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MECHANICAL PROPERTIES - VISCOELASTIC METHODS
Part I: Creep, Relaxation, and Stress-Strain Methods

by

Philip L. Oglesby

1. INTRODUCTION

Since many restorative as well as natural dental materials have

deformation characteristics which are time-dependent as well as stress-

dependent, viscoelastic theory and methods offer the most advantageous

means for description and characterization of their mechanical behavior.

The viscoelastic description has numerous advantages: (1) it enables

researchers to describe analytically and to predict the mechanical be-

havior of these materials both in laboratory experiments and in the

mouth; (2) it enables one to separate and quantitatively describe the

relative contribution of the various time-dependent and non-time-

dependent mechanical responses occurring simultaneously in a material;

(3) it furnishes a unified theory whereby the mechanical behavior of

time-dependent materials can be compared with non- time-dependent mater-

ials used for the same purpose, such as the different types of anterior

restorative materials; (4) it enables one to compare mechanical response

of a material under one test condition to that under another test in a

quantitative manner by appropriate transformation equations; (5) it en-

ables one to select a test or group of mechanical tests that will fully

measure the various mechanical phenomena occurring in the material and

evaluate the mechanical parameters of each; and (6) it isolates individ-

ual mechanical phenomena and their parameters at the macroscale level

and together with micro viscoelastic theory, permits better description

of the relation of mechanical response to microstructure.

Both static and dynamic test methods have been used to investigate

the viscoelastic properties of dental materials. These test methods may

be interrelated by appropriate analytical and viscoelastic theory. Common-

ly employed static tests are classified as: (1) a constant strain test,

such as a creep test, (2) a constant stress test, such as a stress relaxa-

tion test, or, (3) a test where the stress and strain are both varied
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slowly and in some cases cycled
;
an example is the classical stress-

strain test. All of the above types of static testing, including

spherical indentation test, have been employed in dental research

and testing. Dynamic test methods may be generally classified as fol-

lows: (1) free vibrational methods, (2) forced vibrational methods,

both resonance and non-resonance, and (3) propagation methods either

using pulses or continuous waves. In many cases, the same dynamic ap-

paratus may determine the viscoelastic properties of a material by using

two or more of the above methods. Whether the method be static or dynam-

ic, the following factors should be considered when testing a material:

(1) the mechanical information obtained about the material;

(2) how this mechanical information on the material tested

may be interrelated to that obtained for the material

using other methods; and

(3) how the mechanical phenomena and their parameters obtained

for the material may be directly and/or indirectly related

to the microstructure of the material.

2. CREEP OF LINEAR VISCOELASTIC MATERIALS

The creep test as a method of investigation of viscoelasticity of a

material has the advantage of simple instrumentation, but the disadvan-

tage of the long testing time required for those materials having retar-

dation times that extend over a long time scale, as well as the insensi-

tivity to the retardation behavior of the material in the initial short

portion of the experimental time scale. A creep test is normally con-

ducted on the material in the form of a specimen having a uniform cross-

sectional area. A constant load is applied either in tension, compression

or shear, and the deformation is measured in the direction of load appli-

cation as a function of time. The deformation may be detected by such de-

vices as a cathetometer
, strain gauge or differential transformer, where

length changes may be measured as a function of time for periods of less

than one second to many years, if necessary. Creep curves for the material

* It becomes difficult to separate static stress-strain testing
classification wise from dynamic testing when cycling occurs.
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are obtained for different stresses, and then deformation behavior of

the material as a function of time and stress is extracted from the

family of creep curves at different stresses.

The creep curve of a strain-hardened specimen of a material con-

sists commonly of one of three phenomena, or some combination of these,

each of whichrmay or may not be a linear function of the applied stress;

while as a function of time, one is independent, one linear and one non-

linear. The three deformation or strain phenomena are:

(1) instantaneous elastic strain e ^ ,
described by analogy to a

spring having a compliance J
,
or a modulus G

,
where J =

l/C
o ,

(2) viscous strain which may be described as analogous to a

dashpot when linear, having a coefficient of viscosity n equal

to the applied stress divided by the strain rate, and

(3) retarded elastic strain usually described by analogy to

the so-called Voight element or series of Voight elements, the

components of which consist of a spring of compliance J ,
or

modulus G in parallel with dashpot having a coefficient of
R

viscosity n
,
where the retardation time x of the Voight element

R

is defined as x = n .

