NATIONAL BUREAU OF STANDARDS REPORT

1759

ON THE CONVERGENCE OF CYCLIC IINEAR ITERRATIONS
FOR SHMETRIC
AND NEARLY SYMMETRIC MATRICES. II

by
A. M. Ostrowski
American University and University of Basle, Switzerland

U．S．DEPARTMENT OP COMMERCE
 Charles Sawyer．Secretary
 NATIONAL BUREAU OF STANDARDS
 A．V．Astin，Accing Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following list－ ing of the divisions and sections engaged in technical work．In general，each section is en－ gaged in specialiged research，development，and engineering in the field indicated by its title．A brief description of the activitiea，and of the reaultant reports and publicationa， appears on the inside of the back cover of this report．
1．ELECTRICITY．Resistance Measurements．Inductance and Capacitance．Electrical Instru－ ments．Nagmetic measurements．Electrochemistry．
2．OPTAKS AMD METROLOGY．Photometry and Colorimetry．Optical Instruments．Photographic Techmology．Lengeh．Gage．
 Lubricarion．Engime Fuela．
 ical Electronics．Electron Physics．Atomic Physics．Neutron Measurements．Nuclear Phys－ ics．Radionctivity．X－Rays．Betatron．Nucleonic Instrumentation．Radiological Equip－ anc．Acomic Emergy Comaission Instruments Branch．
 istry．Jgorganic Chemistry．Electrodeposition．Gas Chemistry．Physical Chemiatry．Ther－ zocheaisery．Specerochemistry．Pure Substances．
6．解CHA能BS．Sound．Mechanical Instruments．Aerodynamics．Engineering Mechanics．Hy－ dreulics．限ass．＂Capacity，Density，ond Fluid Meters．

7．ORGAMIC ABD FIBROUS MATERIALS．Hubber．Tertiles．Paper．Leather．Testing and Specifications．Organic Plastics．Dental Research．

8．METHEHRGY．Thermal Metallurgy．Chemical Metallurgy．Mechanical Metallurgy．Corrosion．
9．Wh 领ERAG PRODUCTS．Porcelain and Pottcry．Glass．Refractories．Enameled Metals．Build－ ing Stane．Concreting Materials．Constitution and Microstructure．Chemistry of Mineral Prodaces．

10．Bé Hid ifg TEGMMOLOGY．Structural Engineering．Fire Protection．Heating and Air Con－ ditioning．Erterior and Interior Coverings．Codes and Specifications．
 chine Developrent．

12．ELECTROMICS．Fmgineering Electronics．Electron Tubes．Electronic Computers．Elec－ tremie Instrameacion．
13．ORD $\mathrm{HA}_{\mathrm{B}}^{\mathrm{A}} \mathrm{C}$ CE DEVELOPMENT．Hechanical Research and Development．Electromechanical Fures．Technical Services．Missile Fuzing Research．Misaile Furing Development．Pro－ jectile Puseg．Ordnance Conponents．Ordnance Tests．Ordmance Research．
\｜（4）R PROPAGATION．Upper ALsosphere Research．Ionospheric Research．Regular Propaga－ tidem Services．Frequency Utilization Research．Tropospheric Propagation Research．High Frequercy Standards．Mictowave Standards．
 R路sile Imstrumencion．Technical Services．Combustion．

ON THE CONVERGENCE OF CYCLIC LINEAR ITERATIONS
 FOR SIMMETRIC
 AND NEARLY SYMMETRIC MATRICES。II *

by
A. M. Ostrowski

American University
and
University of Basle, Switzerland

NBS

PREPRINT

*This paper was prepared under contract of the National Bureau of Standards with the American University, Washington, D. C.

This report is issued for in any form, either in who from the Office of the Dir

Approved for public release by the Director of the National Institute of Standards and Technology (NIST)
reprinting, or reproduction ssion in writing is obrained ington 25, D. C.
9. In the following all notations of the first note under the above title are assumed as known.

In the case of the cyclic single step iteration a converse of Pizzetti's theorem has been found recently, by E. Reich. Reich's theorem is that if in a real symmetric matrix A all diagonal elements are positive and if the cyclic single step iteration converges for A for any choice of the starting vector, then A is a definite positive matrix. In what follows we give an essentially simpler proof of Reich's theorem and generalize it to the case of the general linear cyclic iteration. We prove
III. Let A be an Hermitian matrix and let in the notations of (3) each of the matrices P_{μ} be a positive definite Hermitian matrix. Then, if the corresponding cyclic linear iteration defined by (2) is convergent for any starting vector ξ_{1}, the matrix A is a positive definite matrix.

