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Contempiator enim*cum solis lumina cumqu©
Insert! fundunt radii per op&ca domorum^
Multi minuta media multi s per inane videbis
Corpora mi scer5 0 radiorum lumine in ipso©
Et velut eterno certsunine proelie p pugnas
Edere turmatim eertantia nec dare pausam*,
Conciliis et discidiis exercita crebris©
Coni cere ut possis ex hocpprimordia rerum
Qual© sit in magno iactari semper inani©
Bumtaxat rerum magnarum parva potest res
Exemplar© dare et vestigia notitiai©
Hoc etlam magi s haec animum te advertere par est
Corpora^ qua© in soils radiis turbare videntur
Quod tales turba© ruotus quoque materiai
Significant clandestinos caecosque subesse©
Multa videbis enim plagis ibi percita caecis
Commutax*© viam retroque pulsa revert!
Nunc hue* nunc illuc in cunetas undique partes 0

Titus Lucre tiu3 Carus
De Rerum NaturasVol ©IloVers 113^130*

Let us observe as brightly the rays of the sun
Penetrate in streams the darkness of our houses
Thousands of tiny bodies dancing in space
Approaching each other and parting in the bright light of the sun©
As if fighting a battle without pause through the ages e

Like an army of soldiers restlessly warring

*

They advance and retreat in motion never to cease©
May you conjecture from this the very nature of matter^
How it is ceaselessly tossed through the vastness of space©
Thus a phenomenons small as it seems and of little importance
Often does indicate things highly important and great©
Hence it is well worthwhile to observe these bodies
Whirling and dancing without rest in the sunlight^
Sine© such irregular motion of visible bodies
Is a sure indication of the invisible motion of matter©
For you can see these bodies constantly changing direction^
Often reversing their motion all of a sudden
And propelled by invisible impacts moving this way and that way©
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FOREWORD

Th© theory of stochastic processes is steadily gaining

in importance and the applications ar© ever widening© Never^

theless* it is at present not easy to study this subject# since

the literature g although extensive# is widely scattered©

This situation motivated the National Bureau of Standards

to invite Professor Henry B© Mann to give a series of lectures

on stochastic processes and to write a monograph on the subject©

The lectures "were given in the period from March 1949 to June

1949 0 during which Dr© Mann was a member of the staff of th©

Bureau® s Statistical Engineering Laboratory©

It is well known that the theory of stochastic processes

depending on a continuous parameter can be developed in a

satisfactory way by studying random functions or by consider^

ing probability measures in function space© The author of

th© present monograph has however adopted a different approach

which is similar to the definition of a stochastic process

given by E© Slutsky p A random variable is considered to be

a symbol with which a distribution function is associated#

and a stochastic process is then defined as a set of random

variables® This approach loads to a tbeery which for many

practical purposes is equivalent to th© direct measure**

theoretical approach© It has th© advantage that the tech®

nicali ties of measure theory seem loss obstrusiv© at th©

outset# although for logical completness they must enter

sooner or later if the theory is to be developed in a w©ll=>

rounded way 0
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It is hoped that this modest little volume, written

by i distinguished contemporary mathematician, will b© use-

ful and Interesting in various vrays© The argument is addressed

uncompromisingly to educated mathematicians, and they will

not fail to be impressed by the skillful way in which the

author develops the theory from his chosen starting point©

The user of time ^continuous processes in the applied fields

who is not interested in the methods of proof may still

appreciate having a number of important definitions and results

conveniently gathered here between two covers.

Finally, it is hoped that the publication of the mono-

graph will stimulate further expository efforts in the import®

ant field of time -continuous stochastic processes ^ and that

in particular the day will come a little sooner than it other®

wise might have, when a comprehensive but readable textbook

en this subject v using the measure®theoretical approach,

appears in the English language©

Jo Ho Curtiss

National Applied Mathematics Laboratories
National Bureau of Standards
V'ashington 25 * D* G©
October 1951
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INTRODUCTION

The study of stochastic processes Is becoming increas: gly

' Important in nany branches of science and accord5.ngTy the r th®~

matlcal theo::rT of stochastic processes has progressed rapi j

during the last two decades* This rapid progress has resul ad in

a large diversification of notation and terminology which ; keg

It difficult even for a mathematician to inform himself on he

subject* It seemed, therefore, advisable to bring together under

a unified terminology and notation some of the basic definl ions

and results of this theory* The viewpoint taken was that : the

mathematical atisticiar^ and the stochastic process was a : ord®>

ingly defined as a family of distribution functions satis Ing

certain consistency relations. It was on® of the goals of be

present monograph to develop the theory of stochastic prcc scs

from this viewpoint with as little appeal to abstract meas e theory

as possible* l.n most practical problems information about sndom

variables can be obtained only in terms of their joint dls ibution

function*, and f t is the opinion of the author that a treat: e on

stochastic processes will be most useful to the statistic! if
*

the definitions, theorems^ and proofs are given In these tc &«» It

is in many cases almost Impossible to trace a result to or par®

tlcular autho % and it was therefore decided to omit refer e©i

altogether* This does not mean that the author claims ere: t for

any particular result. To the author's knowledge only the: em 7

of chapter 1 and most of chapter 3 are new* (After, complc ; on of

chapter 3 the author was Informed by H* Rubin that some of he





results of this chapter had previously been obtained by him ana

L* Savage, but their results were never published,,) In hi

sentation of ie theory of stochastic processes* as well as

I

chapter 4, ti author has followed the presentations of M«

given in Paul ^evy’s book on stochastic processes and in M

paper ”0n set of probability laws and their limit element

(University c California Press, 1950), respectively* In

treatment of hunter data in chapter 5 the author hac usee

Feller 1 s appi ich and his masterful presentation In the Co
# < /

Anniversary v; lume* The treatment of the Omstein Uhlenbe

process in cl, :>ter 2 follows & presentation given by J* L©

(Anno of Math
,
Vol© 43, No* 2)*

My than! are duo to Dr* Eugene Lukacs for his v&luab

help in prep* ng th ? final form of the manuscript and to

P. Moranda wl read ;he proofs and prepared the Index* I

wish to then} Professor M. Loeve for many helpful discuss!

the subject*

H* B* MANN

Ohio State Ur varsity
May 1951
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Chapter 1

FUNDAMENTAL CONCEPTS

l a Random variables, We consider a finite or infinite set of
r * xnsjw. r-~~'-.xc. '•jtarjazrcT* ttrzJ-aa?.Mfen.i jcjouts*. xxvwistt*

symbols (x*y5odcs )
such that to every finite set of symbols

*>*••***. there is defined a light continuous distribution function
JL "

<]£&

U 0l} F
1 2 .*3^

CVV o ® c ® n )
s P(z

1 < a. $ q 9 o 9 EL S
'

e w n

called the probability of the ©vent x^ < a^, ,* dfx^ < a^ 0

The distribution functions- of th© family given by (! e l)

satisfy the following equations?

