. CIM or CIE mandates senior
executive commitment and the enlightened support of each
stakeholder (employees, stockholders, the community, etc.).

CIE Sponsors have been researching CIM/CIE structures and World
Class Best Practices for two years and are actively in the pro-
cess of synthesizing this research into a generic conceptual
framework. This initiative is intended to provide an industry
perspective and focus on implementation. How we link corporate
goals to the strategic technology plan and develop a feasible
migrate strategy to this competitive nirvana are but two of the
areas of significant investigation.

In sximmary, the CAM-I CIM Architecture provided a definitive
work which has served as a milestone for critique and additional
research. Without this documented understanding, progress would
not be focussed to the level it is today and this very meeting
may not have occurred. Judge not this work critically but appre-
ciate the thought and courage in establishing a plateau for
advancement

.

39

40

41

A REFERENCE MODEL FOR COMPUTER

INTEGRATED MANUFACTURING FROM THE VIEW POINT

OF INDUSTRIAL AUTOMATION

Clyde R. Van Haren
James River Corporation

Neenah, Wisconsin 54956

and

Applied Industrial Control

Purdue University

Theodore J. Williams

Purdue Laboratory for

West Lafayette, Indiana 47907

ABSTRACT

This paper describes the CIM Reference Model developed by the International

Purdue Workshop on Industrial Computer Systems. This work is based on a major research

project carried out by the Purdue Laboratory for Applied Industrial Control in cooperation

with many companies of the US and Canadian steel and paper industries. Both
organizations are based at Purdue University, West Lafayette, Indiana. This paper will

present a short overview of the complete model which has recently been published in full

detail in book form [35].

The model combines the information and control hierarchy with the data flow

diagram and a new implementation hierarchy view to present the CIM system, its

architecture, its tasks and their implementation.

The model is restricted to the so-called automatable functions of the plant and all

functions considered to require human innovation are considered beyond what can be
mathematically modeled. It thus offers one way of separating the computer based functions

in a CIM system from those which must be carried out by humans, a problem which has

plagued the CIM field since its initiation.

This paper will also present a survey of other CIM Reference Models existing in this

field.

A SURVEY OF AVAILABLE REFERENCE MODELS FOR CIM

The success of the International Standards Organization (ISO) in the development
of series of a communications standards through the use of its Reference Model on Open
Systems Interconnection, the OSI/ISO model [2]*, has encouraged many groups to develop

and apply such models to other problems. The International Purdue Workshop on
Industrial Computer Systems, based at Purdue University, West Lafayette, Indiana, USA,
has carried out such a development for computer integrated manufacturing (CIM) as

applied to all industries.

*Literature References are indicated in this paper by brackets. Parenthesis are used

for parenthetical expressions or enumeration.

42

MANAGEMENT
INFOflMATION

MANAGEMENT
DATA

PRESENTATION

(LEVEL 41 /

(LEVEL 31

(LEVEL 2)

OPERATIONAL AND
pnooucnoN
suPEnvisKm

so '\ni u-yir M
SCHEOUUNG ANO
OPERATIONAL
MANAGEMENT

SUPERVISOR'S
CONSOLE

MTRA-AREA
COOROtNATlON

SUPERVISOR'S
CONSOLE

SUPERVISORY
CONTROL

OPERATOR'S
CONSOLE

(MRECT OIGrTAL
CONTROL

(LEVEL It i

SPEOAUZEO
OEOKATEO

DIGITAL CONTROLURS

figure 2 Assumed functional hierarchical computer control structure for an IndusMal plant (continuous process such as
petrochemicals).

MANAGEMENT
DATA

PRESENTATION

PLANT
MANAGEMENT
INFOflMATION

(LEVEL 4| ^

OPERATIONAL AND
PRODUCTION
SUPERVKION

PLANT PRO0UCT1ON
SCHEDULING ANO
OPERATIONAL
MANAGEMENT

(LEVEL 31

SUPERVISOR'S
CONSOLE

MTRA-AREA
COORDINATION

(SHOP COORDINATOR)

(LEVEL 2)
SUPERVBOR'S
CONSOLE

WORKCEa
(DIRECT NUMERICAL

CONinOD

OPERATOR'S
CONSOLE

WORK STATION (COM-
PUTERIZED NUMER
ICAL CONTROL)

(LEVEL II <

DEDICATED
PROGRAMMASU

LOGIC CONTROLLERS

PROCESS

figure 3 Assumed functloruilhierarchy computer system structure fora large manufacturing complex (Computer Integrated

Manufacturing System (CIMS)).

43

Table I presents a listing of the major reference models for computer integrated

manufacturing which are known to be in the open literature, including a set of references

to each. Others have also been developed by individual companies for their own use but

are therefore not readily available. Probably the best known of the available models is that

developed by the United States National Bureau of Standards (now the National Institute

of Standards and Technology) to describe the operation of their Automated Manufacturing
Research Facility (AMRF) in 1980 [1,15-17]. The oldest of these models is that developed

by the Case-Western Reserve University group in the late 1960s to attempt a theoretical

base for multilevel control systems [11,18,21,22,27].

TABLE I

SOME AVAILABLE REFERENCE MODELS FOR CIM

1. Digital Equipment Corporation [10,301

2. ESPRTT, QM-OSA/AMICE (4,6]

3. International Business Machines [5,36]

4. ISO/TC184/SCS/WG1 [8,12-14,31]

5. Loughborough University, UK [32]

6. National Institute of Standards and
Technology, AMRF, USA

[1,15-17]

7. Phillips Industries, The Netherlands [7]

8. PROCOS-AS, Denmark [23]

9. Purdue University, USA [26,28,33-35]

10. Society of Manufacturing

Engineers, USA
[29]

IL Case-Western Reserve

University, USA
[11,18,21,22,27]

USA

Note: Items 2,4-6,8 and 9 are discussed in the (March/April - 1989) issue of the Int. J. of Computer Integrated Manufacturing.

The majority of the models seek to describe the operations of a complete industrial

enterprise including management and external influences (Items 1-4, 7 and 10). The other

five (Items 5, 6, 8, 9 and 11) confine themselves effectively to the factory itself.

Table II presents a set of generalities which can be used to describe each of the

listed models. Within the limitations of their described coverage, it appears to be readily

possible to convert each of the successful models into any one of the others. The
differences between them are therefore encompassed in the presentation methods used, the

scope of coverage involved, and the degree of detail of the functional descriptions listed.

This is to be expected since each of them strives to be a generic description of the field of

manufacturing and this interchangeability is further proof of the concept of generality of the

field of CIM modelling itself.

44

TABLE II

CHARACTERICTICS OF CIM REFERENCE MODELS

1. ALL OF THE DESCRIBED MODELS USE A MULTILEVEL, FUNCTIONAL HIERARCHICAL STRUCTURE AS AT
LEAST ONE OF THEIR METHODS OF VIEWING THE DESCRIBED SYSTEMS. THIS HAS THE FOLLOWING
BENEFITS:

A. THE USE OF LEVELS REDUCES THE SIZE AND COMPLEXITY OF EACH CHOSEN ELEMENT OFTHE
MODEL.

B. LIKEWISE, LEVELS LIMIT THE SCOPE OF RESPONSIBILITY AND AUTHORITY OF EACH ELEMENT.

C LEVELS PERMITA DIFFERENTL\TION BETWEEN THE LENGTH OF PLANNING HORIZON AND THE
REQUIRED SPEED OF RESPONSE OF EACH ELEMENT DEPENDING ON THE LEVEL IN WHICH IT IS

DESCRIBED. THAT IS, THE PLANNING HORIZON DECREASES AND THE REQUIRED SPEED OF
RESPONSE INCREASES AS ONE DESCENDS THE HIERARCHY.

2. EACH LEVEL DECOMPOSES COMMANDS FROM UPPER LEVELS INTO PROCEDURES TO BE EXECUTED AT
THAT LEVEL OR INTO SUBCOMMANDS TO BE ISSUED TO ONE OR MORE SUBORDINATE LEVELS.

3. FINAL DEaSION MAKING AND CONTROL RESIDESAT THE LOWEST POSSIBLE LEVEL - WHERETHE MOST
COMPLETE AND UP-TO-DATE INFORMATION RESIDES.

4. THE HIERARCHY VIEW ALONE IS NOT SUFFIQENT TO COMPLETELY DESCRIBE THE CIM SYSTEM. ALL
SUCCESSFUL MODELS INCLUDEATLEACTTHREE SEPARATE VIEWS. OTHER VIEWS USED INCLUDE: DATA
OR INFORMATION FLOW DL\GRAMS, DATA ENTITY RELATIONSHIP DL\GRAMS, IMPLEMENTATION
PROCEDURE DL\GRAMS, COMMUNICATIONS ARCHITECTURAL DL\GRAMS, AND RESOURCE AND
ORGANIZATIONAL DL\GRAMS. BECAUSE MANY OF THESE DIAGRAMS ARE REDUNDANT TO OTHERS, A
COMPLETE DESCRIPTION CAN BE ACCOMPLISHED WITH SEVERAL DIFFERENT SELECTIONS OF VIEWS.

5. MOST ARCHITECTURES ALLOW ONLY VERTICAL CONTROL FLOW (EACH MODULE HAS ONLY ONE
SUPERVISOR). THERE IS A SUBSTANTIAL THEOREHCAL BASIS FOR THIS.

6. THERE IS NO THEORETICAL BASIS FOR PEER-TO-PEER COMMANDS. INFORMATION FLOWS IN THESE
DIRECTIONS ARE ALLOWED AND USED IN MOST MODELS.

INTRODUCTION TO THE PURDUE MODEL

The Purdue CIM Reference Model, as it is commonly referred to, is designed to

discuss the overall generic functional requirements of any manufacturing facility, regardless

of industry, that are amenable to computerization within the foreseeable future and to

define the viable relationships between these "automatable" functions and the other many
functions of a manufacturing system for which no such possibility is attainable with currently

foreseen technology.

One of the criteria for assessing whether or not a particular function is automatable ,

in the broadest sense of the work, is whether or not the operation of the function and its

related physical equipment can be expressed in mathematical or computer program terms .

Those functions which are not systematically expressible, particularly those which require

human innovation for their implementation, are considered nonautomatable.

Therefore, there are two concepts or principles which are paramount to our work.

These are automatability and innovation :

Automatability requires that the operation of the function and its related physical

equipment be expressible in mathematical or computer program terms.

45

If this is not possible, then by definition a human being must supply the information

or action which would otherwise be lacking. This is human innovation .

As is noted below, there are many forms in which the Reference Model for

Computer Integrated Manufacturing could be expressed and many ways of describing the

interrelationship of the functional requirements to be discussed. The committee has chosen

to describe a definite control and information system structure and to treat the

requirements so generated as firm. This is for emphasis only and to present one basic story.

It is realized by all that there are many ways the model could be accomplished - this being

only one of these.

Such a model must be a list of all of the truly generic tasks of the CIM system we
are discussing here, and would arrange them in their proper relationship to each other

(temporal, spatial and subordination). It would detail the generic units required to carry

out these tasks, both the application entities (process units) and the service entities (

computer system communications, data base, etc.). In addition, the model should also allow

one to develop the best structure for the automatic control system (scheduling and dynamic
control) for the plant, and to specify the best location or locations (within the structure) for

carrying out each task.

The resulting model must have the following characteristics [8]:

1. Simply structured, flexible, modular, and generic.

2. Based upon readily understandable and acceptable terminolo©r.

3. Able to be applied to a wide range of manufacturing operations and
organizations.

4. Independent of any given, predetermined, realizations in terms of system

configurations or implementations.

5. Open-ended in its ability to be extended and in its ability to encompass new
technologies without unreasonably invalidating current realizations.

6. Independent of existing technologies in manufacturing automation and
computer science.

What is being proposed for the CIM reference model is a blending of two types of

methods for viewing the industrial automation picture; the hierarchical [33,34] and the data

flow [9]. The hierarchical is the oldest and has had the most exposure and use over the

years. This fits many of the existing plants such as chemical, steel and paper. The data

flow type model helps define the interrelationship of all the functions required of the system

which is not possible using the hierarchical model alone. In addition, a new
Implementation Hierarchy view will help detail the actual implementation of the tasks

involved. As a result this latter view is not necessarily generic.

This model then discusses the automation system and information handling

requirements of the CIM system as diagrammed in the central box of Figure 1. While

process equipment, machine tools and material handling equipments are considered parts

of the CIM system in many circles, they are not so considered in this model because of their

non-generic nature, (i.e., these are not included as a separate level in the model diagrams).

Also excluded are the enterprise functions such as R & D, Engineering, Corporate

Management, Sales, etc., listed here as external entities.

46

OUTLINE" OF THE CIM REFERENCE MODEL

EXTERNAL INFLUENCES

STATUS AND HISTORY
INFORMATION

REQUIREMENTS
SALES ORDERS
PLANS

MODEL PRESENTS
NEEDED INTERFACES
HERE

INTEGRATED
INFORMATION MANAGEMENT

AND
AUTOMATION SYSTEM

(THE PRESENT CIM REFERENCE MODEL
COMPRISES THIS PART ONLY)

SENSOR
READINGS

FOUNDATION
FUNCTIONAL
ENTITIES

MANUFACTURING
SPECIFIC FUNCTIONAL
ENTITIES

ACTUATION
COMMANDS

MANUFACTURING AND
MATERIAL HANDLING EQUIPMENT

}
PLANT
PRODUCTION
MEDIA ENTITIES

APPLICATION
FUNCTIONAL
ENTITIES

Figure 1 Relationship of the several classes of functional entities which comprise the CIM Reference Model and computer
Integrated manufacturing Itself.

THE GENERIC GOALS IN THE DESIGN AND OPERATTION OF ANY

PROPUCnON FLANT

The first step in the development of a statement of plant needs is a comprehensive
list of long range plant goals (i.e., such as a five year plan). The goals to be stated here

are truly generic for any production plant regardless of the industry involved. In view of

this fact it is the thesis of the CIM Reference Model Committee that such a set of generic

goals can best be satisfied by a system for the plant whose requirements are similarly

generic in nature. Further, these requirements and the nature of the CIM system can be
defined by a reference model which would thus be applicable to any industry or any plant

in that industry.

The principal goal is to achieve a lower cost of operations or a higher process

throughput for the plant through the application of process control and information systems

technologies.

In the process industries, the term "CIM" is not used as often as the phrase "Plant-

wide Control." The meaning is the same; the interconnection of information and control

systems throughout a plant in order to fully integrate the coordination and control of the

operation. Since process plants in the paper, steel, sugar and textile industries are known
as "mills", these industries refer to "Mill-wide control." In this model, the term "Plant-wide

Control" will be used generically to mean both plants and mills.

47

Improved human operator productivity will be realized through the implementation
of individual work stations which provide the tools for decision-making. Timeliness of data

will be assured through the interconnection of all work stations and information processing

facilities with a high-speed, plant-wide local area network, and a global relational data base.

The plant-wide control and information system will utilize and support the cultural

resources of the organization as it adapts to changing business conditions. As new
automation system technology is introduced, standard network interfaces will permit its

integration with the plant-wide system (thus integrating islands of automation).

The broad goal is to improve the overall process and business operations by
obtaining the benefits that will come from a completely integrated plant information system.

The continual growth of the linkage of the process operations data with product line,

project and business systems data will be supported. The system will make such data

readily available, interactively in real-time, to any employee with a need to know, at work
stations scattered throughout the plant and, above all, easy to use. The resulting

comprehensive plant information management system will be the key to long-range

improvements to: process control; product line management; plant management; and,

support of business strategies.

THE cm REFERENCE MODEL

A reference model is a previously agreed-upon or "standard" definitive document or

conceptual representation of a system. The reference model defines requirements common
to all implementations but is independent of the specific requirements of any particular

implementation. The CIM Reference Model is thus a reference for computer integrated

manufacturing. It is a detailed collection of the generic information management and
automatic control tasks and their necessary functional requirements for the manufacturing

plant.

The CIM Reference Model should be descriptive rather than prescriptive. Table III

outlines the uses to which the Committee expects the CIM Reference model will be put.

TABLE III

USES OF THE CIM REFERENCE MODEL

1. ANY REFERENCE MODEL IS THE BASIC DESCRIPTIVE MEDIUM TO BE USED FOR FUTURE DISCUSSIONS OF
THE SUBJECT AREA INVOLVED (HERE COMPUTER INTEGRATED MANUFACTURING (QM)).

2. rr SHOULD ALLOW ANY MANUFACTURING SYSTEM AND FTS ASSOCL\TED INFORMATION MANAGEMENT
AND AUTOMATION ARCHFIECTURE TO BE EVALUATED FOR COMPLBIENESS, CAPABILITY, AND
EXTENSIBILFFY.

3. rr CAN ALSO SERVE AS A DESIGN GUIDE FOR THE DEVELOPMENT OF A NEW INFORMATION
MANAGEMENTANDAUTOMATIONARCHFTECTUREFORANEW ("GRASS ROOTS")OR RETROFFITED PLANT.

4. rr SERVES TO HIGHLIGHT THOSE FUNCTIONS WHICH ARE AMENABLE TO THEIR ESTABLISHMENT AS
STANDARDS.

5. THE MODEL SHOULD HELP PROVIDEA MIGRATION PATH FROM THE CURRENT PLANT SYSTEM TO A NEW
SYSTEM; BY MAKING EVIDENT THE CRinCAL FUNCTIONS FOR EARLY IMPLEMENTATION; AND BY
PROVIDING A FRAMEWORK FOR THE REQUIREMENTS DEFINmON PHASE OF THE PROJECT.

48

6. SOME OTHER IMPORTANT USES ARE:

A. EDUCATION - TO GET THE ORGANIZATION DIRECTED TOWARD A COMMON STRATEGY AND
APPRECIATION OF THE STEPS REQUIRED TO ACHIEVE INTEGRATION.

B. GUIDE - TO MEASURE PROGRESS TOWARD THE HNAL GOAL.

C MODULARIZATION OF THE STRATEGY - TO DIVIDE THE ATTACK ON THE PROBLEM INTO
READILY SOLVABLE PIECES.

D. ORGANIZATIONAL SUPPORT - TO DEVELOP A COMMimED TEAM APPROACH TO THE PROBLEM.

THE MANUFACTURING PLANT IN TERMS OF

THE CIM REFERENCE MODEL

The manufacturing plant is a collection of application functional entities which carry

out the primary mission of the factory in producing marketable product and the associated

information streams. The plant production media are supported by an integrated

information and automation system composed of foundation and manufacturing specific

functional entities which support the means of production. The plant interfaces the external

world through a set of external influences or external entities .

The manufacturing mission and the established manufacturing policy of the company
are articulated through the set of tasks and functional specifications assigned to each of the

functional entities of the plant.

The CIM Reference Model is a generic description of the collection of functional

entities which make up a factory and of their interaction through their assigned tasks and
functional specifications .

Table IV defines the objective of the development of the CIM Reference Model by
defining the idealized plant which is to be modelled. Figure 1 defines the interrelationships

of the terms noted above which are necessary in defining the CIM Reference Model. Note
that the external influences and the manufacturing equipment of the plant interact with the

present model through appropriate interfaces to transmit all necessary information and
commands.

TABLE IV

BASIS FOR THE FORMULATION OF THE

CIM REFERENCE MODEL

THE CIM REFERENCE MODEL AND rTS RELATED SET OF GENERIC FUNCTIONAL REQUIREMENTS WILL TAKE AS
THEIR IDEALIZATION:

1. THE FULLY AUTOMATED PLANT ri.E.. STAFFED BYAGENTS (HUMAN OR MACHINES WHOSE DECISIONSARE
EFFECTIVELY COMPUTABLE^

2. THE TOTALLY RESPONSFVE (I.E., CONTROLLABLE) MANUFACTURING SYSTEM CARRYING OUT THE
ESTABLISHED MANUFACTURING POLICY OF THE COMPANY.

3. ANALLOWANCE FORHUMAN IMPLEMENTED PROCESSES INTHE PRODUCTION SYSTEM BY ASSURING THE
NECESSARY FUNCTIONAL COMMUNICATIONS FOR THOSE PROCESSES OF THE FACTORY.

4. A SYSTEM THAT WILL BE FLEXIBLE ENOUGH TO ALLOW FORESEEABLE CHANGES IN THE ESTABLISHED
MANUFACTURING POLICY.

49

THE GENERIC DUTIES OF A CIM SYSTEM AND THEIR EXPRESSION VIA
THE HIERARCHICAL FORM OF THE REFERENCE MODEL

(SCHEDULING AND CONTROL HIERARCHY VIEW)
OF THE SYSTEM

THE GENERIC TASKS OF A PLANT-WIDE COMPUTER CONTROL SYSTEM

Overall automatic control of any large modern industrial plant regardless of the

industry concerned involves each of the requirements listed in Table V.

Because of the ever-widening scope of authority of each of the first three

requirements of the Table V in turn, they effectively become the distinct and separate levels

of a superimposed control structure, one on top of the other. Also in view of the amount
of information which must be passed among the above four "tasks" of control, a distributed

computational capability organized in a hierarchical fashion would seem to be the logical

structure for the required control system. This must be true of any plant regardless of the

industry involved.

TABLE V

AN OVERALL PLANT AUTOMATION SYSTEM MUST PROVIDE

1. AN EFFECnVE DYNAMIC CONTROL OF EACH OPERATING UNFF OF THE PLANT TO ASSURE THAT FT IS

OPERATING AT FTS MAXIMUM EFnCIENCY OF PRODUCTION CAPABILITY, PRODUCT QUALFFY AND/OR OF
ENERGY AND MATERIALS UTILIZATION BASED UPONTHE PRODUCTION LEVEL SETBY THE SCHEDUUNG
AND SUPERVISORY FUNCTIONS LISTED BELOW. THIS THUS BECOMES THE CONTROL ENFORCEMENT
COMPONENT OF THE SYSTEM. THIS CONTROL REACTS DIRECTLY TO COMPENSATE FOR ANY
EMERGENQES WHICH MAY OCCUR IN FTS OWN UNFT.

2. A SUPERVISORY AND COORDINATING SYSTEM WHICH DETERMINES AND SETS THE LOCAL PRODUCTION
LEVEL OF ALL UNFTS WORKING TOGETHER BETWEEN INVENTORY LOCATIONS IN ORDER TO
CONTINUALLY IMPROVE (I.E., OPTIMIZE) THEIR OPERATION. THIS SYSTEM ASSURESTHAT NO UNFTSARE
EXCEEDING THE GENERALAREA LEVEL OF PRODUCTION AND THUS USING EXCESS RAW MATERIALS OR
ENERGY. THIS SYSTEM ALSO RESPONDS TO THE EXISTENCE OFEMERGENQES OR UPSETS INANY OFTHE
UNITS UNDER ITS CONTROL IN COOPERATION WITH THOSE UNITS' DYNAMIC CONTROL SYSTEMS TO
SHUT DOWN OR SYSTEMATICALLY REDUCETHE OUTPUT IN THESE AND RELATED UNITS AS NECESSARY
TO COMPENSATE FORTHE EMERGENCY. IN ADDITION, THIS SYSTEM IS RESPONSIBLE FORTHE EFFIQENT
REDUCTION OF PIANT OPERATIONAL DATA FROM THE DYNAMIC CONTROL UNFTS, DESCRIBED JUST
ABOVE,TO ASSURE FTS AVAILABILFTY FOR USEBYANY PLANT ENTFFY REQUIRING ACCESSTO FTASWELL
AS FTS USE FOR THE HISTORICAL DATA BASE OF THE PLANT.

3. ANOVERALLPRODUCTION CONTROLSYSTEM CAPABLEOFCARRYING OUTTHESCHEDULING FUNCTIONS
FOR THE PLANT FROM CUSTOMER ORDERS OR MANAGEMENT DEOSIONS SO AS TO PRODUCE THE
REQUIRED PRODUCTS FORTHESE ORDERSATTHE BEST (NEAR OPTIMUM) COMBINATION OF CUSTOMER
SERVICE AND OF THE USE OF TIME, ENERGY, INVENTORY, MANPOWERAND RAW MATERL^iLS SUFTABLY
EXPRESSED AS COST FUNCTIONS.

4. A METHOD OF ASSURING THE OVER ALL RELL^BILFTY AND AVAILABILFTY OF THE TOTAL CONTROL
SYSTEM THROUGH FAULT DETECTION, FAULT TOLERANCE, REDUNDANCY, UNINTERRUPTIBLE POWER
SUPPLIES, MAINTENANCE PLANNING, AND OTHER APPLICABLE TECHNIQUES BUILT INTO THE SYSTEM'S
SPECinCATION AND OPERATION.

A hierarchical arrangement of the elements of a distributed, computer-based, control

system seems ideal arrangement for carrying out the automation of the industrial plant

just described. Figures 2 and 3 lay out one possible form of this distributed, hierarchical

computer control system for overall plant automation. Note that Figure 2 uses the

nomenclature common to the continuous process industries while Figure 3 presents the

computer integrated manufacturing system or CIMS commonly used in the discrete

manufacturing industries to represent the hierarchy. Note also that the levels represented

here are "functional" levels. Whether or not they represent actual physical hardware levels

50

depends on the size and complexity of the manufacturing plant. Nevertheless it is our

thesis that the two diagrams of Figures 2 and 3 are exactly functionally equivalent.

MMUGEMEMT
OATA

PRCSCNUTION

MAMAGEMENT
nfORMATION

<t£VtL41 /

OttRATIONALANO
moouctiON
SUPOMSION

raooucnON
SOaOUUNGAHO
0<>eRATIONAL
MAMAGEMENT

SUKRVEOfl'S
COHSOU

INTRA-AREA
COORDINATION

IUVEL2I
SUPERVISOR'S
O0NS0l£

su«Rvtsonv
CONTROt

OPERATORS
CONSOlf

.isso

"5

SO"

5 S

5*5

OWECT OIGfTAt

CONTROt

MVElll <

SPECWUZCO
OeOKATED

OICrTAl. CONmOlLERS

FIgun 2 Assumed functional hkrardikal computer control structure for an Industrial plant (continuous process such as
petrochemicals).

MAMAGCMBfT
OATA

PRESENTATION

PLANT
MANAGEMENT
KFORMATION

»tVtl.41 (

OPERXnONALANO
FROOUCflON
SUPBMSnN

PLANT PR00UCT10N
SCHEOUUNGANO
OPEftAIXWAl.
MANAGEMENT

tUPERVGOR^
CONSOU

wtra-aaea
coorowahon

(shop ooorohatori

SUPERVISORS
OONSOU

WORK CELL
(DIflECT NUMERCAl.

CONIROU

OPERATOR'S
CONSOIE

WORK STATION (COM-
PUTERIZED NUMER-

ICAi. OONTROD

(LEVEL 1) <

DEDICATED
PROGRAMMABLE

LOGIC OOHTROIURS

PROCESS

figure 3 Assumed furxtloml hierarchy computer system structure for a large manufacturing complex (Computer Integrated

Manufacturing System (CIMS)). ,-

Figures 2 and 3 represent the simplest situation - that of a company with only one
manufacturing plant. The corresponding situation with a multiplant company is represented
in Figure 4 in that an additional level is necessary to separate the company's distribution

or assignment of orders to the various plants from the plant's own production scheduling

activities. In addition, the company management functions of Level 4B are now transferred

to a new Level 5B. With this simple discussion of potential expansion of the model,
continuing discussion of the model in this paper will concentrate, for ease of consideration,

on the single plant company, i.e.. Figures 2 and 3. The tasks carried out at Level 5B would
be the same as those assigned here at Level 4B with suitable allowance for the wider
horizon of interest of the management of the larger company.

COMPANY
MANAGEMENT

DATA PRESENTATION

COMPANY
MANAGEMENT
INFORMATION

(LEVELS! <

COMPANY pnooucnoN
ASSIGNMENT
SCHEDULING
SUPERVISION

COMPANY
PRODUCTION
SCHEDULING
ASSIGNMENT

5S5

(LEVEL 41

OPERATIONAL AND
PRODUCTION
SUPERVISION

PLANT PRODUCTION
SCHEDULING AND
OPERATIONAL
MANAGEMENT

(LEVEL 31
SUPERVISOR'S
CONSOU

INTRA-AREA
COORDINATION

rr
cj 5

Figure 4 Assumed functional hierarchical computer control structure for an Industrial company (multi-plant).

The detailed tasks that would be carried out at each level of the hierarchy can be
readily described. These tasks are easily subdivided into those related to production

scheduling, control enforcement, systems coordination and reporting, and reliability

assurance. These can then be extensively expanded to include any degree of detail desired

as in the model itself [26,28,33-35].

Such lists can outline the tasks which must be carried out in any industrial plant,

particularly at the upper levels of the hierarchy. Details of how these operations are

actually carried out may vary drastically, particularly at the lowest levels, because of the

nature of the actual process being controlled. We all recognize that a distillation column
will never look like or respond like an automobile production line. But the operations

themselves remain the same in concept, particularly at the upper levels of the hierarchy.

Thus it is our contention that, despite the different nomenclature of Figures 2 and 3, the

major differences in the control systems involved in concentrated in the details of the

dynamic control technologies used at Level 1 and the details of the mathematical models

used for optimization at Level 2. The differences are thus concentrated in the details of

the control and operation of the individual production units (the application entities) of the

factory.

52

Commonality is in the support functional entities (computational services,

communications, data base technology, management structure, etc.). Sensing and
communication techniques are similar in both systems. Similar optimization algorithms can

be used, computer systems technology and progranmiing techniques and production

scheduling technology should be similar, to name only a few.

THE DATA-FLOW GRAPH. A FUNCTIONAL

NETWORK VIEW OF THE CIM REFERENCE MODEL

There is need in the CIM Reference Model to have a mechanism to show the

interconnection and precedence of the several tasks assigned to the overall mill-wide control

system. An excellent method for showing this is the so-called Data-Flow Graph or

Information-Flow Graph using a technique known as Structured Analyses [9] also known
as the Yourdon-DeMarco technique [3].

This method shows diagrammatically the interconnection of the several tasks carried

out by the control system and allows the potential for an ever greater detailing of these

tasks in the form of subtasks and the resulting interconnections of these subtasks with each

other and the main tasks. These diagrams are restricted to the model as defined earlier

(i.e., the definable scheduling and control system for the manufacturing facility and
including only interfaces to the external influences).

The set of diagrams begins with the interconnection of the influencing external

entities on the factory itself (Figure 5). In the present model one very important external

influence of the factory is the company management itself. As noted in Figures 6-7,

management interfaces through the staff departments who provide services to the factory

itself or express managements' policies in sets of requirements to be fulfilled by the factory.

SCKVICZS
(to CONTRAaCWS

TfUMSPORTATIOM. iMTOMAL
COMPAMCS. FTCJ

<CG SUPfUCRS
CONnuCTS ETC I

CUSTOMEdS

MOUiftEMENTS

figure 5 Major external Inlluencet.

53

CORP
MGMT

EXTERNAL
ENTITIES

PURCH RO&E

POUCIES

HUMAN
RES

ACCT

VENDOR
CONTRACTS

KNOW-
HOW

REQUIRE
MENTS

MANPOWER MANU-
FACTURING
POLICIES

REQUIREMENTS

FACTORY LEVEL 00

Figure 6 Requirements interfacing ofcorporate management and staff functional entities to the factory.

*ln succeeding diagrams personnel requirements
are all pervasive and cannot be specifically shown.
They are collectively addressed here.

EXTERNAL
ENTITIES

PURCH

RAW MATERIAL.
ENERGY. AND
SPARE PARTS
ORDERS

REQUEST FOR
INFORMATION.
PLANT TESTS.
AND PROJECTS

CORPORATE
PERFORMANCE REPORTING

STATUS
OF PRO-
DUCTION
ORDERS

HUMAN
RES

MANPOWER
PERFORMANCE
DATA AND
REQMTS*

OPERATIONAL
PERFORMANCE
REPORTS

COST
REPORTING

FACTORY LEVEL 00

Fiigure 7 Report interfacing to corporate management and staff functional entities from the factory.

54

Figure 8 shows the initial number in the expansion of information in the description

of the plant functions as ever greater detail is desired. Such an analysis can be carried out

for any function or set of functions to the detail necessary or desired. Only an example is

shown here.

SOME INADEQUACIES OF THE DATA-FLOW-GRAPH-MODEL

Foundation functional entities cannot be shown on the data flow diagram. That is,

the data flow diagram mainly shows the interconnection of manufacturing-specific functional

entities.

The data-flow graph will accommodate all functional entities which exhibit the

principle of locality. Those which are diffuse cannot be accommodated because of the

number of lines involved. The principle of locality may be a virtual consolidation of

operations for the sake of the diagram. Most foundation functional entities are diffuse, e.g.,

data base, communications, management, etc.

55

THE IMPLEMENTATION HIERARCHY VIEW OF THE

CIM SYSTEM

Figure 9 represents one concept of the components of elements required for the

implementation of the CIM system for each "bubble" or Manufacturing Specific Functional

Entity of the data-flow diagram or for each Task of the Scheduling and Control Hierarchy

view.

This concept allows each task to be expressed in as many layers as required (11

maximum). Layers may be used or nulled as necessary. Thus such a model needs to be
developed in specific form for each 'Tjubble" of the data-flow diagrams presented in the

previous chapter using the generic model of Figure 9 as a base and supplying the

appropriate implementation details. Likewise this would be done for each separate task of

the overall control system.

Just as the ISO-OSI model [2] breaks the tasks of the communications between
systems into layers, this model breaks the tasks of plant control into functional layers. A
brief discussion of each layer of the model follows.

DESCRIPTION OF THE LAYERS

As diagrammed in Figure 9 the CIM model is represented in the implementation

hierarchy view by an eleven layer structure. The hardware elements of the system are

represented by the lower five layers of the system (1-5), while the software elements are

represented by the top six layers (6-11).

LAYER

11 TASK STATEMENT 11

10 SPECIFIC PROCESS OR
PLANT MATHEMATICAL

MODELS

10

9 GENERK ALGORITHMS OR PROCEDURES 9
\MRE

8 HIGH LEVEL LANGUAGE SOURCE CODE TASK PROGRAMS e O
7 TASK PROGRAMS 7

in

6 SYSTEM RESOURCE MANAGERS. E.G.. OPERATING SYSTEM. DATABASE MANAGERS.
NETWORK MANAGERS

6

5 COMPUTER SYSTEM ELEMENTS 5

4 PROCESS/TASK DATABASE 4
3 m

3 COMMUNKWTKMS i

2 A; DATA INPUT/CHECKING/OUTPUT 6: UNKS TO OTXER LEVELS 2
<X

1 PHYSKAL ENVIRONMENT nNCLUOING HUMANS) 1
1

Figure 9 Proposed generic form of the Implementation hierarchy view of the CIM sys tern.

56

LAYER 1 - PHYSICAL ENVIRONMENT (INCLUDING HUMANS)

This layer would typically represent the process equipment (i.e., reactors and

distillation columns), machine tools (i.e., CNC and human operators) and supporting areas

such as utilities and packaging. As noted often earlier, these elements would be non

generic in any specific case and are included here for completeness.

LAYER 2 - A - DATA INPUT/CHECKING/OUTPUT

The detection and measurement of the status and of the actions occurring in

Layer 1 are contained in this layer. This layer represents the eyes and ears of the

CIM System. This includes the determination of the values of such variables as

temperature, level, pressure, chemical analysis, position, weight, etc., from sensors

and detectors. Also included are inputs from touch screens, mice, bar code readers,

etc. Typical system actuators would include valves and valve positioners, hydraulic

drives, solenoids, relays, CRTs, printers, etc.

B- LINKS TO OTHER LEVELS

Where higher level functions are involved such as overall production

scheduling in large industrial production plants, then Layer 2 represents the link to

other computer and control equipment involved in implementing the task described.

In the case of Overall Production Scheduling (which itself takes place in Levels 4A
and 3 of the hierarchical system of Figure 2 or 3) this would include all elements of

Levels 1 and 2 of the latter diagram.

LAYER 3 - COMMUNICATIONS

Layer 3 moves the data within the system. The clients of this communication system

would be the various computer systems and databases which manipulate and store this

information and the various functional entities which use the resulting information.

Included in this layer are device gateways and drivers as/if required. The communications

structure should, as far as possible, follow the OSI model and agreed upon industry-wide

standards for their implementation.

LAYER 4 - PROCESS/TASK DATABASE

The global database of the factory or plant resides in this layer. It becomes the

collective memory for the CIM system. This database may be distributed as determined by
the implementation plan.

LAYER 5 - COMPUTER SYSTEM ELEMENTS

Exact content at this layer will be determined by the functional requirements of the

system, but must encompass the entirety of the intelligent computing devices contained in

the CIM System which are required for the task at hand. Examples include computers,

disks, and database machines.

57

LAYER 6 - SYSTEM RESOURCE MANAGERS

This layer contains the software which allocates and manages the elements which
comprise the system. Examples are operating systems, database management systems,

network managers, system utilities, and data dictionaries.

LAYER 7 - COMPILED OR INTERPRETED CODE

This layer represents the program as actually executed by the computer system. It

may be stored in random access or read only memory as required by the application at

hand.

LAYER 8 - HIGH LEVEL LANGUAGE SOURCE CODE

This layer contains the source code in the form of a high level language such as Ada,
FORTRAN, C or 4th generation languages.

LAYER 9 - GENERIC ALGORITHMS/PROCEDURES

Each process has calculation, algorithmic, or modeling requirements. These would
reside in this layer and service the lower layers. Examples would be linear programs as

used for a catcracker optimization routine or a dynamic optimization technique as used for

robot optimal path determination.

LAYER 10 - SPECIFIC PROCESS OR PLANT MATHEMATICAL MODELS

For certain applications, models will be included. These models allow simulation

of the process to generate information not otherwise available. Uses would be supplying

unmeasurable data, verify existing data, or predicting future data. Examples are process

unit models for advanced control systems or business models for scheduling functions.

LAYER II - TASK STATEMENT

Description or specification of the task or function to be accomplished (the

application functions of the manufacturing plant) would reside at this layer.

DEVELOPMENT OF THE MODEL AND ACKNOWLEDGMENTS

The CIM Reference Model described in this paper was developed as a,

Reference Model for Computer Integrated Manufacturing (CIMV A Description

From the Viewpoint of Industrial Automation, by the CIM Reference Model
ConMnittee of the International Purdue Workshop on Industrial Computer systems

during the period April 1986 - May 1988. It was published in book form by the

Instrument Society of America in October 1989. This text expands greatly on the

details of the model sketched in this paper. A listing of the active members of the

CIM Reference Model Committee is presented in the text [35].

58

The International Purdue Workshop is an activity of the Purdue Laboratory

for Applied Industrial Control of Purdue University. The Workshop has been
supported by the international industrial control community for the past twenty years.

Professor Theodore J. Williams, Director, Purdue Laboratory for Applied

Industrial Control served as Chairman of the CIM Reference Model Committee and
Editor of the text describing its work [35].

59

REFERENCES

1. Albus, J., Barbera, A., and Nagel, N., "Theory and Practice of Hierarchical Control,"

Proceedings of the 23rd IEEE Computer Society International Conference (1981).

2. Anonymous. Data Processing - Open Systems Interconnection-Basic Reference Model.

ISO DIS 7498, International Standards Organization, Geneva, Switzerland (December

3, 1980).

3. Anonymous, Information Flow Model of Generic Production Facility, the Foxboro
Company, Foxboro, Massachusetts (1986).

4. Anonymous, CIM-OSA Reference Architecture Specification. ESPRIT Project Number
688, CIM-OSA/AMICE, Brussels, Belgium (May 1989).

5. Anonymous, Computer Integrated Manufacturing. The CIM Enterprise . Document
G320-9802-00, International Business Machines Corporation, White Plains, New York
(October 1989).

6. Beeckman, Dirk, "CIM-OSA: Computer Integrated Manufacturing-Open Systems

Architecture,
"
Int. J. Computer Integrated Manufacturing. Vol. 2. No. 2, pp. 94-105

(March-April 1989).

7. Biemans, Frank P. M., A Reference Model for Manufacturing Planning and Control,

doctoral Dissertation, University of Twente, Enschede, The Netherlands (October 27,

1989).

8. CIM Reference Model Working Group, ISO/TC184/SC5/WG1, Technical Report on
CIM Reference Model (July 1987).

9. DeMarco, Tom, Structured Analysis and System Specification . McGraw-Hill Book
Company, New York, NY (1985).

10. Plateau, Ulrich, Digital's CIM Architecture. Revision 1.1 . Digital Equipment
Corporation, Marlboro, Massachusetts (April 1986).

11. Findeisen, W., and Lefkowitz, I., "Design and Applications of Multilayer Control," Proc.

Fourth IFAC Congress . Warsaw, Poland (1969).

12. Graefe, Udo, and Thomson, Vince, "A Reference Model for Production control," Int.

J. Computer Integrated Manufacturing. Vol. 2. No. 2, pp. 86-93 (March-April 1989).

13. ISO (International Organization for Standardization), "The Ottawa Report on
Reference Models for Manufacturing Standards," ISO TC184/SC5/WG1 N51
(September 14, 1986).

14. ISO (International Organization for Standardization), "Reference Model for Shop floor

Standards, Part 1," ISO TC184/SC5 N131 (July 15, 1988).

60

15. Jones, Albert, Barkmeyer, Edward and Davis, Wayne, "Issues in the Design and
Implementation of a System Architecture for Computer Integrated Manufacturing," Int.

J. Computer Integrated Manufacturing. Vol. 2.. No. 2, pp. 65-76 (March-April 1989).

16. Jones, A. and Mclean, C, "A Proposed Hierarchical Control Model for Automated
Manufacturing systems," Journal of Manufacturing Systems. Vol. 5 . pp. 15-25 (1986).

17. Jones, a., and Whitt, N., Eds., Proceedings on Factory Standards Model Conference.

National Bureau of Standards, Gaithersburg, Maryland (1985).

18. Lefkowitz, I., and Schoeffler, J. D., "Multilevel Control Structures for Three Discrete

Manufacturing Processes," Proc. Fifth IFAC Congress. Paris, France (1972).

19. McCarthy, J. J., "MAP and the Integration of Plant Data Bases," in Standards in

Information Technology and Industrial Control . N.E. Malagardis and T. J. Williams,

Editors, North Holland Publishing Company, Amsterdam, The Netherlands (1988).

20. McCarthy, J. J., and Ruckman, R. P., 'The Application of the CIM Reference Model
to a Continuous Process Plant," Advanced Control in Computer Integrated

Manufacturing. Morris, H. M., Kompass, E. J. and Williams, T. J., Editors, Purdue
University, West Lafayette, Indiana (September 28-30, 1987), pp. 87-96.

21. Mesarovic, M. D., "Multilevel Systems and Concepts in Process Control," Proc. of

IEEE.58 . 111-125 (1970).

22. Mesarovic, M. D., Macko D., and Takahara, Y., Theory of Hierarchical Multilevel

Systems . Academic Press, New York (1970).

23. Moss, s. P., "A Management and Control Architecture for Factory-Floor Systems: From
Concept to Reality," Int. J. Computer Integrated Manufacturing. Vol. 2. No. 2, pp. 106-

113 (March-April 1989).

24. Parunak, H. V., and White, J. F., Private Communications to CIM Reference Model
Committee, (March 2-3, 1987).

25. Prage, J. H., Personal Communication to the CIM Reference Model Committee,
International Purdue Workshop on Industrial Computer Systems, Inland Steel Company,
E. Chicago, Indiana (March 8, 1988).

26. Project Staff, Tasks and Functional Specifications of the Steel Plant Hierarchy Control

System. Report Number 98 . Purdue Laboratory for appHed Industrial Control, Purdue
University, West Lafayette, Indiana (September 1977; Revised June 1984).

27. Schoeffler, J. D., "Multilevel Systems and Decomposition for the Solution of Static

Optimization Problems; Decomposition and Multilevel Methods for On-Line Computer
Control of Industrial Processes," In Wismer, D. A., ed., Optimization Methods for

Large-Scale Systems . McGraw Hill, New York (1970).

61

28. Systems Engineering Group, INCOS Project, Tasks and Functional Specifications of the

Bhilai Steel Plant Integrated Control System aNCOS) . Steel Authority of India, Ltd.,

Delhi, India (April 1986).

29. Thacker, R. M., King, R. E., Robert, Edward, and Ploskonka, C. A., A New CIM
Model: A Blueprint for the Computer-Integrated Manufacturing Enterprise . Society

of Manufacturing Engineers, Detroit, Michigan (1989).

30. Temple, Barker and Sloan, Inc., "Customer Perspectives on CIM," Proceedings. CIM
Management Forum. Digital Equipment Corporation, Orlando, Florida (January 25-

27, 1988).

31. Thomson, V., and Graefe, U., "CIM - A manufacturing Paradigm, SME MM86-722,"
5th Canadian CAD/CAM and Robotics Conference. Toronto, 1986.

32. Weston, R. H., Hodgson, A, Gascoigne, J. D., Sumpter, C. M., Rui, A., and Coutts, I.,

"Configuration Methods and Tools for Manufacturing Systems Integration," Int. J.

Computer Integrated Manufacturing. Vol. 2.. No. 2, pp 77-85 (March-April 1989).

33. Williams, T. J., "Computer Control in the Steel Industry," Computers in Mechanical

Engineering. Vol. 2. No. 4, pp 14-16 (January 1989).

34. Williams, T. J., Editor, Analysis and Design of Hierarchical control Systems . Elsevier

Science Publisher, Amsterdam, The Netherlands (1985).

35. Williams, T. J., Editor, A Reference Model for Computer Integrated Manufacturing.

A Description From the Viewpoint of Industrial Automation. CIM Reference Model
Conunittee, International Purdue Workshop on Industrial Computer Systems, Purdue
Laboratory for Applied Industrial Control, Purdue University, West Lafayette, Indiana

(May 1988); Instrument Society of America, Research Triangle Park, North Carolina

(1989).

36. Zachman. John. Application and Data : Factory of the Future . Applications Technology

Group, Information Systems Department, International Business Machines Corporation,

Los Angeles, California (May 23, 1989).

62

AN APPROACH TO IMPLEMENTING CIM IN SMALL & MEDIUM SIZE

COMPANIES

ROBERT E. YOUNG
JOHAN VESTERAGER

Abstract

In this paper we describe results from the Danish CIM/GEMS project that demonstrate it is

possible for manufacturing people with little or no prior computer experience to design and build

their own CIM systems. The approach is applicable to small and medium size companies and is a

way to overcome the software backlog that currently exists so that the projected growth in the CIM
area can occur. In addition, we developed a novel approach to knowledge and technology transfer

that allowed industry to receive technology and begin using it as soon as it is developed.

1. Introduction

This paper describes an approach to implementing CIM in small and medium size companies in

which manufacturing people with little or no prior computer experience can design and build their

own CIM systems. It is the result of the Danish CIM/GEMS (General Methods for Specific

Solutions in Computer-Integrated Manufacturing) project, a multiyear project that developed tools

and methods for system development, and developed knowledge and technology transfer

mechanisms to provide industry with the information. Although small and medium size companies

may not seem important, they have a significant impact on the economies of Denmark and

America, and possibly most western industrialized countries. In Denmark, 98% of the discrete-

parts manufacturing companies employ 200 people or less. These small and medium size

companies employ 52% of the people working in discrete-parts manufacturing and produce 33% of

the country's value-added goods. In America, 95% of discrete-parts companies employ 250 people

or less, which is 43% of the people working in discrete-parts manufacturing, and produce 18% of

the country's value-added goods. From discussions with colleagues in other western European

countries we believe most industrial countries have a similar distribution of small and medium size

companies. Consequently, the results of our project have implications not only for Denmark and

America, but possibly for other western industrialized countries.

Although most effort to date in CIM system development has focused upon large corporations, the

general feeling is that in the next decade small and medium size companies will be the fastest

growing segment of the CIM market [BW86]. However, this market growth can't occur because

the resources necessary to build the systems are not available. There currently is a severe shortage

of software professionals. There is also an estimated development backlog for software-based

systems of four years and a hidden backlog of eight years; and complicating development for the

1990s is a projected increasing demand for software professionals of ten times the current level

[SHEM87]. Consequently, if CIM systems can only be built by software professionals then there is

today, and will continue to be, insufficient numbers of computer scientists to build the large

number of systems needed, and the market growth will not occur. Since CIM is generally viewed

63

as a principle mechanism for productivity improvement [BW86], this development bottleneck has

serious implications for manufacturing.

Our primary project goal was to test an alternative approach to CIM system development - have

manufacturing personnel with little prior computer experience build their own CIM systems. Our

project developed tools and methods that supports this approach and through projects with

industry, demonstrated its validity.

The next section provides a background of the project followed by a description of the tools and

methods, and development approach we used in the project. The last section describes our

knowledge and technology transfer approach.

2. Background of the CIM/GEMS project

In 1987, the Danish government awarded a multi-year, Dkr 15 million ($2.5 million) research

contract in CIM to the Driftsteknisk Institut (Institute of Industrial Engineering and Production

Management) at the Technical University of Denmark. The project funded by this award was

called CIM/GEMS, and its goal was to develop and transfer CIM tools and technology to small

and medium-sized manufacturing companies in Denmark (200 employees or fewer). The

CIM/GEMS project was composed of a university development group and an industry "follow

group" made up of participants from twelve companies.

The university group undertook all technology assessment. Its primary task was to evaluate and

apply selected tools, methods, and technology in building a complete laboratory CIM factory at the

university. This factory fulfilled two functions:

(1) As a research and development site, it permitted the project to build a CIM facility

following the phases of Life-Cycle Engineering (see Figure 1).

(2) As a site for knowledge and technology transfer, it served as a laboratory factory and

demonstration site for teaching industry participants about CIM.

The focus of the project's CIM development was on managing the indirect labor and costs behind

manufacturing's direct process operations. The project chose to computerize a small

manufacturing system in the Institute that had been used for ten years to train Danish

manufacturing engineers. This factory of seven workstations produced several types of wooden

rulers. Since the process operations were straightforward and well-established, the project could

stay focused on the information processing and indirect activities that supported direct labor and

manufacturing. This laboratory facility-though smaller and simpler than its real-world

counterparts-was still a complete manufacturing facility requiring a substantial amount of

information processing to run (see Figure 2). For our project, it was an ideal facility for

experimentation and training.

Because the work of the CIM/GEMS project was aimed at small and medium-sized companies,

the project established the following general requirements for building a new CIM Rulers Factory:

64

65

66

* The factory would be low-cost and use only PC technology.

* The manufacturing facility supported by PCs would include both manual and

automated operations, which is a typical configuration in smaller companies.

* The factory would be upwardly expandable, that is, able to add and manage more

information and new stations/operations without changing the basic system.

* The design, development, and installation of the CIM factory could be done by

manufacturing people and engineers without requiring computer specialists.

3. CIM system development approach

To accomplish the project objectives we selected a proven toolset and approach developed by the

USAF ICAM Program. The approach was based upon the System Engineering Methodology

(SEM) [SEM85] and the ICAM Definition (IDEF) tools: IDEFO and IDEFl [IDEF081,

IDEF181]. Although an IDEF2 was developed [IDEF281], it is an unsupported simulation

language. Instead of IDEF2, we used the SIMAN simulation language and CINEMA animation

package from Systems Modeling Corporation [SMC].

The System Engineering Methodology is a detailed description of how to establish and manage a

CIM development project. It describes how to use the IDEF toolset to transform a manual

manufacturing system into a computerized system. IDEFO is a function modeling technique for

modeling a system's activities and the information flowing among them. IDEFl is an information

modeling tool for specifying a CIM system's information structure and requirements. It is used to

model the structure of the information flowing among the activities defined with IDEFO. SIMAN
was used to model the CIM system's time-varying behavior. Like IDEF2, it allows you to first

model the system as a node/arc graph and then translate the graph into a simulation program for

analysis. CINEMA was used to build a simulation driven animation of the Ruler's Factory as a

manual system and as a CIM system.

Taken together, these tools formed a toolset that supports the development of a CIM system

throughout the development life-cycle. However, the Systems Engineering Methodology and the

IDEF tools were developed during the late 1970s and early 1980s and reflect a centralized

computing, mainframe oriented mindset. To achieve our project goals, the tools had to be

modified and extended so that computer inexperienced manufacturing personnel could use them

to build distributed CIM systems.

3.1 IDEFO

IDEFO is a dataflow technique that evolved from SADT [ROSS85]. SADT consists of two

dataflow techniques, function on arc with the information flow on node, and function on node with

the information flow on arc. IDEFO is equivalent to the latter, it has function on node with the

information flow on arc. It was adopted by the ICAM program office to support their concept of

manufacturing architectures and as a modeling technique to support the analysis and design of

CIM systems. For an excellent discussion on the concept of architectures as used here, please see

67

Zachman [ZAC87]. The use of IDEFO as an analysis and design tool is discussed in the System

Development section later in the paper. The intent of this section is to describe IDEFO.

Key elements of IDEFO are its graphical representation and its hierarchical structure. Figure 3

shows the basic syntax and hierarchical structure of an IDEFO model. As a function modeling

technique, IDEFO is used to model manufacturing activities that transform input into output under

constraints. An activities' inputs
,
constraints, and outputs are information. Mechanisms can be

information, devices that facilitate the function activity, or an IDEFO function in another model.

The concept of a mechanism as a function in another model allows multiple models to be

interconnected and provides a powerful tool for modeling complexity. In addition, a diagram at a

lower level can be a function in more than one diagram at a higher level. An example of this

convergence is shown at the lowest level in the hierarchical structure of Figure 3.

As a model evolves from the general to the specific, activities and their information flows are

decomposed into more and more detail. This topdown approach allows the complexities of

manufacturing to be systematically organized into a logically consistent model and represented in

a graphical context easily understood by management and manufacturing personnel. The graphical

representation allows analysts to easily walk these people through a model for validation reviews

on models of existing systems and to describe to them the structure of proposed systems. A more

detailed explanation of the IDEFO technique is given in [IDEF081 and ROSS85].

Another important concept of IDEFO is its explicit use of context, viewpoint and purpose. Context

establishes the subject of the model as a part of a larger whole. It is accomplished by a textual

description and by defining the bounds within which a model exists using a high level node

diagram. Viewpoint specifies the perspective from which the model is constructed, and purpose

establishes the reason why the model is created.

In updating IDEFO for use in the CIM/GEMS project, we expanded the use of viewpoints to

require multiple models with specified viewpoints. We model the manufacturing system from a

process flow viewpoint and from a documentation viewpoint. The process flow viewpoint models

the activities that are needed for the physical production of goods. The documentation viewpoint

models the documents used to manage and control the activities shown in the process flow model.

In addition, the documentation viewpoint models the relationship between all the documents

through its information flows. The documentation model is connected to the process flow model

through the mechanism approach described earlier. The connection of these two models allows

explicit representation of what documents are needed at each activity in manufacturing. Together

with the IDEFl model, these two models can be used to identify the data, transactions, and screens

that are needed to support each manufacturing activity in a computerized system.

The manufacturing system is modeled for different purposes as we move through the lifecycle

shown in Figure 1. In the A2 level of Figure 4, two purposes are identified for the modeling efforts

~ theAS-IS system and the TO-BE system. The purpose of theAS-IS system models is to model the

existing manufacturing system from the two viewpoints previously discussed. These models

represent a definition of the current system. The purpose of the TO-BE system is to model the

manufacturing system as it should exist after computerization. As before, two viewpoints are used.

68

Figure 3. The IDEFO methodology

IDEFO Basic Syntax

Constraints

Inputs Outputs

Mechanisms

A node is an activity or function that transforms

inputs into outputs under constraints using mechanisms.

The inputs, outputs, constraints, and mechanisms are

directed information flows that connect functions in

IDEFO models. Often the mechanisms are not shown

because they are understood by the audience. The

information flows to/from a function in a parent

diagram at one level in the hierarchy match the information

flows to/from its decomposition at the next lower level.

Al
>

Output from function A2
is a constraint to function A3.

Output from function Al is an input

to function A2 and to function A3.

Other inputs are from the next level

up in the hierarchy.

A2

A3

J

Output from function A3
provides a feedback

constraint to function A.

Function A3 requires an explicit

mechanism to perform its activities.

IDEFO Hierarchical Structure

in several parent diagrams.

Copyright 1990, Robert E. Young

69

Figure 4. A breakout of activities for specifying

system requirements in the CIM/GEMS project

AO Level in the QM Project Life Cycle Model

(The AO level is the topmost level in this model's hierarchy)

Corporals

CIH Straloty

HanBgerisI

Envlronmenl

UBnafacturing

StbImh 'J>S-1S-

Design

Problems

Dlrcd the
Ppojed

Nanazemenl
Plan

Technology
OpUonB

~

Understand
Ute Syitem'f

'

Problems

Formolste
\k JQstify

lie SolutioD

System Teal

Retails

Constnicl --'

k Integrate

the Solglion

Implement
& Naintein

the Solution

Management
Plan

System's Needs
k Requirements

GM System
Design

btsgrated
OM System

Operational

GM System

More
General

A2 Level, Understand the System*s Problems

(A decomposition of the A2 function in the AO level)

Con>orat«
CUf Management

Strategy Plan

Design

Problems

Technology
Options

Mannfacloring
System "AS- IS"

Perform Needs
Analysis on

"AS-IS" System Technology
Constraints

Perform
Requirements
DeHnitioD to

Define "TO-Br
System

Heeds Anatyai Documents
' k Needs Analysis Models

Conceptaal Prototype of the
TO-Br GM System

> System Reqoiremenls
Models

System Requirements
Documents

Project Computer
Environment

Note: Mechanisms are speciHed

at this level but are implied at

other levels and thus not shown.

A22 Level, Perform Requirements Definition to Define TO-BE" System

(A decomposition of the A22 ftmction in the A2 level)

Corporate

GH
Strategy

Design

Problems
Documentation

Standards

Technology
Constraints

Needs Analysis Documents
k Needs Analysis Models

Manufacturing
System "AS-IS"

'

Management
Plan

Determine
System

Requirements

Determine
System Testing

Strategy

System Testing

Strategy

A222

^ System Requirements

System Requirements Models

Create System
Requirements
Documentation

> Conceptual Prototype of the

TX)-Br GM System

System Requirements
Models

>. System Requirements
Documents

T
More

Detailed

Copyright 1990, Robert E. Young

70

However, in this case, the documentation model represents a model of the screens to be used in

the computerized system and the information flows between them. Together the TO-BE models

represent a definition of how the system should operate. They can be used to define requirement

specifications as shown in the A2 and A22 levels of Figure 4.

Throughout this discussion we have emphasized the use of IDEFO and not its syntax. The IDEFO

syntax is identical to SADT and is quite simple. By itself it is of limited value. Only through its use

in a specified manner and combined with other techniques does it become a powerful tool. The

next section discusses one of the other techniques, IDEFl.

Z2 roEFi

The ICAM program actually developed two versions of IDEFl information modeling tool, IDEFl

[IDEF181] and IDEFIX [IDEF1X85]. Both versions are Entity-Attribute-Relationship models

and evolved from Chen's ER technique [CHEN76] and Nijssen's ENALIM technique [NIJ79].

IDEFl was initially developed only for requirements specification. It was designed to then be

translated into a design for a hierarchical, network or relational database. As relational database

technology began to dominate manufacturing users realized that with a few extensions an IDEFl
model could explicitly define a relational database's logical structure. IDEFIX was developed to

meet these needs by using a different graphical syntax with some improved semantic richness.

Although it met these goals, IDEFIX did so through increasing the completed model's complexity.

After evaluating IDEFl and IDEFIX , we decided that with a few simple extensions IDEFl was

equivalent to IDEFIX and that models built using it were considerably less complex.

In contrast to IDEFO, IDEFl is QQi a flow diagram. Although like IDEFO it uses a node/arc

construct, unlike IDEFO its nodes and arcs are passive. The nodes and arcs do not represent

transformations and information flows ~ an IDEFl model is a static structure that defines

information groupings and relationships among groupings. It is tool to organize information so

that it can easily be located and referenced or changed. Because it can define information

groupings and relationships among groupings, it can model the business rules that define how an

organization operates. Figure 5 shows the basic syntax of an IDEFl model and lists the five phases

of the modeling procedure. The phases are grouped into two stages and produce a completed

IDEFl model. Consistent with Zachman's architectural concepts[ZAC87], Stage 1 results in a

business model that defines the manufacturing system in the terms of the users and Stage 2 results

in a logical definition of the relational database that may be difficult for users to interpret. Figure

6 shows a mapping between a Stage 2 IDEFl model and table definitions written in SQL.

Although Rouf [ROUF84] notes that a completed IDEFl model is in approximately third normal

form, it can be shown that an IDEFl model completed through Stage 2 will always be in third

normal form. In addition, by incorporating determinant analysis as defined by Howe [HOW83]
with extensions from Smith's dependency diagram technique [SMITH85], each entity class can be

analyzed and its normal form explicitly determined. This level of detail is useful when writing

transactions and as documentation for future maintenance work on the database.

71

Figure 5. The IDEFl methodology

An example of the IDEFl syntax

supplier no.

SUPPLIERS

* Boxes define entity classes

and correspond to relational

tables.

* Underlined items identify

the key attribute classes.

They are the primary

keys and uniquely identify

a row in a relational table.

* A connection between two

boxes defines the relationship

between them.

Provide

part no.

INVENTORY

Is replenished by

In this example:

supplier no., part no.

PARTS ORDERED

Supplier can be related

to many parts ordered

and thus SUPPLIER has a

"one to many" relationship

with PARTS ORDERED.

Inventory can be related

to many parts ordered

and thus INVENTORY has a

"one to many" relationship

with PARTS ORDERED.

The five phases of the IDEFl modeling procedure

Stage 1 - Results in a business model of the manufacturing system

Phase 0 - Estabhsh context, viewpoint & purpose

Phase 1 - Determine the entity classes

Phase 2 - Determine the relationships among entity classes

Stage 2 - Results in a logical definition of the relational database

Phase 3 - Determine the key attribute classes and entity class

dependencies

Phase 4 - Determine the non-key attribute classes

72

73

The completed Stage 2 IDEFl model is used to identify the entity classes needed by each low-level

function in the IDEFO models. For each function, a separate IDEFl submodel is extracted from

the IDEFl CIM system model. Each submodel shows only the entity classes and their

relationships that contain the information flowing to and from the IDEFO function. Each IDEFl

submodel defines the external schema for an IDEFO function and identifies the relational tables

that will be used to computerize the function.

33 Simulation

Examining the time-varying behavior of a system is crucial in assessing its current behavior and in

predicting its behavior as a CIM system. Even though we focused upon computerizing manual

operations and not replacing the manual system with process automation, it is quite possible that

replacing paperwork with computers will degrade system performance. Our objective in using

simulation was to determine the number of transactions per second that the database management

system must process to maintain the current manufacturing throughput rate. Detailed descriptions

of SIMAN and CINEMA [SMC] as well as descriptions of comparable tools such as

SLAMSYSTEM [PA] are available elsewhere. Instead of describing a particular tool, we will

describe how we used simulation to specify the database performance necessary to support the

CIM system.

We first modeled the manual system and established a baseline model that matched the actual

system in structure and performance. We created a scenario for the CIM system by estimating

when transactions would be made during the operation of each station and then using the

simulation model, we determined the maximum time in which a transaction must occur to

maintain production at its current rate. We constructed a CIM system model by including in the

simulation model the database management system, and transactions to and from the database at

each station in the manufacturing system. By exercising the simulation model, we were able to

determine the minimum transactions per second the database management system must process to

maintain paroduction at its current rate.

The SIMAN simulation program was used to drive a CINEMA-based animation of the AS-IS and

To-BE manufacturing systems. Animation was used to visually verify the correct sequencing of

activities in the manufacturing system and to demonstrate to our industrial coalition the concept of

simulation. The data analysis capabilities of SIMAN were used to analyze the empirical results

and establish the database performance specifications. Simulation analysis ensured that the

database software and hardware we selected would meet the CIM system's needs. The completed

CIM system performed as predicted by the simulation analysis.

3.4 Development approach

The CIM development life-cycle as shown in Figure 1 defines the high level tasks that must be

accomplished to develop a CIM system. Using the System Engineering Methodology (SEM), we

developed IDEFO models of the tasks by decomposing them into subtasks. The decomposition

created a work-breakdown structure for our CIM system development project. Its information

flows defined the task sequence and its feedback loops defined the task overlap structure, and

74

from analyzing its hierarchical structrue and its information flows a project schedule was

developed. The model provides a roadmap of how to organize a CIM development project.

Figure 3 shows the life-cycle represented as an IDEFO model with an example section decomposed

into more detail.

The System Engineering Methodology as originally conceived viewed the development process as a

sequence of activities following the traditional waterfall model from software engineering.

Because of the price/performance of todays PCs and their highly interactive interface, we

modified the basic SEM approach to reflect a highly iterative process driven by successively more

sophisticated prototypes. By using a prototyping approach, early in the development life-cycle: 1)

users have a sense of the system's look -and -feel, allowing them to influence the development; 2)

developers gain insight into the technical issues ensuring that the CIM system is technically

feasible; and 3) problems and issues in the manufacturing system are uncovered early that would

otherwise late in the project.

Using the SEM approach, IDEFO, IDEFl and simulation models of the AS-IS system are

constructed. The process of constructing these models identifies inconsistencies and structural

errors in the existing system and is the problem analysis phase. This is followed by correcting the

problems and incorporating new capabilities into the manufacturing system through modifying the

models. The models then become the definition of the proposed CIM system's functional and

information structure, and its expected performance. Prototypes of key areas validate the models.

The prototypes also provide a definition of the interface's look-and-feel and a sense of how the

completed system will operate. The prototypes include implementation of the database,

transactions with the database, and user screens.

The models and the prototypes become part of the CIM system's requirements specification,

completing the first phase in the CIM development life-cycle. At this point in the life-cycle,

manufacturing personnel have sufficient insight into the manufacturing system's complexity and

into the technical issues associated with computerization to decide whether to continue the

development on their own or to contract the development to an outside group. If they contract

the development then the system requirements can be used to specify the contractual

requirements. If they decide to continue development then the requirements become a roadmap

of what must be done.

The key element in our approach is to use the database to decouple the functions in the

manufacturing system. All information is passed between functions through transactions with the

database. This allows the functions to be implemented in isolation from the bottom up and then

integrated together through the CIM system database when they are brought online with the with

the rest of the CIM system. From the TO-BE models, functions at the lowest level can be

implemented as a set of database transactions in conjunction with screen interfaces implemented

using systems such as SQLForms [ORA]. The relational tables that will be accessed by a database

transaction are already known and defined in each function's external schema.

75

3J Caveats

There are two areas in which caution should be exercised ~ 1) the use of this approach when

systems have time-critical tasks, and 2) the need for computer expertise in establishing a local-

area network. First of all, our approach assumes that the manufacturing system does not have

time-critical tasks. Such tasks severely restrict the amount of time available for determining the

system's current state and deciding what to do. Such tasks are commonly associated with realtime

control and require a different analysis and design approach than used in our work, and require

significant computer expertise to be implemented correctly.

The second area in which we urge caution is in establishing a local-area network. We recommend

implementing CIM systems using a distributed computing approach built around a local-area

network. Initially, we believed that this tool could be designed and build by computer

inexperienced manufacturing people. Our own experience and that of our industrial coalition

indicates that the physical design and implementation of the network can be done without any

prior experience. However, setting up the network software and tuning it requires sophisticated

knowledge and is almost impossible for inexperienced people to do correctly. If the expertise is

not available inhouse, then manufacturing personnel will have to obtain outside help to ensure the

system will work properly.

4. Coordinating CIM development and Transfer

Although the above approach satisfactorily defined the CIM system development, it did not

address the other obligation of the project: knowledge and technology transfer. Though more

abstract, this effort also had to be specified as concrete activities and deliverables so that the

results of the project's technical development could be acquired and used by participating

companies.

To do this, the CIM/GEMS project first established a program of "parallel projects," in which six

of the twelve companies in the follow group agreed to undertake their own in-house CIM projects

in parallel with the CIM/GEMS project. They were to follow the same CIM-development life

cycle, staying one phase behind the CIM Rulers Factory development in order to learn from the

project's activities. Thus, the companies had both a developing laboratory system to observe and a

system to build themselves. Additional assistance came from working with other developers in

industry engaged in the same CIM activities at the same time. This organization of the

CIM/GEMS project can be seen in Figure 7. The technical tasks of the university group on the

left and the parallel project(s) on the right are coordinated and run in parallel with each other.

The chart also shows on the left the educational activities that the university group coordinated

with its technical activities. These two avenues of activities came together in a common project

schedule that yielded the products and deliverables that the parallel projects used to guide their

own system development. These deliverables are:

(1) synchronized CIM-development projects (described above), which we called the "on-

going CIM workshop";

76

u

2

'O

fl
O

N
•Pi*

fl

(31)

o

u
On

U

I

I

I g
o

Q 2 (2 j2

1

I
SI

III

t:

77

(2) short courses and workshops on tools, methods, and technology appropriate to each life-

cycle phase;

(3) developmental prototypes, which were built throughout the life cycle and used to

develop, test, and demonstrate system components;

(4) a complete and working CIM Rulers Factory at the university; and

(5) a documentation library, which included system-development documents describing the

construction of the CIM Rulers Factory and educational materials for the short

courses and prototype demonstrations.

The CIM/GEMS "on-going workshop" was a cooperative university/industry effort in two areas:

(1) empirical CIM-system development, and (2) educational exchange of knowledge and

experience about CIM tools and methods. The organization of the life (ycle into phases made it

possible to isolate specific technical activities for each phase and learn about appropriate tools and

technology for undertaking and supporting them.

5. Summary

In this paper we have described results from the Danish CIM/GEMS project that demonstrated it

is possible for manufacturing people with little or no prior computer experience to design and

build their own CIM systems. The approach is applicable to small and medium size companies and

is a means to overcome the software backlog that currently exists so that the projected growth in

the CIM area can occur. In addition, we developed a novel approach to knowledge and technology

transfer that allowed industry to receive technology and begin using it as soon as it is developed.

6. Acknowledgements

We would like to acknowledge the other people who participated in the CIM/GEMS project and

provided the technical expertise that allowed the project to be successful: Kjartan Bergsson, S0ren

Jensen, Finn J0rgensen, Ellen McDaniel, and Erik Tvedt.

7. References

BW86 "Retool or Die: Job Shops Get a Fix on the Future," BusinessWeek, June 16 1986,

pp. 105-106.

CHEN76 Chen, P., "The Entity-Relationship Model: Toward a Unified View of Data,"

ACM Transactions on Database Systems, Vol. 1, No. 1, Mar. 1976, pp. 9-36.

HOW83 Howe, D.R., Data Analysisfor Data Base Design, Edward Arnold Ltd, Lx)ndon,

1983.

IDEF08 1 IDEFO Function Modeling Manual, ICAM Program Office, WPAFB, Oh
45433,1981.

IDEF18 1 IDEFl Information Modeling Manual, ICAM Program Office, WPAFB, Oh
45433, 1981.

78

IDEF1X85 IDEFIXInformation Modeling Manual, ICAM Program Office, WPAFB, Oh
45433, 1985.

IDEF28 1 IDEF2 Dynamics Modeling Manual, ICAM Program Office, WPAFB, Oh 45433,

1981.

NIJ79 Nijssen, G. M., "Modeling in Data Base Management Systems," Proc. Euro IFIP

Conference, Sept. 1979.

ORA SQLForms, Oracle Corporation, 20 Davis Dr., Bebnont, CA 94002, 800/672-

2531.

PA SLAMSYSTEM, Pritsker & Associates, 1305 Cumberland Ave., W. Lafayette,

IN 47906-0413, 317/463-5557.

ROSS85 Ross, D.T.,"Applications and Extensions of SADT," D.T. Ross, IEEE Computer,

April 1985, pp. 25-34.

ROUF84 Ruoff, K. L., "Practical Application of IDEFl as a Database Development Tool,"

IEEE Conference Proceedings CH2031-3/84/0000/0408, pp. 408-415, 1984.

SEM85 Systems Engineering Methodology Manual, ICAM Program Office, WPABF, OH
45433, 1985.

SHEM87 Shemer, I., "Systems Analysis: A Systemic Analysis of a Conceptual Model,"

Communications of theACM, Vol. 30, No. 6, June 1987, pp. 506-512.

SMC SIMAN and CINEMA, Systems Modeling Corporation, 504 Beaver St,

Sewickley, PA 15143, 412/741-3727.

SMITH85 Smith, H.C., "Database Design: Composing Fully Normalized Tables from a

Rigorous Dependency Diagram," Communications oftheACM, Vol. 28, No. 8,

Aug. 1985, pp. 826-838.

ZAC87 Zachman, J. A., "A Framework for Information Systems Architecture," IBM
Systems Journal, Vol. 26, No. 3, 1987, pp. 276-292.

79

HIGHLY EXTEHDABLE CIM SYSTEMS
B&SED ON AN INTE6RATI(»i PZAIFORM

R H WESTON, A HODGSON, I COUTTS, I S MURGATROYD AND J D GASCX>IGNE

ABSTRACT

CIM systems are still typically implemented in a "hard-wired" form, the
resulting islemds of integration taking on the external appearance of a

larger machine. Such systems are difficult to modify, to expand
incrementally or to interface to other islemds of integration as peurt of an
enterprise scheme.

This paper contrasts the "hard" and "soft" approaches to integration £md
presents the concept of a flexible integration shell to enable the
implementation, debugging, management and modification of CIM systems as

part of an enterprise plan.

Such a flexible integration shell is used to estsdslish soft integration
schemes in a batch manufacturing environment.

1. Introduction

The 80 's have seen the emergence of a wide variety of CIM programmes aimed
at creating more responsive manufacturing systems. Major advances in com-
puter hardware and softwcure systems have provided such initiatives with an
armoury of enabling tools for this develoE»nent work [CIMOSA88, JON86,
WES89a, PDES89, NOF89, MAP/TOP89].

In contrast to these initiatives, examination of the situation regarding
industrial CIM implementations would appear to indicate that there has been
little fundamental change during this period. Industrial CIM implementat-
ions are still almost invariably "hard-wired", not only in terms of
physical equipment, but also effectively in teirms of their systems engin-
eering - the glue that sticks the msmufacturing entities and their
applications together.

Under the hard-wired "fixed integration" approach, the required inter-
actions between CIM entities must be anticipated at the specification
stage, otherwise major upheaval will result [YOU89]. As the manufacturing
environment is typically highly dynamic, it is most unlikely that all
potential changes over a system's economic life can be predicted in this
way. A further problem of this fixed integration approach is that it
cannot cope easily with the requirement to allow for incremental, self-
funding growth. This capability is particularly important for small emd
medium manufacturing companies, both to allow them to take advantage of the
internal benefits of CIM, and to enable them to be included effectively in
increasingly integrated supplier/manufacturer/customer chains.

It is only now being fully appreciated that, a's systems have expanded from
free-standing or simply linked pairs of machines to become computer inte-

80

grated manufacturing systems, the range of potential Interactions {and the
associated communications problems) between heterogeneous computer systems

has Increased out of all proportion. The enablement of these Interactions
represents the major problem area still requiring solution.

The scenario Is complicated further by the current work on a range of stan-
dards relevant to CIM, for example MAP/TOP, PDES/STEP, SQL [ANSI86]. Al-
though offering potential pathways towards a simplification of (rather than
a solution to) the problems associated with interaction, they do not
represent a panacea in themselves [WES88].

The alms of this paper are to introduce the concept of "soft" integration,
its associated methodologies and tools and to Indicate the roles of rele-
vant standeurds. Examples of applications in both research and industrial
environments are presented and conclusions are drawn based on these experi-
ences .

The paper is split into five sections. Section 2 introduces the ideas be-
hind soft (or flexible) integration and describes the concepts which led to
the work of the Loughborough Systems Integration Group on the AUTOMAIL
"flexible integration shell". Section 3 describes some reseetrch applica-
tions using the AUTOMAIL flexible integration shell. A comparative analy-
sis of a fixed integration and a flexible integration example is presented.
This section also includes work on the flexible Integration of vision into
CIM, and investigation into the use of PDES-like modelling approaches.
Section 4 details an industrial application utilising the AUTOMAIL flexible
Integration concepts, the rationalle behind the work and the potential fur-
ther developments in this particular environment. Finally section 5 con-
cludes with an assessment of associated future developments in the CIM
arena (including standards) and the planned work of the Systems Integration
Group.

2. Soft Integrationt the AUTOMAIL approach

It Is now widely accepted that more responsive product realisation can
result from facilitating high speed access to and updating of information
in machine readable form. However, as yet there is not a widely agreed
upon set of generally applicable methods and tools which can be used to
efficiently establish such CIM systems*. The absence of the above tools

has meant that the scope of systems integration projects has normally been
limited and as a result so too have the benefits. CIM systems estad^lished
today fall somewhere between the two situations depicted by Figures 1(a)
and 1(b), i.e. normally only a few carefully selected product-realising
processes or entitles will be connected together electronically so that
they can (1) share "global" Information and (11) automatically accomplish
interaction between processes or entitles. The majority of Interaction is
performed by humans and is thus poorly defined for Implementation in a com-
puter integrated system.

* Here it is assumed that a CIM system could encompass the complete range
of product realising processes through marketing, inception, design,
manufacture, sales, re-engineering and field support/maintenemce.

81

Figure 1. Ccxnputer and manually integrated systems

With existing CIM systems it is highly likely that the techniques used to
achieve integration of the selected processes or entities will have led to
relatively inflexible (or hard integrated) solutions, inasmuch that change
in scope or function of the CIM system cannot be easily accomplished. Hard
or inflexible integration will ultimately lead to the creation of a "bigger
machine" which itself cannot easily be integrated into a wider scheme of
things. Soft integration provides the capability to esteUslish a programme
of integration projects, each of manageable complexity, leading to CIM
systems of much wider scope and a significant increase in competitive edge.

How then can "soft" or flexible integration be achieved? Finding answers
to this question has been the subject of a major rese£irch study at
Loughborough University of Technology. Integration scenarios of different
scope and aimed at various target applications have been established
through, where possible, using emerging standards and associated tools.
From the findings of the Systems Integration Group so far, it is clear
that:

(i) To establish soft integration it is essential that "open" mechanisms
are utilised, to establish communication between manufacturing
entities, govern access to and update of shared information and to
establish meaningful interaction between entities.

(ii) Although tools are emerging which address specific aspects of the
soft integration problem, there is as yet no unified set of tools.
In aiming to minimise the cost of creating (and subsequently

82

expanding the scope of) CIM systems, a unified set of tools is

required to enable configuration using the open mechanism referred to

in (i) above.

Efmv

eg CADCAM^ J'ROCESSINC

•Mw«i*o(urin9 M»—
•« MH8.Proprtel«y

INFORMATtONACCBSSHUNeMTION
•ProduotProo«M Med^

IFUpeafeeriM

«0 P0E8,rOTEP.8QUPrepfM«y

CONNBCTOmONS
*Conni'« Proloool

•g MAP,TOP,FMdbui,VME,232

ENGINEERING
DATA RELEASE

Figure 2. Generalized Models of inter-action

The above work on integration scenarios has led to a characterisation of
interacting manufacturing entities and the necessary mechanisms needed to
accomplish integration, as depicted by Figure 2. To date various classes
of machine entity have been studied including robots, computer vision/image
processing systems, workpiece transport elements and printed circuit board
(pcb) component sequencing, assembly and test machines. The integration
mechanisms required to establish "links" to a number of proprietary soft-
ware packages (performing CAD/CAM, kinematic simulation, robot off-line
programming and production plemning and control) have also been investi-
gated and veirious alternative solutions proposed and implemented. This
work has led to an increased understanding of the integration problem and
the creation of various cell and shop control systems which demonstrate
integrated product realisation on an incremental basis. The schemes
implemented have also encompassed interaction with entities comprising a
combination of person amd computer system. In such a scenario, the com-
puter system typically provides an information/decision support capability
which supports the person in a variety of roles (eg. as an operator,
supervisor, manufacturing engineer, designer or manager).

83

(a) DEAUNG WimNON-CONFORMANTPROCESSES

Alien Application Handler Alien Application Handler

CONFIG.
DATA

Action

I Information

I Connection

PKSRaoeOi

—
Alien Application Handler

TASK
DESC.

\pphcaiion hO
(b) EXAMPLES OFAUTOMAIL OER/VED PROCESSES

IMAGE
PROCESSING

WORKPIECE
TRANSPORT

AUTO-COMPONENT
ONSERTION

CONFIG.
DATA

Action

I Information

I Connection

Figure 3. Creating "open" processes

From the above v^ork eui understanding has been gained of various
"interaction models" and of the scope/limitations of current integration
tools.

A further important theme has been the need to establish flexible integr-
ation given an existing installed base of "non-conformant" machines and
software packages. This situation is representative of reality, except
where a "green field" situation occurs, as most product realising enter-
prises will have already invested heavily in automation and/or information
technology and will need to progress along a migration path towards "open"

CIM. The methodology used by the SI group to deal with existing propri-
etary or "closed" entities is depicted by Figure 3(a), where external pro-
cessing is used to establish conformance with the interaction model for the
class of device concerned. Clearly in certain instances the proprietary
entities will not have been designed with "data visibility" in mind. This
typically implies a low level of functionality in terms of entity interac-
tions, or the need for potentially costly "shadow" processing in the "Alien
Application Handler". Figure 3(b) contrasts the approach t£dcen when en-
tities are designed and implemented in a form which is conformant with the
SI group's "open" interaction model or "rule set".

84

The "open" methodology derived is highly flexible as both configuration and

task descriptions are data driven, as illustrated in figure 3. The task
description data defines the dynamic or run-time interactions between enti-

ties, whereas the configuration data relates to the more static relation-

ships between entities.

OTHER

ENTITIES

OR
APPUCATIONS

Comms Management Information Management Action Management

RUNTIME

SERVICES

connect

schema

fragmentatior

schema

action

schema

CONFia (

Task

Definition

Schema

Definition

Task

Debug

Task

Monitor

Exception

Definition

Figiare 4. Automail as a platform

As indicated earlier, the SI group's "open" integration methods have
evolved from extracting the generic component psurts of prototype integr-
ation schemes. Initially, the work focused on the provision of task pro-
gramming/configuration tools to enable the definition of entity interac-
tions and this led to the original AUTOMAIL (AUTOMAtion Integration
Language) concepts and title. Subsequently AUTOMAIL has evolved to encom-
pass "open" debugging and runtime services. Figure 4 is a schematic of the
current AUTOMAIL platform which, as depicted, provides a consistent set of
services for interacting entities. In any given system a number of
AUTOMAIL instances can exist, essentially providing a shell of services
which can be duplicated and distributed as required in any given factory
hierarchy, see figure 5. It should be emphasised that AUTOMAIL does not
impose a hierarchy per se, being itself hetereurchical , but it can be used
to create soft integration schemes across the various orgemisational levels
commonly found within product realisation structures.

85

logio«l p««r to

fadK«l*d by th«

AUTOUAILptfltfonn

Factory Control

Test Shop Assembly

In-Circuit Test Functional Test Manual Test

Figure 5. Multiple ADTQIAIL platforms

Previous SI Group publications [HOD88, WES89a, WES89b] have reported a
significant increase in flexibility and a resulting greater resilience in
the face of change can be enabled by separating the action, information and
connection functions into individual architectures, see Figure 6. The
AUTOMAIL methodology is based on such a decomposition with standardised
access mechanisms and services incorporated to support each of these
architectures

.

The AUTOMAIL connection architecture provides an application process with a

uniform communication interface, i.e. the underlying protocols (MAP/TOP,
TCP/IP, RS232, etc.) need not be known to the application. Application
processes use a standard set of communication services and perceive a flat
homogeneous network. They do not require specific network address informa-
tion for associated processes as this is stored by the AUTOMAIL platform.
This address information can easily be accessed and configured via an engi-
neering interface.

The action architecture provides applications with a uniform message set

(historically based on OSI message protocols) to enable a consistent method
of interaction, i.e. applications do not interact directly in a customised
fashion. This enables the systems engineer to replace one manufacturing
entity and/or its application processes without ramifications on other
processes within the integrated system. Clearly, if the replacement or
alternative systems do not provide an appropriate functionality, then
performance will suffer irrespective of the integration approach.

86

Application

Figure 6. The three architectures

In cm analogous fashion, the AUTOMAIL information architecture provides
each application with a stemdaird interface, currently SQL, into the avail-
able information resources. Thus a consistent access approach can be ap-

plied to a variety of information resources, including flat files and
databases

.

3. A research application

In order to take advantage of the potential benefits of CIM, a company has
to go through a learning and familiarisation process. In almost all situa-
tions, the only feasible approach is to decompose the overall integration
problem into a nximber of simpler sub-problems, each of containaible complex-
ity. Subsequently, it may be possible to integrate together the "islands
of integration" so formed. However, this will typically not be the case,
and even if it is possible, it is likely that severe development con-
straints will be imposed.

To illustrate this situation, we shall consider an industzry-representative
solution to a specific containable integration problem. This is one of the
series of integration problems tackled by the Loughborough Systems Integr-
ation Group, with the aim of extracting generalised integration method-
ologies .

3.1 System description

The integration problem investigated was a relatively small-scale applica-
tion. It was concerned with the provision of information support facilities

87

to Improve functionality when accomplishing the automated optical inspec-
tion (AOI) of printed circuit boeurds. Two different types of machine vi-
sion systems were to be used. In both cases several types of unpopulated
printed circuit boards were to be inspected.

At the commencement of the project the main functional improvements envis-
aged related to (i) reduced training cycles (i.e. a reduction in the de-
8ign-to-manufacture time for new boards) and (ii) reduced machine setup
times (relating to subsequent batch manufacture of all board types). The
concept was to utilise during inspection operations product information
created previously during the design process.

Both inspection stations to be incorporated were to be caped)le of ceurrying

out the complete inspection task, thus another objective of the investiga-
tion was to compare the differences in information support requirements of
the two stations.

The hardware components of the system comprised an IBM personal computer
on which the CAD system resides, a SUN 3/60 used as the cell controller and
general file store, an Adept SCARA robot equipped with Adept area vision
and an additional IBM personal computer equipped with Matrox vision system.
Two proprietary CAD systems were investigated, namely the Racal REDAC and
the Personal Cad System Inc. PCAD packages. Only one of these, the PCAD
package, was to be integrated into the system. PCAD was chosen because its
output format, PDIF, was formally defined and was based loosely on the
evolving Electronics Data Interchange Format (EDIF) Standard [EDIF90].

IBM PS/2

Matrox vision system

IBM PC/AT

PCAD design system

Adept manipulator

Adept area vision system

Figure 7. FOB inspection cell 'hard' solution

88

Section 3.2 describes the first approach used by the Systems Integration
Group to accomplish integration of the bare board inspection system.

Figure 7 illustrates this solution, which can be considered to correspond
to a relatively hard or fixed integration approach. Subsequently the inte-
gration scheme was re-implemented in soft form, based on the use of the
AUTOMAIL platform. Section 3.3 describes the soft solution, thereby en-
abling comparison of the two approaches and their associated character-
istics with regard to expandability.

3.2 A "hard integration" solution

PCB layouts are designed on the PCAD package which produces a proprietaxy
(PDIF) output file. This data file includes information relating to board
geometry, electrical connectivity maps, component types and their
locations, and drilling information. The UNIX tool YACC (see figure 7) is

used to parse the PDIF file to produce two machine-dependent files, each of

which contains the information necessary for its target inspection station.
These files are downloaded to their respective stations in order that the
inspection tasks may take place. All links between hardware devices are
serial RS232, with KERMIT being used as the file transfer mechanism.

A system such as this, although integrated, must be considered a "hard"
solution since its ability to accommodate internal change and to be inte-
grated with other ad-hoc integration schemes factory-wide is limited. For
example, where one of the inspection stations changed (eg. for one provid-
ing increased functionality) the translator would require a considerable
amount of re-engineering to provide the new device with its particular ma-
chine-dependent file format. Another likely requirement for change in in-
tegrated systems concerns the need for ongoing functional enhancements as
they are identified. For example, it became clear in this case that two
new main areas of enhemcement could result from:

(i) Calibrating and re-utilising (in subsequent assembly and test opera-
tions) a data model which corresponds to a specific (calibrated) in-
stance of the CAD-generated model of the board. In this way, many
manufacturing tolerance problems could be overcome, hence offering
potential for much-improved product quality and reduced reject rates.

(ii) Dsing fragments of the information measured during optical inspection
for purposes of work-in-progress monitoring and to generate trend/-
quality/productivity/traceability information, as required.

This type of enhancement could be described as widening the scope of the
problem.

With regeurd to necessary architectural chemges to the hard integrated sys-
tem BO that enhancements of this type could be made, it should be clear
that considerable systems engineering effort would be involved. It is
probable that little of the original hard integration software could be re-
used. There is a square law relationship between the number of interacting
devices emd the number of potential interactions. Hence, as we widen the
scope, the systems engineering problems can rapidly overwhelm the available
resources and the capabilities of the personnel involved. This, allied

89

with the probability of discarding much of the previous expensive software
development work each time enhancements are required, makes changes very
difficult to cost-justify.

3.3 h "aoft integration* solution using the ADTQIQkIL platform.

An alternative soft solution, which draws upon recent Loughborough Systems
Integration Group reseeurch is presented. The AUTOMAIL methodology is used,
and reference is made to relevant evolving standards.

The processes required to achieve the example manufacturing task have been
discussed in the previous section, but here their implementation is facili-
tated using the AUTOMAIL methodology described in section 2.

An AUTOMAIL platform was configured and installed on the SUN 3/60 as
illustrated in figure 8, and the translation (YACC) process described
earlier was re-implemented as an AUTOMAIL process. As this had originally
been written in-house, it was considered preferable to re-implement it as
an AUTOMAIL process, rather them to produce an alien application handler
which would achieve a similar result but would not offer the same level of
data visibility.

Comms Management Information Management Action Management

Q.
<

Ethernet

RS232

Backplane

Relational

DB

Tape

Archive

Memory

Resident

Data

Structures

Hard

Disk

Run-time Scheduling

&

Interaction Management

Task

Definition

Scliema

Definition

Task

Debug

Task

Monitor

Exception

Definition

Figure 8. 'Soft' solution

Alien application handlers were implemented for both inspection stations
and the CAD personal computer station. This allowed them to be viewed ex-

90

ternally as AUTOMAIL-confoirmant processes. To achieve this required not
only the standardisation of their coimnunications interface, but also the
way in which they interacted with other processes and viewed the informa-
tion services.

An immediate benefit of using a soft integration approach can be seen when
considering increasing the functionality of an integrated system. Addit-
ional AUTOMAIL processes can be accommodated by the platform without any
major re-engineering of existing integrated components. Thus the scope of
an integrated system can be incrementally increased as need dictates.

Another major benefit is the ability of a system designed with limited
functionality and scope to be integrated with other similar systems because
of the use of a consistent underlying integration methodology. This is

seen as not only desirable, but fundamental to the implementation of large
integrated projects, i.e. this ability initially to decompose problems into
small containable sxib-problems and subsequently to build the corresponding
implemented solutions into larger CIM systems

As stated in the introduction, the use of evolving standards offers simpli-
fication of the problems associated with systems integration. Significant
work has already been carried out by the Systems Integration Group on the
use of MAP (MAP/TOP 89) as a steindard communications protocol. Currently,
an EDIF sub-committee is producing a conceptual model for PCB layout for
which it is intended to include data useful for manufacture, an area not
currently addressed by the EDIF standard. This conceptual model will be
produced in the EXPRESS data modelling lemguage [EXP89] which is also the
language adopted by the PDES/STEP initiative. This model will be used at
Loughborough as the basis for a number of PCB inspection application
scenarios over and above the simple bare board inspection described ear-
lier, for example, populated boeird inspection. In addition to the provi-
sion of data for PCB inspection, the model will contain information for
other PCB manufacturing tasks (eg. manual assembly, automated assembly,
test, etc.). Each application will require a specific partial view of the
global product model. Future work at Loughborough will include the inves-
tigation of both the information requirements of each application, and the
management of its presentation.

The availability of evolving standards does not in itself encQsle improved
integration solutions. Such standeirds only contribute when incorporated
into appropriate methodologies and tools. As appropriate standeurds evolve,
they will be taken on board and become part of the platfozrm of the succes-
sors to the AUTOMAIL system.

4. An industrial application

As a result of collaboration between the Loughborough Systems Integration
Group and a major UK computer systems company, ICL, a decision was made by
that company to transfer some of the AUTOMAIL flexible integration concepts
and methodologies to its mcuiufacturing environment. This development, the
SEFIMA project (Support Environment for Flexible Integration of Manufactur-
ing Applications), was planned as a two-stage implementation;

(i) Proof-of-concept demonstrator cell

91

(ii) Operational cell

The second stage would be dependent on successful performance of the first
stage demonstrator. In addition to these two stages there was obviously a
prior stage involving the specification and initial development of the
SEFIMA software.

4.1 The SBFIMA system

The initial specification for SEFIMA includes mechanisms for the control of
manufacturing application execution and the routing of inter-application
messages. It does not provide the functionality of its AUTOMAIL ancestor in
terms of information storage and retrieval mechemisms, but does provide for
a limited functionality information service. The initial version of SEFIMA
has now been produced.

Applications run either above the support environment (SEFIMA-conforming
applications) or in separate machines (as alien applications). The SEFIMA
memufacturing application interfaces control initiation, execution, infor-
mation access and the means of application interaction. A database of cur-
rently executing applications is maintained. The host's inter-process com-
munications service is used to pass the formatted command blocks which make
up the SEFIMA/application interface mechanism.

The major aim of the communication services interface is, given a potential
wide diversity in existing functionality and type, to bring each communi-
cation service up to a consistent level of functionality.

Communication with other SEFIMA systems involves the straightforward trans-
ference of data packets. Communication with alien machines involves addi-
tional interpretation steps by the SEFIMA system.

SEFIMA invokes and maintains data on communications service drivers and in-
terface processes as it does on memufacturing applications.

4.2 Proof of concept deoionstrator cell

The demonstrator represents the first "visible" stage in the transfer from
the research environment to a working manufacturing support product for use
by the company's manufacturing systems specifiers and implementors . The
cell has been built, SEFIMA installed and the system is now being operated
and evaluated within the company's Adveuiced Systems Development Department.
The objectives in building this cell are:

(i) To demonstrate and promote an understanding of the main SEFIMA fea-
tures .

(ii) To prove the internal software mechanisms and principles of opera-
tion.

(iii) To enable an assessment of the system's potential and applicability
in the ICL manufacturing environment, including its impact on other
aspects of the company's manufacturing systems integration policies.

92

(iv) To provide an indication of timescales and systems engineering effort
for future implementations.

The cell consists of three Sun workstations, each with a SEFIMA implementa-
tion. There ars three simple SEFIMA-conforming applications and one alien
application (which represents a typical non-SEFIMA-conforming pre-existing
application) . The alien application runs on a Zevatech surface mount sta-

tion simulator (provided by the Zevatech company) which is considered reli-
ably to represent the Zevatech system reponses.

The SEFIMA demonstrator cell is now at the system test and evaluation
stage. A remge of graphic system representation tools has been produced to
assist in the evaluation exercise.

4.3 Operational cell

Three main options currently under consideration for a live SEFIMA imple-
mentation concern (i) the integration of various system elements in the
test shop (as depicted earlier in figure 4), (ii) to provide information
support facilities in the surface mount assemply area and (iii) to underpin
the release of engineering data, thereby integrating and enhancing existing
issuing and archiving data systems in the company. The first of these op-
tions is very interesting from the point of view of requiring multiple
SEFIMA instances arremged hierarchically, whereas the other options raise
interesting issues with regard to potential three-schema information ser-
vices and the AUTOMAIL/SEFIMA support of open access to heterogeneous dis-
tributed databases.

Ultimately, it is hoped that all three options will be implemented in an
incremental, consistent fashion, leading to levels of sophistication emd
benefit not achievable via the use of hard integrated solutions.

5. Conclusions and future work

The soft integration approach is the most suitedsle way forward for small
integration schemes. For larger, long term integration schemes, it is the
only vicdsle solution. The underlying methodology allows integration by
"containable complexity", with a subsequent path to the integration of the
resulting islands of integration into a total enterprise scheme.

Standeirds are an essential part of the foundations on which a common soft
integration methodology is agreed and a set of conformant toolkits is
built. At present there is a patchwork of standards, some developing
"bottom-up", others "top-down". Some rationalisation of these standards
will inevitably be required before wide progress is made on the general
acceptance of soft integration methodologies.

The work of the Systems Integration Group based on AUTOMAIL will expand,
both in terms of the incorporation of further emerging standards, and in
terms of the addition of facilities to cope more effectively with further
memufacturing-orientated systems such as engineering data release and pro-
duction planning and control.

93

References

AZAR 88, Azar I and Weston R H, A Vision Reference Model for Systems
Integration", Int. J. CIM. Vol. 1, No. 4, 234-244.

ANSI 86, "ANSI American National Standard Database Language SQL" (New

York: American Steuidards Institute Inc).

CIM-OSA 88, ESPRIT Project No. 688,CIM-OSA strategic memagement and design
issues. CIM-OSA/AMICE, 489 Ave. Louise, B14-B-1050 Brussels.

EDIF 90, Electronic Data Interchange Format, Version 2.0.0. Obtainable from
CADETC, Leeds Uni., UK.

EXP 89, Express Language Reference Manual, ISO TC184/SC4/W61, Doc. No. N442,
Dec, obtainedale from CADETC, Leeds Uni., UK.

HOD 88, Hodgson A, Weston R H, Sumpter C M, Gascoigne J D, Rui A, "Pleuming
and Control of Information Flow in CIM", lERE Int Conf. on Factory 2000,
Cambridge, UK

JON 86, Jones A T and McLean C R, "A Proposed Hierarchical Control Model
for Automated Manufacturing Systems. Journal of Manufacturing Systems, 19,
15-25

map/top 89, Memufacturing Automation Protocol/Technical Office Protocol
Specification Version 3.0, Obtainable from the Society of Manufacturing
Engineers, Dearborn, Mi 48121.

NOF 89, Nof S Y euid Moodie C L, Editors, "Advanced Information Technology
for Industrial Material Flow Systems", Springer-Verlag, Berlin.

STEP 89, STEP Preliminary Design Document & Introduction Docximent, ISO
TC184/SC4/WG1, Obtainable from CADETC, Leeds Uni., UK.

WES 88, Weston R H, Gascoigne J D, Rui A, Hodgson A, Svunpter C M and Coutts
I, "Steps Towards Information Integration in Manufacturing", Int J. CIM,
Vol. 1, No. 3, 140-153.

WES 89a, Weston R H, Gascoigne J D, Sumpter C M and Hodgson A, "Robot
Integration within CIM", Int. J. Prod. Res., Vol. 27, No 3, 515-528.

WES 89b, Weston R H, Hodgson A, Coutts I, Murgatroyd S and Gascoigne J D,

"Integration Tools Based on OSI Networks", AUTOFACT Conf. Proc. ,SME,

Dearborn, Mi 48121.

YOU 89, Yourdon E, Modern Structured Analysis, Prentice Hall Int., 1989.

94

SERVER NETWORKS:
A CIM ARCHITECTURE DESIGN ENVIRONMENT

L.E. ZEIDNER

Abstract

Computer-integrated manufacturing (CIM) offers the benefits of
flexibility; however, many CIM systems are quite inflexible, due
either to inflexible architectures or inflexible software
implementations. This paper presents the Server Network
Generator (SNG), a new high-productivity CIM architecture design
environment. The SNG is a large-system design tool enabling the
CIM architect to test the flexibility of his designs. It is also
a distributed-software development environment enabling the CIM
system implementor to create a flexible software implementation.
The SNG provides application-level, graphically programmed,
transparent access to a distributed VM/370-based computing
platform networked across the CIM enterprise, ranging from IBM's
new 7437 VM/SP Technical Workstation to the IBM 3090 vector-
processing mainframe.

1 . Introduction

The "architecture" of a manufacturing system which
includes its hardware, its material and information
flows, the rules and procedures used to coordinate
them, and the managerial philosophy that underlies them
all -- largely determines the productivity of the
people and assets in the factory, the quality of its
products, and the responsiveness of the organization to
customer needs [HAY88].

The goal of flexible manufacturing is to design flexibility into
the architecture of a manufacturing enterprise. This goal is
motivated by growing competition, shorter product cycles,
increasing customer expectation, and market instability [FAR86]
[MIT89]. The success of flexible computer integrated
manufacturing (CIM) systems relies on their ability to change
their product mix and their process technology fundamentally,
often in previously unanticipated directions [GUP89]. Many early
flexible CIM systems were only superficially flexible, offering
limited pre-planned product variability. Some of these systems
suffered from insufficiently flexible CIM architectures, while
others relied upon inflexible software implementations [DUP82].
These early inflexible systems represent a costly software
version of hard automation.

Changes in process technology, part design, materials, and
required tolerances are necessary as products evolve. As the
rate of product evolution continues to increase, these changes
and others are increasingly likely to occur within the expected

95

lifetime of CIM systems. The CIM architect must be able to
subject each of his designs to various forms of change, to
evaluate its flexibility. The design and implementation of
successful, flexible CIM systems will depend upon the
availability of large-system design tools that enable the CIM
architect to explore the advantages of alternate designs, through
simulation, early in the design process.

1.1 Flexibility

Much of the opportunity for flexibility in automation stems from
the use of computers and software systems to control
manufacturing processes, replacing previous hard-automated
control systems. If the changes made to software-controlled
systems are less costly than similar changes made to hardware-
controlled systems then flexibility is likely to be enhanced.

Unfortunately, the traditional manual programming technology used
to implement most CIM system software is rather inflexible. It
requires many programmers working for a considerable length of
time. Recent studies show that software-system maintenance may
constitute up to 75 percent of a system's cost over its lifetime
[NRC90]. As the CIM enterprise grows in size and complexity, so
do the software systems that control it. CIM systems built by
these traditional manual programming techniques become
increasingly inflexible as they grow in size and complexity,
while the size of the programming staff grows to handle the task,
becoming less likely to converge on a solution [BR075].

Due to the promises of advanced functionality made possible
through software control, CIM software systems have taken on an
increased burden of complexity. It is often more costly to
change them than to change hard-automated systems. For major
system modifications there is no guarantee that there would be
convergence to a successfully modified functioning CIM system.
High-productivity software-development methods are needed to make
CIM systems flexible, reduce the cost of changes, and guarantee
the convergence of system modifications.

While the size and complexity of a CIM system depends largely
upon the size and complexity of the CIM enterprise, its
complexity is compounded by a variety of other factors. CIM
systems consist of a collection of software distributed across a
network of computing hardware. This computing network is
typically spread throughout the enterprise. The distributed
nature of CIM software systems is a major source of complexity
and inflexibility. High-productivity distributed-software
development methods are needed to create flexible distributed
CIM software systems.

The diversity of computing hardware found throughout the CIM
enterprise as corporate mainframes, departmental systems,
personal computers, cell controllers and machine numerical

96

controllers adds significantly to the complexity of CIM systems.
The increasing speed with which the network of computing hardware
becomes obsolete, and must be replaced for the enterprise to
remain competitive, dramatically emphasizes the need for
flexibility [DEM84].

1.2 Server networks

This paper presents a large-system design tool that is intended
specifically for the design of CIM architectures and the
resulting CIM systems. This design tool is a new high-
productivity distributed-software development environment. It
dramatically simplifies the development of distributed
cooperative CIM architectures and systems by separating two of
the sources of their complexity, so that these sources can be
addressed individually. It allows the complexity of the
individual CIM architectural components to be isolated from the
complexity of their interconnection.

Three software-development technologies are then combined for
system development: a) graphical programming [ZEI88], b)
automatic code generation [ZEI87A], and c) data-driven
application-independent software [ZEI87B]. The result is a
system modelling, simulation, and implementation environment.
The Server Network Generator (SNG) is a prototype of this high-
productivity distributed-software development environment
[ZEI89]

.

The SNG drastically reduces the number of CIM system implementors
necessary to develop a CIM system, by separating the macroscopic
and microscopic sources of complexity and by providing a highly
productive distributed-software development environment. By
drastically reducing the size of the CIM system implementation
team, the development effort becomes a manageable task that is
likely to converge.

A server network is a set of asynchronous concurrent software
processes distributed across a computing network and cooperating
to model, simulate, or control a manufacturing system. The SNG
is used to develop and modify server networks. The CIM architect
can use the SNG to graphically configure a server network for his
CIM system. He identifies the CIM system's major architectural
components and their interfaces by sketching a functional block
diagram, using the SNG. The SNG automatically c6nstructs the
operational framework of the server network from the block
diagram. Then the CIM architect can address the complexity of
each architectural component individually using the SNG's high-
productivity distributed-software development environment.

97

The server network framework consists of automatically code-
generated data that drives application-independent network
communication software. This drive data can easily be changed by
graphically modifying the architectural block diagram sketch in
the SNG. As a result, the server network framework is changed
automatically. This ease of flexibility enables the CIM
architect to experiment freely with his designs, testing their
flexibility.

1.3 Implementation

The SNG software-development environment is implemented using
multiple VM's within the IBM VM/370 operating system. The use
of the VM/370 operating system provides three major benefits.
First, the computing environment in each virtual machine is quite
rich, is fully configurable, and allows us to benefit from the
past two decades of software-development progress in this arena.
Second, modularity complete with assumption- and data-hiding is
provided inherently because software within a VM is isolated from
software in other VM's, except through intentional connections.
Third, server networks operating within communicating VM's on a
single host computer can be extended in a straightforward manner
to server networks distributed across a network of VM/370
computer hardware, via a suitable interprocess communication
platform.

Server networks are positioned well to make use of recent
advances in desktop-mainframe workstation technology that have
led to the introduction of IBM's new 7437 VM/SP Technical
Workstation [IBM88]. This PS/ 2 -based workstation provides a most
desirable distributed-computing platform for flexible automation.
It addresses a major source of complexity in CIM systems: the
diversity of computing hardware and software. Personal computers
(PC's) have been used to front-end a diverse spectrum of device
controller hardware in many CIM systems, to reduce this apparent
diversity. The 7437 workstation offers the next generation
solution while providing the advantages of mainframe computation,
communication and robustness. The 7437 workstation is a
complete VM/370 mainframe that runs the same software as large
VM/370 mainframe systems. Its communication is based upon the
PS/2 component of the workstation. Through local area network
(LAN) technology these workstations can become part of a
distributed computing network of computer hardware ranging in
power all the way from the 7437 up to the largest IBM 3090
vector-processing mainframes. The most important advantage of
this approach to CIM system computing hardware, as compared with
previous PC networks, is that the use of the VM/370 operating
system offers transparent access to a broad range of distributed
computing power coupled with robust powerful mainframe system
software tools.

98

Server networks are intended to be distributed across this sort
of mainframe computing network, with 7437 workstations
interfacing both to manufacturing hardware and to people within
the CIM enterprise. Each server is a software process that
occupies a single VM in the IBM VM/370 operating system context.
Many servers may coexist in a timesharing mode on each individual
host computer, or a single server may run standalone on any of
the networked hosts. This enables server networks to focus the
full power of mainframe computing anywhere that it is necessary
in the CIM system, at any time. The distribution of servers
across the computing network can be changed dynamically because
server network communication software is data-driven and
application-independent. Furthermore, server network
distribution across the computing network can be changed
automatically to respond to changes in server computing needs,
because server network configuration and communication drive data
is automatically code-generated.

This paper describes a) the difficulties inherent in the
development of distributed cooperative CIM software, b) how the
SNG is used to design CIM architectures and implement CIM
systems, c) the structure of server networks, d) a sample CIM
system server network, e) implementation issues, and f)
conclusions

.