r R
If a material exhibits a linear combination of all three types of strain,

e = E
j

+ £
r
+ £

v > it may represented by a spring of compliance

(instantaneous behavior) and a dashpot having a coefficient of viscosity

q (viscous behavior) in a series with one or more Voight elements (retarded

elastic strain) . The graphical behavior of each of the three types of

strain, along with its accompanying model and corresponding analytical

strain function, where the strain is assumed to be a linear function of

the stress a, may be seen in Figures la, b, and c. The combination of

the three types of strain is shown in Figure Id. When the strain is a

linear function of the stress, the data obtained at different stresses

may be reduced to a single creep curve by plotting the creep compliance

[J(t) = e(t)/o
o

] as a function of time or logarithmic time. The creep

compliance J(t) of the combination of the three types of phenomena versus
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time and the logarithm of time may be seen in Figures Il-a and b. When

the retarded elastic creep compliance has a continuous distribution of

retardation times x , the combination creep compliance J(t) =

+ J + may be described by the following analytical equation:

J(t) = J + t/q + ( J (x ) [1-e ]dx (1)
O

as shown graphically in Figure Ila. Upon substitution of L(t)/t for

J (x ) in Equation (1), the following is obtained

J(t) = J
q

4- t/n + C L(x ) [l-e*^
1
]dlnx . (2a)

^ —CO

Next, the subtraction of t/n from both sides of Equation (2a) results in

J(t) - t/n = + C^
00

L(i ) [l-e
t ^T

]dlnx (2b)
—CO

where

J(t) is the creep compliance

J is the instantaneous elastic compliance
o

t/n is the viscous response where t is the time after application
of the stress a and n is the coefficient of viscosity

t /t
]dlnx are analytical forms

of the retarded elastic response with J (t

)

and L (x ) being forms
of the retardation spectrum of the material.

The graphical representation of Equations (2a) and (2b) is seen in

Figure Il-b. It might be mentioned that J(t) - t/n represents the

elastic portion (instantaneous plus retarded) of the creep compliance

curve in a constant stress experiment and also represents, after appro-

priate transformation, the recovery portion of the curve in Figure Il-a

when the stress has been removed. Plots of creep compliance J(t) or

(J(t)-t/q ) versus lnt rather than versus t for a linear viscoelastic

material, have the advantages of more direct utilization - (1) in calcu-

lating the retardation spectrum L(x) by various approximation methods as

well as giving a better visual picture of the distribution of retardation

times x^ for the material, and (2) in application of the time- temperature

S
J (x ) (1-e

-t/x

^ —-TO

)dx or \ L (x ) [ 1-e
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(1 2 3)
superposition principle ’

’ to a linear viscoelastic material to ob-

tain its creep compliance behavior at a given temperature that

otherwise would require experimental data over many decades at that

temperature. Therefore, a creep curve may be obtained at a specific

temperature T for times outside the range of practical observation at

this temperature by obtaining creep curves at higher and lower tempera-

tures within the time scale of the creep experiment, and then shifting

the higher and lower temperature creep curves for the linear material

along the axis of the logarithmic time scale until they all join into

a continuous master curve for the temperature T. Before the experimental

creep curves can be shifted to make the master curve at temperature T,

the compliance values should in theory have a density (or specific volume)

correction, but, in practice, the density changes with temperature are

often small enough to be neglected. The amount the curves are shifted

along the In time axis is described by the equation:

(In t - ln t ) = In t/t = In L
,

o o I

where the shift is said to be positive when the curve is shifted to

shorter times (to the left on the log time scale) in forming the master

curve. The time- temperature superposition principle is not only applicable

to creep data, but to stress relaxation data as well as dynamic mechanical

testing data where the A^ values obtained from the shift on the In time

scale or In l/oo (reciprocal frequency) scale in the case of dynamic

measurement - for these different methods of testing are equivalent. The

theory and application of the time- temperature superposition principle to

a linear viscoelastic material, as well as the theoretical significance

of A^, for the material, will be discussed in a later part of this paper.