As a matter of fact our proof of (3) gives an essentially more general result: if a regular matrix A is Hermitian but not positive definite and has positive diagonal elements, then open sets of starting vectors in the n-dimensional space exist for which no single step procedure, either periodic or not periodic, is convergent.
10. We prove first the

Lemma. Let $A=\left(a_{\mu \nu}\right)$ be an Hermitian matrix of order n $\left(\alpha_{\mu \nu}=\bar{a}_{\nu \mu}\right)$ and F a sub matrix of A corresponding to the first s ($s<n$) rows and columns of A. Assume that P is a definite positive The Annals of Mathematical Statistics, XX_{8} (1949) $\mathrm{pp} .448-451$.
matrix: Let $\left(u_{1} 9^{\cdots 0,} u_{n}\right)$ be a vector and the vector $\left(v_{1}, \cdots, v_{n}\right)$ be deduced from the vector (u_{ν}) by the equations

$$
\sum_{\beta=1}^{s} a_{\alpha \beta} v_{\beta}=\ldots \sum_{\gamma=s+1}^{n} a_{\alpha \gamma} u_{\gamma} \quad\left(\alpha=I_{9} \cdots, s\right)
$$

$$
v_{\gamma}=u_{\gamma}
$$

$$
\begin{equation*}
\left(\gamma=s+I_{9} \cdots, n\right) \tag{31}
\end{equation*}
$$

Then, if we form the Hermitian forms corresponding to these vectors

$$
\begin{equation*}
Q_{u}=\Sigma a_{\mu \nu} \bar{u}_{\mu} u_{\nu,} \quad Q_{v}=\Sigma a_{\mu \nu} \bar{v}_{\mu} \nabla_{\nu} \tag{32}
\end{equation*}
$$

we have
(33)

$$
Q_{v} \not Q_{u} \quad \circ
$$

To prove this lemma we put

$$
\begin{equation*}
h_{\alpha}=v_{\alpha}-u_{\alpha} \quad\left(\alpha=l_{g} \cdots, s\right) \tag{34}
\end{equation*}
$$

Then we have from the first of the equation (31)

$$
\begin{equation*}
\sum_{\nu=1}^{n} a_{\alpha \nu}^{u_{\nu}=\cdots} \sum_{\beta=1}^{s} a_{\alpha \beta} h_{\beta} \quad(\alpha=1, \cdots, s) 。 \tag{35}
\end{equation*}
$$

We have then obviously for the difference $Q_{V}-Q_{u}$:

$$
\text { (36) } Q_{v}-Q_{u}=\sum_{\alpha \beta} a_{\alpha \beta} \bar{h}_{\alpha} h_{\beta}+\sum_{\alpha} \bar{h}_{\alpha} \sum_{\nu=1}^{n} a_{\alpha \nu} u_{\nu}+\sum_{\alpha} h_{\alpha} \sum_{\mu=1}^{n} a_{\mu \alpha} \bar{u}_{\mu} \text {. }
$$

Here we introduce the value (35) of the second sum in the second right hand term; as to the second sum in the third right hand term, we have in using (35)
(37) $\sum_{\mu=1}^{n} a_{\mu \nu} \bar{u}_{\mu}=\overline{\sum_{\mu=1}^{n} \bar{a}_{\mu \alpha}{ }_{\mu}=\overline{\sum_{\beta=1}^{n} a_{\alpha \mu} u_{\mu}=\infty} \overline{\sum_{\beta=1}^{s} a_{\alpha \beta} h_{\beta}}, ~}$

$$
=-\sum_{\beta=1}^{s} \bar{a}_{\alpha \beta} \bar{h}_{\beta}=\infty \sum_{\beta=1}^{s} a_{\beta \alpha} h_{\beta}
$$