2. Distributed-software developnent

Distributed cooperative processing software systems are
substantially more difficult to build than traditional single-
threaded software elements. There are four primary contributing
factors that complicate the distributed cooperative software-
development process: 1) the logistics of distributed-software
management, 2) the interdependencies between the cooperating
processes, 3) their asynchronous operation and communication, and
4) "deadlocks" that must be prevented.

From a very practical perspective, the logistics of coordinating
a distributed set of cooperative software processes pose
problems of remote vs. local access to software, version
conflicts, and completeness of software-change distribution.
The SNG provides a mechanism for automating the software
management process so that it becomes dependable.

Distributed cooperative software processes have interdependencies
related more to the interpretation of their interface than to the
actual data that they exchange. For example, consider two
servers that communicate with an assumed application-level
protocol. The implementation of the interface protocol is
embodied in the software, on each side, that receives data and
formulates responses. However, these two sets of software must
be built apart and then tested together across the interface.

99

The asynchronous nature of the separate processing streams makes
it impossible to predict precisely when an expected message will
arrive from another process. When several messages are due from
several processes it is impossible to predict the order of their
arrival. Distributed software must be able to tolerate this
asynchronous behavior. Repeated testing using identical test
data is a technique that is central to traditional software
development. It ensures that the only element of variability is
the change made to the software between consecutive tests. It
is impossible to provide the same level of consistency between
consecutive tests in a distributed software-development
environment due to the asynchronous behavior. While identical
test data may be used, the order of asynchronous events is not
predictable or controllable, and thus the processing paths taken,
through the software, will be different each time it runs.

Situations can arise, called "deadlocks," in which two or more
processors are stalled because they are each waiting for a
message from one another. None of these waiting processors can
break the deadlock, nor can any outside processor. These
deadlocks must be prevented because they cannot be resolved
remotely, once they occur. If communication status information
is provided as a service of the interprocess communication
platform, it can be used to guarantee that no deadlocks will ever
occur. Each process never needs to enter a state in which it
waits exclusively for a message from a subset of other processes.

3. Designing CIM architectures and creating CIM systems

To design a CIM architecture the CIM architect uses the SNG to
sketch a system block diagram. In this subdivision of the CIM
system the blocks correspond to major architectural components
and the links correspond to component interfaces, which are
specified parametrically . As a result, the SNG automatically
builds the framework of a server network. A set of virtual
machines (VM's) is organized, one per functional component, and
the interprocess communication links are established between
these servers to implement the interfaces between the components.
The communication software within each server is automatically
provided. All that is required of the CIM architect or CIM
system implementor is that he develop the software, within each
server, that models the architectural component's functionality.
The SNG provides a highly productive distributed software-
development environment within which to accomplish this task.

This functional decomposition of a CIM system into its
architectural components and their interfaces is the basis for
design with server networks. It is intentionally a "contextual"
subdivision of the system. The CIM architect describes the
system according to his understanding of its operation. He
distinguishes between the complexity of his architectural design
and the complexity of the architectural components. This design
approach provides modularity so that the complexity of each

100

functional component is localized within that server and can
often be changed with minimal impact on the rest of the CIM
system. From a software-design perspective this design approach
facilitates assumption- and data-hiding [PAR72]. The allotment
of one virtual machine to each server provides a rich
computational environment within which to model the associated
functional component.

4. Server network structure

4.1 Interserver coinmunication

The interprocess communication between servers is performed by
application-independent data-driven software. This software is
completely generic, i.e., independent of the details of any
particular CIM system. The communication software implements the
details of each individual CIM system by processing data in which
the details are encoded. The SNG converts the information
gleaned from the sketched block diagram into "drive data," by a
process of automatic code generation (ACG) . The generic
communication software is actually "driven" by this drive data.
This approach to software development is called the data-driven
control-flow (DDCF) methodology [ZEI87B]. The DDCF methodology
provides enormous flexibility in the modelling of CIM systems and
extremely high productivity for CIM system development by
combining application-independent software, built once for use in
all server networks, with graphical programming and automatic
code generation of drive data specific to each CIM system.

Interserver communication is based on the "shared-variable"
model [LAT73], complete with optional data-arrival interrupts for
the receiver, and data-use interrupts for the sender. Each
shared variable is bilateral, connecting two "share partners."
Any server can share any number of variables with any number of
other servers.

The shared-variable model enables servers to enjoy the best
features of message passing and those of remote procedure
calling, without the usual implementation complexity [BIR84].
The software within each server is organized into response
functions and the software that they in turn invoke. There is a
response function associated with each shared variable that can
cause an interrupt when data arrives through it. The
application-independent communication software in the server,
driven by the graphically programmed and automatically code-
generated drive data, handles the interrupt. The interrupt
causes the associated response function to be invoked, thus using
the newly arrived shared-variable data. The data could be a
message passed from another server or it could be thought of as
the argument to a remote procedure call. In the remote procedure
call model, the share partner has caused this server to invoke
the response function and whatever software it invokes, possibly

101

returning a result or causing other actions in the server
network.

Within the SNG, the CIM architect indicates the interfaces
between servers. He uses "shared-variable macros," a highly
productive hierarchical approach to specifying the hundreds or
even thousands of shared variables interconnecting a complex CIM
system server network. Each shared-variable macro is a bundle of
shared variables and their associated interrupts. A very simple
analogy to a shared-variable macro is an electrical cable
consisting of many strands of wire. Beyond this simple analogy,
macros group shared variables contextually in bundles organized
for a specific purpose. Within the SNG, shared-variable macros
are considered as attributes for the block diagram links. There
is no limitation on the number of macros per link.

Shared-variable macros also facilitate both top-down CIM
architectural design and a highly productive method for CIM
system modification. CIM architectures can be designed
macroscopically with the details of macro definitions deferred to
the CIM system implementation stage. The architectural design
structure is more easily understood due to this contextual
grouping which allows a bi- level view of the component
interfaces. During CIM system implementation or later, when an
existing CIM system must be modified, when the need arises to
change a macro's shared-variable makeup, the change is
automatically replicated in every instance of the macro usage
throughout the CIM system, during the automatic code generation
phase

.

4.2 The SNG and the dispatcher

The SNG is an expert system, a customized interactive graphical
and parametric environment, with which the CIM architect and CIM
system implementor can a) graphically configure the network while
network-integrity rules are automatically enforced, b) monitor
its performance, and c) perform remote distributed software
development. The SNG helps them to conceptualize the operation
of sets of communicating asynchronous CIM system components. It
helps them to remotely analyze particular component/component
software and timing interactions.

A special server called the "dispatcher" is used to establish and
maintain contact with each VM under its control and coordinate
network configuration. The dispatcher directs each VM to load
software appropriate for its role as a server modelling an
architectural component in the newly configured CIM system. It
then distributes the drive data, built by the SNG, to each
server, sending only the portion pertaining to that individual
architectural component. The dispatcher is used for any
subsequent reconfiguration of the CIM system, including minor
changes to the system connectivity, or relocation of servers to
different VM's.

102

Figure 1 shows the dispatching subnetwork. It consists of the
SNG, the dispatcher, and all of the VM's controlled by the
dispatcher. The CIM system subnetwork is created when the SNG
and dispatcher send appropriate drive data through the
dispatching subnetwork. The dispatching subnetwork is retained
and used to reconfigure the CIM system subnetwork as necessary,
either incrementally or completely. Figure 2 shows the
relationship between the dispatching and CIM system subnetworks,
for three tiny CIM system networks. Notice that although the
dispatching subnetwork is a simple two-level tree, the CIM system
subnetwork can take on any structure whatsoever. This
flexibility is due to the DDCF approach to inter-process
communication. It enables server networks to be used to model
complex CIM systems, regardless of their structure. The
communication software is no more complicated for a densely
connected general network structure than it is for a simple ring,
because the network structure is completely encoded in the drive
data. The same generic data-driven communication software is
used for every CIM system structure.

SNG

DISPATCHER

SERVERS

Figure 1. The dispatching subnetwork consists of the SNG, the
dispatcher, and the VM's controlled by the dispatcher.

rSNGi ["SNGI ("SNGI

Figure 2. Three very simple CIM system subnetworks indicated
using bold links, and the associated dispatching
subnetworks, indicated using dotted links.

103

4.3 The software development process

Figure 3 illustrates the relationship between the SNG and the
resulting CIM system server network software. The top of figure
3 portrays the process of using the SNG to capture the CIM
architecture in the form of a block diagram, the interfaces
between architectural components, and the distribution of the CIM
system across the computing network. This information is
gathered through graphical and parametric programming.

GRAPHICAL
AND

PARAMETRIC
PROGRAMMING

- NETWORK STRUCTURE

- INTER-SERVER COMMUNICATION

- WORKSTATION LAYOUT

USING SNG
r / / / / / / / / J / / / / f f / f t > > / / ; f / / rr7-r7\

RESULTING

SERVER

SOFTWARE:
ACG
ACM

APPUCATION-
INDEPENDENT

SOFTWARE

\y 7 /y ////////

j

> / J / f /rT-T
j

ACG

AUTOMATICALLY

GENERATED
PROGRAMS

+
RESPONSE
FUNCTIONS

AUTOMATICALLY

PROVIDED

APPUCATION-
INDEPENDENT

APPUCATION-
DEPENDENT

WRJTTEN BY DESIGNER,

WRITTEN BY DEVELOPER, OR
ALREADY EXISTING

Figure 3: The structure and development of server network
software

.

104

The bottom half of figure 3 shows the resulting CIM system
software and data. On the left is the generic application-
independent data-driven communication software. This software is
driven by the drive data which is built by the SNG through a
process of automatic code generation (ACG), and is distributed by
the dispatcher. The SNG also automatically generates some
software, such as the initial versions of the response functions.
These response functions are generated with only the bare
essentials to perform inter-component communication. CIM
software must be added to them to make them perform their
architectural functionality. This addition of CIM software to
the response functions is performed by the CIM architect or CIM
system implementor, or the necessary software may already exist
and merely need to be invoked. When changes to the CIM system
structure, inter-component communication, or distribution layout
are needed, the SNG is used to modify the server network. Then
automatic code maintenance (ACM) is used to revise the drive
data and the dispatcher distributes the changes.

4.4 Utility services

Most CIM system server networks include at least a few servers
that do not correspond to components of the CIM architecture.
These servers provide support services in the CIM system, for
server network development, operations, validation, or
maintenance. Typical support servers are clocks, input consoles,
event loggers, status displays, data managers, and performance
monitors

.

Throughout this research we have attempted to isolate a minimal
set of generic servers that could be reused in successive
applications. Support servers have yielded the best results in
this endeavor. The concept of "provision of" and "subscription
to" utility services has emerged. A server can provide a utility
service to any number of subscribers, and a server may subscribe
to any number of utility services. Note that these are utility
services and not utility servers. A server may provide a utility
service in addition to modelling a functional component of the
engineering system, or may provide more than one utility service.
From an implementation perspective, this reguires the server to
have access to a set of utility service software; however,
additional software may be added. Because of the SNG's graphical
programming and automatic code generation, it is straightforward
to identify a set of macros of shared variables that must connect
the server to subscribers, and a set of response functions and
other associated software all of which constitute the ability to
provide the utility service. All of these macros and the
associated software can be automatically provided once the CIM
architect graphically specifies that a server subscribes to a
utility service.

105

The concept of utility services differs from that of the
"client/server" model [CRI88]. The client/server model is most
often associated with print servers and file servers. The
motivation of the client/server model is to provide access to a
limited valuable resource to a variety of clients. Often the
related concept of "location transparency" is a goal in the
client/server model. The concept of utility services is
different because it carries no such association with a resource,
valuable or otherwise, nor with the location of the service
provided. Utility services can be any type of computation that
we commonly prefer to do remotely, rather than locally within a
server. Often this preference is specifically due to the
existence of an appropriate utility service provider within the
network. Using remote utility service providers can simplify a
server's software development considerably. The tradeoff in
increased inter-server communication traffic, and resulting level
of utility service provided must obviously be weighed. A
typical alternative to the use of a remote utility service is the
use of a library approach to distributed utility software.

The mechanisms of support services required in different CIM
systems are fairly consistent, however, the details of their
implementation requirements vary considerably. Our approach to
this variability is to create parametrically tunable utility
services, in which the implementation details are tunable from
within the SNG, typically through the data-driven control-flow
(DDCF) methodology of software development. The result of this
tuning process is drive data that ultimately drives the generic
utility service software within the provider.

4.5 Performance monitoring and reconfiguration

A particularly useful utility service is that of performance
monitoring. A server can be constructed to monitor the event
logs kept by a server providing the event- logging utility
service. If servers post events when they have been expecting a
response from their share partners and it is seriously overdue,
these complaints can be found by the server monitoring the logs.
When the performance monitor notices sufficient evidence of a
bottleneck in the network an appropriate solution is to move that
struggling server onto another virtual machine in the distributed
computing network having more computer power. Another
alternative may be to remove other busy servers from the
bottlenecked VM's host computer, leaving it more computer power
that it would no longer have to share.

Either of these alternatives can be accomplished by the server
providing the performance monitoring service. It can take
advantage of the data-driven nature of server network
configuration. By roughly the same process of automatic code
generation (ACG) that the SNG uses to build the network
configuration drive data, this server can modify the drive data
and pass it to the dispatcher for network reconfiguration.

106

Reconfiguration may be a multi-phase effort, since the state of
the bottlenecked server must be captured as well as the states of
its shared variables and their interrupts, and all of this must
be recreated at the server's new location, before it can continue
operation. This entire process can be performed automatically
due to the DDCF software-development methodology.

5. A Sample CIM system server network

This server network is an example of how a CIM architecture can
be designed. This CIM system was modelled using the methods
outlined above, so that the system's behavior could be
simulated. This sample server network simulates a manufacturing
enterprise. Figure 4 shows the block diagram as it was sketched
in the SNG.

Figure 4; The block diagram sketched in the SNG corresponding to
an existing CIM system server network.

Each circle represents an architectural component modelled by a
server. These are numerical control machines (MCHl & MCH2), the
production scheduler (SCHD), the inventory control system (INVT),
the purchasing department (PCHS), and the external vendors (VENl
& VEN2). The dispatcher is shown below (DSPl) and a utility
service of input console is provided by the server at the top of
the block diagram (INPT). The input console is used to construct
and archive simulation scenarios. The inventory control system
(INVT) server also provides the graphical status display utility
service. Each link is labelled with one or more shared-variable
macros as link attributes.

107

Note that several of the macros are used repeatedly, replicating
the associated shared-variable connections. Note also that both
the machines (MCHl & iyiCH2) and the vendors (VENl & VEN2) are sets
of replicated servers. The server network software is able to
function correctly, regardless of how many duplicates are
sketched in the SNG. For example, the purchasing department
server software is able to flexibly base its strategy on however
many vendor servers it sees in the network. Similarly, the
production scheduling server is able to flexibly accommodate as
many NC machines as are present in the network, and dynamically
adjust if new machines appear or disappear.

The shared-variable macros in this server network are PCVN, the
vendor/purchasing department interface; INPC, the purchasing
department/inventory control interface; SCIN, the inventory
control/production scheduler interface; INMC, the inventory
control/machine interface; SCMC, the production scheduler/machine
interface; MINI, the simulation initialization data; and DISP,
the dispatcher/server interface.

Figure 5 shows the graphical distribution of the CIM system
server network over the computing network. The CIM system block
diagram is shown in the lower right quadrant. The computing
network nodes are shown in the other quadrants, divided by
category. The assignment is quick and easy to do graphically.

5MC

<>

<>

<>

0

OTHER TERMINALS! DISCONNECTED

CADLAB SERVER NETWORK

'CHI

KH3
ill:

Figure 5: The graphical facility, within the SNG, used to
distribute the server network across the computing
network.

108

The CIM system exists once the network is dispatched. By using
the input console service in the INPT server, a set of
manufacturing jobs is specified, each consisting of assembling a
set of parts. The quantity of each part type used in each job is
specified. Then the initial stock levels are set, and the
reorder quantities can be adjusted. A keystroke starts the CIM
system by sending this information out through the MINI shared-
variable macro to each server. The job scheduler (SCHD)
examines each job's requirements and compares them with current
inventory levels. When a job is ready for production it is sent
to an available NC machine. If a stock level is depleted,
inventory control (INVT) notifies the purchasing department
(PCHS) to reorder. The purchasing department uses whichever
vendor/purchaser interface policy is being tested, to order the
part. Later, if the vendor is busy and has not yet filled the
order, the purchasing department may retract the order, if the
vendor has not yet begun processing it. Ultimately, another
vendor may be approached. Many different policies could be
implemented for comparison.

While the CIM system is operating, the inventory control system
(INVT) server provides the status display service, displaying a
constantly refreshing bar chart of each part's stock levels.

6 . Implementation

The SNG software-development environment has been implemented
using multiple virtual machines, within the VM/370 operating
system, on an IBM 4341 small mainframe computer. It is currently
being transferred onto a distributed network of IBM's new 7437
VM/SP Technical Workstations. This involves extending the
interprocess communication platform to span a distributed
computing network.

6.1 The interprocess communication platform

The interprocess communication platform used in this
implementation is APL2's inter-user shared-variable facility
[IBM87]. This platform provides reliable, rapid, flexible
communication and is directly and productively accessible to the
CIM architect and CIM system implementor. The availability of
this platform greatly enables CIM system development because of
the direct high-level language accessibility. It allows the
direct sharing of CIM data without any need to invoke external
function calls using this data as arguments to the functions, or
to move the CIM data through file transfers.

We are currently extending server network technology to a
distributed computing platform by extending the inter-user
shared-variable platform to span across a distributed network of
VM/370 host computers. This will provide the concurrent-
processing speedup, flexible transparent access to different

109

strengths of computing power and levels of performance
consistency, and physically distributed access to CIM resources
such as people and numerical control (NC) machines spread across
an organization or an automated factory floor.

The Computer Integrated Design Analysis and Manufacture (CIDAM)
Laboratory at Boston University was recently awarded a research
contract involving a testbed of IBM's new 7437 VM/SP Technical
Workstations [IBM88]. These desktop mainframes connect to one
another, and to our IBM 3090 and 4341 mainframes, via IBM's token
ring local-area network (LAN) and various controllers. When
connected in this way they communicate with one another at high
speed using traditional mainframe-to-mainframe channel-to-channel
communication. They are VM/370 machines in every way and run all
of the software we currently use on our 4341 including the SNG.

We are currently transferring server network technology onto this
research testbed of 7437 's and connecting them to the 4341 and
3090 mainframes. The 3090 is equipped with vector-processing
capability. (This capability is employed automatically by the
APL2 interpreter running on the 3090 without any need for special
attention by the software developer. Any APL2 software that can
benefit from vector processing is automatically performed as
vector operations, while computations on smaller arrays are
automatically performed as scalar operations.) To move server
network technology into the distributed computing arena we are
extending the inter-user shared-variable platform to provide
communication among distributed VM/370 processes, based upon the
VM Pass-Through facility [IBM85].

6.2 Inter-server coramunication protocols

As a result of the experience we have gained while building
several server networks to model and simulate engineering
systems, we have observed certain usage patterns. We are in the
process of identifying a minimal set of shared-variable macro
structures and associated sets of response functions that
accomplish application-level communication protocols that are
used frequently. For example, maintaining a queue between two
servers, broadcasting data to a set of servers, and collecting
data from a set of servers and acting only when all has arrived,
are typical protocols that are used frequently. We are
incorporating this minimal set of protocols into the SNG so that
they can be indicated graphically to describe the interfaces
between the functional components in the system block diagram.
Using data-driven automatic code generation, it is
straightforward to establish these protocols between the
appropriate servers. This will further reduce the quantity of
software that the CIM architect or CIM system implementor must
develop textually by traditional software-development methods.
The response functions responsible for effecting these protocols
are general-purpose application-independent software customized
through application-dependent drive data.

110

7 . Conclusions

Server network research has progressed to the point that a
prototype SNG software-development environment exists, and has
been used to develop several server networks for modelling and
simulating CIM systems as well as other types of engineering
systems. This work has demonstrated the validity of the
underlying data-driven distributed software-development concepts.
With the availability of our new Research Testbed we have an
opportunity to move this research into the distributed
cooperative processing domain. Transferring server network
technology onto the Research Testbed serves two purposes. First,
it provides a truly distributed computing environment for CIM
architecture design and system implementation. Second, it
creates the first high-productivity, distributed-software
development environment featuring application-level, graphically
programmed, transparent access to a complete dynamic range of
computing power from the IBM 7437 all the way up to the IBM 3090.

8. References

[BIR84]

[BR075]

[CRIBS]

[DEM84]

[DUP82]

[FAR86]

[GUPS 9]

[HAYS 8]

[IBM85]

Birrell, A.D., and Nelson, B.J., "Implementing Remote
Procedure Calls," ACM Transactions on Computer Systems ,

vol. 2, no. 1, pp. 35-39, 1984.

Brooks, P.P.
Wesley, 1974.

Jr., The Mythical Man-Month , Addison

Crichlow, J.M., An Introduction to Distributed and
Parallel Computing , Prentice Hall International,
Hartfordshire UK, pp. 112-135, 1988.

Dempsey, P., "Why designers of EMS ought to consider
integration," The EMS Magazine , April 1984.

Dupont-Gatelmand C. , "A Survey of Flexible
Manufacturing Systems," Journal of Manufacturing
Systems , vol. 1, no. 2, pp. 1-16, 1982.

Farnum, G.T. , "EMS: The Global Perspective,"
Manufacturing Engineering , pp. 59-60, 1986.

Gupta, D. and Buzacott, J. A., "A Framework for
Understanding Flexibility of Manufacturing Systems,"
Journal of Manufacturing Systems , vol. 8, no. 2, pp.
89-97, 1989.

Hayes, R.H., Wheelwright, SC., and Clark, K.B., Dynamic
Manufacturing; Creating the Learning Organization , The
Free Press, NY, pp. 185-191, 1988.

IBM, VM/Pass-Through Facility; Guide and Reference ,

SC24-5208, 1985.

Ill

[IBM87] IBM, APL2 Programming; System Services Reference , SH20-
9218-2, 1987.

[IBM88] IBM, 7437 VM/SP Technical Workstation; User's Guide and
Reference , SA23-0351-00 , 1988.

[LAT73] Lathwell, R.H. , "System Formulation and Shared
Variables," IBM Journal of Research and Development ,

vol. 17, no. 4, 1973.

[MIT89] The MIT Commission on Industrial Productivity, Made in
America; Regaining the Productive Edge , MIT Press,
Cambridge MA, 1989.

[NRC90] The National Research Council; Computer Science and
Technology Board, Scaling Up; A Research Agenda for
Software Engineering , National Academy Press, 1990.
(Excerpted in Communications of the ACM , vol. 33, no.
3, pp. 281-293, 1990.)

[PAR72] Parnas, D.L., "On the Criteria to be Used in
Decomposing Systems into Modules," Communications of
the ACM , vol. 15, no. 12, pp. 1053-1058, 1972.

[ZEI87A] Zeidner, L.E., "Server Networks for the Design and
Analysis of Factory Communication Systems,"
Proceedings of the Workshop on Factory Communication ,

lEEE/NBS, NBSIR 87-3516, pp. 171-177, 1987.

[ZEI87B] Zeidner, L.E., et al., "An Expert-System Generator,"
lASTED Journal of Control and Computers , vol. 15, no.
1, pp. 22-33, 1987.

[ZEI88] Zeidner, L.E. , "Server Networks: Software Integration
Tools for CIM," Proceedings of the International
Conference on Computer Integrated Manufacturing
(CIMIC) , IEEE Computer Society Press, Washington, D.C.,
pp. 226-235, 1988.

[ZEI89] Zeidner, L.E., "Server Networks: Distributed Simulation
and Modelling," Proceedings of the lASTED International
Symposium APPLIED SIMULATION AND MODELLING-ASM ' 89 ,

lASTED, pp. 138-142, 1989.

9 . Acknowledgements

This research was funded during the past several years in part by
the IBM Corporation, by the General Electric Corporation, and by
National Science Foundation grant #DMC-8615560 . The CIDAM
Laboratory's new Research Testbed of IBM 7437 's was provided
through IBM contract #MHVK-U051. The development of server
networks enjoys continual support and encouragement from
Yehonathan Hazony, CIDAM Director. Many of the concepts

112

expressed in this paper grew out of discussions and
implementations in my graduate course on server networks. The
sample CIM system server network was designed and built by Junjie
Hu in that course.

113

RIA: REFERENCE MODEL FOR INDUSTRIAL AUTOMATION

MICHEL BOHMS, frits TOLMAN

TNO, The Netherlands

It is clear that we need CIM. It is also clear that everybody
involved in CIM uses his own definitions, concepts, models
and terminology. Therefore we have to take one step back
and try to model the CIM modeling itself by the development
of a CIM Framework which identifies and relates existing re-

sults of CIM projects/activities and gives guide-lines for do-

ing things better in the future. Two major models within the

CIM Framework are worked out: a CIM Reference
Architecture, a blueprint for applying CIM in discrete parts

manufacturing and a CIM Base Model, the language used to

express the CIM Reference Architecture.

1 Introduction to this paper

In this paper we present a CIM Framework which is used for two main purposes:

• to understand and interrelate existing projects/activities which deal with

modeling CIM and,

• to propose a new way of modeling CIM

We also develop two main elements within the CIM Framework:
• A CIM Reference Architecture and,

• A CIM Base Model used to express the Reference Architecture

We will concentrate on the manufacturing of discrete parts although some re-

sults, especially the framework itself, are also valid for a wider scope. This paper

is mainly based the earlier papers [BOH89] and [TOL89] and on discussions about

CIM in three groups:
• ESPRIT II IMPPACT project

• ISO TC184/SC5/WG1 'reference models' and,

• CEN/CENELECAMTWG-ARC

We hereby want to thank the people in these groups who indirectly contributed to

this paper. I hope that this and many other CIMCON papers will be the start of in-

teresting discussions about the new work item in ISO TC184/SC5/WG1 on a

Framework for Modeling CIM.

114

2 CIM

2.1 Why CIM?

Through a bottom-up approach in industrial automation, we see islands of au-

tomation everywhere. Typical islands in industrial enterprises are the 'product

modeling' island, the 'process modeling' island and the 'production' island. The
first island is typically dealing with fast specialized hardware (workstations) for

the manipulation of geometrical information of parts of products. The second is-

land is concerned with more general, less capacity critical hardware
(minicomputers, mainframes and personal computers) manipulating bills of

materials, planning data, commercial data etc. The third island is dealing with

specialized computer controlled machines (e.g. punching, cutting, bending,

milling and drilling machines) and things like automatic transportation -, storage

- and positioning systems (e.g. robot systems). Integration of these islands of

automations means in the first place a global optimization of the business

functions involved, instead of a sub-optimization for every island.

The relation between the different functions in the enterprise is shown in figure

1-1. This figure divides the industrial enterprise in two parts (see also [SOL88]): a

Real System (RS) and an Information System (IS). The real system covers the real-

ization of the product (it is the 'shop floor' or 'factory'), the information system

takes care of the planning and control of the real system.

Manufacture Product
>

Information System

Plan

&

Control

,J

1
^

1 IT - Information Technology

''rs - Real System CShop Floor' or 'Factory')

Produce

^. J

PT - Production Technology

4

QM - Computer Integrated Manufactiuing

Figure 1-1. Industrial Enterprise seen as a RS-IS Combination

115

CIM in general can then be defined as:

The application of information technology components and production technol-

ogy component in such a way that these components are supporting the enter-

prise functions in an effective and efficient way with a high degree of automa-

tion.

'Information Technology Components' here means: all the software based mecha-
nisms performing or supporting information processing functions in the

'information system' of the industrial enterprise. Concrete examples are product

modeling software (CAD), process planning software (CAPP, MRP) and production

control software.

'Production Technology Components' here means: all the machines performing or

supporting the realization functions in the 'real system' (the shop floor or fac-

tory) of an industrial enterprise. Concrete examples are NC controlled milling

punching -, cutting, bending and measuring machines which are controlled by
the information system.

The enterprise functions of interest are the functions that deal with the complete
product life cycle from the product specification, via the part modeling (design),

the process modeling (planning) and the time scheduling to the production con-

trol and the actual realization (production) of the product.

Future trends in Industrial Enterprises like Co-Makership, Just-in-Time
Management, Design for Economic Manufacturing will only increase the need for

CIM.

2.2 Problems with CIM

Hundreds of committees, platforms, standardization institutes and working groups
are developing CIM models, standards and concepts dealing with CIM for the de-

scription of CIM Components and the application of them in industry. Almost
every research project uses its own vocabulary: What is e.g. the difference

between CIM (Computer Integrated Manufacturing) and CIE (Computer Integrated

Enterprise)?

Many companies are confused by all the new CIM Components, CIM Models and

organization principles (figure 1-2). This and the typical bottom up approach
(there is often no top down strategy), is the reason for the islands of automation.

Partial processes in enterprises are optimized but the partial solutions cannot be

integrated. 'Design for Economic Manufacturing' cannot be implemented because

it's impossible to transfer manufacturing knowledge automatically to the design

department. Just-In-Time management is impossible because we don't use a stan-

dard for automatic order and delivery control (e.g. EDI). Co-makership is difficult

to realize because we don't use a standard for product data exchange (e.g.

PDES/STEP).

116

Figure 1-2. Concepts in CIM world

In short: the potentials of the existing CIM Components are not utilized because of

a lack of integration.

Application of CIM in industry needs support in the form of a CIM Framework and

CIM Reference Architectures in which business functions Information struc-

tures, CIM Components and their interrelations are described in a clear, open
(vendor independent) and modular way, to provide a migration path for an indus-

trial enterprise to an integrated CIM System. This paper will present such a

Framework for modeling CIM.

Looking at results of projects dealing with CIM one can identify all kind of models
that have been developed. Analysing these models we first develop a CIM
Framework that helps us to understand the different approaches, to relate the dif-

ferent results and to identify overlaps and gaps. This Framework will be a collec-

tion of dimensions where each dimension represents a certain model property.

This Framework is descriptive because it can be seen as a conceptualization of all

kind of existing ideas about modeling CIM.

The results of the projects can then be analyzed with the help of this framework
by considering the different dimensions identified.

Based on these analysis results and some new ideas (hypotheses) we come up with

a new prescriptive telling what models to consider when modeling CIM in the

future. The dimensions themselves will be the same but the points relevant for

the dimensions will differ from the descriptive framework where sets of points

are given for existing projects.

3 A descriptive framework

3.1 Existing CIM activities

Projects and activities which have been studied to identify the different modeling
dimensions for the descriptive CIM Framework are:

• ESPRIT I CIM-Open Systems Architecture
• Esprit I Open CAM Systems

117

• ISO Open Distributed Processing
• Esprit I CAD-I
. NIST - AMRF
• CAM-I ATPC, An Architecture of CIM
• Danish Principal model for CIM
• ISO TC1«4/SC5AVG1 'Reference Models'
• ISO TC184/SC4/WG1 'STEP'

• CEN/CENELECAMTWG-ARC
• Esprit II IMPPACT

3.2 Dimensions identified

We identified nine different dimensions for modeling CIM: two basic dimensions
which are mostly implicit available in the projects identifred, the modeling level

dimension and the language level dimension and seven other dimensions which
can be seen as an elaboration of the CIM Frameworic:

Modeling Level Dimension
This dimension distinguishes between different meta levels of modeling. Meta
levels are: Reality, Models of Reality (what most project are dealing with) and
models of models or Frameworks. Depending on the domain we can have all

kinds of frameworks. Some existing frameworks are e.g.:

ISO-OSI (Open Systems Interconnections) for computer networks

ANSI-SPARC Framework for databases

OSF for operating systems

These are more or less well-defined and well-structured frameworks which are

or have the potential to become world-wide international standards. Many
frameworks however are just described in natural language or even hidden
(implicit) in lower modeling levels. In this paper we will of course address a

Framework for Modeling CIM.

Language Level Dimension
For every model on every level we need (a) language(s) to express them. Such a

language is often referred to as the 'set of modeling constructs' or 'base model'.

Just as with the first main abstraction mechanism, the modeling level, we have

in general more language levels because we need also languages to express

languages.

Aspect Dimension
Every projects models its own set of aspects (views, viewpoints) which they

think are relevant for modeling CIM. Examples are 'functions', 'information',

'resources', 'responsibilities', 'management structure' etc.

Composition Level Dimension
We see different levels of composition of models used from very global models

to very detailed models.

Scope Dimension
Different models have different ranges of applicability. Some are applicable to

every industrial enterprise, some only for discrete parts manufacturing, others

118

are even more restricted to some special class of manufacturers and in the

extreme case, a model is applicable for one specific manufacturer only.

Representation Dimension
Models might share the same content but this content may be represented in

different • ways (because a different language is used to express the model).

Different representations are often necessary to suit the needs of different uses

of the model (e.g. human understanding or computer interpretation).

Product Life Cycle Stage Dimension
We see often different sub-models for different stages in the complete product

life cycle. E.g. information models for process modeling or function models for

the realization of the product. In fact this dimension can be seen as as a fixed

first (global) decomposition for a 'manuafcturing function* aspect. So the first

decomposition of the manufacturing function is not orthogonal with this

dimension, however when starting from the identiHed product life cycle stages

the decomposition dimension is orthogonal for the manufacturing function

aspect and thus also for the aspect dimension in general.

Actuality Dimension
Some model describe existing situations (AS-IS) while other prescribe a future

situation (TO-BE) which does not yet exist. In the extreme they will describe an

ideal far future solution which will never exist. We are now talking in a sense

about a CIM model life cycle, modeling the CIM evolution in reality.

Specification Level Dimension
This dimension has to do with the amount of choices which are still open in a

model. Some models are very generic (e.g. parametrized) while others are

completely fixed. Note that this dimension is still orthogonal with the 'scope'

dimension.

LANGUAGE LEVEL

i

1

1

1

1

1

ASPECT
SPBORCATION LEVEL

SCOPE \ / CC*IPOSmON LEVEL

L

REPRESENTATION 1

\CUAFnmewaZ
MODELING LEVEL

PRODUCTUFCCYCLE STAGE

ACTlJALTTY

Figure 3-1. Framework for Modeling CIM

Summarized we have a nine-dimensional Framework, containing two very basic

dimensions which encompass the scope of the CIM Framework itself and seven

119

dimensions within the CIM Framework (figure 3-1). Note that in principle all

nine dimensions are othogonal.

3.3 Two examples: CAM-I CIM ARCHITECTURE and ESPRIT I CIM-OSA

In this section we will apply the descriptive framework to two speciHc projects

dealing with modeling CIM and see how they fit in.

CAM-I CIM ARCHITECTURE ([CAM88])
The Modeling level for this project is the level of models of CIM. A framework is

not made explicit. For the language level only one level is considered mostly in

the form of human-understandable graphics and sometimes more formalized

languages such as IDEFO (SADT) or variants. There are no alternative languages

used to express the same content so every model is represented only once. The
scope for the models addressed is 'discrete parts manufacturing' and every

product life cycle stage is covered. The actuality of the models is typically TO-BE
(prescriptive). Five important aspects (called views here) are identified:

management structure, information structure, function/activity structure,

computer systems structure and physical structure. For none of the aspects we
see models for different composition levels. Models for all views are elaborated

and related to each other. Finally the models considered are always Hxed and

are therefore fully specified.

ESPRIT I CIM-OSA ([AMI89])

This project is typically a 'framework' project. The modeling level is therefore

mainly the first meta level or framework level, identifying and relating CIM
models. Also one language level is addressed, although this dimension is

combined with the scope dimension. This combined dimension is called

'architectural levels' which range from 'generic' (first language level), partial

and particular (two points on the scope dimension). Although not made explicit

in their framework the complete product life cycle is covered. The actuality
dimension is fairly covered by the CIM-OSA modeling levels (not to be confused

with our modeling level). This dimension differentiates between requirements

for CIM (enterprise modeling), best solutions for TO-BE (intermediate modeling
level), and the actually chosen solution (implementation modeling level). Four
aspects (called views) are selected: function, information, resource and

organisation. It is stressed by the project that there is only one computer-
interpretable representation for every model that is developed. Some models
considered may contain choices (modelled by rules), so also different levels of

specification are allowed (e.g. sort of parametrized function models with

decisions). For most views and most CIM-OSA modeling levels (actuality) we see

different composition levels (levels of detail) identified. E.g. for the function

aspect we start on a global level with business processes going via more
detailed enterprise activities to the most detailed level of functions.

The results of the analysis of the two projects are graphically shown in figure

3-2.

120

LANGUAGE LEVEL

ASPECT

ACTUALITY

Figure 3-2. The descriptive CIM Framework applied

As shown the descriptive framework helps us to understand, compare and inter-

relate the results of different CIM projects. The differences can now be handled
and discussed on the right level:

• Which dimension are covered by the one and not by the other (implicitly or

explicitly)? E.g. 'composition level' is not covered by CAM-I's CIM Architecture,

'multiple representation' is not covered by CIM-OSA.

• If both cover the same dimension, which points for the dimensions are covered

by the one and not by the other? E.g. both projects cover the aspect dimension
(they even call them both 'view') but they have different sets of aspects

• How are the same points for the same dimension worked out? E.g. both projects

cover the first language level for the function aspect, but CIM-OSA uses a self-

developed language while CAM-I uses IDEFq.

121

4 A prescriptive framework

4.1 Chosen values for dimensions

Modeling Level Dimension
The series of meta-levels in modeling is depicted in the following figure:

Level 2: Leodl: Leoel 0:

(domain;

CIM
Framework

OM
Models

CIM
in Practise

->
eg-

RIA CIM framework
presented here

eg.

CIM reference

models

eg-

OM realization

at demonstrator sites

Figure 4-1. Modeling Level Dimension

Language Level Dimension
For every model on every level we need (a) language(s) to express them. Such a

language is often referred to as the 'set of modeling constructs' or 'base model*.

Just as with the first main abstraction mechanism, the modeling level, we have

in general more language levels because we need also languages to express

languages. This situation is depicted in figure 3-2.

Language Level 2:

eg-

self-description:

NIAM in NIAM Base Model

Language Level 1: Language Level 0:

(objects to express)

cm
Base Model

•

CIM model or

CIM Framework

• ->
eg-

NIAM
IDEFD
EXPRESS

eg-

RIA CIM Base Model
eg-

RIA CIM Framework

RIA CIM Architecture

Figure 4-2. Language Level Dimension

Aspect Dimension
When modeling CIM we have to solve different sub-problems:
• a Systological problem: why CIM ?

• a Infological problem: what CIM ?

• a Datalogical problem: how CIM ?

• a Technological problem: with what CIM ?

We therefore have to model these four aspects when modeling CIM, resulting in

four kinds of models:
• Manufacturing functions (why CIM?)

122

• Information (what CIM ?)

• Data & Programmes (how CIM?)
• Technology (with what CIM?)

(Information Technology Components and Production Technology Compo-
nents)

Manufacturing

functions

•

Information

•

Data&
Programmes

Technology—
eg. eg- eg- e.g.

Function Pioduct Software Specification Factory Model
Model Model in Hardware/software

NIAM Platform

Figure 4-3. Aspect Dimension

Composition Level Dimension
We will not have fixed points for this dimension because the dimension can be
seen as a continuum starting from global models and going to more and more
detailed models.

Context Dimension

General

Reference

Model

•

Restricted

reusable

Reference

Model

Enterprise

Specific

Model w

e.g. eg.

'

e.g.

General Producttyp)e model Model for demonstration
scheduUng DPM model
model

Figure 4-4. Context Dimension

Representation Dimension
Here we will distinguish between models which representation is only human-
interpretable or also computer-interpretable. In the first case models are often

intended to be able to understand the thing what is modeled. In the second case

models are used for the future information processing. The representation of a

model will change when a different language is used to express it. So the

interpretability of the model depends of the interpretability of the language
used. Conversion plays an important part in this language/model translation.

123

Human
interpretable

Computer
interpretable

eg-

Product

model
inNIAM

eg-

Product

model
in EXPRESS

Figure 4-5. Representation Dimension

Product Life Cycle Stage Dimension

Requirements

Specification Part Modeling Process Modeling Production

•

e.g. e.g. e.g.

product CAD-System NC-data
configuration architecture generation

systems procedure

eg-

Production

Control

model

Figure 4-6. Product Life Cycle Stage Dimension

Actuality Dimension

Descriptive Prescriptive

eg-

AS-IS

Function

Model

eg-

TO-BE
Information

Model

Figure 4-7. Actuality Dimension

Specification Level Dimension

Generic Fixed

I

eg.

Parametrized

Product

model

eg-

IDEFO
function model

Figure 4-8. Specification Level Dimension

124

4.2 A new CIM definition

Basic assumption for ttie improved CIM definition is the idea that integration of

any kind is needed to provide a better communication between different parts of

an industrial enterprise. This communication is vital for the right coordination

between the different parts which will now be called integration of business

functions.

So the next question is: what kind of integration is further necessary to make
business function integration possible or as we saw above makes an effective

communication possible. Effective communication especially in a computer
environment (with databases as buffers) is only possible if we can agree upon
and fix the pragmatics, the semantics, the syntaxes and the medium for the

information that is communicated.

The first two aspects (pragmatics and semantics) are typically issues for the CIM
Architecture, whereas the last to aspects (syntaxes and medium) are issues for the

CIM Infrastructure. It is clear that we need integration on all four levels. We now
relate this observation to our prescriptive CIM Framework. In the Framework we
identified three mayor aspects to be modelled:

Manufacturing Functions
Setting the requirements for the information needed.

Information
Covering the logical contents of the information which are used by or flow
between the manufacturing Functions and also the specification of the ma-
nipulation of this information on a logical level (implementation-independent)

and,

CIM Components
Covering Information Technology in the IS (the Information System) and
Production Technology in the RS (the Real System that is controlled by the IS).

In both cases we have hardware and software (applications, data structures,

knowledge bases etc.). These CIM Components can be seen as the nodes in the

CIM Infrastructure.

The I (of CIM) now deals with all three aspects:

Integration of Manufacturing Functions
Integration on this high level means the possibility of (computer supported)

manufacturing knowledge transfer from one end of the product life cycle, re-

quirements definition, via design, process modeling and production to the

other end, the delivery and even the maintenance of the product.

Examples of backward knowledge transfer are the designers access to the

information about what can be made (e.g. standard parts or features) and the

process modellers access to information about machines, tools, manufacturing
rules etc. Especially the backward knowledge transfer in the form of
production data feedback is very important to continually improve the design

and process modeling processes.

125

Integration of CIM Components
The basic integration needed to make all other forms of integration possible is

the integration of the CIM components performing or supporting the

manufacturing functions and generating, using and manipulating the
information. It should be possible for the CIM Components (both IT and PT) to

'talk' to« each other. As identiHed by the ISO-OSI (International Standards
Organisation, Open Systems Interconnection) this communication takes place

via several levels from the physical level to a level which offers services to

communicate all kinds of information.

Integration of Information
Integration of Information means that we have one 'company-wide' conceptual

schema for all information generated, used and manipulated by the

manufacturing functions. This logical schema should cover all kind of product

and process data and describe the information in a structured, unambiguous,
non-redundant, consistent and if possible computer processable way.

However there is still a fourth form of integration: aspect integration. CIM not

only deals with the separate integration of Manufacturing Functions,
Information or CIM Components but also with the integration of these different

aspects to one another. This is why the third kind of integration, the information

integration, plays such an important role. It is the link between on the one hand
the ultimate business integration and on the other hand the technical

integration. Business integration sets requirements for the logical content of the

information and this information should be represented, used and manipulated by
CIM components. Or, said in another way: for Integration of Information we need

Integration of CIM Components and for Integration of Manufacturing Functions

we need Integration of Information.

This leads us to the following definition of CIM:
Computer Integrated Manufacturing is the Integration of CIM Components
(Information - and Production Technology), together with the Integration of

Information which make the Integration of Manufacturing Functions possible.

The overall goal is Integration of Manufacturing Functions. This integration sets

also the requirements for the Information Integration which on its turn sets the

requirements for the Integration of CIM Components which process this infor-

mation. The Integration of these aspects is also part of the CIM concept.

Integration of Manufacturing Functions

I Integration of Information<
o
c

Integration of CIM Components

Figure 4-9. Different kinds of Integration covered by CIM

126

5 CIM Reference Architecture

5.1 A CIM Base Model

As you can see in the framework, there may be different languages to model the

different aspects of CIM. The idea is that modeling CIM is best be done in an

integrated way. We would like to model over the boundaries of the model types

identified in the framework, instead of having a different language for every

model type. Some groupings are already quite clear, e.g. you will not use different

languages for different contexts (this will not favour the reuse). You will also not

use different languages for different product life cycle stages, if possible. What
we need is one language to model CIM, at least for our primary representation of

the model. This means that all dimensions identified in the framework should be
'embedded' in this language.

For this moment we will concentrate on the modeling of a CIM Architecture (the

aspects 'manufacturing functions' and 'information'). To be able to illustrate the

idea of a CIM Base Model we will focus on two important dimensions: 'Composition

Level' and 'Context' apart from the partial aspect dimension. Looking at the

integration of aspects you could say that we follow some high level object-

oriented approach and develop a language specialized for expressing CIM
architectures, or as we call it a 'CIM Base Model'. We will describe this language in

the next paragraphs and then give an image of a global CIM Reference
Architecture in section S.2.

The CIM Base Model consists of a basic construct, here called CADU (Cim
Architecture Definition Unit). We use for this illustration only two abstraction

mechanisms^ which operate on this CADU: 'specialization' (representing the

context dimension) and 'decomposition' (representing the composition level

dimension). The CADU we use in this example^ is a combination of related entities

relevant for the CIM Architecture level:

• Manufacturing Function
• Output (Real object or Information)
• CIM Component

This CIM Base Model is represented in a NIAM-like way (see for pure NIAM
[SOL821) in figure 5-1.

Figure 5-1.

^

The CIM Base Model

The complete CIM Base Model covers all the dimensions of the framework

Other entities, like organizational unit, with other relations, can be added

127

The idea now is that when a CADU is specialized or decomposed, Function, Output

and CIM Component are specialized or decomposed all together. While specializing

a child CADU inherits the properties of its parent CADU and when decomposing
extra relations (connections) between the parts of the whole appear (see figure

5-2). When specializing decomposed CADU's also the connections to other CADU's
specialize.

Decomposition

decomposes

fcADULlj fcADULaj f CADUI.sj

has connections with

Specialization

^CADU1-1^ ^ADU1-2^ ^ADU1-3^

Figure 5-2. Applying the two abstraction mechanisms

With the CIM Base Model we can build up CIM Architectures. We will show here an

example in the form of a part of a Reference model (see the Context dimension in

the Framework). The model is partly 'general* for discrete parts manufacturing

and partly 'restricted reusable' for complex shaped parts and sheet metal parts.

The example we have chosen deals with the determination of 'how' a product can

be produced. This activitivty is often referred to as 'production planning' or in

this case 'process' modeling.

In figure 5-3 we see six CADU's: CADUl to CADU4 are valid for discrete parts manu-
facturing in general. CADUl decomposes into CADU2 to CADU4. At the same time all

components of a CADU (function, output and CIM components) decompose. With
this decomposition new relations between the sub-CADU's arise (the 'is input for'

relationship). Then CADU3 is specialized into CADU5 and CADU6 which are valid in

two more specific context (complex shaped parts and sheet metal parts respec-

tivily). Again we see that all CADU components specialize together.

Althoug not shown in figure 5-2, it is also possible to specialize CADUl for CSP and

SMP, because the decomposition - and specialization dimensions are completely

orthogonal. Because of the inheritance property, the specialized version of CADUl
for e.g. CSP will also have the same decomposition of CADUl. One specialized

component of this decomposition is shown in figure 5-2 in the form of CADU 1.2-1.

In other words: the specialization of the decomposition is the same as the

decomposition of the specialization (because of the orthogonality).

128

CONTEXT

Figure 5-3. Example of the CIM Base Model

5.2 Using the CIM Base model: example of a CIM Reference
Architecture

Finally we present a global CIM Reference Architecture for discrete parts

manufacturing (figure 5-4). This model is of course not complete (the CADU's can

be specialized and decomposed further) but it gives an idea of building up a CIM
Reference Architecture and the way we can indicate the place of standards like

MAP, TOP, EDI(FACT) and STEP in this architecture.

129

6 Conclusions and further research

In this paper we developed a framework and showed how this framework can

help us to relate and understand existing projects dealing with CIM. More analysis

than the examples shown here is of course required (e.g. for all contributions for

this CIMCON conference).

The instantiated, prescriptive framework gives us the possibility to define CIM
more precisely and also to develop a methodology for CIM, based on this frame-

work (this work is now going on at TNO).

The image of the CIM Base Model shown here only served to illustrate this paper.

It appears that it is easy to represent the complete model in NIAM, but the models

themselves become hard to represent in this graphical way because of the many
dimensions involved. Therefore we are now investigating the possibility of a

different primary representation than NIAM (algebras, predicate logic, object

oriented techniques etc.) from which different, more user-oriented, views can be

generated in the form of e.g. NIAM. These views might be 2D or 3D subspaces of

the 9-dimensional framework space.

In this paper we concentrated on the modeling of CIM Architectures. When
modeling CIM Infrastructures too, the CADU has to be adapted.

Finally a remark about the CIM Reference Architecture itself. Although it was not

possible to show a complete reference model in this paper, we hope that the

principles of modeling CIM are clear.

It is our intention to develop a complete CIM Reference Architecture expressed in

a CIM Base Model that covers all dimensions. This architecture will be used to

place all major (standard) CIM Components and interfaces. This architecture will,

together with the defined CIM methodology, support the application of CIM in in-

dustry.

Finally we hope that we have made clear that for the specification of a CIM
Reference Architecture, a CIM base Model, a CIM methodology and even the def-

inition of CIM itself, a CIM Framework (preferably defined as an international

standard) is crucial.

7 Abbreviations

CIM Computer Integrated Manufacturing
CSP Complex Shaped Parts

DPM Discrete Parts Manufacturing
EDI Electronic Data Interchange
ESPRIT European Strategic PRogramme for Information

Technology
IMPPACT Integrated Modelling of Products and Processes using Advanced

Computer Technology
IT Information Technology
MAP Manufacturing Automation Protocol
MRP Material Requirements Planning
NIAM Nijssen Information Analysis Method

131

PT
RIA
SMP
STEP
TC»>

Production Technology
Reference model for Industrial Automation
Sheet Metal Parts

STandard for the Exchange of Product definition data

Technical Office Protocol

8 References

[AMI89] Esprit I AMICE 'CIM-OSA'. Public Document, 1989.

[BOH89] H.M. BOhms, P.P. Tolman, Modeling the CIM Architecture . CIM
Architecture seminar University of Karlsruhe, June 1989.

[CAM88] CAM-I Advanced Technical Planning Committee (ATPC), A n

Architecture of CIM. R-88-ATPC-01. 1988.

[CEN89] Framework for modeling CIM (draft preENV), CEN/CENELEC AMT WG-
ARC N80.

[SOL82] H.G. Sol, T.W. Olle, A.A. Verrijn-Stuart, Information Systems Desig n

Methodologies. Proceedings of the IFIP WG 8.1 Working Conference on

Comparative Review of Information SySlgmg Design Methodologies.

Noordwijkerhout, The Netherlands, 10-14 May, 1982.

[S0188] H.G. Sol, Information Svstems Development: a problem solving ap-

proach . University of Technology Delft, January 1988.

[TOL89] P.P. Tolman, H.M. BOhms, TNO, Proposal for a Reference model for CIM
Architectures . ISO TC 184 SC5 WGl N98, January 1989.

132

MANUFACTURING SYSTEM DESIGN METHODOLOGY:
EXECUTE THE SPECIFICATION

ROBERT P. JUDD, RAYMOND S. VANDERBOK,
MARK E. BROWN, JOHN A. SAUTER

Industrial Technology Institute

Ann Arbor, Michigan 48106

Abstract

An improved method for designing manufacturing systems is presented. Primary

features of the improved method include frequent design iterations by executing the

specification early in the life cycle, flexibility to accommodate changing requirements,

coordination of engineering disciplines in evolving integrated solutions, and reuseability

of commonly used software and hardware portions of a system. Benefits of the

improved method include more optimal system designs, solving integration issues during

design phase rather than installation, and verification of design specifications. The

improved method is called XSpec™, which stands for executable Specification. The

XSpec notation and design process are described. Specifications are executed on a tool

called XFaST™, which stands for executable Factory Simulation Tool.

Keywords: concurrent engineering, continuous improvement, control design, design

life cycle, design methods, manufacturing systems, modular system, object-oriented,

rapid prototyping, simulation, XFaST, XSpec.

1. Introduction

Today's manufacturers are facing increasing pressures from rapidly changing

markets. In the past, U.S. manufacturing has relied on mass production techniques to

produce a narrow range of products. Today's markets demand a greater variety of

products coupled with shorter product life cycles. In order to stay competitive in

today's market, industry must learn how to shorten the time from product concept to

production. We must also be able to quickly build the manufacturing systems which

can respond to a changing market. This flexibility requires a greater role for computer

integration in manufacturing.

The initial ventures into large scale advance computer integration are met mostly

with disappointment. Projects tend to be late and over budget. Many systems, once

they are running, never meet their designed production goals. Changes in the system

are difficult to make. Much of the difficulty can be traced to the complexity involved

in the integration of computers and factory equipment. Although there has been much
progress made in product design (through concurrent engineering and new CAD/CAM
tools) as well as software design, little work has been done to solve the problems

133

involved in designing a mechanical system which is tightly coupled with software

control.

XSpec™ which stands for eXecutable Specification is an attempt to pull together

some of the best approaches in industry along with some novel additions to address the

particular issues involved in manufacturing system design. It provides a methodology

for developing manufacturing systems that tackles the tough problems of systems

integration. The methodology has been supplemented by a toolset called XFaST™
(executable Factory Simulation Tool). Both the methodology and the tools have been

used in several manufacturing system designs. This paper introduces the methodology

and some of the advantages that it brings to the manufacturing community.

2. Traditional manufacturing system design

A summary of traditional design practice follows in order to identify areas of

manufacturing systems design in need of improvement. We are focusing in this paper

on the design of workstations, cells or individual lines as opposed to entire factories. At

this level there are particular difficulties related to the combination of hardware and

software that exist on a factory floor. The business and technical relationships

presented here are typical, but do not attempt to describe the many possible variations.

Normally the end user has a product design. Based on the process technologies

required to manufacture this product, the end user will contract a prime contractor

(generally a hardware builder) to design and implement the manufacturing system. The

end user defines process requirements to the prime contractor. The end user works with

the prime contractor to select process specifics, such as using robots rather than hard

automation.

The prime contractor designs the overall system and may subcontract portions of

the system. The prime contractor purchases equipment such as robots, parts washers,

and gaging stations. Subcontractors can provide both equipment and technologies that

extend the capabilities of the prime. Typical technologies that are subcontracted

include hydraulics, controls, and simulation. The prime contractor oversees the detailed

design and fabrication. Partial integration of the system is performed at the prime

contractor's site. After approval from the end user, the system is shipped to the plant

for final integration, debug, and buy-off from the end user.

Deeply embedded in this overly simplified view of building manufacturing systems

is the notion that one can march down a road from requirements to design to

implementation to a working system. It assumes that each step is well known, without

risk, and error free. It also assumes a static environment where nothing changes while

the new system is being built. In addition, systems are generally built with fixed price

contracts and hard schedules.

In order to meet this Herculean task of building manufacturing systems, end users

and vendors may make many conservative decisions or gamble that the system can be

coerced to work. This results in systems that are over built and take an inordinate

amount of time to become operational.

134

3. Problems with traditional approach
There are several problems with the traditional approach to the design of

manufacturing systems. A brief critical evaluation of the traditional design approach

follows.

1. Incomplete requirements. Requirements are never complete. Even with

the best efforts, requirements from the end user to the prime contractor or

from the prime contractor to the subcontractors will be inadequate,

incomplete, imprecise, or contradictory. Because of the complexity of

interactions in even simple systems it is not technically possible or

economical to know all the requirements before the system is built. Some
requirements can only be discovered when the system is run and

inappropriate system behavior is observed.

2. Requirements are not static. Requirements are never stable. Due to the

long lead times required to procure manufacturing systems, product designs

are seldom complete when manufacturing facilities are being constructed. A
new marketing report can quickly change the desired production rate.

Traditional methods require a repeat of the system life cycle for each

change. Because of the large amount of work required, this usually does not

get done.

3. Dbciplines are not coordinated. The traditional design approach does

not provide a facility for cross discipline coordination. For example, a robot

programmer is unlikely to be able to understand the effect of variability in

part placement on system production rates. Often the results of poor

interdisciplinary coordination are not detected until final integration at the

plant site.

4. Long integration and debug time. Factory systems take a long time to

integrate and debug. This cost is the result of incomplete requirements and

less than perfect execution. Significant reductions in the time and cost of

integration and debug can be made if more errors are caught during the

requirements and design phases.

5. Inadequate design verincation techniques. Even the well intentioned

system designer cannot, using traditional methods, verify the design. It is

left to the experience of the staff to notice flaws in the design during long,

boring, design reviews. Subtle interactions between devices are not likely to

be found with this approach. Most often the designer must wait until the

system is fully implemented before he/she can watch, in amazement, as the

system runs below the design production rate (while the end user watches in

disappointment).

In summary, experience has shown that development of manufacturing systems

135

cannot flow in a lock step fashion, from requirements to run-off. Problems of the

traditional design approach reviewed here identify a need for an improved design

method.

4. Goals of XSpec
Xspec is a method of design that has grown out of the experiences of software and

control engineers involved in developing manufacturing systems. It pulls together the

best techniques in industry from both of these disciplines. XSpec was developed to

address the problems that are particular to manufacturing system design and are

therefore not addressed by other software methodologies.

Specifically, XSpec addresses the problems in manufacturing design as outlined

above:

1. Incomplete requirements. XSpec attempts to provide a framework where

requirements models can be quickly built and easily analyzed. Current

modeling techniques fail to communicate requirements and do not lend

themselves to analysis. One technique employed by XSpec is the use of

executable requirements models. These models can be animated or analyzed

to better understand the requirements of the system. This leads to a more

complete and precise requirements specification.

2. Requirements are not static. Changing requirements are a fact of life

that must be accommodated in any manufacturing life cycle. It should

always be the goal of any systems designer to reduce the number of changes

that are made during the life cycle. XSpec accommodates those necessary

changes by reducing the time and cost in making those changes.

3. Disciplines are not coordinated. XSpec addresses this area through a

unique approach to system decomposition and through techniques which

allow the hardware and software designs to be tested against each other.

This provides a vehicle for different disciplines to cooperate on a system

design and coordinate their efforts in making improvements early in the life

cycle.

4. Long integration and debug time. XSpec provides the designer with an

approach to system design which identifies the integration issues and

accurately specifies the interfaces early in the life cycle. The XFaST tools

provide a way to discover problems in software, hardware and subsystem

integration before system implementation begins.

5. Inadequate design verification techniques. Design verification suffers

from the same problems as requirements specifications. XSpec attempts to

provide the systems designer with an approach which allows his/her evolving

design to be quickly tested at different levels of detail.

136

5. Foundation of XSpec methodology
Xspec is built on the principles of object-oriented design and programming, and

rapid prototyping. These are commonly cited as the two most promising areas of

research in the design of complex software systems. XSpec extends these approaches

into multi-disciplinary design arenas such as manufacturing systems.

XSpec uses a rapid prototyping approach to design that involves building

executable specification models of the software and hardware in the system. These

models allow complex systems to be analyzed from many different viewpoints. This

ability to execute the specification allows the designer to understand how his designs

will behave in the actual system. It has proven to be a powerful tool for validating and

improving factory designs.

The term object-oriented has been applied to many things but in general it refers

to design representations and programming languages which are based on objects.

Objects are normally associated with a set of data and the operations which can be

performed on that data. This binding of data and procedures is in contrast with

traditional languages where the two are kept separate. The action in object-oriented

systems comes from sending messages between objects. These messages invoke the

procedures or methods within an object that operate on that object's data. Objects are

usually organized into classes. Objects can inherit behavior (methods) and data from

other objects to form many different kinds of objects. By using inheritance, objects can

build upon existing systems and add new functionality where needed.

Many of the constructs in object-oriented systems map onto manufacturing

systems. Objects can be used to represent factory devices. The "methods" are. the

operations which can be performed on those devices. Messages represent the digital I/O

or other mechanisms used to communicate between the controller and the hardware.

Messages can also represent the material flow in a factory. Similarly, manufacturing

devices can be grouped into a class hierarchy. For instance conveyors might be grouped

under a class of devices called "material transport". There would also be several classes

of conveyor defined such as "accumulating" and "non-accumulating". Each of these

classes has behavior which is similar to its parent class.

XSpec extends the work in object-oriented design by making a distinction between

physical objects (representing the hardware) and control objects (representing the

software). This distinction is critical to integrating and coordinating the mechanical

and software disciplines.

6. XSpec constructs and notations

This section looks at the constructs and notations used by XSpec to decompose a

system and build executable models of the requirements and design. A brief definition

of terms is presented followed by a more detailed discussion.

The following terms identify the constructs of an XSpec model:

• Physical Element ~ A physical element is a representation of the actual

hardware in the factory system.

• Control Element ~ The control element is a representation of the control

strategy or software for the physical element.

137

• Component ~ A component is a logical group of factory equipment

(represented by physical elements) and the software which controls it

(represented by control elements).

• Message ~ A message is an interaction between elements. It is used to

convey information or material between two elements.

• Pin — A Pin defines services that are needed or provided by the element. A
message leaves or enters an element through a Pin.

• Connector — A Connector defines a set of related Pins on an element which

are available for interfacing with other elements.

• Path — Paths define how messages travel between elements. A Path

connects a set of Pins (usually within a Connector) on one element with

matching Pins on another element. It therefore defines all the messages

between the two elements it connects.

6.1. Elements and components
The basic building block in XSpec is an element. An element is like an object in

object-oriented systems. It includes data (state) and procedures (methods) which

operate on that data. An element is used to represent the behavior of some part of the

system. It can be thought of as a model. It also serves as a specification for that part

of the system. In Xspec these models are built in such a way that they can be plugged

together with other elements and executed on a computer. The element, therefore, is

the basic executable unit within an XSpec model.

There are two kinds of elements in XSpec: physical elements and control

elements. Physical elements represent factory devices or subsystems (i.e. the hardware)

which respond to some controlling agent. Control elements represent those controlling

agents (i.e. the software) in the system. An example of a physical element might be a

section of conveyor track. It would include the motors to drive the conveyor and any

sensors used. A control element could represent the software that reads the conveyor's

sensors and controls its motor.

These elements are naturally grouped into a logical construct called a component.

A component groups related control and physical elements together. Together these

elements represent the hardware and software which make up a distinct piece of factory

equipment. As will be shown later, this grouping allows a natural approach to system

decomposition. Components are also used to enforce good control design practice by

clearly defining the scope of control for a control element.

6.1.1. Element and component notation

Figure 6-1 shows the notation used by XSpec for diagramming elements and

components. Components are shown by rectangles and elements are represented as

boxes with rounded corners. Control elements are placed on top of physical elements.

Components are named for the piece of equipment they represent (such as the name
"Conveyor" used in Figure 6-1). An element's name identifies whether it is physical or

control and to which component it belongs.

138

Figure 6-1: XSpec Component

6.1.2. Components Integrate Design Efforts

The physical elements are the focus of the design efforts of the mechanical

designers. They hold the evolving designs of the hardware in the form of an executable

specification or model. Because this specification is separated from the software it

provides a "clean" specification of the hardware design.

The control elements are the focus of the software or control engineers. They hold

the evolving design of the software in the form of an executable specification. This

specification is also free of any hardware descriptions so it provides the software

engineers with a clear specification from which to develop their code.

Separating these specifications is critical for proper development of hardware and

software, but proper system design requires a specification that covers both. Rather

than developing a third specification, XSpec brings these two models together within a

component. This becomes the specification for both the hardware and software of a

particular subsystem. This is not possible with traditional methods since they don't

define a common protocol for the exchange of information between hardware and

software models.

Components are then literally "plugged" together to form the specification for an

entire system. Thus components provide the proper segmentation of design information

with the required integration of software and hardware behavior to define the whole

system. The ability to execute the entire specification allows a multi-disciplinary team

cooperating on a system design to verify that their individual designs interoperate to

achieve the overall system objectives.

139

Components are also used in decomposing the system into different levels of

detail. Thus, what is represented as a single component at one level may become a

whole group of components at another level. This allows the designer to reduce some of

the complexity of the model and view the interactions of major subsystems. Although

XSpec allows for a logical decomposition of the system into different levels of detail, an

XSpec model is present only in the elements at the lowest level of detail.

Components can be grouped into a hierarchy of classes much like the class

hierarchy of object-oriented systems. This allows new components to be developed by

deriving them from an existing class of components. For example, one might have a

class of components called SISO_ Conveyor (Single Input, Single Output) which

represents any conveyor section where material enters at one point and exits at one

point. Two sub-classes could be developed to represent accumulating conveyors (such as

power and free) or non-accumulating conveyors (such as chain and belt). Developing

components in class hierarchies helps to reuse existing components. It also guides the

designer in the development of new components which can be reused.^

6.2. Messages

XSpec uses the term message to describe all interactions between elements. A
message represents the flow of information and material in the system. In an actual

system, information flow can be accomplished through many different means: digital

I/O, serial lines, local area networks, common memory, etc. XSpec can model each of

these modes of communication through messages. This keeps the details of information

flow out of the design while still giving the designer the ability to accurately model a

particular system. Messages also allow the specification to be executed through

standard computer techniques.

A message has a name which identifies the kind of information it conveys. For

example a message named "PartPresent" could be used to indicate information from a

part presence sensor. The message would be sent when the sensor (as modeled in the

physical element) detects a part. A message can optionally have parameters.

Parameters contain the additional data which may need to accompany a message. Thus

the message "Move(Destination)" could be a command to a robot to move to the point

described by the Destination parameter.

In XSpec notation a message is indicated by its name with any parameters

enclosed in parentheses. Multiple parameters are separated by commas and different

parameter values are separated by a vertical bar "|". Examples of valid messages

would be:

• OpenVent ~ a message with no parameters

• Move(Dest) ~ a message with a single parameter

• Move(XLocation, YLocation) ~ a message with two parameters

Although objects make it easier to develop reuseable software it is always possible to develop

something which is not reuseable. Developing class hierarchies to represent the application helps guide

the designer in developing components which can be reused.

UO

• Conveyor(On
|

Off) — a message with one parameter which can take on

one of two values.

Messages are represented graphically with arrows that are labeled as described above.

A control element can send a message to any other control element in the system.

However, it can only send a message to physical elements which are within the same

component as the control element. Likewise physical elements can send messages to any

physical element in the system but only to a control element in the same component.

This restriction enforces the design rules for maintaining proper scope of control.

It is helpful to look at the kinds of messages which are exchanged between

different pairings of physical and control elements.

• Physical to physical messages — These messages represent material flow

and physical state changes. The physical elements use these messages to

move parts and inform other elements of internal state changes which may
affect their neighboring element. Example: a transfer of a part from a

robot to a conveyor.

• Physical to control messages ~ These messages typically represent

sensory information. Physical elements model the sensors in the actual

system. This sensory information is sent to the control elements in the form

of a message. Example: a part sensor indicating that a part is present.

• Control to physical messages ~ These messages typically represent

actuation or control signals. Control elements control the hardware within

their component by sending messages to a physical element. The physical

element will use this information to change the behavior of its model to

match what would happen in the actual system. Example: a signal to turn

on a motor.

• Control to control messages — These messages represent information

flow and logical state changes at the software level. Example: a machine

controller sends a signal to a part loader that it is ready for another part.

Say you have a robot loading parts onto a conveyor. A part sensor on the

conveyor is used by the robot to determine when there is space for another part. In this

system there would be two components which we will call Robot and Conveyor. We
will model the robot component with two elements, Robot.C (control element) and

Robot.P (physical element). The conveyor will also be modeled with two elements,

Conveyor.C and Conveyor.P.

The Robot.C element begins by instructing the robot to put a part that it

currently has in its gripper onto the conveyor. Robot.C would send the message

"Move(Conveyor)" to Robot.P. The physical element would then model the time it

takes to move the robot to the conveyor and return a "Done" message when the robot

has reached the destination. The control element would then send the message

141

"ReleasePart" to Robot.P which would model the time to open the gripper. When
Robot.P determines that the part has left the gripper it would send a "Done" message

to Robot.C indicating the part has been transferred. At the same time it would send a

message named "Part" to ConveyorP. This message represents the transfer of the part

from the robot to the conveyor.

Meanwhile, the Robot.C element is monitoring the part sensor on the conveyor.

When the sensor indicates that space is available it should send a "SpaceAvailable"

message to Robot.C. Because of the restriction on messages between control and

physical elements, the message must originate within Robot.P. However the model of

the sensor must exist within Conveyor.P (since the motion of the part across the sensor

is modeled there). The situation is resolved by having Conveyor.P send a

"SpaceAvailable" message to Robot.P which then forwards the message to Robot.C.

This message between Conveyor.P and Robot.P is an example of a physical state

change.

6.2.1. Message Types
V In XSpec there are two types of messages: Commands and Requests. These types

are distinguished by the form of the interaction between elements. Commands are one

way messages from one element to another. They are used to represent information

which flows in one direction only. There is no requirement that the receiving element

return any information to the sender in response. For example, a controller sends a

message to a conveyor motor "Motor(Off)". The motor does not send a message back

to the controller so the flow of information is only in one direction. Commands are also

useful in modeling digital I/O as will be seen in section 6.2.3.

Requests are a two way transaction between elements. When an element receives

a Request message, it must return a Reply message. Like any message. Replies can

have parameters associated with them. For example, a Press Station control element

sends a "LoadPart" message to a Part Loader control element requesting that a new

part be loaded. When the Part Loader has finished it replies with a "Done" message.

These types of transactions are so common in manufacturing systems that the

Request/Reply message pairing was created to easily support it.

Requests and Replies are listed in textual descriptions with a slash "/" mark

separating the two messages. Thus, in the example above one would use the notation

"LoadPart/Done" to designate the Request and Reply pair. A Request is shown

graphically by listing the Request message on top of the Reply message with a bar in

between. An arrow shows the direction of the Request half of the transaction.

6.2.2. Receiving Messages
An element receives messages in either a mailbox or a queue. A mailbox holds

only a single, and most recent copy of a message. Queues hold a copy of every message

in FIFO order until they are processed. Commands can be received in queues or

142

mailboxes. Requests can only be received on queues since a Reply must be returned.

Elements can wait for the arrival of messages in mailboxes and queues and read the

contents of the message.

6.2.3. Modeling with Messages

In order to understand how messages can be used to model information and

material flow in the factory we will look at a few examples.

• Digital input, edge triggered — The rising or falling edge of a digital

input is often used as a signal or trigger in control systems. Such a signal

can be modeled as a Command with a single parameter indicating the level

of the signal (high or low). The Command is sent to a mailbox when the

signal changes level. The arrival of the message is the signal to the receiving

element. If only a single edge is of interest, the parameter can be eliminated

and the message sent only on the proper signal transition.

• Digital input, level sensitive — A signal level is used to indicate the state

of some device. The receiving unit polls the state of the line when it needs

to know the current state of the device. This is modeled as above with a

Command with a single parameter indicating the level of the signal. The
Command is sent to a mailbox. The receiving element simply checks the

current value of the message parameter in the mailbox at any time to

determine the current state of the modeled line.

• Serial input — Serial communications is commonly used to send parametric

information which is difficult to specify with simple digital I/O. This can be

modeled with messages and parameters that are sent to queues (since most

serial inputs are also queued). The choice between using Command or

Requests depends on whether a response is required to a particular message.

• Software procedure call ~ Within a control program, information is

exchanged between modules through parameters on a procedure call.

Procedure calls are easily modeled through the use of a Request/Reply

message pair. The Request parameters are the input parameters to the

procedure and the Reply parameters represent the output parameters.

• Common memory ~ Software modules may also communicate through a

common memory pool. One module stores a value in a memory location

which another module is free to read at any time. This is modeled as a

Command sent to a mailbox with the parameters used to reflect the values

written to memory.

A Request arriving at a mailbox could be overwritten by a second Request before the element had a

chance to recognize and respond to the first message.

143

• Material Transfer — Material transfer can be modeled as a message. The
transfer of a part from one physical element to another is modeled with a

Command message sent to a mailbox input.

Figure 6-2 shows an example of how manufacturing equipment and its information

and material flow can be represented with components, elements and messages.

PLC Controller

CNC
Rungs

Robot
Rungs

Reil

i|^al

Conveyor

Rungs

D I/O

^— F-1

Part
Movement

Part
Movement

Robot Conveyor

CNC Robot Conveyor

c
r \

c
[\ 1 > 1

1

f
1 1

\

>

p
J

P p

Figure 6-2: Example XSpec Model for a Manufacturing System

6.3. Pins, Connectors and Paths
XSpec diagrams showing elements with messages between them begin to resemble

circuit or wiring diagrams. This analogy is extended further with the addition of Hna,

Conntctora^ and Paths. These constructs help promote the building of generic elements

that can be reused by "plugging" them into a new application. This is similar to the

144

use of standard electronic components such as integrated circuits. One of the keys to

developing such reuseable elements is a well-defined interface of all the inputs and

outputs. Pins and Connectors are used in XSpec to define the element's interface in

this manner.

All messages which are sent by an element exit through a Pin. Similarly, all

messages received by an element enter through a Pin. Pins are grouped into Connectors

which are named. The named Connector identifies a set of Pins. From the perspective

of an element, a Connector provides a port or a "window" to another element. Paths

are used (like cables in electrical wiring) to connect the Pins of one element's Connector

with the matching Pins on another element's Connector.

The element sends messages by naming the Connector and the Pin. It does not

specify which element will receive the message since an element is actually only aware of

what Pins it has, not which elements are connected to those Pins. The applications

designer determines the actual destination of a message by using a Path to connect the

source Pin to the proper destination Pin. This allows an element to be designed

without concern for the actual elements it will be connected with in a given application.

6.3.1. Pins, Connectors and Paths notation

Connectors are graphically represented as boxes on the edges of an element along

with the Connector's name. Pins are represented as dots within the Connector (one for

each message sent and received on that Connector). Input Pins are labeled with a M if

it is a mailbox input or a Q if it is a queued input. XSpec component diagrams

(diagrams showing the interconnection among components) show Paths. Element

diagrams (a blowup of a single component) show individual messages and Pins. Figure

6-3 is an example of an element diagram with all the Connectors, Pins and messages

defined. Figure 7-4 shows an example of a component diagram.

7. XSpec design process

In general any design process can be viewed as the development of a series of

models which gradually move from the problem domain (an abstract concept) to the

application domain (the real-world system). Each of these models acts as a

specification; it defines the behavior of the system in response to external events and its

internal state. Normally one moves from a requirements model to a design model to the

final model which is the implementation. Sometimes there are additional intermediate

models developed as well. Every methodology provides a different language (and

notation) for defining these models. This has proven to be a barrier to design. Once a

requirements model is built it is difficult to translate the syntax and semantics of that

model into the language used for the design model. Yourdon once described this

transformation as something akin to a miracle.

Object-oriented design has made great progress in developing a single language

and notation which can be used to build a system model which reduces the distinction

between requirements and design. This allows changing requirements to be brought

into the system quickly since the changes can be easily translated into the design

language. XSpec capitalizes on this property of object-oriented design.

145

Conveyor.

Conveyor.Cntl

Physical

M

MoT« (DmO
Reply (DonajError)

Part
(Urc*|3maU)

Optr ClOM Stop Pmrt (UrgclSmall)

P
r

e
V

Q M M M
Control

Conveyor.Phys

N
e

X
t

Part
(Urf«|SmaU)

Figure 6-3: Component Diagram with Message Specifications

XSpec allows different parts of the model to exist in different stages. Each

element can progress at its own pace along its own life cycle. This allows the inclusion

of library elements which might be completely designed with other elements which are

very early in their development life cycle. Thus it is not possible to clearly point to a

single "requirements" model or a "design" model in XSpec. XSpec allows the designer

to progress to different stages of the life cycle and different levels of detail for each

element. This gives the designer the ability to explore areas of potential risk in greater

detail then back out and continue the development of other elements along the life

cycle.

The XSpec manufacturing systems design life cycle includes the following steps:

1. System requirements

2. System partitioning

3. Element specification

4. Execution and testing of the the system specification

5. Detailed specifications

146

6. Implementation, integration, and maintenance.

Each of these steps is detailed in the following sections. The steps are graphically

illustrated in Figure 7-1.

Requirement

1

Define
Behavior

Locate
Component
in Library

Simulate

Error in
component
simulation
code

Correct

Error

System
redesign

Element
Redesign

Redefine new
behavior

Define new
Equipment

Create
Detail

Specification

Implement
Integrate
Debug

Figure 7-1: XSpec Life cycle

ITI is developing a set of integrated tools to support each step of the XSpec life

cycle. Together these tools are called XFaST which stands for executable Factory

Simulation Tool. Currently XFaST only supports steps 3 through 5 of the XSpec life

cycle. In the future all the steps will be supported through these tools.

7.1. System requirements

Gathering the requirements for a system involves obtaining information from the

customer about the behavior of the system as well as any constraints or standards which

must be followed. A requirements document is produced that lists constraints, process

needs, production capacity, interfaces to other equipment, relevant standards,

mechanical layout, and general strategies for implementation.

An XSpec designer should plan on the requirements evolving during the design

process. As the design progresses, more is learned about the system and requirements

change accordingly.

147

7.2. System partitioning

All methodologies incorporate some mechanism for partitioning the system into

smaller units. Traditionally, the hardware is designed and all I/O is specified. From
this description, control designers group related functions and design the control

strategy. The grouping is somewhat arbitrary. There is little chance that the next

system will use the same partitioning or the same functions. Therefore, there is little

chance for reuse of the design. This situation is illustrated in Figure 7-2.

In XSpec, the system is partitioned along the lines of well-defined objects in the

system such as process machines or material handling equipment. Figure 7-3 shows how
XSpec partitions a system. Although the functions within different manufacturing

system may change drastically, the equipment used and the basic operations they

perform do not. By partitioning the system along those lines we are much more likely

to develop components which can be reused on future designs.

A library of components is developed which can be searched for those components

matching the requirements of a system. A class hierarchy helps guide the designer in

finding and choosing appropriate components from the library for a new system. If no

appropriate components exist then a new component class is created and placed in the

class hierarchy.

Partition 1 j/
Partition 3/

Partition 5

^F*artition 2 V Partition

tiuut m
CNC Robot Conveyor

Figure 7-2: Traditional Partitioning

7.3. Element specification

As noted above most elements can be retrieved from a library of standard

components. Those elements which do not exist in the library can be derived from

existing elements or created from scratch. The procedure for developing a new element

is described below.

7.3.1. Define the interfaces of a new element

To create a new element the designer begins by defining the interfaces. The

following procedure is used:

148

CNC Rnhnt

CNC
Control

Robot
Control

Conveyor

Conveyor
Control

Figure 7-3: XSpec Partitioning

1. If this element will have a Path to elements already defmed, then a

Connector can be established for this Path. The Connector must match the

message names of the corresponding library Connector.

2. Identify other Connectors and their messages which may be required for

elements not yet defined.

3. Walk through the operation of the element and see if any additional

messages are needed. If the additional messages are added to existing

Connectors, add the corresponding Pin to the other Connector on the other

side of the Path.

The interface definition does not have to be correct on the first try, there will be

plenty of opportunity to experiment and test out the interface.

As the elements are being defined, missing or confiicting information in the

requirements specification will be found. This is one of the advantages of the XSpec
methodology. It helps to flush out errors in the requirements early in the life cycle

before designs have been created. This prevents many of the surprises that normally

occur in the implementation or integration phase of a project.

7.3.2. Describe the functionality of the element

The behavior of the element must now be described in terms of an executable

model. XSpec requires the use of modeling languages which can be executed or

analyzed directly. Here is where the use of a tool such as XFaST is critical to the

employment of the methodology. XFaST provides a suite of modeling languages and

techniques from which the designer can choose. Currently it includes tools for

describing control (using Grafcet or ladders), and physical behavior (using queuing

models or kinematic models). Appropriate support has been added for sending and

receiving messages between elements.

There is no perfect language for developing executable specification models.

Ideally the language would be graphical and allow for hiding of details. It should be

self documenting so the models can be used directly as a specification statement.

Languages which can be extended are also important since extensions can be used to

develop a very high level language dedicated to a particular application domain.

149

We are currently experimenting with several different languages none of which

meets all the criteria. Nonetheless, most of the advantages of XSpec can still be

achieved with what is currently available. XSpec is not limited to the use of any

particular modeling language. This allows the method to include new and more
powerful specification languages as they are developed.

7.4. Execution and testing

Once the element models have been developed they can be tested individually or

in groups. XFaST allows element models developed on different tools to communicate

with each other during execution. It handles all the necessary routing of message

between tools. XFaST also synchronizes the advancement of time across all the tools in

a way which is transparent to the applications designer. The distributed simulation

environment of XFaST provides the necessary support to execute and test complex

system designs.

Because the models can be executed, their behavior can be observed and analyzed.

Animation of the physical elements can help visualize how the system operates.

Animation of the Grafcet diagrams allows the designer to see a software design being

executed and the states that it enters. XFaST maintains a log of all messages which

can be used as test data for validation of the designs. Performance data can also be

obtained from this data. It can even be used to predict average and peak loads on

different communication lines.

As errors are discovered either in behavior or performance they can be corrected

quickly. The ease of making changes allows several approaches to be tested to find the

optimal strategy. This contrasts sharply with the normal process where control

engineers, struggle at the last minute to try to fix major design flaws that where not

discovered until the equipment was installed and integrated at the customer's site.

The advantage of XFaST over a typical simulation is many-fold. In XFaST the

actual software designs are driving the simulation. A normal simulation model is only a

rough approximation of the control algorithms. It is not written by the controls

engineer, nor is it used to develop the software for the system. Simulation tools use

standard queues and stations which are only idealized representations of the physical

system. They tend to make many simplifying assumptions about the actual details of

material movement. XFaST designs can model details down to the operation of a single

digital line or sensor in the system. This gives the systems designer the tools needed to

test a design at any level of detail desired. A risk-driven approach is used to determine

which elements should be modeled in greater detail to avoid overly complex models.

One can move up and down in level of detail. Once a subsection of a factory has

been designed and debugged, this entire subsection can be aggregated to a single simple

aggregate component model. Then another component can be decomposed into many
components to explore details of its design. Decomposition is the opposite process of

aggregation. Figure 7-4 illustrates the processes of aggregation and decomposition.

150

Factory
Model

Workstation
Model

TO
WS3

Figure 7-4: Aggregation / Decomposition

7.5. Detailed specifications

The life cycle of each element progresses at its own pace. XSpec allows the

designer to explore different elements in greater detail as he chooses. The designer

could put together a rough model for one component (more like a requirements model)

and develop other components into a detailed design specification. This matches the

actual progress of a project where some parts of the system may be designed and

implemented before other parts.

In XSpec, elements tend to evolve along a path toward a detailed design

specification rather proceeding in distinct phases. There is no clear break between what

might typically be referred to as a requirements model and a design model. Because the

same language is used to specify both models the transition from requirements to design

becomes a process of constraining the use of certain modeling constructs inappropriate

to the chosen implementation environment. For example, if a robot software design is

being developed for a robot controller which does not support multiple tasks then the

designer would restrict the use of parallel execution in the design model.

Changes in the requirements can be quickly implemented in the element at

whatever stage the element is at. It is not necessary to return the element to an earlier

stage unless the change makes drastic changes in the behavior of the element.

When the designs have been thoroughly tested, the executable design model is the

151

detailed specification. The element interfaces serve as preliminary I/O wiring lists. In

other words, once the model is debugged the specification is complete.

7.6. Implementation, integration, and maintenance
Ideally one would want to have the actual code generated directly from the

detailed model. Currently this is not possible, but automatic translation can produce

most of the code. The rest of the code must still be generated manually, but the coder

is able to work from formal design specifications which have been thoroughly tested.

Although more time is spent working on the design than in traditional life cycles,

the implementation, integration and debug times are significantly shortened. Most of

the design or requirements errors will have been detected before implementation begins

resulting in only minor corrections having to be made during later phases.

An XSpec model also provides significant advantages during maintenance and

upgrades. No manufacturing system is static. Requirements will continue to change

even after the hardware is installed. New product designs or product mixes may need

to be produced. Performance improvements and system tuning can be done on the

model. Changes to the system can be made off-line and tested without having to bring

the line down. When the changes have been tested on the model, integration of the new

code with the manufacturing system will proceed much more quickly.

8. Conclusion

This paper provides an introduction to XSpec, a methodology for the design of

manufacturing systems. In comparison with the traditional design approach, XSpec

offers numerous benefits to a factory system designer. By using an executable

specification of the entire system early in the design life cycle, many design and

integration errors are detected before implementation. XSpec allows teams of hardware

and software engineers to cooperate and communicate during the design process. XSpec

also facilitates the reuse of existing designs by its approach to partitioning and through

its use of a class hierarchy.

Xspec design notation is presented to help designers become aware of the

conventions used to describe system partitions, messages, and physical and control

aspects of a system. The notation is capable of handling simple and complex design

applications. All activities within the system are described in terms of elements.

Elements represent the physical hardware and control strategies of the devices in the

manufacturing system. The interactions between elements are described in terms of

messages. The XSpec design process is described. This process promotes reuse,

innovation, and correct designs. In general, XSpec defines a single consistent

representation of the manufacturing system that allows execution and verification of a

specification.

XSpec has already demonstrated its value in several actual manufacturing design

applications. Additional opportunities for methodology development exist through

application in a broad range of system designs.

152

An Integrated CIM Architecture A proposal

D. CHEN, B.VALLESPIR. G. DOUMEINGTS
GRAI Laboratory, University of Bordeaux I, FRANCE

This paper intends to present a skeleton of an integrated CIM architecture which is

supported by a well defined method. It was elaborated by GRAI laboratory of University of

Bordeaux I In the franfie of two Esprit projects: project 418 (Open CAf^ systems) and

project 2338 (IMPACS/lntegrated Manufacturing Planning And Control System). The
objective is to develop an overall approach for CIM solution. We think that an overall CIM
approach sfvDuid comprise a reference architecture which acts as a reference model for

the analysis and design, and a method which shows how to build the architecture of

studied enterprise from the reference architecture. First, the paper will propose a

modelling framework defining the content oF the overall approach. Then the

architecture, the method and the formalisms used will be presented in detail.

1. Problem statement

Trying to define what is an overall approach for CIM, we will link it to some concepts

dealing with architectures, design methods and formalisms.

Within European ESPRIT program, efforts are being made to seek for overall CIM
solution. For example, ESPRIT Project 688 has developed a CIM Open System
Architecture (CIM-OSA), ESPRIT Project 418 has developed a GRAI Integrated Method
(G.I.M) to design CIM systems etc... However, CIM-OSA is more architecture oriented in

which no method has been proposed so far to show how to build an architecture. G.I.M is

more method oriented in which no reference architecture has been defined to support the

method.

It is now particularly considered that no amount of sophisticated tools and techniques to

design CIM systems are really useful unless they are developed within an architecture

context, no CIM architecture is really usable unless it is supported by a well defined

method. The experiences and lessons learned in these projects lead us to look for an

overall approach in which a reference architecture, a method as well as formalisms to

build the models are developed jointly and with consistency.

2. Modelling framework

When analyzing, designing and implementing a CIM system, various concepts and

models need to be defined and built. In order to ensure the completeness, consistency

and integration between the concepts and models, we propose to define a modelling

framework in which all models needed for the analysis, design and the implementation of

CIM systems find their place (Fig.1) [VAL 90]. In this scope, the GRAI laboratory is

developing a modelling framework within the GIM method. But in Esprit IMPACS project

the proposed modelling framework is slightly different in order to take into account the

various constraintes of the project.

153

MANUFACTURING MODELLING
SYSTEM FRAMEWORK SET OF CONSISTENT

MODELS

Figure 1 . The use of modelling framework [VAL 90]

2.1 The GIM modelling framework

This modelling framework comprises the three following axis (Figure 2):

• Views/Decomposition: Decision, physique, information

• Abstraction: Conceptual, structural, realisational

• Reference: Generic partial particular

o
I—

I

Eh
Q

2
vr

DECOMPOSITION

Fig.2 The modelling framework developed in GIM

A view is a selective perception of manufacturing systems. It concentrates on one

particular aspect and disregards others. Each view can be represented by a view model

which allows coordinated modelling, structuration and optimization of a specific aspect of

CIM systems.

An abstraction level describes the degree of detail of model building. Three abstraction

15A

levels have been defined; namely conceptual, stmctural and realisational. The concept of

abstraction level is also related to the concept of integration. Our objective is to achieve

the integration in all abstraction levels. The physical integration at the realisational level

should be coherent with the integration defined at the conceptual and structural level.

The reference describes the degree of genericity of the models. The particular

architecture of a studied enterprise can be derived from the reference architecture and

generic architecture building blocks.

2.2 The IMPACS modelling framewori<

The modelling framewori< proposed in IMPACS project presents the following differences

with respect to the previous one:

• IMPACS framewori^ is composed of "View axis", "Abstraction axis" and "Project life cycle

axis". The reference axis appears no longer. Because IMPACS develops only one type of

reference architecture for discrete part batch manufacturing.

• A functional view is added in IMPACS modelling framework. Because it is considered

that functional view is easy to be understood by the user, and the functional view model

can be a basis to achieve the integration of other views.

•The project life cycle axis is added in order to show the relation between the stnjctured

approach and the different models.

So, this IMPACS framewori< specifies the different viewpoints, different degree of detail of

models to be built as well as the various steps of CIM project life cycle (see figure 3)

[DOU 90].

CONCEPTUAL STRUCTURAL REALISATIONAL
Life cycle y

Figure 3. The IMPACS Modelling framework [DOU 90]

155

A life cycle defines the main phases of a CIM project. It is possible to distinguish three

main phases; the analysis, the design and the implementation. A model should be

created at the end of each phase. The analysis phase results in a conceptual model of

existing or pseudo-existing system. The design phase generates a conceptual target

model defining the future system and a structural model, the implementation phase
generates an implementation model which is the picture of real CIM system.

The modelling framework can be considered as the skeleton of the architecture and the

method. To use this modelling framework in the analysis and design of CIM systems, we
have to define explicitely the content of the reference architecture and the method.

3. Architecture

3.1. Architecture definition

There is no generally accepted definition of CIM architecture. For us, a CIM architecture

can be considered as a set of models which describe the elements and the relationships

between these elements of the whole CIM system. An architecture represents various

aspects of the manufacturing and is considered as the basis for design and
implementation of CIM systems. Different kinds of models are needed to describe

respectively the 'WHAT* (what a CIM system is conceptually composed of), and the

'HOW (how a CIM system is technically working), and to show the way of transforming

the models into realities, e.g. working system [IMP 89].

A reference architecture is a basis of comparison to derive a particular architecture of

studied enterprise. In order to represent a wide range of enterprises, a reference

architecture should be general and contains the invariant elements and properties of

these enterprises. According to the architecture definition given above, a reference

architecture is composed of a set of reference models. Each of these reference models

stands for representing one point of view of CIM system at a given abstraction level.

3.2. The reference architecture

According to the architecture definition given above, we think it is possible to define three

types of reference architectures representing respectively the "WHAT" and the "HOW" of

CIM systems as well as the transformation process from the "WHAT" to the "HOW" (Fig.4):

- the conceptual reference architecture

- the stnjctural reference architecture

- the realisational reference architecture

The conceptual reference architecture defines the "WHAT", e.g. what functions, what

physical facilities, what decisions and what information we need in a CIM system. These

correspond to the four views defined in the modelling framework.

The structural reference architecture shows an "ideal" structure of elements defined in the

conceptual reference architecture by taking into account the various criterion and

constraints of organization.

156

The realisational reference architecture is a picture of an "ideal" real CIM system. The

realisation reference architecture represents a CIM system in terms of information

technology components, manufacturing technology components and organization

technology components.

The use of the reference architectures is defined in the method. To be applied to a very

large field, the reference architecture can not be very accurate, but generic.

Conceptual

reference architecture

Function Physical Decision Information

view view view view

Show what

elements we neec dea

CIM

svsteiW
Show the picture

of a real CIM system

Structural

reference architecture

Function Physical Decision Information

view view view view

Show how to

structure these

elements

Informatbn Manufacturing Organisation

technology technology

Realisational

reference architecture

Figure 4. Integrated CIM reference architectures

3.2.1 Conceptual reference architecture

The functional view model describes the total manufacturing system in terms of functions.

The 'Business Planning', 'Master Production Scheduling' and 'Factory Coordination'

etc... These functional blocks will be detailed successively to a desired degree of detail.

The formalism used to build this functional view model is IDEFO.

The physical view model describes the enterprise physical resource, processes, products

etc.. The physical view model shows also the location where functions defined in the

function model are located. It is important to note that dynamics simulation technique is

157

very useful to study physical system. We should study how to use this technique in the
j j

physical view model. The formalism used to build the physical view model is IDEFO. '

The decisional view model represents the structure of decisional system. A decision is
!

made for an horizon of time and should be revised periodically. Decision levels, decision

centers and decisional links as well as informational links should be represented in the

decisional view model. The formalism used to build the decisional view model is GRAI '

grid and GRAI nets.

The information view model represents the information needed within a manufacturing

system. A conceptual data model will be built. The formalism used for the information
'

view is the Entity/relationship.

3.2.2 Structural reference architecture

i

The role of structural reference architecture is to give some guidline of how to structure ^

the elements defined in the conceptual architecture. To define such a structure, we must

consider various criterion (economic, safety, flexibility etc..) and various constraints of i

studied enterprise.

The structural reference architecture can not provide a direct solution for each particular

enterprise because each enterprise has its own priority of criteria, its own constraints and

its own business objectives. But the stnjctural reference architecture can define some
possible "ideal" configurations which act as the references to aid people to build their

particular structural model. !i

3.2.3. Realisational reference architecture li

The 'Realisational Reference Architecture' is the description of the final physical

realization of the computer integrated manufacturing system as a "whole". This

architecture contains three parts :

1° Information Technology components [AMI 89]
2° Manufacturing Technology components [AMI 89]

3° Organizational technology components
j

The Information technology Components are composed of mainly:

• Application softwares
• Computer hardwares
• Communication networks
• Information exchange services

• Local operating systems
• Databases and database management systems
• etc..

The Manufacturing Technology Components are composed of mainly:

• People

158

• Machines
• Robots
• etc..

The Organizational Technology Components are composed of mainly:

• Rules to structure the Information technology Components
• Rules to stmcture the Manufacturing technology components
• Rules to define the working of real world CIM system
• Rules to control CIM system
• Rules to modify CIM system structure and components
• etc...

4. Formalisms

Only the formalisms used to build the conceptual architecture are presented in the

following.

4,1 IP^FQ Formalism

IDEFO is used to build the functional model and physical model of the conceptual

architecture. Using IDEFO to build a functional model consists in answering the following

specific questions :

• what is the basic functional breakdown or decomposition of manufacturing ?
• what is being transformed and what is the result ? what influnces these functions ?
• what is necessary to carry out these functions ?

An IDEFO formalism is made up of labeled boxes and arrows. Boxes represent the

decomposition of the topic into parts, arrows connect boxes and represent interfaces or

constraints between boxes. A control describes the conditions or circumstances that

govern the transformation. A mechanism could be the person or device which carries out

the activity Fig. 5).

CONTROL

INPUT

1

T

-> OUTPUT

MECANISM

Figure 5. IDEFO formalism

159

4,2 GRAI formalisms

GRAI formalisms consist of GRAI grid and GRAI net. GRAI grid was developed within the

works of GRAI method [DOU 84]. GRAI net was developed to meet the needs of discrete

activity modelling, and particularly decisional activity modelling.

GRAI grid gives a hierarchical representation of a decisional view of CIM systems. GRAI
grid is a frame-like table using a functional criterion to identify production management
functions, and decision horizon (H) and revision period (P) criterion to identify decision

levels. Decision horizon is a time interval through which decisions are valid. Revision

period is a time interval at the end of which decisions are revised. The building bricks of

the grid are decision centers mutually connected by decision links and information links.

A decision link is made of decision variables, decision objectives and decision

constraints. A decision link provides a decision frame to another decision center.

Information link transmits the decisions made in one decision center to another decision

center as information (Fig. 6).

I

Figure 6 . GRAI grid formalism

GRAI nets give the structure of the various activities in each decision center identified in

the GRAI grid. By using GRAI nets, the result of one discret activity can be connnected

with the support of another discret activity. With GRAI nets, four fundamental elements are

to be identified : (see Fig. 7).

- to do or to decide (activity name),
- initial state (main iuput of an activity),

- supports (informations, decision frame, methods and materials),

- results (results of an activity).

160

Initial

State of

results

Figure 7. GRAI net formalism

4.3 Entity/relationship formalism

The purpose of information modelling is to structure the memory of the enterprise [TAR

83]. There exist different ways to model an information system, but the most elementary

one is to identify information entity by its name, to describe this information by its

attributes and then to establish the relationships between them.

An entity is "anything relevant to the enterprise about which information could be or is

kept". An entity represents data, it is not itself data. For instance, a drilling machine is an

entity but its capability, number of tool, availability and so on are just data.

A relation is "an association between two or more entities". Anything that shows or

sharpens a connection between two or more entities may be thought of as a relation.

We can introduce the concept of degree (cardinality) in relationship (Figure 8).

entity name
/Relationship type name\

entity name

[propriety type name] [propriety type name]card min, card max V (propriety type name) ^card min, card max

Figure 8. Entity/relationship formalism

161

5. Method

The method Is developed within the architecture context. The role of the method Is to

define how to derive a particular architecture of studied enterprise from the reference

architecture.

•

A method defines the way of doing something according to some principles. A method to

support a CIM architecture for the analysis and design of CIM systems should Involve the

use of

:

- reference architecture with various reference models,
- graphical and computerized formalisms derived from models,
- a structured approach.

Generally speaking, a structured approach defines a set of steps to be followed when
applying a method to attack a problem. In a CIM design method, the structured approach

should cover the whole life cycle of a CIM project which Is splitted up into several steps

(analysis, design, development. Implementation, operating). For each of these steps,

models to be built, decisions to be made, validation and coherence checking to be done
between models, must be explicltely defined.

Three main phases are needed: the analysis, the design and the implementation (Fig. 9).

The existing or pseudo-existing system will be described in the analysis phase by a

conceptual model representing the existing function, physical organisation, decision and

information of studied enterprise. This conceptual model of existing will be re-arranged

and optimized in the conceptual design phase to meet the needs of future system. We
call this new model the conceptual target model. Then In the structural design phase, the

elements defined in the conceptual target model are structured oy a structural model. The
structural model contains the detailed specification for the software development. At last

we should specify how these softwares, hardwares, machines and people are connected

to each other. This is made a realisatlonal model which Is a picture of real working CIM
system that we will Implement.

The structured approach has defined three main phases In a CIM project life cycle: the

analysis, design and Implementation. In each of these phases, the reference

architectures are used to aid to build the particular architecture of studied enterprise (see

Fig. 10).

The Conceptual reference architecture Is used at the analysis phase and design phase to

aid to build an conceptual model of existing system and a conceptual target model of the

future system.

The structural reference architecture Is used at the design phase to aid to build a

structural model of the futur system.

The realisatlonal reference architecture is used at the implementation phase to aid to

build a realisatlonal description model.

162

ANALYSIS
PHASE

DESIGN
PHASE

Analysis

I
Conceptual model

existing system

I
Conceptual Design

I
Conceptual target model

for the future system 5

Structural design

C

I
Structural model

IMPLEMENTATION
PHASE

I
J

Implementation

specification

C
Realisational model

I
J

Implementing

Figure 9. The structured approach

163

r
ANALYSIS

c
Coneeptual

model

Conceptual

Reference

architecture

DESIGN

Conceptual target ^
model)

Structural

Reference

Architecture
c

2i
Structural

model

IMPLEMENTATION

Realisational

reference

architecture

Realisational

model)

EXISTING OR
PSEUDO-EXISTING

SYSTEM

NEW
IMPLEMENTED

SYSTEM

Figure 10. Uses of reference architectures

The three main phases; the analysis, the design and the implementation can be detailed

into the following subjects which will be treated and defined in the method:

• How to initialize a CIM project,

• How to organize the project,

• How to determine the studied domain.

• How to do the analysis of existing or pseudo existing system,

• How to build the four view models using the conceptual reference architecture,

• How to check the inconsistencies between these models.

• How to do the conceptual design of the future system,
• How to build the new four models using the conceptual reference architecture,

• How to simulate the design model.

• How to build structural models using structural reference architecture,

• How to make the technical choices and the regroupments,
• How to separate the automatic part and manual part of the futur system.

• How to build realisational models using realisational reference architecture,

• How to implement the realisational models.

The reference architecture contains a set of reference models used by the method. When
studying a particular CIM system, the use of reference architecture enable to create the

164

architecture of studied enterprise more quickly without much inconsistencies. Generally,

the studied system corresponds rarely exactly to a reference architecture. So, we have to

show how to get the solution by adapting the reference architecture to the specificity of

studied system. This adaptation is made according to the difference identified between

the reference architecture and the studied system.

6 Conclusion

The reference architecture and the method form an overall solution for CIM. Without

reference architecture, method can not be used efficiently. Without method, there is no

guideline to show how to build an architecture.

The approach presented above is an ongoing work. It is currently developed in the frame

of ESPRIT project IMPACS (Integrated Manufacturing Planning And Control System) in

which GRAI is Involved. This approach is also coherent with ESPRIT project CIM-OSA
(CIM - Open System Architecture) which is considered a good reference in the field of

CIM.

7. References

[AMI 89] AMICE - "Open system Architecture for CIM" - Esprit Project 688 research report.

vol.1. Springer-Verlag 1989.

[CAM 80] CAM.I - "Architect's manual: ICAM definition method IDEFO". - CAM.I document
N° DR-80-ATPC-01. April 1980.

[DOU 84] DOUMEINGTS G. - "Methode GRAI: Methode de conception des systemes de
productique". - These d'etat en Automatique. Universite de Bordeaux 1. 1984.

[DOU 90] DOUMEINGTS G. -
" Modelling Techniques for CIM". - ESPRIT CIM workshop

proceedings. Brussels, 7-8 March 1990.

[IMP 89] IMPACS -
" Review of Existing CIM architectures, methods and tools". - IMPACS

WP1 deliverable. 1989.

[TAR 83] TARDIEU H., ROCHFELD A. & COLLETTI R. - "La methode MERISE, Principes

et outils". - Les 6ditions d'organization. Paris 1983.

[VAL 89] VALLESPIR B., DOUMEINGTS G. & ZANETTIN M.- "Proposals for an integrated

approach to model and design manufacturing systems: the GRAI Integrated Method". In

the third International Conference on Computer Applications in Production and
Engineering, Tokyo, Japan, 2-5 Octobre 1989. 11 p.

[VAL 90] VALLESPIR B. -"Modelisation et conception des systemes de production".

CNRS/G.R. Automatique/SED./GT4 - Integration. 1990.

[ZAN 89] ZANETTIN M., VALLESPIR B. & DOUMEINGTS G. - "Elaboration of

specification for the CMS according to the results of the integration". - deliverable D40.

Esprit project 41 8. Feburary 1 989.

165

Towards a Distributed Control Architecture

for CIM

Matt Johnson and James R. Kirkleym
Global market pressures have reshaped the enterprise. Both internal competition and external

collaboration are common, and the concept of the independent company has become obsolete.

Meanwhile, advances in distributed computing technology have broken the boundaries between

information systems. In this environment, CIM architectures that view manufacturers as hier-

archically controlled entities fail to provide an adequate frameworkfor development. We pro-

pose the development ofa technical architecture based upon the principle ofdistributed control

to remedy the discrepancy between contemporary business practices and existing CIM models,

and demonstrate its advantages in enterprise application development.

1 Introduction

The structure of effective information systems for manufacturing follows expectations set by

the information and procedures of the businesses themselves. As business practice and com-

puter technology evolve, it is important to reevaluate the assumptions of existing architectures

to determine whether they continue to serve the manufacturing mission. In particular, the con-

trol model of a CIM architecture has a major impact on the structure of applications, so it is a

good starting point for analysis.

1.1 The Legacy of Hierarchical Control

Conventional technical (or implementation) architectures for CIM have selected hierarchical

control as the best way to respond to the requirements of top-down business models. Most re-

semble the NBS reference model of manufacturing [NBS], which divides application functions

among five levels of responsibility in a centrally managed hierarchy:

• Facility (Plant): CAD, group technology, process planning

• Shop (Area): Order splitting, release, and tracking, resource allocation/preventive mainte-

nance

• Cell: Job sequencing and material handling

• Workstation: Machine coordination and control

• Equipment: Programmable devices

These models have been instrumental in establishing a common vocabulary and expectations

for systems integrators. In fact, they have spawned an entire industry, in which vendors can

buHd, position and sell generic workceU controllers, area controllers, and various production

management applications. But they have also lead to monolithic, difficult-to-distribute plan-

166

Towards a Distributed Control Architecture for CIM

ning systems, and underutilized processing capacity at the shop floor and device levels. Even

though systems installed in the factory today are often as sophisticated as any others in the en-

terprise, they do not have adequate information or authority to respond to changing conditions

within their scope of operations.

1.2 The Opportunity of Distributed Control

The principle of distributed control provides a more realistic model of the existing complexity

and future diversity of enterprise information systems. In this scheme, an open set of peer enti-

ties contract with one another to accomplish business tasks, and compete for distributed re-

sources.

A distributed control model is more general than a hierarchical one, in that cooperating entities

may be aggregated and encapsulated recursively into hierarchical levels of control (as illus-

trated in Figure 1). However, they do not impose a hierarchy, as top-down models do. Using

distributed control, it is possible to construct flatter organizational structures, in which (for ex-

ample) a shop floor cell might generate an order for materials from an extemal supplier itself,

instead of relying on a centralized MRP system to determine its needs.

Figure 1. Constructing a Hierarchy from Distributed Control Elements

The distributed control concept takes advantage of the similarity of the manufacturing problem

at all organizational levels. While planning horizons and control mechanisms vary greatly

throughout an enterprise, every intelligent manufacturing entity must accept extemal or self-

generated orders for a product, and then schedule and dispatch activities that transform material

(as defined by a manufacturing process) into that product. The basic abstractions and the rela-

tions between them are as true for a corporate-wide MRP system as they are for a single robot

loading parts onto an assembly line.

2 Characteristics of a Distributed Control Architecture

A distributed control model requires a new set of goals, benefits, and design criteria for CIM
architecture. It also gives developers the tools to identify the scope of manufacturing applica-

tions in the enterprise domain, and to sketch out some basic abstractions.

167

Towards a Distributed Control Architecture for CIM

2.1 Goals

As the CIM model evolves from hierarchical to distributed control, the technical architectural

focus changes. Instead of determining the best way to decompose applications into a rational

set of functions, a distributed control architecture promotes the interoperability of independent

CIM applications defined in terms of objects.

Functional decompositions constrain interoperability to one dimension ~ an application can

provide only the range of functions allowed it in the hierarchy. The goal of a CIM distributed

control model is to expand the flexibility of interoperation, while maintaining discipline. It

capitalizes on the basic similarity of the characteristics and behaviors of production orders, op-

erations, resources, and activities throughout the enterprise, so that independently developed ap-

plications that manipulate these production entities can interact in new ways.