3. STRESS RELAXATION OF LINEAR VISCOELASTIC MATERIALS

Stress relaxation behavior is observed in viscoelastic materials;

that is to say, the stress in the material relaxes or decreases with time

when the material is deformed quickly and the deformation is held constant.

Stress-relaxation tests require slightly more complex instrumentation than

creep tests in that, in addition to requiring a device for detecting de-

formation, a load measuring device is required in order to follow the force
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change with time. Like the creep test, the stress-relaxation test has

the disadvantage of the long test time required for some materials as

well as the lack of sensitivity to relaxation behavior exhibited by

the material in the initial short portion of the time scale. Stress-

relaxation data are generally more directly interpreted in terms of

viscoelastic theory than are creep data. A tensile stress-

relaxation device often consists simply of two clamps between which the

specimen is attached; the upper clamp is usually attached to a load

detecting cell which is rigidly attached to a frame; the lower clamp can

be adjusted up or down in respect to the fixed upper clamp to obtain

various deformations in the specimen. Once the lower clamp has been ad-

justed to obtain the desired deformation value in the specimen, the

clamp is then held fixed in respect to the frame. The amount of deforma-

tion in the specimen can be detected by means of a strain gauge, differ-

ential transformer or cathetometer . The stress relaxation curves are

obtained at different deformation levels, thus the stress-relaxation as

a function of time and deformation is obtained for the material from the

family of stress-relaxation curves at different deformations. The

stress is plotted as a function of linear time or of logarithmic

time. If stress is plotted as function of strain for a common

time value from each of the family of curves for various deformations,

this will demonstrate whether the stress and strain bear a linear relation

to each other for the material. If nonlinear, the stress-strain curves

for the fixed time values will yield the functional relationship between

the stress and the strain. If the material exhibits a linear relationship

between the stress and the strain, then, if the stress values for each

curve are divided by the corresponding fixed strain value for that

stress relaxation curve and the resulting relaxation modulus G(t) = o( t)/e

is plotted for each of the curves, the family of stress-relaxation curves

should reduce to a single master modulus relaxation curve. If the mater-

ial is linear in its stress-strain behavior at a fixed time, the usual

curves plotted are relaxation modulus curves either as a function of

linear time or logarithmic time. The simplest analog to describe stress-

relaxation behavior is the Maxwell model which is a series combination of
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a spring of modulus G
q

and a linear dashpot having a coefficient of

viscosity n • The differential equation of motion of a material de-

scribed by a single Maxwell model is

dt n G dt
^ J

o

where a and e are stress and strain, respectively. In the normal

stress relaxation test as mentioned previously, the strain is held

constant after initial rapid deformation. Hence, in the above differ-

ential equation, — becomes zero for a constant strain test. Therefore,

for a constant strain test, the above differential equation has a solu-

tion of the following form:

o(t)

G t
o

a e p = a e
o o

(3a)

A material that can be described by a Maxwell model is said to have

a single relaxation time defined as t = q/G^. Such a material is shown

graphically by a plot of stress as a function of linear time, logarithmic

time and also by a plot of relaxation modulus (stiffness) G(t) = o(t)/e

as a function of logarithmic time in Figures Ill-a, b and c. These plots

are accompanied by the Maxwell model diagram and corresponding analytical

equations. As previously mentioned, there is the lack of initial sensi-

tivity to stress-relaxation behavior of certain materials as a consequence

of the finite time required for application of the fixed strain (rather

than idealized instantaneous application of the strain) . This lack of

initial stress-relaxation sensitivity can be discussed in terms of a

material which can be represented by a single Maxwell element. If such

a material has a short relaxation time, t, or expressed another way, the

stress-relaxation time scale is short compared with the time required for

application of the strain, the instantaneous maximum stress and correspond-

ing limiting modulus G^ = a /

e

are indeterminant. The result of this can

be seen for a simple Maxwell material represented by the dotted line in

Figure Ill-a.