. Ca
i 99{0 j^| I — . v ^11 8«ef\lxi I

s ooof> n
J 1 o ? } '‘i

pooss
J
1 ~a

where 1* is any permutation of the numbers lj>2f 00 o*&j

i 1 0 C?
}

‘v v v* ' 9 0 55 * 9 ^W*s=i^ 03* )
a* i? ( { e 9 »J ^

,‘*D

”|
£ O C Q 9 4S*‘g* X4 ^ **»2 ® o G 6 © “* '*

The symbol x- is called a random variable,, For every Borel set A

in the n-dimensional Euclidean space we define the symbol

P[(x-f> 0 .,,x j cAL called the probability that the "point”in
{x^ o0str 5 lies in A by the equation

) C A] ss j 4F
a

9 © © o 9 (a
3l
8 9 0 9$
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If gif, 9 0 * J is a Bore! measurable function, than we can define
in M

a -new random variable glx^© w * 0 *x^) by the equations

'

£7 vr ^»^i»oeo^a )
= Pig < &9 yX < ^ t eo» 3L, < ^ )

j w " 4 • 1 1 -a m

~ g yW *j » O 60 1 O sj
a m

© o o © £ 5

We now consider sequences {x^} of random variables,, The
«

notion of confergene® of such a sequence can be defined in various

ways, Ir our representation of the theory, of stochastic processes

we shall hcaaver use mainly the following definition,,

S 0 Convergence
for ©very £ > '

\ q

A ©equenoe {x } will b© called convergent if
V

> O there exists an
j
such that

U 04J

for n > !(&, and all h* If there exists a random variable x such

that 11m Pllx -x| > ©) =• 0 for all s then w© shall write
n-*co 3 a j -

plim x*- x and say that {j; } converges to x ©r that x is the
n~$>oo a &

probability limit of the sequence {x }« The convergence defined

above L 8 U£i-,al2y termed convergence in probability* This definition

can be extended In an obvious manner to random vectors,,

We proceed to formulate an important property of convergent

sequences





T/it' n . 1 f ; t rx } “bo a sequence of random variables. There
y| • w

•inia-ra a random variable x such that plia x & x if and only if
n~>oo n

ta© aequeno© {% } converges, Moreover, if F
xnyi , ** y«

are the

dlefci/lbubioo in etlaaa of x (n«*l,2, 0 . # )
and y a# *y then

X m

Um ? „ ,. :, E
a:v .

... for all points (t,b1( ) for
n*>co -"n^l 9 5 : x ®

the ft-natlor 11.
. , v. (t 5 b. , ec e ,b ) is continuous in t 0

3
« * * # _ •* “

which

'Phccr-jjj iol gives a condition for convergence in probability

similar tc t--ucty*s criterion* This condition was first established

by £« Sluteh; r.
: - -

«

rgi
Wc> proceed to prove theorem Id. As a first

step w© sssune that the sequence |x^| is convergent and show the

existence of a random variable x » plim xH * In th© following we
114 co n

write for abbreviation

g { q ) Fc'«* ' 2’

L j, &*.7,
*** et5a )

We ilrat pie*'© the following lemma*

LI] Itetror > ,5-89 (19&5)
j
0* E e Aoad 0 Sei* Peris, 187, 370-372 (13 £8).

I 2] The p 2T-
k‘? of theorem l r l may be skipped in a first reading

without affecting the understanding of the rest of the
monograph

,
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i25£!L_i*JL ij a^y positive numbers, then £02* sufficiently

. rge n and all h > 0

'

9 ^) En(*+S) * n > Sn4,h
(o) > g.Jo-6)- sj

r all c

,

For abbraviation we write for any ©vent &

p
b ^S) p y, < ? « • » * y < b )k "

* 1 ~l
l m — &

> that In particular

-V x
n i') = V 0)

ten

b
Un£°* s

> *VX»£ 8 * 6’ *
a*h

< «) 2:Wh s °- >n*h~z3 i S s>

laoe tho set of points <x , * ) for which ix - x I > s& 1 n*h a 1
"

^eludes the points for which \x — x
]
> S and x < © ;, we haven+n. n n^ 3,

*'»

b
(z
a*h ?- °» ^

xn+h“V - 51 ^ V^n-h- °> ~ p<
l
x
n+h

~
*n<

> 5 >

aae for sufficiently large a and all h > 0

Sn
(o+ 5 ) £W 0J n o

ra&larly

W s
* 2«a!c ' s !

d ( 1 o 5 ) fellows

n

For a sequence of functions If (t) i we shall write Lim f (t)1 & i n^oo n
:?( t ) if li^fn(t) s f(t) for every continuity point of f(t) w





Lemma 1 n
3 There exists a non-decreasing function g{a) such that

e

© function* g (e) are non decreasing and
n

eorem^ tiers exists a ^subsequence g (c
n
i

hounded hence by Helly

J suoh that

6) f4S> snt
l °J * « l °)

ere g(e) ie non-decreasing*

Let t b© a continuity point of g(o) 0 Fix q>0 and choose 6

positive and arbitrarily small and so that t + 5 and t-5 are con-

Inuity points of g(o) and

g(t*3) - g(tj < jj , g(t) - «(t- 5 ) < 55 „

? sufficiently large and n we then have by Cl 5 )

«», <*&) ij> «a(t) > g (t-5) - ij

”'4 ^

1 therefore

1- JJ > g^tt) > g( t-'ft) -
IJ e

y choice of 5 w© have

g(t) >2Xi > gnlt) > g(t)

• ij san b$ made arbitrarily small for sufficiently large n.

Helly a theorem { see p for instance^ VoWidderp The Laplace Transform

2?) states 0 If the real non«4eoreasing functions ql v (x ) and th8

Ltivs constant A are suoh that jcu(x)j< A in ^ 0, lf z9 . 0 «^a<x<b $

. a there exists a subsequence {o^ (x)} of {c^Cx)} and a non«=

reasing bounded function a(x) such that

Lim gl, lx) — a(x) (a ^ x <. bi
i-#QO a

j[

— **
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It than follows that

Lia g ("t
5 = g(t)

Ol G

and l©mma l e 2 is pr oved c

Wo now define a symbol x by the equations

?r, >K) - *,ooof «a ; - **y .y ,xy4 0 0 0y ' ”\ 9 * • 09 w
i«ls ** *1* • * eS

g(t 4-0)

To prove that sr is a random variable we have to show that F
^3^1* e osTja

is a iigtributioa function and that

Uob)
•A

«F"•? C « oFlm
'* ^1® O O O 9 ^ — ^2V V (tpb«0 O oo*^_

jl m-x

and

(1 09 }
.lia Fi-~~. - . (t'gKp , 9a pt ) — {b,^b • 0

0

eS b ) e
t ^ ^ w -jo9o«^ ^ 2 ®

That the interval function corresponding to F™ v is non-negativ©
o 0 <*a

is obvious since it is a limit of factions F~ - - with this
nw

x
0 * 0 *

in

property,, Wa therefor© have merely to show that (1 08) and (1 0 9) hold

and that F_„ _ tends to tiers if any one of its arguments tendsz!x c o ®ym
to ~co Q





ffe lave

a
( tg tf

J
§ 0 o <? 0^ S r w !