2.2 Benefits

In a distributed control environment, application providers "plug and play" by offering sophisti-

cated features behind industry-standard component interfaces. An algorithm and its associated

data, which once may have been internal to a large application, now may be repackaged and

used in other contexts. For example, a statistical quality control vendor might sell a package

that used advanced algorithms (developed for factory-wide systems) to analyze local production

in a shop floor vendor's cell. By specializing, the quality control vendor could support addi-

tional, realtime features, while still providing a standard interface for applications to retrieve

quality information throughout the enterprise.

The interoperability achieved using objects improves upon the current practice of using shared

data to integrate applications, because it presents information in behavioral as weU as structural

terms. Formal methods define the appropriate use for each piece of information, so that access

to it is controlled. They hide the intemal format of manufacturing data (which may vary over

time and according to implementation) behind standard interfaces, and draw strict boundaries of

data ownership with access synchronization.

Implementation framework developers should be able to select the off-the-shelf application

components that best suit their corporate needs, with the assurance that they will work together.

AppUcation vendors should be able to concentrate on developing application features instead of

base technology, and compete on the basis of the unique added value they can offer to manufac-

turers. The intent of a CIM application interoperability architecture is to make this vision a re-

ality.

2.3 Design Criteria

The selection of a control model is only a starting place. To realize true application

interoperability in a heterogeneous environment, a CIM technical architecture must be based on

a thorough analysis of business requirements, and developed according to rigorous design crite-

ria. The following sections identify some design goals to be considered during development.

168

Towards a Distributed Control Architecture for CIM

2.3.1 Incorporate Existing Standards

In many of the areas that a CIM technical architecture covers, CIM standards activities are al-

ready weU established. The Product Structure Configuration Management (PSCM) portion of

the STEP/PDES [STEP] draft proposal specifies how product definition data may be structured

to support manufacturing applications, such as bills of materials. EDIFACT [EDI87] and re-

lated electronic data interchange standards provide a basis for the exchange of production or-

ders. MMS [MMS90] standardizes the protocol between factory applications and intelligent

manufacturing devices. An architecture should incorporate these standards to the greatest ex-

tent possible; it should also catalyze standardization activity where none currently exists. Ide-

ally, a CIM technical architecture would simply be a standards profile, which would guide im-

plementation fi-amework developers in the application of a set of encompassing intemational

standards.

Objects offer a way to encapsulate the features of existing, standards and applications. For ex-

ample, the notion of a "product" class may be used to represent the features of a PDES Product

Model in object-oriented terms, so they may be imported into the architecture.

2.3.2 Use Object-Oriented Modeling Methodology

The emphasis on modularity, genericity, and formalism in the object-oriented paradigm makes

reusable, interoperable applications feasible. Through the mechanism of inheritance, develop-

ers can trace the most abstract architectural concepts ~ through products — to unique implemen-

tations. They can also select the appropriate components of an architecture for their business

environment, and apply the discipline for further development in areas that are unique to their

organization.

The choice of object-oriented modeling methodology does not imply that implementations must

be object-oriented, however. A CIM architecture can use objects as a conceptual aid, as many
ISO OSI standards do. For example, MMS (at the OSI Application layer) defines a Virtual

Manufacturing Device object as an abstract class, with standard component classes such as vari-

ables, domains, and events. Representatives of NC, PLC, robot, and other device types specify

how they inherit the features of the VMD by developing companion standards. But even

though the standards identify concepts in terms of objects, implementors may use any means

they prefer to conform to the MMS service protocol (and its companion standard extensions).

2.3.3 Isolate Policy Decisions

Another key requirement for a CIM architecture that serves existing, heterogeneous enterprises

is that it must isolate policy information. It must not depend upon a single manufacturing disci-

pline, such as Just-in-Time or OPT. As effective as any policy may be, an architecture cannot

hope to eliminate other, established business practices. Change in an enterprise is evolutionary,

and multiple, hybrid policies often prevail.

One example could be termed "Just In Case" production, in which a company strives to imple-

ment JIT techniques, but keeps a small amoimt of inventory on hand just in case the materials

for the next task fail to arrive on time. Here, both pull and push styles of production are in use,

169

Towards a Distributed Control Architecture for CEM

and a system that recognizes only one may lose orders, miss deadlines, or buUd unneeded prod-

ucts.

Policy decisions occur everywhere throughout manufacturing. Under different conditions, such

conflicting factors as the lowest production cost, highest machine loading, or fastest delivery

may take precedence. The moral is that a technical architecture must allow manufacturers to

put complex policies into place, and to change them rapidly as business conditions change.

2.3.4 Minimize Base Technology Constraints

Just as it must isolate policy decisions to remain general, a technical architecture should strive

to minimize base technology constraints. It must yield major benefits without requiring that

existing information systems be thrown away.

By setting application interoperability as its goal, a distributed control architecture enforces the

semantic consistency of independently developed applications. Semantic mismatches are at the

heart of most integration problems; once they are solved, protocol, database, or language con-

versions are straightforward. Of course, future technologies (such as distributed object manage-

ment systems) will make the advantages of a distributed control architecture even more accessi-

ble, but object-oriented architecture principles can be applied in conventional implementations

by making the network protocol the point at which formal methods are defined.

2.4 Scope

Figure 2 positions manufacturing in the overall framework of the enterprise. A CIM technical

architecture must encompass the domains currently represented by MRP n, shop floor control,

quality management, and portions of conciurent engineering applications, while it establishes

clear interfaces with finance, warehousing and distribution, product definition data, and manu-

facturing devices.

There is a tremendous temptation for CIM architects to tackle topics that belong in tiie generic,

enterprise application domain. Unfortunately, CIM experts are in no better position to specify

the application components that are common to all application areas than office automation, fi-

nance, CAD, laboratory, and other vertical application experts would be. If CIM architects de-

fine aspects of the base technology as well as their own, integration across vertical application

domains will remain an ad-hoc process.

An enterprise application architecture will eventually be fundamental to integrating information

systems that cross traditional application boundaries, but it must be influenced by the detailed

requirements of a spectrum of existing vertical application architectures (such as CIM). Stan-

dards efforts and consortia (such as ODP, IEEE 1(X)3 [POSIX], X.Open, and OSF) have akeady

begun work in the generic application architecture arena; CIM architects should set require-

ments for these groups, but rely on them to supply more general application features.

170

Towards a Distributed Control Architecture for CIM

Base Proc Sys Comm. Interface

Figure 2. CIM In the Enterprise Domain

2.5 Basic Abstractions

Even after drawing strict boundaries, CIM architects stUl face a broad application domain. De-

veloping a viable technical architecture will demand the effort and agreement of the industry as

a whole. Nonetheless, it is important to illustrate the kinds of objects a distributed control ar-

chitecture would contain, and step through some of their interactions. The following is an out-

line, by object category, of a draft Ubrary of CIM object classes.

2.5.1 Production Resources

A production resource is any physical entity involved in production operations. There are sev-

eral general subclasses of resources, including material, operators, and equipment. Material

describes any object of production operations that yields a product. Equipment provides a logi-

cal view of production facilities (as opposed to the communications view, standardized by the

Manufacturing Message Service [ISO 9506]). Operators are production personnel; they inherit

additional characteristics from other superclasses (for example, employee) unrelated to CIM.

Some resources are schedulable. In certain manufacturing environments, schedules are associ-

ated with equipment; in others, they are linked to the product, or a combination of resource sub-

classes.

Equipment and operators export a set of capabilities, which define the types of jobs that they

can perfonn. A distributed control architecture allows binding of a resource to a production

operation at any point in time, from the initial definition of the production operation, up to the

moment the resource is required. During production, these resources match their capabilities to

the requirements of production operations through an intermediary called a role. If they are

171

1

Towards a Distributed Control Architecture for CIM

also able to establish contracts through an order protocol, resources are termed producers.

Material differs from other resource subclasses in that it foUows a product data description, in-

stead of exporting production capabilities. The STEP/PDES development effort [STEP] pro-

vides standardized representations of product data, which may be brought into the object model

in the form of a product class for each instance.

Some resource subclasses have hybrid characteristics. In metalcutting applications, for exam-

ple, the tools (blades and bits) used to machine parts are consumed like material, but function as

a part of the machinery. Operators order replacements regularly (using product descriptions),

but tool consumption is not tied directly to the orders being produced.

Resources also provide a model that statistical quality management and capacity planning appli-

cations can exploit in the collection of production (historical) data. Production planners may
substitute physical resources with virtual counterparts, and run detailed simulations of processes

to estimate material cost, resource loading, or production time for orders (following the sugges-

tion of [PAN89]).

2.5.2 Production Orders

Orders are the means for one producer to request delivery of a quantity of goods or services

from another at a specified time. In a distributed control architecture, the exchange of orders

within an enterprise foUows the same formal protocol as extemal orders do. This genericity of

orders supports flexible environments, such as one in which a shop floor cell requests parts di-

rectly from an extemal supplier. EDI standards such as EDIFACT provide a protocol for orders,

and an object-oriented architecture can map order class methods to EDI messages.

Orders fall into several subclasses. Workorders are simple production requests, without a

monetary basis. Purchase orders associate delivery of products with an exchange of funds.

Forecasts, or "soft" orders, assist capacity planners by projecting the arrival of "firm" orders

(workorders or purchase orders).

The dialog between producers may begin with a request-for-quote (RFQ) message. A producer

that wishes to bid on the production request may generate a response (an RRFQ), stating its

terms and conditions. Depending on its policies, a producer may then update its production

forecast to reflect the probability of getting the job, and allocate resources in anticipation of the

order.

A producer that responds to an RFQ establishes a contract with the requester. If it receives an

order for the work within the scope of the terms it set, it should be able to fiU it. On the re-

quester side, the placement of an order carries a similar commitment: to pay for the product (in

the case of a purchase order), or make use of it (in the case of workorders).

Contracts may be seen as long-running, distributed transactions, supported by two-phase com-

mit protocol standards for heterogeneous environments (such as [CCR]). Researchers continue

to develop more sophisticated serial transaction models to manage long-running activities.

172

I

Towards a Distributed Control Architecture for CIM

Other methods related to orders include order acknowledgment, status requests, and cancella-

tion.

2.5.3 Production Schedules

A production schedule (a component of some classes of resources) consists of an ordered set of

planned activities with specific starting times, ending times, and durations. When a resource is

scheduled, the planned activities represent the allocation of the resource to future work. De-

pending upon the scheduling policy in effect, a schedule dispatches activities that correspond to

its plans, causing production operations to be executed.

2.5.4 Production Operations

Operations are abstract representations of programs and procedures that transform material dur-

ing production. Production activities (threads of control) execute operations to produce prod-

ucts.

The recursive technique of building hierarchies out of aggregations of objects (as illustrated

earlier) is particularly valuable for composing complex operations from smaller, atomic steps.

For this purpose, we define a production process: a directed graph with production operations

as edges, and production states as nodes. Use of the abstract type saves others from having to

be concerned whether an operation is implemented as a process or as a single step.

Figure 3. Operations, Processes, and Steps

Figure 4 illustrates the relationship of production operations, processes, and steps. In their net-

work topology, production processes can represent assembly, disassembly, transformation, cre-

ational, and destructive steps. They also support highly flexible environments (a key architec-

tural requirement) by defining altemative sets of steps between beginning and concluding

states.

173

Towards a Distributed Control Architecture for CIM

Operations establish a set of requirements for producers that may execute them. However, these

are stated in process terms, which are very different from the terms producers use to advertise

their capabilities. For this reason, an intermediary, called a role, acts as a broker in the

resource-selection process, allowing resources with widely different sets of capabilities (such as

a production worker and an FMS) to subscribe to the completion of the same task (such as drill-

ing a 2cm hole in a car body).

2.5.5 Production Activities

A production activity represents the thread of control that a resource dedicates to a production

operation. Some resources can support multiple, concurrent operations; others handle only one

task at a time.

Most production activities occur imder the terms of a contract established by an order, so they

must be highly reliable. A nested transactional model (which provides commit or rollback as

altematives for activity completion) is appealing, but inadequate because:

• Typically many long-running activities execute at the same time; each of these may be

nested to several levels of depth. The requirement that all transactions be atomic and inde-

pendent leads to an unsupportable amount of locking and contention for resources.

• Many manufacturing steps cannot be roUed back in the same sense that database updates

can. Once a part is machined, it remains that way; it must be assigned to another order or

scrapped if the activity that created it is aborted.

New transactional models such as sagas [SAGA87] apply much better to production activity

control. They relax the strict ACID' criteria of transactions, allowing subtransactions to com-

mit before subsequent ones begin to execute. Compensating steps for each subtransaction are

executed if the master transaction (called a saga) needs to "roU back" to a consistent state. The

compensations must undo the effects of their associated steps, as defined in application terms.

3 Applying the Architecture in CIM Implementations

Even after an architecture is complete, individual implementations must interpret and apply it

effectively. The implementation process includes adaption (the specialization of the generic ar-

chitectural abstractions to the particular needs of an organzation), followed by a selection of

available products and applications that can be assembled together into a working CIM system.

3.1 The Adaption Process

A danger of CIM architectore is that it can become overly schematic in its attempts to be both

specific and comprehensive. For example, CIM-OSA [DIN89] suggests that a set of special-

ized "partial" models be developed for manufacturers along three dimensions: industry seg-

ment, enterprise size, and type of product. This classification approach fails because the set of

determining business factors is open, and not architecturally definable. Politics, corporate cul-

ture, the age of the enterprise, and the level of distribution of operations are just some of the

^ ACID: Atomic, Commutative, Isolated, and Durable.

174

Towards a Distributed Control Architecture for CIM

host of points that may affect the application of an architecture as much as business size or

product type.

For adaption purposes, an object-oriented model serves well. Its class interfaces are modular,

making selection and substitution simple. Further, inheritance offers a way to specialize both

the methods and data of the architecture for individual applications. An object-oriented archi-

tecture serves innovation, by providing avenues for improvement. It does not predetermine

how a business should be run.

3.2 The Software Selection Process

The selection or development of software platforms for CIM is an implementation framework

decision. Here, considerations such as portability become relevant. Corporations may choose

to standardize on portable or non-portable platforms; in aU cases, if the implementations follow

the semantics of the technical architecture, they will interoperate. Portability does not imply

freedom from base technology constraints; in fact, it imposes a set of implementation con-

straints. Using portability (an implementation concem) to achieve interoperability (a technical

architecture goal) is a mistake.

4 Conclusion

As CIM architecture enters the realm of international standards, all of its traditional assump-

tions bear reexamination and further development. Simply by generalizing one fundamental

principle (hierarchical control), we have shown how a distributed control architecture with dif-

ferent goals, benefits, and structure could be conceived.

Nonetheless, the architectural concepts presented here are only suggestions. They are meant to

help stimulate a serious analysis of technical requirements for CIM architecture, which must be

public and broad-based. Past architectures have gone unused when they have not respond ade-

quately to manufacturers' requirements; future investors in CIM cannot afford to have that hap-

pen in our ever-more-volatile business climate.

5 References

[DIN89] DIN-NAM 96.5 Proposal: Frameworkfor CIM System Integration, ISO

TC184/SC5WG1-N105, 04-15-89.

[EDI87] ISO IS 9735, EDIFACTT.

[STEP] ISO TC 184/SC4, Standard for the Exchange of Product Model Data, First Working

Draft Proposal for STEP 1.0.

[MMS90] ISO IS 9506, Manufacturing Message Service.

175

Towards a Distributed Control Architecture for CIM

[MBS] CIM Reference Model, National Bureau of Standards.

[PAN89] Jeff Y. -C. Pan, Jay M. Tenebaum, Jay Glicksman, "A Framework for

Knowledge-Based Computer Integrated Manufacturing," IEEE Transactions on

Semiconductor Manufacturing, Vol 2, No 2, May 1989.

[SAGA87] Hector Garcia-Molina and Kenneth Salem, "Sagas", SIGMOD'87 Proceed

ings. May 27-29, 1987, San Francisco, California, ACM Press.

176

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.
Presented by RICHARD PANSE on behalf of the ESPRIT AMICE
CONSORTIUM.

Abstract.
CIM-OSA* is a strategic architecture supporting all phases of a
CIM system life cycle from requirements definition, through
design specification, implementation description and execution
of the daily enterprise operation.
Standardised modelling constructs enable generation of
particular enterprise models for analysis, improvement and
simulation of the daily enterprise operation.
Standardised Information Technology services and protocols
within the CIM system environment enable execution of the
daily enterprise operations under control of the above derived
models

.

A brief discussion of the necessary international standards
activities provides an outlook of the future work.

1 Introduction.

Computer Integrated Manufacturing (CIM), some years ago only
known to real manufacturing experts, today is a well known and
often used term. However, even today, the meaning of CIM is
controversially interpreted. The ideas vary from "catchword
without meaning" through "humanless plant". Despite of this
controversial interpretation every enterprise intending to
keep its position at the market must use all offered
possibilities to keep its products and operation competitive.
Amongst other factors like labour costs, technology and
education of employees, CIM is one of the most promising
possibilities to stay competitive.

To introduce CIM effectively skilled people, knowhow and
structured implementation plans are required - in addition to
the necessary investment capital and the top management's
support for CIM.

An enterprise-wide agreed upon strategy for the introduction
of CIM is a mandatory prerequisite if all steps towards CIM
are to be successful. Regardless whether the introduction of
CIM shall be accomplished slow or fast, regardless which part
of the enterprise is the forerunner in the introduction of
CIM, and despite the resistance of some of the people
involved, a CIM model for the whole enterprise must be
generated with engineering methods which support all steps of
CIM introduction - from the very first concept down to the
real implementation.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

177

Within ESPRIT (European Strategic Program for Research and
Development in Information Technology) one project for CIM
architecture was initiated and performed by the AMICE
consortium (AMICE is the reversed acronym for European CIM
Architecture). The consortium consists of the following 21
European members:

AEG Germany; Aerospaciale France; Alcatel France; APT
Netherlands BV Holland; British Aerospace United Kingdom; Bull
France; Cap Sesa Innovation France; Digital Equipment Germany;
Dornier Germany; FIAT Italy; GEC United Kingdom; Hewlett-
Packard France; IBM Germany; ICL United Kingdom; Italsiel
Italy; Philips Netherlands; Procos Denmark; SEIAF Italy;
Siemens Germany; Volkswagen Germany; WZL-Aachen Germany.

The goal of the AMICE consortium is to develop a CIM
Architecture which supports the following requirements:

Timely availability of the right information at the right
place

.

Adaptability to the continuous change of the environment
and the production processes.
Flexibility of all enterprise processes and
organisational structures.
Processable descriptions of function and behaviour of all
activities within the enterprise.
Real time control of all enterprise processes.
Most economic use of information technology.
Possibility to make use of programs and machines from
different vendors.

2 "CIM - Open Systems Architecture" ("CIM-OSA").

The "CIM - Open Systems Architecture" ("CIM-OSA") developed by
the ESPRIT consortium AMICE addresses the goals described
above

.

"CIM-OSA" contains two major parts. Each part by itself is a
closed subject and standardizable, however the two parts
belong together, and therefore both parts must always be seen
in context to each other (figure 1).
The first part of "CIM-OSA" contains concepts for generating
information technology representations of enterprise models.
Models which, at their ultimate stage, can be used to control
and monitor the execution of the enterprise's daily
operations. The models can be generated for existing
enterprises as well as for new enterprises. This means in turn
that "CIM-OSA" can also be used to derive the model of the
ultimate enterprise from a model of the existing enterprise
(the derivation from "as is" to "to be").
The second part of "CIM-OSA" contains concepts for an
Integrating Infrastructure within an Information Technology
Environment. The Integrating Infrastructure enables "CIM-OSA"
enterprise model occurences to be used for the execution.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

178

monitoring and controlling of the daily operations of the
modelled enterprise.

Figure 1. Parts of "CIM-OSA"

.

2.1 The modelling framework.

Modelling methods like IDEF/SADT, PSL/PSA are available and
commercially used since years. All of the existing modelling
methods can well be used to describe the material and data
flow within enterprises, with different levels of completeness
and consistency verification concerning functions and data.
None of the methods available today can be used to describe
the enterprise's operation down to a level which allows
flexible use of resources, or the use of the model to control
the daily operation of the enterprise.

The modelling concepts of "CIM-OSA" enable:
Verification of completeness and consistency for all
described functions and objects (business processes,
data, materials and resources including tools and
fixtures) at any detailing level.
Simulation of the enterprise model at any detailing
level

.

Easy and fast change of the model in case of changing
business processes, methods or tools.
The use of the model to initiate, monitor and control the
execution of the enterprise's daily operation.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

Resource allocation during the execution of business
processes to enable better and more flexible load
distribution on the enterprise's resources.
Model generation for existing enterprises as well as for
enterprises to be built.

The modelling approach of "CIM-OSA" also enables portability
of partial models into other enterprises by use of
standardised modelling constructs. This will reduce the
modelling effort for particular enterprises substantially.
Portable partial models will also provide input for a common,
standardizable data dictionary, enabling exchange of
unambiguous data between enterprises and functional areas of
enterprises

.

Within "CIM-OSA", function and behaviour of business processes
as well as data definitions are separated from the application
programs, causing "CIM-OSA" compatible application programs to
be limited to the algorithms of todays application programs.
Thus "CIM-OSA" application programs are smaller, less complex
and less change-sensitive, reducing considerably the ever
increasing maintenance cost of application programs.

Due to the structured approach of enterprise modelling,
redundant data elements will be avoided. This enables real
integrated data bases and prevents unnecessary multiple
appearance of the same data as well as working with obsolete
data

.

2.1.1 Dimension of architectural genericity.

In today' s programming environment no responsible application
programmer intends to program all components by himself.
Instead he will make use of programming languages and software
packages available at the market to generate the program
support for his particular enterprise. Similarly "CIM-OSA"
provides for a "language" and ready for use "partial models"
for the enterprise modeller to generate the model of his
particular enterprise. The "language", the "partial models"
and the "particular enterprise models" are levels of
architectural genericity (figure 2).

Figure 2. "CIM-OSA" Levels of Architectural Genericity.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

180

Generic Architecture Level. The first architectural level of
genericity contains generic constructs (building blocks).

Similar to a programming language which is used to write
program modules and/or total programs, these constructs can be
used tQ generate models of major business functions and/or
complete enterprises.

Like a standardized programming language which ensures
portability of programs within heterogeneous systems, the
generic constructs should be standardized to ensure
portability of models and/or sub-models.

The Generic Architecture Level is the domain of the standards
committees and associated research projects.

Partial Architecture Level . The second architectural level of
genericity contains partial models. Similar to application
programs, which can be used in many enterprises, partial
models can be used in many enterprises.

Many enterprises of the same industry make use of the same or
only slightly different major business functions. Therefore
industry-oriented partial models can be used in other
enterprises of the same industry, reducing the modelling
effort for particular enterprises.

Also within different industries similar task oriented
business functions are used, like purchasing activities,
storage control, change control of parts. Portability of task-
oriented partial models to other enterprises enable multiple
use of models with little or no additional modelling effort.

Similar to application program which can be used in several
enterprises, partial models can have options, which can be
used or ignored. This opens the possibility for the wide use
of partial models in different enterprises and industries.

A storage model may, for example, contain options for simple
manual controlled storages as well as large automatic
controlled storages, with manual as well as machine supported
loading and unloading facilities, thus offering a storage
(partial) model for wide use.

The standardized constructs made available by the generic
architectural level of genericity will be used to compose the
partial models, thus ensuring that all partial models are
compatible in view of the constructs used.

In order to avoid that an immeasurable amount of partial
models will flood the market, reference models for the
different industries should be developed.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

181

The Partial Architecture Level is the domain of organisations
(institutes, software companies, enterprise consultants) which
will generate and market partial models. These organisations
may also provide significant input to the standardisation
bodies being active at the Generic Architecture Level.

Particular Architecture Level. The third level of
»

architectural genericity is devoted to individual enterprise.

Partial models which meet the business requirements of a
particular enterprise best will be selected and, if necessary,
slightly modified by use of the standardized constructs from
the Generic Architecture Level. Thus by use of offered partial
models and generic constructs a particular enterprise model
can be generated.

The above stepwise instantiation/aggregation from the generic
constructs through the partial models towards the particular
enterprise model can also partly be reversed, by first
generating a particular model using generic constructs and,
after addition of possible features and options, offering the
result as a partial model for use within other enterprises.

The Particular Architecture Level is the domain of the
individual enterprises.

2.1.2 Dimension of modelling levels.

Existing modelling techniques like IDEF leave it to the users
discretion how to proceed in the modelling process, although
in general a "top-down" approach is recommended. "CIM-OSA"
recommends a "top-down/bottom-up" approach, which is supported
by a pre-defined structure for the modelling process.

Figure 3. "CIM-OSA" Modelling Levels.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

182

Similar to the approach in engineering of having an objective
definition phase, followed by a detailed design phase and an
implementation phase, three modelling levels are defined in
"CIM-OSA" . Each modelling level has defined tasks to be
achieved and is supported by constructs. Within the three
modelling levels the "top-down" approach is used (figure 3).

Requirements Definition Modelling Level. Within the uppermost
modelling level all tasks of an enterprise which are required
to perform the business of the enterprise are defined. Within
this modelling level it is defined "what" has to be done in
the enterprise in order to meet the business objectives.

While defining the tasks for all functional areas of the
enterprise, the objectives and constraints, the execution
sequence of the tasks, all data necessary and the capabilities
of resources required to achieve the objectives of the tasks
are defined - at a detailing level which is necessary to
understand all business requirements.

Although the language used is non-technical it must be
precise. Statements like "highest quality" must be quantified
into say "98.5% error free parts", "ability to deliver at any
time and place" must be converted into "delivery of XX
products per day, within YY miles distance, ZZ hours service
per day"

.

When defining the enterprise tasks it is important that
existing business procedures and/or enterprise hierarchies are
ignored. This is necessary, because the following modelling
levels are based on the results of the first modelling level.

If, during the definition of the enterprise tasks, attention
is given to existing procedures and/or hierarchies, most
likely the outcome of the modelling exercise is a mirror image
of the existing enterprise, preventing the chance to really
generate a model driven by the enterprise requirements,
challenging the old, empirical grown organisations.

By defining tasks under consideration of the business
requirements only, a model of the enterprise is generated
which contains a minimum of tasks, omitting some of the old
existing procedures and organisations.

However, the tasks of the different functional areas of the
enterprise usually are defined by experts who are well
knowledgeable with their universe of discourse within the
enterprise but not with other areas. This usually results in
redundancies and non-optimum description of the enterprise,
far away from integrated enterprise wide-functions and data.
It is one goal of the following modelling levels to remove
these redundancies and suboptima.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

183

Design Specification Modelling Level. Within the second
modelling level the requirements definition model will be
converted into detailed specifications for each task, its data
and resources needed for the execution, and the
responsibilities within the enterprise.

The requirements model which defines "what" has to be done is
now specified in terms of "how" the goals will be achieved. In
case of multiple possibilities, all possibilities should be
designed for later decision and implementation at the next
modelling level.

Within each task to be performed the necessary data will be
specified, broken down into data elements and associated to
each other by relations.

Each specified task will be broken down into activities with
specified input and outputs.

The required capabilities of the resources defined at the
requirements definition modelling level will be converted into
detailed specifications of people, machines, tools, fixtures
and programs.

The result of the second modelling level is an optimised
specification of all functions, data and resources. However,
no decision is made at this modelling level about the
implementation, i.e. there still exist multiple possibilities.
This allows for pragmatic, constraint driven implementations
without changing the specification of this modelling level.
All design possibilities will be kept for later use and
reference in case of changing implementations.

Implementation Description Modelling Level. Within the third
modelling level the final decisions will be made about the
enterprise operations. The prerequisites for these decisions
are the design specifications of the previous modelling level,
descriptions of available resources and pragmatic decisions
due to enterprise constraints.

Available resources are resources already installed at the
enterprise as well as possible resources from vendors,
suppliers and service organisations. All these resources can
be kept in a "component catalogue", which is updated whenever
new resources or resource offerings are known.

Available resources which match resource specifications will
be assigned to their business processes. This assignment
includes decisions whether new resources will be installed at
the enterprise or associated activities will be sub-
contracted. In the latter it may happen that the
implementation description model differs from the optimum
design specification model, however the possibility of sub-

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

184

contracting is already defined at the previous modelling
level

.

In case the resource specifications of the second modelling
level do not match resources from the "component catalogue",
decision must be made whether new resources will be developed,
or othef implementation possibilities are considered. This may
include a further iteration at the design specification
modelling level.
A simulation process follows, during which is verified whether
the implemented business processes together with their
assigned data and resources achieve the defined business
goals

.

Although after simulation the modelling process is complete,
it will be common praxis to execute a first "try run" of all
business processes together with their associated data and
resources for verification. After a successful "try run" the
model will be released for the execution and control of the
daily enterprise operation.

2.1.3 Dimension of views.

To enable optimisation of certain aspects like business
process, data, resources and/or responsibilities within the
enterprise, it is necessary to present all information
belonging to these aspects to experts in a compressed form for
their consideration and change. To accomplish this "CIM-OSA"
provides different views. The structure of views also
facilitates for graceful migration from a non-modelled
enterprise by describing one view after the other whenever it
is deemed necessary. Although there is room for many views in
the architecture, four views are considered to be sufficient
(figure 4)

.

Figure 4. "CIM-OSA" Views.

The Function View. Within the Function View all tasks and sub-
tasks of an enterprise will be described by way of a
predetermined structure. The structure provided consists of
enterprise functions (figure 5), which can be decomposed into
further enterprise function levels. The number of levels is
open and determined only by the individual modeller.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

185

Each enterprise function contains a functional part,
consisting of:

the objectives and constraints of this function,
the action to be performed,
the description of the inputs by way of material, data,
controls and resources needed for the action,
th^ expected outputs from this action in form of
material, data, control and resource information.

When an enterprise function is decomposed into a further lower
level of enterprise function a behaviour part is added to the
enterprise function. The behaviour part describes:

the associated lower level enterprise functions,
the direct or conditioned control sequence of the lower
level enterprise functions (set of procedural rules) to
be performed, as well as the details of the conditions,
the objectives and constraints associated to the lower
level enterprise functions,
the events which can initiate execution of the enterprise
lower level enterprise functions.

The third part of the enterprise function, the structural
part, contains the relation between enterprise functions and
their associated parents and/or children.

Oeitetvn

ConttTAintt

PciarnvaRulai)

Ftrciional

eucrsten

Rtajirtd

Ineutt Outouti

Funeton Funeton

Comrol Control

Rtieure* Raieure*

c
o lour

4—*

u

P =
r U-

>
J= Q
a ^

Structure
0

Ottdof j
PartfTtol

Obi«etiv*i

ConitTAinti

(Deelarstiv*nul«i)

Pnaecdurainul*!

Event*

Ending StatuMi

Figure 5. Enterprise Function.

To differentiate between the levels of function decomposition
the function view is divided into domains of discourse (a part
of the enterprise under modelling consideration), business
processes and enterprise activities. Business processes and
enterprise activities can be of multiple use if required
(figure 6). At this point of the description it should be
noted again that the domains and/or business processes are
function-oriented and not organisation-oriented.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

186

At the Design
Activities
Operations

,

enterprise

.

further into
and only one

Specification modelling level
can be further decomposed into
which are atomic units of work
A Functional Operation cannot be

Enterprise
Functional
within an
decomposed

smaller units of work and will be executed by one
Functional Entity (see Resource View). "CIM-OSA"

currently specifies five types of Functional Operations:
Storage Functional Operations,
Application Functional Operations,
Machine Functional Operations,
Communication Functional Operations,
Human Functional Operations.

FYxess Behavior Rjiction

Recesses

c
o o

1m

f¥QCC5S8t

c
0
u
5
u.

Behavior

Shcluc

&ferpns6
o
u

Figure 6. Decomposition Levels within Function View.

Information View. Within the Information View all business
processes, enterprise activities, data, controls, resources
and physical objects will be described as information objects.
Information objects can be decomposed into smaller information
objects. All information objects regardless of their
complexity can be observed from different object views, which
can be decomposed into information elements and linked
together by way of the entity/attribute/relationship.
Different external, conceptional and internal schemas can be
defined.

Resource View. The purpose of the resource view is to present
all resource relevant information (employees, programs and all
machine technology, office technology and information
technology machines) to the enterprise modeller for
optimisation purposes. Optimizing resources is one of the most
important integration tasks, since this ensures optimum usage
and load distribution for all investments. Therefore, CIM-OSA
introduced and supports this particular view.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

187

Resources are described by way of required, specified and/or
implemented capabilities of Functional Entities. A Functional
Entity is an independent closed unit which is able to receive,
send and optionally store data and/or material. This means
that any shop floor device which is addressable by a protocol
is a Functional Entity. Functional Entities execute Functional
Operations (see Function View).

Functional Entities are similar to the Virtual Machine Device
(VMD) defined in the Manufacturing Messaging Service (MMS),
however the "CIM-OSA" defined Functional Entity is extended to
also include computers, computer input/output devices and
application programs (specifically the services of the
Integrating Infrastructure).

Creative human activities as well as executing human
activities must also be described in an enterprise model. For
that reason the humans within the enterprise are also treated
as Functional Units.

Within "CIM-OSA" currently five types of Functional Entities
are defined:

Storage Functional Entities,
Application Functional Entities,
Machine Functional Entities,
Communication Functional Entities,
Human Functional Entities.

The communication between Functional Entities is transaction-
oriented, i.e.:

The requesting Functional Unit sends a request to the
responding Functional Unit via the System Wide Exchange
Service

.

The responding Functional Unit executes the requested
service

.

The responding Functional Unit sends a response to the
requesting Functional Unit via the System Wide Exchange
Service

.

Organisation View. During definition of functions, data,
controls and resources the access rights and change
responsibilities should be defined. Assignment of
responsibilities may be deferred to a later point in time,
however, prior to putting the model in control of the
enterprise, the responsibilities and access/change rights must
be defined. Since these responsibilities are very vital to the
total enterprise operation, "CIM-OSA" supports one additional
view.

2.1.4 Overview and use of the modelling framework.

Overlaying the three levels of genericity, the three levels of
modelling and the four views, the resultant framework is
constructed as shown in figure 7.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

188

Organisation/

Bjco / Ntee»!» 1/

1

Moo

Des/.V7 Specfi'caifon

irp/ementationDesc '/pt/on

BLiding Porcal

/
Parteular

VtoeW

Figure 7."CIM-0SA" Framework for Modelling.

The integrating effects of the Framework for Modelling are:
Detailing all data into elements, storing them in an
enterprise wide data file and making them available to
all views as well as all application programs, removing
existing data redundancies, thus enabling Integrated data
bases

.

A common file containing all defined activities enables
reuse of them and subsequently avoids multiple definition
of the same activities. This facilitates for
enterprise activities.
Resource specifications stored in a common
file enables resource assignment at execution
in turn allows for better utilisation of resources. This
resource integration avoids unwanted duplication of
equipment and personnel.

integrated

accessible
time which

Although the modelling process has been described in the above
unidirectional way, e.g. from the requirements definition
modelling level via the design specification modelling level
to the implementation description modelling level and from the

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

189

function view via the information view and resource view to
the organisation view this unidirectional proceeding cannot
always be achieved. Rather an iterative approach will be more
likely.

The modelling of a particular enterprise is performed only at
the particular architectural level (figure 8), while the
generic and the partial architectural levels support the
modelling by way of standardised constructs and reusable
partial models.

CO

' UJ O
' S t—U 2 -^OBIKllYtl
£ — I • Infomittlon
3 UJ ' * coniiraintt

O Q

tuneilpn
mttarltl
rtsourc*

• nil**
• org*nl**ilon

^^^^
luneiion
VI*W

Inlonnttlen r**ourc*
¥l«*

organiution
«i*w

orginltatlon
»l*w

•ntarpri**

iyn*m
r*qulr*m*nl*

*ni*rpri(*

»y«t*m

con*tralnt*

eoinpon*nt
cddogu*

Figure 8. "CIM-OSA" Usage for a Particular Enterprise.

2.2 The Integrating Infrastructure.

Models generated under the rules of "CIM-OSA" can be used for
analysis, improvement and simulation of enterprise business
processes, however it will - in addition to all modelling
methods known until now - also assist in the execution of the
daily work of the enterprise operation by using occurences of
the model for the guidance and control of the business
processes

.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

190

In order to achieve this goal, supporting services are
required in the enterprises' Information Technology support,
which will:

Generate occurences of business process models, initiated
by events of the daily enterprise operation.
Provide the generated occurrence with the data relevant
for this particular business process occurrence.
Initiate the corresponding enterprise activities.
Generate other business process and/or enterprise
activity occurences under control of the model and the
results achieved from previous enterprise activities.
Plan, start and release the associated resources.
Prepare the achieved results for the use and/or control
of further business processes and/or enterprise
activities.

The services must be able to achieve the above goals within a
complex, distributed, heterogeneous system.

Such services are addressed by the second part of the ESPRIT
AMICE project. As mentioned before this part is concerned with
an Integrating Infrastructure, which is - in terms of "CIM-
OSA" - a Partial Model at the Implementation Description
Modelling Level. Generic constructs used for this Partial
Model are Functional Entities, Services, Agents and Protocols.

2.2.1 IIS Services.

Within the Integrating Infrastructure of "CIM-OSA" the
following services are discussed and will be supported by
pilot installations:

System Wide Data Service,
Data Management Service,

Human Front End Service,
Machine Front End Service,
Application Front End Service,

Business Process Control Service,
Activity Control Service,
Resource Management Service,

System Wide Exchange Service,
Communications Management Service.

The System Wide Data Service is responsible for the storage
and retrieval of data within the total (distributed) CIM-
system. Since the user is concerned only with logical data
addresses and does not care about real data storage location
the System Wide Data Service is responsible for translation
into different schemas, context management and data security.
The System Wide Data Service works independently of the
implemented data storage systems, in order to avoid that

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

191

change of data storage system requires change of the total
System Wide Data Service.

Node A Node B-

Proccti

Control

Aetvrty

Col lU ul

>/mr»g»m»nt

SylMffl Wiat

Data

Dcta

Manegtmtnt

AppllCAlJUl I

From End

Humsn
Front End

Mochin*

From End

ProcMi
Control

ActrviTy

Comroi

Rtieurc*

Mviagamam

Syitam Wid*

0(ta

Data

Manag«m*m

Applicaeon

From End •—

H

Human
From End

Maehin*

From End

Service

Interface

Externa)

Protocol

Agent

Protocol

Access

Protocol

Figure 9. The Services of the Integrating Infrastructure.

The Data Management Service supports the use of heterogeneous
data storage systems and data base management systems (DBMS).
The storage/retrieval operations requested from the System
Wide Data Service are still neutral in respect to physical
data storage devices. The necessary adjustments for the DBMS
will be done by the Data Management Service and after that
directed to the addressed DBMS. This service is necessary to
isolate the implemented DBMS and its associated data storage
devices from the DBMS independent System Wide Data Service.

The Human Front End Service serves as the connection between
the user and the CIM system. It establishes an implementation
and application independent communication between the human at

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

192

one side and the machines and application programs at the
other side.

The Machine Front End Service supports communication with the
machines at the shop floor like NC or RC controlled machines,
programmed logical controllers and automated guided vehicles.
The Machine Front End Service presents all machines of the
shop floor to the CIM system, takes care of the communication
between the CIM system and the shop floor machines and
controls the execution of shop floor operations and reports
the statuses to the other services.

The Application Front End Service takes care of the
communication between the CIM system and the application
programs. "CIM-OSA" compatible as well as non-compatible
application programs will be supported. Under control of the
modelled business process the application programs will be
initiated, interrupted and terminated and appropriate data
will be obtained/stored via the System Wide Information
Management Service. All communication with the application
programs will be routed via the Application Front End Service.

The Business Process Control Service controls the execution of
the daily enterprise operation. Initiated by events an
occurrence of the appropriate business process will be set up
in the Business Process Control Service. The enterprise
activities belonging to this business process will then be
initiated under control of this business process occurrence.
Since within an enterprise hundreds of activities of many
different business processes may run in parallel and even
several occurrences of the same business process may be
executed simultaneously the Business Process Control Service
is supported by the Activity Control Service and the Resource
Control Service.

The Activity Control Service controls the execution of
enterprise activities within a (distributed) CIM system. Under
control of the Business Process Control Service the Activity
Control Service initiates occurences of enterprise activities,
supplies the required data and controls for the execution of
the activity and monitors the execution of the activity. After
termination of an enterprise activity the result and status
will be reported to the Business Process Control Service for
initiation of the next defined activity.

The Resource Management Service controls all resources of the
(distributed) CIM system. Long and short range planning as
well as final association and release for use of resources for
the execution of enterprise activities lies within the
responsibilities of the Resource Management Service. Resources
will be associated and released according to the required
capabilities, the requested schedules and the availabilities
of the resources. That means the Resource Management Service
may, if possible, wait for the most efficient resource.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

193

however it may also associate less efficient resources in
order to achieve optimum use of all resources.

Within the Resource Management Service "logical cells" can be
assigned. By use of the "logical cell" construct it is
possible to combine resources to a group of resources. This
means a. "logical cell" can be either a physical manufacturing
cell or a group of single resources achieving together the
same result.

The System Wide Exchange Service takes care of the
communication between the (distributed) services. All services
operate under use of logical addresses only and the services
can be distributed in several physical or logical systems.
System Wide Exchange is then responsible for directing the
messages between the different services to the correct service
(translating logical addresses into real addresses) and
forwarding responses to the requesting service. System Wide
Exchange Service will make use of the Communication Service in
case of intersystem communication.

The Communications Management Service will be used for
intersystem communication. The service supports OSI as well as
private communication networks, and is responsible for the
translation from logical network addresses to real network
addresses as well as for depicting the proper communication
protocol.

All services can be located within one system, however it may
be possible that services not required in a node will not
exist in this node. Also all services may be distributed over
several (heterogeneous) logical or physical systems.

2.2.2 IIS Communication.

Within "CIM-OSA" communication between services as well as
communication between services and external machines will be
accomplished by use of three different protocol types.

One protocol type, the access protocols, to be used for
communication between different services.
One protocol type, the agent protocols, to be used for
communication within distributed services of the same
service type.
One protocol type, the external protocols, to be used for
communication between the services and the external
Functional Entities.

All types of protocols are based on concepts used already in
OSI. For example the concepts of service - client and the
concept of agents within distributed services will be used.

All protocols are generated by a requesting service, and
routed via the System Wide Exchange Service to the responding
service. The System Wide Exchange Service makes automatic use

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

194

of the Conununications Management Service in case of the
responding service being in another node. Rules for missing
responses, system break down and partial responses will be
defined.

It is realised that other standardisation activities like Open
Distributed Processing (ODP) and Transaction Processing (TP)
will influence the "CIM-OSA" protocols under development.

3.0 "CIM-OSA" within standardisation.

Over time the ESPRIT AMICE consortium intends to move the
concepts of "CIM-OSA" into national and international
standardi sation

.

Five standards are currently foreseen, for which contributions
for appropriate standardisation bodies will be generated:

"CIM System Integration - Framework for Modelling". This
paper has already been discussed in Europe by
CEN/CENELEC/AMT/WGArc and will be given to the European
member bodies for ballot in March 1990. If the paper is
accepted it will be an "Experimental European Standard"
for about three years, after which it will be either
replaced by an international paper or carried on as a
European Standard.
The paper has also been moved into IS0/TC184 and is
discussed in SC5WG1.

"CIM System Integration - Constructs for Views". This
will be the next paper to be discussed within the
CEN/CENELEC/AMT/WGArc, pending ITAEGM (Information
Technology adhoc Expert Group for Manufacturing)
approval. The paper will discuss the generic constructs
for all views, a definition of a formal description
language and a definition of a graphical representation.
The paper may have several parts, one for each view.

"CIM-System Integration - Framework for the Integrating
Infrastructure". This paper shall define the general
concepts of the Integrating Infrastructure, like
service/client concept, services required, types of
protocols to be used.
"CIM System Integration - Service Definitions". This
paper will define the functions of all services defined
in the Integrating Infrastructure. It may consist of
several parts, one for each defined service.

"CIM System Integration - Protocol Definition". This
paper will define all protocols used for the services of
the Integrating Infrastructure. It may contain several
parts, one for each defined service.

Beyond the above listed papers to which the ESPRIT AMICE

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

195

consortium intends to provide contributions based on their
conceptional findings and their pilot installations, further
papers will be required such as:

Data Element Library. Without unambiguous definition of
data elements Partial Models will never fit, they will
have to be adjusted to each other by a large number of
"aliases", wasting a lot of effort in all enterprises.
It is envisioned that data elements used by partial
models will be properly defined and included in a
catalogue, similar to the elements defined in EDIFACT. In
fact the data elements defined in EDIFACT may be
considered a starting list.

Capabilities of Resources. Component lists as described
in section Implementation Description Modelling Level
will never match Required Capabilities if both are not
using the same terms. Thus a method must be found to
describe resources by parameters in an unambiguous way.
The recently started project "CAD-LIB" in IS0/TC184SC4
may be a solution to this problem.

The above list is not considered final, it is just an
appreciation of the immediate needs. As experience has shown
in the area of Open Systems Interconnection (ISO-OSI)
standardisation bodies will find more areas to be explored as
CIM knowledge matures.

CIM-OSA - A VENDOR INDEPENDENT CIM ARCHITECTURE.

196

CIM-OSA - AN ILLUSTRATIVE EXAMPLE OF HOW TO APPLY THE
MODELLING FRAMEWORK

DIRK BEECKMAN

ABSTRACT

The ESPRIT project AMICE is developing the CIM-OSA
architecture. This architecture mainly consists of two
parts: the modelling framework and the integrating
infrastructure.

The CIM-OSA modelling framework guides and supports the CIM
system life cycle first the business requirements of the
enterprise are identified and, starting from these
requirements, an executable, physical CIM system is built.

Because of the abstract nature of the concepts of the
modelling framework, an illustrative example of how to apply
those concepts is given in this presentation.

Introduction

The CIM-OSA modelling framework has identified three levels
of architectural genericity, three modelling levels and four
views needed to guide and support the CIM system life cycle.
The modelling framework itself and the basic concepts
defined at the generic architectural level are introduced in
[PAN90]. In the reference section of this paper, additional
documents on CIM-OSA are identified.

From the start of the project, AMICE has always spent
important efforts on validation activities, to ensure that
the concepts it is developing really contribute to the
development of valuable CIM systems. Therefore, several case
studies, a CIM-OSA demonstration and several partial
prototypes have been realised so far. In the near future, it
is the intention of AMICE to demonstrate the feasibility and
the usefulness of the CIM-OSA concepts by an overall CIM-OSA
prototype

.

197

In all case studies, the CIM-OSA concepts have been used to
re-model an existing, operational CIM system. The
illustrative example presented here is extracted from a case
study modelling a part of a Flexible Manufacturing System
(FMS) developed and installed by COMAU in the FIAT AUTO
Mirafiori plant in Turin, Italy.

2. The' FMS in the FIAT AUTO Mirafiori plant.

2.1 Overall functionality of the FMS

The FMS in the FIAT AUTO Mirafiori plant produces different
types of cylinder heads and different types of manifolds for
the FIAT Croma turbo diesel engine and for the ALFA ROMEO
Alfa 33 boxer engine. The FMS is a dynamic system : although
already operational today, an evolution plan with a number
of well defined upgrade steps exists to increase the
intelligence and the flexibility of the system.

The FMS has 14 machining centers, a robotized washing
station, a robotized measuring station, 6 part load/unload
stations, 2 refixturing stations, an automated
transportation system with 6 AGV's, 18 buffer positions, and
40 pallets used as support for the fixtures holding the
parts

.

The overall functionality of the FMS can be subdivided into
following main functions :

scheduling (decide which job orders will be
launched and when),
dispatching (launch a job order),
part program management (see below),
fixture management,
tool management,
monitoring (reporting breakdowns, statistics).

The case study has focused on the part program management,
and therefore, this functionality will be discussed in
detai 1

.

2.2 The Part Program Management

The part programs (PP) contain all information needed by the
FMS to run the machining centers. A part program has a part
program body and a part program header.

The part program body is a set of executable NC commands for
driving the machining centers' components (moving slides,
spindles, tool magazines,...).

198

The part program header contains the following information:

the part program name,
the length of the part program body,
the part program execution time,
the list of the tools used by the part program
body, and

• - for each tool, the cutting time.

The part program body is generated off-line by the CAD/CAM
department and introduced by tape into the NC controller.
The NC code is tested and when those tests are satisfactory,
the part program is completed by adding the part program
header. Afterwards, the part program is integrated into the
global information system of the FMS and released for
operational use.

The part program management function thus allows the
creation of part programs. Besides, it contain all necessary
maintenance functions (delete, purge, modify) of the part
programs and makes the part programs available for setting
up the machining centers on request of the dispatching
function

.

Examples illustrating the concepts

In order to illustrate the CIM-OSA concepts, a set of
figures has been prepared corresponding to the modelling
levels and views on which the AMICE work has reached a
stable status.

Abbreviations used in the examples

BP Business Process
DM Design Specification Modelling Level
EA Enterprise Activity
FV Function View
IV Information View
RM Requirements Definition Modelling Level
PR Procedural Rule

Function View of the Requirements Definition Modelling Level

The concepts Domain and Business Process and the
hierarchical decomposition is illustrated. Some Business
Processes are shown in detail by developing their set of
Procedural Rules. An Enterprise Activity is fully detailed
with its Function, Control and Resource Input and Output.

199

This Input/Output is making the link with the Information
View

.

Function View of the Design Specification Modelling Level

One of the Enterprise Activities introduced at the
Requirements Definition Modelling level is decomposed into
Functional Operations. The execution of these operations
will realise the functionality of the Enterprise Activity.
The Functional Operations make the link with the Resource
View, which is currently under development.

Information View of the Requirements Definition Modelling
Level

The input and output identified in the Function View, are
detailed as Object Views and consolidated through the
creation of the set of interrelated Enterprise Objects.

Information View of the Design Specification Modelling Level

The conceptual schema of the Enterprise Objects is
developed. This schema is translated afterwards into a
relational model to produce the Logical Data Model of the
Internal Schema.

200

DOMAIN

FLEXIBLE MANUFACTURING
SYSTEM (FMS)

DOMAIN OBJECTIVES
MANUFACTURE PARTS
MEET DUE DATES
MINIMISE LEAD TIMES

KEEP LOW WIP INVENTORIES

DOMAIN CONSTRAINTS
PAY BACK AFTER 4 YEARS
AVERAGE PRODUCTION OF

400 PARTS/DAY

DOMAIN PROCESSES
SCHEDULING
TOOL MANAGEMENT
MONITORING
PART PROGRAM MANAGEMENT
DISPATCHING
FIXTURE MANAGEMENT

Figure 1. RM - FV - Domain (1)

201

202

(0

c
o

o
c

0)
(0

c
LU

I

CO

0)

3
O)

LUH
< Q.
LU Q.

O

>
o

co CD
LJJ

H PP

203

204

DP PART PROGRAM MANAGEMENT
BP1 CREATE PART PROGRAM

BP11 TEST PP BODY
EA111 INTRODUCE PP BODY
BP112 PREPARE TEST
EA113 MODIFY PP BODY
EA114 RUN PP BODY

B12 MAKE PP OPERATIONAL
EA121 CATALOGUE PP BODY
EA122 GENERATE PP HEADER
EA123 ESTABLISH PP

EA124 VALIDATE PP

BP2 MAINTAIN PP

BP21 UPDATE PP HEADER
BP22 UPDATE PP BODY

EA211 INVALIDATE PP

EA212 RELINQUISH PP
BP112 PREPARE TEST
EA113 MODIFY PP BODY
BP12 MAKE PP OPERATIONAL

BPS OPERATE PP

Figure 5. RM - FV - Enterprise Functions (3)

205

206

0>
O)
CD

Q
O
m
a.
Q.

UJ

.£ 2
c S

Q.
m

CD

5

o9

>»
T3
O
m
a
Q.

(0
0)

S £
CO

0 CL

1 £

T3
O
CD

OL
Q.

C
3
cc

o9

>.

O ^
OQ 0)

S aw
? £ c

Q. U.

o
m
GL
Q.

c
3
CC

0) 0>
c c
o o

o
I.

o

<D <D Q)

C C C
O O O
X3 "O "O

2.

75

o
O

(0

0)

T3
O

o. o o

sag:
O CL e^ 0) §
£ Q. oc

11.

I

73
o ^
Cfi (/)

0)
CL H
OL

O

'-5 9-
o £
S Q.

3

T- CM CO

207

0)
c
o

o

0>

E

o

0)

c
oD

T3
O
JD

(0 Q.

T3o O

o
(3

a
o

c
0)
o

c

o
(0

E

o
<
o
0)

Q.

O
c
LU

O

E
(0

o

0)

75

a:

o
0)

3
O)

CO

(0

CO
0)

210

pp body

corrections

pp body id done

EA113

IWODIFY PART
PROGRAIVI BODY

updated

pp body

NC programmer

I
machining center

FUNCTIONAL
OPERATIONS

SUPPORTING
IIS SERVICE

load pp body sd - dm - mf

start modification hf

session

end modification hf

session

save pp body sd - dm - mf

Figure 11. DM - FV - Functional Operation

211

0)

<
I-

(0

Z U)

Q. Q.
Q. Q.

o
m
CL

<

o
QC
Q.

O

0)

u
0)

CO

O
Uj

o

GC
UJ
O
<
LU

CL

<

UJ

X
I-

Z
UJ

(0
UJ

(0?
o
o

o o

3
O ui
O X

Z CQ UJ .

Q. Q. Q. CO <2
a Q. Q. -I -I

CM

0)

3

212

ENTERPRISE OBJECT

PART PROGRAM
PP NAME

PP HEADER

PP STATUS

NC PROGRAM

PARTOF

PP HEADER
PP BODY LENGTH
PP EXECUTION TIME

LIST OF TOOLS
LIST OF CUTTING TIMES

Figure 13. RM - IV - Object View

213

Acknowledgements

The author is grateful to the AMICE team and especially to
F.Naccari and M.Mollo from the FIAT Strategic Group for
Development, Coordination and Control, who contributed to
this presentation.

References

[PAN90] Panse Richard, 1990, A vendor independent CIM
architecture. Proceedings of the CIMCON conference
at Gai thersburg , USA.

Additional papers on CIM-OSA:

Beeckman D. , 1989, CIM-OSA: Computer Integrated
Manufacturing - Open System Architecture, International
Journal of CIM, Vol.2, No. 2, pp. 94-105.

Esprit Consortium AMICE, 1989, Open System Architecture for
CIM, Springer-Verlag ISBN 3-540-52058-9.

Jorysz H. and Vernadat F. , 1990, CIM-OSA Part I: Total
Enterprise Modelling and Function View, International
Journal of CIM, Vol.3.

Jorysz H. and Vernadat F., 1990, CIM-OSA Part II:
Information View, International Journal of CIM, Vol.3.

Klittich M. , 1990, CIM-OSA Part III: Integrating
Infrastructure, International Journal of CIM, Vol.3.

Vernadat F., 1990, Modelling and analysis of enterprise
information systems with CIM-OSA, Proceedings of the
sixth CIM Europe Conference at Lisbon, Portugal.

215

PROGRESSTOWARDSSTANDARDS FORCIMARCHITECTURALFRAMEWORKS

D. N. SHORTER

Abstract: Activities within the ISO and European standards-making groups on
Reference Models for Shop Floor Production Standards and a Framework for

ModellingCIM SystemArchitecture respectively arereviewed. The main concepts
of the Model and Framework and the ways in which they are intended to be used

are presented. Lastly the way in which the Framework for Modelling can act as

a basis for collaborative development within ISO and other standards-making

bodies is discussed.

1. Introduction

Over the past five years and more, work on the development of architectures for CIM has been

directed to various goals and these have not always been distinguished - at least in the minds of

those not directly concerned with the projects themselves. These goals can include:

(i) Standards Identification

(ii) Standards Development
(iii) Systems Development
(iv) Systems Integration

(v) Systems Operations

In the standards-making world, there currently seem to be three main activities related to CM
architectures:

- in ISO TCI 84 SC5 WG 1 , on a Reference Model for Discrete Parts Manufacturing

directed to (i) and (ii) above, which has resulted in an ISO technical report to be

published shortly [ISO90];

- again in ISO TCI 84 SC5 WGl, on a CIM Framework for Integration, under

development;

- in the European CEN/CENELEC Working Group on AMT Architecture (WG-
ARC) in producing a draft preliminary European Standard [ENV90] on an abstract

Framework for Modelling. This is intended as an abstract framework or meta-

structure for models which themselves support (i)..(v) above. The standard builds

on the work of the AMICE consortium within the CIM-OSA project, itself part of

the European ESPRIT collaborative research programme.

The first and third of these are nearing completion and so it is possible to report progress in some
detail; the second is a more recent activity still at a preliminary stage.

2. Development of the ISO Reference Model

The work ofISO TC 1 84 SC5 WG 1 is aimed at addressing the need for a model to identify where

manufacturing standards are required, the so-called Reference Model for Shop Floor

Manufacturing. It is intended to guide TCI 84 in setting new work items to address areas where

standards are missing, but it should also be useful for implementors as a systematic way of

reviewing which standards might be appropriate for a specific CIM implementation.

216

Work started in 1984 with presentations to ISO TCI 84 SC5 on identified relevant standards, in

particular those oflEC (especially on programmable controllers), CAM-I (Discrete Parts Manu-
facturing Model), AFNOR (multi-user requirements), IBM (standards, tools and interfaces for

CIM) and (what was then) NBS (Architectures for CIM). This SC5 committee then established

a Working Group (WGl), charged with the specific task of"developing a basic reference model,

specifically to create a multi-dimensional open-ended reference model as a basis for long term

planning". Initial work was to be directed at Discrete Parts Manufacture and the development of

a functional model. During the first meeting ofWG 1 in February 1985, various specific models

were discussed and gradually a limited scope of the production process was defined for further

work - see Figure 1.

shipments,

inventory

FINANCE

orders

forecasting

bill of material

^ order ^
MATERIALS ^ requirements SALES

, RESOURCES product ORDER
PLANNING . availability SYSTEM

ENGINEERING
CAD

VENDOR

production'

tecl-^

data

purchase

order

raw material

command

(?)[?}©©(yi(g?[|@[i^

info out

ship order

FINISHED
GOODS
STORAGE

shipment

resources
scrap

Figure 1. Limited Production Scope and its Environment

At the same time, an internal structure for this Limited Production Scope started to emerge as in

Figure 2, with corresponding inputs, outputs and control reladonships.

217

Production

Command

Info

Transformation

Technological information

Info

Storage

info

Data Transport Out

Material

Transformation

Material

Storage

Material, Test

Measuring, Inspectbn

Raw

Material

Material

Transport

\ r
Latxjur Tooling

Finished^
Goods

Scrap

Figure 2. Limited Production Scope - initial internal structure

Later it was recognised that this initial LPS was too restrictive and in particular that there was a

need for issues such as feedback, testing and relationships with external databases to be

addressed. A more abstract model was needed which could accommodate emerging ideas on

systems architecture (as in NBS's AMRF).

There was also a shift in how the model was regarded, from that of a structure which could be

populated by existing standards, with the gaps showing where new work was needed, to that of

regarding the model as an algorithm which, when applied to a particular manufacturing situation

(actual orhypothesised) would identify appropriate standards. Another shiftwas in therecognition

that standards for physical attributes needed to be accommodated, not just standards for

Information Technology.

Bringing these ideas together resulted in a layering of the manufacturing process into a Factory

Automation Model (FAM) which associated areas ofresponsibility with identified informational/

control/ physical flows as in Figure 3. This model was checked against a CAM-I analysis ofdata

flows with encouraging results.

218

LEVEL
RESOURCES/

MATERIALS
CONTROL INFORMATION

6

ENTER-
PRISE

Authorise

program

i Enterprise projections and

T achievement reports

Master agreements

f Facility/Plant Mission and
* Objectives

5

FACILITY/

PLANT

Managed Plan

PrnHiiPtinn

^ Production and Resource Reports

^ Technical, Production, ^
Resource

£ Production Requirements,

Technical Data, Resources

4

SECTION/
AREA

Receivables,

Work in Process,

Shipping

Allocate and
Supervise Resources

for Productk)n

Requirements

^ Production and Resources Status

^ Technical, Production, ^
Resource

f Production/Technical/Resource

T Requirements

3

CELL
Work in

Process

Coordinate Multiple

Machines and
Operations

^ Production and Resources Status

^ Production Status and ^
Synchronisation

f Production/Technical/Resource
* Requirements

2

STATION

Work in Process,

ocrap, 1 ooiing

Command Machine

Sequences and

Motion

. Command, Resource and
T Production Data

^ Production
^

Synchronisation

f Control Commands and Part

» Identification

1

EQUIP-
MENT

Tooling
Activate Sequences

and Motion

k Machine Process Condition,

^ Status and Identification

Figure 3. Factory Automation Model

TheLPS andFAM constructs are no longer an explicit part ofthe Reference Model, but have been

carried forward, as shown in Figure 4, as a distinction between the collection of activities which

are directly engaged in producing parts, that is Shop Floor Production itself, and the enterprise

context in which these activities take place.

219

Enterprise Corporate management
Finance

Marketing & Sales

Research & Development

Facility Product design & Production Engineering

Production management
Procurement

Shipping

Waste material treatment

Resources management
Maintenance management

Shop Floor Production

Shop Floor Production

Figure 4. Typical Grouping of Manufacturing

Long (and inconclusive) discussions about the appropriate number of control levels or layers for

the Reference Model led to a recognition that, for the Shop Floor Production itself, four levels

were adequate for identifying standards areas even though particular implementations might

require more or less levels.

3. The ISO Reference Model for Shop Floor Production Standards

The following is a brief description of the Model in [ISO90], the use of which is covered by

[N126].

3.1 Scope and field of application

The distinction between the necessary characteristics of

(i) a model for identifying standards and standards requirements, and

(ii) a model which is to be the basis of a development method or actual

implementation

has been a continuing theme of the ISO work.

[ISO90] states clearly in its definition of scope that it is directed towards (i) above while the

European Framework [ENV90] is primarily addressing (ii), although the need for standards will

appear as the Framework is exercised. [ISO90] also makes it clear that it is concerned only with

Shop Floor Production, as represented in Figure 4 above, while recognising its wider context (a

restriction of its original mandate).

220

3.2 Standards Viewpoints

The description of the model starts with the selection of nine viewpoints to guide the needs for

standards in the manufacturing field, viz:

Safety

• Environment
• 'Compatibility

• Performance
• Operability

• Maintainability

• Reliability

• Qualifications

• Description

These Standard Viewpoints are used in the consolidation and filtering of standards areas as

described below in 3.5.

3.3 Shop Floor Production Model (SFPM)

[ISO90] then describes an abstract model of Shop Floor Production which represents those

concepts of levels of control or responsibility which were found by the Working Group to be

common to several systems architectures. This model is presented in Figure 5. With each of the

four levels identified (Section/Area, Cell, Station, Equipment) is associated a generic type of

production management activity (Supervise, Co-ordinate, Command, Control).

The activities at each of the levels have enough commonality for a general construct to represent

them, as described in the next section.

Level Sub-Activity Responsibility

4 Section

/Area

Supervise shop

floor production

process

Supervising and co-ordinating the production

and supporting the jobs and obtaining and
allocating resources to the jobs

3 Cell Co-ordinate shop

floor production

process

Sequencing and supervising the jobs at

the shop floor production process

2 Station Command shop

ftoor production

process

Directing and co-ordinating the shop floor

production process

1 Equipment Execute shop

floor production

process

Executing the job of shop floor production

according to commands

Figure 5. Shop Floor Production Model (SFPM)

221

3.4 Generic Activity Model (GAM)

At each of the levels, a common Generic Activity Model as shown in Figure 6 models the

activities at that level. This GAM is an abstraction which is sufficiently general that it can be
instantiated at each level, that is for correspondences to be found for specific instances. These
correspondences identify specific inputs/outputs (Subjects) and operations (Actions) corre-

sponding to the general types of inputs/outputs and operations in theGAM itself. (Vertical flows

are between levels, horizontal across layers.)

Information Resources

Material

Information

Resources

M

{ TP, TF, VE, ST }

TP = Transport

TF = Transform

VE = Verify

ST = Store

I

1 1

Material

Information

Resources

Information Resources

Figure 6. Generic Activity Model

3.5 Methodology

The algorithmic element ofthe Reference Model, that is the way in which itcan be used to identify

standards areas , is presented in a methodology made up offive procedures, each ofa similar form.

Each procedure uses (some of) the concepts of the SFPM and the GAM. The Standards View-

points and available manufacturing technology are then used as filters to restrict areas of

standards to "those which are realisable with current technology and which reflect the objectives

of standardisation" [ISO90].

The procedures are of two types - those concerned with interactions within a SFPM level and

those between levels or context. The procedures are represented in summary in Figure 7 and

described further in 3.6.

222

Subjects
Procedure A1 : Subject - Action

w
I I I I

For each level, § ZZZZ
consider interactions between— ^

Subjects

Procedure A2 : Subject - Subject
42 I I I I

For each level, §
consider interactions between— "§

to I I I I

Actions

Procedure A3 : Action - Action ^-r-
V)

For each level, o

consider interactions between— <

Procedure B1 : Horizontal

For each level,

consider interactions between—

Context Functions

tl
(O a.

Procedure B2 : Vertical
CO

For each level, ^
consider interactions between— §

Figure 7. Matrix Representation of Identification Procedures

3.6 Development of Part 2

The Worldng Group is nearing completion of the second part of the Reference Model [N126].

This will review the constructs of Part 1 and reformulate the procedures as instances of a generic

structured question of the form

"Are there or should there be {viewpoint} standards for significant interactions between XYZ,
realised in {Base Technologies}?",

where XYZ represents an "inner question" which depends on the particular procedure as

described below and Base Technologies include Information Technology, Material / J*roducts

Technology, Product / Production Engineering, Instrumentation / Control Engineering and

Human Interface Technology.

Subjects in

other levels

223

The specific forms of the inner question are

SQ-Al: interactions between {subject} and {action} at the {level} level?

SQ-A2: interactions between {subject} and {subject} at the {level} level?

SQ-A3: interactions between {action} and {action} at the {level} level?

SQ-B 1 : interactions between { subject} ofShop FloorProduction and its manufacturing

context?

SQ-B2: interactions between {subject} at {level} and {subject} at the levels above or

below?

Each type ofprocedure is then elaborated in [N126] for the various kinds of subjects, actions and
levels, with examples of how it can be applied.

Having asked these questions, some way is needed to organise the large volume of information

returned in the answers. So [N126] also defines an organisation and a labelling structure for the

standards areas that have been identified.

At the time of writing, the body of the present draft is being reworked to contain examples of

identified standards areas in general form. Specific ISO and lEC standards and standards-making

activities will then be listed in an Appendix, whose status will be that of a time-stamped

'snapshot'.

4. European Developments

While the ISO work was proceeding on a Reference Model for identifying standards areas,

significant interest had been building up in Europe to work on developing suitable architectural

structures for CIM integration and a Working Group on CEM Architecture (WG-ARC) was set

up to report to CEN/CENELEC, the Joint European Standards Institution, on the way forward for

European standardisation.

WG-ARC started by carrying out an evaluation of major development initiatives and their

potential contribution to European Harmonisation, and identified CIM-OSA (Esprit project 688,

AMICE) as the most promising starting point for a preliminary European Standard (ENV) in this

area. This evaluation has been published as a CEN/CENELEC Technical Report [Rrr89].

At the same time theAMICE consortium which hadproduced CIM-OSA agreed to release certain

deliverables to the Working Party, which would use then them as a basis in developing the pre-

liminary standard.

One promising route for development ofaCIM system is to use an integrated and coherent model

as the basis of an executable system. Because of the scale and range of types of CIM systems, it

is important to use standard (common) model elements wherever possible, but not at the expense

of meeting the particular goals of the business. So a framework is needed to describe the

development process in such a way as to encourage the identification of standard and executable

model elements. In the AMICE CIM-OSA project tiiis is the "Framework for Modelling", which

has been agreed byWG-ARC to be adequate to express common concepts ofa number ofdifferent

architectural approaches. This has been the starting point for the development of [ENV90], as

described below.

224

5. The European prENV, "Framework for Modelling"

5.1 Background to the prENV

A "prENV" is a preliminary European Norm (standard) published by CEN/CENELEC. It is a

provisional standard for fields where a high rate of technical innovation is envisaged, and a review

process has to start two years after initial publication. By the end of three years, the prENV has

to be converted into a full European Norm, allowed to continue for a further two years (only once),

revised into an improved ENV or withdrawn. Because of this revision process, it should be

relatively easy to keep theprENV in step with international development. (When an ISO standard

is published covering the scope of an ENV or EN, that European standard will be withdrawn.)

The prENV is intended to guide the structuring and development of those standards necessary to

achieve integration in Discrete Parts Manufacturing. The work is based mainly on fundamental

CIM-OSA architectural concepts but has taken note of other work where this was helpful, such

as the Generic Activity Model from the ISO Reference model [ISO90].

Formally the work is "to provide a standard for a framework, which will serve as the common
basis for identifying and coordinating standards development for computer-based modelling of

Enterprises, focussing on Discrete Parts Manufacturing. Models generatedby using this framework

will ultimately be computer-executable and (will) enable the daily operations of an Enterprise to

be run, monitored and controlled by such models". The framework is very general however and

WG-ARC considers that many ofthe concepts may well be appropriate to other types ofbusiness

enterprise.

A manufacturing enterprise lives or dies in a changing world - it needs to survive in a continually

evolving economic and technical environment, with increased integration necessary to achieve

fast product cycles and competitive production costs. Information Technology is necessary for

CIM, but until now thedevelopment methods, infrastructure, products and actual implementations

have been insufficiently flexible and incapable of supporting the necessary pace of change.

Incompatibilities between partial solutions running on differentcomputer systems are a continuing

problem. Producing standards to ease these problems requires a mechanism to ensure that

compatible standards can be developed in parallel. CIM users and vendors also need to be able

to plan CIM developments. The integration part of CIM needs to encompass physical system

intercommunication (OSI), application integration and business integration. Lastly the complexity

of the necessary integration and the need for continual evolution demands maintainable

computer-based executable models - and this has been accepted as a long term objective of the

work.

An Architectural Framework is regarded as a structure of parts such that constructs formed from

those parts have certain characteristics, e.g. ofconsistency and completeness. It is helpful ifthese

parts can be described separately without overlap. They need to be sufficient for the purpose

(ensuring the required characteristics) and economic in concept.

This Framework for Modelling (Framework) uses three dimensions (each reflecting a particular

concem) and a development process corresponding to each dimension. It assumes the existence

of a supporting Information Technology Infrastructure, as illustrated in Figure 8, to design a

computer processable model (building on concepts from the Framework) and to control the

operations of an Enterprise using that model - however that supporting Infrastructure is not

described in the prENV.

225

Re ^uiremi mts

Design

Imp ementi ition

Released

implementation

Model

Operated in

Enterprise Engineering

(CAE-Tools)

Enterprise Operations

(Application Software)

Integrating Infrastructure

Basic Data Processing and Communication Services

Devices People Machines

Integrated Processing Environment

Figure 8. The Supporting IT Infrastructure

Describing the Framework ideally requires the three dimensions to be described at the same time

- explaining the concepts of any one dimension generally requires concepts from the other two.

The prENV itself includes forward references to address this problem.

5.2 The dimensions and concepts of the Framework for Modelling

(Note - much of the following material is drawn directly from [ENV90])

5.2.1 Architectural Level

This dimension is illustrated in Figure 9. It takes account ofthe economics ofthe market allowing

CIM suppliers to generate products ofmaximum applicability while recognising that CIM users

need solutions tailored to their specific needs. The most abstract level (generic architectural level)

defines basic constructs needed forexpressingrequirements, designand implementation elements,

and incorporating functional, information, resource and organisational aspects. The basic con-

structs themselves are not part of the prENV, but are being developed as part of new standards

work, again building on CIM-OSA concepts.

226

Figure 9. Dimension of Architectural Genericity

The more commercially significant level is that which uses these basic constructs to form models

for particular market sectors, the so-calledpartial architectural level. Here partial models will be

defined for those requirements, partial designs or implemented packages which are common to

a specific market sector. Again these partial models will generally address functional information,

resource and organisational aspects.

Lastly theparticular architectural level is that atwhich a designer or userofa particularenterprise

expresses its specific workings, including requirements, design and actual implementation. As
partial models become commercially available, this particular level wiU increasingly make use

of these, adding and modifying components only where necessary.

This process of moving from abstract construct through to partial models through to particular

models for a specific manufacturing operation is given the name of "stepwise instantiation and
aggregation", expressing the idea of increasing specialisation and grouping into sector-specific

applications.

5.2.2 Modelling Level

The life-cycle ofCIM development is complex and on-going (as new processes become available

and new products are required). So the three major project phases of identifying requirements,

producing a design and implementation are given explicit expression in the Framework, as

illustrated in Figure 10. This allows constructs and techniques to be modelled which recognise

the specific requirements of each phase and the transition processes between them.

227

Figure 10. Dimension of Modelling

Firstly the requirements modelling level describes the business requirements of the Enterprise

and its operations using concepts from the generic architectural level and without (as far as

possible) making decisions on designs or implementations to achieve these.

Next the design modelling level describes the actions and the processes that will need to be

performed to meet the business requirements. It does not say how these are to be executed but it

does allow the designer to take into account the interactions between requirements generated

from different users, trade-offs, optimisations, constraints etc.

Lastly the implementation modelling level selects, or specifies for development, the particular

components to be used to realise the design and hence meet the requirements for enterprise

operations. These information and manufacturing components are also described in the prENV
(see 5.2.4) and are equivalent to the base technologies of Part 2 of the ISO Reference Model (see

3.6). They include all the information or material processing elements that operate on information

or physical objects and so include human resources, computers, machines, programmes and data

etc.

The progression from requirements through design to implementation is called "stepwise

derivation". As the use of the Framework increases, it is hoped that generic components, partial

models and capabihties of actual existing components will increasingly be described in computer

processable form, allowing automated assistance to the designer in this progression.

5.2.3 Views

At each level of architectural generality (generic, partial, particular) and at each modelling level,

because of the complexity of the interactions between the elements which specify requirements,

describe designs or specify implementable elements, it is helpful to focus on a smaU number of

particular aspects of those elements, and to consider relationships between elements from that

point of view.

This is not new - many of the existing tools for systems analysis recognise the benefits of

separately analysing functional elements, management structures, data or process flows and it is

helpful to align the Framework with these existing procedures.

These requirements are recognised in the dimension ofviews, illustrated in Figure 1 1 . Four enter-

prise views have been selected, although experience may suggest that others might be required,

or indeed that fewer might be sufficient. The current set is described below.

228

^ pfganisatipK

^ jrftormatioj?"

T^unction/'

r

stepwise

generation

Figure 11. Dimension of View

Thefunction view describes the (requirements, design or specifications of) functional processes,

their inputs and outputs (including information) and the constructs under which they operate (e.g.

pre- and post- conditions). The function view uses other elements of the Framework when it can,

e.g. building blocks described at the generic architectural level, models from the partial archi-

tectural level etc.

The (requests for, characteristics of) information objects identified at the functional view are

further described in the information view which characterises the necessary information building

blocks and their relationships. How this is done will differ with the architectural or modelling

level. At the implementation level for a particular enterprise, the information view will need to

produce a hierarchically structured and eventually detailed specification for the information

processes and data necessary to realise CIM.

The resource view emphasises the resources needed to execute enterprise operations. It also

explicitly represents these as information objects (and so there is some overlap with the infor-

mation view).

Similarly the organisation view describes the hierarchy ofcommand - that is the management and
control structures, and responsibilities to be undertaken by each management or control function.

Again these responsibilities are explicitly represented as information objects.

The process ofrepresenting these views ("stepwise generation" in the Framework) will in general

proceed in an interactive manner because of the inter-relationship between views. A decision

taken in one view (e.g. on a specific requirement, on a particular implementation) may well

influence decisions that have been or will be taken from another. So iteration will be needed to

check consistency and completeness between the views. Explicit representation ofresources and

organisation should eventually allow automated assistance.

5.2.4 Information and Manufacturing Technology Components

Information and Manufacturing Technology components are required to "transform, transport,

store and verify" data, material and products, as recognised in the Generic Activity Model of the

ISO Reference Model (see 3.4). These components, such as basic data processing resources,

application software, machines with associated control data, robots, human resources etc. are of

course an essential part of a CIM system. They are identified as necessary in the Function View,

later specified in the Resource View and finally implemented at the Implementation Modelling

Level.

229

5.3 Using the Framework for Modelling

It is not intended that everyone in the CIM community should be concerned with each of the thirty

six cells that can be constructedby elaborating the three dimensions - see Figure 1 2. For example,
standards-makers will primarily be concerned with defining and representing objects at the

generic level. Vendors of products in specific industry sectors should be using such standard

objects in developing and describing new products and partial models. A designer will generate

views for aparticular enterprise, using standards, products and partial solutions where appropriate.

Generic

Requirement

Constructs

Partial

Requirements

Models

Generic

Design

Constructs

Particular

Requirements

Model

PartiaJ

Design

Models

Particular

Design

Model

Generic

Implementation

Constructs

Partial

Implementation

Models

Particular

Implementation

Model

Figure 12. The exploded Modelling Framework

5.4 State of the prENV work

TheprENV itselfwas circulated to CEN/CENELEC members forcomment in January 1990 with

a closing date of 15 March 1990. At the time of writing, voting is scheduled to take place at a

meeting on 18-19 April. The prENV and many of the underlying CIM-OSA concepts were also

presented, essentially as described in this Section 5, at a CIM workshop in Brussels on 7-8 March

1990. The general conclusion at that workshop seemed to be that the prENV was accepted as a

very general structure which will support the development ofmore detailed modelling structures

at those combinations of genericity, modelling level and view which turn out to be helpful in

supporting concerted action to develop standardised elements.

It now seems that, if approved, possibly with modifications, the Framework for Modelling will

provide an enabling mechanism for the co-operative development of the necessary standards to

support the needs of both user and vendor for CIM integration and CIM evolution.

230

6. The relationships between the ISO and CEN/CENELEC Working Groups on CIM
architectures.

It is important to be clear about the role orpurpose ofan architecture - what it is intended to ensure

(what style, what kind of structure it can generate) and what it is intended to prevent. An archi-

tecture in the public domain, especially if it has the status of a standard, must not pre-empt

competition (e.g. by embodying proprietary material) or (as far as possible) prevent the use of

more advanced implementation technologies than those available today.

At this stage of understanding, a CIM architectural Framework for Modelling, or a Reference

Model for identifying Shop Floor standards should be seen as supporting a process, rather than

as fixed entities. That is, they should:

- support the formation of an industry (and standards-making) consensus,

- promote a public discussion (using the same words for the same concepts -

a vocabulary issue) on the more detailed constructs that are required, and

- encourage parallel and consistent development of these constructs.

From Europe, the currentprENV is seen as a start in this process. It has some gaps, eg it assumes

the existence of a supporting Information Infrastructure (Figure 7) but does not describe it. The
constructs are very general, which is necessary to ensure openness and acceptability today.

However, in the future that generality needs to be reduced as a consensus emerges for more
detailed constructs, and to increase confidence that (elements of) models generated using the

Framework are sufficiendy consistent in the sense ofcapable ofa sufficient degree ofinterworking.

Developing CIM architectural constructs and methodologies which will ensure components can

be integrated, modified and realised across a range of implementation technologies is a major

challenge which requires a strategy to ensure efforts and other resources can be harnessed to a

common goal.

Both the draft prENV itself and other working material have been presented and made available

as working documents to ISO TCI 84 SC5 WG 1 in support of the relatively recent work item on

CIM Systems Integration. It is hoped that further discussions inside ISO TCI 84 SC5 WGl will

build on this and other work, identifying any areas where the prENV has deficiencies which need

to be addressed in the next revision and identifying areas where new work items are necessary.

In this way the prENV should be a basis for international collaborative work, gathering up

contributions within a common framework and speeding the development ofnew and necessary

standards.

7. References

[ENV90] CIM System Architecture Framework for Modelling, Draft European Pre-

standard, CEN/CENELEC prENV 40 003, January 1990

[ISO90] Technical Report TR10314 - Reference Model for Shop Floor Production

Standards, Part 1, ISO 1990 - to be issued

[N126] Document N126 is a draft working paper of the Reference Model for Shop Floor

Production Standards, Part 2, on the application of the Reference Model for

Standardisation Methodology Industrial Automation Shop Floor Production

Standards - currently under development by ISO TCI 84 SC5 WGl

[RIT89] Evaluation Reporton CIM Architecmres, CEN/CENELEC Report R-IT-01 , 1989

231

DESIGN TO PRODUCT AND ESPRIT 384
TWO ROADS TO OPEN CIM

P.A. FEHRENBACH AND S.P. SANOFF
GEC-MARCONI RESEARCH CENTRE, UK

Abstract

Design to Product and ESPRIT 384 are two European projects that have developed open CIM
(computer integrated manufacturing) architectures over the last five years. During that time the

CIM world has changed a great deal and the two projects have adapted their architectures to suit.

Design to Product changed from being closed and monolithic to an open, distributed architecture.

ESPRIT 384 capitalised on the flexibUity of its rapid prototyping approach to incorporate change
quickly. Technical, financial, managerial and cultural factors all influenced the roads that the

projects took and all of these are discussed in the paper in the context of manufacturing industry at

large.

1. Introduction

In the past two or three years the ideal of the open system that can incorporate software and
sub-systems from a wide variety of sources, all communicating via a standard interface, has gained

acceptance and popularity in many areas of computing, including computer integrated manufac-
turing (CIM). It has not always been so. Co-operation between vendors over standards, such as

the manufacturing automation protocol (MAP), is a recent development, prior to which each was
happy to lock customers into their own proprietary standards and systems. The change in attitude

of vendors and other important changes in the computing industry and manufacturing industry in

Europe and North America at large, have occurred during the course of two important CIM projects

in which the authors have been involved. The projects have been greatly influenced by the changes
taking place around them and by their own experience and tell a story of adaption and development
that we believe holds valuable lessons for the future.

The GEC-Marconi Research Centre (MRC) is the research arm of GEC-Marconi Ltd., the United
Kingdom's largest manufacturer of electronic systems for all types of civil and military application.

It has been involved in robotics and automated assembly systems since 1979 and in the wider aspects

of CIM since the early 1980s. GEC-Marconi is a large organisation manufacturing a very wide
range of high value products, often in small batches. It has substantial investment in existing

computer aided design and manufacturing systems from a number of different vendors and would
wish to incorporate these in any all-embracing CIM strategy that it adopted. At MRC we take the

view that CIM should encompass all facets of a manufacturing enterprise's activities, notjust design

and manufacture, and we try to design systems that, although not comprehensive in themselves, fit

in with this ideal and can be extended as and when required to meet future needs.

We are in the business of designing and prototyping CIM systems and sub-systems that we believe

would be of use to GEC-Marconi or to outside customers. These prototypes are presented as

demonstrators to stimulate interest from the company's product divisions but are not themselves

put to use. Our demonstrators need further work to turn them into robust systems for real use. In

this paper we describe two such demonstrators; both were collaborative projects, one of which we
led.

2. The Alvey Design to Product large scale demonstrator project

2.1 The Alvey programme

The Alvey Programme of pre-competitive, collaborative research in advanced information tech-

nology was set up by the UK Government in 1983 with a budget of £350 million to be spread over

232

five years. The programme was focused on the enabling technologies of intelligent knowledge
based systems, man-machine interfaces, software engineering and very large scale integrated cir-

cuits. In addition there were a small number of large scale demonstrator projects that were intended

to pull throbgh the results of the enabling technology work and demonstrate them in important

applications. One of these was called Design to Product, DtoP for short, and was in the field of

CM.

2.2 Genesis of the project

In 1983 MRC and the Department of Artificial Intelligence at the University ofEdinburgh had been
trying for a year or so to secure funding for a joint research proposal called Design and Make. The
idea was to develop a new type of artificial intelligence (AI) based computer aided design (CAD)
system and link it to arobotic assembly system. TheCAD system would be used to design assemblies

ofcomponents based on knowledge of component function and the robotic assembly system would
then automatically assemble the design.

One of the funding bodies approached suggested that the idea would form a good basis for a large

scale demonstrator proposal under the embryonic Alvey Programme, provided that it was expanded

in scope and participation. So the process of forming a consortium to propose the large scale

demonstrator began.

23 The proposal

The project proposal was written over a five month period in 1983-84, during which the size of the

project consortium grew to a maximum of eleven members before settling down to eight. There

were major structural changes in the consortium as it was formed. Responsibility for managing the

project was handed over to a company that designs and sells manufacturing systems and that would
be in a position to exploit the results at the end of the project, as required by the Alvey Programme.
A user collaborator was appointed to provide a demonstration base facility and example product

for the project to focus on. Collaborators were drawn from the industrial and academic spheres and
joined the consortium on the basis of having some past experience or new ideas to offer that filled

an otherwise awkward gap in the consortium's credentials. Design of the consortium was very
much bottom up rather man top down.

The proposal was for a five year project costing £8.7 million. But five years is a long time for eight

collaborators to stay together on the basis of a plan worked out before they started, so we divided

the project into two halves and only planned the first half in any detail. We expressed the goals of
the project in suitably vague terms so as to allow flexibility. The most important goal for us was
to demonstrate support for the lifecycle of light, electro-mechanical products from design, through

manufacture to service using the techniques of artificial intelligence. The user collaborators were
manufacturers of diesel fuel injection equipment, so the chosen product on which to focus our
attentions was a fuel injection pump comprising several hundred components.

2J.l The first system concept: a monster is bom
In 1983-84 the talk amongst people with interests in CIM was all about automated, unmanned
factories that would operate 24 hours a day, 365 days a year. These factories would accept raw
materials through one door and despatch finished products through another. They would be flexible,

efficient and trouble free. We were party to this vision of the future and wrote it into the DtoP
proposal. We produced a concept drawing showing a spacious factory with futuristic machines
tended by automatic guided vehicles. The only signs of human presence were some empty chairs

in the design office. We also built a wooden model to make the point more forcibly.

233

All the project members were technologists and we proposed a wholly technological solution to

the CTM. question. What is more, we proposed a solution that, although complete in itself, relied

on every part functioning correctly in order to work and that would find it difficult to communicate
with systems outside. Our first stab at a system block diagram is shown in figure 1. This was
originally compiled as a representation of the CIM problem but came to be presented as a possible

system solution. It is remarkable not for the careful thought that went into deciding what each box
should contain and how they should be connected, but for die sheernumber ofboxes, the complexity
of their interconnection and the lack of any apparent structure. We had proposed a monster and
did not yet know that it was of the dinosaur variety.

2.4 A new collaborator brings a human face

As a condition offunding the project the Alvey Directorate insisted thatwe take aboard an additional

collaborator expert in human factors to bring a more humane approach to our goals. We duly signed

up a new collaborator in the form of an academic research centre specialising in human sciences

and advanced technology. They used strange terms like usability, utility and socio-technical that

we did not understand. They asked how we were going to care for the people who would work
with our CIM system and we said that there were no people. It was clear that there were going to

be some arguments.

Our new friends conducted a human factors feasibility study to carve out a role for themselves in

the project and got the budget increased to cater for it. They identified dozens of areas where they

felt they could make a contribution and presented their findings to the project The reception was
polite but not enthusiastic and our new fnends began a long task ofpersuading and cajoling the rest

of us into accepting their ideas.

IS The pilot phase

The first half of the project was dubbed the pilot phase and got underway early in 1985 after

seemingly endless negotiations over contracts and collaboration agreements. Our objective during

this period was to demonstrate independently the viability of the different product support

sub-systems that would eventually link to form the integrated Design to Product system. The
consortium had been put together bottom up with each member corresponding to a particular phase
of the product lifecycle, e.g. design, process planning, assembly, maintenance. So too, therefore,

was the workplan for this first phase. Each collaborator got on with their own part of the system
in their own way and at their own pace. Close collaboration was not required for individual success

and was therefore not manifest Collaboration proceeded at the level necessary to ensure that the

project would meet its overall objectives at the end of five years.

The vagaries of the funding arrangements for the academic collaborators meant that some were able

to start work much earlier tiian others. Those who started early then needed to take decisions before

the project as a whole had caught up with them and this was to prove a problem for us when we
came to integrate our efforts later. Initially some of the industrial participants found the academics
difficult to understand and some academicsfound the industrials frustrating. The pilotphase brought
all the collaborators closer together in understanding and engendered a common outlook amongst
us. It ended in late 1987 with successful demonstrations of all the system components.

2.6 The demonstrator definition phase

The pilot phase did not produce an architecture for the DtoP CIM system; it had no need of one
itself (though more on tWs point later) and was about demonstrating not defining. We believed the

tasks ofdefining the system architecture and the work ofthe second phase ofthe project so important
that we set up a separate activity, called the demonstrator definition phase, to do them. This activity

ran for two years from the beginning of the project and was staffed by one person with specialist

234

Figure 1. The first DtoP system concept

235

help as required. This person also had responsibilities for liaison with other projects and for

spreading technical information round the project from outside, so it was not two person years on
architecture and workplan alone.

The demonstrator definition phase needed to produce anew system architecture for use in the second
half of the project We needed a practical architecture that it was realistic to build in the remaining

time with the resources available. Our monitoring of the world outside the project showed that

open, distributed architectures were in the ascendent and that large, monolithic systems were rapidly

falling out of favour. The costs of building large CIM systems were also being appreciated more
acutely throughout the industry and the trend was distinctiy towards modular systems that could be
built up incrementally fixjm small beginnings. This led to a scaling down ofour aspirations towards

automation in all areas ofproduct support, particularly manufacture and service. Our human factors

collaborator had been hard at work and the importance of all types of system users was beginning

to be realised, their presence being very necessary as the goal of total automation receded.

2.6.1 The second system concept: the monster is no more

Our new system architecture is shown in figure 2. It is very different from figure 1 and the changes

reflect those in the world and in our own thinking. First, it is much simpler. There are fewer boxes

and fewer interconnections. Some of the boxes are floating, apparentiy without any connections,

reflecting a move towards a blackboard style of working. Second, the knowledge bases and control

modules that are the necessary infrastructure for a complex system take a more prominent position.

Third, the users are now considered to be part of the overall system. Fourth, the product design

functions appear to be assuming dominance over the manufacturing and service functions, which
occupy a comparatively small fraction of the diagram. This is because we found that our original

ideas for manufacture and service support, which required the purchase or construction of a large

amount of hardware, were too costiy for the project to support, so work in those areas was reduced.

Some of the changes highlighted above are reinforced by the system design concept shown in figure

3 that is contemporary with figure 2. This gives more details of interconnection between parts of

the system and strongly emphasises the central role of knowledge bases and their management
systems. Both figure 2 and figure 3 show very littie structure to the system, in keeping with the

blackboard paradigm. This has the effect of reducing dependence of each part of the system on the

others and also makes it easier to extend because the interconnections are not too complex. Thus
the goals of modularity and openness are achieved.

We therefore entered the second half of the project with our aims intact, if reinterpreted to scale

them down, and a system architecture appropriate for our purposes and in accord with, indeed we
would like to think ahead of, the wisdom of the time.

2.7 The full demonstrator phase

The second half of the project had the tasks of integrating the results of the first half, which had
been developed separately, and demonstrating them as a single, coherent system. It was called the

full Demonstrator phase.

The new project system architecture (figures 2 and 3) depended on centralisation ofknowledge and
knowledge management while encouraging distribution of system function. During the pilot phase
we had not done anything towards implementing this system infi^structure and so work had to

proceed in parallel with the integration during the demonstrator phase. We were given a head start

in the information management area by basing our work on an AI toolkit known as KERIS [POU89]
that we were able to modify, but most of the infrastructure work had to start from scratch.

236

Not all the work done during the pilot phase was amenable to integration into the new architecture.

To overcome this we did some reimplementation of pilot phase work and modified the architecture

where necessary. As real implementation problems were faced, as opposed to conceptual ones,

many decisions were taken that affected the architecture. A decision to adopt Sun Microsystems 's

network extensible windowing system (NeWS) meant that the system could easily be run over a

network ofcomputers and that software functions could be split into smaller units and run separately.

Thus the user interfaces for a number of the software modules were separated from the rest of the

software to facilitate change in future.

It was not long therefore before a revised architecture was produced by the team building the system

infrastructure to reflect these changes.

2.7.1 The final system concept: deceptively simple

The revised and final system architecture shown in figure 4 gives central status to the ToolManager,
reflecting the preoccupations of its progenitors. TThe tool manager is like a software telephone

exchange that puts other parts of the system, known as tools, in touch with each other. The most
important tool is the information management system, which presides over the system's product

description and engineering knowledge bases. It is here that jdl the information on products and

how to support them is stored. We have grouped other tools in the diagram to try to given an

impression of system structure, but the tool manager has no favourites and treats all tools equally.

EXPLICIT

KNOWLEDGE
BASE

PRODUCT
DESCRIPTION

DATA
MANAG. MT
SYSTEM

KNOWLEDGE
BASE
USER
TOOLS

ENGINEERING
KNOWLEDGE
BASE

SOFTWARE
TOOL
MANAGEMENT
SYSTEM

PRIMARY
USER
INTERFACE

ENVIRONMENT MANAGER
1

GENERAL MACHINING PART PRO-

SUPPORT PROCESS GRAMMING
TOOLS PLANNER SYSTEM

ASSEMBLY
PROCESS
PLANNER

ASSEMBLY
CELL
P/GRMR

GEOMETRC
MODELLER

DESIGNER
SYSTEM

PROOXT
SUPPORT
DATA
GENERATION

DESIGN ENVIROMENT

ASSEMBLY TEST
CELL CEU MACHINE

MANUFACTURING ENVIRONMENT

SYSTEM
USER
PERSONNEL

SYSTEM
MAIN.CE
PERSOM^L

SYSTEM
MANAG MT
PERSONfC

KNOWLEDGE
ENGIN RG
PERSONNEL

USERS

KNOWLEDGE AND CONTROL LINKS

CONTROL ONLY LINKS

Figure 2. The second DtoP system architecture

237

r
I r-
I ir-
I

' I

I 'l

I <
I

I II

ENVIRONMENT MANAGER (INC MMI)

I'

1*1

ill

I I

DESIGNER
SYSTEM

1

1

1

1

1

1

1

1

GEOMETRIC
MODELLER

MACHINING
PROCESS
PLANNER

PART
PROGRAMMING
SYSTEM

DATA MANAGEMENT SYSTEM

PRODUCT

DESCRIPTION

EXPLICIT

KNOWLEDGE

BASE

ASSEMBLY
PROCESS
PLANNER

11
I!;!!

1

II

ASSEMBLY
CELL
PROGRAMMER

PRODUCT
SUPPORT DATA

GENERATION

1

ji"
'11

lii

III

"1

!'•

--'ll

II

I!

MANUFACTUR-
ING
ENVIRONMENT h 'I

I

I

OTHER
ADDITIONAL

MODULES
I

KNOWLEDGE LINKS

CONTROL LINKS

PUBLIC TOOL
INTERFACE

Figure 3. The second DtoP system design

The major group of tools are known as the design support tools and have consumed the greater part

of the project resources. They support product specification, design, machining process planning

and numerical code generation, assembly planning and robot programming, geometric modelling

and documentation functions. Each tool has a user interface which is itselJf a tool and shown in

another group. The separation of the tool user interfaces is a major development firom the previous

system concept It allows the interfaces to be modified more easily to fit in with changing user

requirements or to conform to a house style.

The manufacturing environment, which comprises a factory area controller and cells for machining
and assembly, is another tool in the system, though quite different to the purely software design

support tools. Finally we have included some utility tools that provide help, error reporting and
other functions.

238

Pft$i£n . Support
. .Too !s

.

User Interfaces

Other tools

Specialists

Process Planner

Designer System

Modelling System

Designer's

Notebook

Other Interfaces

Process Planner i/f

Designer System i/f

Modeller i/f

IMS i/f

Primary

User Interface

Tool Manager

Factory

System Interface
Information Management

System

Product

Description

Manufacturing Environment
Engineering k/b

Figure 4. The final DtoP system architecture

No two tools in the DtoP system are alike. They are written in different languages (PROLOG,
FORTRAN, C...), run on different machines (Sun 3, VAX, PC.) and contain a huge variety of
things from databases to machine tools. They include interfaces to third party systems as proof that

the DtoP architecture is open. The two things that all the tools have in common is that they com-
municate via the tool manager and use the contents of the information management system's

knowledge bases. Indeed, these are the only two parts of the system that you really need. The tools

to be found in a DtoP system would depend upon the application and no two systems will be the

same. This also means that a system can start smaU and grow by the addition of new tools as the

need arises or funds allow. The architecture is truly modular and extensible.

At this point the reader may be thinking that this is all too good to be true and wondering whether
we have really done all we claim. Remember that DtoP is only a demonstration or prototype system,

so it is not robust, is full of holes and patches and is not something we would want anyone to use
for real and come to depend on yet, that requires more work. As, admittedly not very convincing,

evidence that it does all exist, figure 5 shows a screen dump of the system's primary user interface

that gives fust access to all the tools and represents each one by a button.

239

>>»»»>>;-x^>M;'>»>>>>a'»>>:^:->;->>>;';-;-»>:->:->:->:'K-K*i

.:•>^>»:->:*:>»^^^^»W•^fcK*W•^:•x•»*^>:•>:K•>^^:•^:x^
»i•>^>:>»:):'>w^^^^^>:^^>^>:>»:•>:-^^>:•>^>:v^>:>v;^^^^^

> > now £-dffV]dOIM^> >'x> > >

;>w:'>:i>S>>>;>:->;:>::>:->

>:>;->v>:-:-:->:'>:'>:4:o;«-x*:->::>:->:->:«;;x«>:->:-x-x->:-x->:-x;>>>:'>:->:-K^^
" ' ":->:->:-j>>:->:->:'>:;wy/»>>:'>:-:->>::>:-:-?>:-:-:-:-;->:;>:>:->x^

Asiftsnt IFD Hoddkr PlDOKtRUIMT UfixSysUra I ManagcnMnt SyMB I D«fctopncatki Hrfp

> > J > > > > >>y>
> > J > >>>>>.>>>}
> > > V i > > > >>•>»>
/ / * ^ * > - -- -

>
-

^;^^^:»:;v:-^?>^^:•>
>:->:->:•>:•>:•>:•»>:•>:

>!>:•>:•.:>;/:»>:>:

;->:->^>;:->:-»>:v:->m;:-:

EDS

NoKkook

AidttuU

;->:w.->:-):v;->:->wX-;-;->
:-j:->:--/:-:-:'>:->:->;'>w:->:->:->:

:->:->;v:->M:v;«ix-j;w;v:

LUMP

GOAD

CAEMad<<far
I

.x>:*;>^>:•>^>^>::XrK:>::>W:?^?"•>: ;

." r:7:':::>:^:>::>^^::^:^^^.

^ >}}>)} 4 }> >>> ^ } > » >

-:>:>:;>:^;•>^^^>S>:>^^^>^K•^^^>>^^:«:•>:^:x^^>^^^>^^:>:^:>:^^x>^>>>;>:^^>^

> /> /> >s "> y >^ / • >»>/>)>/>>>> > >>)
>^>;^>>;^:^;>;^>>:^:o:^:'^;>>>:•>^^:;>:;^:;>^^;>^>;K.>:;>»^^^>rt:•>;;^:->:^:x>:^^

>;>:>:*:^>>^>^>:•>;^:>;>:'^:>>>:•>:•>:•>:^:*>:»«*:*:*:>^^;•>:X;>;>^>^^^>:^^>:>:<:^>>> j/>^j^*>» >>>) >'
:-:'>>>:*:-v:'>:'>:>/:'>>>:->»:->>>:*x4?>:->:'>;'>:'>>>:->:«->>>>>>>»:->:'>:'>:'>>>>>v>;>^'':-^

>^>::^:•>^>^>:•>:>:;>^>:i>S^<>^>;>:;>^>5>:;xto^>^>^>M^^^»ftr:):•>;^:•>:;x•^:->:>:):!^:•>:^:>:'>;^^^
^;:^;>:^:^:K•>:>:«:i>:>:•>:•>:x•>^>:>^>:^:•x^:•>^•>:>A:'>:>^>:*:•>:•>:•>:^*:•>^^:v^>:^^>:'^:>:*

J) > > /) / > >) » > > ^ * > > ^ » / > »

, f t , I y > i I > I t >

>> i y^> >>>>>>*'> yy> a
n:>:->>}:-::>:'>:>:>:->:-):'>:'>»;

>;>:> :->:->»:-j:->:->. J ^

•.y.'-y.-i:>

>:>:>:•>;->:>:>:>:->;>>:->:

.. .): ; >^>^>:>:v:^:^^^;^:>;^: ;. y . . ,

,:v:v:-;:Xv:v;;:x>:;^>:>;>:>:v;>:.^^::^:.>:o:;::^^:^
>:^^>;^; >:^;/^^:>l>^^:>^>:-X!>^>;>^>^J;>:>:x•>;>^:^^^^
>:>:->»::>:->:'>;*-^>.'->;):-x->:4;«->:>:'>w:'>w;->::>:'>;->:-fr->; ;

:

>:>: ^>^:^^>^^:>:>^^^^:K>^^;^^>^>^>:'>:r>:>;>»;K^^^^ :

.

;;^:^;;>i•>^>::X^:^^^S .>;->::>|w^^^^ .

:

'- '' -'
V r-'

' '

'

--'T^'-'-''^'-'- - -' - - -"

'

UKDC

Corook

ToolLbl

ShdTool

NotoUmk

Sflnions

Object BvJdflr

User PraftlM

U»«r Prciemicet

J ^ I ^) , y.

:>:-;-;-*>>:->:->:->:->S>:

;>/:-/:->:>;o:->;->

;;>:/:•>:>:•>:>;>

;^:-:-;:>:->:'>!-'>:::-

::>:•>>>:>:>;;:»
»:>:>>>:>:>:•>

j*>:>:-::->:x->:':-
»:>:•»::::>::

1
y.-v.y.-y/yyi

•>::>»:-x.x->

>:v:-X'>x:o:-x>:-Xv:-;::
/ / > ^ / / >
>:->:->:->:o:->>/.::v:-»:-:-:

, ;

Oakl«

SoMnLodi

Sbiadwr

Pilnttr

EbcmnkMid]

Calottlator

Noubook

BufRisponf

>w:v:->i->:-x-:
>;->:->:->:':-^Xv

v.VjV.'y.-y.v.->

>:>:::->:->m:-x->

x->:'X>:>>;.>\'-:-v

x->:<:->:->:^:->:->:

y.y.y.-y.-y.y.

y.-y.y.-y.-y.y.

>:>:-^:>^::•>:

r. y.-y.v. y^-.-nYi-y.-y. y. >

Figure 5. The DtoP primary user interface

2.8 OK, so how does it work?

There is space here for only a brief description of how the DtoP system works. For further details
the reader should refer to [FEH90].

When the DtoP system is turned on all the tools register their presence with the tool manager and
list the functions that they can provide in a standard tool call format recognised by the tool manager.
The knowledge bases supervised by the information management system (IMS) will previously
have been loaded with two kinds of information: static knowledge about product lifecycle support,
such as codes of practice, standards, tables and rules, and dynamic knowledge about particular
products that the system is used to support. The former is in an engineering knowledge base and
the latter in a series ofproduct description knowledge bases, each one for a different product. When
a new product is started a new product description knowledge base is created. It is initially empty
but over the entire life of the product accumulates information ofrelevance and provides a complete
record ofproduct design, manufacture and service history, assuming that the DtoP system contimues
to be used for those functions. In DtoP's present domain of fuel injection equipment most design
is variant, drawing on old designs for inspiration, so a user is likely to want to work on an existing
product description.

240

The user is first presented with the primary user interface, see figure 5, and from it selects the

browser tool to locate the desired product description in the IMS. The user can then move between

combinations of the design support tools to modify or add to the product design and perform

manufacturing planning and other tasks. The user's activities are limited only by the capability of

the tools and the information in the IMS. All the user's decisions are recorded in the product

description, with reasons if he or she chooses. When design and manufacturing planning are

complete the appropriate programs and resource information can be loaded into the manufacturing

environment for production to begin. Feedback from the manufacturing environment, which is

unique among the DtoP tools in that it may continue to operate with the same product information

repeatedly for years, to the product description of modified programs or manufacturing statistics is

possible.

When a user has finished what they wanted to do they return the product description they have been

using to the IMS for later retrieval and leave the system. The DtoP system is not for completely

novice product designers or other users. It contains a great deal ofknowledge, and is accumulating

more aU tiie time it is being used, but is not an expert system. It automates some mundane tasks

and supports users in more complex ones, but most of the time the user is in control and has to do
a fair bit of thinking.

2.9 External factors that affected development

There were many external factors that affected development of DtoP's CIM architecture. Some
we have mentioned already.

The biggest single influence was the marked trend across all industries away from large, monolithic

CIM systems to smaller, modular ones. This was partly for technical reasons, because the large

systems proved harder to build than anticipated, but the overwhelming pressures were economic.

The large systems were expensive and were an all or nothing investment, there was no easy way
to build them up in stages. This put the systems out of reach of small and medium sized companies
and meant that large companies that could afford them either had to throw out the existing contents

of their factory first or set up on a new site. Clearly this made the potential market ratiier small.

Companies large and small want to acquire systems in stages, phasing investment to match needs
and resources. They also want to be able to continue to use their existing systems, which means
that they require open systems that are modular and can be built incrementally.

The rise of open systems has not been confined to CIM but has been a theme throughout the

computing industry in recent years. DtoP has interfaced to systems from Computervision and
Applicon as proof tiiat it is an open system. This development has gone hand in hand with a change
in die engineering computer hardware marketplace. Superminicomputers, such as VAXes, were
all the rage when the project began and we planned to use them. However, we could see that single

user workstations were the coming favourite and decided to switch to Sun 2 workstations during
the pilot phase. When Sun 3s became available some collaborators bought those and finally the

whole system was ported to Sun 3s, two or three of which are used in a network under NeWS. The
emergence of windowing environments like NeWS and X-windows has made a big difference to

the way DtoP is implemented and run on networks of workstations.

2.10 Internal factors that afTected development

The single biggest internal project factor that affected development of the DtoP architecture, and
more particularly the system, was the budget. We started offwith very big ideas and were continually
scaling them down during the project as the cost implications, and manpower skills requirements
in some areas, became clear. Our ideas were still at the end bigger than we could implement and
we came to view the DtoP demonstration system as only a partial implementation of the DtoP
architecture in its full form.

241

More money and therefore more people would have been nice, but would we have been able to

control it all? As it was, changes ofpersonnel, for many reasons, over the life of the project caused

some problems. The academic staff were mostly on contracts of three years or less that did not

encourage project loyalty and turnover at some collaborators was high. In some cases the loss of

a particular Individual drastically affected work on some part of the system and altered the course

of development.

Management of the project and strategic direction was in the hands of the industrial collaborators

who had the job of exploiting the results afterwards. The companies involved had concems greater

than DtoP and the project was affected by some changes in company direction. Thus did the product

that the project was focusing on change half way through and the product service support functions

reduce in significance.

The rise in importance of human factors in the project following the appointment of our ninth

collaborator had a large and beneficial impact on the system architecture. Although it took some
time for thehuman factorsmessage to be accepted and tomake its mark, the influence was significant.