Most materials, including dental materials, cannot be characterized

by a single Maxwell model having a single relaxation time. These materials
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have more than one relaxation time and, in many cases, so numerous are

the relaxation times that they can be treated as continuous in their

distribution, the continuous function H(x ) being called the relaxation

spectrum. When the relaxation modulus G(t) for a linear viscoelastic

material is plotted against logarithmic time (over an extended time

range), most often a decreasing sigmoidal shape curve is obtained, as

illustrated in Figure IV. In Figure IV, the limiting short time value

of the relaxation modulus is called the glass modulus G
, while the

value of G(t) at infinite times approaches an equilibrium modulus value

G^ or zero, depending on the microstructure of the material. The differ-

ence between the glass modulus G and the equilibrium modulus G is de-
o e

fined as the decay modulus G„ = G - GJ Roe For example, in the case of

amorphous polymer, the value of G would depend on whether the polymer

was crosslinked or not. The crosslinked polymer would exhibit a value

G^ at infinite time, but the non-crosslinked would approach zero at

infinite time. Commonly, even though G^ = 0 for non-crosslinked polymers,

an intermediate plateau is observed, the length of which is molecular

weight dependent. Since most materials must be described by a finite

number of relaxation times or a continuous relaxation spectrum, the

modulus-relaxation behavior shown in Figure IV may be described by one

of the following equations. In the case of a finite number of relaxation

times, the relaxation modulus equation takes the form

G(t) = E G.e
t ^Ti+ G

i
1

(4)

In the case of continuous distribution of relaxation times, the relaxa-

tion modulus equation takes the form for a linear material

G(t) = J
G(t) e

t/T
dT + G

{

(5)

or, upon substituting G (x ) = H(t)/t, the equation becomes

vt-°°

G(t) -J H(x) e
t/x

dlnx + G ( 6 )

The monotonic decrease of G(t) from G to G
, as shown in Figure IV,

o e

can be described by Equation (6)

.

It is noted that the sigmoidal
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relaxation modulus G(t) curve in Figure IV roughly approximates the

mirror image of the creep compliance J(e) plot shown in Figure II,

both plots being on a logarithmic time scale. As recalled from earlier

in the discussion, the glass modulus and glass compliances are related

as G = 1/J , as well as the equilibrium modulus G and steady-state
o o n

e

compliance are reciprocally related. However, the relaxation modulus

G(t) and the creep compliance function J(t) are reciprocally related

only at the limiting values discussed in the previous sentence, and,

therefore, their curves on a logarithmic time scale are not true mirror

images for a given linear viscoelastic material. It has been shown by
4 5

Gross, and more specifically by Leaderman, that the two functions G(t)

and J(t) are related by a reciprocal relationship between their respect-

ive Laplace transforms:

pL [ J (t) ]
= 1/pL [G ( t) ] (7)

where the Laplace transform is defined as follows:
oo

L[f (t) ] = J e"
Pt

f(t)dt
o

While Equation (7) relates the two functions J(t) and G(t), there

is difficulty in obtaining one function from the other by means of

Equation (7) due to the obstacles involved in the inversion of the Laplace

transform. More often the functions G(t) or J(t) are given as empirically

determined in data form, thus, numerical inversion is required, which is

only an approximation; but, even if the analytical function is known for

G(t) or J(t), it may not be possible to find the inverse. One of the

most severe drawbacks in using the above equation is that more often

either of the two functions has been determined only over a limited time

scale

.

The logarithmic time plot for relaxation modulus G(t) illustrated

in Figure IV, as in the case of creep compliance versus ln(t)

,

has the

same advantages of direct use: (1) in determining the relaxation spectrum

H(t) by some approximation methods and by virtue of which gives a qualita-

tive visual picture of the distribution of relaxation times x , and (2) in
r

applying the time temperature superposition principle to the relaxation
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modulus data for a linear material. Again, as in the case of creep

compliance data, if the relaxation modulus G(t) data are obtained at

various temperatures above and below some reference temperature T,

these higher and lower temperature modulus curves may be shifted along

the log time axis until they form a master curve at the reference

temperature T. The amount of shift again being described by (In t - In t
o

)

In t/t^= In A^, where the A^ values obtained by the shifts of the re-

laxation data are equivalent to those obtained from the shift of the

creep compliance data on the same linear viscoelastic material - this

result is encompassed in the theory of the time-temperature superposi-

tion principle.