?v

4 Sm

0 - ?xnti
. . .yj

*' b
i» • • • •V £ V, (V

M hence

0 < F.

o that

Um ._ F
-73

Furthermore from l 1*5) for arbitrarily small ^ and all t

y
i

4

(t,b,,...,b }
~ 0^ 31

^ 5* C I* ^

x
^ v~m

b.-*-ao xy. . J4 y_ - m

w
xMy/. . .

y* * * °*V • * * * *» *
'' r

* ™ "*y,...y t ',*V •••***) ^nim 4 m

’or sufficiently larg© n uniformly In t a ffe therefore have

lim F
5*°> «*

Furthermore

t*^ °oo © © oy^
(

^l s 0009 *\> }
~ o

0 - ly. . , .y,
*•V 0"’Vi 1 - \j . . .7

ii 1 ** 1 ®

< 1 - Fw (fcj
|ym a

if we let first &-t»oo and then to ~$»oo we obtain (1 0 6 |m

To proto (1 09) we choose a continuity point © <t

F»y oooV (t„bA ...ba)
»o IMS* that for fixed 5 asfi q

1 "a

%b& also

; y V ^ ® **’’'** * ° ° «>t'
j

ss ,-
:

cAnJ,

}
oo#,i 4 » ’W V ^ ^ 1 9 © o o g>

0=3

F
'n^i° 3 c ^m

t 5j> tp o o oS> F«- « ' .9 o o o 5 !

p?
2S ® ° c ^ ^

^ -

is

where 0 < e <, 1 and 0 < ©* < 1
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t ; n ;; Ski a into i . 0) .va

9 O % y
nohri j i *1? b, p

*J& A e £
iO

>
0 0 9yJ-V €90

»

/ ie tf* vg h-s»QO and oonaiderlng that f may be ohosez arbitrarily

:aXX we obtain (1 09J 0

file proceed to pro that plim s
n«*> oo a

x, tfe represent

domain ]y®x| > e by th© sum of a denumerable number of

Intervals whose comer points are continuity points of F for
xnx

Ll a„ To do this we remember that there can be at moat a denumerable

number of points with -« positive probability in the' plane 9 so

we can construct an interval netting 14 ^ W ’aioh avoids these

points^ Since the- set
( y~ x

j
> e is open0 every point of this set

1* Of n ; ined in one inte rval of this netting which H entirely con-

- ; - - u L'or •'< we have mere ly to tal s- Ll the inter vale,

of cur netting which lie entirely in the set Jy~ * 0 Thereby

' 9? *d :9. sue*; h • shat- i,f! 4.. 0 I are two sue* intervals and

_

Ixn-ivs lei ; - j: ftjiu v , r.i hi /ides t .a

a«- nto £3t-s: ;

••. « is called a ue&h, The area of
& / these reo^a,- -lea 4s- called the gcdulue • f the mesh 0 A>* e {11^} of -3 .-has mo

h

that id. is a re inemeat of :ji.

2 ’.;'?h that the oduXi sa| converge to aero i- call ed a netting

.





then only Ij_ Is chosen for our interval covering*

Let Ij , Ig, B a 0 he these intervals and denote by P . (I^j

the probability that the point (x
n *y)

will fall into the interior

either or
of the interval l v or onAits right etsd: upper boundary 0 Then for

sufficiently large n and arbitrary ij

p(iwxJ>£
> s Fxnxnth

lI*>

for all h c

Furthermore

P(|Vxi > ) s |i>
XnX

tl
k )

Both sums converge* From now on consider n as fixed 0 Choose I

so that for some vj > 0

JjfVl
PV (Ik> < •

Next choose h so that for the first N intervals

! Uk) " ?xnx
(I* ,! - f~*'* o

Then

Pl l*n
“ x

l
> e

)
s pV (I

k> i f
P
xnxn4h

(Ik> 2n< 3n .

t

Since 2
|
was arbitrary ^n^P(|xa~x| > e).s 0 or plim^x^ax 0

[Th© relation glim^x^x also follows from the fact that the

characteristic function of x-xF^n+h 00nV®rg@8 to character-

istlo function of xn=»x ] o
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On the other- hand if pllm than tor sufficiently

large n and arbitrary q

P( |x •xOT |
< £) > P( |x ~x| < £ and lx . < £ J! n*h n ! w 9 — f n 1 -

*x
1 n*h * — jt

1

#
> p < |xn-x| < «j-p( |xn+h=.xj> |

) > i-n o

Hence the seg,uenoe{xnl converges and theorem 1 0 1 is proved 0

3 0 Stochastic processes , it set of random variables x^ where t

is chosen out of some set of real numbers is called a stochastic

process #
Lf the '•eet of indices t is an interval then the stochastic

process is said to depend on a continuous parameter 0 Such a process

is called continuous in [a*b] if for every sequence [hfo^tlth

11m h. « 0 • plio x. . s x, for a « t < b y
1«^00 A l -»0

0

**
~ —

The expression
^oo
f t dF«(t) s Ely}
®oo *

is called the mathematical expectation of y 0 The expression

E{[2 •Elx)][y»E!yj]}g gxy

is called the covariance between x and y 0 The covariance between

and will be denoted by cr^
^

and called the oovariano©
1 3 1 3

function of the process 0
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4* Convergence In the mean,, A sequence of random variables {x^}

Is said to converge In the mean to a random variable x in symbols

X o i om 0 xa s x if
n-^oo

'1,18) lim E(x--x)2 5 0-

shall now prove several very useful lemmas on oonvergena®

in the mean and convergence in probability,,

Lanuaa 1„3 . If thsa gUm xn sx „

This follows Immediately from Tohabicheff "s inequality,,

Lemma 1,4. If l„i 0m„ x.sx then lim„ E(x„) s E(xj 0
n«^oo ^ n~>oo u

Sine® E(x *»xj 2 < e for sufficiently large a we also have

e > E(x -x) 2 sa| .x*(E(xn-x)]
2 > [E(xn )-E(x) ]2 0

ju n

Lemma 1 B 5 Q If{y^ is & sequence of non~neg&tiv©^ D -' random variables

and if glim yh g y and E(y
h )
<M then E(y) < M 0

Under the conditions of the lemma end in view of theorem 1 0 1 w©

have F^it ) s Fit

)

where and F are the cumulative distribution,

functtonsof and y respectively* Suppose E(y} > M then there

exists a continuity point A of F(t) such that ft dF(t) > M *

A . A A
'

0

However f/dF^( t) < * and 31m
]

%
tdFj

1
(t) s ftdF(t) B a contra^

0 a 0*

dlotion rt

[5] 1„9„» if £(yh< OJ S 0 o
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Lemma_i^ 6 0 The sequence {x^} conr&t gas in the me&n to a random vari-

able x if and only if to every £ > 0 there exists an M such that

U 0 lS) Etx^-x^}
2 < e for all mp n > IS 0

Suppose first that there exist a a random variable z such that

X^i.mo xn %

x

c Then for sufficiently large n and m and arbitrary £
n*<*w

B(xa-xi
2 < e

j,
E(xm-x )