To be successful, systems must do what their users need. The system developers must therefore

find out what the users need and design to satisfy them, in terms of function and mode of operation.

A system that does not fill a need or is cumbersome to use will not be used.

2.11 The biggest problems

The project met and solved many problems. A large proportion of those were not connected with

what we were trying to do, i.e. design and build a CIM system, but stemmed firom the way we were
doing it, i.e. collaboratively between nine parties. These problems we have excluded from con-

sideration in this section because they were peculiar to our project.

The biggest problems were caused by not having a proper system architecture at the beginning of

the project on which to base all the work. Our first concept from figure 1 was never seriously

pursued and had been put forward in the project proposal as a suggestion for a possible architecture,

nothing more. This was not seen as a problem to begin with, indeed the absence of an architecture

was welcomed as an opportunity to do our own thing, which was itselfone of the problems. During
the first half of the project a great deal of work was done with litde or no thought for how it would
later be made to work together. By the time that a workable architecture emerged, after two years,

it was too late. We were too fardown the road and the damage had been done. We could not afford

to start again but knew that integration would be more difficult than it need have been. Ironically

the fact that we succeeded in integrating the different parts of the system testifies to our claim that

DtoP is an open architecture. Nevertheless, it was a problem that we could have done without.

A second major problem was coping with all the information that we had to absorb. Extemal
information about CIM, design and manufacturing in general, computing and a host ofother subjects
flooded into the project and we had difficulty keeping on top of it. Added to this were internal

reports and specifications, minutes and memoranda. The temptation to give in, don blinkers and
get on with the job was great, but had we done so we would not have produced such a flexible

system so suited to the needs of potential users.

Two final major problems were getting the system to work and documenting it, but there is nothing
new in either of tiiose. It is nearly always more difficult than expected to get the different parts of
a large system developed by a dispersed team to work together and engineers are never keen to

document their work in quite the way that is most useful, if at all.

With those words ofwisdom, we now leave Design to Product and move on to the other majorCIM
project we have been involved in : ESPRIT project 384, which we have led.

242

3. ESPRIT Project 384 - Integrated Information Processingfor the Design, Planning and
Control ofAssembly

3.1 Introduction

The European Strategic Programme for Research in Information Technology (ESPRIT) was the

first of many research programmes instituted by the European Commission with the aim of

encouraging cross-border collaborative research in Europe. Over a period of five years, hundreds

of companies, universities and research institutes, attracted by the fifty percent subsidy, have par-

ticipated in pre-competitive research into five areas of Information Technology, of which CIM is

one.

By the very nature of the conditions for obtaining funding, ESPRIT has succeeded in bringing

together industrial and academic engineers throughout the European Community, though not always
with the synergy and harmonization so loved by Commission scribes. There have been notable

successes in the development of standards, in semiconductor design and in other enabling tech-

nologies. Research in CIM, under the aegis of ESPRIT, has spanned every area from the design

of sensors for robot grippers to the development of CIM architectures. Our own project, involving

initially fiveand later six partners, hadthe statedaim of"demonstrating the feasibility ofan integrated

manufacturing system covering all aspects ofelectro-mechanical assembly, from design to control".

We started work in 1985 and the project ends in June 1990.

3.2 Project history

Due to factors internal and external to the consortium (discussed in the next section) the work carried

out during the lifetime of the project took a course which had not been anticipated at its inception

[SAN87]. In this section, we describe the major packages of work which were actually undertaken.

Briefly, these are:

- Survey of assembly technology and project definition

- Selection and training in the use of software tools

- Development of target CIM system concepts

- Development of First Integrated Prototype (FIP)

- Evaluation of PIP and design of next prototype

- Implementation of Last Integrated Prototype (LIP)

- Documentation of software using CASE tools.

3.2.1 The first year

The plan for the first year of the project was to carry out a survey of the state of the art in assembly
related software and hardware technology and to define tiie workplan for the rest of the project.

These tasks were carried out but, in truth, the first year became as much a team building exercise
as anything else. There were differences ofcompany philosophy to understand; we had to discover
people's motivations and their ways of working. There were also some minor language problems
to overconie, as typified by one fellow's remark that his english had improved since he had been
on an english curse. But such glitches were inconsequential when compared with the different
meanings people attached to simple words such as cell. This led to our writing a glossary document
of some thirty pages. The state-of-the-art survey was useful not because it revealed anything

243

previouslyunknown to us, but because it ensured that all partnershad acommon basis for discussion.

An analysis of selected products manufactured by the industrial collaborators similarly provided
only a focus for discussion.

Those discussions revolved around the problems inherent in assembly and what contribution we
could make to the field.

During that first year it was also agreed that we would develop some pieces of software to dem-
onstrate our ideas on integration. TTiese ideas involved three models: one of the equipment in the

factory, one of the assembly processes the equipment could perform, and one of the products that

could be assembled in the factory. All the modules available to support design and production

activities in the CIM system would use those models and also each other's outputs.

3.2.2 Software tools

All partners were interested in applying Artificial Intelligence (AI) techniques in the project. At
the time, AI was flavour of the month and we all believed that the technology would allow us to

implement solutions where none had existed before.

We searched for the best AI toolkit money could buy, on the basis that we would recoup the money
through increased programmer productivity. In the end, we had a shortlist of two systems:

IntelliCoip's Knowledge Engineering Environment (KEE) and the Carnegie Group's Knowledge
Craft. In hindsight, it is obvious that we would eventually choose KEE, as two of the partners

already had it on their sites. However, a period of about three months was spent evaluating and
comparing the two systems, principally because each one had a determined and loyal supporter in

the consortium.

Themanagement structure in early ESPRIT projects is such that the partnerwho is Prime Contractor

has no executive power. Its role is to act as a focal point between the other partners and the

Commission. Decisions have to be made democratically by the consortium and there is no formal

mechanism to resolve differences. As it was essential that all the partners use the sameprogramming
environment, the choice of toolkit required the consortium to inake a decision between one or the

other, which led to considerable anguish. Subsequentiy, however, every important decision made
by the consortium was to involve a compromise between the partners. Whether this is a bad or a

good thing, we leave as an exercise for the reader.

3.2.3 The first integrated prototype

After the toolkit selection debacle, we spent a great deal of time defining the contents and structure

of our three models. We also attempted to define the extent to which the functional modules would
be integrated amongst themselves and to clarify the role of the user. Could the modules exchange
information at arbitrary times or only when they had completed their task? What would be the best

compromise between supporting users and doing the job for them?

During this period, differences in methodology began to emerge. Some partners liked to plan their

work very carefully, considering all the consequences of their decisions. Others preferred to start

hacking, testing their ideas in software and making changes as they went along.

To focus discussions, a simulation was carried out where the roles of both the CIM system and its

users were played by people. The results were recorded on paper and extensively altered to arrive

at a definition of our target CIM system. This illustrated the flow of information involved in the

design and manufacture of a simple assembly provided by one of the partners.

244

Having completed this exercise, we felt that the document thus produced contained enough infor-

mation to serve as a design specification for a first software prototype of the whole system. We
reached this view because the focus of the project was integration, rather than the development of

particularly capable modules such as planners and schedulers. The result would be a broad, rather

than deep, demonstration system.

Over the next few months, the collaborators implemented all the components ofthe system. Despite

the trauma involved in integrating this software (which was accomplished in a matter of days), the

most visible flaw in the demonstration system was the lack of a common approach to the user

interface. Each module operated satisfactorily and actually used information prcxiuced by the others.

Of course, the software was limited in that it only supported activities related to the test product

and, behind the glossy interfaces, there were some ugly last minute patches introduced to get the

whole thing to work.

3.2.4 Evaluation and re-design of prototype

Rapid prototyping had thus provided us with a limited but working software system. The temptation

was to develop this further, expanding its capabilities withoutmakmg any radical changes. However,
the essence of successful prototyping is in resisting this temptation, using the prototype merely as

an investigative tool which supports the design and implementation ofanew, better, software system.

Consequently, the foUowing nine months were spent evaluating the first integrated prototype and

designing a new system architecture.

Whereas each model and module in the FIP had been developed by a single partner, taking into

account the known needs of the others, it was felt that the evaluation and re-design of the system

should involve all partners equally. Therefore, five groups were created: one for each of the three

models, one with overall responsibility for software quality issues and the architecture of the system,

and one to define the man-machine interface and userrequirements, based on ournew understanding

of what could be achieved.

The creation of the groups was a management coup. With just one technical representative from
each partner, an intense schedule of meetings and well defined goals, the groups became the focus

of the project. Where before there were disagreements between collaborators, the tendency was
now to have them between groups, a sign that the arguments were of a purely technical nature.

As further evidence of the success of the groups, a French team member and a German engineer
were united in matrimony!

At the technical level, the FIP evaluation highlighted the fact that the KEE toolkit had been used
primarily as an object oriented programming (OOP) system and it was therefore agreed that OOP
principles would be followed more strictiy in the next prototype. Software development guidelines

were created and a suite of software written to check compliance with the guidelines. The func-
tionality of the CIM system was defined and its architecture developed (see figure 6). The structure

of the models was substantially improved and, finally, a user interface specification was written to

ensure the consistency of the interfaces.

3.2.5 The last integrated prototype

At the time of writing, the LIP software is nearing completion. A first attempt at integrating the
latest models and modules revealed a few minor deficiencies which are currendy being addressed.

245

KBE

TL: Technological Library PSE: Product Structure Editor

PL: Process Library CTA: Connection Techniques Advisor

EL: Equipment Library AP: Assembly Planner

PSEL: Product Slaicture Element Library WS: Workshop Scheduler

FM: Factory Model CC: Cell Controller

PM: Product Model SC: Station Controller

Figure 6. The ESPRIT 384 system architecture

Functionally, this software places more emphasis on the system operators than the previous pro-

totype. As a result of feedback from potential users, some of the more advanced features in the FTP
were removed and more effort placed on providing facilities that allow the product developer to

manually edit product and production information. In addition, the LIP deals with arange ofproducts
rather than just one and work has been done to facilitate access to external databases.

3.2.6 Use of CASE techniques

In parallel with the later stages of development of the LIP, the collaborators were asked to use a

computer aided software engineering (CASE) tool todocument the software produced. For practical

reasons, the tool chosen had to be already available within the consortium, which resulted in our

selecting KnowledgeWare's Information Engineering Workbench. In particular, the AWS
(Analysis Workstation) module is currentiy being employed.

The first thing to say is that AWS is not weU suited to describing OOP software, but then, no CASE
tool we have seen is really satisfactory for that purpose either. However, it is clear that such a tool,

had one been available, would have provided an excellent alternative to our paper simulation

approach to defining the architecture of our system. Whether CASE could have avoided the need
for the first prototype is much less obvious. In principle it could, but in practice we suspect that

246

there was a real need to get on with some practical implementation work in order to keep engineers

motivated and senior managers supplied with demonstrations, and to prove the feasibility of the

innovative ideas being proposed.

As we near completion of the work with AWS, the suspicion is that we will rediscover conceptual

differences between the partners* views of how the target CIM system should operate. Although

we have implemented a fully working system, rapid prototyping encouraged the global view to be

forgotten while small interconnectivity problems were resolved. In addition, the modular OOP
nature of the software did not necessitate the overall architecture to be finalised in order to dem-
onstrate the modules and their connections with other modules and the models.

33 Achievements

The time has come to describe the software developed by the consortium. This will be, of necessity,
only a brief overview.

The system is designed for use in small batch manufacturing environments. It is assumed that the

assembly workshop contains a number of cells linked by a common transportation system. Each
cell is composed of a number of automatic assembly stations, typically consisting of a robot. A
common transportation system also links all the stations within a cell. By definition, at any instant

of time, each station may only work on one product, though others may be in the station waiting to

be worked on. In contrast, under normal circumstances, all the stations within a cell work con-

currcndy.

The key element of the system is the Knowledge Based Environment (KBE), shown in figure 6,

which is designed to support the development of products which may be manufactured in the

workshop. The KBE consists of the following integrated models and modules. The Equipment
and Process Models describe in considerable detail the capabilities of the workshop and contain

taxonomies and tools that enable them to be modified for use in other factories [SAN89a]. When
a product developer uses the KBE, (s)he refines and optimises the product design and its associated

manufacturing information. This is held in a Product Model which comprises the product structure,

components, their connections, references to the processes and equipment to be used, and an
assembly graph which defines the precedence of assembly operations. Some of this data is held
outside die KBE in a CAD system; the two are linked in such a way as to ensure data consistency
and so that some of the functions of one system can be invoked ftom the other, making for a
productive working environment.

In principle, any number of functionalities could be added to this basic framework. The following
ones have already been prototyped. A design support system which allows parts ofprevious designs
to be reutilised. A product structure editor which allows the relationships between components and
subassemblies to be defined. An expert system which helps the user select the most suitable con-
nection techniques to use in an assembly. A planner which helps in structuring and detailing of the
process plans for a product. A workshop scheduler which combines orders into lots to be assembled
in the various cells available in the factory. A cell schedulerwhich works together with the workshop
scheduler to produce a detailed schedule for the stations in each cell [SAN89b]. Finally, a station
control system, implemented partly inKEE and partly in a proprietary robot control language, which
utilises process plans to transform parts into assembled products [DW089]. The system has been
tested using simulators and one physical station.

It must be stressed that the achievement is not the development of software modules but, rather,
their integration. Indeed, had suitably open packages been available commercially, we would have
been contented with integrating those. As it turned out, we made use only of a commercial CAD
system and a low-level control system, the rest of the software being developed from scratch with
integration in mind.

247

3.4 Problems encountered

In this section we discuss the problems which most hindered the smooth progress of the project.

3.4.1 Technical difficulties
•

Surprisingly, these have been relatively minor, compared to people problems. Sure, linking the

KBE to the CAD system presented difficulties, as did the programming of the assembly station. In

other areas too, naturally, there were problems. Given the goal of producing an integrated system,

the tough issues have concerned information processing; the engineering problems inherent in

assembly rarely made it to the surface. At times it felt as if we were solving only the problems we
ourselves had introduced. Given the project's emphasis on building software prototypes, it is not

surprising that many of the day to day difficulties we encountered were of the programming variety.

KEE, and the Symbolics Lisp Machine programming environment we have used, are simply superb

for rapid prototyping due to their richness and flexibihty. The latter is invaluable when used by a

small tight knit team of programmers but can be counterproductive otherwise.

3.4.2 Personnel matters

The following problems will be familiar to anyone managing projects of long duration.

Over the lifetime of the project, there have been numerous changes in personnel. Apart from the

problem of training, which is particularly acute in the case of sophisticated software tools, engineers

were replaced witii littie consequence. More unfortunately, eight changes of management have

taken place at the commission and the various sites. This has affected the direction and style of the

work. For those who have stayed the course, this has perhaps been helpful in reducing loss of

enthusiasm for the work, but the project as a whole has suffered.

We cannot end this section without referring to the problems caused by having in the consortium

many individuals possessing equally strong personalities. Group dynamics are interesting to

observe, but a nightmare to deal with.

3.4.3 Company related issues

It is extraordinary to note that in a five year span, three of the original five partners have been taken

over by other companies. Luckily, this has not had as great an impact on the project as one might
have expected.

A greaterproblem has been the lack ofinvolvement in the work byfront line designers and engineers;

those with the greatest need of a CIM system have the least time available to contribute to its

development. Throughout the consortium, company support for the work has been patchy, both

financially and in terms of human resources. The time and cost involved in cross-border travel has

also been detrimental to progress. As an alternative, electronic mail was used for a short while but

found lacking. Faxes, which allow diagrams to be transmitted, have been used extensively. If we
were starting the project now, we would specify that all the partners had to use a common word
processor and graphics package. With the current proliferation of e-mail in Europe and greater

standardization amongst the partners, communication of text, program code and diagrams ought to

be possible.

As a result ofthe overheads imposed by travel and meetings, we would guess that, given comparable
resources, any one of the partners could have achieved much more than the consortium has as a

whole. But, considering each partner's actual financial commitment to the project, collaboration

has allowed each company to influence and share results that would just not have existed without
it.

248

4. Conclusions

If we tried to sum up all the lessons were have learned on DtoP and ESPRIT 384 in a few pithy

phrases we could not. Being involved in the projects has been an education in many ways and the

experience will be with us for the rest of our lives. Some of the most important points that we
would like to pass on as valuable lessons leamt are:

Managing a project

- Do not underestimate the technical difficulties and adjust either the objectives or the budget

accordingly. Everything may seem possible at the start, and probably is, but the price may
be higher than you think.

- Keep yourself informed of what is happening in the world outside, both to your potential

users or customers and in CIM circles.

- Five years is a long time; try to keep projects shorter to avoid changes in strategic direction

and reduce personnel turnover.

- Strong and respected project management can smooth the path greatly.

- CIM projects are great fun, but tiring too.

Developing a system

- Start with a clear idea of where you want to go, by adopting an architecture either before

you write the proposal or as soon as the project starts.

- Do not think that technology can solve everything, you will need people to use and work
with your system.

- Find out what your future users really need and design for it. This is more difficult than

it sounds because users, even if you can identify them, may not know what they need.

- If you do not have human factors expertise on your team, And some and use it.

- Rapid prototyping and CASE are useful techniques for exploring problems and possible

solutions.

- Ifpossible, develop systems incrementally. Delivering partial solutions early on motivates

sponsors and engineers alike.

- Use the best quality software development tools you can afford. Avoid developing your
own as this diverts effort from the true objective of the project.

Demonstrating a system

- Explaining complex systems to people who have not been involved in developing them is

difficult. Find someone who can do it and make them your fix)nt man, keep the other
engineers out of the way.

- Demonstrating software convincingly using only a workstation screen, keyboard and mouse
is impossible. The quantity of information people can absorb is miniscule.

249

Collaborating with others

- If you must collaborate to obtain all the necessary expertise, keep the number of partners

as small as possible.

- Make sure your objectives are clear, or you will end up servicing the others' requirements

without extracting anything useful from the work.

- Allow time for the process of collaboration.

We do not advance either of our two CIM architectures as panaceas for manufacturing industry's

problems. They are appropriate to the particular types of problem that the two projects addressed

and we believe them to be adaptable to a wide range of CIM applications. However, no two
manufacturing enterprises are quite the same and while the adoption of standards has distinct

advantages in some areas, such as communications and information management, the appropri-

ateness of a solution, in terms of complexity, cost and other factors, to any given problem must
always be an important factor in system design. Only one thing is certain: be guided by our

architectures and by our conclusions if you wUl, but do not follow our development roads: they

were long, tortuous and full of potholes.

5. Acknowledgements

We wish to express our gratimde to all the partners in both projects and, in the case of the ESPRIT
project, to the reviewers for their comments and guidance. We of course also wish to thank the

European Coomiission, UK Department of Trade and Industry, Ministry of Defence and Science

and Engineering Research Council for their financial support.

Ourcollaborators in theDesign to Productprojectwere: GEC Electrical Projects Ltd. ,GEC Avionics

Ltd., Lucas Diesel Systems Ltd., University of Edinburgh, University of Leeds, University of
Loughborough, HUSAT Research Centre and National Engineering Laboratory.

The ESPRIT 384 consortium includes Daimler Benz (Frankfurt), IPK (Berlin), Investronica

(Madrid), TNO (Apeldoom) and La Telemecanique Electrique (Paris).

6. References

[DW089] B Dwolatzky and S P Sanoff, "A Product-centred Controller for Flexible Assembly
Cells", Proc. of the 10th Int. Conference on Assembly Automation, 23-25 October,

Kanazawa, Japan. 1989.

[FEH90] P A Fehrenbach ed., "The Alvey 'Design to Product' Demonstrator Project - An
Integrated, Knowledge Based Approach to Product Lifecycle Support", project

document DTOP/EXT/GECR/1/1, available from the author, 1990.

[POU89] K Poulter ct al., "The KERIS Reference Manual", available from GEC-Marconi
Research Ontre AI EHvision, 1989.

[SAN87] S P Sanoffct al., "Integrated Information Processing for Design, Planning and Control
of Assembly", ESPRIT Conference '85, 23-25 September, Brussels, Belgium, 1987.

[SAN89a] S P Sanoffand B Dwolatzky, "Intelligent Models for Assembly Design, Planning and
Control", ESPRIT Conference '87, 28-30 September, Brussels, Belgium, 1989.

[SAN89b] S P Sanoff and D Poilevey, "Integrated Scheduling and Control of Manufacturing
Cells", Proc. of the 5th CIM-Europe Conference, 17-19 May, Athens, Greece, 1989.

250

THE DEVELOPMENT OF A CIM ARCHITECTURE FOR THE RAMP PROGRAM

ERIC E LITT

MAY, 1990

Abstract

This paper describes the development of the RAMP Architecture and presents
a top level view of it from functional, information, and control
perspectives. It also presents some of the considerations in the
development of a CIM Architecture such as the role of standards, commercial
versus custom code trade offs, and a brief discussion of lessons learned
from this development effort.

1. Introduction

The Rapid Acquisition of Manufactured Parts (RAMP) program was initiated
by the Naval Supply Systems Command (NAVSUP) to address the time that it takes
to acquire replacement spare parts. NAVSUP funded a study to determine the
average time that it takes to get a replacement part from the time the demand
is recognized to the time that it is delivered. The results of that study showed
that it takes between 300 - 600 days to fill most orders.

Furthermore, it concluded that there are three distinct time periods in the
acquisition process that account for the total time. The first period is called
Procurement Administrative Lead Time (PALT). This covers the period from when
a demand is recognized until an order is placed with a vendor. The second period
is called Manufacturing Administrative Lead Time (MALT). This covers the period
from award of contract until the time that work is released to the shop floor.

The third period is called Manufacturing Lead Time. This covers the period from
the time an order is released to the shop floor until it is shipped to the
customer.

The initial phase of the RAMP program developed the requirements
specifications for addressing all three of these time periods. This paper
describes the development of the RAMP Architecture and presents a top level view
of it from functional, information, and control perspectives.

2. What is an Architecture?

There are many parts to defining an architecture of a CIM system. We have
broken them down into the following categories:

1) functional relationships,
2) information relationships,

3) processing sequence relationships, and

4) control relationships.

251

As one can see, the common denominator is that all of the categories define
a set of relationships. In fact, they all describe the system with the only
difference being the perspective from which they view it. The Architecture
provides the framework under which the detailed system design is developed. A
well thought out architecture provides for modularity, flexibility, and
asynchronous design. It should provide the designers with a good roadway to
follow, and enough boundaries on them that they can all work fairly independently
without a high risk of design conflict.

A good analogy is that of a building. Once the foundation is in and the
shell is erected, the basic framework of the space is defined. The interfaces
between the floors are defined, the utility services are defined, the boundary
to the outside world is defined, and the basic functionality of the floor is

defined. The variability is in how each floor is configured to meet its

functionality. In this regard the designer has a considerable amount of
flexibility in how he does his job, yet he does have constraints as to how he

fits in with the rest of the building. Over the life cycle of the building the
floor may be remodeled several times, in fact even its functionality may be

changed yet it is not necessary to tear down the floors above it to accomplish
these modifications.

In the design of a CIM system architecture one must have the foresight to

consider the types of changes that may occur to the system over its life cycle
and provide for mechanisms that will enable the modification of the system
without a complete redesign. Since no one can predict the future changes to the
system, it is crucial to have a modular design with well defined interfaces such
that the system can be upgraded in a modular fashion.

3. The Role of Standards in Developing a System

Standards can play an important role in insuring that the modularity of the

system is achieved. There are published standards for many of the components
that make up a RAMP system. Examples include the common database which is an

ANSI compliant SQL DBMS, and the backbone communications network which is OSI

compl iant.

The value of adhering to these standards is particularly evident in an

environment that one is using a conglomeration of commercial products. By using

products that adhere to the standards there is a greater chance of success in

integrating the products because the vendors have some common ground. The SQL

DBMS is a good example of this in that when sharing information between
applications from different vendors, it is easier to do so if each talks a common
language. In this case the common language is SQL.

Standards are only effective however if they are endorsed by industry. MAP

is an example of a standard that has not had the wide spread endorsement of

industry. Though the goal of MAP will benefit the customers, many vendors have

been reluctant to provide products that interface with it. As a result, it may
never reach its potential until there is a stronger commitment from industry to

support it. This is unlikely to occur without the customers demanding it en

masse.

252

4. Approach to Defining Architecture

4.1 Design Team

The South Carolina Research Authority (SCRA) is the prime contractor on the
RAMP/RTIF program for the Navy. However, all of the technical work is performed
by one of four subcontractors. The four subcontractors and SCRA make up an

organization called the American Manufacturing Research Consortium (AMRC). The
membership of the Consortium includes ARTHUR D LITTLE, BATTELLE, GRUMMAN DATA
SYSTEMS, SEACOR, AND SCRA.

4.2 Design Approach

This program used a five phase top down design approach. It should be noted
that these "phases" do not correspond with any contractual nor implementation
requirements or documentation. However, they do document the process that was
used in developing the systems.

Planning (Phase One)

During this phase a comprehensive set of plans were generated in order
to meet the Navy's objectives of designing a system that would result
in the desired lead time reductions. Examples of the types of plans
developed include:

Program Master Plan,
System Engineering Master Plan, and
System Integration Plan.

Establishment of System Specifications (Phase Two)

During this phase the functional and design specifications were
developed using the system requirements identified in the planning
stage. Various methodologies were used to develop the specifications.
These methodologies included IDEFO Function Modeling, Yourdon-Demarco
Data Modeling, Entity Relationship Model ing, and Process Flow Diagrams.
Most of these modeling techniques were supported by Computer Aided
Software Engineering (CASE) tools. These tools were used to ensure
consistency and to perform error checking within the models. Examples
of the types of documents developed during this phase include:

IDEFO Function Model of a complete enterprise.
Generic Information Model,
Control Architecture,
Generic Interface Requirements Specification, and
Type "B" Specifications.

Design (Phase Three)

During this phase the detailed design work was accomplished. This
included writing detailed component specifications and test plans as

well as the design of custom components and interfaces. Type "C"

specifications and procurement packages were prepared and released for
bid. Examples of the types of documents developed during this phase

253

include:

System Acceptance Test Plans,
Component Test Plans,
Failure and Corrective Action Program Plans, and
Type "C" Specifications.

Construction, Integration and Testing (Phase Four)

This phase was done incrementally resulting in the build up of the
complete system. The first activities were to procure the hardware
and software necessary to write the custom software code. While the
code was being written and debugged, the long lead time items such as

the shop floor equipment was being procured. The System's Top Level
Components (TLC's) were implemented in parallel by component, starting
at the lowest levels of the hierarchy. For the manufacturing cell,
the equipment was installed and tested first on an independent basis,
and then as a part of a workstation, until all of the workstations were
installed. The Manufacturing Cell and the other TLC's were then tested
on a stand alone basis to ensure their functionalities, and finally
the complete system was tested.

Installation (Phase Five)

Efforts are now under way to implement the system at three different
sites. These sites are Cherry Point, NC; Naval Avionics Center, IN;

and Charleston Naval Shipyard, SC. During this phase the system will

be shipped to these sites and installed in their facilities. The
external interfaces to their existing systems will be tested and
verified, and a complete site acceptance test will be performed.

As was mentioned under Phase Two (Establishment of System Specifications),
the information and control architectures were defined using the requirements
identified in phase one as a baseline. The approach was to consider the complete
enterprise, and model its functions and their interrelationships. This was done
using the IDEFO methodology. At that time there were no CASE tools available
to assist in creating the models, so it was done by hand and input into a CAD
system. Since then however, several automated tools have become available on

the open market, which we have used on other projects. Once these relationships
were clearly understood, an information model was developed using the
Yourdon-Demarco methodology implemented in a CASE environment. This model
detailed the information requirements for each of the processes identified in

the function model

.

Once the concept for RAMP was developed in the context of an enterprise,
it was decided to scale back the initial implementation to focus on those areas
that would have the largest return on investment for the sites. The enterprise
functions were grouped into two basic categories; those that directly supported
manufacturing, and those that were support functions. It was decided that most
of the support functions such as maintenance, payroll, accounting, etc. would
continue to be performed by the site using their existing systems. The remainder
of the functions comprised the baseline design for the first RAMP

implementations.

254

This baseline design was documented in an information and function model

using the same methodologies. It also identified the data storage requirements
and the relationships between the various data stores. This served as the basis
for the Input Process Output charts and the database design in the Software
Requirements Specification (SRS) and the Software Top Level Design Document
(STLDD).

5. The Ramp Architecture

5.1 Information Model

Figure 1 shows the top level of the RAMP Generic Model. One will note that
there are four processes identified at this level. They are:

1) Production and Inventory Control,

2) Manufacturing,

3) Manufacturing Engineering, and

4) Quality.

These correspond directly to four of the seven TLCs of the RAMP System.
In addition to these functions, all segments of the RAMP System are integrated
through a common architecture consisting of three other TLCs:

5) Information Management,

6) Communications, and

7) Control

.

TLCs 5 through 7 comprise an information processing "shell" into which
Production & Inventory Control (P&IC), Manufacturing, Manufacturing Engineering,
and Quality are integrated.

The following text describes the functional requirements to be carried out
by each of these TLCs, and from a top-level viewpoint, the lead time reduction
benefits that are achieved by each TLC. The partitioning of these TLCs into
Lower Level Components (LLCs) is also described.

5.1.1 Production and Inventory Control TLC

To enable the reduction of lead time, the P&IC TLC provides administrative
tools for achieving semi -automated, closed-loop workload control . There are four
LLCs which comprise P&IC. The LLCs which incorporate this functionality include
Capacity Requirements Planning (CRP), Production Control, Order Entry, and

Material Inventory Management (MIM).

Capacity Requirements Planning

CRP helps ensure that Required Delivery Dates are met by reserving and

allocating a period of time for orders to be processed by RAMP
resources. CRP also ensures that the workload reserved and allocated
for the resources does not exceed the finite capacity available, thus
preventing the build-up of work-in-process inventories.

255

Figure 1 Information Model

256

Production Control

Production Control provides the mechanism to release an order to the
shop. This occurs when it determines that all items and process plans
are available and shop capacity permits. In addition, it assigns
priorities to the orders, releases the orders, and updates the Order
when all RAMP processing is complete.

Order Entry

Order Entry provides the capability to determine order status
conditions that require site attention, provides two-way communications
to monitor, send and receive order-related information to/from the site
support functions, and provides the capability to initiate orders.

Material Inventory Management

MIM acts as the point of contact between the site and RAMP to
requisition, track and receive direct and indirect items, and to obtain
outside processing services. As a result of the requisition, this
process also receives projected delivery dates of items from the site
for use by RAMP.

5.1.2 Manufacturing TLC

The Manufacturing TLC enables the achievement of lead time reduction by

providing an integrated methodology to reduce the time parts spend waiting to
be processed on the shop floor. Industry statistics have shown that in a

conventional shop, parts spend an average of 5% of their overall time in the shop
being processed, and the remaining 95% of the time in queue to be processed, in

setup, or waiting for a problem to be solved. The Manufacturing LLCs, include
Schedule Manufacturing Cell , Manage Maintenance, Coordinate/Monitor Manufacturing
Cell, Manage Indirect Inventory, Workstation Control, and Transportation Control.
They provide mechanisms to reduce this waiting time.

Schedule Manufacturing Cell

Schedule Manufacturing Cell provides the mechanism for preparation,
interactive update, and limited analysis of resource work agendas, as

well as initiation of control tables used for "pulling" Shop Work
Orders (SWOs) through the shop floor.

Manage Maintenance

Manage Maintenance interfaces with Site Maintenance to request timely
support and receive commitments and schedules of the planned execution
of the requests. This information is used for scheduling and

coordination of machine outage repairs and preventive maintenance.

257

Coordinate/Monitor Manufacturing Cell

Coordinate/Monitor Manufacturing Cell has the control logic to manage
the activities of all workstation level controllers in order to achieve
a methodology of shop floor control to pull SWOs through the shop.

It downloads commands and detailed instructions, and processes uploaded
status/state updates.

Manage Indirect Inventory

Manage Indirect Inventory provides the information processing support
capability for filling requests, inventory maintenance, and directing
returns/receipts of all indirect items.

Workstation Control

Workstation Control provides all of the information processing required
to support the timely execution of production tasks at the workstation
level

.

Transportation Control

Transportation Control provides all of the information processing
required to support the transportation of items between workstations.

5.1.3 Manufacturing Engineering TLC

Manufacturing Engineering achieves lead time reduction through the
semi -automated generation of macro and micro process plans. The RAMP uses RAMP
PDES to generate macro process plans when feasible, which will enhance the
quality of end items. The LLCs of Manufacturing Engineering include Create
Process Plans, Evaluate Problem Cause, and Generate RAMP PDES.

Create Process Plans

Create Process Plans includes verification, extraction, and conversion
of the RAMP PDES, creation of the Macro and Micro Process Plans,
creation of the final test or inspection plan, maintenance of databases
used in process planning, and coordination of process planning.

Evaluate Problem Cause

The Evaluate Problem Cause LLC provides interactive resolution of
discrepant part problems and Engineering Service Requests and

Completion notices.

Generate RAMP PDES

Manufacturing Engineering is capable of limited generation of RAMP
Product Data Exchange Specification (RAMP PDES) based on a Level III

Part Technical Data Package (L3PTDP).

258

5.1.4 Quality TLC

The Quality TLC performs the generation of Quality Reports, the coordination
of the dispositioning process surrounding discrepant/quarantined parts, the
arrangement for quality services not found within the RAMP, the assembly of Part
Pedigree Reports, the generation of Part Quality Records, and the monitoring of
Resource Certification. By supporting first-run quality from both a part
inspection and process monitoring aspect, the Quality TLC will support lead time
reduction by reducing the percentage of scrap and rework incurred on the shop
floor.

Generate Quality Reports

The Generate Quality Reports process accesses and retrieves Part
Quality Data and Inspection Results generated during the actual
manufacturing execution of the process plan operations. It computes
process control measurements of the total manufacturing process for
inclusion into Quality Reports.

Coordinate Disposition of Quarantined Part

This process coordinates the disposition process associated with parts
determined to be in a discrepant condition, and placed in a quarantined
status. It also arranges for quality services not found within the
RAMP.

Assemble Part Pedigree

If required by the order requirements, the Assemble Part Pedigree
process assembles a complete component/material pedigree for a given
part.

Generate Part Quality Record

Generate Part Quality Record compares actual Quality Reports to order
quality report requirements included in the process plan. The
objective is to assure that all order requirements have been met and
that the required documentation is created.

Resource Certification

The Resource Certification LLC ensures that all manufacturing equipment
and personnel maintain their prescribed calibration and/or
certification, and only certified equipment and personnel are utilized
in the manufacturing processes.

5.2 Information Management TLC

The Information Management TLC manages all data shared between more than
one RAMP TLC using the Common Database (CDB) for the storage of all shared data,
while assuring data security and integrity. Information is transferred either
as a message or a file.

259

The Common Database Manager (CDBM) interfaces with the Command Status
Services (CSS) to transmit all data. CSS supports bi-directional communications
providing CDBM with commands and output files to initiate or respond to other
RAMP components. At each application node, CSS transmits data into the node's
mail box and receives status data from the node's Application Control Interface
(ACI).

The ACI provides for the integration and control of the various COTS
applications programs in the RAMP using messages from the CSS. Messages
interconnect the ACI Application Dispatcher, Execution Monitor, Upload Monitor,
and Download Monitor LLCs within the CSS. When a Controller at any level of the
hierarchy applies its control logic to assign a task to a subordinate, these LLCs
perform the data downloads and uploads.

5.3 Communications TIC

The Communications TLC provides for Application File and Message Exchange,
Data Handling, Interfacing to other networks, and Data Communications Management.

The Application File and Messaging Service provides file and message
exchange services to all application functions using mailbox communication
services. The user application requests file/message transfer service and
provides valid source and destination names. The local/network operating system
validates and processes the application service request. Access is made to the
requesting application for valid service requests, otherwise an error message
is generated.

Data handling functions determine whether the message/file request is local

or remote, transparent to any user applications. Local requests are processed
by the local operating system node and remote requests are processed by the
network operating system node. Application-to-application valid data transfer,
retransmissions, or error/fault status messages are generated as required.

Provisions to interconnect to other networks is provided through the
network-to-network interface for file/message exchange support services. The
network-to-network interface facilities will be standard bridges, routers, or
gateways. This function is currently under design for the Cherry Point
Implementation.

Communication Management performs the following functions:

1) Maintain/update Network Configuration and User/Network Address
Database,

2) Control network security access and operation,

3) Provide alarms, and

4) Provide data communications statistics.

When a Controller at any level of the hierarchy applies it's control logic,

to assign a task to a subordinate, the Communications TLC provides the facility

for data transfer.

260

6. Control Architecture

6.1 Control TLC

The purpose of the Control TLC is to provide a mechanism for communicating
timely and accurate control information and task processing information to and

from RAMP resources (artisans, equipment, and information processing devices)
that perform the P&IC, Manufacturing, Manufacturing Engineering, and Quality
functions. The Control TLC instructs the RAMP resources when and where to
perform a value-added task on an order or SWO. The RAMP resources then follow
the instructions and report the status/state resulting from the performance of
the value-added task.

As illustrated in Figure 2, the Control TLC is organized in a five level

hierarchy with the highest level being the enterprise followed by the system,
cell, workstation, and equipment levels. The current RAMP implementations
implement the Manufacturing System, Cell, Workstation, and Equipment levels of
this hierarchy.

This control schema is based on the premise that all processes or resources
receive commands from their supervisory controllers, and dispatch commands to
their subordinates. In addition, they receive status/state information from
their subordinates and send status/state information to their supervisory
controller.

This closed-loop control will enable the achievement of the lead time
reduction goals, by avoiding situations where RAMP resources lack information,
perform the wrong task, or do not coordinate with one another properly, and by
providing a proper startup/shutdown/restart mechanism. The design of the RAMP
system minimizes the anomalies (errors, failures, irregularities) that occur
during the processing of orders, but when an anomaly occurs, proper control
ensures the proper recovery from the anomaly.

6.2 Process Flow

Figure 3 shows part of the process control flow diagram. It shows that the
sequence in which the processes are activated is based upon state changes. This
control logic is embedded into state tables which, when utilized, execute
predefined actions. The logic that was input into the state tables was derived
from the process control flow diagrams. As one can see, the sequence of events
is predetermined based upon the results of the completion state of the previous
action.

We have found that the best tool in presenting the system design is Figure
4. Figure 4 shows the physical representation of the components that make up

the system in their respective hierarchical positions. However, this figure by
itself is not enough to have a full understanding of the architecture. It is

necessary to have a thorough understanding of all of the logical diagrams to
understand the significance of the physical diagram.

261

Figure 2 RAMP Hierarchy

262

Figure 3 Process Control Flow Diagram

263

1 L

I \

Q_
2:
if)

I

U
cr

a <

^- S
I—I -I

cr 2<

<
q:

1;

if

I
> I I

j
I

: IF^

E lEKBiaB

4l

§1 11 Is 11^

i ^ i

13
9N10T>OVd3Ud

13
H5VA V uungBO

N0I133dSNI

2» GNINtK)VM TvlNOZIaO*

-lOdlKIO -OUIMOO -1-133 -lOaiNOO NOIl*J.S>ldOn TOUINQO lN3Mdin03

ONIdBAVl AHDHVd3IH

Figure 4 Implementation Diagram

264

7. COTS vs. Customer Code Trade Off

There is a significant decision to be made when implementing a CIM system
as to whether the code should be custom written for the application, or whether
commercial products should be used. The advantages and disadvantages of using
custom code are outlined below.

Advantages:

1) functionality is performed as specified,

2) no overlap between software modules,

3) one to one correlation between design and implementation, and

4) developer has complete control of system configuration.

Disadvantages:

1) high risk associated with a developed software package, and no
installed base,

2) cost to develop, and

3) support required to maintain it over its life cycle.

The development concept for RAMP was based upon using Commercial Off the
Shelf (COTS) software, computer hardware, and equipment as much as possible.
All of the RAMP computer hardware, equipment and application software is COTS.

When evaluating COTS for it's applicability to a particular situation, it

is important to have a well defined set of criteria for evaluation. This
criteria should be used to asses the functionality, as well as the performance
of the COTS in question. There should also be a rating scheme by which relative
weights can be assigned to the importance of the function or its performance.
Also, when making decisions on software that will be integrated with other
applications, it is necessary to consider the degree of difficulty for
integration.

8. Lessons Learned

A top down approach to system design is an extremely beneficial exercise
to go through, even if the whole design is not implemented.

When evaluating a COTS product it is important to make SITE VISITS and
observe the use of the product in an actual production environment.

All evaluations should be against a standard.

Selection should be based upon an explicit understanding of the
requirements.

265

IMPLEMENTATION OF THE RAMP ARCHITECTURE
AT AN ESTABLISHED SITE

DAVID W. JUNG
MAY, 1990

Abstract

This paper provides insight into the lessons learned in adapting the
generic Rapid Acquisition of Manufactured Parts (RAMP) architecture,
to create a conceptual architecture for the Cherry Point Naval
Aviation Depot (NADEP). AS- IS IDEFO models were successfully used to
document the existing site operations. Baseline RAMP data flow,
process control flow, and physical models were then adapted to
allocate functions and interfaces to the TO-BE Cherry Point RAMP
Manufacturing System (CPRMS). As a result of the adaptation, the
time and manpower required to create the initial conceptual
architecture was reduced. However, it was also learned that
conceptual architecture development is an on-going, rather than
static, activity.

1. Introduction

The RAMP Manufacturing System (RMS) is currently moving toward the
production test phase at the RAMP Test and Integration Facility (RTIF),

Charleston, South Carolina, and will meet its primary mission of producing
Small Mechanical Parts (SMPs) for the Navy. A second goal of the RAMP program
is to transfer the developed architecture and technology to established sites.

Initially, RAMP technology will be transferred to Navy and Marine Corps sites
which have the mission to support fleet readiness. These sites are therefore
key candidates for realizing the benefits of replacement part leadtime
reductions, as well as other RAMP productivity improvements, such as improved
quality, inventory reductions, and an increase in machine utilization.

The RTIF construction, integration, and testing phase was underway, but

not completed, when the effort to transfer the generic RAMP architecture
started in early 1989. This paper concentrates on describing the tasks that
were performed during the period from January, 1989 through June, 1989, to

create an initial conceptual architecture for the CPRMS.

A fundamental goal from the start of the CPRMS architecture development
was to leverage and adapt the RAMP architecture to Cherry Point NADEP needs.

All of the program management plans and models that were produced in developing
the RAMP architecture were available to the American Manufacturing Research
Consortium (AMRC) systems engineers for development of the CPRMS architecture.

Although a significant portion of the RAMP architecture was directly
transferred to the CPRMS architecture, there were also site specific factors
which required additional architecture development. The major drivers of the
CPRMS adaptation of the generic RAMP architecture included implementation
strategy, enterprise integration, and shop floor integration.

266

The first task performed in developing the CPRMS conceptual architecture

was creation of AS-IS IDEFO models to communicate the site survey findings.

Completion of the AS-IS models led to the development of conceptual TO-BE IDEFO

models, Yourdon-Demarco data flow models, process control flow models, and

physical models. These conceptual models were developed to guide the

adaptation of the baseline RAMP functions and interfaces to the TO-BE CPRMS
conceptual architecture. A proprietary modeling technique, the allocation
model, was developed to communicate the adaptation requirements to the
customer. This allocation model was later expanded and used for illustrating
the reusability of AMRC-developed software at the unit level and application of
Commercial -off-the-Shelf (COTS) software modules to functional requirements.

One of the findings of this experience was that time and manpower required
to complete the initial CPRMS conceptual architecture was significantly reduced
by applying the generic RAMP baseline. A key lesson learned was that
communication between the customer and systems engineers is essential in

performing the adaptation from a generic design to a site specific
architecture. Needs and requirements analysis has become an ongoing effort
rather than a one-time activity. Feedback from the NADEP has been valuable in

pointing out possible improvements in the allocation modeling and overall
structured analysis approach.

This paper begins with an overview of the NADEP, reviews the baseline RAMP
architecture, and provides an overview of the development of the CPRMS
conceptual architecture. Detailed insights on implementation strategy,
enterprise integration, and shop floor integration, are then discussed. This
sets the stage for explanation of the allocation modeling technique. Finally,

the lessons learned by the RAMP systems engineers during the conceptual
architecture adaptation process are summarized.

2. Overview of the Cherry Point Naval Aviation Depot

The NADEP is located on the Marine Corps Air Station at Cherry Point,

North Carolina. It is one of eastern North Carolina's largest employers, and

has earned the Chief of Naval Material Productivity Excellence Award several

times in the past for its performance. The Cherry Point NADEP is unique in

that it is the only NADEP, of six nationwide, managed by Marines. The mission
of the NADEP is to rework several aircraft, including the F-4 Phantom, the CH-

46 Sea Knight, C-130,A4F, AV-8B Harrier, and OV-10 [FAR86].

In order to support the rework of aircraft, as well as the Navy's Aviation
Supply Office demand for spare parts, the NADEP has an established Numerical
Control (NC) Machine Shop and NC Programming capability. These shops support
both the manufacture of SMPs from raw material, as well as the rework of

aircraft parts.

During reviews of the RTIF SMP program in 1988, NADEP Manufacturing
Engineering management recognized the relevance of the RAMP SMP to the NADEP NC

Machine Shop, and understood the quality and throughput improvements that could
be achieved by introducing the RAMP technology there. The NC Machine Shop was
therefore selected as the pilot segment for the CPRMS implementation.

A second segment selected for the Cherry Point RMS was an Engine

Blade/Vane Facility (EB/VF). The mission of the EB/VF is to rework large

267

quantities of retrograde blades and vanes from overhauled aircraft engines. An
existing Interim Blade/Vane Shop, used for extensive prototype of Blade/Vane
repairs, will be expanded to provide for full production capability in a 65,000
square foot facility.

As illustrated in Figure 2.1, the technology transfer approach derived for
the SMP and EB/VF segments of the CPRMS was to implement each segment in two
phases. The first phase of each segment will introduce RAMP technology by
providing man-machine interfaces for controlling the generation and
distribution of workstation instructions to shop floor artisans, and provide
the capability to collect shop floor data for management.

The second phase of each segment will provide the capability to generate a

complete set of technical data and control the release of orders to the shop.
Automated material handling, in conjunction with the existing government
furnished shop floor production equipment, will be configured to establish an

automated Flexible Manufacturing System capability. Enterprise integration
will provide for the linking of the segment with the site.

RTIF DEVELOPMENT
FACILITY

1

1 WOfScELL
FUTURE

SYSTEMS
1 5^
1 WOWCELL
1

OCRRY POINT OERRY POINT OCRRY POINT

PHASE I

PHASE 2 SHARED CC^#>OKENT>

FUTURE PHASE

PHASE I

PHASE 2

SMP SEGMENT EB/VF SEGMENT FUTURE SEGkCNT

Figure 2.1. Cherry Point RMS technology transfer strategy.

268

As shown in Figure 2.1, a key consideration of the CPRMS architecture
development was to provide for sharing of system hardware/software components
during the second phase implementation.

3. Leverage of the RAMP Architecture

3.1 Retention of the RAMP Architecture baseline

During the process of allocating the generic RAMP architecture to produce
the top-level CPRMS architecture, it was determined that the baseline of RAMP
top-level system functional components would be retained. As described in

[LIT90], the CPRMS definition of top-level system functions was baselined upon

the generic RAMP concept of four functional Top Level Components (TLCs) - 1)

Production & Inventory Control (P&IC), 2) Manufacturing, 3) Manufacturing
Engineering (ME), and 4) Quality, integrated through three additional TLCs-

5) Control via RAMP Order Manager (ROM), 6) Information Management System
(IMS), and 7) Communications.

In addition, it was determined that the baseline of enterprise functions,
critical to supporting the RAMP system at an established site, would also be

retained. The CPRMS definition of enterprise support functions was baselined
upon the generic RAMP concept of interfaces between the CPRMS and a Site Order
Receipt Activity, Quality Assurance (QA), Maintenance, Accounting, CPRMS
Management, Material Management, Packing & Shipping, Receiving Inspection, Item

Make or Buy Activity, Cognizant Engineering, and a Product Definition Exchange
Specification (PDES) Quality Assurance and Generation Activity.

Another aspect of the RAMP architecture that was kept intact was the five

(5) level Control architecture - enterprise, system, cell, workstation, and
equipment.

The physical hardware/software configuration, as reflected in the physical
implementation model, was largely adopted as a baseline for the CPRMS
architecture. Since the generic RAMP architecture is highly modular, COTS
substitution was a feasible option. However, a fundamental justification for
maintaining the RAMP configuration of hardware platforms and COTS software
packages for the CPRMS was to avoid potential time delays and cost impacts
associated with technology assessment and interface software development.

This retention of the baseline of RAMP system capabilities was important,
because any addition of system functions to the baseline would have made the
adaptation process more difficult. For example, if the customer had requested
that Accounting be added to the baseline of system functions, rather than
remaining as an enterprise function, the CPRMS conceptual architecture
development would have taken longer to complete.

3.2 AS- IS IDEFO Modeling

The benefits of applying the existing RAMP architecture began with the
first CPRMS task, the site survey. The baseline of enterprise functions was
used as a basis for scheduling the NADEP enterprise support function
interviews.

The next CPRMS task was documenting the site survey and AS- IS NADEP

269

infrastructure. Since the AS-IS modeling was unique to the NADEP, the RAMP

architecture was not applied to this task. Of the modeling approaches

available for documenting the AS-IS functions, the customer stated a preference

for the IDEFO function modeling methodology.

This modeling effort encompassed definition of interfaces between

enterprise functions, as well as adapting interfaces between the enterprise

functions and the CPRMS segments. This extension of the modeling boundaries,

to include in-depth analysis of the site support functions, was performed to

provide a clear understanding of the site needs.

Figure 3.2.1 shows the AS-IS IDEFO AO diagram for the SMP segment. The

complete functional flow was modeled from Order Induction (order receipt), to

Production Control, and then to the NC Programming and NC Machining shops,

through completion of an order. The Order Induction process and Support

USED AT: AUTHOR: AMRC
PROJECT: CHERRY POINT SMALL MECHANICAL

PARTS (SMP)

NOTES: 123456789 10

DATE: & 10/89

REV: 2.0

X WORKING READER DATE

DRAFT

RECOMMENDED

PUBLICATION

CONTEXT:

ORDER/ESTIMATE
REQUESTS

II <^ H
12 MATERIAL

13
D 1AWINGS,

PERFORM
ORDER

INDUCTION
AI

~I

w:s,
MULTICA 'P.

NIMMS. NIFtilS-

N C PRQGRAMKfNG.
qOMPLETE

220.

520.

610.-

711.

513

OTHER SftoP
OPERATIC N
COMPLET
WIP PART

)

WORK ORDER FOLDER
^ WORK ORDER FOLDER

PERFORM
PRODUCTION
CONTROL

A2

WCS

510

CONSUMAB .E MATRL &
SPECIAL TC OLS/FIXTURES

01 - FINISHED PApTS

04 -WASTE
05 - BILLING. VOUCHER

FOR DISBURSEMENT

DRAWING REQUESTS

MATERIAL REQUISITIONS

COMPLETED ESTIMATE

(

MOVE
TICKET CV^

PERFORM
NO

PROGRAM-
MING

A3

J

FINISHED PARTS,
JOB COMPLETION CARD

. —WORK ORDER FOLQER.
WIP PARTS

WORK ORDER FOLC ER.

.^WIP PARTS, NC TAP ;S

IN-PROCESS NC TAPE

REQUEST FOR
-IN-PROCESS
NCTAPE

NC MACHINE SHOP
OPERATION COMPLETE.
WIP PARTS

STtlRES MATERIAL ISSUE,

"RI GUESTED CONSUMABLE MAT|^q,
RE QUESTED TOOLS/RXTURES

:herry
'OINT

SYSTEMS

INFO. FOR
MAKF PARTR

MAKE
PARTS (NO

MACH.
SHOP)^

Ml

INFO. FROM
MAKE PARTS

933

MAKE
PARTS
(OTHER
SHOP^

Y
PERSONNEL,
MFG. EQUIPMENT,
FACILITIES

SPECIAL
TOOL/FIXTURE REbUEST

EXCESS MATERIA

.

RETURNED TOOLS
& FIXTURES

PERFORM
SUPPORT

H FUNCTION

>03
>02
>06

A6

M2
520.711 .643.51 3.

400.352C.650.200

3WCS. NIMMS,
NIFMS

NODE: SMPAS-IS/AO TITLE- PRODUCE SMALL MECHANICAL PARTS (SMPS) NUMBER:

Figure 3.2.1. AS-IS IDEFO AO model for the SMP segment.

270

functions were modeled in detail in order to understand the key relationships

between the NADEP Production Planning & Estimating, Accounting, and Material

Management functions. A key aspect of the AS- IS IDEFO diagrams was the use of

controls to model the established NADEP business objectives and procedures, and

the use of mechanisms to model the computer systems (e.g., WCS) and the

responsible department codes (e.g, 220, 520) responsible for manually,

interactively, or automatically performing functions.

Since the focus of phase 1 of the SMP segment was on the NC Programming

and NC Machine Shop, in-depth modeling of these activities was performed.

Figure 3.2.2 shows an example of the controls and mechanisms necessary for the

SMP "Make Parts" decomposition. Since the ultimate goal of SMP phase 1 is to

improve machine utilization by reducing setup and NC program prove-out time,

IDEFO functional flows were developed to illustrate the existing information

flow problems.

USED AT. AUTHOR: AMRC
PRQIECT: CHERRY POINTSMALL MECHANICAL

PARTS (SMP)

NOTES: 123436789 10

DATE: 6/l(V89

REV: ZO
X WORKING READER DATE

DRAFT

RECOMMENDED
PUBLICATION

l^gNTCXT:

INFO. FOR
MAKE PARTS
13

PM SCHEDULE,
OPERATINQ SCHEDULE
ADJUSTMENTS,
DAILY LABOR
EXCEPTION REPORT

MGMT. DECISIONS, EXPEDITES. OLDEST BY
SCHO. START DATE. ARTISAN AVAILABIUTY

WORK ORDER FOLDER
NC TAPES, WIP PARTS

IN-PROCESS NCTA'E

STORES MATI RIAL

ISSUE, REQUE STED
TOOLS/FIXTUI lES,

CONSUMABLE MATERIAL

REQUESTED
CONSUMABLE
MATERIAL

ADDITIONAL NC
MACHINE SHOP'
OPERATIONS,
WIP PARTS

DISCREPANCY WORK ORDER,
QUALITY REPORTS
TEI, ENGR. CHANQE NOTICE

SUPERVISE
NC MACHINE

SHOP

A41

(I

CURRE
SHOP
REPORTS

Jnt

SCHEDULED
WORK ORDER,
,NCTAPE. WIP PARTS,
ARTISAN AVAILABLE

SETUP PAFTT

ONNC
MACHINE

A42

LABOR CORRECTION,
TOOUFIXTURE LIST,

STORES MATRL ISSUE REQUEST

1

INFO. FROM
MAKE PARTS— A » oe

CONSUMABLE MATERIAL REQUEST

\

SETUP PROBLEM

SETUP
COMPLETE

MANUFAC.
& INSPECT

PART
A43

T

SUPERVISOR

1348 FORMS.
PRODUCTION
CONTROLLER

()

ARTISAN

QUALITY SERVK:E REQUEST,
REQUEST FOR ENQR. INSTR.

MAINT. OUTAGE REQUESTS
L

EXCESS MATERIAL
RETURNED TOOLS
& FIXTURES

OPERATION
COMPLETE

PERSONNEL.
MFG. EQUIPMENT

M2 FACILITIES

-^04

REQUEST FOR
IN-PROCESS

TAPE

^oi

EQUIP. &
OPERATOR
TIME DATA

NC MACHINE SHOP
OPERATION
COMPLETE,
WIP PARTS

NODE: SMPAS-IS/A4 nTLE: MAKE PARTS (NC MACHINE SHOP) -933 MUMBER:

Figure 3.2.2. AS- IS IDEFO A4 model for the SMP segment.

271

The basis of the EB/VF AS-IS IDEFO modeling was the existing Interim Shop.

As shown in Figure 3.2.3, the functions and the relationships between functions

for performing the repair process are somewhat different than those shown in

Figure 3.2.1. Specifically, the procedure of requisitioning blades/vanes to be

repaired (retrograde material), and then determining the technical process of

repair is exactly opposite the SMP procedure of determining a technical plan,

and then requisitioning material.

The AS-IS IDEFO modeling for EB/VF focused on repair methods development
capability and the repair process. The latter consists of screening the blades

and vanes, defining the repair process, performing repair operations, and

performing post-repair inspection. Modeling of the repair process was

important, since the impact on control and dispatching of repair orders through

the EB/VF needed to be evaluated against the RAMP architecture to note any

variances.

USED AT: AUTHOR: AMRC
PROJECT: CHERRY POINT EBVF

NOTES: 123436789 10

DATE:Mn/t9
REV: 1.0

X WORUNO READER DATE

DRAFT

REOJMMENDED

PUBUCAHON

CONTEXT:

ASO ENGINE B/V DEMAND
CI

CP.
" PRODUCTION

CONTFCL

COMPLETED
FORM 1340

RETROGRADE B/V(

COATED BN»

JONs
(X» ORDER f)

REPAIRED B/Vt

ANDWIPB^S

CP.
SHIPPING

&
RECEIVING

A2

ENGINEERING SERVICE REQl ESTS

REPAIRABLE RI TROGI

X)B COMPLETION NOTICE
(FCARD)

NIF FUNDING A

OFF-SITE
CFA
GUIDANCE ASO STOCK SYSTEM DATA

RETROGRADE B/V REQUESTS

-#'01

(TO END USER)

»jQ m>BNt FIXTURE

j TASK SHEETS

" 1 I

cp;
i /

:=='- > B«3WEER / '\
_

* -INQ / 'l 1
'

->>04

P-940 REWORK PLANS
RB>AIR DOCUMENTS. MORS)

DCNi.LE8t.

f[AD\EB/Vl

FIXTURE SKETCHES
ANOHANDWRITE

TOOLS AND FIXTURES

CP. MANU-
FACTURING
MACHINE
SHOP ^

VB40ED»V(
(FOR HARD FACE COATING)

SUPPORT REQUESTS

SUB CONTRACT P 0.8

SUPPORT SERVTCES

OTHER CP.

'M SUPPORT
FUNCTIONS

A6

ENGINEERING SUPPORTSERVICES

ORDER FOR WORK SERVICE

NODE: IBVS/AO TITLE: OPERATE AND COffTROL AS-IS INTERIM BLADE AND VANE SHOP NUMBER: 2

Figure 3.2.3. AS-IS IDEFO AO model for the EB/VF segment.

272

3.3 Adaptation of the RAMP Architecture to develop the TO-BE models

The generic RAMP architecture has the fundamental purpose of modeling the

TO-BE system functions and enterprise functions and interfaces. The RAMP
architecture is an aggregate of several perspectives of the RAMP system,

including an IDEFO functional model, a Yourdon-Demarco data flow model, a

simulation model, a process control flow model, and physical models of the shop

floor and hardware/software configuration. The RAMP architecture was developed
over time by transforming each perspective of the reference model into other
perspectives, starting with the IDEFO functional model and finishing with the

physical hardware/software configuration.

In developing the conceptual TO-BE CPRMS architecture, AMRC systems
engineers were able to avoid much of this time-consuming transformation
process, by applying the latest versions of the RAMP models. For each CPRMS
adaptation issue, it was possible to reflect the solution in all of the RAMP
modeling perspectives in a parallel mode. This reduced the initial conceptual
CPRMS architecture development time and manpower significantly.

Following the completion of the AS-IS modeling, TO-BE IDEFO functional
models were created. The RAMP Architecture IDEFO functional models were not
applied, since they had already been outdated by transformation into the
Yourdon-Demarco data flow model and process control flow diagrams. However,

creation of the CPRMS IDEFO models was made considerably easier by knowledge of
the inputs, outputs, controls, and mechanisms present in the RAMP Architecture.
Figure 3.3.1 shows the AO level model for the SMP segment, which reflects the
RAMP baseline functions:

Functional TLCs P&IC, Manufacturing, ME, and Quality are
shown as Al through A4,

Control over the processing of messages through the
functional components is provided by the ROM TLC,
The mechanisms for the transmission of messages and data
between functional components is provided by the IMS and
Communications TLCs; the physical hardware/software,
personnel, and equipment mechanisms are also shown.

In developing the CPRMS architecture, one of the features found lacking in

the IDEFO modeling methodology by the systems engineers was the ability to

easily follow the end-to-end sequencing of processes and branching necessary
to process customer orders. This problem can be seen in Figure 3.3.1, by the
numerous flows of the diagram. Therefore, the process control flow diagrams
developed in the RAMP architecture were adapted to document the end-to-end
perspective of the system segments. Process control flow diagrams were
developed for both segments.

Adaptation of the RAMP architecture Yourdon-Demarco data flow models was
also considered for use in the CPRMS. It was determined that these data flow
models would not be useful because they represented a top level design with
generic functions and data stores, whereas the RTIF SMP system was already
under construction with application specific COTS packages and databases. To
make these models useful, it would have been necessary to create an as-built
Yourdon-Demarco to reflect the COTS modules used.

273

Figure 3.3.1. TO-BE IDEFO A-0 model for the SNP segment.

274

In the end, only the top level Yourdon-Demarco data flow model was used in

the adaptation, because of its illustration of interfaces between the RAMP

functional components and the site functions. Top level Yourdan-Demarco
diagrams were developed for both phases of the SMP segment, and for phase 2 of

the EB/VF segment.

Perhaps the most effective modeling method used for documenting the

implementation of the system and communicating the system requirements was the
physical hardware/software configuration model. This model provides a basis

for understanding the control architecture, the logical flow of information
through the system, as well as understanding the bill of assembly of modules
that comprise the system. The effectiveness of the physical model was
demonstrated by the overwhelming demand for copies of the model by AMRC
designers. Physical hardware/software configuration models were developed for

both phases of the SMP segment, and for phase 2 of the EB/VF segment.

The following section provides more technical detail on the factors
influencing the adaptation for each phase of each segment. Examples of the
CPRMS top level Yourdon-Demarco models and physical hardware/software
configuration models are provided.

4. Site specific factors

As discussed in section 2, a multi -phase implementation strategy was
desired by the NADEP for the CPRMS to accomodate cost, schedule, and military
contruction transition plans. This bottom-up, phased strategy was also found
to make the introduction of technology more acceptable to the workforce, and to

reduce the implementation risk. Within each implementation phase, enterprise
integration and shop floor integration issues were considered.

4.1 SMP phase 1 implementation strategy

The first phase of the SMP, scheduled for completion in August, 1990, will

integrate the NADEP NC Programming and NC Machine Shop areas. As illustrated
in the AS-IS physical model of Figure 4.1.1, the existing hardware/software
configuration in these areas includes:

an enterprise level communications network and personal
computer (PC) workstations used by the site support
functions,
an existing Computer Aided Design/Computer Aided
Manufacturing (CAD/CAM) system, and

12 existing machine tools.

The TO-BE physical model of Figure 4.1.2 illustrates the integration that
will take place through replacement of the CAD/CAM system, addition of a file
server and database management software for configuration management of NC

programs, addition of PC workstation controllers for communicating with the
machine tools, and establishment of additional network capability to link the
servers with each other, the workstation controllers, and site PCs. This TO-BE
physical model was adapted directly from the generic RAMP architecture model.
The file server function, which also provides system level control, was moved
from the RAMP system level to the CPRMS cell level for the phase 1

implementation.

275

ENTERPRISE

NC PnOORAWINO
suPCRviscn
(EXIST INS)

HACHItC
SHOP SUPERVISOR
(EXISTItC)

CAD/CAM

Figure 4.1.1. AS- IS NADEP NC Machine Shop, NC Programming, and enterprise
functions.

Figure 4.1.2. TO-BE SMP phase 1 physical hardware/software model.

276

Since the integration of existing site specific machine tools was not

addressed by the RAMP architecture, SMP phase 1 presented a challenge to

provide the appropriate integration technology. Ultimately, Behind-the-Tape-
Reader (BTR) technology was selected to meet the requirements.

The goal of SMP phase 1 is to produce a packet of workstation instructions
(NC Data, artisan text instructions, and tool lists) using the CAD/CAM system,

and provide a man-machine interface to maintain configuration of these
instructions in the IMS. A man-machine interface was also designed for NC

programmers and artisans to request the distribution of these workstation
instructions electronically to any of 12 workstation controllers used for
download of NC data to the existing machine tool controllers.

Other requirements of SMP phase 1 are to collect machine status update
data from the workstation controllers, and establish an engineering service
communications mechanism between the shop floor artisans, NC Machine Shop
supervisor, and NC programmers. The capability for NC Programming and Machine
Shop supervisory personnel to formulate Structured Query Language (SQL) queries
to access the relational database system of the IMS was also incorporated in

the architecture.

In addition to the TO-BE physical model of Figure 4.1.2, a one-page
process control flow model of SMP phase 1 was developed to effectively show the
flow of information described above.

4.2 EB/VF phase 1 implementation strategy

The first phase of the EB/VF, scheduled for completion in March, 1991,

will integrate the existing Interim Shop. The existing government furnished
hardware/software configuration will include:

the enterprise level communications network and PCs for the
EB/VF management and support areas, and
over ICQ production equipment items, including an Automated
Guided Vehicle system (AGVS) and Automated Storage and
Retrieval System (AS/RS).

The first phase of the EB/VF will include functional requirements and a

configuration very similar to the SMP phase 1. An additional feature provided
will be the capability to send material handling requests to the production
controller, for interactive entry of AGV controller commands.

The phase 1 systems will operate on a stand-alone basis, and will not be

integrated with one another until phase 2.

4.3 SMP phase 2 implementation strategy

The second phase of the SMP, scheduled for completion in November, 1991,
will overlay the phase 1 implementation to complete the CPRMS SMP segment. A
key design decision was to retain the man-machine interfaces developed in SMP
phase 1 as an alternate means of performing essential processes such as NC

programming and workstation instruction requests.

In this phase, part technical data will be generated using the RAMP PDES
Generation System (RPGS) technology, in accordance with the generic RAMP

277

architecture. PDES part technical data will be used to automatically create
the shop routing, and will be semi-automatically converted to the CAD/CAM
system native part geometry, in order to improve the consistency and
throughput of workstation instruction preparation. In addition, however, the
CPRMS architecture will provide for the establishment of part technical data
using existing NC programs, if desired.

Per the RAMP Architecture, P&IC capabilities will be provided to enter,
track, schedule, and control the flow of customer orders and materials through
the NC Programming area and NC Machine Shop in a semi -automated manner. The
ability to reserve and allocate the finite capacity of the shop floor will be
provided, and control over the release of RAMP work orders will be introduced.

Implementation of P&IC for the phase 2 SMP will be impacted by the
physical location of the production controller outside of the NC Machine Shop.
The production controller has an existing workstation on the enterprise
network, so the CPRMS architecture will accomodate the ability to access RAMP
functions from this workstation. This is reflected in the physical
hardware/software implementation model shown in Figure 4.3.1.

Implementation of P&IC will also be impacted by the AS- IS enterprise
functionality. Currently, the Planning & Estimating (P&E) branch generates
inter-shop routings for parts that travel through all of the NADEP shops,
including heat treating and plating, to complete an SMP. It was determined
that it would be best for P&E to continue to use their existing group
technology system for generating the complete inter-shop work order, and that
the generation of the inter-shop work order would also generate a CPRMS SMP
order.

Another feature unique to the CPRMS will be the capability to respond to

requests for estimates (probes). Generation of estimates for potential RAMP
order candidates is a requirement not in the RAMP baseline.

The generic RAMP architecture provides for inventory control capabilities
to request and track the receipt of direct and consumable materials, tools, and

fixtures. The greatest impact on inventory control for the CPRMS SMP will be

the physical mechanisms provided to receive materials from supply storerooms,
work- in-process parts from other NADEP shops, and tools and fixtures from NADEP
support departments. The data flow required for these interfaces is

illustrated in the top level Yourdon-Demarco diagram shown in Figure 4.3.2.

An additional physical model was developed to clarify the physical interfaces.

The capability to perform shop floor resource scheduling, and to

automatically control the flow of RAMP work orders on the shop floor between

workstations will be introduced in phase 2. The CPRMS SMP will be a manned,

flexible manufacturing cell configuration, with transportation provided by

artisans, and fixture/unfixture performed at the workstation, rather than at a

remote area. This will impact the concept of automated transport capability
inherent in the RAMP architecture. However, addition of a Coordinate Measuring
Machine (CMM), and upgrade of the existing preset toolroom area, will improve

the capability to make quality parts in a flexible manner.

Figure 4.3.2 illustrates other modifications that were made to the generic
RAMP model to accomodate site specific needs. The interface to Quality was de-

278

Figure 4.3.1 SMP Phase 2 Physical Model.

279

Figure 4.3.2. SMP phase 2 Yourdon-Demarco model.

280

emphasized, when the decision was made that parts would be reworked if easily
resolved problems occured, but parts would be scrapped rather than analyzed
through a Material Review Board (MRB) process, if the rework is complex.

It was also determined to simplify the interfaces to Maintenance to take

advantage of the existing NADEP computer systems and procedures already in

place, and accepting a degree of manual and semi -automated interfaces. This

option was selected rather than pursuing a costly alternative of automating
interfaces for which there was limited programming support. It was determined
that the current method of phoning a central Call Desk for reporting machine
outages to Maintenance would be a more prudent alternative than developing an

automated interface from the CPRMS to the NADEP computer system which performs
the dispatching of Maintenance personnel.

4.4 EB/VF phase 2 implementation strategy

The second phase of the EB/VF, scheduled for completion in February, 1992,

will overlay the phase 1 implementation, and integrate with the SMP phase 2

implementation through shared hardware/software components.

The EB/VF implementation will not use PDES files to generate technical
data. Instead, the system will provide for the establishment of part technical
data repair routings, to be called out based on a repair category. Additional
TO-BE IDEFO and process control flow modeling was performed to document the

requirements for the unique technical data generation capability of the EB/VF.

Integration with enterprise functions will be very similar to the SMP

phase 2. The EB/VF implementation will also use the P&E department for

generation of CPRMS orders. Determination of the methodology for accounting of

order costs was a significant effort, because of the proprietary nature of the

NADEP cost accounting policies. The EB/VF phase 2 segment will be more of a

stand-alone facility than the SMP phase 2, and thus will need the full RAMP-

like interface with QA and Packing & Shipping departments. Special interfaces
will be needed to requisition retrograde blades and vanes.

A key feature of the implementation strategy will be to use the shared
architectural elements developed in SMP phase 2. The P&IC, Manufacturing
Engineering, ROM, IMS, and Communications TLCs will be shared with the SMP, as

reflected in the physical hardware/software implementation model shown in

Figure 4.4.1. A dedicated Manufacturing Cell Controller will be provided to

ensure the reliability of shop floor control.

5. Development of the allocation model

All of the RAMP program software development plans and documents follow
the intent of the MIL-STD-2167A methodology. One of the conventions of this

methodology is to define and decompose a Computer System Configuration Item

(e.g., the CPRMS) in terms of its TLCs, Lower Level Components (LLCs), and

units. The seven (7) top level components of the CPRMS are those listed in

section 3.1. As Figure 4.3.2 indicates, the numbering system embedded in the

RAMP architecture Yourdon-Demarco models provided a structure for identifying
the TLCs, LLCs, and units. This structure proved to be essential for

allocating the RAMP architecture to the CPRMS.

281

Figure 4.4.1 EB/VF Phase 2 Physical Model.

282

Following the completion of the needs analysis amd modeling effort, it was

possible to determine the allocation of the generic RMS TLCs and LLCs to the

CPRMS SMP and EB/VF phases. A subset of the allocation is shown in Table 5.1.

Allocations were designated as full(F), partial (P), variant(V), or not

applicable (N/A). A full allocation indicates that all the capability of the

generic RMS functionality will be provided. A partial allocation indicates

that a subset of the generic RMS functionality will be applied to the CPRMS

segment. A variant allocation was used to designate additional functionality
needed which was not present in the generic RMS baseline, and which required
COTS procurement and/or AMRC-developed software to satisfy. A not applicable
allocation indicates that the functionality was not needed.

The allocation for the SMP phase 1 will be used as an example to show how

the technique works. The baseline functions that were allocated for use in SMP

phase 1 included Manufacturing, ME, Control (ROM), IMS, and Communications, as

indicated in Table 5.1. The Control and Communications components of the

generic RMS were allocated virtually intact. The Control functions were not

changed; only the tables which provide task sequencing were a partial
implementation of the generic set of components. Along with the full

implementation of the relational Database Management System (DBMS), these
functions provided the basis for establishing a core of the generic RMS, which
would be fully configured in the SMP Phase 2 segment.

A glance at the SMP phase 1 allocation indicates partial and variant
implementations of the Manufacturing, Manufacturing Engineering, and

Information Management components. The partial allocations were due to the

limited phase 1 implementation. Additional functionality, as indicated by the

variant codes, were due to the development of man-machine interface
capability, where none existed in the RAMP architecture for the NC programmers

and shop floor artisans.

6. Sunmary of lessons learned

By applying the RAMP architecture to the CPRMS architecture development,

an initial conceptual CPRMS architecture was developed in just six (6) months.

The conceptual architecture included the AS- IS IDEFO models, TO-BE IDEFO

models, top level Yourdon-Demarco models, process control flow models, and

physical hardware/software configuration models.

By comparison, approximately two years were required to transform the

basic functional requirements and technology assessment into a physical

hardware/software configuration model for the initial conceptual RAMP

architecture.

The primary factor that made this improvement possible was the acceptance
by the NADEP of the baseline generic RAMP architecture.

6.1 Lessons learned from SMP phase 1 Implementation

Since the June, 1989 timeframe, the primary focus of the CPRMS development
has been the implementation of the SMP phase 1. SMP phase 1 has gone through

the additional steps of top level design, detailed design, and unit coding, and

thus provides a basis for evaluating the effectiveness of the conceptual

architecture. It was found that the one-page process control flow diagram,

283

Table 5.1. Allocation of RAMP TLCs and LLCs to the CPRMS.
LEGEND:

F-FULL ALLOCATION OF RANP/RTIF, P-PARTIAL ALLOCATION,
V-VARIAMT ALLOCATION. H/A-NOT APPLICABLE

SMP SEGMENT
SEGMENT

PHASE
TLC/LLC

1.0 Production and Inventory Control

1.1 Capacity Requirements Planning (CRP)
1.2 Production Control
1 .3 Order Entry
1.4 Material Inventory Management

N/A

F

P

V

V

E B / V F

i 2

N/A

V

F

V

V

2.0 Manufacturing

2.1 Schedule Manufacturing Cell

2.2 Manage Maintenance
2.3 Coordinate/Monitor Mfg Cell

2.4 Manage Indirect Inventory
2.5 Workstation Control
2.5.1 Application Control
2.5.2 Man-Machine Interface
2.5.3 Equipment Control
2.6 Transportation Control

3.0 Manufacturing Engineering

N/A

N/A

P.V

N/A

P.V
F

P.V

P.V

N/A

N/A

N/A

P.V
N/A

P.V

F

P.V
P.V

P.V

V

F

F

F

F

F

V

V

F

3.1 Create Process Plan

3.2 Evaluate Problem Cause
3.2.1 Application Control
3.2.2 Man-Machine Interface
3.3 Generate PDES

P.V

P.V

F

P.V

N/A

P, V

P.V

F

P.V

N/A

P

F

F

V

N/A

4.0 Quality

4.1 Generate Quality Reports
4.2 Coord. Disp'tion of Quarantined Part
4.3 Assemble Part Pedigree
4.4 Generate Part Quality Record
4.5 Monitor Resource Certification

N/A N/A

5.0 Control

5. 1

5.2

Control
Control

Func t i ons

Tables

6.0 Information Management

6.1 File and Table Management
6.1.1 Application Control
6.1.2 Man -Machine Interface
6.2 DBMS

7.0 Communications
7.1 RAMPCOM (Developed)
7.2 RAMPCOM (COTS)
7.3 Command/Status Services

.V . V

284

top-level Yourdon-Demarco data flow diagram, and physical model were sufficient
in guiding the top level design effort. Each functional block of the process
control flow diagram was decomposed in greater detail, culminating in

identification of software units. The allocation model was later expanded and
used for illustrating the reusability of AMRC-developed software at the unit
level and application of Commercial -off-the-Shelf (COTS) software modules to
functional requirements. This resulted in determination that 104 units of code
from the generic RAMP Manufacturing System configuration were reusable, and

that 42 units of code had to be developed to satisfy the variant functions.

Because of the variations in implementing the man-machine interfaces and
interfaces to existing NADEP systems, on-going time and manpower savings from
applying the generic RAMP architecture have not been as significant. For
example, detailed design of the CAD/CAM system and shop floor machine tool

upgrades to provide the appropriate system integration were more difficult
than first thought.

The lessons learned in SMP phase 1 are expected to result in significant
manpower and time savings for EB/VF phase 1.

6.2 Lessons learned during phase 2 preliminary design

Phase 2 of the SMP and EB/VF are both in the preliminary design stage.
Since the June, 1989 timeframe, the effort on the phase 2 conceptual
architecture has been minimal. However, a few conceptual architecture
modifications were made to reflect additional Information gained from the site.

For example, the need for the production controller to access the CPRMS
SMP segment from an existing site workstation was determined during this
period. In evaluating the impact of this function, the AMRC system engineers
were able to analyze the effect on the functional model, data flows, process
flows, and physical hardware/software configuration. It was possible to
perform the analysis of all modeling perspectives in a parallel mode, rather
than developing different modeling perspectives sequentially. This continued
to provide time and manpower savings.

One of the lessons learned, therefore, is that needs and requirements
analysis becomes an ongoing effort rather than a one-time activity. Feedback
from the NADEP has been valuable in pointing out possible improvements in the
conceptual architecture.

Another lesson that was reinforced during the conceptual architecture
development is that several modeling approaches, as opposed to a single
modeling approach, is a preferred method of describing an Architecture. No
modeling method available provides a total perspective of a system.

In terms of the modeling effort, AS- IS IDEFO models have stood the test of
time in documenting the existing site operations. One lesson learned during
this task was to develop a standard method for conducting site survey
interviews.

Further documentation of the TO-BE conceptual architecture is under study.
At the June, 1989 timeframe, the NADEP was satisfied with the level of
conceptual architectural modeling that had been performed. Later, as the NADEP

285

became more proficient in understanding the RAMP architecture and capabilities,
additional detail on the allocation process was desired. As the NADEP
retrospectively examined the conceptual architecture, the aggregate of the
models used - IDEFO, data flow, process control flow, physical, and allocation
- was found to be insufficient in communicating the allocation from the generic
RAMP architecture to the CPRMS conceptual architecture. The AMRC systems
engineers are continuing to explore alternate structured analysis techniques
that will succinctly illustrate the threads from the conceptual CPRMS
architecture phase 2 requirements to the top level design, detailed design, and
ultimately to unit coding.

6.3 Future architecture development efforts

As mentioned in the previous section, a key lesson learned from this
adaptation exercise was to expect continuous challenges from the end-user site
to keep the conceptual architecture updated and be able to efficiently
demonstrate the effects of modifications throughout the entire system design.

The AMRC systems engineers have identified some of the most difficult
aspects of the implementation effort, which have not yet been totally resolved
in the conceptual architecture. These will require additional time and

manpower to address. Foremost among these unresolved issues will be to address
the cultural barriers to integration, particularly with regard to the CPRMS
staff job descriptions and the NADEP accounting practices.

The testing phase of the RTIF system was recently completed, and resulted
in the recommendation of several improvements to the system. As the RTIF
architecture is adapted to reflect these improvements, the CPRMS architecture
will be updated, as well.

7. References

[FAR86]
Fargher, John S. W. Jr., "Using the Modular Approach for Development

of Computer Integrated Manufacturing Systems," International
Industrial Engineering Conference Proceedings . 1986.

[LIT90]
Litt, Eric, "The Development of a CIM Architecture for the RAMP

Program," CIMCON ^90 Proceedings . 1990.

286

AN APPROACH TO DEVELOP AND MAINTAIN DATA QUALITY

NAJOR KNUTE E. NANKINS, U.S. ARHY.

Abstract: The Watervllet Arsenal (WVA), Watervllet, New York Is currently
Installing a Shop Floor Control (SFC) system In Its factory. This system
consists of two industry standard scheduling software packages, ASK MANMAN
(MRP) and FACTOR (Finite Scheduling). In addition, a customized Tool & Gage
Inventory and Accounting System is in development to complete the
architecture of the overall SFC system within a custom system shell. A major
effort in this project has been the correction and verification of multiple
independent arsenal resident databases utilized for existing systems. The
integration of these databases into an integrated system such as SFC has
resulted in a much greater accuracy requirement in order to make SFC work.
This paper presents the approach used by WVA to establish identifiable
parameters for data, establish quantifiable measures to ensure data
"accuracy", and methodologies to verify data. Finally, this paper reviews
the impact of this work on the overall SFC project.

1. Introduction.

The Watervliet Arsenal (WVA), Watervliet, New York is a component of the
United States Army Armament, Munitions, and Chemical Command. The Arsenal's
mission is the engineering, procurement, fabrication, assembly, and product
assurance of all thick wall cannon for the U.S. Department of Defense. As
part of its long range automation plans, WVA has purchased and is in the
process of implementing and integrating a Shop Floor Control System (SFCS)
into current arsenal information systems. This system consists of two
industry standard software packages, ASK MANMAN (MRP) and FACTOR (Finite
Scheduling). In addition, a customized Tool & Gage Inventory and Accounting
System is in development to complete the architecture of the overall SFCS
within a custom shell. The SFCS will meet the arsenal's objectives to enhance
management control of the activity on the shop floor, provide 100 percent
accountability of tooling, and produce daily manufacturing schedules through
the use of Material Requirements Planning (MRP) and Finite Capacity Forward
Scheduling.

The implementation of the SFCS is managed by a staff of eleven
personnel. Most members were assigned from future using organizations. This
philosophy is used to ensure user requirements are tied to the SFCS as it

evolves. The implementation strategy for the system is divided in two
phases. The arsenal divides its production areas into three branches. Minor
Components Branch manufactures small components, resulting in a high volume,
high product mix environment. The rest of the production areas are divided
into Major and Tubes Branches. These areas deal in much larger components
resulting in a lower component mix and less overall component quantities.
Although the strategy has deviated somewhat, the primary focus and long term
development work for the SFCS and its associated databases has been in the
Minor Components Branch. Once the system has proved out in this Branch, the
system will be expanded to encompass the entire arsenal. Currently,
personnel in Minor Components Branch are being trained and prepared to test
the system. Due to the volume of Information required to operate the system
for the arsenal, the data describing Majors and Tubes Branches' components
continues to receive extensive review.

2S7

One of the greatest challenges in the implementation of the SFC core
system is to interface, integrate, or replace at least 11 existing databases
(Figure 1).

BILL OF MATERIAL
FILE

MASTER ROUTING

FILE

SFCS

TOOLING MASTER
FILE

SPECIAL TOOLING

FILE
RECALL FILE

PART MASTER
FILE

RfW MATERIAL
FILE

WORK CELL FILE

CUSTOMER ORDER
FILE

WORK CENTER FILE

EMPLOYEE/SUPERVISOR

FILE

Figure 1. SFCS Database Relationship.

The accuracy and consistency between these databases must be extremely high

for the effective operation of SFCS as an integrated database. In order for

the scheduling and resource functionality of SFCS to work correctly, any data
field describing a component, the required materials, tools, and process to

manufacture it, and the schedule and quantity requirements dictating its

production have to be consistent throughout all the databases. Oliver Wight,

a major author and integrator of MRP systems, was quoted as saying that the
most critical databases are the Bill of Materials (BOM) which identify the
components making up an end item, Routings, and Inventory Records. He went
on to say that inventory records should be 95% accurate, the BOM should be 98

to 99% accurate, and the routings should be 95 to 98% accurate [WIGHT 84].
Prior to the SFCS, each of the WVA databases identified by Wight has

been an independent database utilized by unique organizations for their own

requirements. Indeed, it could be argued that the data met the data accuracy
requirements for the environment they were used in. For example, the Customer
Order File describes the orders from the customers and is a tool for
Production Control personnel to coordinate customer requirements with shop

capacity and progress. Currently, information required by other organizations

288

is exchanged by using a written document or through phone conversations.
Another example, which will be the primary focus of this paper's discussion
involves the Master Routing File (MRF). The MRP is an automated record of

the component routings (divided by each operation step) used to describe the
manufacturing process to produce a part (Table 1). As demonstrated in Table

1, the MRF is strictly a identifier of the tools, machines, costing
information, and process times to manufacture a component. The complete
narrative process plan is maintained in the Computer Aided Process Planning
(CAPP) system. A computer program transfers the MRF specific information to

the MRF (IBM resident) from CAPP (DEC resident) each evening by an electronic
batch process. In the current environment, production planners are assigned
specific parts to monitor and are required to maintain the accurate process
plans and MRF unique information required to manufacture these items.

Table 1. Sample Master Routing File.

ROUTING OPERATIONS

TASK: VIEW DWG: 15647813
OPER DESC: SHEAR
PROC HR: 0000 1ST PC/PATL

MISS/SUPP:
COST AREA: 1074
N/C CODE:
TIME STUDIED: T
IF NEC % FACTOR: .00

BENCH CODE:
WV-1: 0
WV-5: 0

ALT/IF NEC OPER:

WV-2: 0
WV-6: 0

BASIC:
BASIC:
BASIC:
BASIC:

MOD: 00 OPER# 0010 RTG DATE: 02/25/90
PLN: OMR WK CTR: 22 WK CELL: 02 LOT/COMP: C

HR: 0025 IN PROC INSP HR: 0000 FINL INSP HR:00
ACTIVE/INACTIVE
MACHINE GROUP:
UNIT STD HOURS:
SET UP HOURS:
TEAM OPER NO:

LABOR CATEGORY:
WV-3: 0 WV-4:
WV-7 0 WV-8:

A
0

0.255
12

01

0
0

0
0

0

0

PERCENT
PERCENT
PERCENT
PERCENT

0

0

0

0

ALT AUTH QTY:
IF NEC AUTH QTY:
EXT ALLOW QTY:
MOVE TO:

ALT EXPIRE DATE:
IF NEC EXP DATE:
EXT ALLOW EXPD:
QUEUE TIME: 0

MOVE QTY: 0 ORIG STD HOURS:
ACTIVITY DATE: 03/03/90 EXTRA ALLOW HRS:

CHG OVER SETUP HR:

CHANGE OVER %:

RTG REVISION:
TEARDOWN TIME HRS:

0.000
0.000

TOOL-INFO-SFC-UPDATE

DRAWING NUMBER: 15647813 MOD: 00
TOOL-ID GAGE # TOOL DWG # T#
01 00000 00000000 15647813 T004
DESC: GAGE, LENGTH (366.6mm)
02.0000 00000000 15647813 T003
DESC: GAGE, LENGTH (1015. OMM)

000
040

000

OPERATION NUMBER: 0010
FED STOCK # WASTC KIT QTYPE

000 01

REQTY: 0.000 CRITICL:
000 01

REQTY: 0.000 CRITICL:

289

If there is a mistake or immediate change identified involving the
manufacturing process, it may be resolved by a phone call without timely
update to CAPP, the MRF, or a hard copy routing on the shop floor. In

reality, the most accurate routing is the hard copy in the production
planner's desk. Since the telephone is eliminated as a primary planning tool

In the SFC scheduling environment, the routing must be accurately reflected
within the MRF. The coordination described Is Indicative of many of the
established databases at WVA. In the SFC environment, these systems are no
longer manually interfaced, but are integrated into a single system database.

As can be seen, highly accurate databases easily integrated into a

single system was not our starting environment. The remainder of this paper
will discuss how WVA has reacted to meet the quality requirements needed for
an effective Shop Floor Control system.

2. Data Analysis.

The focus of the discussion will center on the Master Routing File (MRF)

database. As was previously described, the MRF is extremely complex.
Initially, it included information such as drawing number, parts description,
steps required to create a part, the time to machine a part, set up hours,

the machines to be utilized, in which area the part was to be manufactured,
etc. In addition to this information, the implementation of the SFCS
required many additional fields of information to be added such as

tooling/gaging identification, estimated process times, Quality Control
inspection times, work cell/ work centers information, consumption rates,

etc. With the exception of the tooling/gaging information, all other
additional data had to be developed and manually inputted into the MRF
database. Because the entire routing was also kept on file on a CPT word
processor, the tooling/gaging information was transferred from this file to

the newly created fields in the MRF.
The database, as it initially existed, was estimated to be 90% occurate

for the information it maintained. It was not until SFC required the same
data fields in the multiple databases that the accuracy problems began.
Approximately 70% of the tooling data transferred to the MRF had to be
redefined and standardized. This was attempted through discussions,
monitoring end-users creation of data, and the development of a
data-dictionary for the respective databases utilized by Shop Floor Control.

To ensure data quality, two approaches were utilized. First, the
accuracy of the data was reviewed to compare the information within the
MRF routing to the actual operations on the shop floor. This quality was
verified by personnel conducting walk-throughs on the floor to validate if

what was reflected on the routing was actually done by the machinist on the
factory floor. Although the most complete processing document available to

shop personnel, it tended to be inaccurate and incomplete with processes
being done differently from what was described on the hard copy routing.

This included the utilization of different machines, time standards changing
but not reflected on the routing, and tooling being inaccurate or incomplete.
Additionally, there were some instances of entire operations being deleted or

added to the process, but not yet reflected on the routing. Note however,
what was being done on the shop floor was in most instances the actual
process to be utilized as discussed with the planner of record and as

generally described in the MRF. However, tooling and gaging information
was very inconsistent and eventually became one of our main focal points for
data review.

The second approach utilized by WVA to develop consistent information

290

was to concentrate on the quality of data as it applies to data field
formats. Again, the same fields in multiple databases were defined in

different ways as individuals used personal preferences when developing data.

For example, consistent tooling information is essential to SFC for resource
checking. The descriptions in the MRP must be the same as those in the Tool

& Gage system so tooling requirements and availability can be checked. If

the tooling is not described consistently, numerous artificial shortfalls
could be identified because the tools were not numbered identically between
the two systems. A tool drawing number and "T" number combination uniquely
identify a unique tool for a specific operation. Only common tooling has

generic numbers which could apply to multiple operations. Some planners
would identify the same tool within an operation by a different function code
(the function code being a brief/consolidated description of the item - one
planner's "washer" with a function code 227 may have been another planner's
"spacer" with a function code of 200) because of the different function codes
assigned, the item was given a different "T" number which identified the item
as being two different tools. Also, in the MRF the same tool was identified
two or more times with the only difference being the drawing size identified
at the end of the "T" number. The drawing size meant nothing to the planner
of record or the machinist on the floor other than to alert him/her that a

drawing actually existed. However, within Supply Division, the data entry
clerk was not technically qualified to make this determination. Therefore,

the same tool was manually input into the supply inventories two or more
times with different on hand inventory quantities for each item. I.E.

12528311 TOOIA versus 12528311 TOOIB. Another data problem was the numerous
occurrences when the planner of record assigned a "T" number designation to a

tool when in reality the tool was a standard off-the-shelf purchased item.

This was done so he/she could control the on-hand quantities for his/her
particular job. The outcome was unnecessary duplicate data maintenance and
inaccurate on-hand balances. Finally, one of the most time consuming
corrections to be made was actual data input. In one system, a tool was
identified as 12528311 T2 and in another it was identified as 12528311 T02 or
T002 or T002A. Obviously, as this information was to be utilized in

integration with the rest of the SFCS, this practice had to be discontinued.
This meant developing consistent data definitions and formats across
individual lines formats across individual lines within the organizations.
The development of a lines within the organizations. The development of a

data dictionary became the baseline for all changes and modifications to any
database within the SFCS. Through meetings and reviews with arsenal computer
programmers and associated system end-users, approximately 11 databases were
defined and documented within a one week period.

Once the databases and their associated data fields were documented for
format and consistency, the next effort was to verify the format quality of

the arsenal data. All reviews have been and are limited to active operations
for work currently scheduled in the arsenal. An example of this process was
the requirement to identify work cells describing machines capable of

accomplishing a certain machine process. This is critical in assigning work
to the correct machines utilizing the Shop Floor Control scheduling
functionality (Table 2). During the first manual review of over 12,000 active
operations, the MRF routing operations were found to only have about 10% of
the work cell/ work centers properly identified. The results of this review
were sent to the end-user for correction. This manual review continued
within the office, not only for work cells, but for approximately twenty
other data fields. This effort required continuous extensive reviews
utilizing at least two staff members full-time.

291

Table 2. Work Cell/ Work Centers/ Machine Relationship

COST AREA: 1050

MINOR COMPONENTS

WORK CENTER: 12

SHAFERS

WORK CELL:

WORK STATION:

01

P&W VERT
MECH_W/
DIVIDING
HEAD

WV11295
25-2-M-O

02

P&W VERT
MECH

03

WV02885
25-2-M-O

WV02826
25-2-M-l

WV11879
25-2-M-l

WV03474
25-2-G-6

Due to the need to continue the reviews, the next challenge was to

continue this analysis while minimizing the manual review time. This led to

the development of programs which allow continuous routine checks for
consistency of data. First, for the end-user, data has been developed
indicating the overall correct data and the amount of data that is in the
database. This is also utilized to discuss data quality with management as

numerous data quality parameters can be described in a synopsis format (Table
3). Most important was the development of a data exception report listing the
lines of data which are incorrect (Table 4). As can be seen, the end-user
has a consolidated list of work centers/cells which have not been identified.
This document then provides an immediate feedback to the end-user to identify
and correct specific data fields.

Table 3. Data Quality Management Synopsis.

OAK CEU/VORK CENTERS MOT ENTERED

WEEK ENDING TOT OPNS OlECKED TOT EXCEPTIONS X COMPLETE

27 Oa 89 2464 2178 12

03 NOV 89 2469 2178 12

la NOV 89 2474 I9SB 21

17 NOV 89 2475 I95B 21

ei DEC 89 2493 1956 22

08 DEC 89 2499 1956 22

15 DEC 89 2508 1955 22

22 & 29 DEC 89 NOT RUN DUE TO NOLIOAT

05 JAN 90 2515 1928 23

KEEK EWING TOT OPNS CHECKED TOT EXCEPTIONS X COMPLETE

12 JAN 90 2528 1952 23

19 JAN 99 2571 1995 22

26 JAN. 219 FEB 90 NOT RUN DUE TO URF ERROR

16 FEB 90 2794 2210 21

23 FEB 90 2819 2238 21

02 MAR 90 2633 US I <9

09 MAR 90 2886 1029 64

292

Table 4. Data Quality Exception Report.

trCftftOfti 19:41 ACTIVE MASTER ftOUTXNQ OPERATIONS REQUXRINQ IDENTIPICATION COST AREA • 16Bft

-CTR WK-CELL DRAWINQ NUMBER MOO OPER DESCRIPTION wvt COST AREA
00 00 WTV-C33IS3 00 0020 MILL 1050
00 00 WTV-C33IS3 00 OOSO QRIND 1050
00 00 WTV-C34l0e 00 0030 UTHE 1050
00 00 WTV-C34IOe 00 0040 MILL 1050
00 00 M110NM34S74 00 oots QRIND TO ALIQN 1050
00 99 M118NM34900 00 Old BENCH 1050
00 00 M119NM35002 00 0044 MILL 1050
00 00 mi0NM3S002 00 0048 MILL 1050
00 00 M119NM35002 00 0041 STRAIQHTEN 1050
00 00 M119NM35014 00 0004 GRIND 1050
00 00 M119NM3S03I Al 0010 MILL 1050
00 00 M119NM3S03I Al 0020 MILL 1050
00 00 H119NM3503t Al 0030 MILL/NC 1050
00 00 M119NM3S03t Al 0040 MILL/NO 1050
00 00 M119NM3503t Al 0010 GRIND 1050
00 00 M119NM3S03t Al 0090 DRILL 1050
00 00 M119NM3503I Al 0100 MILL/NC 1050
00 00 M119NH3503I Al 0110 MILL 1050
00 00 M119NM3503t Al 0120 MILL/NC 1050
00 00 M119NM3S03I Al 0130 GRIND 1050
00 00 M119NM3S03t Al 0140 GRIND 1050
00 00 M119NM3S03I Al 0150 MILL/NC iOSO

STATUS CODE

These programs are proving to be the key to providing continuous data quality
feed-back to the end-users and management alike. The programs and reports
have reduced the overall review cycle time to less than one hour a week by
one person on the SFC staff. The only required task is to annotate the
quality percentages in the management overview document and send the packet
to the respective end-user capable of making the corrections.

3. Discussion of Results.

What has been described is the efforts of the arsenal over the last 17

months. Currently, the accuracy of many data elements has improved. Audits
on the floor show minor discrepancies of some common tools, minor time
changes, and little deviation of appropriate machine requirements. This is a

significant improvement over the earlier audits. As was discussed, the
initial audits reflected major discrepancies such as incorrect operations,
machines, and tooling.

3.1. Hi nor Components Branch Data.

The following figures describe numerous areas that are being monitored
and how the accuracy has improved in the MRF routings for Minor Components
Branch (Figures 2a-2c). The legend on the left side of these charts quantify
the total number of work cell/ work centers, tooling, and inspection times
reviewed for accuracy. The right legend describes the percentage of data
fields which are correctly formatted. As Minors was the initial
area for implementation, the data correction and the development of
monitoring programs were created and changed concurrently over the initial
phases of the program. The start point of this data in the figures was well
into the correction process. As such, the corrections and accuracy show
minor changes from the start to end of the time line. It can be seen in the
latter dates, that some of the data started to degrade. This was due to the
extensive activation of old routings which had not been corrected earlier.
It is important to note that these trends were quickly and routinely detected
using the exception reports. As such, the tools were in place to continue
the corrections and make the required changes.

293

Thouunds % Compiat*

WEEK ENDING 27 OCT 89 (1ST WK)

% Complat* BH Work Complatt I—J Work Romalnlno

WK8 t.a.lS.U 4 M NO REPORT

Figure 2a. Minor Component Branch Work Cell/ Work Centers.

ThouMnd* % Complot*
, 1-120

WEEK ENDING 27 OCT 89 (1ST WK)

% Complota IB Work Complat* Work Remaining

WKS 8.9.19.14 4 16 NO REPORT

Figure 2b. Minor Component Branch Tooling.

WEEK ENDING 27 OCT 89 (1ST WK)

—*— % Compltta Hi ln«p/Pree Ce«pl«t« I 1 TImaa Raquind

WKS a.9.19.14 4 16 NO REPORT

Figure 2c. Minor Component Branch Inspection Times.

294

3.2. All Other Operation Areas.

The comparison of the other production areas compared to Minor
Components Branch enforces the importance of developing a system to monitor
data quality. As previously mentioned » most of the data in the other arsenal
areas was not worked on until most of the minor components were complete.
The exception was in the tool/gage and inspection data. This was due to the
amount of data that needed to be updated or created. However, rather than
the 10 - 17 months required for the correction and updating of the processes
describing the manufacturing of minor components, it was possible to make the
corrections in weeks. This is most obvious in the work cell/ work centers
update (Figure 3a) demonstrating an increase from 20% to 65% of the total
data corrected and completed in two weeks. As can be seen, the tooling
identification and inspection times have not made the same degree of
improvements (Figures 3b-3c). With the same emphasis used to correct the

work cell/ work centers data, these areas have the same systems in place to
allow rapid improvement.

Thousands % Complet*

-100

1 2 3 4 8 S 7 10 n 12 18 17 18 18

WEEK ENDING 27 OCT 89 (1ST WK)

% Complata Hi Work Complata I I Work Romalnlng

WK8 8.0.13.U & 16 NO REPORT

Figure 3a. Work Cell/ Work Centers in All Other Areas.

Thousands % Compiata

1 2 3 4 6 6 7 10 11 12 18 17 16 10

WEEK ENDING 27 OCT 89 (1ST WK)

% Complata WM Work Complata l__l Work Ramalnlng

WKS 8.0.13.14 4 16 NO REPORT

Figure 3b. Tooling in All Other Areas.

295

Thousanda % Complata
100

1 234667 10 1112161718 18

WEEK ENDING 27 OCT 89 (1ST WK)

I Inip/Pree Comptalt I I Timu R«quli*d

WK8 a.e.lS.U 4 M NO REPORT

Figure 3c. Inspection Times In All Other Areas.

3.4 Ongoing Challenges.

Other areas continue to be difficult to correct. Tool serial numbers
and their match over multiple databases is extremely hard to rectify. This

is due to more "owners and creators" owning different aspects of the data,

combined with the great numbers of tooling involved. For example, Planning,
Supply, and Product Assurance all describe tooling or gages. Each has a

different "slice" of the pie and may describe the same Item with a slight
variance. Compounding the complexity of the problem, the arsenal maintains
a tooling inventory of over 51,500 line Items. These lines equate to
maintaining accountability of over 600,000 tools and gages In the shops and
warehouses. Methodologies, similar to what have been described, are being
utilized to correct these deficiencies.

The key is to continue the emphasis in developing and maintaining "good"
data. This Includes letting all personnel know it Is a management concern
through the use of organizational and Individual "performance" standards and
discussions. Additionally, the continued education and assistance in

establishing parameters to evaluate data is key.
All arsenal procedures are currently under review to ensure data entry

procedures and parameters are described consistently. Additionally, the
procedures are accounting for the new computer systems and their influence on
the function within the arsenal organizations.

Finally, emphasis Is being placed In reviewing the many multiple
databases to determine whether many could be combined and others eliminated.
Machine data is a classic example and demonstrated by the following diagram
(Figure 4).

As can be seen, there are multiple possible data entry points using
either the SFCS, CAPP, or the Maintenance Management system. During the
initial phases of the development of the SFCS, while establishing a data

dictionary, initial plans had been made to determine the hierarchy of data
entry and flow. Current reviews are being done to confirm the "entry" point

for new data. Once verified, programming will be finalized to ensure data is

transferred electronically to the other databases. This technique has already
been used to develop data entry points for the Customer Order File, the Bill

of Materials, and the MRF.

296

*
8,t,l,1.1iaiJ3.14.i!

(mmn

niMUf

cur

1. 2. 4>

M CM

1. 2. 4»

Figure 4. Machine

1 IMCcll

2 IM tell StiCTirtiM

3 Sak cMtrwtti ritf

4 IMitettw

9 1 or suits / tm

< • or Ormtin tan / tm

7 NKkiM Im / / B

• Liter iMf/lv/K

9 kmtm Ntvt Ii» / B

11 ka latt nai

U iUaUit Ukv latt / lH>

a tUidaH RKkiM lit* /

u StMiavi n»4Mn fattw

14

15

StaaM lariaklt tata faattp

PrifHri bte ki fati

U ri«vM*4 Stt-v liti / ta»

a fnmti NmUw latt / Iot

u FiipiHi ria4 i0in httir

IS Pnfwi lariaUt Ivin IMw

21 naaM4 Intt B. tniti U latt

21 PlMM^ tatfit m. Mt4 It latt

Information Data Flow.

The primary disadvantage of establishing a single data entry point has been a

one day delay in the batch transfer of some information to the other
databases. However, this is a minor compromise in order to ensure all

redundant databases have the same information.

4. Conclusion.

This process of correcting data and improving data quality has been
on-going at WVA for over a year and half. The attention to detail and the
emphasis on data quality, since the development of the data quality reports,
have increased dramatically. This has also resulted in a great deal of
improvement in our present systems as evidenced by the data improvement
described in this paper. Additionally, every organization has been forced to

review its present procedures and the procedures to be used in the future to

conduct business. The end result of using the steps the arsenal has taken to

297

improve data quality is that the majority of the implementation staff has
been able to focus on the SFC technical issues rather than being totally
absorbed by the dilemma of poor data quality.

Finally, these techniques are important to create in the beginning of

the project to promote routine continuous data quality and consistency. For
any organization transitioning to an integrated system, this methodology
should prove helpful. By doing it as soon as possible, it allows the project
team to focus on the new system, rather than devoting large amounts of time

to reviewing existing data. Most important, it greatly improves the chances
of successfully developing and implementing a working system.

298

REFERENCE

Wight, Oliver. Manufacturing Resource Planning; MRP II . The Book Press,

Brattleboro, Vermont, 1984.

299

Oohn E. Ettlie
University of Michigan

ORGANIZING FOR INTEGRATED MANUFACTURING

Manufacturing is in transition. New technologies and new managerial styles are storming

assumptions thought scared ten years ago. This paper is a summary of the findings of a four-year

study of over three dozen cases of plant modernization. All but one of these plants were in the

U.S. or Canada; and all of these cases represented significant attempts by these discrete part

manufacturing firms to upgrade and integrate flexible automation into workflows. The purpose of

the project was to determine what, if any, implementation strategies were most successful in

making the transition fi:om old to new manufacturing technology in automotive, equipment,

appliance, aerospace, and general manufacturing industries.

We found a consistent pattem in not only the chronic problems that modemizing plants

encounter, but also in the solution approaches these plants and firms have tried. Successful firms

try to match their requisite philosophical shift with the type of technology adopted. The more

radical the technology change, the more radical the new strategies and structures needed to be

successful. When one realizes this, one begins to see the necessity of concentrating on the

administrative innovations as well as the new technologies embodied in these manufacturing

systems. The technology management perspective has much to offer in this vein.

CHRONIC PROBLEMS IN MANUFACTURING MODERNIZATION

Year in and year out, when we visited plants modemizing their facilities with integrated,

flexible manufacturing systems of forming and assembly, the number one problem was always the

same: software and programming. Both the development and maintenance of manufacturing

software became such an issue that in our last visit to these plants in 1987 we included an entire

section of or interview schedule to this problem to attempt to get insights into the nature of these

issues. The results of the analyses were published recently in Ettiie and Gemer (1989).

We found that in these modemizing plants and offices, people reported being most satisfied

with manufacturing software maintenance when they delayed significant development tasks into the

maintenance cycle of the project. That is, these installation sites were typically learning their

300

requirements as they went along. We believe that the 200 odd number of CASE tools now

available to address this problem have not addressed the fundamental issue of factory

modernization: people do not know what their general requirements are because they have not

translated business plans into manufacmring strategies. Tools to help customers learn their

requirements faster so they can effectively use new hardware and software systems in

manufacturing are desperately needed.

ORGANIZATIONAL INTEGRATION

In order to be both more innovative and flexible but still meet orders, manufacturing units

have to take new structural approaches to integrating functions of the firm. Lawrence and Dyer

discuss this issue at length in their book Renewing American Industrv (1983) before it became

fashionable to think about radical shift in managing domestic firms. What we did was to take the

approach that most manufacturing firms are at a distinct disadvantage when they modernize their

facilities to become more flexible and integrated. They buy most of the technology from suppliers,

they simplify most of their products so they can be more easily assembled—but can be copied, and

they often are playing a catch-up game which requires down-sizing and organizational tvumoil in

the resulting structure. How does one capture value from innovating under these circumstances?

We proposed three major hypotheses to capture this process ofnew technology utilization

in manufacturing:

1. Manufacturing Hrms change technology and structures simultaneously in order to be

successful. They become more integrated in their hierarchy, in the design-manufacturing

relationships, with customers and with suppliers. (See Appendix for summary of the measures of

these stmcturing mechanisms).

2. Performance outcomes tend to cluster in two-tiers in manufacturing firms when process

innovation is the focus: a system-level or department level of measurement (e.g., utilization), and

an adopting unit performance level (e.g., return-on investment).