(36) becomes now
(38) $Q_{V}-Q_{u}=\sum_{\alpha_{9} \beta}^{\sum} a_{\alpha \beta} \bar{h}_{\alpha} h_{\beta}-\sum_{\alpha} \bar{h}_{\alpha} \sum_{\beta} a_{\alpha \beta} h_{\beta}^{\infty} \sum_{\alpha} h_{\alpha} \sum_{\beta} a_{\beta \alpha} \bar{h}_{\beta}$
and we obtain finally

$$
\begin{equation*}
Q_{V}-Q_{u}=-\sum_{\alpha_{\rho \beta}}^{\Sigma} a_{\alpha \beta} \bar{h}_{\alpha} h_{\beta} \leqslant 0 \tag{39}
\end{equation*}
$$

which proves our lemma
11. This lemma can be immediately generalized in applying to the rows and columns of A a cogradient permutation; then we see that if the indices α and β run independently through a group of s different indices among ($1, \ldots, n$) and γ through the complementary set of indices and the vector (v_{1}, \cdots, v_{n}) is deduced from the vector (u_{1}, \ldots, u_{n}) by the equations

$$
\begin{equation*}
\sum_{\beta} \alpha_{\alpha \beta} u_{\beta}=\infty \sum_{\gamma} a_{\alpha \gamma} u^{u}{ }^{g} \tag{40}
\end{equation*}
$$

$$
\nabla_{\gamma}=u_{\gamma} g
$$

we have still the inequality (33) if the principal minor $P=\left(a_{\alpha \beta}\right)$ of A is positive definite.

The proof of the theorem III is now immediate. In applying successively the operations indicated by the equations (2) we pass obviously from the vector $\xi^{(k)}$ to the vector $\xi^{(k+1)}$ through some intermediate vectors obtained one from another by a sequence of equations analogous to (40): therefore the numbers

$$
\begin{equation*}
Q^{(k)} \approx \sum a_{\mu \nu} \bar{x}_{\mu}^{(k)} x_{\nu}^{(k)} \tag{41}
\end{equation*}
$$

form a monotonically decreasing sequence of real numbers. Take now $a 11$ components y_{ν} of the vector η as 0 and start with such a vector $\xi=\xi(0)$ for which

$$
\sum a_{\mu \nu} \bar{x}_{\mu}^{(0)} x_{\nu}^{(0)}
$$

is negative. Then the decreasing sequence $Q^{(k)}$ certainly does not tend to zero and the sequence of the rectors $\zeta^{(k)}$ is not convergent since it otherwise would have to converge to the null-vector. This proves the theorem III。

Obviously the theorem III remains also true if the constant vector η is given from the beginning, since it can be brought into the origin by a translation, while the cyclic linear iteration is a covariant process with respect to the translation。
12. Suppose now that the regular matrix A is Hermitian and all its diagonal elements are positive. Then, if the Hermitian form corresponding to A is not positive the argument used in the proof of III can be applied to any sequence of single step operations as described in our lemma for $s=1$. We see that in this case there always exist open sets of starting vectors for which no sequence of single step operations is convergent.

In this case even the use of "under or overrelaxation" cannot change the situation. The use of incomplete relaxation with a factor $\mathrm{q}(0<\mathrm{q} \leqslant 2)$ corresponds in the notation of our lerma to the use of the vector ($\mathrm{w}_{1}, \cdots, \mathrm{w}_{n}$) obtained by the formulae

$$
\begin{equation*}
w_{\nu}=(I \sim q) u_{\nu}+q v_{\nu} \tag{42}
\end{equation*}
$$

or, what is the same,
(43)

$$
w_{\alpha}=u_{\alpha}+q h_{\alpha}, \quad w_{\gamma}=u_{\gamma} .
$$

In this case the formulae (38) and (39) are replaced by (44) $\sum_{\mu_{g} \nu}^{\sum} a_{\mu \nu} \bar{W}_{\mu} w_{\nu}=\sum_{\mu_{g} \nu} a_{\mu \nu} \bar{u}_{\mu} u_{\nu}=\left(q^{2}-2 q\right) \sum_{\alpha_{s} \beta}^{\sum} a_{\alpha \beta} \bar{h}_{\alpha} h_{\beta} \leqslant 0$ and our argument remains valid, even if q is varied from one step to another remaining of course in the interval $(0,2)$.

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The National Bureau of Standards is the principal agency of the Federal Government for fundmental and applied research in physics, mathematics, chemistry, and engineering. Its activities range from the determination of physical constants and properties of materials, the development and maintenance of the national standards of measurement in the physical sciences, and the development of methods and instruments of measurement, to the development of special devices for the military and civilian agencies of the Government. The work includes basic and applied research, developnent, engineering, instrumentation, testing, evaluation, calibration services, and various scientific and rechnical advisory services. A major portion of the NBS work is performed for other government agencies, particularly the Department of Defense and the Atomic Energy Commission. The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. The scope of activities is suggested in the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's omn series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: the Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: the Applied Mathematics Se ries, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ($\$ 1.00$). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