2 < e 0

But

E(zm“X }
2 Elxn»x )2 - 2E[(x

ffl

-x)(xn-x)]

and by Schwarts's inequality

f
E{xm~x)Un-xj J

<^/B(xm*x)S e(xh«x )2 < e *

Rena a

^^nTxn^ .« the other hand from E(xm^xn j- < £ it follows

by Tchabioheff's inequality that

±*l \x *xw | > tcft ) < 1
1 a 23

1

- ' ~ T2

Thus plim. x„ sz exists by theorem l 0 l e It follows also that
2£«f> GO

**

plim (x;m*x )
s • (x «x

)
2 and thus bj? lemma 1 0 5

h-**^cd
a u

S^-*) S < e “4
i'lS* *»* X «

lemma l .? 0 If l 0 l 0m 0 x_sx »• l^i.ffic y„sy and If
n«^a> n^co

E(x2 ) j, E(y2 | exist then lias S^.yJ s ^y)„n ** n***© **





' h rtapoot to
show first that £(x'

r

} , E(y^) z.ie boundedn n

By virtue of lemma l e6 there exists an m and an M such that

2 ^ 3 ‘-

!a

*x
n )

2
. 5 14 for aii & From the almost trivial inequali-

y
i 2[la-b) 2*b £ ] we see that for all m

E(*q) £ StEiXa-X^) 2 E(x 2 )] < 2[M * E(x2 )]

. rom this inequality it follows that E(x2 } is bounded for all m

nos
'

z(xayn ) | < <^{x|}s^y2) it follows moreover that E(xy| exists

nd fur hermore

ECx^y^^xy
) |

® E ^n * ) * yi*£»x)]j

<. 7E(x|)E(y^y;2 * ./E(.y2)E(xn«x}2

: iy"; exists by lemma 1,5 and Efr2 ) iS bounded and since E(yn»y)2 e

£ *^2

1

converge to z s ’o8 the right-hand side of (I„l4| converges

vi ioh prc?v6'$ ler;jia 5l 0 ^ 0 ^emma 1 0 7 may also b<g written in

he form

; X 0 15J E{U 0 i 0m 0 xn)U 0 i 0m 0 yn f}r= He EU„yJ

xn)U,i,« 0 ya J} S Urn a.
n—* co n-^^> n—»co '«*n

Corollary to lemma 1„7„ She sequence {x£ } converges In the mean

ano o :ly if li* B(x^) exists irrespective of the manner in

ioh n 4nd :a tens to infinity 0

- ] Thig ie seen if we determine N -- aooordin^ to leama l c 6 — , so
£^hat &{ < e for m,n> H and then take, for a fixed m>B P

a * aax{E(xm-x1)2, E(xk.x2 )
2
, ...„ E(x

ffi

-xK)
2

. e}



I

I as &•**•**»* — a - J *

-At ** «<««“ »* * * (**-«* '
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From lemma X 0 7 it follows immediately that th© condition is

necessary* I'o show that th© condition is also sufficient we aseuma

that lim E(xnx }
exists and is independent of th© maim©? in

<=£*&• ^ ***

m-f>oo

whioh n and m go to infinity* Then lim E(v3L) 2 :0 fetnce it is
a—

®

ffi-^03

possible to find for ©very & > 0 an fi§K(ej such that

E(xa«»x )
2 < s for ng, m > I „ «Ve see therefore from lemma X e s that

X 0 i*m 0 exists* This corollary is due to m 0 Loev@ 0n—*© - u

5 C Differentiation
,,

In order to be able to define derivatives of

stochastic processes w© have to extend the concepts of limits in

probability and limits in th@ mean* Suppose that for @v®ry h in an

interval (a# b') a random variable is defined,. If for every . sequence

{hfl with lim h, s a 9 plim xhjt §i exists then we writ®
1 %l

i.-*oo i 1—>» hi

glim s x 0 In a similar manner we define x..
v g| 0 i^m 0 xj^

The process is called differentiable at the point t if

glim xt»fr oS:t z exist®* Th© stochastic process is

called the derivative ©f x^ 0

In the following we assume E(x^)sO a Th@ modifications ©f

©ur statements for th® case s(x^) ^ 0 will be obvious 0





15

6 0 Stochastic processes of second or d er n A stochastic process x^

is called of second order if for any values t
7
^t^ the covariance

ctlt exists. The process x., ia called differentiable l.i.m. if

l.i.m. xt*h”xt __ x * exists.
h~*» 0 S“ * t

Theorem 1.2 . fleoessary and. sufficient that the proeesg x ia
t

differentiable l.i.m. is that the limit

U 016J lim t-T - Z*
k-£o 1

exist 0 The covariance function at t
is then twioe different! *-

3S\t. 3St
sdjl® ana

.
x 3 1 B Moreover x! is a stochastic process

Stl 3t 2 3
"
2
3t

l ?
e‘'°t1t 2of second ord©r and its covariance function is •

^ 2

3^t*t °

Th® cov&rianc© between x^ and x^ is given by —“pr

Proof: Consider a sequence of difference quotients c

W© have gt*h.t*k~
g
t+h.t

~ g
t . t»k**

g
t.t

hK

and by the corollary to lemma 1.7 the relation (1.16) is necessary

and sufficient for l.i.m. ^t+h s
t _ to exist. £^3 ex-

h-*- 0 h

pression Z^ t
in (1.16) is called the generalized second, derivative.
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we moreover hav® by lemma 1 0 4 E(x^j~0 since Etx^J ^ Elx^j

s 0 0 Furthermore by lemma 1 # 7 cr~

t**t
exists and

1„17 1 a*. =• 11m E lx* * ^t^h^tl _ lim at*lu t*“att* _ 3<ytt
1 x

t*
x
t h^O [* —Yj * h"»0 g

' -
~WT'

Thus gott* exists A It also follows from lemma l n 7 that
*

•

exists andxtxt*

a,-?-* sr lim E[xt*e*h~ xt «
xt*$*k aXt*

l **
fct8 —e—

=^ qt«h.t**k~ qt»t*«k~ qt»ha t**
gt.t* _. Z^*

It easily follows that c^.* is twio© differentiable and that

S^tt*
IFsT"

&
2
gtt*

3F"W"
©

It is well known that the generalized second derivative of any

function f(x,y) exists if i'f exists and is continuous,,
ax ay

Thus we have

Corollary to theorem l n 2 0 If x^ is a stochastic process of second

order with covariance function a*** and if 3 G%% exists and isu
at at

*

continuous^ act than x-£ exists l ei.a, and its covariance

function is ^gtt* _ 2, . * e





The oorHilary to theoi I c 2 giv<*e a coiv anient raebl >1 to

:i ki t 'Ovariance : u* Lo> oi x! il x* exists 1„: m c

\

Int gration Q Let x^ be a stochastic process defined for

< t < b , tie subdivide the interval from a to b into n parts

y means of the points a «: t
)9
t^, 09(,,tn ~ b aad put

ax(t )
- 8 0 The number 6 is called the modulus of the

subdivision* within every interval t. , < t < t we choose a

'aluo t
‘ and fora the sum
x

i

7

^i-1

)

is a random variable,, flow consider a sequence {SM} of sub-

tvie ions S ra with moduli such that lim --t 0 c l*etm m m *>& m

*& be the random variable oorraspon&ir:$ by {1 0 18} to the sub-

ivlsio i and some she ice of ;he t a , £ then

lim X.I rnj ~ X exists and is equal for all sequence {S’* with
ol-*q&

modulus converging to Zi&o and all choices of t* th a X is called

he Integral of x.v and we write





18

[7 ]