301

3. Integrating mechanisms that flatten or allow power sharing in hierarchies, and structures

that help coordinate design-manufacturing transactions, tend to impact system-or department-level

performance outcomes, while extraorganizational integration with suppliers and customers tends to

impact the second-tier of performance measures for the adopting unit.

These three hypotheses are generally supported by results with some notable additions.

For example, the details of restructuring for design-manufacturing integration can be used to

predict ROI, although our valid data on this measure was limited to 14 cases. That is, knowing

some structures for internal coordination between functions can be used to predict adopting unit

performance on these significant modernization programs.

Other notable and statistically significant results are as follows:

1. Hierarchical integration (e.g., technology agreement with union) tends to result in

greater throughput time reductions after modernization.

2. Design-Manufacturing integration (e.g., rotation of engineers between design and

manufacturing engineering) tends to increase system utilization (2-shift basis).
^

3. Supplier integration (e.g., XTT purchasing) generally promoted significant reductions in

scrap and rework percentages as a percent of total production costs (average = 3% for entire

sample).

4. Customer integration (e.g., JIT delivery) promoted faster changeover times.

A pattem that emerges here which reinforces much of the earlier thinking on manufacturing

management is that the best plants and business units leverage their suppliers to satisfy customers.

What is more, internal integrating mechanisms tend to promote improvement on capacity or work

flow related parameters like throughput, cycle time and utilization, whereas extraorganizational

integrating mechanisms tend to promote quality aridflexibility improvement. These results support

We now have historical data points from three epocs (1969, 1973 and 1987) which strongly

suggests a linear improvement in 2-shift utilization of 1% per year over this approximate 20 year

period, averaging about 72% in the most recent epoc.

302

the emergent general axiom of the late 1980's in manufacturing: you have to be good at many

2
things to survive andprosper in global competition.

WHY ARE SOME MANUFACTURING FIRMS MORE INNOVATIVE?

When one studies the innovation process in manufacturing, there is the tendency to equate

novelty with success. This is not always the case. We are aware of firms that are well known for

their significant new product winners but they have a poor track record for deployment of new

processing technologies. What is more, as one adopts the technology management perspective,

one begins to see the facilies of "wisdom" often advanced in the popular press in the area. For

example, if "flexible" or "reprogrammable" technology is not used in a flexible way or is not

reprogrammed, it is assumed to be a danger signal. Not necessarily so. If technology becomes

obsolete before it can be reprogrammed, or if it pays for itself before it must be replaced, it may

have bee vital to the unit's survival. Some technologies waste materials when used most flexibly.

What is more, new technologies such as net shape may have much greater impact on a Ann's

profitability and survival and flexibility. There are many new and important technologies in

manufacturing in addition to flexibility and integration.

What accounts for a firm's willingness to experiment with both new technology and new

management approaches—regardless of their outcome? We have found there are two consistent

factors that are the well-spring of innovativeness in manufacturing: the general management

experience profile and the manufacturing technology policy of the unit.

General Management Experience Profile

We have followed up the proposals of Hayes and Abemathy (1980) who said our demise

in domestic firms had resulted fi'om domination among CEOs and general managers by the legal

Overall, modernization cases averaged about a 30% improvement in the cost of quality on the

scrap and rework measure over existing plant production.

303

and financial professions. Innovative manufacturing firms, it was thought, resulted from general

managers that came up through the technical and manufacturing ranks.

We tested this notion and found the theory supported with some twists. It does seem to be

true that when the CEO has manufacturing experience, the firm is much more likely to have an

aggressive manufacturing technology policy (see below), as well as adopt new equipment that

incorporates radial technology. However, these same firms are also more likely to emphasize labor

savings from modernization—which may not be the most important outcome of value capture of

this generation of flexible, integrated manufacturing. Lower level managers with manufacturing

experience tend to deemphasize labor savings. Commitment to training for modernization extends

well into the top management suite, much higher than we expected, to the senior V.P. level. When

divisional managers have manufacturing experience, the unit is much more likely to use an

administrative experiment for modemization and is also more likely to achieve higher utilization

with the new hardware and software. Clearly, managerial experience profiles are essential to

understand if one wants to understand of why some manufacturing firms are more innovative.

Manufacturing Technology Policy

Over the past ten years we devoted considerable effort to document and evaluate the causes

and impacts of iimovative technology policies. Starting with our studies of mixed samples of

service and nonservice cases (Ettlie and Bridges, 1982) and then moving on to work on the food

industry and their suppliers (Ettlie, 1983; Ettlie, et al., 1984), and finally, continuing on to this

project on integrated flexible manufacturing deployment (Ettlie, 1988), we have studied more than

300 firms and business units. We have found that the manufacturing technology policy of a firm

to be a good predictor of new product and process deployment as well as a reliable way of

implementing business strategies driven by changing environments.

An aggressive manufacturing technology policy is typified by a reputation in an industry

for being the first to consistently try out new methods, equipment and ideas. It is also typical in

companies that have an ongoing program to recruit the best qualified technical and manufacturing

304

talent available. These firms are strongly committed to technological forecasting and advertise their

new processing technology to their customers. (Although we observed a recent tendency towards

more secrecy).

An aggressive technology policy (in addition to being the result of a CEO with

manufacturing experience, see above) tends to be significantly associated with the following in our

study of plant modernization:

1. These manufacturing units are generally more likely to use some type of administrative

experiment for modernization;

2. These manufacturing plants that are being modernized are more likely to be strategically

focused than their less aggressive counterparts; and

3. These plants are more likely to have more flexible manufacturing systems (in either

assembly or forming) based on the variety of part families they schedule on these new systems (as

opposed to their change-over time) and to a lesser extent in the number of part numbers scheduled.

4. We have found a moderate but consistent trend over three years of data from

modernizing plants for an aggressive manufacturing technology policy to be related to innovative

changes in organizational structure and changes in policies for dealing with customers—precisely

where policies would be expected to impact. We found no relationship in these three-year data

with design-manufacturing integration or supplier integration.

It appears that manufacturing technology policy, and perhaps other measures of innovation strategy

in general, will continue to be an important determinant of innovativeness and other outcomes in

modernization.

305

THE RECaCILIATIOa OF MIS AND MANUFACTURING FOR INTEGRATED MANUFACTURING

BARBARA M. FOSSUM
JOHN E. ETTLIE

Computer integrated manufacturing (CIM) systems are complex. They
require the simultaneoxas support of technical staffs in management informa-
tion systems (MIS) and manufacturing. Just when these functions should be
working together very closely, they are frequently in conflict. Using cases
of manufacturers vrtio have inplemented computer systems for integration and
control of factory operations, or "paperless environments," the authors
examine this relationship of MIS and manufacturing. These cases suggest
propositions for testing in empirical research and actions for breaScing down
chronic barriers between MIS and manufacturing.

1. IntitxJuction to Paper

Moving toward an integrated enterprise, and simultaneously toward a
corputer integrated manufacturing (CIM) system whidi is compatible with this
integrated enterprise, has become a major category of strategic response to
corpetition and to customer needs in many industries. Progress toward CIM is
slow, however, and many reasons are cited. Among these, Fossum [1986] sug-
gests that the complexity of CIM technology is one of several significant
barriers to CIM progress [1]. Related to the ccnplexity of the technology Is
the need for in-house technical expertise. Manufacturing nanagers and execu-
tives who responded to an Industry Week survey ranked lack of in-house
technological expertise as the number one obstacle to CIM progress [SHE,

1989] [2]. The manufacturers involved in the Fossum study [1986] also cited
a strong technical staff as a significant factor to integration progress [3].

Although substantial technical skills often can iDe found in the conputer
aided design (CAD) and computer aided manufactxiring (CAM) application areas
of organizations, the concentration of information systens technology exper-
tise still resides primarily in the MIS function, vAiether this function is
centralized or decentralized. There is a critical need for a strong techni-
cal staff to support iitplenentations of cortplex CIM technology. However, MIS
and manufacturing, functions \diich should he working together very closely,
are in frequent conflict with one another in many organizations. Worse, as
manufacturers make progress toward CIM, the conflict can be expected to
increase, as shown in Figure 1, due to additional transitional conflict that
results from change.

The Mis-Manufacturing relationship varies greatly across organizations.
At one extreme, MIS is perceived to liave a bias toward p>articular mainframe
vendors, often disguised as pursuit of standardization, and a bias towcurd
particular methods of system inplementation. At the other extreme, MIS is

perceived not to care, as they abandon users with computer-aided software
engineering (CASE) tools or they steer away from decisions that concern
microprocessor-based factory equipment. Battlelines often form around the
timely delivery of effective manufacturing software and subsequent mainte-
nance of new systems.

306

IMPLEMENTATION
PROCESS

CHANGES

New People
New Skills

New Attitudes

New Equipment
New Systems
New Procedures
New Structures

SEPARATION
OF

RESPONSIBILITIES

TRANSITIONAL
ORGANIZATIONAL

CONFLICT
Uncertainty

Ambiguity
Role, Status and Power

Conflicts

HIGH LEVELS
OF

CONFLICT

Figure 1. Intraorganizational Conflict [FOS, 1986],

Even vdien an outside supplier is involved, sane function usually has to
take ultimate responsibility for the new technology. Disputes arise over
tMs responsibility. Resolution of conflicts between the functions often end
up in the hands of general managers vAio are not adequately prepared to deal
with the issues. In this paper, we suggest that there is an alternative to
the conflict scenario which is repeated frequently throughout modernizing
manufacturing enterprises. We examine the MIS-Manufacturing relationship in
the context of the experiences of manufacturers who have irtplemented, or are
in the process of implementing, factory management and control systems. With
these systems, the organizations are addressing problems such as limited
control of the process, lack of visibility of work status and location, no
access to yield and cause of defect information, limited flexibility to
respond quickly to change, no traceability of products, large work queues,
excess and stalled inventory, rework, excessive indirect labor, and too much
paper.

Seme of the manufacturers described in this paper developed their own
factory management and control systems. Others acquired packages or "starter
solutions" and modified or enhanced these systems. Because control systems
must be integrated with almost all other information systems, many of vMdi
are maintained by MIS staffs, and with systems of automation in an enter-
prise, the implementation of these control systems provides a good touch
stone for the study and subsequent suggestion of methods of iirprovement of
the MIS-Manufacturing relationship. We draw on these cases, the literature
and our experience in modernizing plants to suggest propositions for eirpiri-

cal testing and actions to help reconcile MIS-Manufacturing differences.

307

2. Factory Managanent and Contxol Systems

As shown in Figure 2, a factory management and control system bridges
the gap between systems in a CIM framework [4]. In one direction, control
systems communicate with manufacturing resource planning (MRP II) systems,
general business systems like accounting and payroll, and engineering systens
like CAD and corrputer aided process planning (CAPP). From these systems a
control system receives such data as bills of resources, process flow, work-
loads, coirputer numerical control (CNC) programs, and operator work instruc-
tions, including part graphics. To these systems, the control systen reports
production status and resource utilization. In another direction, a control
system communicates with devices and human operators on the factory floor
and, in so doing, integrates these islands of execution. To these entities a
control system passes instructions and other types of information. From
these entities, a control system collects data, for exanple, labor data from
a human operator or test measurements from a device. All processing and
communication is in real time or near real time ("real soon") mode of data
processing.

General

Business

Systems

Engineering

Systems

FACTORY
MANAGEMENT
AND CONTROL

1 1 m:

Figure 2. Bridging the Gap.

PLANNING
AND DESIGN

CONTROL

EXECUTION

A factory management and control system is sometimes called a plant
operations system, a plant control system, a factory system, or simply a

"control" system. A primary function of a control system is to direct,

manage and control all resources (p)eople, processes, material, tools, ma-
chines, other equipment, work instructions, etc.) in a factory to ensure that

all the necessary resources are broucfit to bear at the right time and at the

right place to produce a product. Control systems are event driven and are

responsive to contingencies. AltJiouc^ the many functions of a control systen

can be distributed over multiple heterogenous computer systems in a CIM

308

architecture, in each of the case studies the control system is operational
on a single homogenous system in a hierarchical structure.

Inplorientation of a control system is an ongoing process. Products and
processes change. Interfaces to new process and material handling equipment
or new methods of collecting and reporting data are required on a continual
basis. Because a control system automates the infomation flow, from receiv-
ing through shipping in a facility, the control system represents or models
the process as events occur. Therefore, implementation of a control system
requires involvement by those "v^o have intimate knowledge of current methods
of operation and clear vision of intended new methods.

3. Cases Descriptions

3.1. PGAS Inc.

PGAS Inc. [5] is a single plant division of a multi-plant, large [6]

corporation. This is a case in which the MIS-Manufacturing relationship
historically has been, and continues to be, good. MIS traditionally has not
attertpted to control the selection, iitplementation and use of catputers by
PGAS Inc. but has provided technical guidance during these activities. The
manufacturing process at PGAS Inc. is mixed: the beginning of the process
consists of many batch, job shop oriented metal fabrication activites; the
remainder of the process consists of repetitive, unit assembly activities.
Pay systems are both day rate and piece-rate incentive based.

PGAS Inc. acquired a factory management and control system and worked
with the supplier of this system to modify and enhance the solution. A
prototype (modeling) process was used to develop functional specifications
for modification and enhancements to the software. Using PGAS' part types
and process flows, the software supplier developed with PGAS Inc. a model of
the material flow and the associated data flow using the standard or base
software. Simultaneously, the software svipplier trained PGAS Inc. on the use
of the system and in the development of functional specifications for changes
and enhancements to the system. Through an iterative modeling process,
functional specifications were completed and the supplier of the software
used these specifications to develop the modifications and enhancements to
the system. During the process of functional specification development,
corporate MIS individuals were involved to relate information requirements of
the host mainframe based systems.

All general business functions (accounting, payroll, etc.) as well as
some manufacturing planning functions are operational on a centralized main-
frame shared by all divisions and are maintained by a corporate MIS staff.
Engineering and plant operation functions, as well as most manufacturing
planning functions, are decentralized and supported by corrputer systems in

each of the factories. There is bi-directional, electronic communication
between the corporate mainframe and the factory corrputer system in PGAS Inc.

PGAS Inc. relied on the supplier of the factory management and control system
and corporate MIS to create this interface. The factory system also communi-
cates electronically with material storage carousels in the factory. PGAS
Inc. relied on the supplier of the factory management and control system to
create this interface. Future add-on projects include communication between

309

the factory control system and automated test equipment to be acquired by
PGAS Inc.

The factory management and control system is part of an overall, con-
tinuous factory renovation program which focuses on coirpetitive manufactur-
ing. The control system projects, including integration with or interface to
other systems, are led by an individual v*io is responsible for all factory
automation projects which affect material control. These include automation
of the processes or material handling as well as automation of information
flow. This individual is a "user project manager" and reports to the vice
president of operations for the division. (CAD/CAM projects also report to
this executive.) Communication between the user project manager and the
industrial engineering staff responsible for the selection of process
equipment is very good-

Corporate MIS were involved in the selection of the control systen only
to the extent of ensuring that the control system could communicate with the
corporate business caiputer systems. Corporate MIS personnel, not eitployees

of the division, were assigned formally to the project and reported to the
user project manager. In addition to corporate MIS personnel, the plant had
its own analysts and programmers assigned to the project. Prior dissatis-
faction with the level of knowledge of corporate MIS staff on manufacturing
operations, and the high level of turnover of corporate MIS staff, led the
division to build its own, albeit small, cotputer support staff. Although
PGAS Inc. hired corrputer prograimers, they also trained manufacturing opera-
tions personnel in coiputer systems analysis. They found this process easier
than training computer personnel in operations. These individuals, the
systems analysts and the computer programmers, continue to maintain the
system with little or no involvenent by corporate MIS. The control system
has been operational for almost three years and the plant is in its fifth
stage of iitplementation with add-on projects.

In summary, the factory management and control system irrplementation at
PGAS Inc. is considered a success: the system is meeting, and in some cases
exceeding, documented objectives related to factors of coirpetitive manufac-
turing. Among many of the objectives met is inventory accuracy whicii current-
ly stands in excess of 99.9 percent. End users at all levels are very happy
with the system. Payback occurred in less than one year. The program is
user-driven with a strong user manager, and continues to involve users at all
levels in ongoing projects associated with the overall system. MIS personnel
were involved directly and provided necessary integration and interface
expertise. J^lication-oriented systems analysts and programmers who under-
stand the manufacturing process maintain the system.

3.2 BAA Inc.

BAA Inc. [5] is a single plant subsidiary of a large corporation and
represents a case in v*iich the MIS-Manufacturing relationship historically
has not been particularly good but currently is iirproving. MIS traditionally
has controlled the selection, irrplementation and use of corrputers by BAA Inc.

MIS personnel consistently have been criticized by manufacturing users for

their lack of understanding of the production process. The MIS function is

located physically sane distance from the factory. MIS personnel had very

310

little visibility in the factory. Almost no attention had been devoted to
meeting specific information reqairements of the production process.

The manufacturing process at BAA Inc. is mixed: the beginning of the
process consists of very large batch and process oriented activities; the
reminder of the process consists of discrete/ repetitive, unit filling and
packaging activities. Although the manufacturing process incorporates a sig-
nificant amount of capital eqaipment, the overall production cycle is labor
intensive. Equipment does not exist for some of the processes; others can be
performed more effectively by people.

BAA Inc. acquired a factory management and control system and is working
with the supplier of this system to modify and enhance the solution. The
factory management and control system is part of an overall OE>erations
iitprovement program focused on cortpetitive factors such as lead time, flexi-
bility and cost. The general business functions (accounting, payroll, etc.)

for BAA Inc. are operational on a mainframe located in the corporate office
where the MIS function is staffed. Engineering and manufacturing planning
functions are supported by a factory computer system located at the plant.
The factory management and control system is operational on yet another (and

different vendor) computer system located at the plant. Bi-directional,
electronic conmunication between each of the three corrputer systems, as well
as between the factory management and control system and factory devices and
eqaipment, is in the inplementation process.

A pilot inplementation is in progress and involves a team of manufactur-
ing users, MIS, and the software supplier. The manufacturing process was
prototyped using the software provided by the software supplier. The sup-
plier worked with the irrplenentation team to model the flow of work and the
flow of information with the existing software. A moderate amount of
required changes were identified and made, and the software was inplemented
in production mode in a major product line of the plant. After using the
software for several weeks, the inplementation team and the software supplier
began developing specifications for modification and enhancement of the base
software system. The process appears to be working well in that the (1) the
pilot was migrated to several areas of the facility vdiere it is in production
use (depended on by workers and supervisors), (2) the users were able to use
and understand the system prior to defining changes and additions, (3) the
supplier had tiine to understand the customer's process and requirenients, and
(4) the requirements specification process, of an overall three-month dura-
tion, is complete. The requirement definition process used by BAA Inc.
supports the finding of Ettlie and Getner [1989] v^iere users prolonged the
software development cycle into maintenance in order to corrpensate for lack
of understanding of requirements. In the case of BAA Inc., however, plant
personnel used the system, prior to addition and changes, to increase under-

standing of reqairements.

For the first six months of the inplementation of the factory management
and control system, two individuals shared the role of inplementation project
manager: a user (the director of engineering, reporting to the plant manager)

and the corporate MIS manager of factory systems (reporting to the corporate •

director of MIS). MIS actually drove the project; the role of the director
of engineering was more one of managing a user liaison. However, the per-
ceived shared responsibility caused numerous interpersonal communication

311

problems and slowed the project considerably. Subsequently, the project
inanagement structure changed such that a new MIS program manager (reporting
to the corporate director of MIS) has overall responsibility for the delivery
of working hardware and software but the director of manufacturing (reporting
to the plant manager) has direct responsibility for inplementation success.
The new program manager resides at the factory most of the time. Beyond the
functional specification process, most interpersonl communication occurs
between the software and hardware suppliers and the MIS program manager
rather than the manufacturing users. MIS personnel do not report directly to
the project manager but rather to a technical manager. The technical manager
has responsibility for supporting more than the factory management and
control system project and as such can not devote full attention to MIS staff
vdio are s\:pporting the project. The reporting structure of the MIS personnel
requires an additional level of interpersonal communication for project
assignments and coordination and continues to cause some problems.

During the functional specification process, corporate MIS individuals
were involved to relate information requirements of the host mainframe-based
systems. For interfaces between the systems and between the factory manage-
ment and control system and devices, corporate MIS is relying on third par-
ties due to lack of the necessary in-house communications expertise. In
general, MIS individuals have limited knowledge of the manufacturing process
and are still low on the learning curve for the new conputer system. Both of
these factors have had an adverse effect on schedule commitments. Manufac-
turing itself has no computer systens analysts or programmers and no plans to
staff such individuals. Althou^ the supplier of the software currently has
maintenance responsibility, plans call for the ongoing maintenance of the
systCTi by the MIS functional area rather than by the manufacturing functional
area. Corporate MIS is considering locating the MIS support staff at the
plant. This positive change is expected to occur.

In summary, the factory management and control system inplementation at
BAA Inc. is expected to be a success in terms of meeting the objectives
established, although these objectives may have been met with less expense
with a different approach to program or project management. Production
eirployees are using and benefiting fran the standard version of the software
system provided by the software supplier. With the exception of the techni-
cal interfaces between hardware and software systems, users at all levels and
in all functions have been involved in all aspects of the inplementation,
particularly in the functional specification and training processes.

3.3 Northrop Corp.

Northrop Corp. [7] implemented a $14 million system called the Inte-
grated Management, Planning and Control for Assembly (IMPCA) system for final
assembly processes of its Navy F/A-18. The IMPCA system uses 135 worksta-
tions in the final assembly area where 1000 employees are involved in the
process. Also connected to the system are users in manufacturing production,

manufacturing engineering, industrial engineering, materials review, liaison

engineering, quality assurance and quality planning. With the exception of

the printing of some engineering changes, the print for which is discarded
immediately after use, the system has eliminated paper — about 400,000
pieces per day.

312

1!

The real problem attacked by the IMPCA. system solution is a function
both of the product itself and the way in which the final assembly process
traditionally has been controlled in the aircraft industry. The long (one

mile) and narrow (20 yarc^ final assembly area creates unique communication
and coordination problems. Additionally, both customer and engineering
changes result in production lot sizes of one, and extremely precise assembly
is required to insure safe flight over the forty-year life of an aircraft.
The IMPCA systm was iirplemented to solve the control problem, to eliminate
the problems associated with the massive amounts of p)aperwork., and to coor-
dinate not only the activities of assemblers but also the activities of the
many other functions involved in the assembly of the aircraft.

The strategy behind the conversion from an old to the new IMPCA system
was that everyone involved in the design and use of the system would be
considered as equals. This strategy meant that all assembly personnel,
qaality assurance groups and others had the same briefing on the new system.

Two years prior to the completion of the system, an attempt was made to
provide all enployees with knowledge of the intended new system. The phil-
osophy presented to the employees was that no one fails and no one gets
fired. Parallel systems were operated for nearly six months to minimize the
risk associated with system downtime. (Lost information costs were estimated
at $150,000 per hour.)

Prior to the successful development of the IMPCA system, Northrop pur-
sued a traditional approach which involved the design of the system by
experts. The approach failed. With the IMPCA project, an approach of
"users are designers" was used. Assembly workers, for exairple, were treated
as project team members. Committees were cotposed of representatives fron
each of the functional areas and the users defined the system requirements.
The lead role of the MIS group was straightforward: find out and apply a
method of team-based transitioning that would work at Northrop. The program
manager was familiar with manufacturing. Project cost growth occurred,
however, because the project takes time and requirements change over time.

The investment in the IMPCA system is part of the Department of Defense
(DCD) Industrial Modernization Incentives Program (IMIP) in which cost sav-
ings resulting from defense programs are shared between the contractor and
the contracting agency. Projected savings totaled $21 million. In May,
1989, after full production use for four months, cost reductions became
obvious. The estimated $21 million in savings over the life of the aircraft
did not include a savings estimated at three times the $21 million amount in
intangible benefits resulting from such factors as error free manufacturing
and no rework or schedule changes. By February, 1990, benefits such as less
scrap and smaller, less costly mistakes, as well as fewer and less dramatic
engineering changes were visible. The amount of savings in intangible
benefits was re-estimated at four times the $21 million figure. The program
appears to have convinced management that very large, integrated projects are
both feasible and desirable. One manager commented that using the IMPCA
system is like having a meeting of 1000 people.

In summary, the IMPCA system implemented at Northrop appears to be
successful in terms of achieving estimated cost savings and many other
difficult to quantify benefits. However, the emergent issues of the MIS-
Manufacturing relationship in this case revolve around learning that the

313

"escpert" approach to system development for manufacturing did not work. In
the case of Northrop, the alternative taken after initial failure was the
team approach, where teams or committees consisted of representatives from
the various functional areas. Apparently when a cross functional group works
well/ it helps to reduce the stress at the MIS-Manufacturing interface.
Stress was further reduced through the operation of parallel systems and
through the elimination of the fear of the eitployees relative to failure and
lay offs.

3.4 Integrated Paper Co.

The Integrated Paper Co. 15] case description has two parts. First is
the experience this paper corpany had with a Greenfield mill and the second
is the experience which was transferred to an existing facility which was
being modernized.

The essential feature of the Greenfield mill project is that it was the
first experiment by the coipany with a three-level information system hier-
archy, as depicted in Figure 3, as cannpared to a two-level information systen
hierarchy consisting of the top and bottom levels shown in Figure 3. Inte-
grated Paper Co. acquired "off-the-shelf" systems for the top and bottom
levels of the hierarchy. The MIS function was assigned responsibility for
the development of the middle level, the integrating level and, thus, played
a significant role in the project — management and initial responsibility
for the success of the project. The resulting approach taken to the develop-
ment of the middle level system was very traditional.

Starting with a blank piece of paper, MIS solicited descriptions of
information requirements from a subset of functional area plant enployees who
"wanted it all," designed very specific screen functions to meet these
requirements, and expected the system to work. Neither a general system
overview nor a functional specification was developed. A new carputer sup-
plier was selected. Little or no time was planned for learning and the
installed computer system lacked sufficient capacity to support the
application software developed. As a result of these problems, the middle
level system in the hierarchy is used only partially.

When Integrated Paper Co. migrated the experience to an existing mill, a
completely different approach was used. First, although corporate MIS
individuals were involved in the project, plant personnel (process engineers)
managed and assumed total responsibility for the project. The process
engineers were trained in conputer analysis and programming. System develop-
ment followed a structured approach in which detailed functional specifica-
tions were defined first, and detailed systems specifications were developed
prior to coding the system. MIS and manufacturing assumed joint ownership of
the system and a plan showing separate as well as joint responsibilities was
developed. Irrplementation of the system with its resulting change in infor-

mation structure precipitated a change in organizational structxire, and jobs

were reallocated. For example, after irrplementation of the systetv it was no
longer clear who had responsibility for batch process raw material shortages.

The Integrated Paper Co. case is interesting from the perspective of
viewing how learning and experience obtained during one development effort

314

BUSINESS COMPUTER

e.g., General Ledger,

Accounts Payable

MILL INFORMATION

e.g. Integr

Try-out,

ation, SPG,
Simulation

PROCESS CONTROL

e.g., DSC & Supervisory

Control

Figure 3. Architecture at Integrated Paper Co.

can be applied to a second effort. The interaction between the centralized
MIS system development personnel and manufacturing was limited to line per-
sonnel almost exclusively during the Greenfield case; in the second mill, all
plant personnel were involved. The irnplications resulting from this case are
that the "correct" type of systems development person is different for new
manufacturing syst«ns and that decent;ralizing tJie "new breed" of development
personnel is a highly likely result. Apparently, structuring changes for new
decentralized systens development positions offers real hope of delivering
systems that satis^, reasonably, user requironents.

3.5 CCAS Inc.

CCAS Inc. [5] is a single plant but large subsidiary of a large corpora-
tion. This case represents another in which the MES-Manufacturing relation-
ship historically has not been good. A corporate and centralized MIS func-
tion, located geographically some distance from all plants, traditionally
controlled the selection, iitplenentation and use of corputers by all plants.

MIS personnel were seen rarely in the plant and were criticized for lack of
understanding of manufacturing and for lack of interest.

Ihe manufacturing process at OCAS Inc. is very high volume and repeti-

315

tive assembly. CXIAS Inc. acquired a factory management and control system
and worked with the supplier of the system to modify and enhance the soft-
ware. As in several of the other cases, the factory management and control
system is p)art of an overall operation irrprovement program focused on corrpe-

titive factors such as lead time, quality and cost. The general business
functions (accounting, payroll, etc.) for the subsidiary are operational on
a mainframe located in the corporate office and are maintained by the corpor-
ate MIS group. Manufacturing planning functions also are supported on the
corporate office mainframe. Bi-directional, electronic communication exists
between the corporate mainframe and the plant-based factory management and
control system.

In an effort to improve the relationship of corporate MIS with the
plants, CCAS Inc. changed the direction of corporate MIS to distribute the
control of manufacturing systems to the plants and to assume more of a
guiding rather than a directing or controlling role in the project. Manufac-
turing personnel selected the system, with corporate MIS guidance. After the
selection process, however, the implementation process became less user
driven and more MIS driven. The plant staffed its own small corputer systems
group, and tMs group, which reported to the financial officer of the plant,
was given responsibility for the project.

A prototype process was used to develop functional specifications for
modification and enhancments to the software. Using the part types and
process flows of CXZAS Inc., the software sijpplier and the irtpleroentation team
developed a model of the material flow and the associated data flow using the
standard or base software. Simultaneously, the software siipplier trained the
implementation team on the use of the system and in the development of
functional requirement specifications. Through an iterative modeling
process, functional requirement specifications were corrpleted. The supplier
of the software used these specifications to develop the modifications and
enhancenents to the system.

The inplementation team consisted primarily of the plant's small cortpu-

ter systems group. Although users were involved throughout the process,
involvement was very limited. Very little opportunity was afforded the users
to understand the capabilities of the system prior to the definition of
desired changes or additions to the functions of the system. Also, many of
these changes and additions were defined by the MIS oriented individuals. As
a result, the functional specification process was not completed on time,
many more changes and enhancements were made than were initially projected,
and ultimately many of the modifications and enhancements made to the system
subsequently were not \ised as users became familiar with the technology. As
a result of the significant additional implementation time exceeding the
scheduled time, not all enhancements or modifications were made. The devel-
opment process was iterative: produce a modification or enhancement, let the
users try it, change it as requested, let the users try it, etc. Thus, even
after installation and production use of the system, many changes to the
previously made changes were requested. The iterative process, which was not

short cut by allowing plant personnel to use the system to increase mder-
standing of requirements, also supports the finding of Ettlie and Getner
[1989] v*iere users prolonged the software development cycle into maintenance

in order to conpensate for lack of understanding of requirements. To worsen

matters, the involvenent of corporate MIS individuals was sporadic and unpre-

316

dictable relative to the definition of the required electronic communication
to the host mainframe systems. This outcome may have resulted from a corpor-
ate MIS function in transition.

Unlike some of the other cases, there is not a concensus relative to the
success or failure of the control system implementation at CCAS Inc. The
system is used and meets some objectives: control and visibility of the
process, lower costs resulting frc«n decreased inventory, faster througlput
and increased quality. However, not all of the expectations of senior mana-
gers were met. Also, some factory floor operators do not like the system,
probably due to the fact that some necessary changes never were irtplenented.

Additionally, not all of the functions of the sysem are being used. Thus,
the overall system will not meet its full potential. An iterative design
methodology was employed and the development process was stopped short of
COTpletion.

3.6PWAS Inc.

PWA5 Inc. [5] is a multiple plant division of a large corporation. This
case presents a situation in which a standoff was created and still exists
between centralized, corporate MIS and the advanced manufacturing technology
group of the division v*iich still is atteitpting to acquire a factory manage-
ment and control system. The advanced manufacturing technology group of
PWAS Inc., which has no internal MIS function specific to the division, is
responsible for the introduction of new technology to the plants of the
division. This case represents another in v^ch the centralized, corporate
MIS function traditionally has controlled the selection, inplementation and
lase of corputers by all plants. As in sane of the other cases, corporate MIS
personnel also are criticized by those in manufacturing functions for their
lack of understanding of the process and the lack of understanding of the
information system requirements of the manufacturing users.

Users in the various manufacturing functions of PWAS Inc. understood
the requirements for integrated resource management and control by an infor-
mation system, particularly as these requirements affect short interval
scheduling. Personnel were adjusting continually to ever changing conditions
based on contingencies as they occurred in the factories. These manufactur-
ing personnel were well aware of the effect of one set of constrained
resources on another. In most cases, due to lack of information system
support, manufacturing personnel were managing the contingencies manually
through a caribination of shrewd native ability, constant vigilance and steel
nerves. A major difficulty relative to an integrating system inplementation
was the inability of the manufacturing personnel to articulate these integra-
tion requirements to the MIS organization due to lack of technical ej^rtise
in the integrating capabilities of ccsiputer technology and information sys-
tens. Because of this difficulty, the default approach for each functional
organization in PWAS Inc. manufacturing tended to be to focus on the informa-
tion system requirments necessary for it to achieve its own objectives.

At the same time, the corporate MIS function continually was being asked
to develop or deliver coirputer systems for multiple functional organizations
within manufacturing, each with a seemingly unique set of requirements. The
corporate MIS personnel understood the integrating capabilities of coiputer

317

technology and information systems/ but they lacked the hands-on manufactur-
ing experience necessary to apply these capabilities to a seemingly diverse
set of manufacturing requirements. As a result/ the MIS group had a very
limited perspective as to what was required to integrate effectively the
management and control of all resources of manufacturing. As a result, MIS
personnel were imable to help manufacturing with the definition of corrplete
systems requirements that included the interrelated elements necessary to
acMeve integration.

Corporate MIS individuals were, however, well aware of the efforts
required to develop, deliver, and maintain any system. They also were con-
cerned constantly about the proliferation of conputer hardware, operating
systems and data base management systems. Perhaps because they understood
these issues much better than the overall requirements of the manufacturing
users, they tended to focus on solutions to their own problems rather than to
those of the manufacturing users. Requests for quotation developed by the
corporate MIS group for PWAS Inc. characteristically were more concerned with
defining hardware platform, operating system and data base management system
restrictions and typically were focused exclusively on the objectives of a
single manufacturing function, due to the inability of MIS to help manufac-
turing articulate cross-functional, interrelated requirements. They were
less concerned with adequately addressing integrated functional requirements
of a system which would meet, adequately, the information requirements of the
manufacturing users.

The advanced manufacturing technology group of PWAS Inc. became
increasingly concerned about the trend within the plants to propagate
"islands of information," resulting frcxn the irtplementation of stand-alone,
non-integrated information and autonation systems. The scope and objectives
of these islands of information tended to be very self-serving and focused on
the short-term requirements of specific functional areas within manufactur-
ing. For exaitple, stand-alone quality data collection systems, labor report-
ing systems, production systems, tool management systems and MRP-driven shop
floor systems were growing in number throughout the plants in the division,
yet the overall information needs were not being met. An integrated system
was deemed necessary over these "point solutions" in the plants for many
reasons, including the following: the availability of accurate, time consis-
tent data to all users simultaneously; less data entry by the workers to
create more meaningful information; support of a cohesive product and process
history; simultaneous and coordinated management of resources; and control of
the process. With respect to the latter, an integrated system was expected
to enable manufacturing personnel to react to contingencies imnediately and
to support flexibility of the process. The advanced manufacturing technology
group knew that, with point solutions, there simply are too much data to
assimilate or interrelate fast enough to react to the changes vdiich occur in
a factory. At best, with point solutions, one can control one or more
processes serially but can not control the interaction of the processes.

To address the situation, the advanced manufactiiring technology group
enhanced its staff with individuals who vinderstood the manufacturing process
but also understood the capabilities of computers. The group created and
distributed a detailed specification as part of a request for quotation
process, went through a formal evaluation of the responses to the request for
quotation, selected a software product, and had an external consultant vali-

318

date the entire evaluation process. Acquisition of the selected system,
however, was thwarted by corporate MIS because the acquisition would result
in the introduction of a new hardware vendor into the division. For over two
years, the manufacturing functions within PWAS Inc. and corporate MIS have
battled over the initiation of the iitplementation of an integrating factory
management and control system. Meanwhile, the manufacturing information
requirements of the plants of PWAS Inc. remain unfulfilled.

4. Discussion and Sumnary

Table 1 presents a number of propositions vAiich are based on the esqper-

iences of the case manufacturers and directed toward the improvonent of the
MIS-Manufacturing relationship.

These propositions have in cannon the application of cross functional
manufacturing users and MIS expertise to the iitplementation process and the
creation of a forum by which both the users and MIS can contribute their
respective expertise to the iirplenentation process. In at least one of the
cases, as members were added to the iitplementation team, differences between
MIS and manufacturing were reconciled more readily. One might ask who and
how many should be involved in the process. The cases suggest that vAien the
necessary perspectives on the entire manufacturing process and the required
capabilities are represented, the functional representation for v^iich will
vary from one organization to another, the team or other forum of
representation is cc«iplete. Particularly irrportant is the application of the
right resources during the development of information system requirements.
Right resources means experienced, knowledgable individuals fran the various
functions of manufactiaring and frcxn MIS. It is suggested that the forum for
joint and simultaneous contributions and the contributions themselves irrprove

the MIS-Manufacturing relationship. It is thought that such a forum fosters
rapid learning and communication of requirements, resulting in effective
implementations

.

Not all of the manufacturers described in this paper have thus far
enjoyed the same degree of success [8] with the iirplementation of a factory
management and control system. The many integrating functions of such a
systen and the experiences presented clearly make a case for the mandatory
factors of user-driven implementations, MIS exp>ertise and manufacturing
knowledge. Other eicperience supports the iitportance of these factors. For
example, users managing their own systems develqprnent "increases signifi-
cantly the chances of systems being installed on time, within budget and
satisfactory to the users [GRI, 1985/86]." Line managers should "take the
lead" and "drive the applications" of information technology [EAR, 1989].
Other ejcperiences [HAM, 1987] suggest that MIS ought not only to understand
the manufacturing process, but show the manufacturing users that they under-
stand and tliat they are applications oriented. Another factor which is pro-
posed as critical to success relative to the cases described is well-defined
information system requirements. All of the experiences suggest that the
process of developing good system requirements is difficult in its own ri^t
and probably iitpossible without the involvement of knowledgable users and
experienced MIS. These experiences support the findings of Ettlie and Getner
[1989] that users (and technology vendors) have a great deal of difficulty
learning requirements in plants. These researchers recommend that require-

319

Table 1. Surrmaiy of MIS-Mamifactioring Case Eb^jerienoes.

CASES LESSONS
LEARNED

SUCCESS/
FAILURE

DERIVED
PROPOSITION

PGAS
Inc.

BAA
Inc.

Northrop

Inc.

Intergrated

Paper
Company

OCAS
Inc.

PWAS
Inc.

Applying knowledge at

the right time, and good
people communication

are key success factors.

Have MIS and

manufacturing users

do what they are best

at doing.

Designer "expert"

does not work

Everyone is a

user.

System requirements

definition cannot be
delegated to MIS,

even decentralized,

"manufacturing" MIS.

(Not applicable)

Success.

Meeting objectives.

Including 99.9 percent

Inventory accuracy.

Less than one-year

payback.

in process.

User satisfaction thus

far.

Less than one-year

payback.

Success.

Savings of over

$20 million.

Aspects of success

and failure.

Something fails when
h is not used.

Aspects of success

and failure.

Meeting some, but

not all. objectives.

System not used to

full potential.

Failure.

MIS-manufacturing

standoff on system

acquisition.

The MIS-Manufacturing

relationship Is improved when
each function can contribute

significantly to the implemen-

tation with the skills each have.

Using a pilot system develop-

ment methodology accelerates

the development of well-

defined requirements and
improves the MIS-

Manufacturing relationships.

Adopting a group requirement

development process

reduces conflict at the MIS-

Manufacturing interface.

MIS (new breed) is decentral-

ized in the best development,

with all manufacturing

personnel as users.

The system development

process is extended when
manufacturing users do not

contribute equally (wHh MIS
and the software supplier)

to the requirements

definition.

The definition of system

requirements in an
integrated environment is a
function which must be

shared by those who
understand computer

technology and those who
understand the many functions

of manufacturing.

320

i

merits learning and development of tools to promote the development of requir-
ement specifications should be the focus of both users and technology vendors
for promoting successful modernization.

Three of the cases provide examples of the use of methods and tools
vfliich fostered the learning of requirements. These three manufacturers used
existing software to prototype the process, and in one of these cases the
manufacturer used the software in production mode, to accelerate the under-
standing of system capabilities prior to the requirement specification pro-
cess. One of these iirplementations is very successful, another is in process
but enjoying the first stages of success, but the third is only partially
successful and the inplementation process was terminated prematurely. The
latter implementation differed from the first two in a very visible way:
manufacturing users and MIS did not work together with the software supplier
to define requirement specifications. This experience suggests that a design
approach not only incorporate requirements learning and development of tools
but also that the learning process and the use of tools be enjoyed by both
MIS and the manufacturing users. This suggestion also is corrpatible with the
findings of Ettlie and Getner [1989] vAio suggest that the problems of manu-
facturing systems are caused by lay designers who are not acquainted with
manufacturing needs but are most responsible for decisions. These
researchers further note that user satisfaction with systems is higher vAien

users share responsibility for the design of the systems, including equal
credit vdiere credit is due and equal blame when problems occur.

The case ejcperiences described in this paper also highlight vdiat other
researchers have found, namely that implementation of manufacturing systems
cannot be approached in the same manner as are many traditional data
processing projects relative to the definition of requirements and the
management of the project. Ronen and Pal ley [1988] suggest, for exairple,
that the application to manufacturing systems of the design tools and metho-
dologies developed for financial applications is one of the reasons for the
generally poor performance of manufacturing systems. Table 2 presents a
summary of the differences identified by Ronen and Pal ley [1988] who note
that the least coirplex manufacturing systems [9] resemble the most complex
financial systems. Others agree that new systems in the areas of CAD and
CAM have little resemablance to the MIS systems of the last twenty years
[VAN, 1988]. A good look at the sharp cortrasts presented in Table 2 leads
to the reconmendation that, to inprove the MIS -Manufacturing relationship,
any new design approach should take advantage of the knowledge of the differ-
ences between the environment of manufacturing and the environment to viiich

the MIS function is accustomed — finance.

The system development process v*iich was used by BAA Inc. involved first
using then modifying and enhancing an existing vendor-supplied system.
Recall that the use of the system prior to the development of requirement
specifications gave users the opportunity to understand the functionality and
integrating capabilities of the system, and gave the software supplier and
MIS participants the opportunity to understand the BAA Inc. manufacturing
process and its requirements. Others [EAR, 1989] suggest steering away fron
past conventional information system development methods in favor of
encouraging prototyping to discover detailed needs. This prototype approach,

and perhaps the pilot, could be the necessary hybrid of the structured design
approach and the iterative design approach to developing systems, neither of

321

which, singly, is said to work well for manufacturing systems [RON, 1988].
The approach certainly is coqpatible with the finding of Ettlie and Getner
[1989] that users tend to prolong the development cycle into maintenance in
order to compensate for lack of understanding of requirements. Perhaps
conpjter-aided software engineering (CASE) tools [10] may becone effective in
manufacturing systems develqpnent were methods incorporated to facilitate the
process of learning and cornunicating requirements in the conplex environmant
of manufacturing systems.

Table 2. A Contrast of Kanufacturing and Financial Systems.

CHARACTERISTICS MANUFACTURING FINANCIAL

Data Many types, with more
needed for automation.

Low volume per data

type.

Highly dynamic.

Greater changeability and
timeliness.

Shorter lifespan.

Few types.

High volume per data

type.

Relatively static.

Less changeability and
timeliness.

Longer lifespan.

Systems
Hardware

Much greater variety of industrial

hardware as input/output.

Much less variety of

industrial hardware as

input/output.

Application

Software
More fluid.

Developed for ill-defined,

rapidly changing requirements.

More static.

Better defined

requirements.

Fewer changes.

Systems
Procedures

Infomrtal. Highly formalized.

People Informal behavior.

(Manager considered less

disciplined by financial

counterpart.)

Heterogenous users.

Formal behavior.

More homogenous
users.

Information More complex, and rapidly

changing.

Less complex.

System
Environment

Systems Influenced greatly

by rapidly changing

environment.

Adaptive/organic systems.

Systems more

mechanistic.

322

NOTES

The lack of manufacturing and CIM knowledge by chief executives, the
application of traditional financial methods to CIM justification, and
the organizational conflict that occurs during irtplementation also are
suggested by Fossum [1986, p. 183] as being among the most significant
barriers to CIM irtplementation.

Manufacturing is defined to span product concept through field main-
tenance and, therefore, includes product and process design engineering
as well as plant operations.

Ranked two and three by the respondents to the Industry Week survey
[Sheridan, 1989, p. 36] are executive ignorance and inadequate planning
or lack of vision.

Factors ranked as iirportant or a significant help to CIM irrplementation
progress are: a formal CIM plan, with an architecture as its iDasis; inte-
gration as a primary criterion for the selection of individual CIM com-
ponents and subsystems; an installation sequence of coitponents and sub-
systems based on priorities; a user-driven CIM effort; a strong techni-
cal staff of individuals v*io understand manufacturing and who understand
the CIM goals; a steering ccmmittee of high-level, functional area execu-
tives; a full-time project manager for individual CIM corrponent or sub-
system implementations; formal or adhoc irrplementaion teams of partici-
pants frm all functional areas of the business unit, and stability of a
core of these team members; user-participation in the formulation of CIM
system specifications and the irtplementation of CIM cotponents and sub-
systems; user participants who have knowledge of and authority and
accountability for their functional area, understand how their work
relates to the CIM goals, understand manufacturing, and have good inter-
personal skills; direct involvement of functional area managers in the
irtplementation process; consideration of human resource requirements; a
substantial education and training investment; a formal plan for train-
ing/retraining personnel.

The concept of irrplementation used in Possum's research and in this paper
is based on Bodenstab's definition [1970, p. 64]:

Irrplementation is the process of taking a technically sound ccxn-

puter system and ma)cing it operate effectively in the real environ-
ment of the business world. It involves getting people to inter^
face or relate with the various facets of the system, to follow
procedures to conform to the data discipline irrposed by the system,

and to act on information generated by the system.

Based on the current status of CIM technology, however, the definition is

extended to include making the catputer system technically sound.

Many cortpanies have reinforced the traditional hierarchical organizations
with devices that facilitate conitiunication and problem-solving for CIM
implementation [Fossum, 1986, pp. 29>305; MSB/NRC, 1984, p.32]. These
devices take the shape of steering committees, project managers, and

323

NOTES/ Continued

iitplementation teams. When the support mechanism for CIM becomes a way
of life in organizations, the need for these coordinating entities, but
not the functions they perform, may disappear.

4. For a description of some of the functions of a factory management and
control system, the reader is directed to the following source:

Bedworth, David D. and James E. Bailey, Integrated Production Con-
trol Systems . New York: John Wiley & Sons, 1987, pp. 26-37, 177-
179.

5. The name of the organization has been disguised to support the anonymity
of the manufacturer. Any similarlity between the names used in this
paper to disguise the manufacturer cases and a real name of an organiza-
tion is purely coincidental.

6. The term "large" as applied to a business unit means that there are 500
or more errployees in the enterprise (corporation, division, subsidiary,
group or establishment).

7. The system initially was described in the article by Jones [1989]. Sut>-

sequent interviews were conducted by one of the authors in May and June,

1989 and in February, 1990.

8. Success is defined in all of the following ways [Fossum, 1986, pp. 314-

315] : formalized objectives are met, the system works according to plan
or in an acceptable manner, and anticipated benefits as well as windfalls
are realized. Similarly, failure is defined in any of the following
ways: formal objectives are not met, the system does not work according
to plan or in an acceptable manner, the system is not used by all who
should use it, and expected as well as unexpected negative outcomes
occur.

9. Ronen and Pal ley [1988, p. 292] divide manufacturing systems into two
types: technology oriented (CAD/CAM and robotics, for exanple) and man-
agement oriented. They further divide management oriented manufacturing
systems into two categories: project management systems such as PERT and
CPM and resource management systems such as MRP II, scheduling and capa-
city planning.

A factory management and control system has elements of both a technology
oriented and management oriented manufacturing system.

10. Ettlie and Getner [1989, p. 129] state that computer-aided software
engineering (CASE) tools "have failed to solve the problem of timely,
effective delivery of manufacturing systems." According to these
authors, the view by CASE technology of the software development process
is much too narrow for manufacturing systems. CASE tools were not
intended to deal with the catplexities posed by requirements generation
for manufacturing systems -- many types of people, various disciplines
and backgrounds, and multiple organizations.

32 4

FEFERENCES

Bedworth/ David D. and James E. Bailey, Integrated Production Control Sys-
tems . New York: John Wiley & Sons, 1987.

Bodenstab, Charles J., "10 Tips for Successful Implementation of Computer
Systems," Financial Executive, Vol. 38, No. 11, November, 1970, pp. 64-70.

Earl, Michael J., Management Strategies for Information Technology. New
York: Prentice Hall, 1989.

Ettlie, John E. and Christopher E. Getner, "Manufacturing Software
Maintenance," Manufacturing Review, Vol. 2, No. 2, June, 1989, pp. 129-133.

Fossum, Barbara M., A Normative Model for CIM Iirplementation . Doctoral
Dissertation, The Department of Management, The Graduate School of Business,
The University of Texas at Austin, August, 1986.

Grindlay, Andrew, "Management of Computer Integrated Manufacturing,"
Business Quarterly (Canada), Winter, 1985/86, pp. 68-71.

Hamilton, Rosemary, "The Long and Winding Road to CIM," Conputerworld, June
29, 1987, p. 8.

Jones, Sam L., "Northrop Unveils Navy Jet From 'Paperless' Assembly,"
Metalworking News, J^ril 3, 1989, pp. 2, 31.

Manufacturing Studies Board of the National Research Council (MSB/NRC).
Corputer Integration of Engineering Design and Production: A National Oppor-
tunity. Washington D.C.: National Acaderry Press, 1984.

Ronen, Boaz and Michael A. Pal ley, "A Topology of Financial Versus
Manufacturing Management Information Systems," Human Systems Management, Vol,
7, No. 4, 1988, pp. 291-298.

Sheridan, John H., "Toward the CIM Solution," Industry Week, October 16,

1989, pp. 35-82.

VanNostrand, R.C., "A User's Perspective on CAD/CAM and MIS Integration,"
CIM Review, Winter, 1988, pp. 38-45.

325

TOWARD A NEW CIM ARCHITECTURE FOR SANDIA LABORATORIES

JAMES R. YODER

ABSTRACT

Sandia National Laboratories has experienced several
generations of design and engineering automation. Each
successive iteration brought improvement to a specific
function. The changes in technology were point optimized,
i.e., the improvements were made to narrow functional areas
and not necessarily to the entire organization. Further,
implementation plans rarely included the transfer of
information from one function to another. Consequently, the
Laboratories began a significant effort to design an overall
architecture under which integration of disparate activities
could take place and which would serve to provide an
information path between all functions . This paper describes
the current version of the architecture and provides a

description of the process that led to the architecture.

1. Introduction and motivation

Sandia National Laboratories, a subsidiary of AT&T, is a multi-program,
multi-discipline Department of Energy laboratory which has responsibility for
the design and development - but not the manufacture - of a broad spectrum of
aerospace products. The products are built in a loosely integrated complex
of factories managed by several aerospace corporations. Therefore, the
Computer Integrated Manufacturing problem is two-fold: 1) computer support of
the design, development, and qualification of hardware and 2) technology
transfer to manufacturing (figure 1). Technology transfer from one
industrial organization to another is an often difficult process which must
transcend not only technical boundaries but inter-corporate cultural and
political boundaries as well.

Figure 1. Computer Integrated Manufacturing at Sandia

At Sandia and elsewhere, the evolution from manual engineering and drafting
technology to the electronic or computer aided world has been rapid.

326

However, all elements of the CIM structure have not evolved at a uniform
pace. CAD technology preceded CAE by several years. Further, although
advanced CAD/CAE workstations are commercially available, the supporting
infrastructure (design databases, computer networks, procedures, etc.) is
typically developed in-house and consequently lags the market-driven segment
of CIM. Design support is, presently, a fragmented and highly specialized
collection of services. Clearly, a new CIM architecture is needed.

Following nearly one year of study, we have completed the basic design of a

new CIM network architecture and we have begun the initial phases of
implementation. We began with an historical perspective and scope, developed
assumptions and requirements, and established our business policies. Having
thus defined the foundation for a new architecture, we then explored new
technology, developed the architecture, and started implementation. This
paper will describe the process of CIM architecture design, depiction, and
implementation planning at Sandia Laboratories

.

2.0 A useful definition of "architecture"

With the thought that a system architecture should be useful and lead to the
development of a system that meets requirements, we first attacked the
problem of deciding what we would mean by the term "architecture". There are
several sources for descriptions of computer and network architectures. But,
for those attempting to define an functional system architecture, especially
one which must fit into an extant structure, we are offered only general
guidance. We will try to utilize that guidance to formulate a concept of a

"CIM Architecture" in the design laboratory context.

First, with respect to the need for an architecture, we note that in the
absence of a theoretical or formal framework, architectural designs have
conventionally been evaluated with respect to both logical correctness and
performance only after they have been implemented as physical systems
[Dasgupta, 84]. Architectural errors tend to be troublesome when they are
hard wired or hard coded into the system. In fact, an architecture is
necessary only because we are dealing with a level of complexity that is

incomprehensible to a human in ordinary circumstances [Doran,79].

We want to store the design in some formal representation but, of course,
storage is not the objective. We really need to be able to communicate the
design to others in a precise, unambiguous way [Hayes, 78]. One should be
able to understand the architecture both from a systems point of view and at

the level of minute detail (n.b. , this does not mean that implementation
details are a part of the architecture - it does mean that the smallest
detail can be evaluated in the context of the system architecture).

A "point of view" is important. Although the total image of what a system
should be is compounded from the views seen by a range of users, there are
cases where the view of one group of users is the dominant concept behind the
systems 's architecture. In these cases, the system is designed as if it were
to be used preeminently for one particular purpose. Other applications may
be recognized but these are accommodated by slight modifications or
extensions rather than by a radical alteration of the architecture [Doran,

79]

.

327

It turns out that there are only two useful viewpoints in the logical
representation of a system architecture: the User View and the System View -

although the System View might be represented both by a Designer's View and
an Implementor ' s View. The level of detail to be included in an architecture
is important in another dimension. One may develop an architecture for use
at different levels of comprehension or, equivalently , develop different
levels of architecture as a function of the need for understanding specific
issues or features [Dasgupta, 84].

USER DESIGNER IMPLEMENTOR

X = Discussed In This Paper
Figure 2. Architectural Layers and Views

Given these thoughts and some general concepts of design [Mei jer , 1983] , we
formulated a matrix structure to depict the architecture. The design depth
is provided by depicting three levels: Functional, Physical, and
Implementation layers. For each layer, we will provide a User, Designer, and
Implementor view. All architectural layers are mutually independent.
Although one layer may use the functions of a lower layer, it is not
important how that function is performed. We will primarily illustrate the
functional layer in this paper since lower layers are neither complete nor
particularly interesting to those not responsible for implementation (figure

2).

3 . 0 Scope

One must decide the elements to include under the umbrella of Computer
Integrated Manufacturing. Clearly, we include processes that lead directly
to the design and manufacturing of a product. What about other supporting
processes: field traceability , test and qualification data, preferred parts
characterization data, graphics libraries, and so on? To support CIM, all
related processes must be considered and, if possible, included in a seamless
architecture (figure 3). It is convenient at this point to incorporate
decisions related to which existing facilities to integrate into the system
versus which facilities to develop or redevelop.

328

Product DafinlMon

T«9t

Assambly

Us«r Application

Graptifc/IGEVDOEDEF

Moth/Statistical

Component Libraries

T«st Data

Record of Assembly

Display

Tronsmit

Release

Figure 3 . User View of Candidate Applications

After study of the present support structure and development directions, we
realized that many elements of the design process have not really been
automated but have merely been "electrified". For example, although we have
captured configuration tracking data on computers for years, the design
objects to which these data relate (drawings, specifications, change orders,
etc.) have remained on microforms for manual storage and retrieval. With
more recent technology, we will be able not only to index the design objects
but to construct an Electronic Information Bank which delivers needed design
information directly to a user's desk.

Further, although we have expended effort to develop supporting databases, an
expert user function is apparent in every major application. The end user (a

design engineer, for example) can rarely seek and obtain information directly
from the databases. Were an engineer to try, the variety of operating
environments, procedures, and data formats would be overwhelming.

4.0 Assumptions and requirements

We discovered that we must not only base a new CIM architecture upon
functional requirements and specifications but these must, in turn, rest upon
well considered business and technical policies. We examined business
policies (e.g., "Engineering access to design databases is restricted to
read-only") before any technical issues were considered. We then developed
a-priori strategic directions (e.g., "Will we attempt to integrate office
automation functions into the technical workstation environment?"). Next, we
reviewed present and evolving standards in CAD/CAE, operating systems,
network protocols, user interfaces, and office automation. From the
investigations, we formulated and agreed upon a complete set of business and
technical policies related to several important components of the
architecture

:

Operating Systems (both servers and workstations)

Network Protocols

329

Database Management Systems

Data Exchange Formats and Media

Application Software (CAD/CAE)

Retirement and Migration

Eventually, the architectural requirements emerged.

5.0 Technical directions

New computer networking and user interface technologies will answer the need
for a seamless design support architecture. It should be possible to use
standard workstation windows protocols, for example, to provide an apparently
homogeneous access path to diverse computing environments. Bit mapped
graphical user interfaces should provide the common "look and feel" necessary
to reduce our dependence upon expert users. Clearly, the technical
workstation market is trending toward a single operating system. However,
much of the promising new technology and standards are embryonic and both the
technology and application of the technology must be proven.

A typical design engineer can be confronted by more than a dozen distinct
functions which, at present, are implemented on separate platforms and, as

mentioned before, are supported by dedicated expert users. The architecture
will take advantage of new user interface capabilities to not only provide a

single direct source for all information but to provide a common "look and
feel" for the entire system. We recognized that a user would best be served
by a single system which delivers access to a "collection of services"
(figure 4)

.

SYSTEM

USER

n
Figure 4. User View of System Services

The services provided include both information sources and functions. For

example, an engineer may need to examine a design (drawing), analyze test
data, and correspond with associates. The engineer may also need to initiate

related functions such as release designs, authorize procurement, or obtain

330

tangible output. Under workstation control, the user can obtain the required
data, communicate with others, and start processes by selecting the
appropriate function as represented by a service icon. The related display
is presented in a service session window on the workstation screen (figure
5).

Service

Icons
I

Service icon Panel

Figure 5 . User Screen Layout

The service session windows will be connected to several diverse applications
but the entire engineering support capability will be presented as if it were
a single system. The user interfaces depicted in the above illustrations are
not uncommon in the world of personal computer applications. On the other
hand, the Sandia CIM architecture proposes to provide an integrated user
interface over a very broad collection of application platforms. The
platforms range from workstations and compute nodes to database servers - all
from different vendors representing a variety of computing cultures (figure

6).

Figure 6. User View of the Functional Layer

331

Recent unpublished work at Sandia has resulted in the capability for two or
more of the service session windows to simultaneously share (view and
manipulate) the same object. Thus it will be possible to allow for an
additional level of interaction, i.e., not only between engineers and
computers but also between human collaborators supported by computer based
tools. This feature of the system will provide important support for the
introduction of concurrent engineering practices

.

Although not addressed in this paper, computer security is an issue that must
be considered in nearly every CIM application. Computer security
requirements are often orthogonal to computer integration and must be
addressed "up front." In fact, the whole network design may be governed by
the security requirements.

6.0 Implementation

Although new technology and standards appear to offer solutions to CIM
architecture requirements, implementation will be non-trivial. It will be
necessary to reconfigure much of the present computing and network structure.
Hundreds of computer programs must be developed, redesigned, or receded.
Several databases must be developed. It is fortunate that the concept, at
least, of object oriented design is maturing as we begin our work.

A change in culture, however, may be the most difficult objective. "Recent
events suggest that - information economy or no - people are not prepared to
swallow information technology whole. Some attempts to weave computer and
communications technology into the fabric of daily life have fallen on very
hard times." [Wright, 1990]

The "seamless" integration of computers and computer-supported functions will
result in reordering the structure of the organization. One may find the
"engineering" and "drafting" functions, for example, somewhat redefined. The
roles of secretaries and other support personnel may also be significantly
altered. A change in culture, however, is the primary benefit of CIM and, to
this end, we view the changes with positive anticipation.

332

REFERENCES

1. Dasgupta, Subrata, The Design and Description of Computer
Architectures , John Wiley & Sons, New York, 1984.

2. Doran, R. W., Computer Architecture; A Structured Approach ,

Academic Press, London, 1979.

3. Eckhouse, Richard H., jr., and Morris, L. Robert, Minicomputer
Systems , 2nd ed.. Prentice Hall, NJ, 1979.

4. Hayes, J. P., Computer Architecture and Organization , McGraw-Hill,
NY, 1978.

5. Meijer, Anton and Peeters, Paul, Computer Network Architectures ,

Computer Science Press, MD, 1983.

6. Wright, Karen, "The Road to the Global Village", Scientific
American, March 1990, pp 83-94.

333

DISTRIBUTED KNOWLEDGE BASED SYSTEMS
FOR COMPUTER INTEGRATED MANUFACTURING

SUDHA RAM
DAVE CARLSON
ALBERT JONES

Abstract

Efforts are being made in many organizations to use new technologies to automate and

integrate the design, planning and manufacturing processes. The goal in developing these

computer integrated manufacturing (CIM) systems is to increase productivity, improve product

quality, and, minimize wastage of resources. This paper describes the information required to

carry out major manufacturing functions. It also examines some of the sf>ecial characteristics

of these functions and their inputs/outputs. Based on this examination, the paper proposes an

architecture for integrating distributed knowledge based systems (DKBS) to support CIM. An
object oriented design for the various components of the DKBS is briefly described. Issues

requiring further research are outlined.

1 Introduction

Most major manufacturing companies have made a strategic decision to make extensive use of

computer technology in their factories. Initially, computers simply collected data and provided

computational support to human decision makers. Currently, the focus is on shifting the respon-

sibility of making these decisions to the computer. The short term effect of this move has been to

improve the productivity of many individuals and the quality of their work. The long term goal is

to have computers play a pivotal role in automating and integrating every phase of manufacturing.

These computer integrated manufacturing (CIM) systems are expected to produce higher quality

products at a reduced cost.

The process of automating all major manufacturing functions and integrating them into a

successful CIM system is proving to be difficult and time consuming [DAV89]. Many researchers

have concentrated primarily on the automation aspects of this process. Hierarchies similar to the

organizational hierarchies that exist today, have been proposed by Jones & McLean [JON86].

Various functions are assigned to each level within the hierarchy, and interfaces between the

levels are specified. Central to CIM is a database management system that facilitates sharing of

data among the various components of the system. We believe that developing knowledge based

systems to support these functions will be the key ingredient in CIM.

The objective of this paper is to show that in addition to database support, CIM requires the

support of multiple knowledge based systems. An architecture for integrating multiple knowledge

based systems is proposed to meet the requirements of a CIM environment. Each knowledge

based system may interface with one or more databases. Section 2 describes several major

manufacturing functions with details of their associated information flows. Section 3 examines

334

Customer
Product

Specif icatio ns

i i

Manufacturing Product

Design
M

Figure 1: Product Life Cycle

the special requirements of the CIM environment which impact the design of a data and knowledge

management system. Section 4 describes an architecture to integrate multiple knowledge based

systems and proposes the use of the object oriented paradigm for an implementation based on

this architecture. Several issues requiring further research are outlined in section 5.

2 CIM Functions

Figure 1 illustrates a high level view of the major steps involved in designing and manufacturing

products. Requirements and orders from customers are used to generate product ideas. These

ideas are refined to produce specifications for products. Design engineering results in detailed

design for products which then proceed to the manufacturing phase. Product design, including

research and development activities, must coordinate its functional responsibilities with marketing,

manufacturing, quality assurance, and directly with the customers and suppliers. The finished

product is delivered to the customer after quality control standards are met.

Ultimately, CIM systems will require the integration and, to the extent possible, automation of

all major manufacturing functions including marketing and sales, product design, manufacturing

engineering, manufacturing data preparation, production planning and inventory control, produc-

tion scheduling, process supervision, and quality assurance. Each of these functions requires a

different view on the data and knowledge used to manage its activities. Mariceting deals with

high level product features, product design requires data on the performance of components, and

manufacturing engineers view the products according to the physical attributes and configuration

of the components. However, a successful CIM system must integrate these various views and

provide translations between the perspectives. To understand the impact this has on the design

335

of a data and knowledge management system for CIM, it is necessary to understand the details

of these functions, along with their inputs and outputs (See Figure 2).

2.1 Marketing and Sales

Marketing and sales provide the primary interfaces between a manufacturing facility and its cus-

tomers. They inform customers of available products, generate orders for selected products, price

the products, negotiate delivery schedules, track shop floor performance in meeting these sched-

ules, and ensure customer satisfaction after delivery. They also assist the customer in producing

specifications for new or improved products. In addition, they often conduct a needs analysis to

predict potentially profitable products. These activities can be supported by developing knowl-

edge based systems that capture the expertise of marketing and sales analysts. To perform their

assigned functions, the knowledge based system would need to retrieve and update information

in numerous databases. These include product catalogs, customer orders, both the current and

projected manufacturing capacities, finished products inventory, schedules, anticipated comple-

tion and delivery times, and orders for raw materials. It is important to note that these databases

will contain textual and numeric data types, graphics, and 2 and 3-D images.

2.2 Product Design

Product development engineers receive a list of 'wants' and 'needs' from the product marketing

and sales organizations. This list comprises the features of a new product. The development

engineers may augment this information with further direct input from potential customers. A
product design is then developed which satisfies these desired features, where feasible. These ten-

tative design specifications are reviewed with marketing personnel and manufacturing personnel

to determine whether the design can be produced at a cost which is acceptable to the marketing

plan. Computer-aided design (CAD) tools are already commonly used to facilitate the creation

and documentation of product designs, however, little support exists for the knowledge-based

coordination which is essential for successful product development.

2.3 Manufacturing Engineering

The manufacturing engineering function coordinates the introduction and control of new produc-

tion strategies. For example. Just in Time (JIT) strategies require effective communication among

all functions shown in Figure 2. Since, in theory, JIT allows no time for inspecting incoming

parts, a close working relationship must be maintained with suppliers. Poor quality parts or

materials result in severe manufacturing problems, disrupting planning and scheduling functions

which have a very low tolerance for defects under JIT control.

Future process engineering must accommodate information flows which operate in parallel

to support the unit's business strategy. Future manufacturing organizations must support flexible

336

MARKETING
AND

SALES

Product
/equiremen^

Order

tracking

Booked

orders

forecasted

demand

AGGREGATE
PRODUCTION
PLANNING

PRODUCT
DESIGN

Product
specifications

Production

Quotas

DETAILED

PRODUCTION
PLANNING

MANUFACTURING
ENGINEERING

Group

technology"

product

classification

Issued

jobs with

due dates

Process

durations

and

precedence

relationshipfe

PRODUCTION
SCHEDULING

Manufacturing

specifications

MANUFACTURING
DATA

PREPARATION

Detailed

processing

instructions

Process

lineup

Detailed processing instructions

Processing

statistics

PROCESS
CONTROL

PROCESS
SUPERVISION

Process

specifications

Figure 2; Functions in a CIM Environment

337

informational infrastmctures where each function acts as a knowledge source capable of coordi-

nating its activities with other agents. Current organizations pass information serially from one

department to another within the hierarchical structure. Future organizations will require lateral

communications between these knowledge centers in the CIM environment.

Manufacturing engineers are experts in designing products which satisfy the required quality

standards at the lowest possible. This expertise must be available to product design engineers

while product specifications are being developed. Several organizations have implemented expert

systems which encapsulate this expertise in design for manufacturability [MAD87]. Once product

specifications have been written in rough form, the manufacturing engineers will create the

necessary manufacturing process specifications. The manufacturing data preparation captures

these specifications.

2.4 Manufacturing Data Preparation

Manufacturing data preparation includes all of the functions required to generate the data needed

to manufacture a product that meets a particular customer's requirements. The product design

specifications (see above) include detailed 3-D drawings, solids, geometry data, tolerances, elec-

tronic circuit diagrams, and other required manufacturing specifications. These designs are then

used by the manufacturing engineers to create a process plan which includes a complete list

(including any possible alternatives) of raw materials, tools, machines, fixtures, and the precise

machining instructions to be used during the entire fabrication process. Today, this is largely a

manual task with some computer assistance. It requires a great deal of human expertise and sig-

nificant interaction with the database. A three step procedure is used. First, the product is given

a group technology classification code [CHA85]. This code is then used to retrieve existing plans

for products with similar processing requirements. Finally, a process plan for the new product is

created by revising, and possibly merging, one or more of these other plans. Knowledge-based

system support can facilitate some parts of this activity.

The databases and knowledge bases required for this function are far different from traditional

systems. There are storage problems and manipulation problems. Each design package and each

process plan will contain large amounts of textual data, numeric data, graphics data, and image

data all of which are interrelated in complex ways. This means that many records may be

required to store a single piece of information. Each group users may require to have different

views of the data as well as the capability to manipulate multiple data objects as a single unit. For

example, the scheduler needs to know which machines the process planner has decided to use to

make a part. A machinist will need detailed machining instructions in order to manufacture that

same part. Expert systems can assist production personnel in diagnosing process and material

problems. All of this information is part of the process plan. Finally, it may be necessary to

keep several versions of design specifications and process plans for each product, and, quickly

determine similarities and differences between versions. Product and process revisions must be

carefully coordinated with production planning to minimize material obsolescence and rework

required to upgrade finished goods inventory.

338

2.5 Production Planning and Inventory Control

Production planning is responsible for developing a list of "jobs" to be done on the shop floor

during the next planning horizon (usually several months). In addition, it determines the hardware

and materials necessary to do those jobs. This is accomplished in two steps. First, an aggregate

production planner (APP) uses both the current and projected demands established by marketing

to set production quotas and inventory requirements for each product type during each of several

smaller time periods (usually one week) during the chosen planning horizon. These inventory

requirements include all raw materials, tools, fixtures, castings, forgings, etc. needed to meet the

demands. The APP continuously monitors and updates production quotas and inventory policies

based on the feedback from the detailed production planner and updated demand forecasts from

marketing.

The detailed production planner (DPP) uses these assigned quotas to generate production and

inventory "jobs" for each time period. Before a production job is released to the shop floor for

scheduling and processing, it is assigned a priority and a due date, and a check is made to verify

that the required materials are on hand. Looking at future production quotas, the DPP may issue

requests to external vendors to replenish inventories. The DPP monitors the differences between

the assigned and anticipated job completion dates, and if needed, changes both the due date and

the specification of the criteria to be considered in the scheduling function.

APP must access the following data: actual and forecasted demand from the marketing

database; processing requirements for each of the products that make up that demand from the

process planning database; current inventory stams on tools, finished goods, work-in-process, and

raw materials; and projected shop floor capacities. APP uses this data to update two addirional

databases. The first contains the number of each product type to be produced in the next planning

period. The second includes the orders for new tools, raw materials, and any other items needed to

produce those products. This latter database is also updated whenever orders are filled, canceled,

or changed.

DPP must access the databases updated by APP together with those containing (1) process

durations and precedence relations for each product to be produced and (2) detailed infomiation

on process utilization. The former is typically part of the process plan. The latter includes

uptime, planned downtime, and any other restrictions on availability. The DPP uses this data to

update release dates, priorities, and due dates for each job issued to the shop floor and requested

availability times for any required but still outstanding inventory. The algorithms, and heuristics

used in the planning function can be effectively replicated using one or more knowledge based

systems.

2.6 Production Scheduling

Production scheduling develops detailed (usually daily) schedules of the operations required to

complete the jobs issued by the DPP. These operations are then assigned to the various processes

together with their anticipated start and finish times. Due date performance may be but one

339

of several criteria to be considered in establishing the sequence of activities. There may also

be a several different algorithms which are use to generate new schedules. Once a production

schedule has been generated, it is necessary to coordinate activities at each process to ensure

that the schedule is met. This inter-process coordination requires continuous monitoring of the

feedback from process supervisors.

Input data consists of the current schedule, the status and maintenance schedule for all ma-

chines, due dates and routing, and optimization criteria, and compromise strategies to be employed

in making tradeoffs among the criteria. The production scheduler is responsible for maintaining

an accurate schedule of activities at all machines on the shop floor. That schedule must be up-

dated whenever (1) a new job list is received, (2) an existing job is canceled, finished, or given

a priority update, and (3) a process experiences an unexpected delay.

2.7 Process Supervision

Each process has a supervisor who has two responsibilities. First, it implements the precise

instructions from the process plan for every assigned operation. Second, it monitors the process

during its execution of that operation to verify conformity to those instructions. Monitoring is

typically sensor-based and allows the supervisor to detect changes in the processing environment.

It can compensate for minor changes without substantial deviations from the original instructions.

Major problems often force it to wait for a new set of instructions from process planning and

from the Interprocess Coordinator (IPC) before completing the assigned task.

To do this, the supervisor must access information such as, the list of assigned jobs and

scheduled start and finish times, their associated process plans. Numerical Control (NC) code or

other equipment level programs, part description data, tool data, and fixture data. After each job

has been completed, the supervisor must update the job database indicating the exact operations

performed, the total processing time in the scheduling database, and the equipment and tool usage

in their respective databases.

Production scheduling cannot rely completely on a priori information about machine opera-

tions because these operations are not predictable enough to determine entire factory schedules.

To resolve this problem, an intelligent machine tool must close the factory wide feedback loop

and start to feed information up through several levels of process supervisors. One example of

knowledge-based support for process supervision is a Cell Management Language (CML) devel-

oped by Bourne [BOU86] to link complex systems of multivendor equipment together. CML
was designed as a rule-based language which operates on a complete and ever-changing model

of a flexible manufacturing cell. One of CML's primary objectives is to dynamically reschedule

the machines in a cell; at each step in the process, it considers the current status of each machine

in the cell and determines what to do next based on this complete knowledge of the cell's current

situation.

Ideally, the cell supervisor would interact with intelligent controllers for each machine tool.

Wright and Bourne [WRI88] provide the following definition:

340

The intelligent machine tool is defined by comparison with an intelligent human machinist. A higher

level scheduler can rely on both of them in the same way. A given input leads to an expected output.

Or, the intelligence reports back that the input is beyond the scope of the current system. We must
therefore acknowledge that the degree of intelligence can be gauged by the complexity of the input

and/or the difficulty of ad hoc in-process problems that get solved during a successful operation. Our
unattended, fully matured intelligent machine tool will be able to manufacture accurate aerospace

components and "get a good part right the first time."

2.8 Quality Assurance

Quality Assurance (QA) is divided into two major functions. First, it verifies that the output from

each process meets the specifications prepared by engineering. These checks are the result of both

on-line and off-line inspections. Whenever errors are detected, this information is used to correct

problems in the designs, the process plans, and the processes themselves. Second, QA keeps

historical records which can be used to improve the quality of all phases of the manufacturing

system. In some cases, these records take the form of statistical studies which are used to track

past and predict future equipment performance. These studies help guide decisions regarding

machine maintenance and tool replacement. In other cases, information is archived on each

product. This includes CAD designs, process plans, inspection and machining procedures, and

other materials used in the fabrication of the that particular product. This helps guide decisions

regarding that product the next time it is manufactured.

Quality Assurance (QA) tracks both the short term and long term quality of all manufacturing

operations and the products they produce. Short-term QA requires access to inspection plans,

usage charts, and planned maintenance schedules. Once the product inspection has been com-

pleted, the product history and scheduling databases must also be updated. Usage charts must

be updated to indicate the total time every piece of equipment was used in the fabrication and

inspection of each product. Long- term QA is achieved through updates to all historical and

maintenance databases.

3 Need for distributed knowledge based systems to support CIM

In the preceding section we discussed several types of information required to carry out CIM
functions. There is an ongoing effort to automate some of these functions such as design, process

planning and scheduling. This has led to the development of expert systems that capture the

heuristics, rules and algorithms used by humans to perform one or more CIM functions. These

expert systems (also referred to as knowledge based systems) communicate with databases to

assist in functions such as production planning, and scheduling. Several cooperating systems of

this kind have emerged recently [KEL86]. Such systems consist of a database and a knowledge

base each of which can function independently, and yet communicate with each other whenever

necessary [KER88]. Structures such as semantic networks, production rules, frames, and logic

are used to represent the knowledge needed by these systems. Data required to perform the

functions is stored and accessed using database technology.

341

To support specific functions such as CAD/CAM several researchers have developed new data

models based on traditional ones such as the relational model [BAT88; SU86]. Several researchers

have also proposed the use of distributed technology to support CIM [TH089; DAV87]. While

this is necessary, our contention is that it is equally important to integrate not only multiple

databases but also knowledge bases to support the various CIM functions.

CIM data is used and generated by a variety of manufacturing functions running on a collection

of heterogeneous computer systems. Individual systems will have a wide range of data access

and data sharing capabilities. Some may have only file transfer mechanisms, while others may
have sophisticated database management and/or knowledge management software. As indicated

in the previous section, manufacturing data is of various different types. There are product

catalogs, containing megabytes of information, which may be updated once or twice a year. This

information contains text, numbers, graphics, and 3-D images. There are part models and process

plans, which may contain several kilobytes of complex interrelated data, which are accessed and

updated by many different users, several times each month [LOR83]. There is equipment status

data, which may be only a few hundred bytes of data, but which must be updated several times a

minute. In addition, sophisticated algoritiims, simulation models, heuristics, and production rules

are required. The latter types of information require the use of knowledge based systems. These

systems allow for more complex ways of structuring, storing, and retrieving information. These

include semantic networks, frames, and objects [WIN84]. These representations of infonnation

cannot be handled using the traditional data modeling techniques. Any system that supports CIM
must provide facilities to [SU86]:

• capture complex data types

• capture temporal, procedural and positional relationships among objects

• perform operations on the objects

• model procedures, heuristics, algorithms to perform CIM functions

Since database technology alone is not sufficient to provide these facilities, we propose the

integration of knowledge bases and databases in a distributed environment to coordinate CIM
functions.

4 An approach for integrating data and knowledge for CIM

In this section we present an architecture that will facilitate the implementation of the CIM
functions described earlier. This architecture provides support for integrating and sharing Icnowl-

edge and data within a distributed environment [CAR89]. The architecture is a result of the

synthesis of research in several different areas, such as, Distributed Database Systems [CER84],

and. Distributed Problem Solving [DUR87; GAS87; SRI87]. It supports decision making in a

distributed environment, using a network of knowledge and databases with coordinated commu-

nication among them. The idea of cooperative action is supported by this architecture. When

342

cooperative decisions are required, each knowledge based system accesses multiple sources of

knowledge and/or data.

4.1 Distributed Knowledge Based Systems

There are several clear benefits to be derived from Distributed Knowledge-Based Systems (DKBS):

• Modeling real-world knowledge that has natural spatial or semantic separation

• Providing a modular architecture for large AI systems

• Integrating existing, heterogeneous knowledge-based systems

• Interconnecting multiple knowledge-based systems to solve a problem in which the individual sys-

tems have incomplete knowledge of the whole, but collectively, they can develop a solution

Huhns [HUH87] suggests that distributed artificial intelligence provides the next step beyond

current expert systems by building a separate system for each problem domain, based on the ability

of each expert, then making these systems cooperate. This modular approach would facilitate

knowledge acquisition by finding experts in narrow domains and building separate systems around

their individual expertise.

Figure 3 illustrates a distributed knowledge based system (DKBS) to support CIM functions.

The DKBS consists of several knowledge based systems (KBSs) that are logically and/or

physically distinct from one another. A top-level Distributed Knowledge Based Management

System (DKBMS), for the entire CIM system, integrates and manages all the knowledge based

systems. Each individual KBS may support one or more functions outlined in section 2. These

KBSs may be managed within a hierarchy of logically related DKBMSs. For instance, there

may be three individual KBSs to decide on detailed production planning for three different

products. These are all coordinated by the Planning DKBMS. A fourth KBS responsible for

inter-process coordination in Production scheduling will need to coordinate its decision with the

three KBSs for detailed planning. Any changes in the production schedules may affect future

production planning decisions made by each of the three KBSs. Schedule-dependent goals from

the planning KBSs would be routed by the Planning DKBMS to the Scheduling DKBMS, via the

Planning & Materials DKBMS. The KBS for inter-process coordination may communicate with

each of the manufacturing cell KBSs via the Scheduling DKBMS independent of these other goal

resolutions. The global CIM DKBMS does not enter into these communications at all. A more

detailed example is provided later in this section.

Each KBS, as shown in the exploded view in Figure 3, consists of an inference engine and

one or more knowledge bases and databases. A knowledge base management system (KBMS)
provides a mechanism and syntax to define and access the knowledge bases and databases for each

KBS (see Brodie, et. al. [BR086]). The DKBMS (described later) is capable of coordinating

the activities of several KBSs, whenever cooperative action is required. A KBS is capable of

independent activity, and does not need to be aware of the existence of other KBSs. Each KBS

343

O)
c rial MS

c m
c

Mat
Pla Q

c
o

CL
a>

TO LLl

o<3

cn
00

Z!
X) m
0)
-C
o Q
CO

ling BS

V
Q. Q

TO

c

c
O) i5O CL

>
cu

o
CL
X
LU

o

>-»
CO

T3

CA
nJ

OX)

o

o

X)

•I—

<

c •

o
o
o
<

344

provides a user interface for human users. Users can consult directly with the DKBMS or with a

KBS which, as necessary, forwards general goals to its DKBMS. The DKBMS passes messages

to relevant KBSs within its subhierarchy, or to its parent DKBMS when cooperative action is

required. The DKBMS receives the results, consolidates the solutions and passes them on to the

end-user. The objective of the DKBMS is to decompose global goals into one or more sub-goals,

pass these on to one or more KBSs, to take advantage of parallelism and domain modularity,

while minimizing communication between global and local levels of the architecture.

4.2 Distributed Knowledge Based Management System

Figure 4 illustrates components of a Distributed Knowledge Based Management System.

The DKBMS is composed of two components: a Global Knowledge Base (GKB) and a

Communication/Mapping Module. The global knowledge base is further divided into meta-

knowledge about the DKBMS 's domain and a Knowledge Cluster Dictionary. The GKB contains

information that defines the scope of each individual KBS, i.e. the types of inferences that each

KBS is capable of making. For instance, the Planning DKBMS in Figure 4 should be aware

of multiple KBSs that generate detailed production plans. It should be able to coordinate the

communication and consensus among these KBSs.

The GKB contains knowledge useful for decomposing global goals into subgoals, for resolving

conflicts among individual KBSs, for assembUng results of individual responses from KBSs, and

for recognizing when an inference has been completed. Subgoals are grouped into clusters which

are in mm assigned to one or more local KBSs. This information that relates subgoals to cluster

and KBSs is contained in the Knowledge Cluster Dictionary. By assigning a knowledge cluster

to a local KBS the cluster subgoals are implicitly assigned to that KBS. Therefore the KBS is

expected to contain the knowledge that will be used to resolve the subgoals of the cluster. It is

possible to associate a knowledge cluster with more than one local KBS to achieve reliability

through redundancy and to provide multiple knowledge sources in case a KBS is unable to resolve

the subgoal. The assignment of KBSs to GKB subgoals (via the clusters) may be nondeterministic

in some cases.

The Communication/Mapping module provides the communication link between the DKBMS
and each individual local KBS. Local KBSs communicate with the KBMS using a standard

protocol. This communication may either be for sending results of tasks that were passed down

to them by the GKB or queries for resolving inferences that require the services of other Local

KBSs. Sometimes it may be necessary to map the inferences from one representation to another.

The latter step will be necessary if heterogeneous knowledge representations are supported.

4.3 Example of a CIM function using DKBS

A simple example will serve to illustrate how the DKBS architecture can be used to coordinate

and provide integrated support for the various CIM functions. Let us assume that the system is

345

DKBMS

Global Knowledge Base

Meta-

Knowledge

Knowledge

Cluster

Dictionary

Communication

Protocol

and Mapping

Protocol

Translation

KBMS A

Protocol

Translation

KBMS B

Protocol

Translation

KBMS C

Figure 4: Distributed Knowledge Based Management System

346

being used to produce an overall production plan for the next 6 months. The following steps

may be executed in satisfying this goal (See Figure 3).

1. A human planner would access the Planning DKBMS and input the planning horizon into

the system.

2. The Planning DKBMS would decompose this goal of producing an overall production plan

into several sub goals some of which may need to be performed in sequential order. For

instance the first sub goal may be to generate forecasted demand for the various products.

This sub goal may be delegated as a goal to one or more Marketing and Sales KBSs

(via the CIM DKBMS). Another sub goal generated by the Planning DKBMS may be to

generate an aggregate production plan for each product based on their demands. This sub

goal however, can only be executed after the first sub goal has been processed. A third

sub goal may be to produce detailed production plans for each time period.

3. The Planning DKBMS would assemble the results from the first sub goal, and pass on the

relevant information to the Aggregate Planning (AP) KBS and instruct the latter to process

the second subgoal.

4. The AP KBMS would use its inferencing capabilities to determine if it has all the infor-

mation required to produce an Aggregate Production Plan. This information would include

items such as, current and forecasted demand, production quotas, inventory control policies,

and shop floor capacities.

5. If this information is not available to the AP KBS, a request will be communicated to the

Planning and Materials DKBMS to generate the information.

6. The information required by the AP KBS will be gathered by the Planning and Materials

DKBMS and communicated to the former, which will then generate an Aggregate plan.

7. This plan would then be communicated to the Planning DKBMS which in turn would

assign the goal of producing detailed plans to the Detailed (DP) Planning KBS.

8. Several iterations of the steps outlined above may be required to generate suitable Aggregate

and Detailed plans. Each of these iterations would be controlled by the Planning DKBMS.

4.4 An Object Oriented Design for components of the DKBS

Components of a DKBS can be implemented using the object-oriented paradigm (OOP). OOP
provides an effective environment for modeling objects and communication between objects in a

distributed system. OOP supports a frame-based knowledge representation in the GKB, supports

heterogeneous knowledge representation of individual knowledge and databases, and facilitates a

message passing paradigm for the communication protocol between components of the DKBS.

347

An OOP design defines object classes with instance variables (properties) and methods (a

method is a procedure activated by a message sent to an object) [WEG86]. Principles of gen-

eralization, aggregation, classification and inheritance are also used by the OOP. An object is a

specific instance of a class, and the object encapsulates all variables and methods defined (local

or inherited) for that class.

Using this paradigm, we define several of the fundamental object classes in our design for a

Planning & Materials (P & M) DKBMS (See figures 3 and 5).

Single instances of the DKBMS, GKB, and ClusterDict classes are created to manage all

aspects of this particular DKBMS object for P & M. As discussed in a previous section, the

GKB contains meta-knowledge which is used to control the inferencing for communication and

consensus in this DKBMS. This knowledge is represented as frames (instances of class Frame)

in our diagram. Part of this meta-knowledge may be represented as production rules which

is organized within the frame structures. Finally, Cluster objects are used to relate subgoals

(premises of production rules) to relevant KBSs. One cluster object may point to several KBS
objects.

In the lower part of Figure 5, the object Plan refers to other objects such as planners (person(s)

responsible for this plan), products, the planning horizon, and a forecast. Each Person object

references additional objects which describe the opinions (instances of the class Assertion) and

heuistics (instances of Rule) which define knowledge used by specific experts. Note that these

Person objects are general and may be used in many other aspects of the local knowledge base.

Rule premises may include reference to values of Product instances. An inference engine must

be implemented to derive conclusions based upon the opinions and heuistics held by one or more

plarmers. Recall that goals (in the action part of a rule) which cannot be resolved within a local

KBS are then sent to the DKBMS for the GKB to resolve through communication with other

KBSs.

Some of the objects defined in the lower part of this figure may be used in the implementation

of the P & M DKBMS, as well as in one or more local KBSs. We present these objects in Figure

5 as an example of one small part of the DKBS for CIM. Although an object oriented design has

been specified for the local KBSs, our proposed architecture has the capability to support other

knowledge representations as well.

5 Research Issues in designing DKBS for CIM

Researchers at National Institute of Standards and Technology and elsewhere have addressed

several issues dealing with the design of distributed databases to support CIM [JOH84; LIB88;

MA84]. They are pursuing a hybrid architecture for the heterogeneous CIM environment. Some

functions are performed at every node within the system. These include manipulating local data,

translating queries and data representations into and out of local form, and providing interprocess

and network communications. Distributed management services are assigned to selected sites and

a unique master site ultimately resolves global dictionary changes and update conflicts detected

348

DKBMS

Variables:

globalKB —
clusterDict -

langOicI

Methods:

comm Protocol

methods

GKB Frame: planning

Variables:

frames - — - Frame: scheduling

relations
Variables:

Methods: - slot1

inlerSubGoal
slot2

KBS: Planning

KBS: Scheduling

KBS: Inventory

Variables:

KbsName

frames

ClusterDict Ftule: checkHorizon

Variables:

clusterName . .

Rule: vaidForecast

localKBS
Variables:

Methods: - premise

addC luster
action

findGoal

Cluster: processes

Cluster: products

Variables:

ClusterName

subGoal

- KBSs

Plan

Variables:

name: a string

planner —
product

horizon

forecast

Methods:

Person

Person

Variables:

name: Johnson

opinions

heuristics —
division

Product

Product

Variables:

product #

name: Widget

listPrice

Forecast

Variables:

product

period

Methods:

Assertion

Assertion

Variables:

statement

confidence

1

1

1

Pu\e

Rule

Variables:

• premise

action

Figure 5: Objects for Planning and Materials DKBMS

349

by the selected sites. While this research is useful, there are limitations which prohibit it from

being a viable solution to all of the problems inherent in the CIM environment. As noted in this

paper, it necessary to integrate not only databases but also knowledge bases into the systerii to

support CIM.

The contribution of the research described in this paper is the development of an architecture

for distributed knowledge based systems to support CIM. Several research issues need to be

resolved in designing DKBS for CIM. Design of each individual KBS within the DKBS and def-

inition of the communication protocols between them are two very significant areas for research.

The design of the GKB needs to be examined in detail. The process of decomposing goals into

sub-goals and assigning to knowledge clusters will have a significant impact on the amount of

communication in the system. Approaches such as the blackboard control architectures are being

explored by researchers in several domains [HAY85]. Considerable investigation will be required

to determine if this architecture is suitable to support CIM.

In our architecture, the meta knowledge required to manage the KBSs has been approached

using the Object Oriented paradigm. However, alternative knowledge representations need to be

examined. Another problem that needs to be examined is that of conflict resolution and consensus

building among KBSs. The location of KBSs and the DKBMS itself is a major research issue.

The DKBMS may have to be replicated at several sites in the system.

6 Summary

Efforts are being in many plants to use advanced computer technology to automate and integrate

all manufacturing functions. This transformation to a CIM environment has revealed several

problems in the design and real-time control of data management systems for CIM. In this paper,

we have described both the major manufacturing functions themselves and the data required to

carry out those functions. We have discussed an approach for integrating distributed knowledge

based systems to support CIM functions. Several research issues for further investigation have

been raised.

350

References

BAT88 Batory, D.S., Leung, T.Y., and Wise, T.E. "Implementation Concepts for an Extensible Data
Model and Data Language", ACM Transactions on Database Systems, Vol. 13, No. 3, Sept. 1988,

pp. 231-262.

BOU86 Boume, D. A., "CML: A Meta-Interpreter for Manufacturing," AI Magazine, Vol 7, No 4, 1986,

pp. 86-96.

BR086 Brodie, Mylopoulos, and Schmidt (editors). On Knowledge Base Management Systems: Integrat-

ing Artificial Intelligence and Database Technologies, Springer-Verlag, June 1986.

CAR89 Carlson, D., and Ram, S. "An Object Oriented Design for DisUibuted Knowledge Based Systems",
Proceedings of the 22nd Hawaii International Conference on System Sciences, Kona, HI, Jan 1989,

pp. 55-63.

CER84 Ceri, S. and Pelagatti, G., "Disu-ibuted Databases: Principles and Systems", McGraw-Hill Book
Company, 1221 Avenue of the Americas, New York, NY 10020, 1984.

CHA85 Chang, T., and Wysk, R., "An introducdon to automated process planning systems", Prentice-Hall,

Englewood CUffs, NJ, 1985.

DAV89 Davis, W., and Jones, A. "A Functional Approach to Designing an Architecture for CIM", IEEE
Transactions on Systems Man and Cybernetics, Special Issue on Manufacturing Systems, forthcom-

ing, 1989.

DAV87 Davis, W. and Ram, S. "Design of Distributed Databases for an Automated Manufacturing Fa-

cility", Proceedings of the ASME Computer in Engineering Conference, New Yoric, Aug. 1987, pp.
23-29.

DUR87 Durfee, E., Lesser, V., and Corkill, D. "Cooperation through Communication in a Distributed

Problem Network", in Distributed Artificial Intelligence, M Huhns (ed.) Piunan, 1987.

GAS87 Gasser, L. "Report on die 1985 Workshop on Distributed AI", AI Magazine, Vol. 8, No. 2,

Summer, 1987.

JOH84 Johnson, H., Baum, L., and Beaudet, R., "IPAD Distributed Database Management Facility-IDF:

Architecture Specification", Boeing Computer Services Company, 1984.

JON86 Jones, A., and Mclean, C. "A Proposed Hierarchical Conu-ol Model for Automated Manufacturing

Systems", Journal of Manufacturing Systems, Wo\. 5, No. 1, 1986, pp. 15-25.

HAY85 Hayes-Roth, B. "A Blackboard Architecture for Conu-ol", Artificial Intelligence - An International

Journal, 1985, Vol. 26, pp. 251-321.

HUH87 Huhns, M. (editor). Distributed Artificial Intelligence, PiUnan, 1987.

KEL86 Kellog, C. 'Trom Data Management to Knowledge Management", IEEE Computer, Jan. 1986,

pp. 75-84.

KER88 Kerschberg, L. "Expert Database Systems", IEEE Expert, Vol. 3, No. 4, Winter 1988, pp. 50.

LOR83 Lorie, R.A., and W. Plouffe, "Complex Objects and their use in Design Transactions", Proceedings

ofACM SIGMOD Conference on Engineering Design Applications, San Jose, CA, 1983, pp. 25-33.

LIB88 Libes, D. and Barkmeyer, E., "The Integrated Manufacturing Data Administration System (IMDAS)
- An Overview", International Journal of Computer Integrated Manufacturing, Vol. 1, No. 1, 44-49,

1988.

MA84 Ma, R., "A Model to Solve Timing-Critical Problems in Distributed Computer Systems", IEEE
Computer, Jan., 1984, pp. 62-68.

MAD87 Madison, D.E. and T. Wu. "An Expert System Interface and Data Requirements for the Integrated

Product Design and Manufacturing Process", Proceedings. Third International Conference on Data
Engineering, Feb. 1987, pp. 610-618.

SRI87 Sridharan, N.S. "Report on the 1986 Workshop on Disu-ibuted AI", AI magazine. Vol. 8, No. 3,

Fall 1987, pp. 75-85.

351

SU86 Su, S., "Modeling Integrated Manufacturing Data With SAM*", IEEE Computer, Jan., 1986, pp.
34-49.

TH089 Thomas, G. et. al. "Heterogeneous Distributed Data Systems for Production Use", ACM Com-
puting Surveys, Special Issue on Distributed Database Systems, forthcoming, 1990.

WEG86 Wegner, P. "Perspectives on Object-Oriented Programming", Technical Report No. CS-86-25,
Brown University, Dept. of Computer Science, Dec. 1986.

WIN84 Winston, P., "Artificial Intelligence", Addison-Wesley, Reading, Massachusetts, 1984.

WRI88 Wright, P., and Bourne, D., "Manufacturing Intelligence," Addison-Wesley Publishing Company,
Reading, MA, 1988.

352

UNIFORM DATAFLOW SOFTWARE SYSTEM FOR
GLOBAL CIM APPLICATIONS

HUGH SPARKS

Abstract

At present, integration architectures for both local and global automation problems suffer from a

variety of shc»tcomings. These include a strong dependency on particular hardware platf(»Tns and

lack of a uniform conceptual framework for software development at multiple system levels. This

paper describes a unified software architecture based on object-oriented programming techniques.

This architecture is supported by two programming languages, HOSE and Alltalk. HOSE is a

graphical dataflow language for parallel processors that features hierarchical abstraction. Alltalk is

a more traditional object oriented language used to implement iconic control panels for industrial

applications. These languages are portable to a variety of hardware platforms that support both

parallel processing and a graphics workstation. The paper describes these languages and our

experience with several {^plications in robotics and process control.

1. Introduction

In some respects, the state of the art in system integration methods is analogous to the condition of the housing

industry. While the use of personal computers and inexpensive CAD software has revolutionized development of

housing designs and the generation of archtectural prints, the actual construction process is still performed in a labor

intensive manner with few standard interchangeable "housing objects." Automated and modular construction

methods that have been demonstrated and they are c^ble of producing high quality results at reduced costs, but these

techniques have achieved only limited acceptance.

Similarly, CIM systems have been demonstrated that employ advanced software tools for design and simulation.

Implementation, however, involves laborious coding of unique and mostly non-reusable software. A variety of

higher level software concepts have been investigated to address these problems, but are not widely viewed as

practical in the industrial environment, particularly for the implementation of high performance real-time control

systems.

A number of recent publications have touched on issues involved in the development of a more uniHed approach to

software and hardware architectures for CIM. Naylor and Volz [NAY88] have identified the need for portable and

reusable software which supports multiple levels of abstraction in a distributed hardware environment. Camarinha-

Matos and Steiger-Garcao have considered the need for a unified conceptual architecture in CIM information

management [CAM87].

^ have developed two specialized object-oriented programming tools: HOSE, a hierarchical dataflow language for

the description and implementation of industrial control systems; and Alltalk, an interactive programming

enviroment for building animated graphical control panels. We have integrated these tools to implement multiple

levels of automation software, including the more performance-critical aspects of direct digital control systems and

sensor fusion processing.

Portions of this software environment are being used to develop vison-directed robotic systems for manufacturing,

material testing, and automated inspection at our company. This paper describes these tools and presents examples

of our current research and applications.

2. The HOSE programming language

Signal flow diagrams, a traditional tool for describing control and signal processing systems, have been used as a

model for a new graphical programming language called HOSE. This language extends the signal flow concept in

several ways: signals are generalized to include user defmed data types; object-oriented programming concepts are

integrated to support hierarchical abstraction; and parallel processing hardware is supported to enhance performance.

353

2.1 Key concepts and features

HOSE was developed to support very rapid implementation of direct digital control systems and sensor fusion

applications. HOSE combines several key software technologies towards this end: parallel processing, hierarchical

abstraction, object-oriented programming, and an iconic human interface for interactive programming. Details of

these features and concepts are discussed in the following sections along with a brief introduction to the HOSE
language. Further details cm HOSE programming are available in [HOSl] and [H0S2].

2.1.1 Sequential vs. parallel programming

Conventional languages such as C or Pascal are sequential and procedural. They are based on an auditory-serial

mode of thought. A HOSE program is designed and understood through diagrams. As following examples will

demonstrate, diis visual mode of percq)tion makes it easier to describe and understand parallel jxocessing systems.

Figures 1 and 2 contrast two software descriptions for a hypodietical robot welding task. The example system

contains a robot arm that manipulates a laser welding device. The robot must weld parts together while tracking a

seam using a video camera.

Locate beginning of the seam
Start the laser

WHILE seam is visible D O
Process canfiera image

Adjust trajectory

Adjust laser focus

Advance along the seam
Adjust camera angle

END WHILE

Figure 1. Sequential description of welding.

This program is typical of industrial software: many concurrent activities must be scheduled and coordinated by a

sequential language algorithm. The statements before the WHILE loop express a step-by-step time sequence of

events, but the statements inside the WHILE loop attempt to implement an essentially parallel operation. When
multiple sequential programs execute in parallel, even less intuitive constructs must be introduced to synchronize

their behavicH*. Such programs are notoriously difficult to understand and debug.

Figure 2 shows a signal flow diagram that describes some of the behavior implied by the statements contained in the

WHILE loop of figure 1. Notice that essentially parallel aspects of the seam tracking problem are reflected in the

topology of the diagram. Arrows that diverge from a common source terminal imply parallel information flow

while arrows that converge on the same object imply synchronization. GDetails of the synchronization mechanism

in HOSE are presented in a latCT section.)

Offset Detector
Laser Focus

Control

Camera Image

Processor

I
Camera Angle

Control

Seam [)etector

Robot Trajectory

Control

Figure 2. Parallel description of welding.

354

2.1.2 The dataflow concept

A HOSE program is, in effect, a diagram. Data in a HOSE program flows between processing units generically

called objects. These objects are the basic processing elements in the language. Objects communicate with each

other using signal streams that travel aver directed connections.

HOSE diagrams, like electronic circuits, generally indicate cmtinuous and simultaneous motion of data between the

processing elements, in contrast to flow charts, which show the sequential flow of cmtrol in a step-by-stq) manner.

Flow charts are graphical aids best suited to visualization of essentisdly sequential i^ocesses, while dataflow diagrams

are best suited to visualization of continuous and concurrent processes.

2.1.3 Data types for signals

The data signals that flow over connections have associated data types derived from the Pascal programming

language. Connections can transport real numbers, integers. Boolean values or user-deflned data types such as

vectors, strings and records.

2.1.4 Icons represent objects

Just as an electrical circuit has standard symbols for components, such as resistors and capacitors, every processing

object in HOSE has an icon. The icon is a graphical representation of a computational object on the display screen.

An icon may have terminals represented by shOTt line segmrats or "legs" like the terminals of electronic devices on a

circuit diagram. Terminals deflne the points where connections are attached to an object. Entry terminals deflne

points where data, flows into an object while result terminals deflne points where data flows out of an object. Each

terminal has an associated data type which determines the kind of data it will generate or accept. The graphical editor

prevents cmnections between terminals with incompatible types.

2.1.5 Hierarchical diagrams

HOSE uses tuerarchkal diagrams to describe a system at different levels of detail. Figure 3 above illustrates a

schematic view of this concept. (More detailed examples will follow.) Any object may be implemented by an

internal network of other objects. The objects in HOSE organize processing into conceptual units in much the same

way that jrocedures organize a program written in a sequential language.

The suitability of hierarchical systems for complex sensor integration, control, and intelligent automation is well

accepted [ALB87]. A system can be designed using an arbitrary number of layers that hide details of their

implementation. Object-oriented programming techniques for large scale system description is discussed in

[OSS87].

2.1.6 The programming process

A HOSE program is written (or drawn) by creating particular objects and specifying dataflow connections between

them. The HOSE interpreter displays the dataflow diagram using windows on a graphics workstation. The

developer creates objects and specifles their interconnections using a pointing device (mouse) and special function

keys.

Figure 3. Hierarchical Diagrams.

355

2.1.7 Object oriented concepts

When a given diagram is drawn, it may be used as a template to deHne a new HOSE class. A class deHnes the

internal structure of a diagram and the icon used for the exterior view. A class can be used to create multiple

instance objects, all of which have the same icon and the same internal structure. Instances are distinguished by

names assigned by the user when the object is created. The name of an object appears inside the icon's bord^. An
analogy for the class-instance relationship occurs in electronics. An electrical engineer uses standard integrated

circuits composed of more elementary circuit elements. In HOSE, this abstraction capability can be extended to any

number of levels.

A six-axis robot, for example, requires six servo controllers, one for each joint. In HOSE, a servo controller class

is deHned by drawing a network that implements a single servo controller. This controller is then used to define a

new class. By specifying this class, the programmer can create six instance objects. All six servo controller objects

share the same code, although each has its own private internal state information. From the user's point of view,

both code and data are encapsulated in the object

2.1.8 Modeless environment

In HOSE, there are no modes that distinguish running vs. editing a diagram. New objects and connections may be

added or removed and values can be introduced at any terminal at any level of the diagram. Such online modifications

are extremely useful when debugging or developing a control system. Oscilloscopes can be connected or moved,

filters can be added or retuned, all without stopping the running application. This process especially facilitates

exploratOTy or rapid prototyping efforts.

2.1.9 System design and documentation

A HOSE dataflow program is usually developed top-down. The diagram is drawn by an incremental process of

refinement. As the design process continues, the internal structure of each object is defined at lower levels. The

HOSE system implements a type of software CAD where dataflow diagrams document the system architecture. As

lower levels of the diagram are drawn, it becomes possible to execute parts of the HOSE program during the

development process. Because diagrams ore the program, there is always a correct correspondence between the

graphical part of the design documentation and the real system.

2.1.10 Parallel processing

The ability to use multiple processors is essential for large applications with hundreds of dataflow objects. As

processors are added to the system, HOSE can execute programs faster. Each processor contains a copy of a

specialized real-time kernel optimized for concurrent dataflow. The processors communicate using shared memory.

For very large processor arrays, alternative interprocessor communication systems for HOSE have been investigated

[CHAT88]. In simulation applications, a copy of the HOSE kernel executes on the graphics workstation that

displays the diagrams. In this case, no parallel processing hardware is required.

Numerical analysis applications are often well served by symmetric arrays of processors and simple Fortran style data

structures. In contrast, many industrial automation and process control problems are "scruffy": they require the

cooperation of multiple diverse parallel processes. Message flow between these processes requires specialized data

types unique to the application problem. Some messages are asynchronous while others are periodic. The

frequencies of periodic signals are also different for different subsystems in the application. HOSE is adapted to all

these requirements.

2.1.11 Generalization of feedback control concepts

^ believe that the extension of feedback control concepts to higher levels of a control system can result in more

robust and adaptable application software. As an example, consider a manufacturing process as a hierarchical control

problem. We want to manufacture a particular part described by CAD drawing. This drawing may be taken as the

command signal for the manufacturing system. The manufacturing process hardware consists of machine tools that

fabricate various features of the part and material transport systems between the tools. At the highest level of the

system, the feedback signal is a stream of finished part descriptions. The high-level controller uses the feedback

information to modify command streams it generates for sub-processes that fabricate various features of the part.

These sub-processes may, in turn, use feedback loops with abstract data types as signals that describe their desired

behavi(M-. At the lowest levels of the system, real-valued and boolean-valued signal streams operate mechanical

actuators and switches on machine tools, material transport devices and inspection systems.

356

In a more general case, we can view the manufacturing system as a general-purpose part fabrication facility. In this

case, a stream of part descriptions enter the system as a command signal and the controller figures out how to build

the part with the available facilities. For simple part prototypes such systems have already been implemented. The

term desktop manufacturing has been coined to strike an analogy with the revolution already realized in desktop

publishing. To extend the desktop manufacturing concept to multiple tools and processes in an industrial

environment will require software widi unprecedented flexibility and abstraction capacity at all levels of the system.

The extension of feedback control concepts to cell level and factory level automation and the associated difficulties

are considered by [KUM87] and [CAM87].

Researchers at the University of Minnesota have developed and applied competitive feedback processes to control

higher-level robot behaviOT. This work features autonomous mobile robots with embedded controls developed with

HOSE. Representative examples of this work are discussed in |TAL89], [AND90].

The contribution of HOSE towards realizing this concept stems from its ability to support abstract data types in

signal streams and the ability to create hierarchical concurrent control systems. The ability to operate on parallel

processor networks allows a HOSE diagram to be scaled up in complexity to the capacity of the computing

hardware.