4. BOLTZMAN SUPERPOSITION PRINCIPLE -

RELATION TO STRESS-STRAIN BEHAVIOR

Recalling the definition of creep compliance, J(t) = e(t)/o dis-

cussed earlier, it has been noted that in a linear viscoelastic material,

when a single stress a is applied at time 0 to a specimen which has no

previous stress history, the strain in the specimen at any time t is

related to the applied stress by the following relationship:

e(t) = aJ(t - 0). (8)

Next, consider a series of stress increments applied at times 0. prior

to the time t; now the strain e(t) at time t would be related to the stress

increments by the following equation:

t

e(t) = Z a . J (t - 0.) (9)
1 x—CO

Thus, the above finite relationship relates the strain e (t) at time t

to all the previous stress history by way of the creep compliance J.

The above equations are finite forms of the Boltzmann superposition

principle. These equations are useful in describing step-function ex-

periments. For example, consider the creep experiment described by

Figure Il-a where the stress has been introduced and removed in a step-

wise manner and the stress a was maintained over a sufficient time for

a steady state condition to be reached. If the time of removal of the
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stress a is considered t = 0, then the stress o was applied at a time

-t . Since t = 0 at load removal, the strain at the instant before load
L

removal is designated e (0) and is related to its elastic, retarded

elastic and viscous compliances as follows:

e(0) = o (J + J + t /p) (10)
o K L

At a time t after stress removal (~o) as shown in Figure Il-a, the strain

e(t) is related to the two incremental stresses 0 and -
a as follows:

(t + t)

e (t) = a [J + JD + ] - 0J(t) . (11)
o R p

Now, substituting e (0) for a (J + J„ + t /p)
O iv 1j

£ (0) - £ (t) = o[J(t) - t/p] (12)

which is the transformation mentioned earlier for the unloaded portion

of the curve.

If the stress increments are not introduced in steps, but in a

continuous manner with time, the strain function becomes a strain integral

in accordance with the superposition principle taking the following form:

a
t

E(e ) = lim £ J(t - 0

A a-*- 0

or by the use of the chain rule and where the entire stress history from

0 -* -oo is considered, the above equation takes the following form:

e

(

t) = ^ j(t - de (14)
—00

The Boltzmann superposition principle in the form of Equations (13)

and (14) specifies the transformation relationship (for a linear visco-

elastic material) between the creep experiment by way of the creep com-

pliance, and the stress-strain experiment where the stress time relation

is prescribed, on the same material. Similarly, the Boltzmann principle

can be applied to the determination of stress as a function of stepwise

introduction of strain increments leading to the equation:

t

a (t) = £ G (t - 9 . ) e

.

1 x

.)Aa.ii* j(t - e )do (e

)

(13)

—oo

(15)
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where G is the relaxation modulus defined earlier, thus relating the

stress to prior strain history. When the strain increments are intro-

duced in a continuous manner, the above equation becomes a stress

integral as follows

:

o (t) =$ G ( t - 0) de (16)
—oo

relating the total stress to the strain history.

The superposition Equation (14) is the transformation equation

between the creep function obtained in a creep experiment on a linear

viscoelastic material and the strain function (strain integral) in a

stress-strain experiment on that same material, where the stress is

known as a point by point function of experimental time. Also, the

superposition Equation (16) is the transformation equation between a

stress relaxation experiment and a stress-strain experiment on a given

material where the strain is known in a point by point relation to ex-

perimental time. For the case of a constant stress rate, = & = a

constant)
,
substitution of the continuous spectrum form of the creep

function given by Equation (2a)

,

C
+0

° t/x
J(t) = J

L ( x) [ 1 - e
c/T

]dln T + t/ n ,

— oo

in Equation (14) followed by differentiation results in

dE(t) 1 d £ T / .

~dT~
=
I dt

“ j(t) (17)

Thus, the slope of the strain-stress curve in a constant stress rate

experiment is the creep function J(t) for a linear material where the

time is given by t = a/ a since a = a constant. Looking at the constant

strain rate case for a stress-strain experiment, by substituting Equation
d c ( 0)

(6) into the superposition Equation (16) ,
and assuming —r = i (a

cl 0

constant) , one obtains the result

+ c

r(t) = c[p x H(t)( 1 - e
t//T

)dlni + G t] (18)

which relates the stress integral a(t) to the relaxation spectrum H(x)

and thus to the relaxation modulus function of the relaxation experiment

in a simple manner since for the constant stress rate experiment,

t = e/e; thus stress versus strain is equivalent to a stress-time plot.
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