Strong contlnnlty 0 In th e

the event that the relatione

following we denote by £(8 9 e,S)

l
xtr x < £ are simultaneously

satisfied for all pairs with
|
< 5

to a finite set S of points contained in [e=>b1

is then the probability that the inequalities ]x^

and belonging

o £[<£ ]

are simultaneously fulfilled for all pairs (t^t,
|

of a finite set
* ™ 4SU

S of points for which Jtj-tjJ < $ 0

The process is called strongly continuous in an interval

[a*b] if to every £ and- i) tfcere exists a S-Slt^ri? aash that

for every finite set S of points contained In [a^b]

Uc20J P [g(5a e0 sq > l- n c

For any stochastic process consider a set S =*(t^ f 0 0 0 *t )

where a < t^ < b ( i = I^^n) 0 We denote by M^g the largest cf the

values 000 „x^ 0 Let {S^} be a sequence of subdivisions of

the interval [a 9 b] whose moduli converge to £©ro 0 If

?y&M&bs, - ^ab @xlsts and is th® same for all sequences {S^}
X =4- itO J

^

whose moduli converge to zero then we shall call K ;1> the maximum

of in [a^b] 0 The minimum m is similarly defined.

concept
[7] The delimittea is due to P c levy 0
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To simplify the notation we also introduce ?ab - M
afo~

ffi

ab

aEd Y&bS =? 0 tie next derive a criterion for the strong

continuity of a process

s

Theorem 1 0 3 0 a process xt Is strongly continuous in [a9 h] if and

only if

(l) it possesses a maximum and a minimum in

every subint erval [t*t‘"] of [a 9 hj f

(ii) for every £ > 0 9 rj > 0 there exists & d such that

for every subdivision S ~ (a « t^ 0 e G ®
t^s b $

with

modulus less than o
^ f h ts i~rue t’h^t

do El) £
jtjp*

^ 38
« • ••f 11

) 5^ ^*”*1 o

tfe emphasize that (l^El) means that the probability of the simul-

taneous fulfillment of all the inequalities t < s !is.L, 30e? nj
* 4 „1 ^ -S*”*

. ,
[&3

"
" ’

must exceed 1 -*j 0

[83 If H
;i

(lul 9 2 9 0 6 0 »nj are n events then P(R^t l9eooj>a)

means the probability that all n evants occur simultaneously c

Thus PCRj^tsl* e 0&9 n) > k means that the probability of the

simultaneous occurrence of all n events exceeds kg this should

ba carefully distinguished from the statement P(Rj

)

> k9

( t~X 3 0 0 0? n)g, which means that the probability of the occurrence
%

of each single event H.
s
exceeds k which does not imply any

thing about their joint occurrence^ We further emphasis©

that in conditional probabilities the condition is separated

not by a semicolon but by a vertical bur „
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The proof of lemma i a8 is left to the reader 0

Proof of theorem l„3 a Suppose first that conditions { i j
and (iij

are fulfilled^ Let S he a finite set of points 0 vVe can consider

sequences of subdivisions {Sa } such that each S„ contains S 0

It follows then from lemma l e 8 that

{Sa}of subdivisions^,,., 0<>o8 ta )
with t,, s a +MMI „ for auffioi-

fatly largs a ana arbitrary e,jj we ha’/a by (lij

Ko® let t

(1„22J

( 1*235

The relations
t < s , isl»2» .. „»n Imply the relations

'9 o o o 8 n-1 0 Hence from (l 0 £3J and lemma

I«6 it fellows that

t — i-lf E
i-lid

9 © o © S n-l) > 1-ij o





?x

Any two points tj 9 t' with
1 j

< i He together in one

Qy^Ji (i'2Z)

of the intervale (t, „ Henae the above inequal ityAtmplliUL

1

1

0 24 )
2 [g (|9 £ 9 S)J > l- n „

Ehus (i) and (11) imply strong continuity*

>v© next show that the condition is necessary,, We assume

that x, is strongly continuous and let a < £ < H < b 0 Wo consider
t

two subdivisions S„ and Sm of both of modulus less than 5

tei4, S consist °f fhc f>e.»i-s o.nd Sm -

and the maxima and C A
*' " relation

|M_, - U'„ | > e Implies that for «Qr two points t 9 t
f

of 3
abSa a5Sm

'

we must have
J
> £ *

jt—

t

\
5 h^nce ty (

1

0 ^ :

l
* o

sufficiently small 5 and arbitrary

(1„25) PM%5s “ M5S3 l
>£!^

n m

On account of theorem 1 0 1 the relation (1 0 25) implies that

plim Jd- rQ ss Mgg exists* In a similar manner it is shown that

h=$»cj &

7i\ m, exists so that condition (i) of theorem X c 3 is satisfied,,

Hoy? choose 5 so that for every finite set S of point is

t
i$

0 oo»tn
and arbitrary e 9 q

1 « 26 ^ }1 ^





How let Ss {a^t of ooopt^s b} be any subdivision of modulus leas

than 5, {S^} a sequenoe of subdivisions with moduli conversing to zero ,

and containing the points of S„ The relation (1 0 B6) implies

( 1oB7 )
1*1 tS *5 » ^ eoo»n) > 1*^^

*1-1 in 2

How ohoose 9* so that < S* < * and so that e* is a continuity point of

the distributions of V . is l8 a# 000 ,n0 It then follows from ll 0 27)

ft

-h i § » isl^ s® 0 0 0& n j
- > 1 — ij o

*1-1 u
i

-

This completes the proof of theorem l 0 3 n

ShooreF. 1 q4 0 t>et x be a strongly oontinuous proaess,, than

IS X. -

21 x* =

> x^dx exists for every t

dXj
•t

ar*

Proof” By theorem 1.3 exist for all pairs Cj'

and we have for every choice of points axt „t ,t . t st
0 1 2 • «

and h-l ^ **?.

(1 0 28J 2m,

To understand this inequality correctly w© must remember that

^ ^ (i»l#2f 00 ©«ni random variables and

" rv?
•' joint distribution is such that th© inequality (1 6 28)

holds with probability one c
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Since the process is strongly continuous we have for any

subdivision with sufficiently small modulus 6

PK, ‘VW 5 Mb" a)
]
* 1 = s

> •

L 1-1 i I®1 1 ^

If S is a subdivision then we call YCSjs^M^
^

the
1 ct1 i

upper sum and y(S)s £m It -t
)

the lowsr sum corresponding
** ij t v - A A A
i®JL 1

to the subdivision S 0 rte consider now a g?®%uene© of subdivisions

{S.} with moduli {5., } such that
« 3

11m 5.s0 and
$~4*x> 3

If Y.^YCS^ji and ^sy(Sj)

SC8 if m < n „
m n

are the corresponding upper But lower

sums then

and hence for sufficiently largo n

P
L
0 - yn*k'yn - s(b"a 0 £ lo>J

l °

Hence the sequences of random variables {/.. } and {Yn j converge

and plim y s plim Y D From hare on the proof of the existence
h-^s© "o n~»*co n

t
of X^sfx^dir is precisely the same as that of the existence of

a
!"

the ordinary Riemann integral of a continuous function,.
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It follows also from 11*38} th

tf

(‘tU ) > J z Yi

Consider now th© quotient

Xti-
<S£» X 1}*

h 2
bl

"’"

irr^Hrr
**

3 1

tg

f xt fi

t
1 2

nV © ha¥@

xt - xt,m . , < t;E S1 < M
1

{* «$=

“18 z
mH t-j t >

2

aM

m.. . <•£, < M. .