2.1.12 Primary objects

The hierarchical deHnition of objects can be any number of levels deep. Eventually a level is reached where an object

is not implemented by a diagram but instead by a sequential language program: This lowest-level object is called a

primary object Figure 4 illustrates a simple primary object that implements a proportional controUec

Gain

\

Command^

Feedback —

Figure 4. Icon for the proportional controller.

Figure 5 shows the source code that implements this primary class. When this module is compiled, the developer

can create any number of Controller instances. Each instance will share the same code, but have its own internal

state variables.

primary Controller ;

var myGain : real ;

method setGain (entry gain : real) ;

begin
myGain := gain

end method

method doit (entry command, feedback : real;

result error: real) ;

begin
error := myGain * (command - feedback)

end method

initialize
myGain := 1.0

end.

Figure 5. Source code for the proportional controller.

ControHar 'Error

357

The source code for a primary object is written in a special superset of Pascal. In addition to the normal Pascal

constructs, a primary class definition contains special method procedures and a set of instance variables. In the

Controller primary definition above, there is one instance variable called myGain and two methods: setGain and doit.

The setGain method has one entry called gedn. The doit method has two mtries: command and feedback. The doit

method also has one result: error. The entry and result parameters for all methods in a jnimary class are associated

with the dataflow terminals displayed on the primary object's icon.

Each processor in the system has a complete set of object code for the methods of every primary class. Each

instance object of a primary class contains only a the set of instance variables defined by the class and some internal

scheduling information. The instance data for all instance objects in a diagram is stored in memory shared by the

parallel processors. It is consequently possible for any processor to execute any method in the context of any

primary object.

2.1.13 Dataflow scheduling

The fundamental unit of computation in HOSE is the execution of a method in the context of a primary object. A
method is ready to run when data samples have arrived for each of the entry parameters declared in the method

declaration. For example in Hgure S, the doit method will run when actual values for the command and feedback

entry variables arrive over connections to the primary object terminals. The terminals of a primary object have the

same names as the formal parameters to the internal methods.

The HOSE scheduler is a specialized real-time kernel that resides in each of the HOSE system processors. The

scheduler executes methods that are ready to run and moves the result data along dataflow connections to other

objects. A priority system can be used by developers to control the behavior of the scheduler: Because a method can

adjust the priority of other methods, it is possible to implement most popular real-time scheduling algorithms.

2.1.14 Object libraries

Users may create their own libraries of primary or composite objects. We have developed an extensive library of

objects to support the implementation of adaptive control systems. Some of the primary objects commonly used are

mathematicsd operators (e.g., add, multiply, square root), waveform generators (e.g., sine, cubic interpolation,

random), servo controllers (e.g., PID, adaptive pole-placement), control system design aids (e.g., root locus,

spectrum analysis), statistical functions (e.g., autocorrelation, linear regression) and signal processing functions

(e.g., digital filtering, adaptive LMS filtering, system identification).

2.2 Typical platform

HOSE has been implemented with high level languages and is consequently portable. Figure 6 shows a VAX
workstation linked with multiple Motorola 68020 processors on the VME bus. A implementation also exists for

the BBN Advanced Computers Butterfly™ parallel processor. The BBN implementation uses the Sun workstation for

editing the dataflow diagrams.

^1
E

T

C
P

c D
VME A

/

D
/

D

H U u 8 Bus D A 0
E
II

K

To a*n*ef«

and
Aclualort

Figure 6. A typical HOSE platform.

358

2.3 Hose applications

2.3.1 Analog computer simulations

A HOSE program is developed and tested using a methodology similar to that used to work with analog computers.

The standard HOSE system is supplied with classes for objects such as integrators, differentiators, summing

amplifiers, and other signal processing components. The simulations found in analog computing or signal

processing textbooks can be implemented in a direct manner as HOSE diagrams.

2.3.2 Complex simulations

Large simulations are difficult to implement on analog computes because there is no means of structuring the

"software" beyond the flat electrical network. In addition, analog computers have one only kind of signal,

represented by voltages or currents in the machine.

HOSE supports type abstractions for diagram structure (classes) and for the data used to represent signals. Higher

level parts of a diagram often use signals that consist of complex programmer-defined data structures. HOSE
diagrams can be used for multiple system levels, in some cases up to the end-user interface. Future extensions of

HOSE will include animated displays and iconic controls to further support end-user £q)plications.

2.3.3 Sensor integration and machine control

Digital interface electronics for sensors and actuators can be added to the bus with the parallel processing hardware.

Special classes describe objects that interface with the external world. For example, a digital to analog converter

may be represented as a HOSE object with a single real valued entry terminal. When a times series of values flows

into this object, it simply converts the values to an integer and deposits them in the converter's output register.

Analog input and output objects may be combined with controller objects to build feedback control networks for any

cmtinuous process.

Similarly, digital input/output devices that control external electronic switches are represented by HOSE objects with

Boolean valued terminals. These objects can be combined with other HOSE components that implement AND
gates, OR gates and other logic devices. The resulting logic diagrams can describe and implement most discrete

control functions, eliminating the need for conventional programmed logic controllers.

2.3.4 Simulations for control development

Engineers using HOSE for real-time control applications can also benefit from HOSE simulation c^abilities. A
simple simulation of the application's hardware can be constructed so the control system can be tested during

develq)ment. When the application hardware becomes available, the simulation object is replaced by an object that

controls the external analog/digital interface. The rest of the diagram remains the same.

2.3.5 Real time diagnostics

The diagnostic technician or developer can examine any part of a machine controller while the system is in

opmtion. If necessary, objects can be connected, disconnected, created or destroyed. A number of graphical tools

have been developed that allow developers to monitor system operations. For example, a digital oscilloscope

object, similar in function to the hardware instrument, can be created and connected anywhere to observe time series

waveforms in a wOTkstation window. The oscilloscope allows the user to scale inputs, change the sweep time or

trace color just like a physical oscilloscope does. Other diagnostic tools include a fast Fourier transform scope,

digital displays and objects that transmit signals external ai^lications.

2.3.6 Control system demonstrations

An important application of HOSE has been in the development of feedback control algorithms and sensor signal

processing. The following examples demonstrate some of the HOSE objects used to implement these algorithms.

The p{q)er [SPAR90] ixesents more complex adaptive control and signal processing examples.

2.3.6.1 A feedback control demonstration

Figure 7 shows the top level HOSE program for a simple feedback control system. A function generator, fg, is

connected to a controller, pidctlr, which is in turn connected to a plant simulation object, plant. In this case, the

plant is a simulation of a one degree of freedom system we want to control. The plant response is connected back to

the feedback input terminal on the controller object The scope object is connected to display the function generator

359

output and the plant response for comparison.

Figure 7. A simple control loop.

The function generator contains an internal queue of segment descriptors. Each segment can have a unique shape and

duration. The external clock attached to the function generator drives the whole program. The clock object emits a

stream of Boolean samples that trigger the function generator to emit the next real-valued sample of the current

segment When a segment is completed, the function generator moves on to the next segment. Additional segment

descriptors can be added to the queue while the clock is running. If the queue becomes exhausted, the output from

the function generator is held at the level of the last sample value.

Figure 8 shows the display screen of the two-channel scope object. A sequence of waveform segments from the

function generator are plotted along with the actual plant response. The scope has terminals to allow adjustments

similar to those found on the electronic technician's oscilloscope. The gain, offset, and time base can be adjusted

while the scope is in operation. On a color workstation each trace may be assigned a different color.

Figure 8. Command (dotted line) and Plant Response (solid line).

Figure 9 shows the implementation of the controller used in figure 7. To obtain this view, the operator selects the

pidctlr icon on the workstation screen using a pointing device (mouse). By "cUcking" the mouse button, the icon

view expands into a full window that shows the internal parts of the controller.

360

Figure 9. The proportional-integral-derivative controller.

2.3.6.2 Adaptive control and signal processing

HOSE has been used extensively for research and development of adaptive control technology. A toolkit of control

and signal processing objects has been created including pole-placement controllers, least-mean-squares process

estimators, dynamic displays for FFT spectra, and dynamic pole-zero plots for system identification. Additional

control and signal processing £^pUcations are discussed in [SPAR90].

2.3.7 Robotics applications

A complete industrial robotics application requires the integration of multi-axis controls with sensors that detect

parts and complex PLC (programmed logic controller) arrays to manage discrete logic aspects of the process.

HOSE can be used to integrate feedback control, sensor fusion, and process level controls in a single software

environment. The following examples will illustrate these techniques

2.3.7.1 A Six axis robot controller

The MTS A200 Robot has six joints driven by rotary hydraulic actuators. In our research program, the analog

controller usually supplied with the robot was replaced by an all-digital controller implemented with HOSE. The

top level diagram for this controller is shown in figure 10 below.

TYPE I robotdeiTi CONTEXT; ayafm

Figure 10. Six axis robot control system.

The entire HOSE diagram required two weeks to develop and test with the simulated robot shown in figure 11. The

simulated robot object was then replaced by a robot interface object that contained digital-to-analog and analog-to-

digital interface objects. The rest of the controller remained the same.

361

TYPE: robot CONTEXT: robotdam ayaton—o ow
vrohpt sail

inp demux

-7
] aatlal p

"

o o ooo

o o ooo
"?^_Mtlj2__J"

_Mcia3__p

o o ooo

t axlaB r

o o ooo

o o ooo
jvjsisr>JsA
"7

1 Mila6 r
"

out

Figure 11. The robot simulator.

In figure 12 below, the jointctlr object has been opened into a window. The input terminals for command and

feedback (labeled cmnd andfdbk) are vector-valued digital signals. For each time sample, an entire vector of real

numbers travels over the connection from the joint function generator to the command entry, cmnd. Similarly,

anoUiOT vector arrives from the robot that contains the actual measured joint angles. This vector enters the feedback

terminal, /<i&it. The demux object breaks the vectors in to separate scale signals and distributes them to six instances

of the PID controller discussed in the previous example. The output signals from each axis controller are then

recombined (multiplexed) and the result is the vector-valued output of the joint controUet

TYPE: Jolntctl CONTEXT: robotdam ayatam

jolntctl -

cmnd

cdanux

fdbk

fdemux

ft
•xlaZ

J—I I I L

0 Otl >

I—I—I

—

V

•xlaS

Figure 12. A six axis controller.

2.3.7.2 The LARS welding robot

The first large scale commercial application using HOSE was the Laser Articulated Robot System developed by

MTS under contract to the Naval Research Laboratory and Penn State University. (Figure 13 below) The LARS
system can track and weld a seam at 200 inches/minute using its vision system without preprogramming. The robot

transports and focuses a 1S,0(X) watt carbon dioxide laser. The HOSE diagram implements direct digital control of

the six-axis robot, processes the vision system data, and coordinates an elaborate network of safety interlocks. The

original implementation used 24 Motorola 68000 processors. A second LARS machine was implemented using

only four 68030 processes. Additional details are presented in [CLEV87].

362

Figure 13. The LARS laser welding robot.

2.3.7.3 Intelligent robot inspection system (IRIS)

The IRIS system implements non-contact inspection of complex three-dimensional parts. A robot manipulator

holds a laser offset gage that measures the distance from the gage head to the part surface. The manipulator also

carries red'o-reflectors for three laser beams that span the distance from the offset gage to a precision reference surface.

These three beams are used in interferrometer cavities to provide very high resolution position information for the

offset gage head.

The HOSE control system implements sensor fusion for the laser offset gage, the tracking system for the

interferrometer beams and feedback control for the six axis robot. The system features end point control. The robot

controller uses information firom the interferometers to position the offset gage. The robot is only required to bring

the offset gage within range of the part surface. Consequently, very accurate part measurements may be obtained

without requiring a high precision robot. IRIS can provide measurement samples from the moving gage at lOOOhz

to an accuracy of .006 mm (.00025 inches) over a Im x Im x Im (3'x3'x3') working envelope. Additional material

on the IRIS system is presented in [CLEV87]

2.3.8 Application to material processing automation

A research project underway at MTS Systems Corporation [WHIT89] seeks to apply advanced control and sensor

integrati(Mi techniques to advanced material processing aiplications.

The nanocrystal formation application (currently under construction at MTS) will produce samples of metal alloys

with extremely fine microstnicture. Figure 14 below is a schematic of the experimental ^paratus. A liquid nitrogen

flUed cold Hnger rotates inside a partially evacuated chamber. Metal vapor from multiple electric evaporators

condenses on tfie cold finger in micro particles. An external actuator drives a scraper that removes the crystals from

the cold fingec The crystals are compressed by another actuator to form the final specimen. Details of this process

are discussed by [FR089]. This example is only intended to illustrate how the top level of a HOSE diagram can

literally reflect the wganization of the ^plication hardware.

363

Rotor

Vacuum ehambor

Evaporator

Vacuum pump

Rnlshed Material

Inart gaa

I CoM fingar

V
\ /

f

Piston

liiililE

Figure 14. Nano-crystalline material fabrication.

Each of the hardware subsystems is represented on the HOSE diagram (Figure IS) by an object that contains a

feedback controller for one process variable. A time series of state vectors enters the diagram from an external data

stream. This vector is demultiplexed into six scalar signals for the sub-process controllers.

The goal of the nanocrystal formation process is to enable material science researchers at MTS to experiment with

the topology of the process control diagram as well as process parameters in an effort to control attributes of the

finished material. The developers of this system are experts in material science. HOSE enables them to utilize high

level control and sensor processing objects in a flexible rapid prototyping environment without the need to confront

details ofconcurrent programming techniques.

TYPE; n«noxt»l CONTEXT; ayatem

Figure 15. Nano-crystallizer control system.

364

3 The iconic user interface

Hierarchical dataflow diagrams provide an intuitive and powerful medium for the design and implementation of

complex control systems. For the end user, however, a application dependent interface must be constructed. The

current popularity of desktop-metaphwe graphics workstations and pers(Mial computers attests to the intuitive power

of the direct manipulation interface. In a direct manipulation interface the end user controls the application through

the interactive manipulation of images that represent objects in the application domain. One of the earliest

applications of object-oriented programming technology was in the user interface to the programming language

Smalltalk. In many respects Smalltalk was (and still is) the cannonical object-oriented language. Larry Teslei

[TES81]. Daniel Ingalls [ING81] and David Robson, [R0B81] present particularly articulate descriptions of object-

oriented systems and the associated user interface principles in their inaugural description of the Smalltalk 80

system. The philosopical motivation for the first Smalltalk implementation is presented by [KAY74]. Three key

key ideas from these seminal woiks are summarized below:

Iconic principle: This is the "WYSIWYG" or What You See is What You Get concept. The {^plication interface

displays the state of the system by direct animated pictorial representations. Command languages and related

techniques that require the end-user to mem(»ize a text-based language are avoided.

Reactive principle: The application is responsive to the user's initiatives at all times and provides immediate

graphical feedback about the current state of the system.

Modeless principle: The application supports a consistent "visual grammar": Similar manipulations perform the

same generic operations no matter what objects are being manipulated. The application is free from distinct modes

in which the user must understand new rules for interaction with different application components.

3.1 Implementation issues

The HOSE programming system has an object-oriented iconic interface that satisfies the above criteria, but this

interface was developed by distinctly non-object oriented methods. (Object-oriented languages suitable for systems

programming were not available to us in 1983.) The effort required to build the gr^hical interface to HOSE was

considerable, and we felt that similar efforts could not be justified for the user interface of a typical custom industrial

automation system.

The value of object-oriented language for iconic control panel development is well established. References

[BHAS86] and [FRE87] are representative. These favorable results convinced us to employ object-oriented

programming for the implementation of our next generation real-time software architecture. Unfortunately, we found

there were no "industrial strength" object-wiented programming tools available. In this context, industrial strength

refers to the following somewhat commercial considerations:

• Graphics quality: Iconic controls on the workstation screen represent hardware knobs, buttons and displays.

The associated mechanical devices are often multi-milhon dollar systems. The end user's only access to this

system is through the graphical interface which will strongly influence their perception of the whole

system's quality.

• Performance: Performance issues are particularly acute for iconic controls that allow the user to adjust

system parameters with the pointing device (mouse). The animated feedback from the iconic control and the

concurrent update of displays that show the state of the system must be very rapid to appease users

accustomed to hardware knobs, buttons and oscilloscopes.

• Portability: We wish to maintain the value of our investment in software and retain freedom to select

alternative computing hardware for future applications. Some of the best realizations of object-oriented user

interface management systems only operate on a single manufacture's workstation. (Most Macintosh

{^plications, fcH* example.)

• Open architecture: It must be possible to efficiently couple external software written with conventional

languages. Performance considerations make the use of conventionally compiled code necessary for some

components of the system.

When we began evaluating potential object-oriented languages in 1981. Smalltalk and object-oriented Lisp systems

were the principle choices. Although we admired many features of these programming environments, they had

several drawbacks as well:

365

• The use of message passing throughout the system down to the lowest level control features limited the

performance of the resulting applications. Complex animated displays were unacceptably slow on

commonly available workstations.

• The memory management systems introduced delays in response to us^ actions. In some object-oriented

environments, garbage collection effectively stopped the user interface for several seconds. This behavior

was unacceptable for the operator panel of an industrial process.

• The memory management software moved objects in memory at unpredictable times. This made it

impossible for external ^plication software to efficiently access large data objects.

• The internal representation of objects required to support memory management was not compatible with

the natural represenation of data used by other language compilers. This limited our ability to use the

object-oriented software as part of an open system architecture.

• Smalltalk (in particular) was an encnmous package and required many months or even years of experience

to utilize its capabilities effectively. We wanted an environment that could be learned by industrial

engineers and application specialists in a reasonable amount of time. The size of the resulting application

was also of concern.

To overcome these difficulties, we developed an object-oriented programming language called Alltalk. The design

objectives for this language include simplicity, portability, high performance, and the ability to communicate with

external appUcations.

3.2 The Alltalk Programming Language

Alltalk is an object-oriented programming language optimized for building iconic control panels for real-time

industrial control systems. The conceptual framework for Alltalk is very similar to that found in other Smalltalk-

derivative languages. All programming, testing and debugging is done in a completely interactive environment that

utilizes the same iconic interface components available to the end-user. Not being exclusively motivated by the

'purist' philosophy of the Smalltalk developers, we found it possible to realize most of our requirements in a small

(80k byte) language interpreter

Alltalk differs from Smalltalk in several important respects:

• Alltalk is a smaller, simpler language with a more conventional syntax. Consequently, it is easier for

programmers to learn and, in our opinion, much easier to read than Smalltalk or the various Lisp dialects.

• Alltalk communicates with other external programs. Through a remote object mechanism, objects and

their associated code can be developed to run on external parallel processors. To the Alltalk programmer,

these objects behave like local objects. (The remote processor communication mechanism is completely

transparent.) Code to implement a remote object class is written in ANSI standard "C."

• Alltalk is itself written in ANSI standard "C" and is consequently very portable. Versions currently exist

forDECA'AX, Apple Macintosh, IBM /PC, and various UNIX systems. Alltalk gr£q)hics primitives are

implemented with the local graphics toolkit of the host workstation. Alltalk gr^hics can be supported by

X Windows (on UNIX or VAX/VMS), Presentation Manager (on IBM PC), or Quickdraw (on the

Macintosh II).

3.2.1 A controller example with Alltalk

It is beyond the scope of this paper to discuss the detailed syntax and semantics of the Alltalk language. The

following example demonstrates the construction of a simple control panel for a servo control loop that runs on an

external digital signal processor. Part of the Alltalk source code that implements this example is presented and

discussed briefly. Readers who are completely unfamiUar with object-oriented programming concepts are urged to

consult the references [GOLD83] and/or [R0B81]. A qualitative understanding of object-oriented programing

concepts is sufficient to understand the example implementation.

366

The dataflow diagram (figure 16) contains a square wave generator,^; a proportional controller, servo; a plant

simulation, biquad, and data acquisition device, buffer. The bi^er object collects a set of sequential time samples

for periodic display or other andysis operations.

fg

frequency

command

feedback

1
gam

servo buffer

i
cutoff

biquad

Figure 16. Control loop with terminal labels.

The objects shown on the diagram execute on a remote signal processor. The signal processor operates as a

coprocessor sharing the bus with the workstation processor. In the Alltalk environment, remote objects are created

as though they were local objects. The following message expressions create the four objects:

fg := SquareWaveGenerator.new.init
servo := ProportionalControl .new. init
biqaud : = BiquadraticFilter . new . init
buffer:- DataSampler .new. init

An Alltalk message expression consists of an object expression followed by one or more messages. Each message

consists of a dot followed by a message selector and, (^tionally, an actual parameter list enclosed in square brackets.

The syntax for Alltalk message expressions is very similar to that used in Object Pascal. [TES8S]

In the first expression above, the variablefg is assigned the value of the message expression that appears on the right

side of the ":=" assignment token. The variable SquareWaveGenerator contains a class. The message .new causes

the class to create an instance object which is returned as the value of the message. The .init message is then sent to

the new instance object to perform certain internal initializations.

The signal processing objects are interconnected to form the illustrated data flow diagram:

fg. output .connect [servo .command]

servo . output . connect [bicpaad . input]

biquad. output .connect [servo. feedback]
biquad. output .connect [buffer. input]

In the first expression above, the .output message is sent to the square wave generator,/;^; which returns a terminal

object. This t^minal object understands the .connect message and establishes a new dataflow connection. The

.connect message has a single actual parameter, the expression servo.command, which specifies the command entry

terminal labeled on the controller diagram, (figure 16)

(In the HOSE environment, the operations required to create and interconnect objects require only manipulations with

the mouse and the diagram displayed in the workstation window. The HOSE object manager generates a script

similar to the expressions above as it communicates with the real time kernel.)

367

The Alltalk control panel in figure 17 is created by the following statements:

scope := ImageRemoteScope .new. init
.at[100,100] .extend[140, 100]

gain := RealKnob. new. init [scope. content]
.at [20, 140] .graduate [80]

.setName ['Gain'

]

.setRange [0 . 0, 3.0]

freq := RealKnob. new. init [ir. content]
.below [gain, 10] .graduate [80]

. setName [
' Freq '] . setUnit s

[
' Hz '

]

.setRange [0.0, 0.1]

plant := RealKnob.new. init [ir. content]
.below [freq, 10] .graduate [80]

. setName [' Plant ']. setUnits [' Hz '

]

.setRange [0.0, 1.0]

EHample 1

Gain 0.637

lOliiil 1

Freq 0.01S

SilBiii llllllillliiHI

Plant 0.02S

illHl

EHample I

Gain 0.225

<^ liii iiiilM
Freq 0.015 Hz

mmMMliiiilH

Plant 0. 112

C^liiHIilllli!!lllliiiliK

Figure 17. Two views of the control panel

The oscilloscope display in figure 17 can show any signal collected by the bi^er object. The gain knob adjusts the

proportional gain of the servo object, adjusts the frequency of the square wave generator, and plant adjusts the

cutoff frequency of the plant simulation object The plant simulation in this example is a biquadratic filter modified

to be a low pass filter.

The iconic interface controls are connected to the remote objects with these messages:

gainKnob . connect [servo. gain]
freqKnob . connect [fg. frequency]
plantKnob . connect [biquad. cutoff

]

scope . connect [buffer]

Finally we activate the objects:

fg. start
servo . start
biquad. start
scope . start

368

The user can operate any of the knobs using the mouse. The display operates continuously while the knobs are

adjusted. (All displays on an Alltalk control panel operate ccHitinuously and concurrently.) In the left panel of figure

17, the scope object displays the output from the biquad object.

New objects can be created either locally or in the remote signal processor at any time. Connections can be added or

changed at any time. It is not necessary to stop an object to alter the connections or send a message, although in

some applications, such as the laser welding robot (section 2.3.7.2), people often feel a need to do so. The

following message will connect the input of the data sampler biffer to the output of the servo object.

servo. output .connect [buffer . input

]

The oscilloscope trace in the right panel of figure 17 now shows the servo output signal.

3.2.2 Software development in Alltalk

Alltalk programming is supported by a graphical interface called the browser (figure 18). The browser allows the

developer to examine the implementation of any class in the system and add, modify, or replace any class or method.

The browser window has three scrolling panes, the upper left pane contains a list of all classes in the system. By
selecting a class with the mouse, the source code for the class and all of its methods are displayed in the larger

bottom pane. The upper right pane shows the selectors for methods in the selected class. By selecting a selector

from this pane, the soiyce pane scrolls to bring the selected method into view. The menus above the source pane

support editing operations and incremental compilation of modified methods or classes. Class Browser is itself

implemented entirely from other Alltalk classes. The developer can create multiple instances of Browser to view

several classes in separate workstation windows. The methodology of programming supported by Alltalk is very

similar to that used in the Smalltalk system. An excellent summary of this interactive style is presented in

[GOLD84].

In figure 18, the browser shows the implementation of class RealKnob, used to make the controls shown in the

control loop example above. A RealKnob inherits most of its behavior from IntegerKnob (not shown). Only two

methods are needed to implement this class, init, and setFormat. The class adds one instance variable,

displayDecimals, to those already inherited from IntegerKnob. See [GOLD83] for a description of the more elaborate

Smalltalk browser, from which we have borrowed many ideas.

Broiuser

D

ModalGctParam
Browsar
lnl«g«rDlsplay
Inlagw-Knob
R«q I D I sp I qg

R«mot«ObJ act
RemotePort

inIt
satFoPMl
lnltUalu«
Chang*

File Edit Searcti Compile hd : a 1 1 la I k 1 1 : w i eiu too I s

CLRSS RealKnob OF IntegerKnob IS

Display, enter t adjust real nuabers
URR

d I sp I ayOec I ma I

s

END CLRSS

METHOD I nIt [parent] IS

BEGIN
super . I n 1 1 [parent 1

self.setFormatl?, 31
sel f .setRangelO.O, 1.01
self.setDisplayd.O, 0.01
self. initUaluetO.Ol

END METHOD

METHOD setFormat [size, decimals] IS

Specify total size in digits
and digits after decimal point.

BEOIN
d I sp I agD

I
g I ts : s I ze

dispiagDecimals :* decimals
END METHOD

t;: I

til t

111!!

E

Figure 18. Browser display for class RealKnob.

369

In Hgure 19 below, the browser displays the source code for the oscilloscope object used in our control

demonstration. This code contains an example of every syntactic construction supported by the Alltalk language.

Further information about Alltalk programming and the associated class libraries may be obtained from [SPAR86].

Broiuser
Menu
PopUpMenu
SiringList
Sir ingC luster
Moda I D i a I og
ModalNotif Ittr

ModalOctParcHR
Browser
IntegerDisploy
IntegerKnob
Rea I D I sp I ay
RealKnob
RewoteObJect
RenotePort
I nageSamp I eTroce

I ikageRemoteScope

InltSIze
chonnel
connect
update

File Edit Search Complie hdralltalk 1 1 :r«mote: ImageSampleScope

CLRSS I nageSomp I eScope OF FrcMieRect IS

I oi* the 'screen' for a Milti-troce oscilloscope.
URR

size,
traces,
channel

END CLASS

t Number of chonnels
I Rrray of channel display data
I Current selected channel

rETHOO in i tS I ze [channels, wide, highl IS
Specify number of channels and
the size of the display.

BEGIN
i , trace

sel f .extendlwide, high!
size
traces
i

channels
flrroy . newU i th (s i ze

]

1

UHILE i <- size 00
trace liiageSampleTrace.nm. Inl t[s«l f. content!

. Inl tSlzelsel f .content.* Id«, sel f. content. highl
traces

.
put [

I
, trace 1

I :- I + 1

ENO UHILE
channe i : = 1

ENO METHOD

NETHOO channel (nl IS

Select a default channel
BEGIN

channel := n
ENO METHOD

METHOD connect taSourcel IS
Attach a data source to the selected chcnnel

.

BEGIN
traces

.
get (channe I) . connect [aSource

]

ENO METHOD

METHOD update IS

Synchronize on channel one, theH redraw
every trace.

BEGIN
IF traces. get (11. done THEN

se I f . content . transform
w I ndow . eraseRec t (se I f . content . bounds

1

traces. forfll I ("update!
END IF

END NETHOO

Figure 19. Implementation of an Oscilloscope.

370

4.1 Summary of results

Our experience has shown that object-oriented programming and development techniques can be applied to industrial

automation applications at multiple levels. At the lowest levels of the system where traditional sequential language

techniques must still be used, we have adopted object-oriented extensions to the C and Pascal programming

languages.

For intermediate levels of the system architecture, we use the HOSE programming system. The graphical dataflow

nature of HOSE makes it especially ^propriate for the description and implementation of complex concurrent

processes on parallel processing hardware.

At the user interface level we use another object-oriented interactive programming environment, Alltalk, which is

optimized for the development of animated iconic control panels for real-time systems. The resulting interface is

reactive, modeless, and easy to tailor for custom {^plications.

^ wish to provide an interactive gr^hical programming environment that will support dataflow diagram editing

tools and a complete toolkit of integrated iconic interface components. The end-user presentation utilizes animated

graphical control panels. Figure 20 below is a schematic representation of our component technologies.

Iconic control panels Data Flow Diagrams

>

ey
O'
Ot

To
Application

Haniwar*

Multiple Digital Signal

Processors

Figure 20. Desktop control system development.

4.2 Future objectives

As figure 20 suggests, we are developing our dataflow language to support execution on multiple digital signal

processors. (The controller example in the previous section used only one external signal processor.) Our current

desktop workstation is the Apple Macintosh II. We use parallel processing hardware installed on the internal NuBus
consisting of one 68020 coprocessor from GreenSpring and multiple Texas Instruments TMS 320C30 floating point

signal processors. A parallel effort at MTS will implement the dataflow kernel and associated Alltalk programming

environment with the Sun SPARC workstaion supervising multiple Motorola 88000 processors on an attached

VME bus. Versions of new primary objects that run on the digital signal processors are being developed with an

object-oriented extension of the C language.

Further integration of the Alltalk and HOSE is also underway. We will support the HOSE diagram editor entirely

with Alltalk control panel objects. This will allow developers to construct dataflow diagrams and iconic controls

within a common user interface framework.

371

Acknowledgements
The author would like to thank the odier members of the HOSE development team, Dave Tillman (the co-inventor

of HOSE) Jay Dougherty, Donna Hall, Shingchi Hsu, Neal Goman, Art Dee, Wayne Olsen, Bill Franks, Gary Tock,

and Warren Persons. The HOSE control system examples were developed by Brad Thoen who is one of the most

creative HOSE users and supporters. The LARS robot HOSE programs were developed by Charles Anderson, Jay

Dougherty, Judy Carmine, Dean Hystad, and Phil Frey. Dawn White and Brad Cleveland, members of the MTS
Advanced Technology Development Division, have provided a stimulating intellectual environment and have

suggested many exciting applications.

References

[ALB87] Albus, J., Hierarchical Control ofIntelligent Machines, Proceedings, Workshop on Space Telerobotics,

JPL Publication 87-13, Vol. 1.

[AND90] Anderson, T. and Donath M., Animal Behavior as a Paradigmfor Developing Robot Autonomy,

Robots and Autonomous Systems, Elsevier, 1990.

[BHAS86] Bhaskar, K.S. and Peckol, J.K., Virtual Instruments: Object Oriented Program Synthesis, Proceedings

of OOPSLA 86, ACM, 1986, pp. 303-314.

[CAM87] Camarinha-Matos, L., and Steiger-Garcao, A., An Information System Architecture for Robot Cell

Programming, Computer Integrated Manufacturing: Status and Challenges, ed. I.B. Turksen, NATO
ASI Series F: Vol. 48, Springer-Verlag, Beriin, 1987.

[CHAT88] Chatham, B. and Sparks, H., Butterfly™HOSE: Graphical Programmingfor Parallel Systems,

Abstracts of IEEE and USENIX Fifth Workshop on Real-Time Software and Operation Systems,

\N^hington, 1988, pp. 75-79.

[CLEV86] Cleveland, B.,"An Intelligent Robotic Inspection System", SME Robotic Solutions in Aerospace

Manufacturing Conference, March 1986.

[CLEV87] Cleveland, B., Tsuchiya, F. and White, D., Sensorsfor Real Time Applications, SME Machine

Monitoring Sensors Conference, April 1986.

[CHIU86] Chiu, S., Morley D., Martin, J., Sensor Data Fusion on a Parallel Processor, IEEE International

Conference on Robotics and Automation, San Francisco, CA., April 1986.

[FRE87] Freburger, K., RAPID: Prototyping Control Panel Interfaces, Proceedings of OOPSLA 87, ACM
1987, pp. 416-422.

[FR089] Froes, E, Suryahanayana, C, Nanocrystalline Metalsfor Structural Applications, Journal of Metals,

June 89, pp.12-17.

[GOLD83] Goldberg, A. and Robson, D., Smalltalk: The Language and Its Implementation, Addison-Wesley,

1983.

[GOLD84] Goldberg, A., The Irrfluence ofan Object-Oriented Language on the Programming Environment, in

Interactive Programming Environments, McGraw-Hill, 1984, pp.141-174.

[HOS 1] HOSE Users Guide, MTS Document #1 17599-00-778, MTS Systems Corporation, 1986.

[H0S2] HOSE Reference Manual, MTS Document #1 17600-00-778, MTS Systems Corporation, 1986.

[ING81] Ingalls, D., Design Principles Behind Smalltalk. Byte, August 198 1 , pp. 286-298.

[KAY74] Kay, A., SMALLTALK, a communication mediumfor children ofall ages. Learning Research Group,

Xerox Palo Alto Research Center, 1974.

[KUM87] Kumar, R., Feedback Control Theory Approachfor Scheduling Flexible Manufacturing Systems,

Computer Integrated Manufacturing: Status and Challenges, ed. I.B. Turksen, NATO ASI Series F:

Vol. 48, Springer-Verlag, Berlin, 1987.

[NAY88] Naylor, A., Volz R., Integration and Flexibility ofSoftwarefor Integrated Manufacturing Systems,

Design and Analysis of Integrated Manufacturing Systems, ed. W.D. Compton, National Academy

Press, Washington, D.C., 1988.

[OSS87] Ossher, H., A Mechanismfor Specifying the Structure ofLarge, Layered Systems, in Research

Directions in Object-Oriented Programming, MIT Press 1987, pp. 219-252.

[ROB81] Robson, D., Object-Oriented Software Systems, Byte, August 1981, pp. 74-86.

[SPAR86] Sparks, H., Introduction to Programming with Alltalk, available through MTS Systems Corporation

Advanced Technology Division.

[SPAR90] Sparks, H. Object Oriented Datcrflow Programming Techniquesfor Industrial Automation, in

Proceedings of Control Expo 90, Chicago, 1990.

(TAL89] Talbot, J., Anderson, T., Donath M., Scarecrow, An Implementation ofBehavioral Control on a

Mobile Robot, Mobile Robots IV, Proceedings of the SPIE, Vol. 1 195, Philadelphia, November,

1989.

[TES81] Tesler, L., The Smalltalk Environment, Byte, August 1981, pp. 90-147.

IWHIT88] White, D., Development of Technology Transfer and Implementation Strategiesfor Intelligent

Processing ofMaterials, Robotics and Computer-Integrated Manufacturing, Vol. 4, No. 3/4, pp. 683-

372

PROF. DR.-ING. ORES. H.C. GUNTER SPUR
DR.-ING. KAI MERTINS

DIPL-ING. WOLFRAM SUSSENGUTH

INTEGRATED INFORMATION MODELLING FOR CIM

1 introduction

Computerized information processing detemnines more and more the integration of manufac-
turing enterprise functions. For that reason infomriation technologies are used as a tool for

organization and operation to support the whole manufacturing process. The division of labour

can be given up in favour of new organization structures guided by the sequences of

entrepreneurial functions /SPU86/ .

The joint effort of users, vendors, consultants and scientists will enable the utilization of the

potentials of infonnation technologies for the industry in a fast and successful way. The essen-
tial tasks towards a enterprise wide usage of information technology are the development of

procedures and methods for CIM-planning and the CIM-introduction as well as the development
of open CIM-architectures. The efforts towards open CIM-architectures are supported by the

work of the German "Kommission CIM" of DIN /D1N87/ (KCIM), founded in 1987, and the

results of the related project titled "Scientific Basics and Support of Standardizing CIM-
Interfaces" which is financed by the German department of R&D. The presented "Integrated

Information Modelling" methodology is an approach to derive a CIM-architecture from a user s

point of view based on different models and modelling methods.

2 The roie of integration in achieving enterprise goals

The goals which could be achieved by the integrative utilization of CIM-components (fig 1)

were also pursued by the introduction of traditional "island" systems. A further improvement is

expected by the integration of entrepreneurial functions using new methods and systems. To
reduce the needed times for the development of products and for the production through-put,

the integration of sequences of functions with less communication interfaces has to be created.

A better meeting of schedules and a higher product quality will be reached by an eariy consid-

eration of all relevant information. A reduction of cost can be expected by a reduction of the

administration of interfaces, by an avoidance of repeated data input and by an increasing of the

transparency of the manufacturing process.

An optimal CIM-system support of the whole manufacturing enterprise can be derived from the

sequences of functions within the enterprise and from the functional requirements of the single

place of work. The information technology should allow an independent formation of the

sequences of operations and of conceptions of organization. The criteria for the development of

manufacturing structures have to be mainly derived from the entrepreneurial goals concerning

the market situation (fig 1) and the production program rather than from the actual capabilities

of CIM-components e.g. capacity, functionality or compatibility. The operational demands onto

an integrated information processing have to be collected in a neutral requirements specifica-

tion from the user's point of view. This specification should enable to derive the software speci-

fication and the implementation of the CIM-System. In this way the designing of the technical

systems will loose its central roie in the planning process, rather it will be only a part of the

whole manufacturing development within an enterprise.

373

goals of enterprise

deriving provWing
mm contribution

goals of manufacturing
facility development,
which can be reached by CIM

n
deriving providing

con^ution

goals of integration

guarantee of long-term profit

increase share of the marltet

social and environment tolerance

competition advantages by

shorter development time

shorter production through-put time

better meeting of schedules

higher product quality

cost reduction

}

flexibility

and

capability of delivery

Integration of functions

integration of data

Introduction and integration of systems

Integration of material flow

Figure 1 : Hierarchy of goals within the CIM-introduction

3 CIM-architecture and manufacturing enterprise modelling

Architecture can be defined as "art of construction" or "style of construction", CIM-architecture

could be interpreted as a "style of constructing" or "designing" the infonnation processing within

a manufacturing enterprise. The application of heterogeneous systems from different vendors

has to be implemented within the architecture. The whole system has to be designed flexible to

be open for prospective enlargements, and to enable the exchange of obsoieted components.
That requires a reference between the application functions and the data of the systems of dif-

ferent vendors, as well as transparency and an easy technical access to the already existing

data within the enterprise. That means, that CIM-components of different vendors not only need
a common architecture in the level of hardware and of protocols, but also concerning the appli-

cation functions, data and data types from the usefs point of view. A uniform understanding of

functions and data and the deduction of the system support out of the requirements description

of the enterprise can be reached by modelling the manufacturing enterprise. In this sense the

model of the manufacturing enterprise and the modelling methodology has to become a part of

an CIM-architecture (fig. 2) .

Today the modelling of different parts of an enterprise is enabled by various methods which are

used for different purposes. The "Integrated Information Modelling" approach will integrate dif-

ferent modelling approaches and will lead the user from a general architecture given by prede-

fined model structures for CIM-implementation to a particular model and architecture of the

system support in his own enterprise.

374

CIM - ARCHITECTURE

Enterprise Modelling

Building Rules of Modelling
Blocks Composition Support

/l\\ //l\\ /l\
(0 CO iS

§11

E

c c >< o •

o o (d '«3 :

CO CO >, S

EE ^o oO O
CO CO

CO

o S ®

Q-oCC
o)

*^ >«.E

CO t-
C Q.
o
o

Implementation

CO

I
<D

CO CO CO CO CO

§§8.8|
COo
CO

2 E I 52 2 ® 2 ^ « iS^ r- »— n VJ —m MC C C Q.

« S £

(0Q

o
c

(0 (0

Figure 2 : Modelling and Implementation as parts of a CIM-architecture

4 Existing modeiiing approaches

4.1 Evaluation criteria and requirements

In the domain of manufacturing enterprise planning and computerized information processing

different modelling methods have been developed. They were compared in cover to their

usability for the enterprise modeiiing and CIM-architecture development. The comparison was
done by three main criteria (fig. 3) :

1 . Represented Subjects.

2. Modelling capabilities.

3. Domain of application.

The represented subiects can be distinguished into functions, data, decisions, time, space
and physical means. Every production system has aspects from each kind of subject but most
of the methods allow only the effective representation of one or two subjects.

Modelling capabilities were detennined by the kinds of models which were represented or

produced, by the description method and by the provision of a structured proceeding. Some
approaches provide only a static frame model others provide description means and a struc-

tured proceeding for the generation of particular models. Within some of the approaches these

particular models are only a static descriptions of the reality within others a runtime model can
be generated and simulated.

375

Represented
Subleets

ModeHtng
capabilities

Domain ol

Functions

Data

Decisions

Time
Space
Physical Means

Model
• Frame Model
• Description Models

• Run-time models/Simulation

Description
• Hierarchy

• Recursion

Language • Composition/Decomposition

• Application oriented Constructs

• EDP-Tool availabe

Structured Proceeding

Requirements Specification: Information flow

Requirements Specification: Material flow

Software Engineering

Interface and- und Data Descripiton

Figure 3 : Evaluation criteria for modelling approaches for CIM

The domain of aPDilcatlon is given by different purposes of modelling. Within the CIM plan-

ning and development two main levels of modelling can be distinguished (fig. 4) . The first is the

definition of requirements by modelling the enterprise from the user's point of view. The aim of

this task is to clarify and to specify the requirements for the enterprise information processing

and the coresponding technical components. The second level is the design and development
of software for CIM-components. Other domains of application of powerful modelling

approaches are the description of interfaces as well as the planning of material flow systems.

Analysis

Requirements
Definition

Requirements
Specification

Design

Architectural

Design
Detailed

Design

CIM - System Development

Figure 4 : Levels of Modelling

376

General requirements for modelling methods for CIM are:

- A complete representation of all relevant elements, processes and features of a
manufacturing enterprise.

- Realistic models and a simple modelling, so that it is easier for the users to partici-

pate with in the planning process.

- The integrated usage of the modelling methods for the requirements specification,

for the software design and for the implementation.

4.2 Comparison

Table 1 shows the comparison of important modelling methodologies from different application

domains. The following discussion concems some methodologies and models which were
developed for the CIM-planning and development.

At the end of the seventies the IDEF modelling language was developed within the ICAM-pro-
gram in the U.S.A.. It is based on the SADT-method and was primarily used in the aircraft

industry. Other models followed using this or a similar method. The common basic approach is

a functional description of the manufacturing enterprise and the description of the data relations

between the functions. The models mainly differ in branches and in areas of production, in

which they were applicated, as well as in the degree of detail and the capability of functions on
the lowest level of degree. In 1984 Harrington /HAR85/ formed a functional model of the man-
ufacturing process including four main functions and 18 different singular functions in four levels

of hierarchy.

For the analysis of manufacturing enterprises, the determination of integration potentials and for

data storage approaches a functional reference model of industrial production was developed
at the Centre for Production Technology in Beriin /DUE86. MER88/ using the SADT-method.
The essential requirement was the independence of the model from the influence of various

operational characteristics such as area of application, manufacturer's field, production quantity

and product complexity. It includes seven main functions in the so called AO-level which were
detailed over 4 levels into 70 singular functions.

In the frame of the ESPRIT program further modelling approaches were pursued by the pro-

jects "Design Rules for CIM Systems" /YE084/. "CIM-OSA" (Open System Architecture)

/AMI88/. and "OPEN CAM System". In 1984, within the "Design-Rules" Project 16 "elementary

production functions" were described with the flow chart technique to lay down the

requirements for CIM building blocks. The description considered functions as well as data. The
usage of the flow chart technique leads to a restriction in the degree of detail.

In the CIM OSA project 21 project partners have been working on an European CIM-architec-

ture since 1985. CIM-OSA released a framewori< for the development of an open CIM-archi-

tecture and an IDEF-based functional modelling method and announced several methods for

other modelling purposes as well as prototypes of an integrating infrastructure. The mentioned
framework was the main input for the draft ENV "Framework for modelling" worked out by the

CENCENEC/AMT/WG-Architecture /CEN90/. The framework includes

377

I'

ill

' 1+

73
<UU
c
3
O
c

n
£5

(5

(0

©
CO

CO

Io
n
CO
*^
3w
"O
<DO
3m
T3
93

(0

(5

I

*^
3
(0

1

s s

u. o o p

g

i

Q.

u. o cc

f

1

f i

I< UJ

s

S Eo _n n

1 s

I s

S 8
1 if ? w

c o
•D

S
ia a>

c c c
^ § UJ

es s

II
)ut||epov^

uieoioa

Table 1 : Comparison of modelling approaches

378

- three levels of modelling: (User) requirements, (system) design and implementation,

- three levels of genericity of models: generic building blocks, partial models and par-

ticular models,

- and four views onto the model: the function view, the information view, the resource

view and the organizational view.

Up to now it is an empty framework without any building blocks or methods. CIM OSA and
other institutes and companies are making proposals for the "filling of the framework" with

methods, constructs and partial models.

Another modelling approach is the definition of a "Product Model". The "Product Model" in the

sense of Krause /KRA86/ represents a logical structure for all relevant data and methods of the

product by definition of information layers. Each layer represents a semantical complete part of

the whole product information. Within the STEP-standardization work /ISO/ different partial

models of a product model were developed and were brought into the standardization work.

The "Product Model" approach is more data concerned than the approaches mentioned before.

A more vendor related modelling approach was presented by Digital Equipment in 1986 as a
"CIM-architecture" /FLA86/ . Goal of this CIM architecture was to decouple the four functions of

the data processing (in-/output; processing; storage and transfer) by defined interfaces, proto-

cols and "handlers" from each other as well as from operating systems and hardware. In each
of the layers the technology could be adapted to the state of the art without changing the tech-

nology in the other layers.

Summing up. it can be marked, that most of the approaches deal with functions and data
structures or one of them. Other aspects are were in some approaches. Concerning to the

description of functions a method similar to the IDEF-method is used mostly. A practical appli-

cability of this method is provided by a simultaneous computer aided support only. Further on,

main aspects for the planning of CIM-systems are unconsidered within the most approaches,

such as

- a quantitative modelling of the data exchange,
- a modelling of concun-ent processes,
- a modelling of the time aspects within a system,
- and the relation of functions to the objects of the systems.

The approach of the product model lays an emphasis onto the structuring of data and methods
for product development and design. By an extension towards a "resource model" and a
"control model" it will be possible to consider the infonnations within the manufacturing enter-

prise in their entirety.

Based on this situation the "Integrated Infomnation Modelling" approach will be introduced next.

It tries to show a solution for an integrative modelling of functions and informations of CIM-sys-
tems as well as providing a platform for the interlinking of methodologies which cover other

aspects.

379

5 Integrated information modelling

5.1 Classes of objects In a manufacturing enterprise

In systems theory functional, hierarchical and stnjcturai concepts were distinguished. A system
is separated from its surroundings by a "system border". Those things that cross the border

were called the "operands" of a system. Systemtheoretical descriptions of machine tools and
manufacturing systems distinguish traditionally three kinds of operands /SPU72/ by their

constitution :

- material.

- information,

- energy.

For the modelling of the material flow and the manufacturing process some approaches
/AMI88. IS089/ make the basic distinction into

- material,

- infonpation,

- resources.

This distinction assumes that the material processing is the main task in manufacturing and
information and resources were needed for this. For a wider view there is a problem: infonna-

tion itself can be a product and needs resources and control to be processed, othenvise also

information can be a resource, too. Therefore it seems useful to differentiate the operands by
another criteria. The "Integrated Information Modelling" approach distinguishes the operands of

a manufacturing enterprise by their Intended purpose into

- products,
- orders,

- resources

.

Within this distinction products and resources can consist of material, information or energy.

Orders only consist of infomiation. Fig. 5 shows that the distinction by constitution and by the

intended purpose are two views onto the same operands. The distinction into material, informa-

tion and resources mingles the two views and doesn't fit into fig. 5.

The three kinds of operands lead to the main classes of objects in a manufacturing enterprise

from the user's point of view. The objects of each class have a specific generic structure,

means it is possible to predefine a frame for their structural and functional behavior. Within the

modelling process of a real enterprise the real objects have to be related to one of these three

classes.

5.2 Activities in a manufacturing enterprise

Everything that happens in a manufacturing enterprise as part of the manufacturing process

can be described by activities. For the modelling purpose a generic activity model is defined in

respect to /IS089/ . The content of an activity includes in particular depends on the level of

detailing within the modelling process.

380

Operands
of the System ;

'Mfg. Enterprise":

distinguished by Constitution

0>
0)
o
Q.

3
Q.

•o
0>

c
o

>•

•o
0)
JZ
m
3
O)

i"0

PfOdMCtS

Physical

Components of

the Products

Infbmiational

Components

of the Products

(Description of

Products)

Production

of Energy

Orders

Order to execute

an Activity

Resources

Physical

Resources
- Machines
- Computer

Infomiational

Resources

- Knowriedge

• Skills

Energy

Human Resources

Fioure 5 : Operands of the system "manufacturing enterprise"

in general activities process and modify objects which were classified above into products,

orders and resources. In fig 6 the modified objects are represented by arrows from the left to

the right. For the execution of the activities there are two perquisites:

1 . An Order to execute the activity. The order is represented by an arrow from the top.

Orders for the execution of activities (anow from the top) come either from outside of

the system or have to be generated for that purpose by another activity. While
modelling this activity the order has to be represented as an anow coming out of the

activity blocl< pointing to the right because this object "order" was generated or

changed.

2. Resources which are capable of executing the activity. Normally several resources

are necessary. The resources that execute an activity are represented by an arrow
from below. Resources for the execution of activities (arrow from below) come either

from outside the system or have to be provided for that purpose by another activity.

Modelling this activity the resource has to be represented as an arrow from the left

through the activity blocl^ because it is an object which was processed by this

activity.

Within the modelling process three levels of representation of activities are differed as shown in

fig 6: action, function and the complete activity. This allows modelling on different levels of

particularity.

381

Order

Objects

to be

processed

(Status n)

Product

(Status n)

Resource

(Status n)

5^

Order
that stimulates the Resource
to execute the Activity

Action

Order

(Status n-t-1)

Product

(Status n-fl)

Resource
TStaEsnTTy"

leveJ of description:

Action Function Compiete Activity

sAcUoo Action

Resource
that executes the Activity

• physical Resource
- Knowledge

processed

Objects

Figure 6 : Generic activity model

The definition of the three object classes and the generic activity model provide the basic con-

structs for the generation of particular manufacturing enterprise models. In order to provide a
modelling method a detailed specification of the constructs and a structure for their integration

to a manufacturing enterprise model are needed.

5.3 Kernel of a manufacturing enterprise model

5.3.1 General

The kernel of the enterprise model will be derived from the classes of the objects and from the

generic activity model. Two main views onto this kernel can be distinguished: the function

model and the information model (fig. 7) . Both views are interiinked by using the same objects

and activities but they represent them in different ways and different grades of detail and differ-

ent context. An extension towards other views will be possible, the way to achieve this will be
shown later.

5.3.2 Function model

The functional model represents the reality of the manufacturing enterprise by the information

processing activities and their logical and temporal interiinking. According to /HAR85/ also the

activities of the flow of material and processing of material are able to be represented as infor-

mations, for example the execution of work plans or NC-programs.

382

Functions
Methods
Execution of

Functions by
Data Processing

Data

View View

I Function Model Information Model

AetlvHiet and their Sequence*

I

which will be executed for

How the Aetlvletiec were

\ executed Is giveit by method*

Obieet* In the

menufacturing enterprlee

and their Characlerletic*

ActlvHIe* by which they
were clwnged

Kernel of the Enterprise Model

Figure 7 : Kernel of the enterprise model

For the first structuring of the function model only the functions and not the complete activities

should be represented. That means the process of "changing the objects" is the main task first,

(the arrows from above and below are faded out). The functions could be used in a hierarchical

way differing the grade of detail.

In general three levels of modelling are differed: function elements, sequences of functions and
partial autonomic units.

The function elements represent thlB discrete steps in processing the objects within the manu-
facturing process. It seems possible to derive a lot of function elements from different perspec-

tives and to them as a general standard. These predefined function elements could be provided

to the user who has to complete them for modelling his particular enterprise.

The sequences and interiinking of functions could only be described sometimes in a general

way. Using them within the modelling of a particular enterprise they have to be modified by
using the defined function elements.

The definition of standardizable function elements and sequences of functions enables an uni-

fonn understanding about a wide field of application systems. For example the order control in

a whole enterprise could be modelled by a set of function elements.

The description of partially autonomic factory units as a conclusion of functions and their inter-

383

linking to larger networks is useful for the separated modelling of areas of an enterprise if a
defined interface concerning functions, decisions and responsibility could be found. These units

should represent the scope for decisions which are autonomous workable within a larger enter-

prise.

The development of particular function models has to be extended by the order and resource

flow, the analysis of concurrence of functions and their correlated influence. To that simulation

and other methods have to be used.

5.3.2 Information model

The structure of the objects within the "Integrated Infomiation Modelling" will use the main fea-

tures of "object oriented" approaches: the close relation between functions and data of an
object, inheritance and the class concept. Further a fully hierarchical modelling of objects has to

be enabled.

The collection and structuring of the data of all objects which were identified within the

modelling process lead to a particular enterprise information model. For this purpose a struc-

turing frame for the representation of the relevant data in manufacturing enterprises is needed.

The distinction into the three classes of objects and their generic internal structure yields a pre-

defined structure of the enterprise information model. Three submodels, the product model, the

control model and the resource model were defined (fig 8) . The internal structure of the

C^roduct ModeP^

integrated

ENTERPRISE INFORMATION
MODEL

C;^^ftSCHjrce Model

Figure 8 : Enterprise Information hAo6e\

submodels is represented by layers which enable a grouping of the data of the objects by dif-

384

ferent criteria. This approacli is similar to the concept of the STEP partial models for product

data.

The information model approach enables to change from a EDP-system orientated data stor-

age to a data storage which is related to the main objects of the manufacturing process. The
independence of data from a specific EDP-system secures the extension and interchangeability

between several systems. A particular enterprise infomriation model will provide the precondi-

tions for a general use of data bases and support the perception of priorities within data

exchange.

The first step for the development of a particular infonnation model of an enterprise is the cata-

loging of data and their related objects in "data dictionaries" as a uniform list of contents. Differ-

ent kinds of lists were defined in the layers of the enterprise information model. The complete

information model will be generated by relating the data of the different objects. Examples for

relations are workpiece to workplan or NC-program to machine (logical), customs order to pro-

duction order; bill of material for design to bill of material for production (temporal and organiza-

tional). Further references to related functions or to methods of objects in the function model
have to be established and defined.

5.4 Integration of other models

As pointed out in chapter 4 nearly all modelling approaches use functions and data within their

models and methods. The definition of oblects which integrate functions and data provides

the kernel of the manufacturing enterprise model as pointed out above. On this common basis

the integration of other modelling methods and models could be achieved if the additional

methods use the same functions and data as defined in the kernel model. In this way additional

models could be derived from the kernel model as well as the kernel could be generated by the

additional models.

To clarify this main feature of the "Integrated Infomiation Modelling" concept in the next chapter

a reference model for the enterprise related CIM-planning and introduction will be presented as

an example.

6 Reference model for enterprise related CIM-planning and introduction

The enterprise related CIM-planning and introduction is characterized by some problems the

reference model should help to solve. Only two should be mentioned:

- The initiative for the introduction of new CIM-components comes out from the dif-

ferent departments of an enterprise. Within those proposal normally only the

requirements of the particular department were considered. Requirements which

came out of a view of the whole enterprise were faded out.

- In the process of CIM-planning and introduction many people are involved. They
need a common description of the whole CIM-concept to work into the same direc-

tion.

The reference model provides a structured description of the CIM-system support over the

whole enterprise as well as relevant additional information. It provides a description of the CIM-
status and should be used for the phase of analysis as well as for the different future stages of

realization up to the target solution. The reference model for the CIM-planning and introduction

385

is based on the distinction of three general levels of consideration,

- the level Qf the functions of the manufacturing enterprise from the usefs point of

view,

- the level of functions of data processing functions, i.e. processing, storage and
retrieval, and transport of data,

- and the level of information technology that realizes the data processing functions.

The model comprises eight layers, which represent the interiinked fields of design within the

enterprise related CIM-planning /SPU88. SPU89. SPU90/ (fig 9) .

Figure 9 : Reference model for enterprise related CIM-planning and introduction

The layers "functions" and "data" are derived from the manufacturing enterprise. They repre-

sent the manufacturing process itself and the required infonnation processing independent from

the technical solutions. They are equivalent to the kernel of the enterprise model presented

above.

The layers "application systems", "data storage", "networks" and "hardware" are the technical

fields of development within the CIM-planning. They represent the technical solution. The
description of these subjects is also closely related to the first two layers respective to the ker-

nel of the enterprise model. E.g. the "data storage" layer includes the relation of the data stor-

age systems to the data as well as rules for the rights to access or modify the data and the

responsibilities for the retaining.

The layers "organization units" and "staff and qualification" are non technical fields of design,

386

which have to be worked out simultaneously to the other fields. These layers contain additional

items and subjects about the addressed aspects. All descriptions are related to the functions

and data In the first two layers, that means to the kernel of the enterprise model.

All layers have to be designed by qualified methods. The tube through them shows the interde-

pendency between them. It is implemented by the objects with their functions and data. The
CIM-planning process nonnally starts with the functions and their organization. But also the

existing conditions in the other levels are part of the planning. Restrictions conceming the tech-

nical capabilities and the historical growth of the enterprise have to be considered. These
demands for the planning process caused by the mutual influences of the different layers could

be handled in an efficient way by using the interlinked layers of the reference model.

This example shows how the kemel of the manufacturing enterprise model was extended by
additional represented subjects, with an additional method for an additional purpose. In the

same principle way several other models can be integrated into a common enterprise model.

7 Conclusion

The "Integrated Information Modelling" approach was developed for the integration of the dif-

ferent partial projects of the KCIM-project which will be continued until 1 992. The essential dif-

ference in relation to other modelling approaches is the object orientation with its definition of

three main object classes. The future work is detemiined mainly by the development and eval-

uation of the object structure to enable the deriving of infonnation models by modelling the

objects.

Another field of work is the definition of the relevant function elements, methods for their execu-

tion and data interfaces within the different domains of the manufacturing process. This work is

done by some partial projects of the KCIM-project. The "Integrated Infonnation Modelling" and
the generic function elements could provide a common basis for the standardization of software

for the computer integrated manufacturing, that means for the implementation of open CIM-
architectures.

387

References

AMICE Proj, Team:

CEN/CENELEC:

DIN-Fachbericht15:

Duelen, G.

Seliger, G.
Merlins, K,

Sussenguth, W.;

u.a.:

CIM-OSA: Reference Architecture

Specification. AMICE-Consortium
Bruxelles 1987.

Framework for Modelling. Draft European
Prestandard (ENV). DOC:
CEN/CENELEC/AMT/WG-ARC 1989-80,

Denmark 1990.

Normung von Schnittstellen fiir die

rechnerintegrierte Produktion (CIM).

Berlin, Kdin: Beuth Verlag 1987.

CIM-Grundsatzuntersuchung.

Unveroffentlichte Studie.

IPK 1986

Flatau, U.:

Harrington, J.R.

ISO:

Digital's CIM-Architecture, Rev. 1.1.

Digital Equipment Corporation,

arlboro, MA U.S.A., April 1986.

Understanding the Manufacturing Process.

Key to Successful CAD/CAM Implementation.

Marcel Dekker, inc: 1984.

TC 184/SC4/WG1 DOC N 210.

STEP

ISO TC 184/SC5 DOC N 148, Technical Report:

Reference Model for Shop Floor Production, Part 1

.

Krause, F.-L

Mertins, K.;

Sussenguth, W.;

u.a.:

Fortgeschrittene Konstruktionstechnik

durch neue Softwarestrukturen.

Vortrage des Produktionstechnischen

Kolloquiums: Berlin PTK "86. Wien: 1986

In Meins, W. (Hrsg): Handbuch Ferti-

gungs- und Betriebstechnik.

Organisation und Planung rechner-

integrierter Betriebsstmkturen CIM.
Wiesbaden: Vieweg 1988.

388

Schwarz, K.

Spur, G.

Spur, G.:

Spur, G.;

Mertins, K.;

Sussenguth. W.

Spur. G.;

Mertins, K.;

Sussenguth. W.

Spur, G.;

Mertins. K.;

Sussenguth, W.

Sussenguth, W.
Jochem, R.

Rabe, M
Bals, B

Wieneke, B.

Manufacturing Message Specification (MMS).
Die offene Verstandigung verteilter Systeme in der

industriellen Automation, ISO DIS 9506, Karlsruhe 1988.

Optimierung der Fertigungssystems

Werkzeugmaschine. Munchen, Wien:

Carl Hanser Veriag, 1972.

CIM - die informationstechnische

Herausforderung. Tagungsband zum
Produktionstechnischen Kolloquium

Berlin. Fraunhofer-lnstitut fur

Produktionsanlagen und Konstruktions-

technik (IRK), Berlin 1986.

Wege zu einem untemehmensspezifischen
Referenzmodell der rechnerintegrierten

Fertigung. ZwF 83 (1988) 10, S. 481-485.

Integrierte Informationsmodellierung

fur offene CIM-Architekturen. CIM-
Management 2/89, S. 36-42. Munchen:
Oldenbourg, 1989.

CIM Management fur Planung und
Realisiemng. lO-Management 6/90

Zurich. 1990.

An Object Oriented Analysis and Design Methodology
for Computer Integrated Manufacturing Systems.

Proceedings TOOLS *89. November. 13-15, 1989.

CNIT Paris. France.

Rechnerunterstiitztes Planungssystem zur

Auslegung von Fertigungsanlagen.

Munchen: 1987

Yeomans. R.W.;

u.a.:

Design Rules for Computer Integrated

Manufacturing Systems. Project-

dokumentation ESPRIT-Projekt 34, 1984.

389

A Systems Theoretic View of Computer Integrated

Manufacturing

Frank P.M. Biemans and Chris A. Vissers

March 12, 1990

Abstract
The global and specific characteristics of a CIM architecture have far reaching consequences

for the general health of the production organization that applies the architecture. A theory is

therefore needed to design "good" CIM architectures.

We argue that good CIM architectures specify unambiguously, at a high level of abstraction,

and in generic terms a production organization as a configuration of components, while allowing

us to understand how the components affect the performance of the production organization as

a whole.

We demonstrate a theory to design such CIM architectures for a production organization

that, in addition to realizing production targets, can honor requests to change its product

portfolio, production capacity, or production costs.

1 Introduction

We all witness the frequent publication of CIM architectures. The abundance of distinct archi-

tectures [AMBF83,PW78,Coh88,SME88,NBS85,BV89,JM84,IS086] and the typical absence of any

justification for a specific proposal may suggest that any CIM architecture is vi^orkable and that

no justification is required. However, as we hope to show, the specifics of a CIM architecture do

have far reaching consequences for the general health of the production organization that applies

the architecture. A theory is therefore needed to design a "good" CIM architecture and to assess

its "quality". This paper describes and demonstrates such a theory.

To demonstrate that the specifics of an architecture do matter, we discuss some of the undesir-

able effects of typical CIM architectures observed in practice or published in literature. We then

develop an explicit statement regarding the purpose of a CIM architecture and the criteria that

it should satisfy -a statement that is noticeably absent in the majority of the proposals for CIM
architectures. We then introduce an approach to develop a CIM architecture that satisfies the

proposed purpose and criteria. Finally, we demonstrate the approach. First, we review in detail

the development of a CIM architecture of a "Cell/Line", a component of a production organization.

Second, we review the major steps taken to develop a CIM architecture for an entire production

organization.

2 Properties of CIM architectures

Let us temporarily assume that the purpose of an "architecture" is to show how a production orga-

nization can be controlled. In other words, an architecture is a design that, when fully implemented,

390

will allow a production organization to adequately respond to its production targets.

A common, though not universal [Bak89], denominator of CIM architectures is their hierar-

chical structure of "controllers". These controllers execute various manufacturing planning and

control tasks and are interconnected so that they can exchange messages. Controllers at the bot-

tom of the hierarchy steer equipment, whereas controllers at higher levels of the architecture are

concerned with "higher level" tasks such as "planning". This is roughly where the commonality of

many architectures ends; their specific characteristics are different. We will review some of these

specific characteristics and show how they affect the effectiveness, flexibility, and complexity of the

architecture.

2.1 Allocation of tasks

Let us investigate the effects of the distribution of tasks across levels in the hierarchy of a CIM
architecture. Consider the situation illustrated in Figure 1. A transport system connects multiple

workstations. Parts enter the transport system and are transported to some assembly workstations.

Subsequently, they are transported to a couple of workstations to undergo quality tests. If any of

these tests is negative, they are transported to a repair workstation and, then, to a test workstation

again. If all tests of a part are positive, it exits the transport system.

Assembly Test

n n n n mm
UUUU
workstation

transport system

u uu
Repair

Produce Part A

Transport Control

System

Part

Test
result

Workstation

Control System

Figure 1: A production line and its control system

Let us now consider a control architecture, illustrated at the bottom of Figure 1, for the system

just described. As Figure 1 illustrates, each workstation has its own control system that allows it

to recognize a part and to execute a pre-determined operation on the part. The transport system

has its own control system as well. This control system accepts commands to produce (final) parts,

determines which workstation each part has to visit, and steers the conveyor belts to bring parts

to their destination. It also accepts information about the part quality from tost workstations and

can thus decide whether to transport a part to a repair workstation, to a test workstation, or to

391

the exit point of the transport system.

With this control architecture, parts will get processed, tested, and possibly repaired. However,

the architecture imposes a rigid control scheme, incapable of flexibly accommodating changes in

products, operations, or layout. We discuss three causes of the limited flexibility.

1. The transport control system selects the "route" of workstations for a part. As a result,

changes in products, operations, and workstations cannot be isolated from the transport

control system. The interdependencies of changes will discourage the making of changes at

all and thus limit the flexibility of the entire production organization. Consider, for example,

the introduction of a new product. It is inevitable that some workstations be re-programmed

to execute the new operations. But, due to the proposed architecture, the modifications

cannot be limited to the workstations; the transport system has to be instructed about the

route of the new products, and, if the workstations have to be re-balanced, about the changed

routes of the existing products.

Similarly, the transport system has to be informed if a workstation's position is changed, or

if a workstation is modified to execute new operations.

2. A workstation has to recognize a part to execute a pre-determined operation. Consequently,

the part type determines which operation is executed; a workstation cannot be asked to

execute a specific operation on a part. Thus, it cannot, for example, be asked to populate a

bare Printed Circiiit Board with one set components, or, with another set of components, to

produce different PCBs depending on their demand.

Similarly, it is not possible to select a workstation or operation for a part on the basis of

the current load to the workstations. The transport system, which selects workstations and

operations, has no information about the load and capacity of the workstations.

Also, the fact that each workstation has to recognize a part to determine which operation

should be executed implies that each workstation has to be equipped with part recognition

capabilities, such as bar code readers. This can be quite expensive. Moreover, a workstation

cannot start an operation before a part has arrived. Hence, it cannot start changing tools

before a part has arrived to reduce the effective idle time when it has to change over to other

parts.

3. The transport system needs to be informed about the test results by a few, specific worksta-

tions. As a result, the transport control system has to be updated if the location of a test

workstation changes.

The disadvantages listed above are caused by the specific allocation of tasks to the components

of the control system. Consider the control system illustrated in Figure 2, which has a different

allocation of tasks. In this case, the workstations execute the operation that is explicitly requested

rather than the operation that is implied by the type of arriving parts. A workstation accepts

a request to execute operations on certain parts and processes the parts as requested when they

arrive. The transport system is much like a workstation: it transports parts from one location to

another on the basis of explicit requests. The responsibility to select the route of parts and the

operations and to request for operations and transportation is allocated to a third control system,

the coordinator.

392

Produce Part A

Coordinator

Operation X
ready

Test result/^

Operation X
on Part Y ^

Part arrived^ at B from A

Transport
from A to B

Worl^station Part and Transport Workstation

Control System
Part-ID

Control System Control System

Figure 2: Alternative, more flexible control system

The transport control system reports whether a part has reached location B from A. The

workstation control system reports whether an operation is ready, and may report test results.

Transport system and workstation can exchange parts and can provide the recipient of a part with

the part identification. For each part, and depending on test results and on the operations that

the part has undergone already, the coordinator determines which workstation a part should visit

and which operation it should undergo.

In this control system, the effects of various changes are limited. Changes in the layout of the

transport system primarily affect the transport control system, changes in operations primarily

affect the workstation control system, and changes in the routes of parts primarily affect the

coordinator.

Let us quickly contrast this control system with the one described earlier. To introduce a new

part, the coordinating controller has to be instructed which operations the part should undergo and

at which workstation. But the transport system need not be changed at all; it continues to transport

parts, on request, from location A to B. Further, the transport system is insensitive to changes in

the operations executed by workstations due to the absence of operation dependent interactions

of transport system and workstations. A workstation can also execute multiple operations on a

part depending on the commands it gets. Moreover, the coordinator can select workstations and

operations depending on the load of transport system and workstations since it is informed about

their status and can give commands at the latest possible moment. If alternative operations exist for

a part, the coordinator can select one of them and command a workstation to execute the selected

operation. To continue the enumeration of advantages of the control system, it is not necessary

that each workstation has part recognition equipment. The reason is that the workstations and

transport system can track the parts when they travel through their own domain and communicate

the part identification when they exchange the parts. Further, a workstation that receives an

operation command before a part arrives, can already start the necessary change over procedures.

Finally, it is not required to update the transport system if the test workstation is relocated since

the all workstations interact with the transport system in a similar manner irrespective of their

position and operations.

393

We conclude that the architecture of Figure 2 is less complex and more flexible than the one of

Figure 1. This is largely caused by the specific allocation of tasks in the architectures. Given the

formidable, inherent complexity of manufacturing control, we cannot afford CIM architectures that

introduce unnecessary complexity.

2.2 Precision of architecture definitions

A CIM architecture is supposed to prescribe how a production organization can be controlled. The

architecture is to be interpreted and implemented to build a real, say computerized, control system.

Obviously, the architecture need to be defined unambiguously, lest different interpretations lead to

incompatible control systems. And yet, many published architectures are far from precise. They

assign, for example, "long-term planning" and "short term planning" to different control levels.

But what is long term or short term? And what is to be planned? Undoubtedly, these questions

will be answered differently by different factories, or, for that matter, by different people in the

same factory.

CIM architectures have to be unambiguously defined to be practically relevant.

2.3 Generality of a CIM architecture

One could argue that the definitions of long term and short term, discussed in the previous Section,

could easily be made more precise. Long and short term, for example, could be defined as referring

to planning horizons longer and shorter than one month respectively. However, such definitions

have a limited applicability: different factories use different horizons, depending on the products

they make, the markets they serve, etc.

By contrast, consider the distinction between "production planning" and "scheduling", whereby

production planning is pro-active and scheduling reactive with respect to demands for parts. Pro-

duction planning occurs on the basis of stochastic forecasts of demand. The purpose of production

planning is to determine which jobs should be executed to create inventories of intermediate parts.

These inventories help a production organization dispatch products quickly if the forecast demands

materialize. Thus, production planning is characterized by balancing the risks of being unable to

satisfy demand and of producing undesirable inventories. It is a pro-active measure to prepare a

production organization for expected request for parts. By contrast, scheduling is reactive with

respect to requests for parts. Scheduling occurs on the basis of deterministic demand, i.e. the jobs,

which have been selected as a result of the production planning. It amounts to planning which

workstations to use, when, and for which operations to realize those jobs in time. It is not relevant

whether a job is executed to realize firm or forecast demand; it has to be executed as a result of

the production planning decisions. The purpose of the scheduling is to realize the jobs timely and

efficiently.

The distinction between pro-active and reactive planning is more generic than the distinction

of long and short term planning. CIM architectures should be specified generically to ensure their

applicability across different production organizations or to ensure their applicability in a single

production organization, which is likely to change over time.

394

2.4 Level of abstraction of a CIM architecture

Architectures can be described at several levels of abstraction. The level of abstraction should

always be stated, lest the architecture be interpreted wrongly. Take the architecture illustrated in

Figure 2. Unless their level of abstraction is explicitly defined, the boxes in this Figure could be

interpreted as abstract decision making processes, as physical computers, or human beings, etc.

Abstract decision making processes are described by their function or task, irrespective of their

physical implementation. They can be physically implemented in numerous ways, depending, for

example, on the required costs and performance of eventual physical system. To illustrate the

concept of abstraction, consider a factory. One can view it as an abstract process, accepting raw

materials and production targets, and dispatching products. One can also view it as a physical

system, i.e. as a building with equipment.

Both, descriptions of abstract functionality and physical implementation, pay an important role

in the design of systems. But, the functionality has to be established before a physical implementa-

tion can be undertaken [BB82,Bro75]. Abstract CIM architectures, describing control components

in terms of their tasks and interactions, should form the basis for a physical implementation of a

control system.

We have discussed the relevance of specific characteristics of CIM architectures. However,

many publications propose different architectures without justifying why certain characteristics

were chosen to be different. This may be caused by a lack of theory addressing the purpose of a

CIM architecture, the criteria it should satisfy, and strategies to develop one.

3 Purpose of a CIM architecture

We propose to focus on the "integrated manufacturing" of "CIM" when defining the purpose

of a CIM architecture. In other words, the purpose of a CIM architecture is to show how a

production organization can be integrated, i.e. composed of components. A CIM architecture

should describe a production organization as a configuration of interacting components and show

how these components affect the performance of the overall production organization.

The above purpose of a CIM architecture is practically relevant. What ultimately counts is the

"bottom line", overall performance of a production organization, say, the variety and frequency

of the production targets that it can realize. Such performance measures apply to a production

organization as a black box, as illustrated in Figure 3. But how to realize the overall performance

targets? A production organization is an intricate fabric of many people and systems with a variety

of responsibilities in materials management, product design, scheduling, etc. It is not clear how

their individual behavior, or the improvement thereof, affects the performance of a production

organization as a whole. An architecture is therefore needed that shows how the components relate

to the whole.

To illustrate the difficulty of controlling a production organization so that all its components

harmoniously contribute to the overall organization, let us discuss one of the many coordination

problems in a production organization. Typically, the maintenance department is encouraged to

frequently halt a machine for service whereas the foreman is encouraged to skip maintenance so

that the machine is longer available for production. Thus, a conflict of interest exists between

maintenance and production. Local improvements of maintenance or production will intensify the

395

Commercial
Planning Department

Actual production^

Material requirements

Actual sales

Production targets

(firm or forecast)

Sales targets

(firm or forecast)

Production Sales
Raw
materials

Products Products
Organization Organization

Figure 3: Production organization as a black box

conflict and, most likely, will not fully contribute to improvements of the production organization

as a whole. Coordination problems, like the one discussed, are not readily visible but, nevertheless,

can lead to damaging sub optimizations.

In addition to coordination problems, production organizations suffer from the fact that it

is often difficult to assess whether local improvements pay off for the entire organization. Take

the improvement of a warehouse so that its response time to dispatch-requests be reduced. This

improvement may fail to improve the performance of the production organization as a whole if

it leads to increased output of the warehouse that causes congestion of production lines and that

therefore increases the overall throughput time.

To summarize, one of the essential problems in improving the overall efficiency and flexibility of

production organizations is to determine how local control activities affect the overall organization.

A CIM Architecture that reveals the effect of local control activities on the overall performance of

a production organization would be most useful.

To further de-emphasize the use of computers and to adhere to international terminology [IS083],

we refer to a CIM architecture as a "Reference Model for a Production Organization".

Level of Abstraction. As mentioned before, we focus on the required function or task of

a production organization and its components before considering their physical implementation.

A Reference Model should, therefore, depict a production organization in terms of a structure of

interacting components and in terms of the tasks of these components.

Note that an "abstract" Reference Model can be used in multiple ways. It can be used, for exam-

ple, £us a specification of the functionality of a computerized factory control system; an implementa-

tion process should produce the eventual physical system. A Reference Model, describing tasks and

information flows in a production organization, can also be viewed as a normative template of a

non-automated or partially automated production organization, which, while unlikely to be fully

implemented, can serve as a reference for the evolution of existing organizations or as a basis for

their evaluation [ea89,CMvS+88].

396

Scope. We should also define the scope of a Reference Model. What is the system for

which a Reference Model needs to be designed? In this paper, we take the black box production

organization depicted in Figure 3 as our scope.

4 A systematic approach to design a Reference Model

A Reference Model should show how components of a production organization affect the overall

production organization. We should, therefore, first determine the required task of the overall

organization and then identify components that can cooperate to realize the overall task.

Black Box Production Organization. With reference to Figure 3, we can describe

the overall task of a production organization in terms of its interactions with its environment.

It negotiates with a Commercial Planning Department to establish firm and forecast production

targets. It outlines its material requirements, reports about the progress of the actual production,

accepts raw materials, and dispatches products according to the production targets.

Decomposition. To identify the components of the production organization, we have to

decompose the overall organization [Bie89]. A black box as depicted in Figure 3 can be decomposed

in numerous ways. However, we are only interested in decompositions that yield an easy to un-

derstand configuration of components since the result of the decomposition, the Reference Model,

should allow us to understand how components affect the production organization as a whole.

Interaction patterns of components can become very complex depending on the structure of

the decomposed system. We should therefore pursue decompositions that produce systems with

components that can be viewed as distinct entities in the context of the overall system. Such

systems have a 'natural' structure and therefore the conceptual integrity and unity of viewpoint

that allows a human to master them as a whole despite its complexity [BB82].

Separation of Concerns. To obtain a structure with distinct components, we apply the

orthogonality concept: separate independent concerns [Par72,VL86]. Relatively independent tasks

require different kinds of information, except for the moments that information is to be shared

through interaction. Such tasks can thus be assigned to distinct components that interact sparingly.

Separation of concerns tends to be a difficult design activity. The decomposition should not

deprive certain components of information needed to do their tasks. Separation of concerns therefore

requires a deep insight as to whether certain information is relevant for certain tasks. To assess

the relevance of particular information for particular tasks, one needs to know how these tasks are

executed and how they affect each other. Typical text books, which discuss such tasks as inventory

management, scheduling, product design, and process planning, in isolation rather than in each

other's context are of little help.

To identify the tasks to be executed by system components, we should analyze the interactions

of a system and its environment: which tasks should be executed to generate and process the

information exchanged in the interactions?

Interaction. Decomposition is intimately linked with "interaction" since the components of

a decomposed system interact to realize the overall task. We use "interaction" in a non-traditional

397

way. It does not refer to the traditional input-output concept but denotes, in more abstract terms,

mutual exertion of influence. In an interaction, system components negotiate to establish values

that satisfy their private constraints [Bri85]. However, we abstract from these negotiations and

describe interactions in terms of their results, the established values shared by all components

involved. Take the production target interaction illustrated in Figure 3. This interaction estab-

lishes production targets that are agreed upon by the production organization and the commercial

planning department; it does not reveal any negotiation that leads to these targets. If required,

one could describe the negotiations explicitly by replacing abstract interactions with more detailed

interactions.

We will now illustrate the approach to develop a Reference Model.

5 Illustration of the approach

Rather than discussing the decomposition of an entire production organization, we discuss the

decomposition of a component of a production organization, a "Cell/Line", in some detail.

Cell/Line. We define a Cell/Line as a component of a production organization that can

accept commands to execute jobs in certain time slots. Jobs are material processing activities that

lead to the assembly, disassembly, storage, or dispatch of parts. The parts needed to execute a job

ought to be available for a Cell/Line at the beginning of the time slot in which it has to execute the

job. They may be supplied from outside the Cell/Line, or may be kept in storage by the Cell/Line

itself. Figure 4 illustrates a Cell/Line.

Progress Report

(Parts produced
or exchanged) Operation Command

(Jobs and alloted time slots)

Parts Parts

n Cell/Line

Figure 4: A Cell/Line

A Cell/Line may be requested to execute a variety of jobs to process different parts, in different

quantities, and in different time slots. We require that a Cell/Line can commit to certain jobs: its

acceptance of a command to execute a certain job in a certain time slot implies a commitment to

realize the job. Table 1 lists some interactions that allow one to command a Cell/Line to execute

certain jobs and to retrieve information about the progress of the execution of jobs. The Operation

398

Command interaction of Table 1 establishes a commitment to execute a job in a certain time slot,

but does not reveal the negotiations of Cell/Line that lead to this commitment.

Interaction Arguments Explanation

Operation-

Command
Parts, Partner

Parts

Parts, Partner

Parts

Time-slot

Command-Id

Accept parts from a sender (e.g. another Cell/Line or Supplier),

and parts already in stock, and transform them into

parts to be dispatched to a receiver,

rind narts to keen in stork

in a time-slot.

Identification for future reference.

Progress-

Report

Progress

Command-Id
Parts, Partner

Parts

Parts, Partner

Parts

Time-Slot

Report about the progress of the execution (for example

'completed', 'busy', or 'waiting'.)

of a previously-received command.

Which parts have been accepted from a sender, and

together with parts already in stock

been transformed into parts dispatched to receivers, and

parts kept in stock,

in a time-slot.

Table 1: Interactions of a Cell/Line

Note that a Cell/Line as discussed here is not just a collection of machines. Rather, it is an

abstract "black box" that provides a service, i.e. the execution of jobs. We do not know yet how

this black box will be internally constructed. It is reasonable, of course, to assume that the physical

machines will be among its components, but it will also contain components responsible for the

coordination of those machines.

Analysis of Interactions. We now analyze the interactions of a Cell/Line and its envi-

ronment to identify which relatively independent tasks the Cell/Line should execute. We focus

on the ability of a Cell/Line to accommodate requests to produce varying types and quantities of

materials, in varying time slots.

To execute jobs, a Cell/Line needs resources that can process material. We call the material

processing activities of these resources "operations". Consider two assumptions regarding these

resources:

1. multiple resources are utilized to execute a job so that resources process material and pass it

to another resource for further processing; and

2. most resources can execute several operations.

Such resources would allow a Cell/Line to be efficient and flexible. Efficient, because it can combine

the operations of relatively few resources to execute a relatively large number of different jobs.

Flexible, because it can exploit the versatility of the resources to accommodate varying kinds of

jobs.

To actually realize the potential efficiency and flexibility, however, the Cell/Line has to schedule

the operations, i.e. determine which operation should be executed, when, and by which resource.

Note that we view an "operation" as a material processing activity that can be scheduled in a useful

399

manner; it cannot be split into material processing sub activities that can be scheduled in a more

useful manner.

Separation of Concerns. A natural division of tasks presents itself, i.e. the scheduling and

execution of operations. We could thus envision a Cell/Line consisting of two kinds of components.

A first kind of component accepts requests to execute jobs, determines which operations are to

be executed to realize a job, and schedules the operations. A second kind of component executes

the operations. Let us now explore whether scheduling and execution of operations are sufficiently

independent to be separated.

A component given the responsibility to schedule operations, would need to know the:

• jobs to be executed, and their time slots;

• availability, capacity, and capability of resources;

• availability of parts; and

• costs and precedence relations of operations.

Some of these data tend to vary slowly during the time a Cell/Line has to execute a job.

Consider, for example, the:

• precedence relations of operations, which depend on the design of parts;

• costs of operations, which primarily depend on the material characteristics of parts and on

the technological implementation of the resources; and

• capacity and capability of resources, which primarily depend on the technological implementa-

tion of the resources and material characteristics of parts.

Because they change relatively slowly, these data can be viewed as given constraints for the Cell-

/Line component that has to schedule operations rather than as data to be provided by other

components.

By contrast, the list of jobs to be executed and their time slots may change more often since

new jobs may be requested at any time. Similarly, the availability of parts and resources cannot

be viewed as given constraints during the generation of a schedule. These availabilities depend

on the timing and allocation of operations, and therefore on the generation of a schedule. More-

over, resources may fail to produce the required materials so that it is important that the actual

availability of materials and resources be known when generating or executing a schedule.

To conclude, if a Cell/Line component were to schedule operations, it would have to consider

the jobs to be executed, have to schedule operations to realize these jobs, and have to be informed

whether execution of the schedule results in the desired availability of parts and resources. We
concluded earlier that an operation should be viewed as a unit to be scheduled; splitting the

operations and scheduling the split operations has no effect on the performance of a Cell/Line.

It is therefore not important to know how an operation is executed, which sub tasks realise an

operation, to be able to schedule it. Consequently, the scheduling task can be separated from

the task to execute operations provided that the execution of operations results in information

regarding the availability of parts and resources. Hence, we have identified the following, relatively

independent, globally defined Cell/Line tasks:

400

• Scheduling of Operations: determine which operations on parts should be executed, by

which resource, and when to realize jobs in committed time slots; and

• Execution of Operations: accept parts, execute operations on them, dispatch the processed

parts, and report about the availability of parts and resources.

Decomposition. Applying the techniques discussed in Section 4, we decompose a Cell/Line

into two distinct components and assign the relatively independent scheduling and execution tasks

to them. We call these components "Cell/Line Controller" and "Workstation" respectively.

Figure 5 illustrates how Cell/Line Controller and Workstations constitute a Cell/Line. Table 2

lists some interactions of Cell/Line Controller and Workstations. These interactions allow a Cell-

/Line Controller to command a Workstation to execute a given operation and also to acquire the

information regarding the availability of materials and workstations.

Progress Report

(Parts produced
or exchanged) Operation Command

(Jobs and alloted time slots)

Avaiiabiiity of parts

and Workstations

Parts

"i Ceii/Line ^Cell/Line
| |

Workstation
Controller

Figure 5: Internal organization of a Cell/Line

Note that operation commands for a Workstation, unlike those for a Cell/Line, do not contain

time slots as parameters. The reason is that the duration of an operation can be predicted with

a reasonable accuracy. Once materials and Workstation are available, the operation can start and

takes a more or less given amount of time. By contrast, the time it takes a Cell/Line to realize a job

depends on the way it schedules operations. The schedule will be different each time a Cell/Line

has to execute a different combination of jobs. Hence, it cannot simply be assumed that a job be

executed in a given amount of time. Rather, the time slot for a job need to be established explicitly

when the Cell/Line accepts a command to execute the job.

General Requirements for Cell/Line Controllers. The scheduling task of a Cell/Line

Controller may imply a variety of siib tasks to ensure that operations be executed by Workstations

as scheduled. We developed specifications for a Cell/Line Controller [BS89], for example, that

can ensure that the flow of parts such as screws, picture tubes, and coils, is coordinated with the

flow of parts with which they are to be assembled; determine the sizes of batches and series of

401

Interaction Arguments Explanation

Operation-

Command
Parts, Partner

Parts

Parts, Partner

Parts

Command-Id

Command to accept parts from a sender

and together with parts in stock

transform them into parts to be dispatched to a receiver

and parts to keep in stock,

Command identity for future reference.

Progress-

Report

Progress

Command-Id
Parts, Partner

Parts

Parts, Partner

Parts

Report about the progress (for example 'com-

pleted', 'waiting', or 'busy'.)

of a command:

which parts accepted from a sender,

and which parts in stock were

transformed into parts dispatched to a receiver

and parts kept in stock.

Table 2: Interactions of Cell/Line Controller and Workstation

parts processed by Workstations; determine which of the parts waiting for a Workstation should be

processed first; determine when the execution of a job should start; determine whether parts that

fail tests executed by Workstations should be repaired by repair Workstations; ensure that 'buffer

Workstations' contain sufficient parts.

Note that the Cell/Line Controller is an abstract system. We have not determined whether it

should be a computer or a human or a hybrid solution. The eventual Cell/Line Controller would look

different depending on the solution being pursued. Computerized solutions may need, for example,

interactive Gantt charts and a wide variety of displays of performance measures for alternative

schedules to allow humans to override the schedules proposed by the Cell/Line Controller.

Layout of Workstations. As described in Reference [Bie89], a production organization

may have multiple Cell/Lines. They should be able to execute their jobs independently from each

other: the capacity of one Cell/Line to execute jobs should not be affected by the execution of

jobs by another Cell/Line. In reality, however, Cell/Lines do affect each other's capacity since they

exchange parts. Nevertheless, the required independence can be realized if Cell/Lines exchange

parts only sparingly. The Workstations of a Cell/Line should therefore form 'self-contained' groups,

which exchange parts amongst themselves much more frequently than with Workstations of other

groups.

The relative frequency with which Workstations exchange parts should therefore determine

whether they belong to the same Cell/Line. In practice, however, it is often assumed that the

geographical configuration of Workstations determines whether they are grouped together in Cell-

/Lines [PW85].

We have seen situations as illustrated in Figure 6, where Workstations were allocated to the

same Cell/Line because they were located in the same room. However, the Workstations within

one room did not exchange parts; parts visited Workstations in different rooms. Hence, it would

make more sense to allocate the Workstations that exchange parts to one Cell/Line, despite the

fact that they are in different rooms.

402

C >T1 [Di D O

s-e-a

D A a D D
g c a o o a

« D a B-e-e
[p
a a Q >

n Workstation Part exchange

The left picture shows Workstations that are grouped together for environmental rea-

sons. They have, for example, different requirements regarding the cleanliness of the air,

like in Integrated Circuit manufacturing facilities. The right picture shows Workstations

that are grouped together because they exchange parts frequently.

Figure 6: Self-contained groups of workstations exchanging parts, be they

geographically close or dispersed.

We have reviewed the development of a Reference Model for a Cell/Line. The model has a

natural structure, is generic, abstract, and precise, and therefore meets the requirements discussed

earlier in this paper. The model also shows how components of a Cell/Line affect the behavior of a

Cell/Line as a whole. The strategy applied to develop a Reference Model for a Cell/Line, i.e. the

analysis of interactions, decomposition, and separation of concerns, can also be applied to develop

a Reference Model for an entire production line.

6 A Reference Model for an entire production organization

We have applied the design techniques discussed above to develop a Reference Model for an entire

production organization [Bie89]. We briefly review the result and provide pointers to detailed

descriptions.

To cope with the formidable complexity of a production organization, we designed the Reference

Model in two phases. First, we made a simplifying assumption that the production organization

can only manufacture products according to a given set of production targets. This 'basic' produc-

tion organization, already illustrated in Figure 3, cannot change its product portfolio, production

capacity, or production costs.

Second, we developed a Reference Model for a 'flexible' production organization. A flexible

production organization, illustrated in Figure 7, has adaptive capabilities to change the way it

executes its basic tasks. Thus, it can honor requests to change its product portfolio, production

capacity, or production costs.

As we will explain later, a Reference Model for a basic production organization is a spring-board

403

Commercial
Planning Department

Actual production

Material requirements

Actual product portfolio

Actual production capacity

Actual production costs

Production targets

(firm or forecast)

Proposed product portfolio

Proposed production capacity

Proposed production costs

Production
Organization

Raw
materials

Products

Figure 7: A flexible production organization

for the design of a Reference Model for a flexible production organization.

Reference Model for a Basic Production Organization. Application of the design

techniques discussed in Section 4 to the black box production organization illustrated in Figure 3

leads to the Reference Model illustrated in Figure 8. Note that this Figure merely illustrates the

Reference Model; the Model itself is ^described extensively in reference [Bie89].

As Figure 8 illustrates, the Reference Model portrays a basic production organization as a

layered structure of 'controllers', which are concurrently operational and negotiate through inter-

actions. Each controller (e.g. Factory Controller) views the components (e.g. Cell/Line) below it

as a black box; it does not need to know the internal structure of these components (e.g. Cell/Line

Controller and Workstations).

The Reference Model distinguishes controllers on the basis of their tasks. Its structure is generic

because the analysis used to develop the structure did not assume any specific characteristic of a

specific production organization, or specific products. Similarly, the task definitions are generic.

They only describe the most essential characteristics of the controllers' tasks.

To summarize, the Reference Model provides us with a mental image of the decision making

apparatus that constitutes a production organization. The model is abstract and generic. Due to

its abstraction, it focuses on the decision making in a production organization rather than on the

physical means that can make these decisions. Due to its generic nature, it can be used to model

a wide variety of production organizations.

To model a specific production organization, we must choose specific tasks and structure for

the controllers of the model without violating the generic constraints. We choose specific tasks by

defining how they are executed. We choose a specific structure by defining how many controllers

exist at each layer and which controllers may interact.

But choosing the specific tasks and structure is an important decision making process in pro-

duction organizations that have modify their capacity or product portfolio to adapt to changing

market requirements. This kind of decision making is not modeled in the Reference Model for basic

404

C0^4TROL
LEVEL

CONTROL
SERVICE

TASK OF CONTROUER EXAMPLES OF
COMMANDS

EXAMPLES OF
REPORTS

FACTORY
CONTROLLER

CELULINE
CONTROLLER

WORKSTATION
CONTROLLER

AUTOMATION
MODULE

CONTROLLER

devk:e
controller

SENSOR OR
ACTUATOR

1

dispatch

products

at due
dates

plan production -which

items to process in

which time slot- to dis-

patch products timely

process

item in

allotted

time slot

schedule when.where
which operations are

executed on parts

execute

opera-

tion

on part

coordinate the

execution of proces-

sing steps on objects

to realise operations

execute

proces-

sing step

on object

determine required

paths of joint variables,

which describe the

state of effectors

follow

joint

path

issue control signals so

that joint variables

are servoed by physical

parameters

modulate

physical

para-

meters

dispatch radios

d at day e to f.

I

radios c dls-

patched to d.

1
process boards

g between day

hand I.

e boards (made.

put components

h,l,] on board k.

quality board f

Is ok

I

1

1

t
move object m
to n, max

pressure o.

object with

dimensions g,h

at 1.

i

1

1

t
change Joint angle

ptoq.

line segment at k

with velocity
J.

control signal

to motor.
video frames.

sensing tasks, services omitted.

Figure 8: Reference model of a basic production organization at a glance

production organizations; it will be part of the Reference Model for flexible production organiza-

tions.

Flexible Production Organization. A flexible production organization has to honor re-

quests for changes in its "application", i.e. its product portfolio, production capacity, or production

costs. Like a basic production organization, it should execute the basic manufacturing task, the

manufacturing of products in a given application. However, unlike a basic production organization,

it should also be able to adapt the way it executes the basic task to requirements imposed by

changing applications.

A natural separation of concerns presents itself: the concern to execute the basic manufacturing

task and the concern to adapt the way this task is executed. We assign the responsibilities for these

concerns to an "Executor" and a "Manager" respectively. The Manager and Executor interact

to adjust the way the Executor performs its basic manufacturing task. We will discuss their

interactions in a moment.

Structure of an Executor. The structure of an Executor and the structure of a basic

production organization, illustrated in Figure 8, could well resemble each other. The reason is that

both. Executor and basic production organization, execute the basic manufacturing task. However,

405

the Executor's structure has to be adjusted specifically for each application, whereas the structure

of a basic production organization is a generic one. It is generic in the sense that it does not

presuppose a specific configuration, apart from the layered configuration of controllers, or specific

tasks, apart from the global characteristics of the tasks. As Figure 9 illustrates, we therefore

propose that the Executor exhibit the generic characteristics of a basic production organization,

but allows the Manager to make application-dependent adjustments in its configuration and tasks.

Commercial Planning Department

Actual production^

Material requirements

Actual product portfolio

Actual production capacity

Actual production costs

Firm or forecast production targets

Proposed product portfolio

Proposed production capacity

Proposed production costs

r Flexible Production Organization

Manager

Adjustments

in tasks &
configuration

Monitoring

Factory

Controller Executor

Cell/Line

Controller Executor

Workstation

Controller Executor

Automation Module

Controller Executor

Device

Controller Executor

Sensor/Actuator

Executor

Executor

Raw materials

Products

Figure 9: Flexible production organization existing of Manager and Executor

Adjustments in Configuration. A Manager can change an Executor's configuration by

adding or removing controllers and by giving each controller a "configuration description", which

tells it with which other controllers it may interact.

Adjustments in Tasks. A Manager can change the way an Executor controller executes its

406

task by providing it with "control procedures". A control procedure defines which steps a controller

should realize in a given situation and which Executor components it may use as resources for the

execution of those steps. Think of a scheduling procedure, telling a Cell/Line Controller how it

should determine the sequence of operations for its Workstations.

Monitoring. We have discussed the Manager's adjustments in the Executor's configuration

and tasks. To assess the effects of its adjustments on the Executor's ability to operate efficiently

in a designated application, and to decide whether re-adjustments are needed, the Manager should

also observe the Executor by "monitoring" it.

Figure 9 still portrays the Manager as a single, monolithic component. We can decompose

this component further, using the design techniques explained in Section 4. Figure 10 shows an

intermediate result of the decomposition. The Manager has been decomposed into four components,

i.e. a:

• Master Planner, which determines whether production targets are feasible, or whether

product portfolio, production capacity, or production costs can be modified by:

— providing the Product&process Developer with product specifications and requests to

develop process plans and Automation Modules so that these products can be made;

and

— providing the Executor Supervisor with specifications of the required Executor.

• Product&process Developer, which can develop process plans on the basis of product

specifications and develop Automation Modules required to execute the selected process plans;

• Executor Supervisor, which can modify the Executor on the basis of the specifications

from the Master Planner.

• Monitor, which provides information about the performance of Executor components.

This concludes the overview of the development of a Reference Model for a flexible production

organization. We have demonstrated how the techniques introduced in Sections 4 can be used to

develop, step by step, a Reference Model that meets the criteria discussed throughout this paper.

The model describes relatively simple components of a production organization and meanwhile

allows us to keep sight of the relations of these components and of the relations of the components

and the organization as a whole.

7 Conclusion

A CIM architecture describes a design of a control system for a production organization. To allow

an effective and successful implementation this design should not unnecessarily complicate the

manufacturing control, should be specified unambiguously, at a high level of abstraction, and in

generic terms. Typically, architectures fail to meet these requirements. This is probably caused by

a lack of theory addressing the purpose of a CIM architecture, the criteria it should satisfy, and

strategies to develop one.

407

Commercial Planning Department

Actual production'

Material requirements

Actual product portfolio

Actual production capacity

Actual production costs

Firm or forecast production targets

Proposed product portfolio

Proposed production capacity

Proposed production costs

Master Planner

I

Product spec.

I Required

Autom. Mods.

Process plan

Specification of

required Executor

Actual Executor

and its performance

Firm or forecast

production targets

Product&
Process

Developer

Automation

Modules
< ^ Supervisor

I

Configuration

descriptions

Control

procedures

Controllers
4 >

Actual

production

Material

p requirements!

Executor

Performance

measurements

Monitor

Flexible Production Organization

Products

Raw materials

Figure 10: Components constituting a flexible production organization

We proposed that CIM architectures be developed to describe a production organization as a

configuration of components in such a way that they allow us to understand how the components

affect the behavior of the production organization as a whole. A CIM architecture should therefore

have a "natural structure", i.e. a structure with the conceptual integrity that allows a human to

master a production organization as a whole despite its inherent complexity.

We introduced an approach to develop a CIM architecture with a natural structure. This

approach relies heavily on the orthogonality concept: allocate independent concerns to distinct

components. We have demonstrated the approach by developing a CIM architecture for a flexible

production organization, which in addition to responding to production targets, can honor requests

to change its product portfolio, production capacity, and production costs.

The resulting architecture has found wide-spread application in a diversified, international,

electronics company. The architecture is used as a company standard [nBII+89], copies of which

have been requested by more than 2500 senior managers in product divisions. The architecture

has also been used by "efficiency squads" as a template for the analysis of existing production

organizations [ea89,CMvS"'"88]. Finally, the architecture has been successfully used as a high level

design for the development of computerized control systems [WROO].

408

References

[AMBF83] J. Albus, C. McLean, A. Barbara, and M. Fitzgerald. Hierarchical Control for Robots

in an Automated Factory. In 13th ISIR/Robots 7 Symposium, 1983.

[Bak89] J. Bakker. DFMS: Architecture and Implementation of a Distributed Control System

for FMS. Ph.D. Thesis, Delft University, 1989.

[BB82] G. Blaauw and F. Brooks. Computer Architecture, 1982. lecture notes, Twente Uni-

versity of Technology, The Netherlands, and University of North Carolina at Chapel

Hill.

[BBH+89] J. Beukeboom, F. Biemans, C. Hehl, S. Sjoerdsma, and H. van Veen. CAM Reference

Model-version 2.0. Technical report, Philips, CFT-Rep. 01/89, 1989.

[Bie89] F. Biemans. A Reference Model for Manufacturing Planning and Control. 1989. Ph.D.

thesis Twente University of Technology, ISBN 90-9002961-3.

[Bri85] H. Brinksma. A Tuturial on LOTOS. In M. Diaz, editor, Proc. of. the IFIP WG 6.1

5th. Int. Workshop on Protocol Specification, Testing and Verification. North- Holland,

1985. also published as: Provisional LOTOS tutorial ISO/TC 97/SC 21 N.

[Bro75] F. Brooks. The Mythical Man-Month. Addsion-Wesley, Reading, Mass., New York,

1975.

[BS89] F. Biemans and S. Sjoerdsma. Functional Specifications for a Cell/Line Controller-to

be published. Technical report. Philips Laboratories-BriarcliiT, 1989.

[BV89] F. Biemans and C. Vissers. A Reference Model for Manufacturing Planning and Control

Systems. Journal of Manufacturing Systems, Vol 8, No 1989.

[CMvS+88] M. Curley, M. Moor, W. van Schaik, P. Trouwen, and A. Wiersma. CAM Architecture

for BU Display Components. Technical report, Philips, proprietary information, 1988.

[Coh88] G. Cohen. Main Components of a Computer-Integrated Manufacturing Reference

Model. CIM Review, pages 28-36, 1988.

[ea89] R. Beukeboom et al. CAM-SKE 90, CAM and Sector Control, PHILIPS, proprietary

information, 1989.

[IS083] ISO/TC97/SC16. Information Processing Systems, Open Systems Interconnection,

Basic Reference Model, International Standard ISO/IS 7498. Technical report, ISO,

1983.

[IS086] ISO/TC184/SC5/WG1. The Ottawa Report on Reference Models, version 0.1. Tech-

nical report, 1986.

[JM84] A. Jones and C. McClean. A Cell Control System for the AMRF. In Proc. 19S4 ASME
International Computers in Engineering Conference, Las Vegas, Nevada, August, 1984,

1984.

409

[NBS85] Proc. on Factory Standards Model Conference. National Bureau of Standards, Wash-

ington D.C., 1985.

[Par72] D. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules. CACM,
15(12), 1972.

[PW78] H. Van Dyke Parunak and J. White. A Synthesis of Factory Reference Models. In

Proc. IEEE Workshop on Languages for Automation, Vienna, Austria, August 1987,

1978.

[PW85] H. Pels and J. Wortman. Decomposition of Information Systems for Production Man-

agement. In Proc. of IFJP W.G. 5.7 Working Conference on Decentralized Production

Management Systems, 1985. also published in 'Computers In Industry' Vol.6, Nr. 6,

pp. 435-453.

[SME88] Cell Controllers. Society for Manufacturing Engineers and its Computer and Auto-

mated Systems Association, April 26-27, 1988.

[VL86] C. Vissers and L. Logrippo. The Importance of the Service Concept in the Design of

Data Communication Protocols. In M. Diaz, editor, Proc. of. the IFIP WG 6.1 Int.

Workshop on Protocol Specification, Testing and Verification, pages 3-17, 1986.

[WB90] R. Wendorf and F. Biemans. Structured Development of a Generic Workstation

Controller. In Proc. CIMCON '90, International Conference on CIM Architecture,

1990.

410

STRUCTURED DEVELOPMENT OF A GENERIC
WORKSTATION CONTROLLER

ROLI G. WENDORF FRANK P. M. BIEMANS

Abstract

Developing CIM controllers is a complicated design activity. It requires mastery of the

formidable complexity of manufeu:turing environments as well as of the hardware and software

components required to build the controllers. We discuss system engineering techniques that

can be applied to structure this complexity into manageable design phases.

The starting point is a conceptual design of a factory wide CIM system, which describes, in

manufacturing terminology, the tasks, information requirements, and performance requirements

of a suite of CIM controllers. Formal, structured techniques are then available for translating

the conceptual description of controllers to their detailed requirement specifications, design, and

computer based implementation. We demonstrate the translation techniques by reviewing the

development of a particular CIM component, a Workstation Controller, currently in industrial

use.

1 Introduction

Many commercially available factory controllers for CIM provide computer solutions for indus-

trial automation: general purpose computer systems which have been tailored for the factory

environment with real-time operating systems, graphics support, and a large number of I/O

ports [AB87,Soc88]. While such platforms are useful ingredients of a CIM system, they do not

relieve the user of the burden of developing complex manufacturing control solutions. Developing

such CIM applications is difficult, since it requires a rare combination of skills: mastery of the

formidable complexity of manufacturing, as well as system engineering.

We participated in a company-wide program to develop a suite of CIM controllers. Unlike

the compu/er solutions mentioned above, these controllers provide manufacturing con^ro/ solutions:

application software to control a transport system, control a warehouse, schedule operations, etc.

The programming effort required by the user to tailor these controllers for specific factories is

minimal. The controllers have other advantages as well. For example, user interactions with the

controllers use manufacturing terminology rather than computer terminology. Furthermore, the

CIM controllers are generic, and hence applicable to a wide variety of situations, including the

handling of new products. Finally, the controllers can easily be integrated into a factory-wide CIM
system responsible for a variety of control tasks such as machine control, machine maintenance,

and scheduling, because they can exchange information according to specified protocols.

In order to develop such a suite of CIM controllers, we had to:

• determine which task a specific controller should execute;

• develop the protocols that govern the interactions of the controllers with one another;

411

• develop algorithms for controllers to provide adequate performance;

• develop techniques to implement the controllers.

We provide an overview of these activities below.

We described the tasks of the controllers in a 'Reference Model for Manufacturing Planning and

Control' [Bie89,BV89]. This model describes an idealized production organization, which receives

production targets, accepts raw materials, and dispatches products. More specifically, the model

describes a production organization as a configuration of controllers, each with its own tasks, in-

formation requirements, and performance targets. The controllers are responsible for production

planning, inventory management, material requirements planning, scheduling, transportation, mar

chine control, servo control, sensing, product design, machine design, process planning, master

planning, monitoring, configuration management, manufacturing engineering, and so on.

Based on the task description of a controller, given by the Reference Model, we develop its

external specification. This external specification portrays a controller as a black box and defines

its abstract interactions with its environment. Thus it specifies the protocols that describe which

information the controllers exchange, when and under which conditions.

We express the external specifications in a formal language. The major motivation for the use of

formal languages is their inherent precision. We can thus develop specifications that are interpreted

unambiguously by different parties who are requested to implement the CIM controllers. We
chose the language LOTOS [Bri86], which has been developed by the International Standardization

Organization for the specification of computer protocols, but is equally suitable for the specification

of CIM controller protocols [BB86].

We develop algorithms for the controllers which permit satisfactory performance in typical

factory scenarios. Given the dominance of flow lines, for example, we develop algorithms that allow

specific CIM controllers to schedule flow lines.

Given an external specification for a controller, we implement the controller in several steps.