*1*2 “ H " *1*2
and sine® th@ procst;, i f

3 strongly continuous-'

• <T:

&*

s?,
v Mp “% t

.

Henoo pH® m. , s plim M, ,

4: aiaafe^ »i »/w ifcesa^jj «*8 4;

2 ,1

““S’
Tt,

wp j -p
e& Cj <t-. <*i .Ci 1

and thus

plim
’•r*h -

«* ^
t '

A 4 t

C« * j
•

Tills cempletea the proof of theorem i-b 4 «

$© shall now consider siochastie proaosses of secr.aci ordCT.

..
i

X. ^ f x.dt exists

if the Hi ©mann sums 2x. w (t 4 «*t
C V5 i

4^*1
•on^r ©3 in th© m®an 0 ,
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Theorem 1 0 5 0

The process

Let x
t

"be a process with ©©variance funotion 0^ f
X 2

is integr&ble X 0 i 0m 0 in [a^b 3 if mid only if for any

o

t t

t in [a^b], f J t
dtj&tg exists. The covariance funotion

a a w
,l * 2

t

2;t t
of X

t = J[
x^dt is given by

.1.89) tl
t
2
”

sf

^1^2
0.

4 's
i
dT

2

The process X^ is differentiable X 0 i«m 0 and X^ssx^

continuous 0

To prove theorem 1 0 5 we apply the corollary to

if 0a i is
*1*8

|

lemma 1 0 ? to

a sequence of Kiemann euas {2 } with moduli going to

w© have

e‘v«* s EK? C1vwzx
tt

(yvi )] *f5« yw {1Wi
J

If 21 and m go to infinity in any manner we have

t t

lim E(J J )= f T of *
dt dt

n~& QO n m a a • *1^0 1
1

Thus X 0 i 0m 0 2 « 2 exists 0
n-^oo 11

Moreover if {2^} is any other sequence of Kiemam sum© we

put 2^s 2a 0 2n 0 Sinoe 2” ©xists we must have

2 s X 0 i 0® 0 2 n ™ l,i c®o 2 = J
x at ^ X

n~»® n n->oo n 5
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It follows also easily from lemma I,? that J5(x^X
+ /

}

exists and

that

(lo2S&) E «xtV >=
* a & id

w© further have

Y .
'•Xa.

**. <0 »* Xt « ?V x
t 4, ,

t
t
v ~Fn

From Jl 029a) it foil ova that

.t'

t'

*t»y x*Trrajf&V"°t t'

"

0
t T *°tt

^'
c
'

If a
,
is continuous then by the mean value theorem of in

tegral calculus ov v becomes arbitrarily small if t* approaches

t 0 Thus x^ss X
t
" L 0 l ouo *

Let x^ p y^ b© two ft = than to every a

division S s Ca^t^t^g t^ 00 0*ta«b) we can form Riamann-Stislt Job

sums

n
ilS)» rx- (y* -

y

t1*1 *t i i-l
(lo30J
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If nov* for every sequence {S } of subdivisions v;ith modulfe

converging to zero piim xis )' exists and is Independent of the
n-^oo

particular sequence {S
Q } and of the choice of points t

(t^^ < t* < tjJ then we shall write

X=s plim I(S
j - S xtd^-n-* oo n

a w

*Ve shall call X the integral of x^. with respect to y+ c If the

random variables XjSn J
converge in the mean to a we shall say

that k
^ x^dy. exists l 0 i 0m.

* t

Theorem 1^ 6^ l«et x.. 9 y^ be two independent stochastic processes

of second order (that is to say is independent /

g
and any t) with covariance functions * Pttf *®speotively„

The integral of x^ with respect to y^ exists 1 ;i aa foi

terval ra*t] contained in [a;b] if and only if

( 1 . 31 )

t t

JJ
exist

s

0 The covariance function of

x
t.
- S x

t
4^ta

is moreover given by

h t t J j o <¥*
*1*2 a a t

x
t 2

o





The proof of theorem 1,6 is analogous to that (

1,5 and is left to the I'e&dsr,

By P(S|E) we denote the conditional probability that E '.'fill

r o i 4?
happen provided E has happened, 1 ’ 7

.ia ha?j called a

tiauoua if dim x
’S-&Q

- X 4* o A process will be celled uniformly

continuous in [ag b] if to every e > 0 g q >0 there a .tie

5? £<,ii | of t 3\ii3 h. tnsi ti

$e a

pl! ztn xtl & s )^ 1 ’ 1
l

every |t] < o( e v s|
J

Lemma l 0 9 e if a process is continuous in a doted in.ervd

[&£>&] then it is uniformly continuous in ; &s b'j

Troo^t Consider a monotone decreasing sequence

dim t 4»0 c For every i consi&sr the set of points for ?hieh

p(
l
xu< x

tl > *1 >*«
c&

Assume the lemma to he false* then we can construct i aegu^uoo

ti<,tg9o ,, such that /e/- ;<,.«« f'><>, 'rj>o

P(|xt^ T
"x
tJ

>;?£
>

for some % <. t* * Let t he an accumulation point of & e ecue-nee

5 >o
{t.} c Then for every «

w

-a—ft we can find a

to t such that
|
> Zt) > £*} for some j-cj <> J|

1 * i

[ 3 ] ^ 02? vile concept of conditional probability the read a7 Is
referred to Kolmogoroffg Grundbegriffe dsr Wahu 5chain ~
lio hkai t sreefenung, Chapter 5, par, ; end 3.
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Choo> e now |t.~tj < and t
^

30 clos to t that

P( >*}<!),
S

Then

?( I^ + T-X tl > Z PM*t .
?***.! > ge * !*

tl
- xtl i e

2

> p( >*}>*» .5-3 &

Honoc for arbitrary &>Q and some e>0 a q> 0 there exist values

£ < h such that

p(
l
x
t*T*

x
tt > e) > n

in contradiction with our assumption of continuity of the process x^
c

rie derive next a sufficient condition for the existence of

M h f nd hare to aon«lde** in this connection the event

{* <a X
i

f0r k < * 9 x
fc
< X

i
f0r k > Rnd W® denote this

by A and state the following

Theorem l n 7 Q Let Ss{a < t
i < t£S>oooy < b} b© a sat of points

in [a^b] and let x
t

be a stochastic process which

(ij is continuous in [a y b]$

{iij is such that for sufficiently small t —which is inde-

pendent of 3 — 0 *

(1 Q 3£) > *lAi> *
<

xi^nr Xt| :

> "
>!

where K is a constant independent of the choice of S-Q Then and

m
afe

exist 0



I

’

V

'
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Proofs Let SiS (t1# . 0#f t
n )

and S =

(

0 . c , l£) be two subdivisions

of module less than 6 and put for eh.or • ^ =
o

q

To every we can find an Xj s y^

a

such that t
J-

t. < 6

For P(A^J 4^ Q we thus have cm account of lemma 1*9 for arbitrary

ij and sufficiently small 5

(1,33) P(Ak,zlc
-y

k > e)»P(A
k
)P(xk-yk > eU

fc
) < ,

If P(A.j'sO the inequality (1 0 33) i3 also valid*.

Denote by 3^ the Joint occurrence of the evenia A^ and

xk~^k < 2 an& 1*^ B be the event that at least one of

the ©vents Bv occurs* By definition .A Implies
& K.

x. *® M , _ so that B implies the existence of soma y,
K aoo^ “ jf

such that y, > M . 0 - £ 0 From this it follows in turn that
i£ “» aob|

M. > M, ~ sabSj £ ~ ° Therefor© we see that

•^afcSi •-
M
ahS|““

£
J £ p ^ B i S °

From ( 1 0 33 )
obtain easily

P(Bk )
= P{Ak )P(xk-yk < e|Ak ) > (I-K^) P{A

k ) o





The ©vents exclude each other an£ exhaust all the- poesi

bilitiee so that by adding these Inequalities we obtain

Therefor©,

(1.34)

2P(BV ) > X-Kir,

k
*'

f ^MabSj MabS^~ ® | ^ 1 o

Similarly w© obtain

Cl 0 34a'j ^(“abSj £ M
abS,~

E
^ £ 1-1 ^ •

hence

U.35) PM\bS
1

" MabS J i e
> > 1 ‘' 2K’}°

The existence of M
afe

follows easily from (l c 55) using iheoram 1 ,

and th© existence of is proved similarly 3





CHAPTER 2

SPECIAL PROCESSES

/I A email partial© suspended' in a gas is subjected to a contin-

ual bombardment by the molecules of this gas* The individual impacts

imparted by these molecules are small compared to the mass of th©

and the n.imber of impacts per second is very large* The im-

pacts are received from all directions and are randomly distri—
t

buted* Moreover , if w® neglect the velocity of th© particle :

itself* which is small compared to th© velocity of the molecules*

th© distribution of these impacts at time t will be independent

of th© momentum of th© particle at time t*< t 0 If we denote by

the momentum of th© particle* it will therefore be reasonable

to assume that x^ is independent of x^# for t* < t 0 The

motion of the particle is called the Brownian motion*

The momentum of th© particle is a special example of a more

general type of stochastic processes, called Markoff processes,

which satisfy for t^ < t
g . a< tn < t and i > 0 the equation

P$Xt+T ^ A
l
Z
t
1
»»«*» X

l!
» Xt)- ptx

t* T i
A

l
X
t> •

In words, the conditional distribution of (where ? > OJ,

given the values of , # 0 0 ,xt
,x^ (where t^ < t

g
<oe#< tn < t)

is the same as the conditional distribution of 6i ven 2
t ©



-



More conversationally speaking* if the present value of x*

is known the distribution of any future valuer ie independent of

the way in wbioh the present value was reached 0

In our special case of the motion of a particle suspended

in a gas wa shall make the following assumptions about its mo-

mentum o

Assumption X c
r-uMXK^a*

where e* ^ 1® a random variable with moan sera and is indepen*
t jT

dent of li, and also of s * * if the interval a (t^t+xK
i* w jV

(s„l)

Assumption 2 o

The distribution of e*. depends only on

o

and hence





From (2 0 2J and aseumption 3 it follows by a well known

£X01
,

theorem taat

(2 .3 )
C2 ~ 0%
T

where o 1 a some positive constant 0 Thus x^ converges to x^

in t*h& mean with decreasing t and the process is continuous

l 0 i.0m 0 ^ Suppose further that x
0
~ 0 c It follows then from

(2 0 3) and assumption 1 that

t <£,- •*

(2.4) i

l

°x
t
x
t
^= °K!xtn*Vxtl)s^s ot -

The assumptions 1 to 3 define fin important class of Markoff pro-

rii » di

ceases* sometimes called differential processes* 1 J "in order

to define completely our mathematical model for tha Brownian

notion we must also take account of the fact that we regard the

impacts from the molecul.es as coming in a continuous stream so that

large changes of the momentum in a short time interval became

much less likely than small ones c

[10] If a measurable function f(x) satisfies the functional

aquation f(x+y)s f(x) + f(yj then f(xj=f 0x c Proof of this

theorem may be found in H 0 Hah

n

f Theorie hex* reellen Funk-

tionen* Frster Ban& 9 pp c s&l-Sg J 0 Spring&r* Berlin (192lJ c

[11] we distinguish differential process from "general differ-

ential processes 71 (Chapter 4) 0





o5

W® therefore impose th£ following additional condition*

called tbs Lindebarg -condition* on the distribution functions

*
Tu> ot

Aaavaaptlon 4 (Lindabacs oonditloaj g

Post sufficiently small X and arbitrary P > 0 „ ij > 0

12.5) f a
2 dP (.a) <. no2

v T s 4 T
las >p

Condition *{2 0 5) zaay perhaps bast be understood if we discuss an

important case where it is fulfilled G

oo e.

-Theorem 2„1„ If o2 = f ^ d? (a) exists and if P{_^5 < a)
£ -00 *

-s Flaj is independent of % then fulfills the Lin&eoerg

condition (£ 0 5J 0

ffo^'Tvom the conditions of the theorem vie have

F
T
laa

T
)=*F{a) » Fjaj ~ Fia/ej 0

Hence for arbitrarily small p > 0 and ^ > 0

? a"' ar
T(a) * $ ** dF(a/ff

T) = a
2

f &g
dF(JL)

!&!>/> W>f> ltl>js* x

s a2 j* y2 dF(y) < D,a
2

>1 I >/>/«*•

vz for sufficiently email » since CsOi «
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'M next prov©

Theorem 2 0 B o If e*. • fulfills the Lind©berg condition then
.mi i.ri^.af i i

|JU <W|| (i «0 %

uaJ^L’

is normally distributed with variance q % 0

as long as we consider only the distribution of there

will not b@ any danger of confusion If we writ® e for e t 0

nil a shall uae the following

Lemma 2 p jLs Let XgPooo£> b© independent random variables witii^

2
distribution functions F^ oco? respectively and a^ri4, )^i

then to every 8 there exists a p and a*s^ such that

a
* . < a % «- i2^o flc^< a)

a>

@~X ^ dxf < 5

whenev©r for all k

jxg dP
k
(x) < Jjof ,

c
.

>P &

A proof of this lemma can be found for instance in Khintchine® ®

KAsymptoti@eh@ Gesets© her ^ahrecheinli©hkeitsreohnung f!

£ p 6 S

(Ergebniss.e der Juathematik* J Q Springer^ Berlln 1933) 0.