We first translate the external specification into an internal specification. The internal specification

describes an abstract internal mechanism that shows how a controller can interact with its environ-

ment in accordance with the external specification. The internal specification, typically expressed

in LOTOS as well, shows how a controller can be built and therefore supports the physical imple-

mentation of the controller. Subsequently, the internal specification is translated into programming

language code in "C.
The various translations can be performed in a well-structured manner. LOTOS allows a smooth

transition from external specifications to internal specifications, and reference [Wen88] describes a

technique to translate LOTOS specification into "C" code.

In this paper, we discuss how the above development steps - determination of tasks, external

specification, internal specification, implementation in "C" - are carried out. We use the devel-

opment of a Workstation Controller, one of the CIM controllers, as an example to illustrate our

structured development approach. The development reported here has led to a prototype Work-

station Controller, which formed the basis for an industrial product[Sys89].

2 Workstation controllers

As mentioned before, the Reference Model [Bie89] analyzes which tasks should be executed to run

a production organization and assigns these tasks to controllers.

412

Cell/Line

Controller

Operation

commands
Operation
status

Load ^ Workstation

Controller
recipes ^ ^ Exchange

parts

Processing
status

/ Processing\^ Pr^ step commands >it

Processing step

status

Automation
Module

Automation
Module

Figure 1: Interactions of a Workstation Controller

The model distinguishes between the scheduling and execution of operations. Scheduling is

the selection of operations to be executed, the time of their execution, and the resource that has

to execute them. Scheduling affects the completion time of products as well as the utilization

of resources in all kinds of production organizations. In job shops, parts have many alternative

routes of operations and resources; scheduling typically aims at maximizing the utilization of the

resources. In flow shops, the routes are more constrained. One of the major scheduling concerns

is the selection of the sequence in which parts enter the flow shop so as to minimize their lateness

and earliness with respect to their due dates.

We define an "operation" as a material processing activity that can be scheduled in a useful

manner. It is the smallest, indivisible entity for scheduling purposes. An operation consists of

"processing steps" such as grinding, polishing, heating, or displacing materials. Unlike operations,

processing steps axe not scheduled; they are always executed in the same temporal order. For

example, operation A is executed by displacing, heating, and quenching a material. The three

processing steps, displacing, heating, and quenching, must always immediately follow each other;

there is no need to schedule them separately.

A Workstation Controller (WSC) is a component of a production organization that can execute

operations by coordinating Automation Modules, which execute processing steps. Figure 1 gives

an abstract view of a WSC, illustrating how it interacts with its environment rather than its

illustrating its physical implementation. It accepts commands from a Cell/Line Controller, which

is responsible for the scheduling of operations. These commands instruct the WSC to execute

certain operations, and accept parts required for the operations from other Workstations. The
WSC sends commands to the Automation Modules so that they execute the required processing

steps. It dispatches parts when an operation is completed, and reports to the scheduler (Cell/Line

Controller) that the operation is completed.

As Figure 1 also shows, a Workstation Controller accepts "recipes". A receipe describes which

processing steps have to be executed, by which Automation Module, and in which order to execute

a certain operation. Receipes are typically provided by an engineering department in a production

organization. They have to be modified or replaced when the Workstation Controller is required

to execute new operations.

413

Controllable stop r----—*' Movement by manipulator Part

> Movement by transport system 1-2-

During the execution of an operation, the Workstation Controller commands

the 'Manipulator' Automation Module to put object A at location W. The

Manipulator is not needed for the next processing step to be performed on A
and therefore becomes 'idle' after having put A on W.

Now Part B arrives. Suppose that the Workstation Controller has been com-

manded to execute an operation on B. As a first processing step for the execution

of this operation, the Workstation Controller should command the Manipulator

to pick up B and to put it at location W, However, it should refrain from giving

the Manipulator this command despite the fact that it is idle because there is

no room for B within the domain of the Workstation.

Trying to pick up B by the Manipulator would result in a dead lock: B cannot

be put anywhere, and there is no free manipulator that can make room for B.

Figure 2: Resolving competing claims on Automation Modules

414

A Workstation Controller relieves a scheduler (Cell/Line Controller) from the task of coordi-

nating the execution of processing steps. The Cell/Line Controller determines which operations

should be executed, and leaves the execution to Workstation Controllers. A Workstation Controller

therefore bridges the logistical portion of a production organization, responsible for scheduling, and

the technological portion, responsible for the execution of processing steps. A Workstation Con-

troller can also facilitate a quick introduction of new products. As described above, it can easily

be instructed to execute a new operation by providing it with a new recipe.

Viewed in isolation, the task of a Workstation Controller, coordinating Automation Modules

as prescribed by recipes, may look rather simple. However, complexities arise when a Worksta-

tion Controller is required to concurrently execute multiple operations with conflicting claims on

Automation Modules, space, tools, etc. Figure 2 illustrates such a situation.

We have developed a Workstation Controller (WSC) [BS86] that can execute multiple opera-

tions, allows suspension or cancellation of operations, can exchange parts with other workstations

along with information that identities the parts, can manage a local buffer of tools or parts, and

can collect test data. In the following sections, its development steps after task description will be

reviewed.

3 External specifications

In the previous section, we defined the task of a Workstation Controller (WSC) as executing

operations by coordinating Automation Modules so that they execute processing steps. We should

now develop an external specification for a WSC, which prescibes how a WSC should interact with

its environment to realize its tasks.

The task description suggests that a WSC be engaged in four basic interactions:

• Operation Commands, which define which operations the WSC should execute;

• Operation Status, which reports that a certain operation is completed;

• Processing Step Commands, which define which processing step an Automation Module

should execute; and

• Processing Step Status, which report that a certain processing step is completed.

A basic external specification for a WSC completely defines these interactions and their tem-

poral ordering. The temporal ordering defines, for example, whether the WSC may accept an

Operation Command before it has finished operations requested by previous commands. Such a

basic functional specification is relatively simple, and conceptually close to the the task definition

of a WSC. Obviously, the functionality offered by a WSC according to these basic specifications

would be limited. However, we can extend the basic specification to enhance the WSC's function-

ality. We could, for example, specify that it would accept commands to suspend previously ordered

operations.

We express the external specifications in a formal language, with explicitly defined syntax and

semantics. Formal languages are more precise than natural languages and are therefore more likely

to produce specifications that are interpreted unambiguously. It is important that the formal

language should be able to properly express the external characteristics of CIM systems. We chose

A15

the language LOTOS. As we will illustrate, its generic concept of interaction, temporal ordering

principles, mechanisms for process abstraction, and abstract data types allow us to produce external

specifications that are conceptually close to the tasks and interactions of CIM systems that we
described sofar [BB86].

We give a basic specification of a WSC in LOTOS, and illustrate how such a specification can

be extended. We do not require our readers to be LOTOS experts; a brief introduction to LOTOS
should suffice to understand the flavor of the given specifications.

3.1 Overview of LOTOS

LOTOS allows us to specify the externally observable behavior of a system, i.e. its interactions with

its environment, and their temporal ordering. It specifies a system as a "process" that interacts

with other processes. More specifically, it specifies the preparedness of a process to interact. It is

assumed that interactions take place if two or more processes are prepared to interact. Compare
this with the process of shaking hands. One person may want to shake hands, but hands will only

be shaken if there is another person that is prepared to shake hands.

LOTOS processes interact to establish information values. Such a value could, for example,

define the operation a WSC has to execute. It depends on the preparedness of the participating

processes which values may be established. A "!" is used to indicate that a process wants to

establish only one value; a "?" is used to indicate that a process can establish multiple values.

Suppose, for example, that one process is described by "! 3" and another by "? x : Natu-

ral_Numbers". The first process can establish "3", the second any natural number. In this case,

the value "3" wiU be established when the interaction takes place since it is the only value acceptable

to both processes.

Processes can interact if they share "gates". LOTOS notation "process A[a]" indicates that

process A can interact at gate "a". LOTOS notation "A[c,d] |[c]| B[c,e]" indicates that process A
interacts at gates c and d, and process B at gates c and e. Further, processes A and B have to

synchronize their interactions at gate c. This means that a third process could interact with A at

gate d, or with B at gate e. But, when the third process interacts at gate c, it has to interact with

both A and B.

Compare this with the LOTOS notation: "hide c in (A[c,d] |[c]| B[c,e])". Now, gate c is not

accessible for a third process. The third process can interact with A at gate d or with B at gate e.

It cannot interact at gate c, but A and B can interact at gate c.

To define a propess, say A, that can interact at gate b, accept any natural number, and the

value 5, we write:

process A[a] : exit :=

a ? X : Natural-Numbers ! 5

; exit

endproc

"exit" indicates that the process terminates. ";" indicates sequentiality: in the above example,

process A has to accept a natural number before it exits. There are operators to define other

temporal orderings of interactions as well. "[]"indicates selection of interactions: one of a set of

options will be chosen, depending on the preparedness of the environment to participate in the

interactions. ">>" indicates sequentiality of processes. Finally, "|||", "|D|", and "||" indicate

416

Cell/Line Controller

Operation.Command
| Ready.Status

if

Workstation Controller

WSC
Other WSCs

J Product/part

exchange

Processing. A Processing_Step
Step.Commandl Ready_Status

Automation Modules

Figure 3: A workstation controller viewed as a LOTOS process

parallel behavior. indicates that processes operate in parallel without mutual interactions.

"|[a]|" indicates that processes operate in parallel but synchronize on gate "a". "||" indicates that

processes operate in parallel and synchronize on all their common gates.

3.2 Skeleton specifications

The process of developing the WSC specifications is shown by an example below. Figure 3 shows a

WSC modelled as a process which interacts at gate c with a cell/line controller, the CIM controller

that schedules operations and commands a WSC to execute operations. The WSC interacts with

other workstation controllers at gate p, and automation modules at gate a. The cell/line controller

can issue a Operation.Command to request the workstation controller to execute a certain operation.

On receiving the command, the workstation controller accepts the parts required for the operation

from other workstation controllers, and commands automation modules to execute processing steps.

On completion, the WSC sends the processed part to another workstation controller, and returns

a Operation.Status to the cell/line controller.

Using the specification style in [VSvS88], we divide the basic external specification for the WSC
into four parts: three interface processes {CJnterface, PJnterface, and AJnterface) to interact at

gates c, p, and a respectively, and the Operation.Execution process, which shows how the WSC
interactions at the three gates axe ordered. Part of the basic, skeleton specification is shown below.

Comments are indicated with a

process WSC[c,p,a] : noexit :=

* WSC interacts at gates c, p, and a.

(CJnterface[c]

PJnterface[p]

III

A Jnterface[a])

*defines interactions with Cell/Line Controller

* while, in parallel

* defines interactions with WSCs
* while, in parallel

* defines interactions with Automation Modules

417

OperationJBxecution[c,p,a]

* while, in parallel

^defines relations between interactions with Cell/Line

Controller, WSCs, and Automation Modules.

where
process CJnterface[c] : noexit :=

c ? opr : OperationXommand
;c ! OperationJStatus(opr)

;CJnterface[c]

* accept operation at gate c

*next, offer status value at gate c

*next, repeat.

endproc
endproc

Similar to the Clnterface process, the AJnterface process would define constraints on the ex-

change of processing step commands and status between the WSC and Automation Modules. The

Pinterface process would define constraints on the acceptance and dispatch of parts by a WSC.
The OperationJ)xecution process is:

process Operation_Execution[c,p,a] : noexit :=

)

c ? opr : Operation-Command

;p ! in_part(opr)

;Recipe_Execution[a](opr)

>> p ! out_part(opr)

;c ! OperationJStatus(opr)

;stop

Operation_Execution[c,p,a]

* accept operation command
*next, accept part referred to in operation

*next, execute recipe for the operation to process part

*next, dispatch part processed by operation

*next, report ready status indication

*next, this process dies

* meanwhile, in parallel

* execute other operations.

where
process Recipe_Execution[a](opr : Operation-Command) : exit :=

(* Process sending commands to Automation Modules and interpreting

their status so that an operation gets executed *)

endproc
endproc

The example defines a bare skeleton for a workstation controller, which is limited in many

respects. However, it provides a simple, comprehensible framework, conceptually close to the task

definition given by the Reference Model, to which further functionality can be added step by step.

418

First reconsider the process WSC[c,p,aJ. According to the specification, the WSC can first

accept an operation command. This is defined by the process CJnterface and Opemtion^Execution.

Clnterface shows that the WSC will have to return an operation status after the receipt of an

operation command. However, it has to synchronize this sending of the operation status with

OperationJJxecution. The process OperationJ^xecution ensures that the operation status will not

be returned until the processed part has been dispatched by process PJ[nterface. The WSC is thus

specified as a parallel composition of relatively simple processes. The specification of the WSC can

be refined relatively easily by refining the specifications of some individual processes.

3.3 Refinements

Consider the following refinement. In the skeleton specification, the workstation controller can exe-

cute only one operation at a time. This is because Clnterface requires that an Operation.Command

is followed by Operation_Status before another Operation.Command can be received. The parallel

processing of Operation_Commands will be allowed if the process ^Interface is redefined as follows:

process C_Interface[c] : noexit :=

(

c ? oper : Operation.Command

;c ! OperationJStatus (oper)

;stop

)

III

CJnterface[c]

endproc

* accept operation command
*next, return operation status.

*next, terminate process

* Meanwhile, in parallel

* behave as descibed above: accept command etc.

Note that according to the above specification, multiple Clnterface processes execute in parallel

each capable of accepting an operation command. In effect, the WSC is now capable of accepting

multiple operation commands in parallel.

Similarly, we can extend the specification "WSC" to:

• show how recipes are stored and processed when the workstation controller executes an op-

eration;

• allow the workstation controller to accept multiple products for an operation, or to use some

of the products it keeps in stock;

• exchange products with other workstation controllers using hand shake protocols, and phys-

ically move the products in or out by commanding Automation Modules.

4 Internal specifications

We have demonstrated how the external specification of a WSC can be developed. We should now

consider how a WSC can be built that interacts with its environment according to the external

specification. As a first step towards physical implementation, we develop an internal specifica-

tion for a WSC. Such a specification describes a WSC internally as a configuration of interacting

419

modules. In this paper, we focus on the specification of a WSC "kernel", which incorporates all

the application and configuration independent functionality. A WSC for industrial use would re-

quire extensive facilities for system configuration, entering application dependent information, and

operator interactions, in addition to a kernel.

We show the development of internal specifications by carrying on with the example of the

previous section. Concentrating on the process OperationJ!xecution defined in the previous section,

which describes the kernel functionality, we propose to achieve this behavior internally through three

modules called G, H, and M [AMBF82]. See also Figure 4.

Let us quickly review the functionality of these modules.

4.1 H module

The H Module accepts operation commands from the CeU/Line Controller, and commands Au-

tomation Modules to execute processing steps. It checks the commands received, and executes

recipes. In executing a recipe, the H Module waits for part arrivals, arranges WSC set-up, co-

ordinates automation modules, etc. It also provides the M Module with information to allow it to

bookkeep the status of the workstation. For example, when it sends a command to an automation

module (AM), it will inform the M Module that the AM is busy executing a certain processing step.

Similarly, when it commands an AM to move a part, it reports to the M Module that the location

of the part has changed. The H Module informs the the Cell/Line Controller when an operation is

completed, or cannot be completed due to some failures. The H Module can concurrently execute

multiple similar or different recipes. It also accepts suspend and cancel commands, which interrupt

the normal execution of operations.

4.2 G module

The G Module accepts status messages from Automation Modules, which indicate how far var-

ious processing steps have progressed, and the results from these steps. The G Module can be

programmed by users to provide special status information. Users supply "Status Recipes", which

define which status message should be sent to the operator or the Cell/Line Controller when certain

events occur.

4.3 M module

The M Module maintains a "World Model" which bookkeeps the processing steps Automation

Modules are currently executing, and the locations of parts within the domain of the workstation.

The M Module ties the G and H modules together. The G Module supplies the status for

bookkeeping by the M Module whereas the H Module executes recipes on the basis of that status.

When the H Module, for example, has to dispatch a certain part, it can ask the M Module for the

location of that part.

4.4 A formal internal specification

To show the process of developing internal specifications, we leave out processes C-Interface,

P-Interface, and A-Interface, which describe interactions with the environment on individual gates.

420

Operation

commands

Cell/Line Controller
Operation

status

±
H Module

Recipe Execution

M Module
World Model

Check Conditions

Update Values

G Module
Status Handling

Check Conditions

Update Values

Part exchange Processing step

commands
Automation Modules

Processing step

status

Figure 4: Internal organization of WSC

We replace OperationJ^xecution in the external specification by an process Operation.Execution

that is defined as follows:

process Operation_Execution[c,p,a] : noexit :=

hide m in

(

(G_Module[a,m]

III

H_Module[c,p,a,m])

l[m]|

M_Module[m]

)

endproc

*gate m not accessible for Cell/Line controller etc.

*G Module

*and, concurrently operational

*n Module

*and, concurrently operational

*M Module

Upon investigation of the H Module, it appears that the module is engaged in three parallel ac-

tivities: the acceptc(,nce of parts, the execution of recipes, and the dispatch of parts. We define these

activities by three processes in a parallel LOTOS composition. AcceptJ'arts accepts commands
from the Cell/Line Controller, the parts from the transport system, and signals the ExecuteJiecipe

process. The Execute-Recipe process chooses the recipe for the operation, and executes it. The Dis-

patch-Parts process sends the processed parts out, and returns Operation-Status to the Cell/Line

Controller.

process II_Module[c,p,a,m] : noexit :=

hide si, s2 in *gates si, s2 not visible outside H-Module

(Accept_Parts[c,p,m,sl] * accept parts

421

while, in parallel

dispatch parts

while, in parallel

execute operations

endproc

where
process Accept_Paxts[c,p,m,sl] : noexit :=

III

Dispatch_Parts[c,p,m,s2]

)

|[c,sl,s2]|

Execute_0peration[a,m ,s1 ,s2]

(

c ? opr: Operation_Command

;p ! in_part(opr)

;m ! wsjstatus(at(inJocation,in_part(opr)))

;sl ! in_part(opr) ! inJocation

;stop

*accept operation command
*accept part for operation

*update world model to bookkeep location of part

*tell Execute^Operation to process part and

*tell its location

*terminate process

Accept_Parts[c,p,m,sl] * while accepting parts

endproc

process Execute_0peration[a,m,sl,s2] : noexit :=

c ? opr: Operation.Command

;sl ! in_part(opr) ! location: Location

;([opr Is STAMP]

(

;a ! ProcessingJStep_MOVE(location, stampJoc)

;m ! request-Status ! MOVE_Completed

;m ! ws_status(at(location,no_part))

;m ! ws_status(at(stampJoc,in_part(opr)))

;a ! Processing_Step_STAMP

*accept operation command
*accept signal to process part and its location

* if operation is STAMP, then

*command Automation Module to move

*part to stampJoc

*wait till move is completed

*according to status in World Model
* update World Model, no part at location

* update World Model, part at stampJoc

* Command Automation Module to STAMP

(* etc. Command AM to move part to exit point,

and bookkeep part movements and AM usage

422

;s2 ! out_part(opr) ! exitJoc *send signal to dispatch part, and give location

;exit * terminate process

[] *or

[opr Is ASSEMBLY] *if operation is ASSEMBLY, execute its recipe

(* Specification of recipe for

execution of ASSEMBLY operation *)

) >> Execute_Operation[a,m,sl,s2]

endproc

Similarly, the internal specification for Dispatch.Parts, GJHodule, and M-Module can be developed.

In the above specification, we did not specify how a WSC processes recipes. For the sake

of brevity, we hard-coded the sequence of processing steps to be executed in the specifications.

The recipes in [BB86] are similar to the hard-coded example, but supplied by the user. In later

work [Blo89], the recipes have been simplified so that routine status setting and checking to book-

keep the location of parts and the status of Automation Modules is done automatically. Thus, to

describe the STAMP operation, the user would specify the following recipe:

Operation STAMP(in_part,out_part)

begin

AMJlobot DO move(in.part.location, stampJoc)

AMJStamper DO stamp

AMJlobot DO move(stampJoc, exitJoe)

end

We have illustrated how LOTOS can be used to develop the internal specifications from the

external specifications. The complete specification of the WSC is documented in [BB86]. It consists

of approximately forty pages of LOTOS specifications. Equivalent informal specifications would be

approximately 120 pages.

5 Implementation

The internal specifications of the previous section specify the internal structure of the WSC. To

build a WSC, the internal specifications have to be translated into a computer program.

We developed a structured method for translating internal LOTOS specifications into an im-

plementation in C+-|- [Str86]. The method can be used to implement controllers in a routine,

mechanical way, reducing the time required for such implementations. We applied these methods

to implement a complete WSC kernel [BB86]. Figure 5 shows some of the characteristics of the

implemented kernel.

We will first review the translation technique, and then give an example of its use.

423

• 68000 hardware, single board computer implementation

• C++/C programming language

• Object code 50KB

• Response time to Automation Module: 0 to 20 ms

• Source code 70 KB

— 1200 lines application independent general-purpose part

— 200 lines include files for C++ compatibility, independent of WSC
— 350 lines configuration dependent (Interface Module) code

— 500 lines of application dependent code: hardcoding recipes, World
Model, etc., usually entered from a user interface

• Direct correspondence between LOTOS specifications and implementation

Figure 5: WSC implementation information

5.1 Translation technique

LOTOS is based on several language concepts that have no counterpart in common programming

languages. We therefore had to provide the following informal rules to translate these concepts into

"C/C++":

1. Translation of LOTOS processes: Each process in LOTOS is a unit of related activity.

It is implemented by a C++ task or a procedure, which is a unit of related activity in a

programming language.

2. Translation of operators
||, |||, and |[]|: We had to provide mechanisms for translating

parallel LOTOS processes. The unit of parallelism in a programming language is a "task".

Multiple tasks can execute concurrently on a single computer because tasks can be temporar-

ily suspended, making computer power available for other tasks. This is not possible with

procedures. To translate the LOTOS construct "G
|||

H", two tasks G and H are set up.

Whenever an interaction for G is required, task G is switched in, and when an interaction

for H is required, task H is switched in. Note that a switching overhead is incurred in saving

and restoring system state each time a task starts executing. Hence, care must be taken in

deciding which LOTOS processes become tasks, and which become procedures.

3. Translation of LOTOS interactions and gates: A convenient method of interaction

between tasks in a programming language is through message passing. As explained in Section

3.1, LOTOS specifications show the preparedness of a process to interact. In the translation,

this preparedness is indicated by either putting a message in a shared memory area, or by

waiting for a message to be put there by another task. The "shared memory area" between

424

two tasks is called a queue. It is allowed to hold at most one message, to force tasks to

complete an interaction before starting a new one.

A gate in LOTOS is translated by message communication queues. However, a gate provides

bidirectional communication, whereas a queue is unidirectional. Hence two queues have to

be set up for each gate.

The interaction operators "!" and "?" are implemented by sending and receiving values in

messages. The process executing a "!" usually sends a message using a put operator because

it wishes to establish a single value. The process executing a "?" receives the value using a

get operator, and then verifies whether the value received is in the acceptable range. If the

value is not in the correct range, it is not accepted, and the interaction does not complete.

4. Translation of temporal operators: The sequentiality operator ";" requires no special

translation, since diflPerent statements in a programming language are executed sequentially.

The LOTOS choice operator "[]" shows a non-deterministic selection between alternatives. In

most cases, this has been replaced by deterministic choice with the if-then or case statements

in C.

5. Translation of other operators: A translation rule has been developed for each operator

in LOTOS [Wen88].

6. Translation of LOTOS objects: Objects describe data structures in LOTOS. These are

translated into structures m C. Rules for operating on objects are translated into subroutines

which manipulate the structures.

5.2 Translation example

To illustrate the translation technique, consider the example WSC of the previous sections. In

the internal specifications, the process Operation.Execution consists of a parallel composition of

processes GJifodule, H.Module, and M^Module, where both G and H interact with M, but not with

each other. We could set up tasks for G, H, and M. Further examination shows that the M module

only reads and writes data in its world model, and can be implemented by an object-oriented data

structure with read and write routines. This prevents unnecessary task switching overhead when

read and write operations are requested from M by G and H.

The H module (see Figure 6) consists of three parallel tasks: Accept.Parts and Dispatcherarts

which communicate with ExecuteJiecipe on gates si and s2 respectively. Two communication

queues, si and s2^ are set up. For gates requiring bidirectional communication, such as c which

interacts with the Cell/Line Controller, two queues c_m and c.out are set up, to receive operation

commands and send operation status respectively. Note that there are no queues corresponding to

m, because the M module is implemented as a shared data structure, and not as a task. The C-f-+

code for task Accept.Parts is shown:

Accept_Parts::Accept_Parts (qhead* cJn, qhead* pJn, qtail* si) {

^program Accept-Parts, task Accept-Parts

*C-in, pJn: queues for receiving messages

*sl: queue for sending message

Operation-Command opr; *opr holds an operation command

425

Other
WSC
Modules:

I

Cell/Line Controller

H_Module Operation_Command
c_in 4/ (opr)

Accept_Parts

p_in

^
Product

Other WSCs

cout

s2
Execute
Operation opr

a_out Processing.

Operation,

Status

Dispatch_Parts

Automation
Modules

p_out^ Product

Other WSCs

Other
WSC
Modules

Figure 6: Tasks and queues in H_Module

for (;;) {

opr = cJn get();

in_product = pJn -> get();

m_inodule.write (inJocation, in.product);

si -* put (opr);

}}

*carry out task for ever

* receive operation command
* receive product

*update world model

*send command

6 Application

We developed a prototype WSC using the techniques described in this paper. It was used experi-

mentally to solve an inductrial part calibration problem.

6.1 Tape head adjustment

An automated solution was required by a factory for the alignment of tape heads for magnetic tape

drives, to reduce the cycle time for the alignment/calibration operation. We used this problem as a

test case in our laboratory for the prototype version of the WSC. The WSC was used to control and

co-ordinate a Robot, an Adjustment unit, and a Transport System [BHH'^88]. A pseudo Cell/Line

Controller provided commands to the WSC. The tape head adjustment set-up is shown in Figure 7.

Here, the WSC is used to control the Alignment/Calibration station. In addition, there are three

manual stations. The Transport System has separate control, and it moves parts between the

various stations. The Cell/Line Controller provides transport commands to the Transport System,

and operation commands to the WSC.

The steps in the tape head alignment operation were as follows: on receipt of a command from

the Cell/Line Controller, the robot was commanded to pick up fingers (set-up) in preparation for

part (tape drive) arrival on the transport system. When the part arrived, the WSC commanded the

robot to pick it and place it in the workspace of the Adjustment Automation Module. The robot

was then commanded by the WSC to change its fingers, pick up a measurement probe from storage.

426

Alignment/Calibration Station

Tool Storage
(calibration

probe, robot

fingers, etc)

Guides to move
pallet to new part

of transport system

Robot

Adjustment module
workspace

. Positioning guide Manual Station

for tape drive
paHet

Motor controlled

screw manipulatos

Transport System

r-zt Import/export station

widi controllable stop

Manual Station Manual Station

Figure 7: Workstation Controller demonstration system

and place it on the arm of the tape drive. The Adjustment unit was then commanded to measure

the orientation of the tape drive, and based on the measurement obtained, to control a motor to

change screw positions which would alter the tape head orientation. The adjustment process was

repeated till the orientation was within an acceptable error margin, or a timeout occurred. When
the adjustment was over, the robot was commanded to move the probe back, change its fingers,

pick, move and place the tape drive on the transport system, and move to its home position. The
transport system was signalled to move (exchange parts). The complexity of this example was

considered representative of many electronic and light mechanical assembly applications.

The WSC was given recipes for three different commands: Tape.Calibration, PartJStorage, and

PartS>ispatch. The PartJStoTxtge recipe would receive a part from the Transport System, and
have it moved by the robot to an internal storage location in the workstation's workspace. The
PartJDispatch recipe would command the robot to move a stored part from its internal storage

location to the Transport System. The robot and the transport system were required to carry

out each of these operations. The WSC was able to share these resources without interference,

and would even carry out processing steps in parallel from different recipes. For example, the

PartJ)ispatch recipe commanded the. transport system to leave with a part at the same time that

the Tape-Calibration recipe commanded the robot to perform set-up steps.

6.2 Routing Controller

The WSC can also be used as a controller for a transport system. The WSC receives operation

commands that request to transport a certain part from location A to B. The WSC executes a

recipe that tells whether the part has to make a left turn, a right turn, or should go straight at

nodes in the transport system. The WSC then commands Automation Modules that control the

mechanics of the transport system at the nodes to move left, right, etc.

427

6.3 Industrial use

A WSC product has been developed on the basis of our prototype WSC. In addition to a WSC
kernel, the product version has a substantial operator interface, and drivers for various Automation

Modules. The operator interface includes a programming environment for recipes, to support the

edit-compile-debug cycle.

The WSC has been in use in factories for printed circuit board assembly. It co-ordinates

various component insertion machines, soldering stations, test and repair loops, etc. with recipes.

It manages product change-over by downloading new programs to machines, and executing new
recipes. It co-ordinates the transportation of products in the test and repair loop, and sends the

product data from the test station to the repair station. The workstation controller has also been

used in controlling the storage and retrieval of parts in a separate application.

7 Conclusion

The development of CIM controllers will benefit from the use of well-known system engineering

techniques. However, before the actual development can start, one has to determine which manu-

facturing tasks a controller should execute and how it should interact with other controllers. We
have discussed an approach that allows the definition of manufacturing tasks for a controller, its

interactions with its environment, and that, via several steps, leads to a physical implementation

of the controller.

We demonstrated the approach by reviewing the development of a Workstation Controler. This

Workstation Controller coordinates Automation Modules for the execution of operations, and allows

an easy reprogramming of the operations via recipes. The development has profited from feedback

through experiments, and has led to a controller that is in actual use.

Acknowledgements

The Workstation Controller specifications were developed in co-operation with Sjoerd Sjoerdsma.

Several colleagues at Philips Laboratories - BriarclifF participated in the tape alignment demon-

stration. The authors would like to thank Omer Bakkalbasi, Pieter Blonk, and Fletch Holmquist

for reviewing this document, and providing feedback.

References

[AB87] Allen- Bradley. Vista 2000 cell controller. Product Brochure, 1987.

[AMBF82] J.S. Albus, C.R. McLean, A.J. Barbera, and M.L. Fitzgerald. An architecture for

real-time sensory-interactive control of robots in a manufacturing facility. In Fourth

IFAC/IFIP Symposium on Information Control Problems in Manufacturing Technology,

1982.

[BB86] F. Biemans and P. Blonk. On the formal specification and verification of CIM archi-

tectures using LOTOS. Computers in Industry, 7:491-504, 1986.

428

[BHH+88] F.P. Biemans, T.J. Harosia, F.N. Holmquist, C-C. Lee, A. van de Stadt, and R.G. Wen-
dorf. Eaasy-0 system specification. Technical Report TR-88-048, Philips Laboratories

- BriarclifF, 1988.

[Bie89] F. Biemans. A Reference Model for Manufacturing Planning and Control. PhD thesis,

University of Twente, The Netherlands, 1989. ISBN 90-900 2961-3.

[Blo89] P. Blonk. A user friendly recipe language for workstation controllers. Technical Report

TN-89-089, Philips Laboratories - Briarcliff, 1989.

[Bri86] E. Brinksma. Lotos: A formal description technique based on the temporal ordering of

observational behavior. Technical Report ISO/TC97/SC21 N, International Organiza-

tion for Standardization, 1986.

[BS86] F. Biemans and S. Sjoerdsma. Description and motivation of a workstation controller

architecture. Technical Report 55/86 EN, Philips Centre for Manufacturing Technology,

1986.

[BV89] F. Biemans and C. Vissers. Reference model for manufacturing planning and control

systems. Journal of Manufacturing Systems, 8(1), 1989.

[Soc88] Society of Manufacturing Engineers. Achieving Integration Through Cell Controllers,

April 1988.

[Str86] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[Sys89] Philips I&E Industrial Automation Systems. Flexible automation systems tool FAST.
Product Brochure, 1989.

[VSvS88] C. Vissers, G. ScoUo, and M. van Sinderen. Architecture and specification style in

formal descriptions of distributed systems. In Proc. of. the 8th. IFIP WG 6.1 Int.

Workshop on Protocol Specification, Testing and Verification. North-Holland, 1988.

[Wen88] R.G. Wendorf. Implementation of manufacturing planning and control systems from

lotos specifications. Technical Report TN-88-015, Philips Laboratories - Briarcliff, 1988.

429

ARCHITECTURE OF A FACILITY LEVEL
CIM SYSTEM

G. HARHALAKIS, M.E. SSEMAKULA, AND A. JOHRI

Abstract

Computer Integrated Manufacturing (CIM) is commonly understood to be the

integration of CAD and CAM. Instead, we propose that CIM can be regarded as a

systems approach of linking together the various automation tools available today, so

as to enable control of the entire manufacturing operation as well as related business

functions. Unlike most of the recent research in CIM, we are not simply considering

integration of various shopfloor-level elements of hardware and software, but rather

address integration of the high-level manufacturing functions. The integration centers

around select conunon entities in the system. A model for this integration at the

facility level is presented along with the rtdes of interaction between the constituent

modules. The model is based on the principle of database inter-operability and has

been implemented using the 'Update Dependencies' language.

1 Introduction

The highly competitive nature of today's industry has forced manufacturers to actively

explore the potential applications of computers in the manufacturing environment. The

driving goal behind this search is the need to improve quality, and increase productivity,

while maintaining a favourable cost structure. This has become increasingly more diffi-

cult with the general shortening in product life cycles, increased complexity of individual

manufacturing processes, and a severe shortage of skilled labor.

In response to the pressures mentioned above, computers have been applied to a vari-

ety of functions within manufacturing, resulting in a proliferation of 'Computer Aided' sys-

tems such as Computer Aided Design (CAD), Computer Aided Process Planning (CAPP),

and Computer Aided Manufacturing (CAM), among others. In developing each of these

individual systems however, little attention was given to how these systems would func-

tion in synergy. Consequently, most systems were incompatible with one another which

resulted in the so called islands of automation. Without doubt, each of these computer

aided systems helps to improve the efficiency of the function to which it is applied. It is

now generally accepted however, that if the various application systems were interfaced,

the performance of the resulting integrated system should be a dramatic improvement on

430

the capabilities of the individual systems. This has motivated the on-going search for a

truly integrated computerized manufacturing system.

In this paper, we describe an architecture for a Computer Integrated Manufactur-

ing (CIM) system based on the data commonality between selected modules of a man-
ufacturing facility. The modules addressed in this research are Computer Aided Design

(CAD), Computer Aided Process Planning (CAPP), and Manufacturing Resource Plan-

ning (MRP II). The data commonality is related to specific key entities such as parts,

product structures, routings, and workcenters. By analysing the detail data content of

each entity, rules are developed that govern the functioning of the overall system and in-

teraction between modules, to ensure consistency and integrity between any data common
to various modules.

Since each module in the system is assumed to have its own database of the entities

it uses, it is important to maintain consistency between the various databases. The inte-

gration methodology adopted here, eliminates the need for data duplication, and controls

consistency, by using the principle of database inter-operabihty. The inter-operability sys-

tem monitors the individual modules integrated, and upon occurrence of an event affecting

the state of any system database, executes a response according to preprograrmiied expert

rules, involving operations on the related systems' databases, to maintain data consistency

between the modules involved. This required the development of a detailed rule base. The

rule base was established on the basis of projected events found to be necessary following

an action on a key entity in any module. The number of different actions possible during

various database states, on different entities, led to a very large rulebase in order to specify

the system completely, and to avoid inconsistencies and logiced errors.

2 System Architecture

Integration of manufacturing functions can be achieved at various levels within the hierar-

chy of a manufacturing enterprise. Most contemporary research in CIM has concentrated

on integration of the shopiioor level functions, resulting in applications such as CNC,
AGVs, and automated inspection. We are proposing an approach to integration that

focuses on the facility level of the enterprise and concentrates on the integration of infor-

mation rather than hardware. We have developed the CIM architecture necessary for the

integration of CAD, CAPP, and MRP II.

The integration is achieved by identifying the key entities on wliich each of these

modules operates, and taking advantage of the commonality of data required for each

entity in the various modules. By establishing an appropriate rule base incorporated into

a Distributed Database Management System (DDBMS), we can control the flow of data

between the various modules of the system.

The DDBMS approach was selected over that of a single large database accessed by

the various modules because of the ease of implementing the former in an existing man-

ufacturing environment. Use of a single database would require a 'ground-up' approach,

431

whereby the databases of existing systems would have to be rebuilt in the process of cre-

ating a single database. In addition, the design of a single database requires consideration

of all the data it will eventually contain, making subsequent additions or modifications

difficult. With the DDBMS approach, integration can be modular and phased, making it

more acceptable for introduction in an existing manufacturing facility.

2.1 Functional Design

The model developed here is intended for a discrete-parts make-to-stock environment where

CAD, CAPP, and MRP II modules are best utilized. Each of these modules is assigned

specific functions and the overall integrated system is developed on the basis of these

functions which are detailed below.

CAD, being the center of design activity, is the primary controller of product design

information. The evaluation of design alternatives, creation of new product parts, and the

modification of existing parts is performed within CAD, taking into account inputs from

other departments [1]. Manufacturing and marketing are two of the major contributors to

information regarding product designs. In addition, CAD initiates the Bills of Materials

for any product assemblies. An important problem commonly encountered is that as a

function, manufacturing succeeds design. Therefore any manufacturing problems encoun-

tered due to part design are relayed to CAD only after designs have been finalized. It is

therefore necessary for CAPP, the originator of process plans in the system, to work in

collaboration with CAD, during the design of the part, in order to reduce this problem

significantly.

CAPP is responsible for developing the process plans in the system. It organizes the

manufacturing activities to be performed on a part into specific operations, each assigned

to a particular workcenter, and requiring tools, jigs, and fixtures; and also determines

processing times. CAPP can also initiate parts in the system that are used on the shopfloor

such as tooling, jigs, or fixtures (all generically referred to as tools in this paper), as well

as their associated bills of materials. CAPP also maintains detailed workcenter files for

use in generating process plans.

MRP II plays an executive role, planning for and monitoring the actual procurement

and processing of items [2]. It can initiate non- product parts such as supply items, into

the system. In addition, it records the process plans as generated by CAPP, and also the

product structures of assembly parts. Workcenter data are maintained here, with MRP II

having sole discretion as to their initiation and deletion in the system.

2.2 System Design

The system is designed to operate on the basis of entity data manipulation. The entities

involved are:

• parts

432

• bills of materials

• process plans

• work centers

Parts are further subdivided into:

Product Parts - which are parts that go into constituting a final saleable product

Tool parts - which are parts used within the manufacturing enterprise such as tooling, jigs

or fixtures

Supply parts - which are other consumable items (usually not requiring drawings), that do

not go into the final product such as office supplies.

Table 1 shows the various entities, the system module that initiates each entity, and the

modules where each entity is maintained.

Entity Initiating Module Maintaining Module

Product part

Tool part

Supply part

Bill of Materials

Process plan

Workcenter

CAD
CAPP
MRP II

CAD, CAPP
CAPP
MRP II

CAD, MRP II

CAD, MRP II

CAD, MRP II

CAD,CAPP, MRP II

CAPP, MRP II

CAPP, MRP II

Table 1: System Entities

2.2.1 Entity Data

Part Data: The data for part entities are maintained by CAD as well as MRP II. Part

records are stored during the design process in CAD, and are maintained during the life

cycle of the part. This is required for general part reference, and situations involving

engineering changes to the part in question. In some cases, records are maintained even

after the part is no longer active in the system, for future design reference. MRP II

stores part data in the form of Part Master Records, which form part of the Part Master

Record/ Bill of Materials module.

If design modifications to a part become necessary, engineering change procedures are

initiated. Based on the extent of engineering change, a decision has to be made whether

to create a new part, or simply a new revision of the old part. If only a new revision

is required, then the old part number remains active, and only the revision is updated.

Because of this, CAD and MRP II systems typically store part data under two different

records, one set containing data common to all revisions (called the part record), and the

other set containing data specific to each revision of the part (called the revision record).

433

Table 2 shows the part data, whereas table 3 shows the revision data supported by the

majority of CAD and MRP II systems.

r leiQ INO. MRP TTiviivr 11 PAH
1
1 Part Number
9 i^iciwiiig iiuiiiijcr urawing iNumDer

T^f^Winer 1^ i*sk Txri 11 IT di9o

4 AC/* 1*1 T\\ \f\f\ 1)aC*#^1*1 V\ ^ 1 #^T1lycSClipi>IOIl

5 ROM Tfiiit. of Mpamirp ROM^ TTnif of M^*»aQiirpxJ\J VII. \J WWt V/l XVXC/CkOUl^

6 Purchase/Inventory Unit of Measure

7 Unit of Measure Conversion factor

8 Source Code Source Code

9 Standard Cost

10 Lead Time

11 Supersedes Part Number Supersedes Part Number
12 Superseded by Part Number Superseded by Part Number
13 Source Source

Table 2: Part Data Maintained by MRP II and CAD

Field No. MRP II CAD
1 Part Number Part Number
2 Revision Level Revision Level

3 Effectivity Start Date EfFectivity Start Date

4 EfFectivity End Date Effectivity End Date

5 Status Code Status Code

6 Drawing File Name

Table 3: Revision Data Maintained by MRP II and CAD

Product Structures: The proposed model incorporates the facility of maintaining

single-level product structures (commonly called bill of materials, BOM). These provide

information regarding components that make up a given part assembly. A complex prod-

uct structure can have severjJ levels, with each level representing parts that can be used as

components of parts at the next higher level. In this way, a multilevel product structure

can be created for a part, with the lowest levels representing purchased parts.

Bills of materials for individual parts are initiated by the module that created the

part concerned. For example, BOMs for product parts are initiated in CAD, while BOMs

A34

for tool parts are initiated in CAPP. The parts initiated in MRP II generally do not require

BOMs and consequently, this module does not have the facility to establish BOMs in the

system. MRP II is still allowed to maintain product structure data, since it is responsible

for printing the shop packet and issuing it to the shopfloor. The handling of product

structure data is similar to that of part master data. Details of the product structure data

maintained in the system are shown in table 4.

Field No. MRP II CAD CAPP
1 Parent Part Number Parent Part Number Parent Part Number
2 Parent Revision Level Parent Revision Level Parent Revision Level

3 Item Number Item Number Item Number
4 Component Part Number Component Part Number Component Part Number

5 Quantity per Assembly Quantity per Assembly Quantity per Assembly

Table 4: Product Structure Data in MRP II, CAD and CAPP

Process Planning Data: Process planning is the function within manufacturing re-

sponsible for the conversion of design specifications into actual manufacturing instructions

for use on the shopfloor. The resulting process planning data typically include details

such as operation description, required tools, jigs and fixtures, workcenter, and operation

parameters such as speed and feed. Our model incorporates the facility of maintaining

these instructions in the form of a routing or process plan, related to a given part revision.

The detailed data content of routings common to generic CAPP and MRP II systems are

shown in table 5. It is noted that process planning data is maintained in the CAPP and

MRP II modules. It is possible to have alternate process plans for any part revision, as

well as different revisions of a particular routing.

Workcenter Data: Workcenters are primarily initiated into the system from MRP II.

MRP II users are responsible for establishing as well as phasing out workcenters in the

system. In addition, CAPP also requires detailed workcenter information for generating

process plans, therefore its workcenter files are integrated with the workcenter data in the

MRP II module. The basic workcenter data fields supported by the majority of MRP II

and CAPP systems are shown in table 6.

3 System Description

The integrated operation of the system depends on the interactions that take place between

the various modules in accordance with certain events or scenarios of events that can

occur. Within the proposed integrated system, these interactions are controlled by the

435

Field No. MRP II CAPP
1 Part Number Part Number
2 Part Revision Level Part Revision Level

3 Routing Alternative Number Routing Alternative Number

4 Routing Revision Level Routing Revision Level

5 Operation Number Operation Number

6 Operation Description Operation Description

7 Workcenter ID Workcenter ID

8 Tool Number Tool Number
9 Jig Number Jig Number
10 Fixture Number Fixture Number
11 Set Up Time Set Up Time

12 Batch Machining Time

13 Handling Time

14 Run Time Run Time

15 Resource Code

16 Begin Date

17 End Date

18 Feed

19 Speed

20 Depth of Cut

21 Number of Passes

Table 5: Process Planning Data Maintained in MRP II and CAPP

436

T:'* 1 J TVT
Field No. MRP 11 CAPP

1
TUT 1 A. TT\ XT 1Workcenter lU JNumber 111 r 1 J_ 1 ¥~V XT 1Workcenter ID Number

2 Workcenter Description
TUT t J T\ " J *

Workcenter Description

3 Department Department

4 Capacity

5 Resource Code

6 Rate Oode

Dispatch Horizon

8 Effectivity Start Date EfFectivity Start Date

9 EfFectivity End Date EfFectivity End Date

10 Workcenter Status Code Workcenter Status Code

11 Horse Power

12 Speed Range

13 Feed Range

14 Work Envelope

15 Accuracy

16 Tool Change Time

17 Feed Change Time

18 Speed Change Time

19 Table Rotation Time

20 Tool Adjustment Time

21 Rapid Traverse Rate

Table 6: Workcenter Data in MRP II, CAD and CAPP

437

use of status codes, which are central to the operation of the system. Each entity in each

module has a status code associated with it. Note that the status code associated with a

given entity can differ in different modules. The following are the status codes used in the

system.

Working; This status code is used with an entity during the preparation of the requisite

data for the entity. It signifies that the information for the entity is as yet incomplete

and therefore the entity data cannot be used. For example, a working status is

associated with a design that has not been finalized.

Released: This status enables the entity to become active in the system. It is given to

an entity when all its required data have been completed and verified.

Hold: This status is given to an entity when the entity is being reviewed for possible

revision or replacement. Depending on the particular entity, this status might be

necessitated by unsatisfactory performance, breakdown, or even routine review.

Obsolete: This code is given to entities that are no longer required in the system. Before

any entity can be deleted from a module database, it must have an 'obsolete' status

code. The MRP II module is unique in not using this status code because it processes

obsolescence by use of 'effectivity start' and 'effectivity end' dates.

The actions that can be performed on each entity depend on the value of the status

code. The following types of actions are generally possible:

• Entity creation

• Entity modification or revision

• Entity obsolescence

• Entity deletion

The following scenarios have been identified as descriptive of the operation of the inte-

grated system proposed here.

1. Creation of new manufactured parts in CAD
2. Creation of new purchased parts in CAD
3. New revisions of manufactured parts in CAD
4. New revisions of purchased parts in CAD
5. Creation of new manufactured parts in CAPP
6. Creation of new purchased parts in CAD
7. New revisions of manufactured parts in CAPP
8. New revisions of purchased parts in CAPP
9. Creation of new supply parts in MRP II

10. New revisions of supply parts in MRP II

438

11. Making parts obsolete

12. Deleting parts

13. Creation of new process plans

14. New revisions of process plans

1.5. Deletion of process plans

16. Creation of new workcenters

17. Deletion of workcenters

18. Addition of new component relationships in CAD
19. Addition of new component relationships in CAPP
20. Deletion of component relationships

21. Substitution of components in relationships

22. Copying relationships between assemblies

23. Changing the required quantity of a component

Below, a couple of these scenarios will be described in detail to illustrate the perfor-

mance of the system.

3.1 Creation of New Manufactured Parts in CAPP

As explained in section 2.1, CAPP can create tooling type parts in the system. CAPP first

establishes a record of the part under a temporary part number (state 1 in figure 1). This

is because CAD is the sole center for assigning permanent part numbers, so as to maintain

consistency. The data content of the temporary record is as follows:

1. Temporary Part Number

2. Description

3. Unit of Measure

4. Source Code

A relation exists within CAD enabling it to know which new parts entered into the system

require permanent part numbers. The creation of the temporary record in CAPP results

in the update of the temporary part number in the CAD relation. On CAD establishing

the new permanent part number (state 2 in figure 1), the following events occur.

• A temporary tuple record is created in CAPP, containing the permanent part number

established by CAD, and the temporary part number initiated by CAPP. This enables

CAPP to refer to the part with its permanent part number .

• The part record, under the temporary part number, is deleted from CAPP, as CAPP
does not support part records.

439

MRPn
MRpn

pEirt

revision

11 R

i
5 H

MRpn
routing

complete f ^

skeletal
I

CAD

CAD
permanent
numbering
system

CAD
part

revision

W4

i
10

H

O

Routing Information

Part Information

CAFF

CAFF
temporaxy

part

record

• 1

CAFF
routing
revision

3 W

8

H
»

O

Figure 1: New Manufactured Part in CAPP

440

• Skeletal part and revision records are created within CAD with the status automat-

ically set to 'working' (state 4 in figure 1). This is because the part design has not

been finalized yet, and it is still being worked upon.

• In addition, a temporary record containing part data is created in CAPP, based on

which the formal routing will be developed (state 3 in figure 1).

Once the design of the part is complete, CAD releases the part. A skeletal part master

record and revision record are created for the part in MRP II. Those data fields maintained

in MRP II, are initiated as 'unknown' within CAD, and are subsequently supplied by the

MRP II users. In the case of the revision record, the status code is automatically set to

hold 'h' (state 5 in figure 1), since many of the fields required by the MRP II system have

to be completed before MRP II can consider the part active. MRP II also has to wait for

CAPP to release the routings for the part. At this stage, the design is complete, whereas

CAPP may still need to finilaze the routings. In addition, MRP II needs to have the part

master record established before it can accept the part routings. On the success of these

events, the part revision is given a 'released' status in CAD (state 6 in figure 1). MRP II

can then start working on the part record of the part in its database. It fills in whatever

information required is available, and also waits for CAPP to release the routings before

it can proceed any further.

When CAPP finalizes the routing for the part, the routing is given a 'released' status

in CAPP (state 8 in figure 1). Certain checks are carried out before the release can be

successful. A check is made to make sure that the part for which the routing is being

released, has a released status in CAD. If it does not, a message to this effect is generated

in CAPP, and the release is not possible. In addition checks are made to ensure that the

routing being released exists, with working status. On the success of these checks, the

routing is given a released status and a skeletal routing is updated immediately to the

MRP II routings module (state 7 in figure 1). At this point, the temporary part record

based on which the routing was developed, is no longer required in CAPP and it is deleted.

Finally when MRP II completes all the data fields related to the part record, and

the routings record (state 9 in figure 1), it gives the part revision a released status (state

11 in figure 1), The efFectivity dates are downloaded to the CAD revision record (state 10

in figure 1).

3.2 New Revisions of Manufactured Parts in CAPP

As mentioned above, CAPP does not support part data. Despite this however, CAPP is

given the facility to initiate new revisions of the parts it entered into the system. This is

because the tooling type parts initiated by CAPP are used primarily by manufacturing,

and therefore CAPP receives feedback regarding their performance. Any design change

suggestions would therefore logically stem from CAPP users. CAPP initiates a new revision

by inserting the following revision data record into the system (state 1 in figure 2).

441

1. Part Number

2. New Revision Level

3. Drawing Number

The insertion of the above record automatically creates a new revision record in CAD,
with working status (state 3 in figure 2), subject to the condition that the part number
entered by CAPP users exists, and the part was originally created by CAPP. It should be

mentioned that since CAPP does not maintain part records, it cannot handle part revisions

itself . Therefore, although CAPP can initiate the new revision in the system, the actual

engineering change procedure occurs under the jurisdriction of CAD, which is the design

center in the integrated system. Establishing the new revision level in CAD also results in

the creation of a temporary part record in CAPP, based on which the routing for the part

revision is created (state 2 in figure 2). This temporary record is automatically deleted

when the routing is finalized and given a release status in CAPP.

CAD users then start to work on the design change to the part, with the help of

CAPP users. CAPP users must be involved in this process of design change since the

part originated in CAPP and is primarily used by the people in manufacturing. If found

necessary, the current revision can be placed on hold on CAD, which automatically invokes

a hold in MRP II. When the design of a new part revision is finalized, it is released in CAD.
As in the case of creation of a new part, a skeletal revision record is created in MRP II,

with the efFectivity start date left unknown if not provided by the designer. In this case,

the date is often specified by the CAD and CAPP users, to be as early as possible. This

is because the part is used in the manufacturing operation and is not a component of a

product part. MRP II is therefore not concerned about using up the current inventory

before making the new revision effective. The status of the new revision is automatically

set to hold in MRP II (state 6 in figure 2), as it has to prepare for the release of the

new revision. The old revision is automatically given an obsolete status in CAD (state

5 in figure 2), since only one revision can be active at any given time. Upon the success

of all these operations, the release of the new revision is successful in CAD (state 7 in

figure 2). In the case of MRP II, obsolescence is handled with the help of efFectivity dates.

The efFectivity start date of the new revision becomes the efFectivity end date of the old

revision, and from that date onwards the old revision is considered obsolete in MRP II.

MRP II then waits for the routing of the new revision from CAPP. CAPP has to wait

for CAD to release the revision before it can give the routing a released status, assuming

it is complete. When the routing is complete in CAPP, and the new CAD revision has a

released status, it is released in CAPP (state 9 in figure 2). This results in a skeletal routing

being created in MRP II (state 8 in figure 2). When MRP II completes all the data fields

in the skeletal routing (state 10 in figure 2), it gives the new part revision a released status

(state 12 in figure 2). On release in MRP II, the efFectivity start date is automatically

downloaded to the CAD revision record, in the event that it was left unknown at the time

of release of the revision in CAD (state 11 in figure 2).

442

MRP II

MKPn
revision

12 R

t
H

MRpn
routing

complete
j

skeletal i

CAD

CAD
revision

05

CAPP
CAPP

revision
initiation
function

CAPP
routing
revision

w
: 2

i
9

H
i

O

Routing Information

New Revision Information

Old Revision Information

Figure 2: Revision of Manufactured Part in CAPP

443

4 System Implementation

The concept of utilizing individual application-system databases was adopted in this work

in preferance to the traditional approach of having a large centralized database accessed

by each application system. The approach used here is based on database interoper-

ability. Database interoperability is the concatenation of the schemata of data of each

of the databases of the application systems, along with a rule set constructed for each

separate database, called update and retrieval dependencies. These update and retrieval

dependencies control inter-database consistency through inter-database operation calls [1].

The Update Dependencies language has been developed specifically for implementing this

database interoperability concept, and a first version of the interpreter has been imple-

mented in Prolog [4]. The functional relationships between CAD, CAPP and MRP II have

been specified in the language and tested.

The aim of this research was to provide a generic model for the integration of CAD,
CAPP and MRP II, rather than integration of existing commercial packages. For the

purposes of demonstration, test, and validation, certain routines of generic systems were

recreated, and embedded in the interoperability system as specified by the Update Depen-

dencies language. In an actual commercial implementation, this would not be necessary

since existing routines in the application system could be utilized. In that situation, the

interoperability system would be transparent to the users as they would interact with the

commercial software instead of directly with the interpreter as is done here. Consequently,

the volume of the source code specifying the interoperability system would be much smaller

in an actual implementation.

5 Conclusion

The work presented here gives a new approach to the integration of manufacturing systems

at the facility level. An integration methodology is presented which eliminates the need for

data duplication and controls consistency by use of the database interoperability approach.

The integration focuses on three specific modules, these being CAD, CAPP and MRP II

and is based on the commonality of data between particular entities used in the various

modules. A rule base was developed to govern the manipulation of the data associated with

these entities through the use of status codes. The system was implemented by translation

of the rule base into the Update Dependencies language developed at the University of

Maryland.

References

[1] Bohse, M.E. 'Integration of Manufacturing Resource Planning And Computer Aided

Design Through Database Interoperability' AIS Thesis
,
Department of Mechanical

Engineering, University of Maryland at College Park, (1987).

444

[2] Bray, Olin H. 'Computer Integrated Manufacturing, The Data Management Strategy'

Digital Press, CIM series (1988).

[3] Harhalakis, G.; Ssemakula, M.E. and Johri, A. 'Functional Design of an Integrated

CIM System at tlie Facility Level' Int. J. Computer Integrated Manufacturing, vol. 1,

no. 4, (1988) pp 245 - 252.

[4] Mark, L. and Roussopoulos, N. 'Operational Specifications of Update Dependencies'

Technical Report, Department of Computer Science, University of Maryland at College

Park, (1987).

445

A COOPERATIVE SHOP-FLOOR CONTROL MODEL

FOR COMPUTER-INTEGRATED MANUFACTURING

JAMES J. TING

Abstract:
A cooperative shop floor control model has been proposed in this paper. The control

model is able to address the aspects of management, production, and transportation in

a unified and asynchronous fashion. The model incorporates a pool control method
with differed resource commitment and distributed job scheduling. With such control

method, each module is independently and symmetrically controlled and the failure of

module as well as module controller can be coped with without interfering the

operations of other modules. The model also allows a simple and demonstratable

correspondence between physical modules and control software objects to take the

advantages of object-oriented design and programming approaches.

l.Introduction:
A common control model found in many computer integrated manufacturing (CIM)

architectures is supervisory control, also called hierarchical or command-feedback control

[COH88] [KE087] [JON86]. Two major factors contributing to the popularity of the supervisory

model are its similarity with traditional production management and control hierarchies and its

conformity to the classical problem solving paradigm, top-down decomposition. The similarity

with traditional management and control hierarchies makes the supervisory control model easy to

comprehend for management people; the conformity to classical problem-solving method makes
the model easy to apply for engineers. Therefore, the model is often the choice in upgrading a

conventional factory into a CIM faciUty.

However, as the local controllers and communication networks on the shop floor become
increasingly intelligent and powerful [BEN89] [SAN89], the traditional supervisory model tends to

inefficiently utilize such local intelligence and power in a modem CIM system [DIJF86] [HAT85].

A different approach, cooperative control, also called heterarchical or negotiation-based control,

has been proposed to take advantage of the modern computer control technology. In the

cooperative model, the local controller possesses more control knowledge and shares more control

responsibility than its counterpart in the supervisory model. Furthermore, these local controllers

are equally accessible to each other, have equal right of access to resources, operate independentiy,

and strictly conform to some overall system rules [HAT85]. With such a control model, there is

no need for a supervisory level and the exchange of local information through the supervisor. This

results in a simpler and more efficient CIM architecture. In addition, the cooperative model allows

a higher level of control distribution which in turn results in better flexibility, operatability, and

mo(Hfiability.

Despite the promises of the cooperative control model, many important issues remain to be

solved:

• what is the role of supervisors in cooperative control,

• how to efficientiy store part data and exchange information,

• how scheduling can be distributed,

• how to achieve global production optimality with distributed scheduling techniques,

• how the cooperative model performs in large scale flexible manufacturing systems.

446

• what philosophy should be used in the design of software so that objectives such as

reduced complexity, high fault-tolerance and low development cost are achieved.

Most of the existing research on cooperative control only provides primitive control protocols

and fails to address most of these important issues. To remedy the shortcomings of the existing

cooperative control models, an alternative cooperative control model is proposed in this paper to

address the above issues.

2.The shop-floor control problem
The control of a manufacturing system can be decomposed into four major layers: corporate,

factory, shop floor, and device layers; in some CIM reference models, the shop floor layer may be
further divided into shop, cell, and station layers [JON86] and the device layer into machine,
sequencing, and servo control layers [KE087]. The corporate layer consists of several (possibly

geographically separate) facilities/factories that are coordinated to produce a single product or

product line. The factory layer is comprised of all engineering, business, and production

operations (often) at one geographical location. The shop floor layer consists of loosely coupled
manufacturing modules which are physically located in one area/shop and logically related in one
production process. The device/operator layer corresponds to the manufacturing devices within

each module which are closely coupled by the requirements for real-time synchronization,

proprietary devices, etc. or human operators who are managed as one group. These layers are

respectively responsible for strategic planning, operational planning, inter-module production

control, and inter-module device motion control or operator dispatching. The control problem at

the shop floor layer is the main concern of this research.

2.1 Context
To accomplish manufacturing integration, it is essential to identify not only all manufacturing

components but also their relationships. This section describes the context of shop floor control;

Figure 1 illustrates the relationships of shop floor control with other CIM components.

The shop floor control function interfaces with factory planning, device control, purchasing

and distribution, and personnel management functional entities in a manufacturing enterprise.

Shop floor control, factory planning and device control are all part of CIM application functions

which carry out the primary missions of a manufacturing plant. The factory planning function

determines the master production schedule to be used as a base line for shop floor control while

receiving back the production results and actual shop-floor production capacity for further

operational planning. After the shop floor control function decides which module will perform

what jobs, the device control functional entities within each module will receive the job notices

from the module controller and perform necessary operations. The devices control entities also

report any status changes of the module to shop floor control entities for more accurate resources

allocation among modules.

Besides the interfaces with primary manufacturing functions, the shop floor control is also

related with external functional influences. As defined in [COH88], the external functional

influences are the entities in a manufacturing enterprise which are separate from production

functions of a manufacturing plant but affect them by sending inputs. The external functional

influences which affect shop floor control are raw materials purchasing, finished products

distribution, and personnel management. The purchasing and distribution functions affect the

actual stock level of raw materials available for real-time allocation to shop floor production

modules and the actual storage space for storing finished products. Shop floor control, in turn,

determines the amount of finished products available for distribution. On the aspect of human
resources, the personnel management affects the availability of manpower on shop floor and

receives actual personnel performance/attendance records from shop floor control function for

evaluation and accounting purposes.

447

materials purchasing &
prcxiuct distribution plan

r
factory
planning

production
results and
capacity

amount of
finished

human resovirces
establishment plan

master
production
schedule

shop-floor
control

purchasing &
distribution

Imount of
procured
materials

module
job ,

personnel
performance

module
status

device
control

^igur^T^!oiitext of shop-floor control

available
manpower

personnel
management

2.2 Scope
The scope of shop-floor production control, besides intra-module communications, is

primarily module-level job scheduling, progress monitoring, and status reporting. While both

shop-floor control and factory planning involve scheduling, they are different in granularity,

objective, and method. The shop floor scheduling deals with immediate and detailed resources

assignment based on a master schedule and real time shop floor status, and its objective is to

reduce system disruption caused by changes which were not anticipated during planning. On the

other hand, the factory layer scheduling deals with plan-ahead and coarser resources allocation

based on long-term production goals, and its objective is to optimize productivity and balance the

production and inventory costs. Therefore, the shop floor scheduling system is more likely to use

distributed and dynamic scheduling techniques for their flexibility and quick response to local

changes while the factory scheduling system tends to use centralized and static scheduling

techniques for their efficiency in decision-making process and ability of providing optimal

solutions.

Shop floor and device controls are also similar in that they both involve real-time control.

However, the shop floor control is less time critical and not restricted to proprietary devices and
synchronous methods. This is because that the shop floor layer aggregates manufacturing devices

into coherent modules, and encapsulates the part of control problem involving very fast response

time, proprietary device interfaces, and real-time synchronization within each module. With the

modularization, the shop floor layer only deals with inter-module job control and leaves the intra-

module operation (or motion) control to the device layer. The modularization also relieves shop

floor control from the restriction to proprietary devices and permits standards for shop floor control

to be adopted more easily. Finally, the modularization allows asynchronous methods to be used
for shop floor control since necessary real-time synchronization actions are encapsulated within

each module.

In summary, the shop floor control problem involves immediate and detailed production

scheduling, progress monitoring, and status reporting at the module level. The objective of shop-

floor control is to provide better system flexibility, operatability, and maintainability so that

disruption caused by unexpected changes can be greatly reduced. Standard and distributed control

methods are better suited to achieve this objective than non-standard and non-distributed ones. The
focus of this paper is on providing a distributed shop floor control model based on standard

communication networks.

3.Existing shop-floor control models

448

While there are variations in the definition of a supervisory model, they generally agree in

that "each control module decomposes the current input command from its supervisor into

procedures to be executed at that level, subcommands to be used to one or more subordinate

modules and status feedback sent to the supervisor" [JON86]. This command-feedback
relationship among manufacturing modules is very similar to that in traditional production

management and control hierarchies; it also conform to the classical problem solving paradigm,

top-down decomposition.

Although many supervisory control models claim to be distributed, they are at best network-

based and not truly distributed models [LEL83] [COU88]. In a system based on such models, the

lower level components passively wait for the commands from their supervisory components to

initiate their production activities. The supervisory and subordinate components may be on
separate computers and the commands may be sent and received through a communication
network, whereas the control relationship between these components is similar to that between
main routine and subroutines in a centralized system. Furthermore, the supervisory component
needs to possess some global knowledge about the world it controls: which components constitute

the world, what they can do, and how they are doing. Such a global knowledge requirement also

excludes the supervisory model from being truly distributed since no global knowledge should be

assumed as a prior to the proper operation of the components in a distributed system according to

criteria described in [LEL83] [COU88].
With the elimination of the supervisory relationship, cooperative control models have been

able to offer prospects of reduced complexity, improved operatability, and increased expandability

and maintainability over supervisory models [HAT85] [DUF86]. In a system based on such a

cooperative control model, the supervisory control function is distributed to all subordinate

components which cooperatively perform the control function. These components have equal

access to resources, operate independently, require no global knowledge as a prerequisit to their

proper operation, and all strictly conform to the cooperation rules [HAT85]. The unified and
symmetrical relationship between components reduces the complexity of control structure. In

addition, the independent and symmetrical operation mode of the components makes the

cooperative control system more resilient to failures as well as more expandable and maintainable.

Some of the heterarchical control models have been proposed in literature [SHA88] [DUF86]
[LEW87] and they can be categorized as controller driven, intelligent part driven, or data flow

respectively.

3.1.Controller driven
The controller-driven model is based on a bidding mechanism similar to the contract net

protocol [DAV83]. A new job entering the shop floor control network may go to any of the shop

floor controllers. The controller which receives the job order, called manager of the job, will

broadcast a task announcement into the network. Every controller including the manager may bid

for the task within a predetermined period of time, called a bidding interval. The manager collects

all bids and evaluates them after the deadline for bid submission. According to certain criteria, the

best bid is selected by the manager, and the task is awarded to the best bidder. When the module
finishes the task, the module controller will check to see if there are any remaining operations to be

done. If all operations of the job have been completed, the corresponding workpiece is sent to the

storage area; otherwise, the controller becomes the new manager of the remaining job and starts the

task assignment process again. Shaw [SHA87] [SHA88a] describes such a the controller-driven

protocol.

3.2.InteIligent part driven
The intelUgent part driven model is also based on a bidding mechanism similar to that of the

controller driven model, but this model defines the intelligent part software, instead of work
module controller, as the task manager who in charge of the bidding process. An intelligent part

software can be viewed as a dynamic information storage and processing unit which maintains its

449

own quality control history, performance measures and due dates, and variable process plan. For
each physical part type, there is a corresponding intelligent part software. When a physical part

(batch) enters the input station, its part software gets invoked on one of the controllers. The part

software will broadcast a task announcement, collect bids from the controllers, evaluate the bids,

and choose the best bidder to award the task to. The part software will then request the

transportation system to move its physical counterpart to the the award winning work-module.

The part software is also capable of immediately analyzing the results of part inspection and
initiating corrective actions if necessary. Two variations of this type of protocol are defined by
Duffie and Piper [DUF86] and Maley [MAL88a] respectively.

3. 3.Data-flow
Like the controller-driven model, the data-flow model describes production tasks as plain

data, not intelligent part programs; but unlike the controller-driven model, the data-flow model
defines a specialized control component, called Module 0 or Mq, for introducing jobs into and
removing them from the communication network. A job is an indexed sequence of all the tasks to

be performed on a batch of parts. Mq, generates messages describing jobs on hand, places the

current task pointer to the first task(s) of each job, and then broadcasts the message into the

network. After all tasks of a job have been carried out, Mq removes the job from the network. Mq
also has to assure that there are always a fixed number ofjobs circulating in the system in order to

make the model's control policy valid.

The claiming mechanism used in the data-flow model for job scheduling is also different

from the other approaches' bidding mechanism. The task claiming process starts with each
controller listening to the job messages, saving the jobs whose current tasks can be performed by
the work-module in an internal FIFO queue, and discarding the others. When a work-module
becomes or almost becomes idle, its controller dequeues the first job from the internal job queue
and claims the job by broadcasting a claim message. If there is more than one controller

simultaneously claiming the same task, they all withdraw their claim messages, independently and

respectively wait for a random length of time, and then re-claim the task.^ The successful

controller requests materials needed from the materials handUng system; at the same time, the other

controllers remove the claimed job from their internal queues. Upon finishing a task, the controller

will return the material, advance the job's current task pointer, and re-broadcast the message. The
controller may re-broadcast the message without performing the claimed task if the requested

materials are not available. The data-flow model was first developed by Lewis et al. [1982]. The
rational behind this model is that by increasing the average number of occupied work-modules, the

manufacturing system will 1) increase the throughput and 2) decrease the mean production lead

time [LEW 1987].

3.4.Summary
The existing cooperative control models are able to make more efficient use of local

controllers and communication networks and provide the controlled manufacturing system with

better operatability than supervisory models. The cooperative control models distribute

supervisory control functions to subordinate controllers and make the local controllers share more
control responsibilities than their counterparts. Hence, the increasing power and intelligence of

local controller and communication network can be better utilized in a cooperative control models.

The distribution of supervisory control functions also permit the control functions to continue with

some local controller failure. Therefore, the underlying manufacturing system can continue with

degraded operations in response to machine or controller failure. However, the existing

cooperative model provide only a partial solution to shop-floor control problem and fail to address

the issues discussed in Introduction section.

4.An alternative cooperative control model

This is similar to the conflict resolution strategy used in the communication protocol CSMA/CD,

450

To remedy the shortcomings of the existing cooperative control models, a cooperative control

model is proposed in this paper to address the above issues. The domain of the model is the shop-

floor control layer of a flexible and integrated manufacturing system. At the shop-floor control

layer, the manufacturing system can be viewed as a network of work, storage, transport, and
management modules. The work, storage, and transport modules are responsible for and capable

of coordination of their own production schedules through a distributed dynamic scheduling

method defined by the control model; the management module takes the role of monitoring and
reporting production progresses of the other modules and managing shop floor personnel. This

new model also distributes module-specific data to local module controllers while the shared and
part-specific data are stored in a data/software storage module. The model tackles the global

production optimality problem by implementing a "pull" control strategy with local optimization in

the job scheduling method. The model addresses the software design problem by taking an object-

oriented approach. Finally the model performance for large scale FMSs will be analyzed by a

simulation tool which can be used for evaluating the performance of any proposed cooperative

controlled manufacturing system.

4.1 Assumptions of the underlying system
At the shop floor layer, a flexible and integrated manufacturing system is viewed as a

collection of manufacturing modules which are connected by a standard communication network
and an automatic transportation network (cf. Figure 2). The shop floor modules can be either

management, transport, or production modules; the production modules can be further classified as

work, or storage modules. Each module has one control computer which is responsible for the

shop-floor-layer control of the module, inter and intra module communications, and data/software

storage and retrieval. Production modules also have local buffers for storing raw materials needed

for the next job and/or finished parts produced from the last job. The work modules can be in any
layout, cellular, functional, or hybrid, as long as they are formed to encapsulate proprietary

equipment and its control or to group devices which require real-time synchronization. An
example of such a module is a transfer line controlled by Septor's System 90 [VAS871.

bridge to other networks Communication Network

work module work module management
module

transport
modvile

1

—

fm

Transportation Network
transport
module
m r

hardware
storage modult

15
hardware
storage module

software
storage module

m—
Figure 2. Model of a manufacturing system at shop floor layer

The shop floor transportation network is a key component for manufacturing flexibility and

itself has to be flexible. To make the network flexible, the network operating functions, such as

path selection, collision prevention, and job scheduling, are assumed to be distributed to the

transport modules running on the network. As a result, these transport modules are autonomous,

i.e. knowing which modules they can reach and how to get there, and independent, i.e. scheduling

451

their own production jobs. The transport modules are also assumed to be quick response and
small capacity vehicles so that they do not require multiple parts to make up a full load and could
transport single parts [MAL88a] [MCG86]. Furthermore, the failure of a transport module will not

completely block the access to any of the production modules.

While human operators may drive or walk on the shop floor, the model assumes they are

moved by the same transport modules used for carrying materials. The single transportation means
allows unified road design and better traffic control.

Another key component for manufacturing flexibility and system integration is the shop-floor

communication network. The communication network connects all module control computers (or

module controllers) to provide a quick and accurate way of exchanging information on the shop
floor. This network is assumed to be a plant-wide Local Area Network (LAN). As oppose to

other communication networks, LANs have the following characteristics: [IEE86]
• optimized for moderate geographic area such as one or a few close-by buildings,

• providing moderate to high data rate, low delay, and low error rate, and
• usually owned by a single organization.

While there may be several different types ofLANs interconnected in a manufacturing faciUty, this

shop-floor control LAN is assumed to be a single LAN or several similar LANs connected by
repeaters so that they function as a single LAN.

To make the communication network comply with standard LANs described in Stallings

[STA87], further assumptions on the underlying LAN operating system are made as follows: it

provides asynchronous communication between controllers; it guarantees the delivery of

messages^ while imposing an unpredictable transmission delay; and it does not necessarily follow

FIFO policy on the transmission of messages from multiple nodes, and the FIFO policy holds on
the messages from a single node. An example of non-FIFO transmission network is the

CSMA/CD based LAN [STA87].

4.2.The control model

4.2.1 General Framework

Pull control with deferred commitment: The proposed model incorporates a pull

control method with deferred commitment. The pull control method is based on the principle of

Kanban system, which was first developed and used at Toyota [M0N81] [SUG77]. With this

method, production jobs are introduced to the orders of end-products. The production modules
which can produce the products will record the jobs and broadcast sub-jobs to procure the parts

needed to perform the jobs if the parts are not locally available. The same part procurement

process will propagate through the production system until some production modules have all

required parts to perform the (sub-)jobs. Such production modules may very likely to be raw
material storage modules at the beginning of the production stream. These modules than start a job

claiming process to determine who wins the job. The winner of this claiming process needs to

broadcast transport jobs to have the parts moved over if thfey are not in local buffers. With all

necessary parts on hand, the winning module then performs the job and broadcasts a job-done

message when the jobs are finished to notify downstream modules about the availability of their

inquired parts. The transport jobs are claimed by transport modules in the same way as production

jobs by production modules.
This pull control method is different from traditional Kanban system in its deferred resource

commitment. In the Kanban system, a kanban is a card used to authorize either a production or a

transport job as the production or transport job notice does in the above pull control method.

When the Kanban system is implemented in a transfer-line setting [M0N81], each module is pre-

assigned a small number of production kanbans and is limited to perform the pre-assigned

Unless there is a hardware failure which jeopardizes the proper function of the network.

452

production functions; while in a job-shop setting [GRA88], the first idle module can select a

production kanban from the central decision board on which all kanbans are kept. Unlike the

Kanban system, this pull method does not commit production jobs or parts to particular modules or

operations until all required resources are available for immediate performance of the jobs. The
allocation of resources to the jobs is done by a job claiming process which yields an locally optimal

solution. Such deferred commitment approach brings about more flexibility and quicker response

to unexpected changes. Such a pull control method is illustrated in Figure 3.

claim for

job
claim for

claim for

job

transport

job

claim

for job

1 .receive a job notice 2.start to claim for jobs

and broadcast sub- when all required parts

job notices to inquire are available

needed parts

3.start process the job
when parts are on-hand
and broadcast job-done

4.broadcast transport

jobs; transport modules
use the same job

to notify part availability claiming process

LEGEND: j~j
production

module
Q transport

module

winner of job

claim

Figure 3. Pull control with deferred commitment

Failure handling: Both manufacturing modules and controllers may fail although the

failure rate of manufacturing modules, which consist of mostly mechanical devices, is usually

higher than that of controllers, which are generally electronic computers. The module failure is

easier to cope with by simply modifying the capacity list in the controller to reflect the disability of

the module. With the modified capacity list, the controller will automatically skip all the jobs

which cannot be performed by the module. If the module failed after jobs have been won and parts

have been transported to local buffers, the controller will re-announce the unstarted jobs and make
the already shipped parts available to public again. The started but unfinished jobs will stay in the

module and will continue with manual control by operators once the module is repaired. The
repaired module may joint other modules to claim for the re-announced jobs which are still open at

the time.

The controller failure is harder to cope with since it may result in some information loss. The
information loss caused by controller failure can happen in one of the following situations:

1.a job is announced when no controller of capable modules is in normal operation at the

time

2.a job has been announced and yet to be claimed when all controller of capable modules
for the job go down

3.the claiming process for a job has been started and the controller which has broadcasted

the best bid fails before it completes the process

453

4.a job has been won by a module whose controller subsequently failed before it can finish

the job

5.a job-done message is broadcasted when no controller which is capable of performing the

subsequent job is in normal operation

To recover the lost information in situations 1, 2, and 4, the above generic pull control model
is modified as follows: a controller which is waiting for parts to perform a job will periodically re-

announce sub-jobs of the job if the controller is not hearing any production activity for the sub-jobs

(or sub-jobs of the sub-jobs of ... of the sub-jobs) from upperstream module controllers. The
success of the modified model relies on some implementation which allows quick detection of the

parent-child relation among jobs. One possible implementation is to use simple job ids and attach

parent job ids to the front of each job id, e.g. 2.3.5 represents the fifth sub-job of the third sub-job

of the second job.

Situation 3 is handled in a distributed job scheduling/claiming method described later.

Situation 5 can be handle in a similar way as above. The controller which broadcasts a job-done

message will periodically re-broadcast the message until the claiming process for the job's parent

job has been started. With this addition to the base model, the part availability information

conveyed by the job-done message will not be lost due to temporarily the absence of modules
picking up the information.

Flexible lot sizing: While large lot size will reduce the possibility for parallel production

and decrease the flexibility for failure handling, small lot size will increase the frequency of

decision making and module setups. This control model allows flexible lot sizing to provide both

the production efficiency of large lot size and the failure handling flexibility of small lot size.

The flexible lot sizing is done by allowing production modules to claim for only a small

portion of a job order each time and can continue claim for the same job when it almost finishes

currently on-hand work until the whole job is claimed. The job claim will include the estimated

time for setup besides the process and transportation times. By considering the setup time, a

module which is performing the same job tends to win the claim and to cumulate the small lots into

a large lot. Should the module fail, it immediately stops claiming for more jobs and the remaining

unclaimed part of the job can be performed by other modules without having to be retracted from
the failed module. In addition, a large job can be naturally performed in parallel if there are more
than one capable module and all claiming for only a small portion of the job each time.

To implement the flexible lot sizing method, the underlying communication network has to

accommodate the increased communication traffic due to increased frequency ofjob claiming, the

underlying transportation network needs to incorporate the increased transportation traffic as a

result of smaller transport lots, and there should be no difficult in splitting production orders into

small lots.

Role of supervisor: The management module in the proposed control model plays the

role of shop floor supervisor. The management module consists of managers, foremen, and
operators. Since the production scheduling work is done by all the modules cooperatively, the

management module is responsible for only progress monitoring, status reporting, and shop floor

personnel management. Progress monitoring is done by passively listening to the broadcasted job

win and done messages. Based on these messages, the management module can maintain a work
history of all under-supervised production and transport modules. From the history, information

about product quality, production lead time, and module idle time can be derived and used to

determine the schedule for preventive maintenance of each module. The information is also

reported to operational planning systems at the factory layer for planning future production.

When a module's maintenance is due, the management module sends a maintenance job

notice to the module. The maintenance job will be handled as a normal production job by the

module except only one module will claim for the job. The module will request for resources,

including tools and operators, claim for the job once all the resources are available, then request for

454

transportation of these resources to local buffers, and finally perform the maintenance job when all

resources have arrived. The maintenance job usually does not have higher priority than normal
production jobs so that the production jobs which are claimed and won before the maintenance job
will be finished before maintenance to ensure non-blocking of the down stream production by the

module. Consequently, the time of actual maintenance won't be necessarily the same as original

scheduled, and won't be too much different either since the production jobs are all fairly small.

When a module breaks down unexpectedly, it sends repair jobs to request for operator

services from the management module and other resources as required from different modules.
While the repair job notice is the same as the resource request for maintenance jobs, it has priority

over all other types of jobs: the management module will first assign operators to repair job and
the transport module will first ship repair resources.

Local optimality: To ensure that the choice of the winner for a job claim is at least locally

optimal, each module can only claim for one job at a time. If multiple claims are allowed, one
module might win two jobs during the same claiming period. However, the bids included in the

winning claims are based on the module capacity before any job has been won. If both jobs are

performed at this module, one of the jobs has to be delayed and the claim information becomes
false. The choice of the winner for the job was based on false information and could not guarantee

to be the best.

With the restriction of one claim at a time, a module's bid for a job reflects its true capability

when the job is actually conducted. Therefore, the best bidder for a job will yield an locally

optimal performance among all possible modules for this particular job. The choice of best bidder

for each job is achieved in this control model by a scheduling algorithm which selects the best

bidder for a job during each claiming period. Since the claiming process is through a

communication network, the time for claiming a job will be very short compared with the time for

actually performing the job. Consequently, even a module can claim for one job at a time, it can

claim for many jobs and has all opportunities to win one before it finishes the last job and becomes
idle.

Non-blocking pallet/fixture return: In an automated manufacturing system, pallets

and fixtures are needed for loading and fixing parts on vehicles and machines. After the process is

done, the parts will be unloaded from the pallets and fixtures. If the unloading station is in

different module from the loading station, the empty pallets and fixtures need to be shipped back to

loading station and reused on other parts. It is very desirable that the shipment of the empty pallets

and fixtures should not block that of materials and parts.

The return of empty pallets and fixtures can be incorporated in this model by letting the

storage module issue a production job solicitating empty pallets and fixtures for each used pallet or

fixture. To avoid blocking normal traffic, the empty pallet/fixture return job can be treated as low
priority jobs by the transport modules and are shipped only when the transport modules have

nothing else to do; or the pallet/fixture return jobs can be issued at the end of each day of work
when all other jobs have been finished.

4.2.2.Distributed and dynamic scheduling
A distributed and dynamic scheduling method is used in the model's job claiming process.

This scheduling method is different from the bidding mechanisms of existing control models in that

it is more distributed in terms of imposing no decision center, requiring no prior knowledge about

global state, and allowing various heuristic rules to be used in job sequencing and dispatching.

The method is different from existing distributed election algorithms [RAY88] in that it tolerates

controller failure and can be used not only on ring-topology networks but also on token-bus and
CSMA/CD networks.

The scheduling method is based on the Transmission Axiom: in a LAN or a group of

repeater-connected LANs, the transmission of a message will take over the whole message-sending

455

channel at least until the message is propagated through the network(s). With the Transmission

Axiom, it can be easily proved that broadcasted messages are heard in the same sequence by all

active nodes on the network. Since all claims for jobs are broadcasted in the control model, every

active node (or module) can expect to receive the same sequence of claims for each job. By
examining the sequence of claims, each module knows from whom it can expect endorsement^, to

whom it should send its endorsement, or if it wins the job claim according the following rules:

• each module sends its endorsement to the first module that has broadcasted a better claim

for the same job than the local claim once it has received all expected endorsements.

• each module can expect to receive an endorsement from the module who's claim is worse

than the local claim but is the best among the claims received before the local claim was

received, or the module who's claim is worse than the local claim and received after the

local claim and before a claim which is better than local claim

.

• a module can broadcast a win message for a job claim to terminate the claiming process if

it receives no better claim while having received all expected endorsements.

The distributed and dynamic scheduling method is textually symmetrical, i.e. the same
algorithm is used by all controllers while each controller has a unique reference name and may
behave differently according to different messages received. The algorithm is as follows.

For each module controller i

initialize the open job set, J <—
{

}

1.1. J <- J {Jj}

1.2. local bid, bi(Jj) <- NULL
L 3 . start the local claiming process for the job, C(Jj) <r- ()

L4. expected direct endorser list, E(Jj) <— ()

L5. better bidder list, B(Jj) <- ()

L6. LocalBidReceived <- FALSE
2 . when job bidding is permitted and J ^ {}

2.1. select a job J^ext ^

2.2. prepare a local bid bjCJ^gxt)

2.3. if 3 a bid bk(Jnext) ^ C(Jnext) ^ bi(Jnext) <bid ^kCWt)' then

2.3.1. terminate the local claiming process C(Jnext)

2.4. else

2.4. 1 . broadcast local bid message ni(bi(Jnext))

3 . when the incoming message buffer is not empty
3.1. dequeue a message m(»)

3.2. if it is a bid message m(bi(Jj)), Jj ^ J, then

^ A module's endorsement is the act of supporting another module in selection of the winner for a job claiming

process or a message sent to the other module to indicate the endorsement.

BEGIN
1 . when 3 an open job Jj

3.3. else if it is a win message m(wi(Jj)), Jj ^ J, then

456

3.3.1. terminate the local claiming process C(Jj)

3.4. else if it is an endorsement message m(ei(Jj)), Jj ^ J, then

3.4.1. remove 1 from E(Jj)

3.4. else if it is a controller failure message m(fi(Jj)), Jj e j, then

3.4.1. remove 1 from E(Jj)

3.4.2 remove bi(Jj) from C(Jj)

3.4.3 modify E(Jj)

4 . when the incoming message buffer is empty
4. 1 . if (LocalBidReceive = TRUE a C(Jj) (bi(Jj)) a B(Jj) = () a E(Jj) = ()) v C(Jj)

= (bi(Ji), bi(Jj)), then

4.1.1. broadcast a win message m(wi(Jj))

4.1.2. terminate the local claiming process C(Jj)

4.2. else if B(Jj) 9^ () a E(Jj) = (), then

4.2.1. BetterBidder <- GetFirstEntry(B(Jj))

4.2.2. MessageSent ^ send an endorsement message m(ei(Jj)) to BetterBidder

4.2.3. if MessageSent = FALSE, then

4.2.3. 1 broadcast a controller failure message '^^^Q\xti^\dAz^'^
A.l.^.l remove bBetterBidder(Jj) from C(Jj)

4.2.3.3 modify E(
Jj

) to include new endorsers

4.2.3 A. Go To step 4.1

4.2.4. else

4.2.4.1. terminate the local claiming process C(Jj)

END

In the normal case, the procedure can be completed with n messages and the message
complexity of the above algorithm is only 0(n), where n is the number of modules involved in the

claiming process. In the case of controller failure, the sending of endorsements cannot be
completed due to the failure of receiving controllers; the endorsers have to

• broadcast a controller failure message
• modify its direct endorser list

• follow the normal endorsement procedure

The above failure handling steps make the algorithm capable of tolerating any controller failure and
guarantee a successful job assignment within one run of the claiming process. The extra messages
needed for failure handling are 2 for each endorser of a failed controller. In the worst case that all

bids were received in a reverse preference order and the first half bidders failed before

endorsement, the total extra messages will be no more than (n^ - n)/2. The message complexity of

this algorithm becomes 0{n^).

Some desirable characteristics of this algorithm are: it is textually symmetrical, it needs no
prio global knowledge, and it can incorporate various job dispatching rules in step 2. 1 and module
selection rules in the bid comparison function "<bid" (cf- step 3.2.2 of the algorithm).

4.2.3.Combining pull with push control

A complete pull control system has potential problems if some sub-assemblies which contain

critical parts have long production-lead times or if the size of a company is much smaller than the

suppliers of raw materials and it is impossible to impose Just In Time (JIT) delivery dates to the

suppliers. For a manufacturing process with critical sub-assembly parts which have long

production-lead times, the pull control method propagates the long sub-assembly times into long

delivery times for end-products. If the manufacturing system works to orders, the long delivery

times means long waiting times for customers and, hence, less competitiveness in the marketplace.

457

Or if the source of raw materials is not controllable, the pull production control method will results

in an unpredictable delivery time for end-products. This is, too, unacceptable for work-to-order

type of manufacturing systems. To remedy the problems, the production of critical sub-assembly
parts with long delivery times or the procurement of raw materials with uncontrollable sources

need to be planned ahead of time, i.e. they will not be driven by immediate needs of downstream
production but by pre-planned inventory levels which is part of push control.

This control model is able to combine pull and push control methods by inserting stock

points at the end of the sub-assemblies which contains critical parts with long production-lead

times. These stock points are hardware storage modules in the terminology of this control model.
These storage modules receive production orders directly form the operational planning system
instead of from downstream modules. Therefore, some sub-assemblies may progress ahead of the

immediate needs by end-product assembly. But, the sub-assembly processes still controlled by the

same pull method and the whole control process consists of segments of pull controlled processes

as opposed to a single pull process. An example of such hybrid production control is illustrated in

Figure 4.

production /

procurement schedules

downstream downstream

production needs production needs

Figure 4. An example of hybrid production control

To deal with the uncontrollable resource of raw materials, an inventory control function is

needed by the storage module of raw materials. The inventory control function keeps tracking the

module's internal inventory level and re-orders raw materials from the suppher according to some
pre-determined criteria or pre-planned procurement schedules.

5.An object-oriented control software design
A generic software model for shop floor control is designed based on an Object-Oriented

Design (OOD) method. The principle of OOD is that the key to software quality lies in the

structuring of die solution to a problem in such a way as to reflect the structure of the problem itself

[B0083]. Since the shop floor consists of clearly identifiable manufacturing objects such as

machines, operators, parts, and work orders, there should be a simple and demonstrable
correspondence between physical components on the shop floor and abstract components in the

control software. The application of OOD in the domain of shop floor control should be very

natural and even more beneficial than that in the domain of general computing [HAR89].
Although the concept of objects in software development has been around for a long time, the

methodology for creating an object-oriented design did not exist until early 80's [ABB83]
[B0083]. Both Abbott's and Booch's methods contend that OOD begins with a natural language

458

description of the solution strategy for the software realization of a real-world problem. Following
the informal strategy, four steps are defined to further specify the software [B0083] [B0086]:

• identify objects and tiieir attributes

• identify operations which are performed or required by the objects
• establish interfaces/visibility between the objects

• decide on detailed design issues that will provide an implementation description for

objects

The work of Abbott and Booch has been refined by EVB to provide a more rigorous although still

informal step-by-step method for OOD [EVB86]. A somewhat similar altemative to the above
method is given in [LOR86] to explicitly address some important concepts ofOOD such as

messages and inheritance. A good introduction to these two design metihods with simple examples
can be found in [PRE87]. Wirfs-Brock and Wilkerson argue that the data-driven approach, same
as the above methods, makes the structure a part of object definition and may easily lead to a

definition of operations which reflects the structure [WIR89]. They propose a different approach,

responsibility driven approach, which first indentifies the objects' responsibility instead of objects'

structure (the other objects known by the object). They argues that the data-driven approach makes
the structure a part of object definition and may easily lead to a definition of operations which
reflects the structure.

S.I.Basic terminology for OOD
This section provides a definition for the terminology used in the description of the control

software model in the remaining section. The definition is somewhat different from that commonly
found in OOP literature since OOD describes the software system at a higher level of abstraction

than OOP which works on implementation details.

• object: is an entity which has states and whose behavior is characterized by the operations

it performs and suffers

• actor object: an object that suffers no operations but only performs operations on other

objects

• server object: an object that only suffers operations but performs no operations on other

objects

• agent object: an object that serves some objects by performing operations on other objects

• class: a general description of one or many similar objects

• instance: a specific description of a particular object (or an object which is not a class)

• meta class: a class which is the generalization of some other classes

• primitive class: a class which is not a meta class

• inheritance: the automatic possession of some state values and operations of one class

from some other class(es)

• message: a piece of information sent to an object to initiate operations of and/or request

other information from the object with no hint or concern as to what the receiver should

do to accommodate the sender's wish.

• protocol: a standardized set of messages and associated rules prescribing the object's

behavior at the receipt of each message.

An object often corresponds or is analogous to a real world component and describes either

the general property of a class of such components or a specific instance of such components.

Objects are distinguished by their states and operations and fall into one of the tree types: actor,

agent, and server. In the shop floor control problem, actor objects correspond to module
controllers which require production operations of device controllers, service operations of human
operators, and data collection/processing operations of the part and job entities; the device

controllers in turn require production operations of the machine or other manufacturing equipment

and are modeled as agent objects while machine, human operators, parts, and jobs carry out these

operations and are modeled as server objects. The actor objects are not required by other objects

to perform any operations. Instead, they participate in a cooperative control process through

459

passing messages. The messages have no control over the behavior of the receiving objects. But
the actor objects all agree on the same protocol to keep the system's overall behavior in accordance.

5.2.Shop-floor control objects
Unlike intelligent-part driven approach to shop floor control (cf. section 3.2), the proposed

control model describes module controllers as intelligent actor objects while the supporting entities,

i.e. parts, programs, tools, work orders/jobs, etc., are designed as non-intelligent server objects.

These non-intelligent objects will simply collect, process, and provide the data which describes the

production status/information of their counterparts in the real world. The intelligent control objects

contain the control knowledge and impose much of the difficulty in the design of shop floor control

software. This research focuses on the design of these intelligent control objects.

shop-floor module
control object

V3

9i

E

transport
module
control object

production
module
control object

AGV
control object

conveyor
control object

storage
module
control object

tool store
control object

end-product
store
control object

work
module
control object

transmission
box
fabrication
module
control object

painting
module
control object

management
module
control object

production communications
management network

ect mangement
object

ob

transmission
shop
management
object

final
assembly line
management
object

MAP
network
mangement
object

EtherNet
network
management
object

Figure 5; Class structure of shop floor control objects

The shop floor control objects are identified and they are structured in terms of inheritance

relationship as shown in Figure 5. Since every shop floor module has states representing its

processing status, and its behavior is characterized by the operations it can perform or it requires of

other module/device to perform, the module control software is logically identified as an object in

the control software model. But there may be too many different modules in discrete

manufacturing, it is very cumbersome to list all instances or even the primitive classes of the

control objects. Therefore, only the meta classes are fully illustrated.

The first level of control object meta class consists of work, storage, transport, production

management, and communication management control objects. The work control object

corresponds to the module which fabricate, assembly, disassembly, inspect, or construct product

out of raw materials and/or parts. The storage control object represents the control software of a

module which stores, retrieves, loads, and unloads supporting hardware or software entities such

as parts, tools, programs, and files. The transport control objects is responsible for the control of

all types of transportation devices such as AGVs and conveyors. The production management
object deals with the dispatching of operators, recording and analyzing the performance data of

460

equipment and shop floor personnel, and providing aggregated information to higher level

manufacturing control objects. Finally, the communications network management control object

corresponds to the operating system of a shop floor communications network.

The second level meta classes are production and management module control objects. The
production module control object is a generalization of work and storage control objects. The
work and storage modules are very similar if one considers the storage module is a type of work
module which has a very large local buffer for storing required parts and/or tools and treats the

storage, retrieval, loading, and unloading operations equivalent to the work module operations.

The work module is restricted to the ability of producing certain type of products while the storage

module also has limitation on the types of parts/tools it can store and retrieve. The management
module control object is the generaUzation of production and communications network
management control objects. Both management control objects are responsible for allocating

resources and recording, analyzing, and reporting resources' performance data. Their main
differences come from the different types of resources they managed.

5.2.State variables and operations of control objects

This section describes the data variables/structures and operations to be incorporated in the

first level meta-class control objects except the communications network management object. The
exception is because that the proposed control model assumes that existing communications
networks are used and there is no need to re-design the network management control objects.

For the production module control objects, the following data structure and variables are

needed to capture the states of production jobs and module capability. The production control

objects can be distinguished into storage or work control objects by different jobs specified in the

capacity list, and storage jobs do not involve as frequent equipment setups as work jobs do.

• capacity Ust: a list ofjobs the module can perform, the resources required for performing

these jobs, and estimated times needed to perform the jobs if all resources are locally

available

• message queue: a sequence of messages received by the module
• open job queue: a sequence ofjobs which are announced to be performed but do not have

the required resources available on the shop floor yet

• ready job queue: a set ofjobs which are ready to be claimed
• bid list: a list of bids, including local bid, for the ready job
• assigned job queue: a set ofjobs assigned to the module with all required resources for

performing the jobs been shipped to the local buffer

• job claiming permit: a variable indicating if the object can start a local claiming process for

a ready job
• module status: a variable indicating if the module is in the state of idle, processing,

breakdown, or maintenance.

The transport module control object has the same data structures and variables plus an

additional map-list which includes the list of locations the transport module can reach and the

distance between any two reachable locations. The production management object also has the

same data structures for the service jobs which to be performed by operators but needs no job

claiming permit and module status variables. It needs an additional database management system

to record and analyze the large amount of performance data.

The operations to be performed by each control object are given as follows:

Work module control object:

• buffer and process the incoming messages
• record and update the information about open jobs

• claim for an open manufacture job with all required parts available on the shop floor

• perform the manufacture jobs assigned to the module
• perform module-maintenance jobs

461

• retract assigned manufacture jobs in case of manufacturing equipment failure

• request for operator services

• answer queries

• buffer and send outgoing messages
Storage module control object:

• buffer and process the incoming messages
• record and update the information about open storage/retrieval and loading/unloading jobs
• claim for an open storage/retrieval and loading/unloading job with all required parts

available on tfie shop floor

• perform the storage/retrieval and loading/unloading jobs assigned to the module
• solicit for empty pallets and fixtures

• perform the module-maintenance job
• retract assigned storage/retrieval and loading/unloading jobs in case of manufacturing
equipment failure

• request for operator services

• answer queries

• buffer and send outgoing messages
Transport module control object:

• buffer and process the incoming messages
• record and update the information about open transport jobs
• claim for an open transport job with all required parts available on the shop floor

• perform the transport jobs assigned to the module
• perform the module-maintenance job
• retract assigned transport jobs in case of manufacturing equipment failure

• request for operator services

• answer queries

• buffer and send outgoing messages
Production management object:

• buffer and process the incoming messages
• record and update the information about open operator-service jobs
• claim for an open job with all required parts available on the shop floor

• perform the operator-service jobs
• record performance data from non-management modules
• perform security measures
• answer queries

• buffer and send outgoing messages

5.3.Interfaces between control objects
The sending of a message is the only way of communicating in an asynchronous system such

as the proposed control system. Therefore, the interfaces between control objects is defined by the

messages which are passed and received by the objects. The messages act as stimuli to initiate the

local operations of receiving objects and have the following general format:

(type, receiver(s), sender, job-info)

where the type of a message can be:

for production module control object: JOB, CLAIM, ENDORSEMENT, WIN, DONE,
MAINTENANCE

for transport module control object: T-JOB, T-CLAIM, T-ENDORSEMENT, T-WIN, T-

DONE, MAINTENANCE
for production management object: EMERGENCY-REPAIR or REGULAR-SERVICE-
REQUEST

The job-info attribute of a message contains a description about the job and has the following

format:

462

(job-id, status, quantity, producedproduct name, due date, bidfor the job, parentjob,
assigned module, remaining process time until end-product, remaining # ofoperations
until end-product)

where the status of a job can take on one of the values specified as follows:

NEW, AVAILABLE-FOR-CLAIM, A-CLAIM, ENDORSEMENT, CLAIMED,
ASSIGNED, DONE, MOVED, QUERY, FILE-TRANSFER

job-claim permit

job done,
retracted
job

ule breakdown

ready job,
job claim

r
message

transport job,
file transfer,

service request,
repairment job,
'Sub-job,job done

job clidm,
endorce-
ment,
job win

mejssenger
(communication system/protocol adaptor)

communication network operating software

communication network firmware/hardware

Figure 6. A model of module controileT

The rules of using these messages have been informally described in section 4.2. Figure 6

illustrates the messages sent and received by and the job information flows within a production

module control object. As also shown in the Figure, the control object design includes a separate

communication interface entity, called messenger, so that the majority of control software is

independent from the difference of communication protocols; the change of communication
network only affect the interface entity.

6.Conclusion
A cooperative control model has been proposed in this paper to address the issues outlined in

the Introduction section. The issue about the role of supervisors in cooperative control is

addressed in the model by including a production management module which consists of shop

floor managers, foremen, and operators. The controller of such a management module is

responsible for monitoring, analyzing and reporting the performance data about shop floor

personnel as well as equipment. TTie issue about the efficient storage and exchange of part data is

addressed by including software storage modules to store part data as well as other shared shop

floor production information. The data or programs stored in the software module are treated as

other physical resources and can be requested by and transfered to a module controller immediately

before the requiring job is started. The data or programs can be erased after use to vacant the local

buffer for future needs. The distributed scheduling issue is resolved by designing a truly

distributed scheduling method. The distributed scheduling method can accommodate the failure of

manufacturing equipment as well as control computers without interrupting the global job claiming

(scheduling) process. The global production optimality issue is tackled by incorporating a pull

control method. The pull method allows a global control of work in process inventory levels and

463

locally optimal allocation of resources. Finally, the control software design issue is dealt with by
introducing the Object-Oriented Design approach. The OOD approach can be naturally applied to

the design of control software based on the proposed control model. This is because, the control

model provides a simple correspondence between control objects and physical modules.

The performance issue of the control model in a large scale FMS, however, is not addressed

in this paper. Although the communication delay is expected to be comparatively much smaller

than manufacturing delay for a normal production job, it is not clear how many controllers can be
connected to a plant-wide LAN without introducing a bottieneck to the production process and how
different types of LANs perform with the proposed control protocol. To answer such questions, a

simulation study is undergoing to measure the model's performance by explicitiy modeling the

flows of messages as well as that of physical entities.

A limitation of the proposed control model is that the efficiency of its distributed scheduling

method relies on the efficiency of message broadcasting function provided by the underlying

communications network. The scheduling method will not be very efficient if the time for

broadcasting a message is much longer than single point message passing. Another limitation of

this model is its inability of providing global production solutions beyond the work in process

inventory control.

7.References
[ABB 83] Abbott, R.J. "Program Design by Information English Descriptions," Communications

ofACM, November 1983, pp. 882-894.

[BEN89] Benassi, P., "As Technology Changes, So Does Roles of PLCs," Managing
Automation, January 1989, pp.28-32.

[B0083] Booch, G. Software Engineering with Ada, The Benjamin/Cummings Publishing Co.

Inc., 1983, Second Edition, 1986
[B0086] , "Object-Oriented Development", IEEE Transactions on Software Engineering,

February 1986, pp. 211-221.

[COH88] Cohen, Gideon, "Main Components of a Computer-Integrated Manufacturing Reference

Model", CIM Review, Winter 1988, pp. 28-36.

[COU88] Coulouries, G.F., and J. Dollimore. Distributed Systems: Concepts and Design^
Addison-Wesley Publishing Company, Inc., 1988, 366 pp.

[DAV83] Davis, R., and R.G. Smith, "Negotiation as a Metaphor for Distributed Problem
Solving", Artificial Intelligence 20, vol. 1, 1983, pp. 63-109.

[DIJF86] Duffie, N.A., and R.S. Piper, "Nonhierarchical Control of Manufacturing Systems,"

Journal of Manufacturing Systems, vol. 5, no. 2, 1986, pp. 137-139.

[EVB86] Object-Oriented Design Handbook, EVB Software Engineering, Inc., Rockville MD,
1986.

[GRA88] Gravel, M., and W.L. Price. "Using the Kanban in a job shop environment,"

InternationalJournal ofProduction Researches, vol. 26, no. 6, 1988, pp. 1105-1118.

[HAR89] Harrison, W.H., J.J. Shilling, and P.F. Sweeney. "Good News, Bad News:
Experience Building a Software Development Environment Using the Object-Oriented

Paradigm," OOPSLA'89 Proceedings, New Orleans, LA, October 1989, pp. 85-94.

[HAT85] Harvany, J., "Intelligence and Cooperation in Heterarchical Manufacturing Systems,"

Robotics and Computer Integrated Manufacturing, vol. 2, no. 2, 1985, pp. 101-104.

[IEE86] IEEE Computer Society. IEEE Standard 802.1: Overview, Interworking, and Systems

Management, August 1986.

[JON86] Jones, A.T., and C.R. McLean, "A Proposed Hierarchical Control Model for Automated
Manufacturing Systems," Journal of Manufacturing Systems, vol. 5, no. 1, 1986, pp. 15-

25.

[KE087] Keogh, J.P., "Advanced Production Control Systems," in ESPRIT CIM, B. Hirsch and
M. Actis-Dato (eds), North-Holland, 1987, pp. 221-234.

464

[LEL83] LeLann, G. "Motivations, Objectives, and Characterization of Distributed Systems," in

Distributed Systems - Architecture and Implementation, B.W. Lampson, M. Paul, and
HJ. Siegert (eds.). Springer-Veriag, Second Edition, 1983

[LEW82] Lewis, W.C., M.M. Barash, J.J. Solberg, "Single Queue Management of a Job Shop as

Implemented by a Data Flow Architecture", Proceedings of the 23rd International Machine
Tool Design and Research Conference, Manchester, September 1982, pp. 415-420.

[LEW87] , "Computer Integrated Manufacturing System Control: A Data Flow Approach",
Journal of Manufacturing Systems, vol. 6, no. 3, 1987, pp. 177-191.

[MAL88a] Maley, J.G. "Managing the Flow of Intelligent Parts", Robotics and Computer-
Integrated Manufacturing, vol. 4, no. 3/4, 1988, pp. 525-530.

[MAL88b] Maley, J.G., S. Ruiz-Mier, and J.J. Solberg. "Dynamic Control in Automated
Manufacturing: a Knowledge Integrated Approach," International]ournal of Production
Researches, vol. 26, no. 11, 1988, pp. 1739-1748.

[MCG86] McGilem, CD., J.J. Solberg, J.M.A. Tanchoco, A. Midha, and C.L. Moodie.
"Towards an Intelligent Factory Transport System," ORSAITIMS meeting, Miami, FL,
October 1986; Purdue University, W. Lafayette, IN 47907.

[M0N81] Monden, Y. "Smoothed Production lets Toyota adapt to demand changes and reduce

inventory," Industrial Engineering, vol. 13, no. 8, 1981, pp. 42-51.

[PRE87] Pressman, R. Software Engineering: A Practitioner' s Approach, McGrow-Hill Co.,

Second Edition, 1987.

[RAY88] Raynal, M. "Distributed Algorithms: Their Nature & the Problems Encountered," in

Parallel and Distributed Algorithms, M. Cosnard et al. (eds), North-Holland, 1988, pp.
179-185.

[SAN89] Santo, Brian, "Industrial Electronics," IEEE Spectrum, January 1989, pp. 53-55.

[SHA88] Shaw, M.J., and A. Whinston, "A Distributed Knowledge-Based Approach to Flexible

Automation: The Contract-Net FrameWork", Int'l Journal of Flexible Manufacturing
Systems, 1988.

[STA87] Stallings, W. Handbook of Computer Communications standard: Local Network,
Macmillan Publishing Co., New York, 1987, 244 pp.

[SUG77] Sugimori, Y., K. Kusunoki, F. Cho, and S. Uchikawa. "Toyota production system and
Kandan system materialization ofjust-in-time and respect-for-human system," International

Journal ofProduction Researches, vol. 15, no. 6, 1977, pp. 553-564,

[VAS87] Vasilash, G.S., "Rule-based Breakthrough: for Transfer Line Control," Production, May
1987, pp. 34-37.

[WIR89] Wirfs-Brock, R., and B. Wilkerson. "Object-Oriented Design: A Responsibility

Approach," OOPSLA'89 Proceedings, New Orleans, LA, Octorber 1989, pp. 71-75.

465

The Importance of Decompositions

IN

CIM Control Architectures

Wayne J. Davis

Professor of General Engineering

University of Illinois @ Urbana-Champaign
Urbana, Illinois

S. Daniel Thompson
Assistant Professor of General Engineering

University of Illinois @ Urbana-Champaign
Urbana, Illinois

LARRY R. White
Assistant Professor of Operations Management

Weatherhead School of Management
Case Western University

Cleveland, Ohio

Abstract

This paper provides a conceptual overview of the role that decomposition

approaches can play in defining control hierarchies for computer-integrated

manufacturing. This paper focuses upon the production planning problem and

defines a multi-level hierarchy to address aggregate, intermediate and detailed

production planning. Two basic decomposition approaches are discussed, temporal

decomposition and disaggregation. The paper provides a brief survey of the

previous applications of these approaches in the literature. It continues to define

improved strategies for hierarchical interaction. Considerable attention is focused

upon the determination of a suitable planning horizon to be considered in the

production planning problem. Finally, the paper sketches the interaction of the

production planning hierarchy with other corporate functions, including strategic

corporate planning, marketing and purchasing.

466

CIMCOM 90rrDavis, Thompson and White (4/3/90)

Introduction

Today, there has been a renewed interest in manufacturing research, spurred

first by increased global competition and a need for improved manufacturing
efficiencies, and second, by advances in computing capabilities. To address these

needs, manufacturers are increasingly turning to the implementation of computer-
integrated manufacturing (CIM). To date, there is little theoretical foundation to

guide the overall implementation of a CIM hierarchy. In many cases, the

manufacturer is confronted with a variety of vendors, eadi addressing a particular

concern. The hope is that by integrating the individual subsystems an overall

efficient hierarchy will evolve. In reality, however, the individual packages are

often incapable of communicating with each other as no interfacing standards exists.

For example, the manufacturer is incapable of implementing the communication
interfaces among the material requirements planning subsystem, cell controller

subsystem, and the computer-aided design subsystems. In this sense, the so-called

islands of automation develop.

The complexity of the modem large-scale manufacturing system, necessarily

limits the scope of the problem to be addressed by a given vendor. The vendor then

provides for research and product development in its predefined area of expertise. It

is doubtful that any vendor will ever provide an overall solution, and if he did, it is

unlikely that any manufacturer would totally commit to a single vendor for a

complete solution of its manufacturing problem. Vendors certainly provide one
regime for manufacturing research. The other major contributor is academia. Here
again, the complexity of the manufacturing problem has forced individual

researchers to focus upon a selected subproblem. The emergence of Manufacturing

Research Centers has provided an incentive for integration, yet a complete

definition of the manvifacturing problem facing a given industry is not forthcoming.

The conclusion that can be drawn is that for the foreseeable future research in

computer-integrated manufacturing will continue to focus upon subproblems.

It should be noted, however, that currently several architectures have been
developed for the prototypic implementation. Both The International journal of

Computer Integrated Manufacturing and The IEEE Transactions of Systems, Man
and Cybernetics have recently devoted special issues to the topic. Research

monographs such as Williams [13] have also addressed the topic. This material

primarily provides an overview of models that have been developed. It does not

provide an extensive theoretical basis for design, nor does it provide guidance

toward future implementations. Jones et al. [12] provides a more extensive

discussion of these issues.

What is needed is a complete definition of the overall manufacturing

problem facing one or more industries. The definition of this overall problem
would first allow each industry to understand the fundamental properties that

distinguish it from other industries. For example, how does the manufacturing of

discrete parts differ from the manufacturing problem faced by a large integrated steel

467

CIMCOM 90-Davis, Thompson and White (4/4/90)

mill? In formulating the overall problem and documenting the differences, one
could move toward a more global definition of the manufacturing problem that

faces a variety of industries, litis approach may not be feasible, however, due to the

complexity of the overall manufacturing problem for any industry. Davis and Jones

[7] adopted an alternative approach. Tliey realized that the definition of the overall

manufacturing problem is an extremely difficult task and began a mathematical
definition of the subproblems to be addressed by each function in the CIM hierarchy.

In particular, their paper focused upon the definition of the controllers for the

individual processes and their interactions with the production scheduler. To
provide this interface between process control and production scheduling, they

defined an additional hierarchical level termed the process coordinator to supervise

the implementation of each assigned processing task for the given manufacturing

process. In this manner, the production scheduler, which is defined in greater detail

in Davis and Jones [6], coordinates the implementation of the processing tasks at

specific processes while the process coordinator provides for the process planning to

implement the processing task and assures the processing plan is correctly

implemented at a given process.

In performing the above definitions, Davis and Jones [7] have attempted not
only to generalize and enhance the defined functionality of each hierarchical entity,

they have also focused on interactions among the hierarchical entities. In their

development, they have employed the basic principles of mathematical
decomposition theory and distributed control. In this approach, for example, they

have demonstrated that the production scheduling problem itself can be
decomposed into several subproblems representing the scheduling that occurs at

several hierarchical levels in a shop floor architecture. Given a typical standard
shop floor architecture as defined by the Automated Manufacturing Research
Facility at the National Institute of Standards and Technology, production
scheduling can occur at factory, shop, cell and station levels. This sdieduling must
be orchestrated in a manner to permit a considered job to visit the appropriate

stations such that all requisite processing tasks will be completed in a manner that

both guarantees that the processes will be visited in the proper order and optimizes

the overall production flow within the factory. To this end, the scheduling at each

entity in the shop floor hierarchical architecture must be coordinated using the

principles of mathematical decomposition theory. Davis [8] goes further to

demonstrate that the interactions among the hierarchical entities must not only

provide for coordination in the solution of the subproblems associated with the

decomposition of the overall scheduling problem, but they must also provide
controlling input to the subordinate scheduling elements to guide them in the

implementation of their assigned production tasks. In this manner, the decision-

making and control functions at every hierarchical level are intrinsically linked and
cannot be separated.

The validity of the proposed decomposition of the scheduling problem has
been substantiated by recent success in the specification of a generic controller which
can address both the decision-making and control functions at any hierarchical

468

CIMCOM 90-Davis, Thompson and White (4/3/90)

scheduling level. In addition, the defined controller is sufficiently robust to permit

its employment both as process coordinator and controller. The specification of this

controller will be reported shortiy. In addition, the planning functions of the

controllers are described in a manner that will allow them to be integrated with the

design function to address issues including the design for manufacturability.

The above defined decomposition is spatial in nature as it provides the

definition of a class of scheduling and planning problems across a collection of

manufacturing entities comprising the factory architecture. The remainder of this

paper will concentrate on alternative forms of decomposition, termed temporal
decomposition and disaggregation, which decompose the production planning
problem over an extended planning horizon into more detailed production
planning problems associated with near term production. Specifically, the

production planning problem to be addressed will begin with a forecasted customer
demand and a collection of issued jobs with assigned due dates which will then be
scheduled for production by entities within the factory architecture. The
presentation will begin with the definition of the fundamental decision constraints

that will be considered at the various hierarchical levels comprising the production

planning system. Several existing models will be discussed within the context of the

proposed decomposition. Next, we look at the more fundamental assumptions
employed in the decomposition, which include the definition of a planning
horizon. Finally, we demonstrate how the production planning problem is

intrinsically linked to the other manufacturing functions including production
scheduling, purchasing, marketing, product distribution, and strategic corporate

finance.

The Production Planning Problem

In defining the schema for the decomposition of the overall production

planning problem, the typical first step is to establish an extended planning horizon

over which production planning will occur. Let this planning horizon be denoted
by T. Typically, a planning horizon of a year or more would be considered to allow

for any seasonality, though tiiis assumption will be questioned later. At the highest

level of our planning hierarchy, the planning horizon would typically be
subdivided into course planning periods of typically one month or more duration.

At the intermediate levels, a shorter planning period would be adopted, say one
week. Finally, at the detailed production planning level, a short term planning

period of one day or less could be considered. This temporal decomposition is

demonstrated in Figure 1(a), where the planning horizon of 1 year has been

decomposed into 13 planning months, each of which in turn is further decomposed
into 4 planning weeks, each of 5 work day duration.

In addition to decomposing the planning horizon into smaller time intervals,

the product classifications by each level of the hierarchical production planner are

also typically disaggregated as one moves down the hierarchy. A typical product

469

CIMCOM 90-Davis, Thompson and White (4/3/90)

APP Level

0 1 2 3 4 5 6 7 8 9 10 11 12 13

months
Product Quotas for Month 1

IPP Level

DPP Uvel

0 1 2 3 4 weeks

Product Quotas for Week 1

0 1 2 3 4^5 days

Note:
Same products will be

considered at each level.

(a) Typical Temporal Decomposition Scheme

0

APP Level

Production Group
Quotas for Month 1

0

IPP Level
1 month

Production Subgroup
Quotas for Month 1

0
DPP Level

1 month

8 9 10 11 12 13

months

Note:

Same planning horizon

considered at IPP and
DPP levels.

(b) Typical Product Disaggregation Scheme

Figure 1—Decomposition Schemes for Production Planning Hierarchy

470

CIMCOM 90-Davis, Thompson and White (4/3/90)

disaggregation scheme is pictured in Figure 1(b). At the highest or aggregate

production planning (APP) level, usually a gross aggregate representation of product

groups are considered. At the intermediate production planning (IFF) level, the

aggregate product groups are subdivided into product subgroups which in turn will

be subdivided into individual products at the detailed production planning (DPP)
level. As illustrated in Figure 1(b), the planning horizon at the IPP and the DPP
levels are typically the same imder a product disaggregation schema.

Under the product disaggregation schema, the APP problem begins by
assuming that there exists a set of demand forecasts for product group j in the

planning period t or {D|* I j=l,...,J; t=l,...,T). Given this forecasted demand scenario,

the goal of the APP problem is to establish the production quotas, Xj*, for each
product group j in each planning period t. It is the nature of the production

planning problem that the production quotas generally will not be exactly equal to

forecasted demands. To this end, we will allow flexibility through the introduction

of both inventory for product group j in period t, Ij*, and backorder, Bj*, in the

material balance constraints given as

Ij-i + 5^ = Sj + 15 for j=l,...J; t=l,...,T (1)

S] + B] = D] + B]-^ for j=l,...,J; t=l T (2)

where Sj* represents the projected sales of product group j in period t. In this

formulation, we will presume that there are limitations to the inventory that can be
maintained in each period t given as by the functional constraints

15^^" fort=l,...,Tandj=l,...,J (3)

Here we are assuming that tiie primary coupling of the inventory between periods is

through the material balance constraint (1). We will also assume that limitations

exists in the production capacity which constrain the production quotas Xj* through

the production constraints

J

E aim X- ^ for m=l,....M and t=l,...,T (4)
j=i

J

In constraint (4), we are assuming that there are M distinct production capacities to

be considered, denoted by Cm* (m=l,...,M). The coefficient ajm specifies the amount of

capacity m that the production of one unit of Xj* will consume. As noted, the

capacity Cm* is assumed to vary with time as indicated by the superscript t. This

capacity can be modified by several other production inputs. The first input to be

considered is the level of personnel in period t, denoted by the variable P*. P* is

assumed to be governed by the personnel balance constraint

pt-i +H»-F = P» fort=l T (5)

where H* is the number of personnel hired in period t and F* is the number fired.

Constraint (5) is sometimes included within the APP problem. However, in other

instances, P* may be determined by other manufacturing functions such as human
resource development. This is especially true today when manufacturing

companies are faced with an increased need to provide specialized training. The
second production input is the capitalization level in period t. In most

471

CIMCOM 9(>-Davis. Thompson and White (4/3/90)

formulations of the APP problem, capitalization has been ignored. Nevertheless, it

is an important consideration as it not only provides for the purchase of material

inputs, but it also can reflect the purchase of additional production capacity. The
capitalization is often excluded from direct consideration in the APP level since its

determination is not made by the APP, but rather by corporate finance in fulfilling

their strategic planning function. This fact again accentuates the previously stated

concerns pertaining to the definition of individual functions without developing an
adequate interface to the other functions. It must be recognized that there are

indeed exogenous decisions which provide direct impact upon the APP problem,

and ultimately the interfaces with these exogenous functions must be specified.

To define the aggregate production planning problem the next step is to

specify the objective function to be employed in the optimization. Typically, one
would attempt to maximize the total profit that would emerge from the assignment

of values for Xj*.

T r J

P = E E (sjSj-xjXj-ijlj-bjBjj-ptp^-hW-fT^ (1+i)-' (6)

where
Sj* is the selling price per unit of product group j in period t

Xj* is the direct production costs per unit of product group j in period t

ij* is the inventory holding cost per imit of product group j in period t

bj* is the backordering penalty cost arising per unit of product group j in

period t

p* is the individual labor cost in period t

h* is the hiring cost for each person hired in period t

ft is the firing cost for each person fired in period t

(l+i)-t is the discounting factor used to compute the present worth of the cash

flow in period t given the interest rate i.

The objective function as defined above could be revised to consider additional

costing detail. For example, we may decide to delineate between production costs

associated with regular versus overtime production. We may further include

additional inventory costs which allow for shrinkage and account for acquiring

additional storage space when a given level of inventory is exceeded. For our
discussion purposes here, a simplified formulation will be adequate as we desire to

focus upon the decomposition of the overall production planning problem into a

collection of subproblems.

The above APP problem is now nearly specified. However, one important set

of constraints remains, namely the boundary conditions at the beginning and the

end of planning horizon, periods 0 and T, respectively. To this end, we must at a

minimum specify the values for Ij* (j=l,...,P and P* at periods t = 0 and T. With
respect to the initial conditions, we will assume that they are known and can be
specified. Therefore, we will include the additional set of boundary condition

constraints

472

CIMCOM 90^Davis. Thompson and White (4/3/90)

(l?.....iy;po)e I.C.(0) (7)

On the other hand, the final boundary conditions are not known with certainty, but

nevertheless they must be specified as

(l|,...,l7;pT)€ F.C.(T) (8)

It is at this jimcture that a difficulty arises. The production planning problem is

being constrained by a collection of boundary conditions at the end of period T
whidi we cannot precisely specify. Moreover, the specification equation (8) may
influence the values assigned to all the decision variables, including the production

quotas for the current planning period (t=l), Xj^ for j=l,...,J. If these production

quotas are not influenced by equation (8), then we may question the utility of

including planning period T in the considered planning horizon.

The difficultly of specifying the boundary conditions is but one level of

imprecision that exists in the production planning problem. We will return to the

discussion of the planning horizon later. Other forms of imprecision also arise

from the aggregation of the individual product type into product groups. In

developing this aggregation, the individual products are assigned to a given product

group based upon their similarities. Nevertheless, no specific product within the

group will likely have the exact production requirements as specified for the product

group in constraint (4) nor will it have the same selling price Sj* as included in the

objective fimction (6). Instead, the values of constants included in equations (4) and
(6) are likely to represent weighted average values arising from the consideration of

all products within the product group.

Another form of imprecision arises from the forecasted demand stream for

the aggregate product groups. That is, the values for Dj* used in the formulation are

themselves random variables. Given the levels of imprecision, the optimality of

any given aggregate production plan is impossible to demonstrate. Furthermore, it

appears to be impossible to reconcile the imprecision. We could abandon the use of

aggregate product groups by considering production quotas for the individual

products over the plarming horizon. However, one would then be faced with

forecasting the demand for the individual products over the planning horizon,

which is typically much more difficult and less precise than forecasting the demand
for the aggregate product groups. Thus, the imprecision in demand forecasting can

never be eliminated. In addition, the number of decision variables as well as the

munber of constraints will be significantiy increased by considering the individual

products, making the resulting problem much more difficult to solve. For a large

corporation, the size of the resulting problem would likely be prohibitive.

To overcome the computational complexities, both a temporal
decomposition scheme to break down the extended planning horizon into smaller

subintervals and a product disaggregation scheme to break down the aggregate

product group into individual products is required. Unfortunately, to date, little

work has addressed the simultaneous consideration of both requirements. In this

presentation, we will attempt to implement both.

473

CIMCOM 90-Davis. Thompson and White (4/3/90)

As defined in aggregate terms, there is really no need to decompose the

mathematical programming problem as specified by equations and constraints (1)

through (8). However, if we want to consider additional detail in the production

planning in one or more periods, then the inclusion of the detailed constraints as

described above, can lead quickly to an intractable program. As discussed earlier and
depicted in Figure 1, there are two basic approaches toward the definition of a

production planning hierarchy. Product disaggregation schemes have been adopted
by several authors, including Bitran et al. [3,4,5] and Axsater et al. [1,2] to permit

refinement of production quotas for product groups into individual products over a

fixed planning period at all hierarchical planning levels. Other authors such as

Gershwin [9,10,11] have employed a temporal decomposition to investigate the

production requirements of specific products over successively shorter planning

periods in their formulation of the planning hierarchy. Neither approach in itself

represents a complete solution. Specifically, although the product disaggregation

schemes do ultimately specify the detailed production requirements upon a

shortened planning horizon, we are still faced with the further decomposition of

the remaining planning horizon into smaller periods undl eventually specific jobs

with associated due dates can be issued for production scheduling. On the other

hand, temporal decomposition schemes, which consider individual products at each

decision level, also suffer from the fact that there is typically not sufficient data to

support the planning for the individual products over an extended planning

horizon which the APP typically must address. As noted above, even if detailed

production planning problems could be formulated over the extended horizon, the

resulting problem would likely be impossible to solve.

The decomposition scheme to be described here contains elements of both a

product disaggregation and a temporal decomposition. With respect to the

disaggregation concept, as we consider the lower hierarchical elements within the

hierarchical production planning problem, we will address the production plaiming

with more refined product groups until we ultimately specify the manufacturing of

a specific product for a specific customer with an associated due date when the order

must be complete. The temporal decomposition arises from the fact, that each

sublevel of the production planning hierarchy considers successively smaller

planning periods over a shorter plaiming horizon. For example, as described above,

the APP problem could consider a planning horizon of T months. The IPP level,

could subsequently consider a planning horizon of 4 work weeks and provide more
detailed production quotas for each of the weeks. The DPP level would then employ
a planning horizon of one week and perform DPP for each of the work days

comprising the considered work week.

Theoretically, at the IPP level, production planning could be performed for

every month considered at the aggregate production plaiming level. In practice,

however, this approach is seldom adopted. Instead, most authors have adopted a

model in which production planning is performed for the first month of the

planning horizon only. Therefore, the APP solves its problem to establish values

474

CIMCOM 90:rPavis. Thompson and White (4/3/90)

for all decision variables in each of the T months which it considers. It then

provides the values of these decision variables for the first month {Xji^l, Ijl, Bj^ and
I j=l,...J) to the intermediate planning level. Assuming that each aggregate

product group j is comprised of intermediate product groups k for k=l,...,Kj the IPP
would then establish production quotas, sales and associated inventory levels

associated with weeks w of month 1 or

(xji^s]^^ l]^" and B^''
|

j=l,....J; k=l,...,Kj and w=l 4) such that

^ 4

X] = 2 E xl^:^
k=l w=l J''

^ 4

k=l w=l J''

^ 4

k=l w=l J*

4

B] = Z 2 b|^
k=l w=l J''

In establishing the values for its decision variables, the IP? will use the same basic

constraints sets as the APP. However, they will be formulated with additional

detailed information to permit the proper specification of the associated decision

variables within a given product subgroup. In particular, the demand stream will

more likely employ booked orders rather than forecasted demand due to the

shortness of the planning horizon. The production constraints, corresponding to

constraint (4) at tiie APP level, will also provide the additional production details

associated with the more specific intermediate product subgroups.

Additional constraints will also be introduced, including material

requirements planning. Specifically, the intermediate production quotas will be
established to insure that the necessary material inputs are available. In this

manner, the IPP problem is intrinsically tied to the purchasing function for the CIM
hierarchy. Given the global manufacturing environment that exists today, this

could require that intermediate production quotas be established several weeks in

advance. For example, an engine manufacturer may employ components that are

supplied by a South American vendor. An electronics manufacturer may use solid

state components from a Far East supplier. The physical distance required in

transporting these goods requires that IPP be performed over an extended horizon.

It is this fact that renders many of the existing decomposition schemes appearing in

the literature intractable based upon their currently selected planning horizons. In

addition, the APP considers only an aggregate approximation of the true production

(9)

(10)

(11)

(12)

475

CIMCOM 90-Davis. Thompson and White (4/3/90)

planning problem. There may be additional benefits that can be gained by
considering a more detailed optimization over intermediate horizon. For example,

one month may be too short of a planning horizon to develop an understanding of

the variations that arise in throughput due to fluctuations in product demand. To
this end, rather providing a detailed development of the production planning

problems at the lower DPP level of the planning hierarchy, we will focus upon the

assumptions being implied by existing decompositions and the potential for

enhancing the hierarchical interactions among the APP and the IPP levels. The
similarity of the interaction of the IPP with the DPP will easily permit an expansion

of this discussion in the futiu"e.

Current Hierarchical Schema

In Figure 2, the minimal practical schema for hierarchical interaction has

been presented which is derived from existing models for either product

disaggregation or temporal decomposition. As depicted, typically the APP solves its

problem for the next T months and passes the values for the decision variables

associated with the first month to the intermediate level. At this point, the APP is

idled until the first month's aggregate production quotas are realized. Meanwhile,

the IPP attempts to meet the specification of the first month's production quotas by
treating them as goals as indicated by equations (9) through (12). Existing models for

the most part do not provide for any feedback during the first month from the IPP to

the APP until the end of the month, as the IPP is expected to satisfy equations (9)

through (12) as planned. It is only at the end of the month, that the IPP's success in

meeting the production goals is known and returned to the APP as {Xj',Sj', Ij^, Bj^

and Pl
I j=l,...,J} (note a bold character is indicating feedback information). It is

important to recall that the aggregate production quotas were developed using only

approximate constraints and that the manufacturing processes are themselves

stochastic entities. Further, as discussed in the previous paragraph, the

manufacturing systems response is also tied to that of the external vendors whose
delivery dates also represent stochastic entities. Therefore, it is unlikely that the

aggregate production quotas will ever be satisfied exactiy as planned.

Therefore, during the first week of the first month of the planning horizon

considered by the IPP, there is considerable uncertainty in the manner in which the

production quotas for that month will be satisfied. As the IPP moves further into

the first month planning horizon, say the third or fourth week, the IPP can make
much better estimations upon the success in satisfying these goals. As noted above,

the APP typically does not see any of these estimates until the entire one month
planning horizon for the IPP has been completed. Then using the concept of a

rolling planning horizon, the APP employs the realized production quotas for the

first month and resolves the APP problem to obtain production quotas for months 2

through T+1, assuming that a constant planning horizon of T months is being
employed at the APP level. Upon solution of its new problem, the production

476

CIMCOM 90-Davis. Thompson and White (4/3/90)

CM

I

•S

«>0

Q
00

*

I

CN

.top

A77

CIMCOM 9(>r:Davis, Thompson and White (4/3/90)

quotas for month 2 are again passed to the IPP for implementation and the process is

repeated.

Under the minimal interaction schema, the IPP's interaction with the DPP is

nearly identical. That is, the IPP passes the first week's subgroup quotas to the DPP
and waits for the DPP to respond with the implementation of its requests at the end
of the first week. The IPP then solves its problem for weeks 2 through 4 and passes

the second week's quotas to the DPP. The IPP then again waits for the DPP feedback

on the successful completion of the second week's quotas before resolving the

quotas for weeks 3 and 4. After the third week, the IPP passes the fourth weeks
quotas to the DPP and upon completion of the fourth week responds to the APP
with the realized production quotas for the first month. The APP then responds

with the production quotas for the second month where upon the IPP again solves

it problem for the new four week planning horizon and submits the first week's

subgroup quotas to the DPP for implementation.

The reader will notice that the IPP has a variable planning horizon as

currently formulated, with the planning horizon varying from one to four weeks.

Given that the IPP must coordinate his decision-making with the purchasing to

secure material inputs for the planned production, the one week planning horizon

at week four in the planning cycle is somewhat troubling. Even more troubling is

the fact that the IPP, and also purchasing, never see the next month's production

quotas until the current month is complete. Therefore, there is a complete
discontinuity of planning at the end of each month at the IPP level.

A New Hierarchical Coordination Schema

The above proposed hierarchical interaction is perhaps the simplest fliat can

be proposed, and as noted above, has been adopted to provide for minimal
coordination among the hierarchical planning elements. Unfortunately, it does not

reflect the true operations of the planning hierarchy where considerably more
interaction among the hierarchical levels will likely exist. To this end, more
elaborate coordination schemes are under development. One proposed scheme
begins with the same decomposition of time into smaller planning periods at each

sublevel of the planning hierarchy (see Figure 3). Again the APP begins by
considering the planning horizon over the next T months. However, the APP
would consider the planning for periods t = 2,...,T+1 even as the production quotas

for the current period 1 are being implemented by the IPP, Instead of performing

intermediate planning for period 1 only, the IPP considers aggregate production for

both periods 1 and 2. Therefore, to establish boundary conditions for the IPP, the

APP must specify group quotas for both periods 1 and 2^ . Upon releasing the quotas

^ Limiting the passing of quotas for periods 1 and 2 has been made to facilitate

discussion only. In implementing the proposed coordination schema, quotas for any
number of periods can be passed from the APP to the IPP for use in its planning.

478

CIMCOM 9(>-Davis. Thompson and White (4/3/90)

00

I
00

Q
00

o

n
l-c

o

esses

,

orizon
Month

Ih
•a

w> o
<

•2 0PL,

Plan

from

o
12:

g 00

r; «

a.

« 00

H

|"§

.a bb

o o

^3 £ g

o iS

o a,

O

CO

•4-* C

C>4 O Of

(2

O c
N .2

bps

js
Oh Q

25

(O
<-l

(U
73

§
U

Q

«1

•I
I

.PC

479

CIMCOM 9(>-Davis, Thompson and White (4/3/90)

for period 1 to the IPP, the refined planning for period 1 is solely in the hands of the

IPP. The quotas for the end of period 2, however, are still flexible and will be
considered by both the APP and the IPP during the first month. In its intermediate

planning, the IPP will continuously update the manner in which it expects to meet
the current period's quotas for period 1. This in turn affects the expected initial

conditions used by the APP in solving its problem in period 2. As stated above,

during the first weeks of the IPP's one month planning horizon there are

considerable uncertainties in the eventual realization of the first month's
production quotas. However, in the later weeks of the first month, much better

estimates can be made.

The proposed coordination between the two levels of decision-making is as

follows. With each update of the expected outcome of this month's planning-that

is, the expected values that will be realized for {Xj^,Sj^, Ij^ and Bj^ I j=l,...,J) by the IPP-
the newly updated values are returned to the APP. The APP then resolves its

problem for p)eriods t=2,...,T+l to obtain a revised set of goals for the IPP at period 2

or {Xj2,Sj2, Ij2 and Bj2 I j=l,...,J}. The DPP then resolves its problem for periods 1 and 2

using tne most updated measurements of system performance to update its

decision. The updating procedure could also be triggered by the APP. Suppose that a

new customer demand is realized which forces a change in the second month's

production quotas {Xj2,Sj2, Ij2 and Bj2 I j=l,..,,J}. The APP would then pass the

updated values to the IPP, which would then resolve its problem to provide any

updates to this period's quotas {Xji,Sj^, Ij^ and Bj^ I j=l,...,J}. These updated values

could then be returned to the APP who may again update {Xj2,Sj2, Ij2 and Bj2 I

j=l,...,J}. The updated values would then be returned to the IPP for its action. We
note here that only IPP can change the values for the current period's outcome
{Xjl,Sjl, Ij^ and Bj^ I j=l,...,J}, and only the APP can change the next period's goals,

{Xj2,Sj2, Ij2 and Bf I j=l,...,J). This interaction is repeated throughout the one month
planning period whenever updates are necessary.

The described interaction provides for a nearly continuous interaction

between the APP and the IPP. As the IPP approaches the end of the first planning

period, the outcome of this month's production is nearly known with certainty.

Therefore, the production quotas for the next month will have stabilized. At the

end of the first month, the IPP will already know the quotas that it will receive for

the next month as it has been considering them in its planning throughout the

current month. When the next month production quotas are released to the IPP for

implementation, the APP will also submit tentative production quotas for month 3

which it and the IPP will refine during the month 2. During the second month, the

planning horizon for the APP will include months 3 through T+2. In addition to

providing an overlap in planning periods between the APP and the IPP, the

proposed interaction scheme provides an extended horizon for the IPP to consider.

Under the minimal interaction schema, during the fourth week, the IPP would only

have a single week planning horizon to consider. As noted earlier, material

requirements planning is typically implemented at the IPP level. The single week

480

CIMCOM 90-Davis, Thompson and White (4/3/90)

planning period during the fourth week is likely to be inadequate to provide for a

proper interaction with purchasing to secure input materials from outside vendors.

Further, under the original configuration neither the IPP nor purchasing would
have information concerning the next month's quotas. Under the proposed
interaction, tentative production quotas for the next month would be known from

the outset. At a minimum, the IPP would consider a planning horizon of five

weeks which is more likely to provide for adequate lead time to interact with

purchasing to fulfill the task associated with material requirements planning. If this

period is still inadequate, then the APP could submit tentative production quotas for

two or more months in advance.

A similar decomposition scheme could be developed between the IPP and the

DPP. Specifically, the IPP could issue subgroup production quotas for the current

week to the DPP for implementation and tentative quotas for the next week to

facilitate planning. The interaction scheme would allow the DPP to update
subgroup production quotas for the current week cis the week evolves while the IPP

would update the tentative quotas for the next week. In this manner, the DPP
would never consider a planning horizon of less than one week in its

determination of which jobs and their associated due dates are to be issued to the

production scheduler for manufacturing.

Additional Production Planning Considerations

The Planning Horizon

In our previous discussion, we noted that the specification of a planning
horizon for the APP required us to specify boundary conditions for inventories and
personnel levels at the end of period T [see equation (8)]. We also noted that, in

general, the specification of these boundary conditions influenced the optimal
assignment of values to the decision variables, including the production goals

which the IPP considers, namely {Xjl,Sj^ Ij^ and Bjl
I j=l,...,J} and {Xj2,Sj2, Ij2 and Bj2 I

j=l,...,J}. If these boundary conditions do not influence the optimal assignment of

goals, then we might question the consideration of month T in the planning
horizon. In fact, if this is the case, we could argue that planning in period T is

decoupled from the planning for the current period. Theoretically, the planning in

any given period is never really decoupled from the specification of the boundary
conditions during a later period. That is, using the principles of sensitivity analysis

in mathematical programming, we can investigate the behavior in the production

quotas for a given period as a function of the specified boundary conditions. If we
can demonstrate that the consideration of boundary conditions within a meaningful
range of ending inventories and backorders produces no changes in the values of

{Xj^Sj^ Ij^ and Bj^ I j=l,...,J} and {Xj2,Sj2, Ij2 and Bj2 I j=l,...,J}, then we might conclude

that planning in period T is decoupled from the planning in periods 1 and 2. Here
again, however, we must qualify our comments. Specifically, there are indeed other

factors pertaining to factors in the later periods that can influence the development
of production quotas for periods 1 and 2. For example, if we modify the production

481

CIMCOM 90-Davis, Thompson and White (4/3/90)

capacity constraints, constraint (4), in the later periods, this modification may also

lead to changes in the production quotas for periods 1 and 2. As we noted above, the

production capacities Cm* for m=l,...,M are indeed functions of other variables

including the personnel levels, P*, and the capitalization levels in period t. These

latter variables are also not likely to be imder the control of the APP, but rather they

are established by other manufacturing functions. Therefore, it appears to be

prudent that variations in the production capacities. Cm* (m=l,...M and t=l,...,T),

shoulld also be considered in determining a planning horizon.

The issue then arises to what minimum period can the planning horizon be
reduced. This is indeed a difficult issue to address. A major consideration is the

level of certainty with which we can specify the APP's problem. Specifically, if we
know the boundary conditions at any period, the production capacities at all

intervening period and the associated product demands, then the planning horizon

can be set to the period where tiie boundary conditions are known. Given the level

of uncertainties associated with the APP problem, such a scenario is not likely to

occur. There are other special cases that also might be considered. In the situation,

where we are faced with excess production capacity for the foreseeable future, then

the production plan would likely produce to meet each period's demand, with little

inventory being carried from period to period. In this case, the planning horizon is

typically very short, say one or two periods. At the other extreme, if backorders are

completely retained and product demand eclipses our production capacity for the

foreseeable future, then the planning horizon would again be very short as we
would simply attempt to fulfill the most profitable demand each period.

Unfortunately, neither of these two latter scenarios represents an ideal corporate

situation. In the first case, corporate planning should be considering the reduction

of production capacity while the latter situation would likely spur an expansion of

production capacity. Neither of these decisions can be addressed by the APP as

defined. Indeed, other corporate functions would be involved.

It is difficult to establish an APP planning horizon without the coordinated

interaction with other manufacturing functions. The APP may employ sensitivity

analysis to seek the influences of boundary conditions and production capacities

upon the proposed production quotas given the forecasted product demand, but in

so doing, the APP is actually attempting to estimate the consequences that will be
derived from future interactions with the other manufacturing functions. To this

end, we must recognize that the overall production planning function, as defined

here, is actually a subproblem within a much larger corporate planning effort. To
this end, we will now focus upon these additional interactions.

iNTERACnONWITHADDITIONAL CORPORATE FUNCTIONS

In the past, a constant planning horizon has been justified to address

seasonality issues. The presumption was that the manufacturing system was likely

to experience a repeatable demand cycle. The length of this demand cycle would
then determine the planning horizon. Assuming this repeatable demand, then one

482

CIMCOM 90-Davis, Thompson and White (4/3/90)

could argue that the initial conditions for this period would likely represent the

ideal boundary conditions for the end of the demand (or planning) cycle. Perhaps
this assumption was appropriate when product lifecycles were several years in

duration. However, with today's short product lifecycles, the repeatability of a

product demand cycle is imlikely. To this end, APP must be more aggressive in

seeking the proper planning horizon and boundary conditions. This decision,

however, cannot be made independently of the other manufacturing functions

including marketing and strategic corporate planning. That is, given the present

products to be marketed, it is marketing that generates the demand stream which
the APP attempts to satisfy. Thus, the interaction between marketing and the APP is

obvious. Spedfically, given the current forecasted demand stream from marketing,

the APP can project the maimer in which it will optimally satisfy that demand.
Given this information the marketing function may modify its marketing strategy.

For example, if there is excess production capacity, marketing may consider lowering

the price for certain products to generate additional demand. If there is excess

demand, the price for selected products might be raised to increase the profitability

for the demand that can be satisfied. If cyclic demand periods do exist, marketing
might also adopt strategies to shift demand to periods with excess production

capacity. The consequences of any of these actions upon the APP function are

obvious.

Similarly, corporate strategic planning also influences the APP problem. In

particular, we noted in equation (4) that production capacities are limited based
upon the current capitalization levels. Strategic planning can obviously increase the

production capacity to satisfy unfulfilled demand by providing additional capital.

The APP function obviously provides inputs to where such capital should be
applied. Alternatively, strategic planning may also reduce capacity for the

production of products which are no longer profitable. Strategic planning also

controls when new products will be introduced for production and when
production will cease for existing products. Not only do these decisions influence

which products the APP will consider and the associated manufacturing capacities to

fulfill forecasted demand, but they also influence the marketing function in its sales

effort. Today, a year is an extended period for the consideration of a planning

horizon for the APP. During this period, production capacities as well as the

products to be produced are likely to be changed. It is unlikely that any production

cycle will repeat. Rather, it is the combined efforts of strategic planning, marketing

and production planning that must define the planning horizon and the boundary
conditions that should be satisfied. That is, the production planning problem itself

is a subproblem of a larger corporate planning problem that must be considered.

Therefore, it is essential that our focus upon the APP problem also addresses the

larger corporate planning problem to provide an adequate interface into the other

corporate functions with which it must interact.

483

CIMCOM 90-Davis, Thompson and White (4/3/90)

Conclusion

This paper has provided a broad overview of the production planning

problem. The focus of the discussion, however, was directed toward the role that

decomposition approaches will play in defining a CIM hierarchy rather than the

discussion of the production planning problem per se. The production problem
itself represents an ideal example to demonstrate the need for decomposition. It

requires us to consider a temporal decomposition of an extended planning horizon

into smaller planning periods which eventually will lead to the specification of

specific products to be scheduled for production with associated due dates. The
production planning problem also allows us to discuss another approach to

hierarchical decision-making involving the principles of disaggregation among the

decision variables at the various hierarchical levels. Both of these approaches have
already been separately applied in the literature This paper shows how both

approaches can be simultaneously applied to address the production planning

problem. The reader is referred to Davis and Jones [6] for yet another approach to

hierarchical decomposition, namely spatial decomposition as it is applied to the

production scheduling function within a CIM hierarchy. Further, Davis and Jones

[7] provides a more fundamental (and mathematical) discussion of how the

individual functions interact to define a CIM hierarchy.

This paper has, however, extended the functional discussion in Davis and
Jones [7] to consider additional functions. In discussing the interaction of the APP
with the IPP, we developed a hierarchical coordination scheme which provided for

an continuous update of the decision-making for both problems. In addition, we
provided for a more extended planning horizon at the EPP level to permit it to

effectively interact with the corporate purchasing fimction to implement the tasks of

materials requirement planning. This extended planning horizon at the IPP level

also provided for a continuity of production quotas as the IPP moves from one
planning period to the next.

We next focused the discussion upon determination of the planning horizon

for the APP. We briefly highlighted the role that the boundary conditions and the

production capacities play in establishing the planning horizon. To this end, we
expanded our discussion to sketch the interaction of the APP with the other

corporate functions including the strategic planning and marketing. It was shown
that in today's manufacturing environment with its short product lifecycles, these

three functions must act in unison to establish both the planning horizon and the

boundary conditions that the production planning problem will address.

The scope of this paper has been conceptual in basis. Theoretical and
mathematical proofs do exist for many of the concepts introduced here. However,
this paper has elected to provide a larger conceptual overview of the interaction of

the CIM functions rather than providing detailed mathematical discussions. Future

papers and research will address the mathematical issues. This paper has attempted

to demonstrate the complexity of the mathematical decision-making and control

484

CIMCOM 90-Davis, Thompson and White (4/3/90)

problem being addressed by the CIM hierarchy, the role that the principles of

decompositions can provide in addressing the overall problem, and finally the need
to establish improved coordination mechanisms to provide for the interactions of

the individual manufacturing functions.

References

[1] Axsater, S., "On the Design of the Aggregate Model in a Hierarchical

Production Planning System," Engineering and Process Economics, Vol. 4,

1979, pp. 84-97.

[2] Axsater, S. and Jonsson, H., "Aggregation and Disaggregation in Hierarchical

Production Planning," European Journal of Operations Research, Vol. 17, No.

3, 1984, pp. 338-350.

[3] Bitran, G. R. and Hax, A., "On the Design of Hierarchical Production Planning

Systems," Decision Sciences, Vol. 8, 1977, pp. 28-55.

[4] Bitran, G., Haas, E. and Hax, A., "Hierarchical Production Planning: a single

stage system," Operations Research, Vol. 29, 1981, pp. 717-743.

[51 Bitran, G., Haas, E. and Hax, A., "Hierarchical Production Planning: a two
stage system," Operations Research, Vol. 30, 1982, pp. 232-251.

[6] Davis, W. and Jones, A., "A Real-time Production Scheduler for a Stochastic

Manufacturing Environment," International Journal of Computer Integrated

Manufacturing, Vol. 1, No. 2, 101-112, 1988.

[71 Davis, W.J. and Jones, A.T., "A Functional Approach to Designing
Hierarchies for CIM," IEEE Trans, on Systems, Man, and Cybernetics, Vol. 19,

No. 2, 1989, pp. 164-174.

[8] Davis, W. J., "Evolving Coordination Schemes in Real-Time Production

Scheduling," Engineering Costs and Production Economics, Vol. 17, 1989, pp.
111-124.

[9] Gershwin, S. B., "A Hierarchical Framework for Discrete Event Scheduling in

Manufacturing Systems," Technical Paper LIDS-P-1682, Laboratory for

Information and Decision Systems, Massachusetts Institute of Technology,

Cambridge, Massachusetts, 1987.

[10] Gershwin, S. B., Caramanis, M. and Murray, P., "Simulation Exf)erience with

a Hierarchical Scheduling Policy of a Simple Manufacturing System," Proc. of

the 27th IEEE Conf. on Decision and Control, Austin, Texas, 1988.

485

CIMCOM 90-Davis. Thompson and White (4/3/90)

[11] Gershwin, S. B., "Hierarchical Flow Control: A Framework for Scheduling
and Planning Discrete Events in Manufacturing Systems/' IEEE Proceedings

Special Issue on Discrete Event Systems, 1989.

[12] Jones, A. T., Barkmeyer, E., and Davis, W. J., "Issues in the Design and
Implementation of a System Architecture for Computer Integrated

Manufacturing," The Intl. J. of Computer Integrated Manufacturing (A special

issue on CIM architecture). Vol. 2, No. 3, 1989.

[13] Williams, T. J., The Use of Digital Computers in Process Control, Instrument

Society of America, Research Triangle Park, NC, 1984.

486

DEVELOPING A QM ARCHITECTURE
FOR

EDUCATIONAL, RESEARCH, AND TECHNOLOGY TRANSFER ACnVTITES

RONALD WOOLSEY
BRUCE DALLMAN

RAYMOND KAPPERMAN
WILLIAM FORAKER

SUSAN LESKO
ROGER VICROY
LARRY HEATH

ABSTRACT

The following paper describes the mission, funding, development, and
implementation of the Computer Integrated Manufacturing (CIM) facilities at

Indiana State University. In 1985, faculty from the School of Technology developed

a proposal to the Indiana Commission for Higher Education to implement a four

year degree program in Computer Integrated Manufacturing. The program was
approved and funded. This paper details the implementation of the facilities to

support the educational, research, and technology transfer missions of the CIM
program. Also discussed are the functional requirements of the system and the

architecture as it has developed.

1. Program development

During 1984 and 1985, the School of Technology at Indiana State University proposed and
received University and State approval for a baccalaureate degree program in Computer
Integrated Manufacturing (CIM) to complement its other undergraduate and graduate

curricula in manufacturing, mechanical, and related technologies. This program proposal

was a continuation of a long history of commitment to the broad area of manufacturing for

which programs had been originally established in 1962.

The philosophy of technology programs at Indiana State University has, since their

beginnings, been to prepare graduates to assume technical and managerial positions in

industrial organizations. To insure that graduates meet the needs of industry, input from

industrial organizations is constantly soUcited for curriculum and laboratory development.

This philosophy has led to an approach in laboratory implementation utilizing production

class equipment and facilities.

1.1 Organizational requirements and goals

From the beginning, it was quite clear that development of the CIM system with production

class equipment would translate into the most expensive venture attempted by the School

of Technology. Therefore, careful attention was devoted to the specification of hardware,

software, and communication architecture in order to help ensure a system that would meet
the requirements of multiple missions, including:

487

1. Support the educational mission of the programs in the School of Technology,

School of Business, and other units on campus (i.e.. Computer Science, Physical

Sciences, Conference and Non-credit Programs);

2. Support research, development, and dissemination activities of the faculty, staff,

and students; and

3. Support of the economic development mission of the University through direct

technical and business assistance to regional industrial companies.

1.1.1 Educational mission

Support of the educational mission required that the CIM system serve as a resource to

CIM and related technology courses as well as to other campus units including the School

of Business. Instructional topics utilizing all or part of the system include: CIM
architecture; control systems; robotics; plant layout and materials handling including

automated systems; production planning and inventory control; materials requirements

planning (MRP); Computer Aided Design (CAD) which includes two dimensional drafting

and three dimensional modeling, with Finite Element Analysis (FEA); manufacturing

simulation; cell design including simulation modeling; and Computer Aided Manufacturing

(CAM) with process planning, code generation, and graphic simulation.

1.1.2 Research mission

The research activities of faculty required the CIM system to be adaptable to a wide range

of configurations and functions to serve university personnel in their research and
technology transfer activities. The primary emphasis of research activities of CIM related

faculty is the application of existing computer-based manufacturing technologies to the

problems of small to medium sized manufacturing organizations. A representative sample

of these activities includes work cell design and development, analysis of designs,

implementation of CAD, prototyping, concept drawings, and issues relating to the

integration of design, manufacturing, and business functions.

1.1.3 Economic development mission

To support the economic development activities, the CIM system was designed to serve as

a demonstration, application, and training platform for both hard and soft manufacturing

technologies. This technology transfer mission is further facilitated through the operation

of the Technology Services Center. The Center provides an interface between faculty

expertise in the School of Technology and regional industries. Companies frequently

contact the Center with questions concerning manufacturing processes, technologies, and

industrial management issues. In cases requiring business assistance, the Center also serves

as a link to our School of Business which operates a Small Business Development Center

(SBDC). The Center's outreach mission specializes in helping small manufacturing

companies implement existing methods and technologies to improve their competitive

position.

488

1.2 Development expertise

During the process of developing the architecture for and implementation of the CIM
platform, many sources of expertise were employed. Faculty and staff expertise was the

primary source used throughout the process. Additional sources employed included an

industrial advisory committee, a CIM consultant from Electronic Data Systems (EDS), the

results of an industrial needs assessment conducted statewide with manufacturing industries,

vendors directly involved in supplying equipment to the system, and various specialized

information sources. Those sources included the Automated Manufacturing Research

Facility (AMRF), the Air Force Manufacturing Center at Wright-Patterson Air Force Base,

the Manufacturing Technology Information Analysis Center (MTIAC), the Society of

Manufacturing Engineers (SME), and the National Association of Industrial Technology
(NAIT).

2. Proposed system requirements and resulting capabilities

2.1 System requirements

The major system requirements for the total CIM system fell into three main functional

areas. Those are 1) Computer Aided Design (CAD); 2) Computer Aided Manufacturing

(CAM); and 3) Business/ Management functions. While not a separate requirement, each

of the three main functions were to be fully integrated with the capability to have automatic

file updating to a common database when changes are made to part geometry, available

materials, schedules, etc. The criteria used to determine the vendor for the CIM system

were 1) system capabilities and degree of integration of functions and 2) degree to which

the vendor would enter into a long term partnership for the CIM program and laboratory

support. Vendors which were finalists in the evaluation included Control Data Corporation,

Digital Equipment Corporation, International Business Machines, and Prime Computer.

2.2 System capabilities

2.2.1 Enterprise level system

After a lengthy review process. Prime Computer was selected as the vendor. As purchased,

the enterprise level system centers around a Prime 4450 supermini-computer, which is a 5.8

MIP machine with 32 megabytes of internal memory. External storage is on three 817

megabyte drives with communication conducted over 32 asynchronous lines and the

University network. Figure 1 lists the software residing on this computer including the

CAD system (MEDUSA), CAM functions (GNC, CNC programming) and business

functions (MAN-FACT II), as well as other software available to the CIM system.

2.2.2 Computer aided design (CAD)

The CIM system's computer aided design capabilities center around the MEDUSA software

package. The Medusa package features two dimensional drafting, three dimensional solids

modeling, CNC code generation ~ GNC with five axis capabilities, properties analysis, IGES
and DXF translators, variational geometry, and interactive shaded viewing. MEDUSA is

accessible on eight dedicated workstations (2-Tektronix 4225's and 2-42irs, 4-Prime

489

PWlSO's,) in addition to a laboratory which houses 26 micro-based workstations, emulating

Tektronix 4107 terminals. Separate from, but in addition to the Prime capabilities, two
Silicon Graphics Personal Iris workstations complete the high end engineering and
simulation tasks. In addition, two micro-based CAD packages, Cadkey and Autocad, and
numerous other support software complement this configuration with alternative design and
drafting capabilities.

2.2.3 Computer aided manufacturing (CAM)

The computer aided manufacturing capabilities of the CIM system are housed in two
separate laboratories. The machining laboratory focuses on CNC machine operation, on-

line, and off-line programming. The CIM laboratory focuses on the integration of

operations and includes five major cells/systems. Those cells are: 1) a machining workcell;

2) a processing workcell; 3) an assembly workcell; 4) a materials storage and retrieval

system; and 5) an automated material handling system including an automated guided

vehicle (AGV). These two laboratories have the following equipment in place and
operational with varying degrees of integration into the total communications architecture.

Puma Unimate 762 industrial robot

GMF SllOR industrial robot

GMF V210 vision system

Intelledex industrial robot

IBM 7535 industrial robot

IBM 7545 industrial robot

Bosch TS 2 modular transfer system

Republic Storage System's multi-cell ASRS system

Apogee Robotics AGV with a roller top load/unload system

Bridgeport Interact 412 Machining Center with the

Heidenhain TNC 151 Controller

Okuma LB 10 Turning Center with the OSP5000L-G Controller

Okuma MC-3V Machining Center with the OSP5000M-G Controller

ESAB Plasma CSX Shape Cutter with the Compu-Path 500 Controller

Laboratory Control Computers:

IBM PS/2 PS/2 model 80

IBM PS/2 Model 60

IBM 7552 Industrial Control Computer/Artie Card
Allen Bradley 1785-LT Programmable Logic Controller 5/15

A

(See Figure 1 for application software list)

2.2.4 CIM business/management capabilities

The functions provided for shop floor management in the operation of the CIM system are

provided by MAN-FACT II. This software package, residing on the Prime 4450 provides

the following:

Purchase order entry for master scheduling

Personnel data

Bills of material

490

o cn
-1—1 QJ
!> - 1—

1

CD CD
1—

1

-1—1 CJ C_
ZD CD CJ CD
E: CO -r-H Q_ 3s

u -1—1 CD u c_
CD CO C_) CD CD CD !_
c_ Cl. u_ Q_ o O

CD -r—

1

-l-> U CJ 1—

1

C/J CO
_C3 O -1—

1

-1—1 QJ \ -4-> "CD -1—1

"a -M (_ JD -\-> -M > Q_ O (_ > CJ
CD CD CD O t_ t_ O CJ o

Q_ -< <t <c

CD

CD

QJ

> 3n

"a c_
c_

L_
QJ o QJ O CZa
CD CD c. o CD Q_ -1—1

cz o QJ CO CJ C CC -M
CO C/J CD -1—1 QJ CD

CD cn CDm QJ CD zn QJ c_ o\ > cn CD cn CD o -M <C
C=l -1—

1

^

C-
c: d CD -1—

{

-r—

1

UJ
r\j O-J CD CD cz X -M -4-> tz -a Ll_

LJ ~D -1—1 <c <c cn CJ 1—

1

CZ uu
CD CD CD

^

C_
-M 1 o CD CD Q_

cn C_ CJ CD -r—

1

Q_ Ll_ QJ L- CO CO
CD O CO -1—1 QJ -l-> 1 -M CJ \

-l-> LU (_ CJ CZ -1—

1

(_ <c CO c:i_

CD cz ZD CD CD O ZD CD c_ O CJ
<C > CD Q_ LL LU

cn
c_
o
cn
CO
QJ

QJ CJo
CD
c_ =ncj_

CD
JZZ QJ

"o cn >
CD CD o o

C_J Q_ 2:

CD
CJ c_ cn

-1—1 CD QJ
JZZ -is: -1—1

CZL. CD -t-J

CD -1—

1

C_ QJ -=Co CD CJ L.
QJ (_

cnLU
CD LL

- 1—1

u
T3 1 "D 1 Cl CD CL CD
CD -l-> I_ CD _Q CL Ll_

OJ CJ Ll_ -1—

1

CD L. CJ CD cn cn CO
O <C > CJ -l-> -1—

(

CJ CD "CD =J >- CD \ -4->

"O -4-^ CC (_ C_ -1-1 C_ cn cn cn (_ TD CO > CL O
CD ZD CD CD CD ID CD CD CD cn o .—

1 :z: o CJ
CJ <i: Z CD LL QD CL <c CL.

Figure 1. System Software Overview.

491

Parts master listing

Phantom bill of material

Engineering change order control/reporting

Manufacturing routing information

Work order releases

Production planning and control

Capacity requirements planning

Inventory management
Simulation capabilities with multiple business applications

Specifically for use by School of Business personnel, the MAN-FACT II software has the

following business applications integrated with the total CIM system.

Persormel planning and forecasting

Financial management
Accounting procedures ~ accounts payable, receivable, etc.

Cost accounting

Marketing/sales

Transfer pricing

Forecasting

Financial modeling

General ledger

Fixed assets

Payroll

Inventory turns analysis

Beginning/ending value analysis

3. System design overview

3.1 Communication requirements

With the identification of system requirements and capabilities, it became apparent that

adding additional communication traffic to the existing university network would decrease

the throughput rates significantly. The obvious solution is to segment the CIM system from
the university network by use of a network bridge. This provides for integration of the CIM
equipment while still allowing access to other campus computing resources.

The complexity of the communication architecture was also effected by the physical location

of the 4 main facilities. Those facilities are: the Design laboratory, the CIM laboratory,

the Machining laboratory, and Business/Management terminals which are all housed in

separate buildings on campus. The Design laboratory encompasses the design and
development of part geometry. The Machining laboratory focuses on CNC machine

operation, on-line, and off-line programming. The CIM laboratory provides the platform

for the integration of all CIM functions and has evolved as the control and demonstration

center for all computer integrated manufacturing processes. Business/Management

functions are assessable through any computer or terminal tied to the campus network.

492

3.2 OSI design model

Computer integrated manufacturing environments require specialized computers to

accomplish a variety of concurrent tasks. Requirements of this magnitude dictate the type

of computing power needed for each application. The diversity of hardware available from
vendors in the CIM market requires organization of communication parameters to allow

interconnectivity between protocols. The system configuration at ISU has evolved as a

multi-vendor solution and therefore dictates the use of a formal communications structure.

To provide this structure, the Open Systems Interconnection (OSI) model has been followed

and is explained below. (See Figure 2)

The function of each of the layers in the OSI model are summarized below [INTEL85].

The Physical Layer describes the physical media over which the bit stream is to be
transmitted. This layer specifies type of cable (coax, twisted pair, etc.), connectors,

signal levels, bit rate, data encoding method, modulation method, and method for

detecting collisions in contention networks. In short, this layer describes the physical

media over which the bit stream is transmitted and the method of transmission, i.e.,

baseband or broadband.

The Data Link describes rules for transmitting on the channel (made up of the

encoder/decoder, transceiver cable, and transmission medium). Such items as the

format of the information (frame) and procedures for gaining control of the channel

(access method), transmitting the frame and releasing the physical media are specified

by the Data Link Layer.

The Network Layer controls switching between links in a multihop network. The
Network Layer is not necessary for a single Local Area Network (LAN) system because

all stations connected onto a LAN share the same channel. This Layer is critical in

gateway, communication server, and dialup-communication applications.

The Transport Layer ensures end-to-end message integrity and provides for the

required quaHty of service for exchanged information. For example, end-to-end

acknowledgements and flow control are performed by the Transport Layer.

The Session Layer establishes and terminates logical connections between network

entities. This Layer is also responsible for the mapping of logical names into network

addresses.

The Presentation Layer provides for any necessary translation, format conversion, or

code conversion to put the information into a recognizable form.

The Application Layer provides network based services to the end user. Examples of

network services are distributed databases and electronic mail. The Application Layer

is not to be confused with the end user application itself.

With the OSI model in use, the Physical and Datalink layers can vary without effecting the

types of protocols used at individual workstations. For example, layers 1 and 2 of a network

493

494

can be changed from carrier sense multi-access/collision detect (CSMA/CD) based (e.g.,

IEEE 802.3) or token ring based (e.g., IEEE 802.5)(and the associated hardware), without

affecting layers 3 through 7.

3.3 Design considerations

The first two layers of the model are typically implemented through one of the following

methods. [BATES87]

Ethernet: CSMA/CD, Baseband, Coax
Arcnet: Token bus. Baseband, Coax
MAP/TOP: Token bus. Broadband, Coax
IBM: Token ring, Baseband, Twisted pair

Careful consideration must be taken when analyzing the benefits of each system. As the

characteristics of the CIM system were estabhshed, the patterns of data flow became more
clearly defined. For the ISU application, ethernet was chosen as the solution for the lower
layers in the OSI model. This allowed the physical characteristics to be defined and the

network structure to be developed. Due to the variety of computing needs required by and
the inherent traffic that would be created by the CIM system, a segmented structure was
estabhshed to insure the highest throughput levels to each network. Figure 3 diagrams the

major network connections and features, however none of the local area networks are

detailed. Figure 7 represents the entire structure and figures 4 through 6 provide specific

details of each of the CIM system network segments.

Two contributing factors dictating the use of a segmented backbone (trunk-hne) are the

physical distance between segments and the requirements of the system's specialized

computers. Individual computers were placed on separate segments which were bridged to

minimize traffic throughout the entire backbone while allowing optimum throughput rates

for the CIM system and other independent university resources.

The interconnection through bridges will allow the traffic concentrated on each segment to

be isolated. This isolation will also allow the simultaneous operation of a central tape drive

to backup individual servers on a scheduled basis with no reduction in performance on
other segments. Although, the system being backed-up will notice a slight reduction in

performance, maximum utilization is still obtained throughout the network.

3.4 Communication methods

The use of a multi-port asynchronous device (port-selector) allows communication with any

of the mainframe/supermini computers on campus via asynchronous lines from any terminal

or PC within each facility. An alternative method is provided through asynchronous servers

located on each of the networks. A Netware (Novell) to Transmission Control

Protocol/Internet Protocol (TCP/IP) gateway is used to communicate between the different

protocols. This also allows the general sharing of databases which exist on any of the

systems located on the network. Such sharing can be accomplished through File Transfer

Protocol (FTP) which provides for bi-directional communications between host, file servers

and/or personal computers. Also available is the Remote Terminal Protocol (TELNET)
which provides terminal emulation for access to TCP/IP hosts.

495

Co

CO

Co

r

I

I

6

n n

1111
L

5

SKIUMCO I

JUSIm UTH

ii

r-i r-i r-n r-n r-i r-i r-i

ccz

CO
cc

C3 -=C

CD CD
CC C_!
C_>
I—I az
2: o

I CD
<C 1—1

Figure 3. ISU Computer Network.

496

4. CIM system architecture

4.1 Communications with the Prime 4450

The selected computer for the CIM environment, a Prime 4450, is attached to the backbone
on a separate segment which allows for a direct link with all computers needed to function

in the CIM system (Figure 7). Through the use of TCP/IP, the PRIME 4450 communicates
with eight graphic workstations for design purposes. Two Unix based super-workstations

are available via this connection to share part geometry/data for finite element analysis and
simulation of individual workcells. A third means of connection is the multi-port

asynchronous communication lines which allows classroom and laboratory areas to have

primary access to operating software. This multiple connection arrangement is important

to provide a flexible teaching environment for classes and/or student projects. Further, this

arrangement allows additional facilities to be readily added to meet the need for expansion

to other academic units which elect to participate in the CIM program.

4.2 Design laboratory

The Design laboratory (Figure 4), is concerned with instruction in the development of part

geometry and evaluation of design integrity. Located in this laboratory is a 386 file server

utilizing Novell software connected via thinnet to 26 286/AT based workstations. In

addition, communication with the CIM host computer is accomplished through asynchronous

lines to the port-selector.

Each workstation is a 80286 based microcomputer with an 80287 coprocessor, VGA
graphics with flat tension mask (FTM) monitor, digitizing tablet, local printer, and high

capacity drives. These individual stations use Tektronix emulation software to take

advantage of the asynchronous connection for a variety of purposes. For example, access

to the Prime Medusa 2D, 3D, Geometric Numerical Control (GNC), and Finite Element
Analysis (FEA) software can be accomplished with considerable cost savings as compared
to the use of specialized terminals.

Other duties the file server performs include basic data file collection and transfer, on-line

immediate information storage, security and record keeping. Also, an IBM XT computer
in the laboratory is dedicated to tape backup, maintenance, system status, and mainframe

plot facility access.

This server directly controls three plotters which may be queued from any campus network.

Through the use of a separate plot spooler (IBM XT) and a Value Added Process (VAP),
the network allows for the operation of a fourth plotter with control software in the

foreground and an inkjet printer in continuous operation in the background. These are also

accessible from any campus network.

The aforementioned capabilities allow many types of plot data to be directed to any of the

plotters on campus. Through a special application program, virtually all graphic images

displayed on the 286/AT workstations can be plotted on any plotter that will support the

Hewlett Packard Graphics Language (HPGL).

497

TO VAX 8350

TO PRIME 4450

MUX

1

DESIGN LAB

386 SERVER

HP-7596 PLOTTER

TEKTRON

INK JET

XT PLOT SPOOLER

XT NETWORK MONITOR

LD
[

—

1

CL

in
t

—

1

zn

in —
I

—

I CD
Q I

(25) 286 W/ TEKTRONIX

EMULATION SOFTWARE

INSTRUCTOR STATION

TEKTRONIX TEKTRONIX PRIME PW150 SILICON GRAPHICS

4211(1) 4225(2) WORKSTATION (3) WORKSTATION (UNIX!

Figure 4. Design Laboratory Network.

498

A unique feature of this laboratory is the instructor's station which includes another 286/AT
workstation, a video graphics converter (VGA to NTSC), and four 25 inch monitors

arranged overhead around the laboratory for simultaneous viewing. This allows the

instructor to perform real-time demonstrations at the station, while recording on video tape

for review at a later date.

4.3 CIM laboratoiy

The CIM laboratory (Figure 5) is the central location for manufacturing operations. A
PS/2 model 60 serves as the local communications coordinator and mass storage device.

This server is connected to the CIM backbone segment for network communications and
to most devices in the laboratory for local functions. It provides the link between the shop

floor controllers and other campus networks via the backbone.

Local network devices include an IBM 7552 which is used as the main communications
controller for all shop floor equipment. Additional devices connected to the server include

and PS/2 model 80, seven XT class computers used as multi-purpose terminals/processors,

and an additional XT class computer that serves as a laboratory status display and shop

floor data manager. Also located on the CIM Ian is a separate cluster of AT and XT class

computers which provide additional computing, printing, and plotting resources. Local

printing and plotting resources are accessed similar to the procedure used in the design lab.

4.3.1 Shop floor control

To effectively operate shop floor activities in a CIM environment, it is necessary to establish

an internal protocol for run-time communication that can be used for real time monitoring

and control. Allen Bradley's Advisor PC running on the PS/2 model 80 and the IBM 7552

acting as a communications controller comprise the CIM laboratory shop floor control

system. This system provides real time control of all laboratory functions. Figure 5

indicates the devices connected to the 7552 which include two IBM assembly robots, an

Intelledex assembly robot, one Puma/Unimate and one GMF continuous path robot, a

Bridgeport CNC machining center, a GMF vision system controller, the controller for the

AGV, and several shop floor data collection devices. The shop floor control system routes

data files, instructions, and other required data to the shop floor and also receives

production status information. The Advisor program and its data files are stored on the

server.

An additional task completed by the PS/2 model 80 is control of the ASRS system. As
seen in figure 5, the ASRS is controlled by an XT computer directly connected to the PS/2
model 80. Information on raw materials, work in process inventory, and finished goods is

stored in the inventory database for use by the shop floor control system and the

business/management software.

4.3.2 Control area workstations

A major function of the seven XT class computers is to provide local off-line programming

stations for CNC equipment, robots, and other automated equipment on the shop floor.

It is anticipated that all manufacturing programs will be written off-line and subsequently

499

!

Figure 5. CIM Laboratory Network.

500

downloaded to their respective devices for final calibration and debugging. After programs

have been qualified for production use, they are then transferred back to their original

device and are stored on the file server for automatic download to the target devices as

necessary. The programming languages for all of the devices will be available on the

network. Off-line programming will usually be accomplished in the control area of the

automated faciUty, but can be done on other network devices that have the requisite

computing and graphics capability.

These machines will also serve as terminals for the 4450 to access the Man-Fact II software.

Production scheduling, inventory control, and other manufacturing management and

business functions will be performed on these machines. These computers will also be used

for quaUty routings, personnel reports, wordprocessing, spreadsheets, and other

miscellaneous functions.

4.3.3 Additional production area systems

When a product is manufactured, a sequence of steps is required using many different

protocols. The Internal Protocol for Product Development (IPPD) in the CIM laboratory

provides the capability to concurrently manufacture multiple custom products. The IPPD
is being developed at ISU for the CIM laboratory to facilitate communications between
different industrial devices within the existing architecture.

An XT class computer will be used as a controller for monitors and bar code scanners

distributed throughout the laboratory. This system provides data input for shop operations

and monitoring of the production status of the laboratory.

The AGV receives its instructions from a radio frequency (RF) controller linked to the

7552. Those instructions are based upon routing information and production operation

requirements.

To provide for off-line preparation of tooling and fixturing for a product or product

families, each manufacturing cell has two stations for smart carts. One cart provides for

quick change tooHng. The other provides customized product fixturing. When production

schedules require fixturing and/or tooling changes, the existing carts are replaced with a

new carts having the proper configuration. When plugged into a tooling station, each cart

receives plant air, llOv power, digital control, and communication capability for actuation

and identification of cart components.

4.3.4 Shop floor part tracking

Part tracking on the shop floor is accomplished by bar code scanning. All ASRS totes have

attached bar codes. Each bar code is identified in the inventory database so that the system

can track the location of all parts. Scanners are located throughout the laboratory at key

points for part tracking. Each scanner communicates with the Allen Bradley Programmable
Lx)gic Controller (PLC-5) through the Serial Adapter Module (SAM) via Allen Bradley's

DFl protocol, which is a modified ANSI X3.28/D1/F1 specification.

501

4.3.5 CIM laboratory digital control

The Allen Bradley PLC-5 is the center of the digital I/O control. The PLC-5 is directly

connected to the PS/2 model 80 and receives its program from the Advisor. The PLC-5
controls all CIM lab I/O including robotic cycle initialization and status, machine tool

status, load and unload station control, and conveyor movement.

The assembly cell conveyor system is a particularly complex control problem as it is a
combination of many independent devices. In order for these devices to function as a
coordinated unit, the PLC sends and receives signals of various voltages, both AC and DC,
based on the logic control program.

The Advisor tracks changes in all I/O status and provides graphic display. The PLC-5 also

has the capability to communicate via Allen Bradley's Data Highway proprietary network.

4.4 Machining laboratory

The machining laboratory is detailed in figure 6. A file server is connected to the network

and controls the activities of the laboratory. Four XT class machines are used for off-line

CNC programming, graphic verification of tool paths and material removal, and program
debugging. As programs are completed and debugged, they are routed through the network

to the appropriate device. Programs can also be generated and downloaded to these

devices from other locations on the CIM network,

5. Summary

Indiana State University has developed a computer integrated manufacturing system that

serves multiple missions. The system is modular in design to serve the educational needs

of faculty and students. The distributed architecture was also designed to serve the

outreach mission as many of the research and technology transfer activities of the faculty

are targeted toward the needs of small to medium sized manufacturing organizations.

While preserving distributed and microcomputer based capabilities, the CIM system also

provides high end CAD, manufacturing planning, and information integration functions

typical of larger systems. This has resulted in an architecture with some hardware and

software redundancy and communication characteristics that would not be found in a more
focused implementation. However, the system described in this paper has been found to

accommodate a wide variety of requirements while still providing the functionality for

teaching, demonstration, and customized application development.

502

CD ^

EI LL
CO ^

aaAUBS 3NASV

Figure 6. Machining Laboratory Network.

503

I—

H

Figure 7. Complete CIM/ISU Computer Network.

504

REFERENCES

1. Paul Bates, Practical Digital and Data Communications ... With LSI Applications .

Prentice Hall, Inc., New Jersey, 1987.

2. IntelCorporation, Microcommunications Handbook. Product Line Handbook, 1985.

505

cm ARCHITECTURE: ONE PERSPECTIVE

ALLANANDERSON
THERESAJENNE

KRISHNA MIKKILINENI

Abstract

The implementation of Computer Integrated Manufacturing systems
is made difficult in practice by a number of realities such as multiple
and changing vendor sources, existing systems and equipment,
changing business environments and management priorities and
diverse and complex technology subsystems. An architecture based
approach has been developed and used within Honeywell with
success consisting of inter-relating business and system principles,

integration models and subsystem formulation and implementation
guidelines. We present here our definition and perspective of a CIM
architecture and relate some of the experience we have gained to

date.

1. Introduction

To guide the implementation and evolution of manufacturing operations toward
integrated manufacturing and to help coordinate individual development efforts

and projects, a CIM architecture is needed. Future manufacturing systems
defined and implemented using this architecture are expected to increase the
cost-competitiveness, productivity, and effectiveness of all aspects of

manufacturing.

We developed a baseline CIM architecture in Hone)rwell that can be tailored to

organization-specific needs, while maintaining coherence between
implementations. The architecture provides a systematic methodology and
framework for developing a top-down CIM plan which is used for implementing
manufacturing activities or systems in a piece-meal fashion. We illustrate the

process of developing a CIM architecture and present the key components of an
architecture in this paper. The benefits of the architecture to Hone3rwell are also

outlined.

There are many different reasons for needing and developing a CIM architecture.

The major reasons for architecture development are presented in Section 2. The
objectives of CIM architecture are then outlined in Section 3. The definition of a

506

CIM architecture we formulated in Honeywell is presented in Section 4. This
definition is different from the traditional definitions of an architecture (e.g.,

functional definitions, philosophical statements of direction and policy from
management, connectivity diagrams, implementation systems specifications,

etc.). The first component of our CIM architecture, principles, is presented in

Section 5. The second component of the architecture, integration models, is

discussed in Section 6. The third component of the architecture, guidelines, is

presented in Section 7. In section 8, we outline the benefits and uses of the CIM
architecture in Honeywell. Finally, a conclusion is given in Section 9.

2. Reasons forneedingand developing the CIM architecture

There are several reasons for needing and developing an architecture. The
reasons that drive the need for architecture development include integration
requirements, technology trends and business strategies. The following
discussion examines the architecture drivers in more detail.

A CIM architecture is needed to provide a systems approach to guiding the
development, modification and implementation of both manual and automated
functions necessary to improve the productivity, cost-competitiveness and
effectiveness of all aspects of manufacturing.

The top-down architectural approach of defining and implementing
manufacturing systems is necessary to plan implementation and integration of

manufacturing subsystems. An architecture can also be used for planning
modifications to upgrade existing manual and/or automated systems to improve
efficiencies and to reduce costs. In contrast, a bottom-up approach to planning
and implementation of manufacturing systems usually results in "islands of

automation." These islands initially provide significant improvements over a
paper-based environment, but today, these systems often have redundant
information in incompatible formats on diverse systems. In addition, the bottom-
up approach only shows improvement in a small area, ignores the problems it

may impose on the overall system and disregards changes in future
requirements. An architecture is the cornerstone of the top-down planning
approach and thus is an essential ingredient to planning or implementing a
manufacturing system.

The speed with which key manufacturing systems technologies (e.g., information
technology and distributed processing) have been changing recently is a major
driver to develop an architecture. This rapid change in technology leads to (1)

confusion in understanding the variety of technological solutions and approaches
offered in the marketplace; (2) uncertainty of the availability, maturity,
compatibility and stability of manufacturing systems solutions; and (3) dwindling

confidence in the ability of the chosen solutions to meet all the key current and
future requirements. Therefore, an architecture that provides guidance in

technology selection and the implementation of manufacturing systems is

essential if we are to deal effectively with rapid technological advances.

An architecture is essential for planning effective, efficient and integrated

approaches for meeting emerging customer requirements such as data security

507

(security is a requirement for DOD contractors) and the capture and delivery of
large amounts of product-related data (e.g., NASA contractors will be required to

have a paperless environment).

The emerging business/industry trends—such as reduced product life and
shortened time for the design-to-production transition (which in its extreme is

simultaneous engineering)—imply the need for more flexibility in the operation of

manufacturing systems. They also imply the need to automate the flow of

information in the organization and to improve the interaction within and among
the various functions of the manufacturing enterprise. An architecture is

essential for developing cost-effective, efficient and mutually compatible
approaches that would cope with these new trends.

Commonality is another key driver of the CIM architecture. A major corporate
goal throughout manufacturing industries at this time is to reduce duplication of

effort in the development and implementation of manufacturing systems.
Obviously, there are benefits to be gained from commonality, such as cost

reduction and improved operations resulting from shared knowledge and
approaches. At the same time, a common set of solutions may not meet the
requirements of individual business imits in a corporation. The CIM architecture

is not intended to provide a common set of manufacturing systems solutions or

techniques but to provide a common starting point for all the manufacturing units

in an organization to use in developing their own organization-specific
architectures.

Standards are another important architecture driver. They provide the ability to

integrate manufacturing systems easily. The architecture will provide the basis

for choosing the right standards for implementing different aspects of the
manufacturing system by capturing a set of applicable standards.

3. Objectives ofa CIM architecture

The specific objectives of the CIM architecture include:

• Providing a top-down development approach that is needed to understand the
requirements and interfaces of the various subsystems so that each subsystem
can be implemented from the bottom up and independent of other subsystems
with assurance that the various subsystems can be integrated with each other.

• Providing criteria for making selection/evaluation decisions regarding choices

of implementation techniques and procedures.

• Providing an up-front plan of the interactions and integration among the

different subsystems in manufacturing to reduce the complexity of incremental
integration.

• Providing a common definition of subsystem requirements at a sufficient level

of detail to ensure a robust or stable manufacturing system and to prevent

subsystems from becoming obsolete or requiring special interfaces each time an
interfacing subsystem is modified or replaced by a new subsystem.

508

• Providing the criteria for vendor evaluation and limiting the choice of alternate

computer/control system or application vendors.

• Promoting communications and sharing of architecture development and
subsystem implementation among CIM organizations.

• Providing a living architecture specification document that is validated,

modified, and refined with further work and analysis as implementation
experience is gained over time.

4. CUM architecture definitions

The term "architecture" conjures up various images to different people. To some,
an architecture is a diagram of the connections between platforms in a certain

hierarchy; to others, an architecture may be a set of data flow diagrams or

statements which describe an organization's technology policies. We define the
architecture to be the overall context or framework that provides the basis for

making decisions and evaluating alternatives in a rapidly changing business
environment. The architecture does not provide a solution; rather, it provides the

discipline and the mechanisms needed to evaluate various alternatives and to

select a solution with reasonable confidence in the effectiveness and impact of the

selection. The architecture is documented as a living document that is initially

developed and then enhanced and continually updated to reflect the changing
business environment. Architecture is a process that totally transforms a
company from the past ways of running its business into the future.

We define the CIM architecture as a structured interrelationship of principles,

functional models and guidelines providing the framework needed for designing
or modifying an integrated manufacturing system. The key pieces of the CIM
architecture are:

• Architecture principles, which are broad, but well-focused statements of

direction used in designing an integrated manufacturing system.

• Integration Models, which provide a description or a model of the different

functions or activities performed within a manufacturing system, the

information flows among these functions and the interrelationships among the

information.

• Guidelines, which describe an approach to grouping or partitioning the

different functions so that they can be assigned as implementation subsystems.

The guidelines also provide a set of criteria to select or evaluate alternative

implementation choices corresponding to different aspects of a manufacturing
system: platforms, data communications, databases and applications. Figure 1

depicts the relationships between the architecture components, business
strategies, project planning and projects.

509

HCAM Architecture

Business Strategies

Principles Integration Models Architecture Guidelines

Business
Principles

System
Principles

Funclloiuil

Integration

Model

Information
Integration

Model

Functional
Subsystem and

Guidelines

Information
Subsystem and

Guidelines

i
Project Planning
and Road Map

Figure 1.

A manufacturing systems architect must design solutions in the face of many
unknowns, such as changing requirements, future technologies and so on. To
deal with the complexities and unknowns, a manufacturing systems architect

must develop a core set of architecture principles and use them to guide his/her

decision-making. Architecture principles should be defined corresponding to

each category of requirements defined by customers or the business environment.
To provide an analogy, a building architecture is designed using a set of

principles regarding categories of requirements, such as building codes, costs,

aesthetics, floor space and other such t5rpical categories of requirements. The
architect uses these principles as criteria to make decisions during the design of

the house. These principles guide the design to meet specific requirements. For
example, a principle stating that a duplex outlet must be provided every 12 feet

along the walls of a room in general fulfills the requirement of providing
convenience. Note that there is a distinction between requirements (e.g.,

convenience) and principles (e.g., the principle of providing an electric outlet

every 12 feet).

The second component of the architecture is a set of integration models.
Integration models describe the structures for integrating and providing a set of

functionalities, interfaces and features. They describe the functionality and
information corresponding to the different aspects of the manufacturing systems.

Integration models need to be developed for the different aspects of a

510

manufacturing systems architecture, including business processes;
management methods; manufacturing, engineering and business functions and
processes; computer/control platforms; databases; networks; applications; etc.

In the building analogy, the different aspects of the building architecture include
its structural plans, a schematic for electrical distribution, a schematic for

plimibing distribution, excavation plans, etc. All these plans together provide the
architecture plans for building the house and they determine the features and
functions of all the parts of the building. For example, the electrical schematic
outlines the quantity and location of duplex outlets. These plans are analogous to

integration models.

After the models are developed, the third component of the architecture—namely,
the guidelines—needs to be developed. These guidelines or design rules are
needed to guide the implementation of each of the various aspects of the
architecture mentioned above. Guidelines are specific applications of the
principles to each aspect of the architecture implementation. For example, the
kitchen electrical subsystem guideline can be derived from the principle that a
duplex outlet must be provided every 12 feet along a wall. A guideline for the
kitchen electrical subsystem may state that power must be provided to the outlets

specified in the electrical schematic by two 20-amp circuits. Similarly, guidelines
corresponding to the various aspects of implementing a manufacturing systems
architecture provide criteria for selecting and evaluating various potential
implementation choices.

5. Architecture imnciples

Principles are the most stable element of an architecture; they represent
continuity and relative stability through the evolution of an organization's

manufacturing systems architecture. Principles are the criteria used to make
decisions in designing and selecting different systems while implementing the

integration models. Principles should be specific enough to guide the designer in

making decisions during the development of the system solutions. They should
avoid statements that are readily accepted by all and do not contribute to the

decision-making process. Since principles are used to make decisions, each one
should be discussed and evaluated for its pros and cons. Adherence to some of the

principles will depend on cost-versus-benefit trade-offs. During evaluation and
selection of the principles, the cost of adhering to a principle shoiild be considered.

A principle is generally applicable across all layers of the architecture and across

all the manufacturing functions. It assists the designer in creating a robust

system, but the designer must determine how to implement it. In contrast, a
guideline (presented in Section 7) is a specific implementation or application of a
principle to a particular manufacturing function. A guideline is not applicable

across all the manufacturing functions and addresses only the specific

requirements of a particular function.

Principles may define the organization's direction along the following subjects:

511

• Orientation to risk—^Principles can establish policies about the introduction of

new technologies, experimentation with infrastructure, system development and
management.

• User autonomy—If an organization values user autonomy, a principle
describes how the users would make technology decisions.

• Technology perspective—Principles can establish whether new technologies
are introduced primarily for cost savings or as strategic tools to maintain the
organization's competitive edge.

• Technology solutions—Principles can show a preference for general
technology solutions versus specific optimal solutions.

• System development—Principles can be used to guide decisions on in-house
system development versus buying vendor packages, using standard vendor
offerings versus customized packages, and establishing vendor preferences.

• System specification principles—Principles can establish system deliverables.

For example, all of a particular department's users will have access to computing
services, bar-coded input is preferred over keyboard input on the factory floor, all

word-processors will use the same applications. Platform, application, data and
communications principles can help specify the different aspects of the system
architecture.

• Business principles—Principles can clearly state an organization's policies,

goals, strategies, rules and constraints concerning general as well as specific

aspects of all the functions within and related to manufacturing.

Let us now illustrate how principles can be derived from business objectives. For
example, the organization may need to respond rapidly to market demand or

outside competition for new products. This implies a frequent turnover of product
lines and rapid obsolescence of specially designed systems. Therefore the
organization's objective is to encourage flexibility. Based on these objectives, the
following business principle can be derived:

The manufacturing system shall manufacture the current product as an
instance of a general class of products that it can produce. This class includes:

Circuit boards:

thru-hole and surface mount components and mixtures with thru-hole
components on one side of the board.

rectangular form factors up to 6 by 8 inches.

component placement accuracy of 10 mils

512

These system environment objectives are now decomposed into architecture
principles that state the system objectives explicitly with respect to some aspect of
implementation of the system architecture, such as defining a standard set of
tools, interfaces and applications. For example:

• Systems that can grow incrementally to accommodate new demands on
networks, platforms and software capabilities;

• Systems that implement general technology solutions, which can be modified
easily, rather than specific optimal solutions designed for a particular
implementation;

• Systems that promote standard tools, interfaces and programming languages
to minimize the time and cost of implementing new or modified systems, training

users, etc.

6. Integration models

The integration models of the CIM architecture consist of two complementary
components: the information model and the functional model. The functional
integration model describes the functional activities within the manufacturing
domain and the interactions between functions as flows of information between
them. Information flows provide the foundation for the information integration
model. The information model captures the manufacturing information and
describes data to data relationships. The function integration model captures
function to function relationships and information to function relationships but
the actual structure of the information elements themselves - the interconnecting
relationships between information is not explicitly captured. Information
integration models on the other hand capture the relationships among the
information. The integration models provide the basis for analyzing and
designing the systems design and for applying the architecture principles

presented in the previous section.

6.1 Functioiial integration models

The objective of the fiinctional integration models is to provide a tool to assist each
organization in analyzing and developing a standard description of the

manufacturing functions performed in the organization. The functional

integration models also provide the interaction of the information flows among
different functions so that system developers can logically analyze and group
these functions into applications and implementation subsystems and determine
which functions are be performed manually or which should be automated. The
functional integration model provides the "big picture" containing an overview of

all, not just a few, of the CAM/CIM functions that each organization can use to

develop the "as-is" and "to-be" functional models. The ultimate objective of

developing the functional integration models is to develop an implementation
systems architecture that can smoothly and cost-effectively meet all the

integration requirements that can be derived from the functional interactions.

The functional integration model we present here is also intended to serve as a

513

common and consistent method of communication of the CIM functionality

between organizations.

The function integration models consist of the following components:

• Function integration diagrams, which are graphical descriptions of the
functions and information flows among the functions.

• Standard specifications, which are textual descriptions of each function.

• A data dictionary, which provides definitions for the information contained in

the information flows of the function integration diagrams.

6. 1.1 Function Integration diagrams

The fxmction integration diagrams (FIDs) are figures that provide a graphical
description of the functions and how information flows are integrated among
these functions. FIDs can be considered to be equivalent to data-flow diagrams or
context diagrams as they are defined by structured analysis methodologies. Each
function in an FID is an activity or task that is performed within the
manufacturing facility. Each function requires information from other functions
to perform its task, and the function needs to provide information to support other
functions. The function integration diagrams consist of several levels of detail.

Each high-level function is decomposed into finer levels of detail by descending
into lower level function integration diagrams that display the activities within
the high-level function in much greater detail.

The information categories that describe the interactions between two functions

are annotated on top of the arrow connecting the two function boxes. Each task or

function requires certain information from other functions that it needs for

accomplishing the task (inputs). Upon completion of the task, each fimction must
provide information to other functions (outputs). The direction of the flow of

information between two functions is shown by the direction of the arrow.

6.1.2 Standard specification offunctions

A standard specification is a description of each function or process in the FID.
The standard specifications provide a common means of describing and
imderstanding CIM fimctions within organizations. The following is an example
of the types of information a standard specification needs to include to describe the

function adequately for reference and commimication purposes.

• Objective—^What is the purpose of this function?

Example: Schedule operations to fulfill the production order. Calculate the
dates when the operations are to be performed to meet the demand order. Allocate

workcenters and sequence operations.

• Activities—^Relate the activities needed to correlate inputs and outputs and
how the objective is accomplished.

514

Example: Given the product definition and configuration and the process plan
and configuration, calculate the priorities for the various orders (or receive

priorities from MRP). Assign start dates and completion dates to batches of
components (an order) and assign workcenters where the jobs are to be
performed. Schedule operations backward from the due date of the demand order.

Retrieve orders, calculate and assign priorities, analyze resource usage and
expected throughputs, and determine schedule. Assign start/due dates to batches
or lots of individual components and identify workcenters to perform the work.
Once the schedule has been produced, determine the resource requirements and
generate work orders for the various workcenters to provide resources such as
tools, material and labor.

• Planning Horizon—^if applicable (shift to 1 week).

• Scheduling Interval—if applicable (minutes or hours).

• Primary Inputs—Primary driver of the function (i.e., analogous to a
command signal). An example is the production order.

• Primary Support Inputs (Support Data)—Data needed to support the decision-

making or planning process. (This includes the process plan and configuration,

product definition and configuration.)

• Primary Outputs—Primary outputs, which are input drivers to lower level

functions (work orders and a dispatch list).

• Primary Support Outputs (Support Data)—Support queries, feedback of
performance, etc. (e.g., production-order status).

• Implementation Trends and Methods—Optional.

6.1^ Data dictionary

The data dictionary contains a definition and description of the information that
flows into and out of the different functions in the FIDs. The data dictionary

describes (1) the information category name annotated on the information-flow
arrows in the FIDs, (2) the granularity of the information (i.e., an atomic or basic

data item or an object of data or data structure containing any or all of several

data items) and (3) the other information categories to which it is related. The
data dictionary tool will then provide a variety of services including where-used
type retrievals, change control, reporting and data modeling support.

6.2 Information integration models

The term "information model" means different things to different people and
requires some clarification. There has been intensive interest in information

modelling for two decades. Many types of diagrams and methodologies have been
developed too numerous to describe here. For our purposes, an information

integration model is a collection of clearly and precisely defined manufacturing

515

information using natural language descriptions (i.e. English) to help people
iinderstand clearly large systems of information.

The objective of the information integration model is to represent and
communicate to people a wide range of manufacturing information clearly and
precisely, explicitly showing the relationships between information elements.
This representation shoidd connect the information in the model to the function

integration model information flows.

A secondary objective is the support for systems formulation and implementation.
The information integration model should support the planning and analysis of

systems for information management in manufacturing.

The information integration model allows the subsequent data models in

manufacturing to provide integrated data across a wide range of manufacturing
areas to support CIM. The model improves planning of implementation and
integration activities, training of employees and analysis of changes in the
manufacturing system. The clear understanding of the manufacturing
information leads to better implementation guidelines and better
implementations of computer integrated manufacturing.

The information model captures information at a multiple levels of abstraction

across the manufacturing environment. The information is grouped into logical

categories and relationships between these information categories are
documented. Graphical descriptions are used to depict these relationships
(information integration diagrams) and textual descriptions called standard
specifications are used to define and docvmient the entities and the information
categories. The data in each particular information category is decomposed into

lower levels of greater detail.

Entities in the information model are, loosely considered, the "things" that people
think about in manufacturing such as a build order, a part, an assembly or a
calibration of a machine. The entities identified in the information model are
considered to be a prototype "thing" which has many instances or specific copies.

For example, a build order entity is the concept of a build order and not a specific

build order. In the information integration model, there is a single concept of a
build order, called an entity, although it is know that there may be thousands of

actual build orders in an organizations manufacturing environment.

An attribute of an entity is a detail associated with it. The attributes of the entity

detail the entity and provide the means to identify the separate instances of an
entity. For example, of the thousands of build orders in a manufacturing
environment, how can a particular build order be identified? Often a entity has an
attribute which is a unique identifier like a person can be identified uniquely by
her social security number. For example, a build order has an assembly which it

orders to be built, a imique build order number, a date which the build must be
completed by, an authorization of the build order, etc. It is often imclear whether
an information element (a "thing" such as an authorization) is properly an entity

or an attribute or a relationship between two entities.

516

Relationships are the ways in which two instances of two entities may be
connected to each other. For example, the attribute called the assembly that the
build order referred to above orders to be built, may actually be an entity. In this

case, a specific instance of a build order has a relationship to a specific instance of

the entity called "assembly". This is the way the information model captures the
fact that every build order (an instance of the entity "build order") is connected to

an instance of an assembly (another entity in this case). While the relationship is

said to be between two entities, the relationship must make clear which two
instances of the entities are actually related.

Information models are abstractions of data models; the information model is a
conceptual and general representation of the more implementation specific data
model. An information model describes categories of data and relationships

between these groups of data at a high-level of abstraction or detail. The data
model is derived from the information model and describes the data in technical

detail for use in a computer database. Both kinds of models are needed to address
the big picture of how people think about the information used in performing their

work and the details of how application programs can access that information to

provide integrated services.

The information model consists of the following components:

• Information integration diagrams, which are graphical descriptions of the
information categories and the relationships/interconnections between the
information categories.

• Standard specifications are a textual description describing each information
category on a information integration diagram and list the entities contained in

the information category and describes each entity.

• The functional model's data dictionary which lists all of the data from the
information flows on the fimctional model. The standard specification entity

definitions are derived fi-om the data dictionary.

6.2.1 Information integration diagrams

The information integration diagrams provide a graphical description of the
information categories and the relationships between the information categories.

Data at a particiilar level of abstraction is partitioned into information categories,

and each information category contains a class of entitles. The flows between the

information categories describe the relationships between the information
categories.

Due to the amoimt of information used within the CIM environment, attempting
to develop the information model can seem overwhelming. But just as with any
large project, the information model should consist of several levels of detail so

that each particular level contains a coherent and manageable number of

information categories that can be analyzed. This is accomplished by creating

several levels of detail using the information integration diagrams. Each

517

information integration diagram can be decomposed into finer levels of detail by
exploding an information category at the higher level diagram into an
information diagram describing the entities within the information category and
their relationships. This is analogous to the decomposition of the function
integration diagrams, where relationships are maintained during the
decomposition into sub-levels of detail.

QJ2J2 Standard specifications

The information integration model's standard specification is a textual
description of an information category and also describes each entity within the
information category. The information category specification describes the scope
or bounds of the information category, the information category criteria for data,

and a list and description of the entities within the particular information
category. The standard specification also lists each of the entities within the
information category and how these entities relate to other entities which are
external to the information category. The standard specification describes the
entities within the information category, with the following details:

• the definition of each entity (a textual description of the entity),

• relationships between entities,

• attributes of the entities,

• operations on the entities,

• restrictions on the entities,

• and the relationship between the information model's entities and the
functional model's data dictionary.

The relationships between entities describe information category interfaces such
as how entities within the information category relate to entities which are
external to the information category. Attributes are the individual pieces of

information that define an entity. Finally, operations describe the ways in which
the information modelled can be modified.

6.2^ Data dictionaiy

The data dictionary lists all of the data from the information fiows from the

functional model. One problem with the data dictionary is that it gives fimctional

definitions for the data and does not show the structure or relationships between
the data. Therefore, the standard specification is derived from the data dictionary

and enhances the data dictionary description of an entity by elaborating the data
dictionary definition and also describing entity relationships, operations,

restrictions and attributes. The relationship between the information model's

standard specification and the functional model's data dictionary allows a

traceability to the functional model.

518

T.GuideUnes

This section provides a set of guidelines used in implementing a CIM system. We
define the CIM system to be a set of systems (i.e., the combination of people,

processes, machines and computer/control systems) that implement the
manufacturing aspects of the business functions in a globally optimal manner so

that overall business objectives are achieved. The first component of guidelines is

a set of subsystem formulation criteria. These criteria are targeted to aid in
grouping the different functions in the integration models as presented in the
previous section into a number of integration domains and a number of different

types of CIM subsystems. They are also useful in defining the boundaries between
different CIM subsystems. The second component of guidelines is a set of

subsystem selection and implementation criteria. These criteria provide
recommendations on the core capabilities of the functional groups and on
implementation features of the computer/control systems useful in designing or

buying each of the subsystems are presented.

The guidelines presented here are specific applications of the general
architectural principles defined earlier. While the principles remain general
statements of direction, guidelines provide a detailed set of criteria to select or

evaluate different implementations of the CIM subsystems. The guidelines are
specific and detailed enough to serve as a starting point for guiding the system
architecture and implementation evaluation/selection criteria definition.

These guidelines are based on current systems, available technologies, and
technological solutions deemed ready for emergence in the next five years. Not all

the guidelines in each category need to be followed in implementing different

classes of subsystems in each category.

7.1 Subsystem formulation criteria

The first step in developing CIM systems consists of grouping the low-level

functions (perhaps the second to fourth levels of decomposition) as identified by
the functional architecture into logical groups or subsystems based on their

interrelationships so that the overall system design is optimized. We present here

a set of criteria for logically partitioning (or grouping) the functions into a set of

partitions called horizontal and vertical integration domains. The criteria are

used first to distribute the CIM functions in the function integration model into

integration domains. Once the integration domains of interrelated functions have
been established, the criteria are then used in conjunction with the architecture

principles to logically group the CIM functions in each integration domain into

subsystems (i.e., into application or people processes, which can be performed as

logical \mits) and to define the boundaries between these subsystems. These
criteria when applied appropriately will result in simplifying the integration of

applications and CIM systems into coherent subsystems that can deliver the

desired benefits of automation.

Applying the criteria to distribute and group the CIM functions is always a

subjective process that changes with time as technology matures. However, the

519

criteria and the architecture principles provide a foundation that stays relatively

constant over the changes in technology or time for making sound decisions on
the number of different t3rpes of CIM subsystems and the boundaries of the
applications running on them.

The criteria for partitioning and grouping functions into integration domains as
well as partitioning the functions in an integration domain into different

subsystems or functional groups are illustrated using the following two
examples.

7.1.1 Scope or span ofcontrol or management

This criterion partitions and assigns the hierarchy of task responsibility and
decision-making responsibility among the different horizontal levels of a vertical

integration domain. Applying this criterion means determining the following

types of information:

• The range of responsibility for how and what operation/function is initiated,

• How any problems encovmtered during the operation are reported,

• How a set of suboperations needed to perform a function/operation are planned
or scheduled,

• Whether the function provides work direction and monitoring, and how the
work direction is given,

• How the work activities are monitored,

• How the data is collected and reported.

7.1.2 Degree ofwork distribution

This criterion is useful for establishing vertical integration domains such as
planning and scheduling or inventory management. Applying this criterion

means determining the following types of information:

• How much a high-level activity is decomposed and distributed for improving
manageability,

• How an activity is assigned to the associated manual or automated systems.

7.2 Subsystem selection and implementation criteria

These are technology-related criteria for selecting/evaluating computer/control
subsystems that implement the CIM fimctions grouped into subsystems using the

criteria presented in the previous subsection. The criteria are divided into four

sets that are used for selecting or evaluating the following four aspects of any
subsystem implementation:

• Platforms (both systems hardware and software),

520

• Data communications,

• Database management,

• Applications.

The following examples illustrate the above criteria.

7J2,1 Shop-floor control subsystems evaluation/selection criteria

Since shop-floor control subsystems consist of distinct component subsystems

—

workstations, machine controllers and supervisory controllers—we shall
illustrate workstation selection criteria.

7^.2 Workstation evaluation/selection criteria

—

Platforms

—

1. Workstations should either be low- to mediimi- resolution (up to 800 x 400) color

graphics terminals or PCs; in some environments, monochrome terminals are
adequate.

2. Workstations should support multiple input devices, including the keyboard,
light pen and mouse as alternatives or together; they should be adaptable to accept

data from automatic data capture devices.

3. Workstations should provide multiple methods of operator prompting,
including screen highlights and audible alarms.

Workstation Communications

—

1. Workstation commimications should be done using point-to-point, or multi-

access (if there are a large number of devices), twisted-pair media.

2. Workstation communications protocols should be based on RS-232, or RS-485
and HDLC or SDLC. For workstations based on PCs, a LAN connection should be
supported. Device communications among I/O modules or sensors/actuators

should be based on industry standards such as SP-50 and Bitbus.

3. Workstation communications link should support transfer of ASCII data and
graphics data at rates of at least 9.6 kbps.

Workstation Database Management

—

1. Workstation database management support should provide for presenting data

to downloaded applications or PROM/RAM- resident data and for temporarily

buffering (at least 2 kb) the collected data for a short time before it is sent on the

communications media. For reliability reasons, up to eight hours of data should

be buffered without communications to related systems.

521

Applications

—

1. Workstation applications should work very closely with cell

controller/workcenter controller applications.

2. Workstation applications should provide less than five seconds of response
time for all human-initiated interactions.

3. Workstation applications should interact with the operator using menus,
forms, windows and icons, and they should support external data capture
devices, such as switches, automatic measuring equipment and bar-code
scanners.

4. Workstation applications should support back and forth as well as go to paging
of screens with a latency time of less than four seconds.

The criteria also include recommendations for the core set of operations that need
to be included in the implementation of the application functionality The following

are some examples of these recommendations for some applications which are
part of shopfloor control subsystems..

Factoiy Floor ContEx>l and Monitoring

1. It should regulate the release of factory work orders consistent with the

production order, current machine and labor loads, and material and tool

availability.

2. It must be able to dispatch orders for all production activities in a prioritized

manner.

3. It should be able to access up-to-date status of material, operations, rejects, etc.

4. It should be able to provide signals, reports or alarms for required action by
people regarding maintenance of production schedules at different levels and
aspects of the factory.

5. It must be able to receive instructions pertaining to various aspects of

production and commimicate them to appropriate applications running on the

factory floor.

Detailed Factoiy Scheduling

1. It should be able to receive production orders from MRP and operational
routings and plans to perform operational scheduling at the workcenter or factory

floor level.

2. It should in scheduling consider material accumulations and movement
times, queue times and lengths, and preproduction times.

522

3. It should present and store workloads for individual resources and make
schedule adjustments in accordance with current actual workload variances.

4. It must allow flexible storage and modification of scheduling support
information such as routings, rates and time standards.

5. It must be able to produce flexible reports of where used for parts, tools, data,

etc.

6. It should be able to compute and present work input rates, work output rates

and queue sizes and optionally signal corrective actions in case of exceptions.

7. It must provide feedback to the master scheduling system in case the schedule
cannot be met.

8. It must be able to forecast production resource loads and provide that
information to other applications, such as human resource management,
administration and master scheduling.

8. CIM architecture use and benefits

We developed a complete reference architecture based on the definitions and
applications presented in the previous section which has been used in many
places within Honeywell. Already, there are reports of successful projects and
results attributed to the use of an architecture approach.

A number of issues arose from application of the reference architecture. The
architecture is complex and difficult to use and understand. Some kind of support
environment or development tool might help in learning about and using the

reference architecture. In using the architecture, there is considerable difficulty

formulating an implementation procedure or methodology to develop specific

architectures for specific purposes. There is a need for a methodology and
architecture project guidelines. Further experience with CIM architecture

approaches should help in clarifying this.

9. Conclusions

We presented in this paper our definitions of the components and interactions of a
CIM architecture. We believe that this architecture is a means to creating and
maintaining an integrated approach to a manufacturing enterprise which will

reduce costs and improve customer responsiveness and competitiveness. Limited
experience to date tends to support this conclusion.

Experience to date has shown a need for automated support for architecture to

reduce the effort to develop architectures and a need for a methodology to build a
specific architecture using our reference architecture.

References

523

Mikkilineni, Krishna, Bruce Clark, Theresa Jenne, Loren Krueger, HCAM
Architecture 1988 Final Report, Vol. 1-4, Honeywell, 1988.

Anderson, Allan, Theresa Jenne and Krishna Mikkilineni, HCAM Architecture
1989 Final Report, Vol. 1 and 2, Honeywell, 1989.

524

LIST OF AUTHORS

Allan Anderson
Honeywell
Sensor and System Development Cen.
1000 Boone Avenue North
Golden Valley MN 55427

Edward Barkmeyer
NIST
Bldg. 220, Rm. A127
Gaithersburg MD 20899

Dirk Beeckman
Gap Gemini Sesa Belgium
Branch Seirvices

Plaskylaan 144
1040 Brussels
Belgium

Frank Biemans
Senior Member of Research Staff
Philips Laboratories-Briarclif

f

North American Philips Corp.
345 Scarborough Rd,

Briarcliff Manor NY 10510

H . Bohms
TNO, Netherlands Organization for
Applied Scientific Research
P. 0. Box 49
2600 AA Delft
The Netherlands

R. Boykin III

CAMI
1250 E. Copeland Rd.

Suite 500
Arlington TX 76011 -8098

Dave Carlson
Dept. of Manage. Info. Systems
College of Bus. and Public. Admin.
University of Arizona
Tucson AZ 85721

Dai Chen
GRAI Laboratory of CIM & Auto.

University of Bordeaux I

351 , Cours de la liberation
33405 Talence
France

I . Coutts
Department of Manufacturing Eng.
Loughborough, Leicestershire
LEll 3TU
England

Bruce Dallman
Indiana State University
School of Technology
Manufacturing and Construction
Technology
Terre Haute IN 47809

Wayne Davis
University of Illinois
Urbana -Champaign
117 Transportation Bldg.
104 S. Mathews Ave.
Urbana IL 61801

Guy Doumeingts
GRAI Laboratory of CIM & Auto.
University of Bordeaux I

351 , Cours de la liberation
33405 Talence
France

John Ettlie
School of Business Admin.
University of Michigan
Ann Arbor MI 48109

Paul Fehrenbach
GEC-Marconi Research Centre
West Hanningfield Rd. , Great Baddow
Chelmsford, Essex CM2 8HN
United Kingdom

Bill Foraker
Indiana State University
School of Technology
Technology Services Center
Terre Haute IN 47809

Dr. Barbara Fossum
Factorial Systems, Inc.

6300 Bridgepoint Parkway
Suite 200

Austin TX 78730

525

J. Gascoigne
Department of Manufacturing Eng.

Loughborough University of Tech.
Loughborough, Leicestershire
LEll 3TU
England

Cpt . Knute Hankins
Advanced Technology and
Systems Directorate
Watervliet Arsenal NY 12189

G. Harhalakis
University of Maryland
Department of Mechanical Eng.

College Park MD 20742

Larry Heath
Indiana State University
School of Technology
Electronics and Computer Technology
Terre Haute IN 47809

A. Hodgson
Loughborough University of Tech.
Department of Manufacturing Eng.

Loughborough, Leicester
LEll 3TU
England

T. Jenne
Honeywell
Sensor and System Development Cen.

1000 Boone Ave., North
Golden Valley MN 55427

Matthew Johnson
CIM Marketing and Product Develop.
Digital Equipment Corporation
MET-1/F3
600 Nickerson Rd.

Marlboro MA 55427

A. Johri
University of Maryland
Department of Mechanical Eng.

College Park MD 20742

Albert Jones
NIST
Bldg. 220, Rm. A319
Gaithersburg MD 20899

S. Joshi
Dept. of Indus. Manage. Systems. Eng.

The Pennsylvania State University
207 Hammond Building
University Park PA 16802

Robert Judd
Industrial Technology Institute
2901 Hubbard Rd.

Ann Arbor MI 48106

David Jung
Battelle Memorial Institute
5300 International Blvd.

N. Charleston SC 29418

Raymond Kapperman
Indiana State University
Industrial and Mechanical Technology
Terre Haute IN 47809

James Kirkley III
CIM Marketing and Product Develop.
DEC MET-1/F3
600 Nickerson Rd.

Marlboro MA 01752 -9917

Susan Lesko
Indiana State University
Electronic and Computer Technology
Terre Haute IN 47809

Eric Litt
Battelle Memorial Institute
5300 International Blvd.

N. Charleston SC 29418

Kai Mertins
Fraunhofer-IPK
PascalstraBe 8-9

1000 Berlin 10

West Germany

Krishna Mikkilineni
Honeywell
Sensor and System Development Cen.

1000 Boone Ave. North
Golden Valley MN 55427

I . Murgatroyd
Department of Manufacturing Eng.

Loughborough University of Tech.

Loughborough, Leicestershire
LEll 3TU England

526

Richard Panse
IBM Germany
Dept. 3114, Bldg. 7032-87

Am Hlrnach 2

7032 Sindelfingen
Germany

Sudha Ram
Dept of Management Information Sys.
College of Business and Public Admin.
University of Arizona
Tucson AZ 85721

S . Sanof

f

GEC-Marconi Research Centre
West Hannlngfield Road
Great Baddow, Chelmsford
CM2 8HN
United Kingdom

John Saute

r

Industrial Technology Institute
2901 Hubbard Rd.

Ann Arbor MI 48106

David Shorter
SC-Sclcon pic
Centrum House
101-103 Fleet Rd.

FLEET, Hants GUI 3 8PD
United Kingdom

Hugh Sparks
MTS Systems Corporation
Advanced Technology Division
Box 24012
Minneapolis MN 55424

Gunter Spur
Fraunhofer-IPK
PascalstraBe 8-9

1000 Berlin 10

West Germany

S . Thompson
University of Illinois
Urbana -Champa1gn
Urbana IL 61801

James Ting
The University of Michigan
1205 Beal Ave.
ICE Bldg. , Rm. 104
Ann Arbor MI 48109 -2117

Prof. F. Tolman
TNG, Netherlands
Organ, for Appl. Sci. Res.

P.O. Box 49
2600 AA Delft
The Netherlands

Bruno Vallespir
GRAI Laboratory of CIM & Auto.
University of Bordeaux I

351 , Cours de la liberation
33405 Talence
France

Clyde Van Haren
James River Corporation
Neenah WI 54956

Rajnnond Vanderbok
Industrial Technology Institute
2901 Hubbard Rd.

Ann Arbor MI 48106

Johan Vesterager
Drlftsteknlsk Instltut
Building 423
The Technical University of Denmark
DK-2800 Lyngby
Denmark

Roger Vicroy
Indiana State University
School of Technology

tionMukasa Ssemakula
University of Maryland
Department of Mechanical Eng.

College Park MD 20742

Wolfram Sussenguth
Fraunhoger-IPK
PascalstraBe 8-9

1000 Berlin 10

West Germany

Manufacturing and Construe
Technology
Terre Haute IN 47809

Chris Vissers
Information Science
Twente University of Tech.
P.O. Box 217

7500 AE Enschede
The Netherlands

527

Roli Wendorf
Philips Laboratories
North American Philips Corp.

345 Scarborough Rd.

Briarcliff Manor NY 10510

R. Weston
Loughborough University of Tech.
Department of Manufacturing Eng.

Loughborough Leicestershire
LEll 3TU
England

Larry White
Weatherhead School of Management
Case Western University
Cleveland OH 44106

Theodore Williams
Purdue Lab, for Applied Industrial
Control
Purdue University
West Lafayette IN 47907

Ron Woolsey
Indiana State University
School of Technology
Industrial and Mechanical Technology
Terre Haute IN 47809

Richard Wysk
Pennsylvania State University
College of Engineering
207 Hammon Bldg.

University Park PA 16802

James Yoder
CADS Network Development Div.

Sandia National Laboratories
1515 Eubank SE
Albuquerque NM 87185

Robert Young
Department of Industrial Eng.

North Carolina State University
Box 7906
Raleigh NC 27695 -7906

L. Zeidner
Department of Manufacturing Eng.

Boston University
44 Cummington Street
Boston MA 02215

528

4. TITLE AND SUBTITLE

S. AUTHOR(S)

Albert Gones, Editor

6. PERFORMINQ ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS) 7. CONTRACT/GRANT NUMBER

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURQ, MD 20899 8. TYPE OF REPORT AND PERIOD COVERED

Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Same as item #6

NIST-114A

(REV. 3-89)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATASHEET

1. PUBUCATION OR REPORT NUMBER

NIST/SP-785
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

Mav 1990

10. SUPPLEMENTARY NOTES

I
DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, HPS SOFTWARE SUMMARY, IS ATTACHED.

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

The CIMC0N'90 Proceedings includes papers on the design and implementation of

global CIM architectures. There are also papers on the design and implementa-

tion of control, database, and communications architectures.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AMD SEPARATE KEY WORDS BY SEMICOLONS)

Computer Integrated Manufacturing; production; robotics; shop floor control;

software.

13. AVAILABIUTY

XI UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

X
ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,

WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

533

IS. PRICE

ELECTRONIC FORM
« U . S .GOVERNMENT PRINTING OFF I CE : 1 99 0-2 6 1 - 98 2 : 2 34 2

3

i 1 X Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciphnes of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-

veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-

der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement
to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-
ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.

Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed
by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

(formerly National Bureau of Standards)

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

		Superintendent of Documents
	2022-04-16T15:00:26-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