To prove theorem Z Q Z we put s
r
/,/cv j than c^, has variance

«

1* «*• divide the interval 0 < t < % into n equal parts and put

& f0* l “lj2 9 ® ® » 9 n
1

6





B?

The £*. are independently distributed and ei s= e,*60+ *s

“ in0® ta5 l
i
fulfill the iindeberg condition we sea from x®m&a z t \

to8:-t the distribution of differs arbitrarily little from the nor-

mal distribution with unit varianoi®. Heno® e^« & e' i 3 normally

distributed wife variance o^ai otw *
• * "*

.

’
,

r
•

-kQ processes defined by assu/nptioiia I p 2 # 3, &&& 4 will be
sailed fundamental random prooesses (abbreviated F E p \e b 0 ' & g -o

' in th® following we shall repeatedly use the fact that the

ul-isrioufciQii of the limit of a sequence of random variables equals

s.
** *u »*' •“«»*»*

wary y.a.P. is Strongly continuous.

With0ilt 1088 of Senerality we .ifcaU a«a©» o * ij that is,

'*»< **
\

d9rlVi n8it aowral lemas needed for the

prhcf of theorem 2.3.

2
|Jr
a«, For a > Q w© have

. m P
fy. K
3 a IS

) jV*;/2 dx < .-*“/*/.
a'

TO ’

-=*roQf :

* ;•

6 ,|»"A /"'
a

a
d:s < jx©"2*

dx S © - / “k

an of length d and for S

o*. points in this interval

a
p(?

tt'S > M > < (8e*
M“/8V4^F





o8

aM the points t and t' to S, This can only increase the value

of ^t /
3
s%S',fflU'3 c »^taout loss of generality we may further

assume x^—Q 9 since we could otherwise consider the process —

x
s
-x

t ,
Let t

0
»t, t

1 , tg, tn
* t

#

be the subdivision points

of S and put x.j =x
t c Let k

%
{Uls 2foco9 n} be the event

{x^ < Mj* COC f>x
ic3,j

< MgX^. > M) * The events are exclusive and ex-

haust all oases for which > M f

«Ve have with i
Q
s 0 0 M > 0

i>iA
i#)
X

2a
> Mj^P(A

i )
PU

n > M|A
t
)srP(A

1 ) > M-^|A
i 5

> P( A^ )
P(x£-x^ > 0 |x, «. M ? 0 0 0()xH «, M ex

t
> M| g

our
on account a£^ assumptions we know that x^-x^ is independently dis-

tributed of i1 Coool) X| and has a normal distribution with E#ro mean

and variance fc »fc. so that
n x

CQ

i>u
i»
x
n i M

> t * lv j
®SE

- (x-x,

II
0

a it -T.
n i

]d{xn i

33 1 r (Ai ji ^
8

The event© {A^Xg > M} comprise all case© for which xa ^ M and ar®

mutually exclusive Adding C

S

0B

)

ov@r all i we therefor© obtain

{2 0S) SPjxn > M| > P(M
tt , s > Mj o





She left aide is by (2 t 6J smaller than

(2 0 1Q)
Z28

T'ha same estira&t© is obtained, also for < ~Mj 0

Furthermore

i’U'tVg £ MJ - P{elthaf MU'S * 1
°r

“tt'S

g

< swu* 3 > |j
*P(«

tt / s < -|j < iajT/^Tw)f& /8S
9

whioh establishes (2 0
7’)

c

Lemma 2 Q4 0 Let t and consider subdivisions { tst^t^* 0 0 <i9

t'
J

such that t^-t^^^= £/n » 6n c Then there exists for tv^rj

positive e*^ an H such that for an arbitraryV rr 8 of points

3 0 11

)

P(V
%
1-1 * 1

* < £$ i~l*•$ o o o £ nj > 1 -ij for a > 2?

To prove (2 011) we add the points of to 3» This will at

meet decrease the probability in (

2

011 > ^ Since the distribution

of V*
^

a ia independent of the distribution of that of
*i-

g. for j we have by lemma 2 0 3
J

** J
^

U 012J
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where k and k* are^ constants Independent of n e Sine© it is
~nk f n

easily seen that lim (1-ke ) s 1» lesnna 2 0 4 follows*
n^oo

Lenma 2 C 5. and m^
9
exist for every internal [t9 t*j «

Consider a sequence of subdivisions^^} of the internal

[t 9 t
5

] of aodul« { 8 } with lim 5 = 0« If S. and s
a
have both

sufficiently small molul^ then in every interval of length

8
Q

of lemma 2®4 there will be at least on© point of and one of

3 . • Hence applying lemma 2 C 4 to the union of S and S we obtain
« 1 ,1

Thus

pMmu' s^^t'

s

I
> 6) 4 J, ,

V

exists for every sequence {Sn } whose

moduli converge to zero and is the same for ©very such s©qu®no@ 0

In a similar manner it is possible to prove that plim ie.

1-^cpo ” s
i

exists 0

To prove theorem 2 0 3 let S ba any subdivision of modulus

< 6/E and consider

(2 0l3) t S eg D 0 ®nj c

*i~l i

tie form a new subdivision with 6/E < < 6 by deleting points

of S c The probability (2 cl3) for this new subdivision is smaller

than that for S 0



-

.

*

-

/

.

.
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By lemma w© have*, alnoe the distribution of V, , . converges
ci-l c

i &

to the distribution of 0

C

3

014 j
P|

^ ^ ^
i«X* > [1”8 exp( -v&"/8 5* ]

Ei/5

HI
cT/c?ir

The limit on the right of (2 0X4) is 1 for 6-^0 , which proves theorem

p '*
*'»0

Theorem 2 „4„ For the F CR 0 P-C

(2,15) P(M
at)
-xa > M)= 2P(x-

0
~xa > M)

we consider the proof of lemma 2 0 3 and write t s b p t s

a

we see from (2„9) that 2P(x
b > M) > P(M

8feS __

> M) c Here S* may
i

bs any' set of points in the Interval [&9 b] c,
Lot S| be an ©lament

of a sequence of subdivisions {S*} whose moduli go to A®<~

cording to lemma 2 0 s plia M - g
M - exist b p henoe

(2„I6J 2P(r
b > H) > P(M

a% > U)

W© consider again the events A^ of lemma 2 0 3 for a subdivision

of [a f b} into equal parts 0 We then have far ; ^ ao, with a > li
cs

and with x& - 0
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(2 017) JPUj,»X0 > M) = > 0) vP(A
4
,M < x

g < Xj)

= t ) HAj*M < X0 < X|

}

< Aj
I
4Pi Aj,X£_^ < Xg < X|

J c

Let e be an arbitrary positive number# then

U 0A3j p^i»xi-i < x
0
< x

i)
sP{ H* xrxi-i i e » xi-i < x

0 < x
i)

PUi**rxi-i > e »xi-i < x
o
< *i>

< J’UpQ < x
t
-xc. < ej Pjxj-x^ > ej

(JS

< P(A
jL
^£b

-x
ct
< e) P(x

i
-x

i-]L
> S)

since X|-x
Q

has larger variance than Xj«x
Q

and both ar® normally

distributed with mean zero* Adding the inequalities (2 0 17) and using

i

&

0 18 j
w® obtain

C2J19) P{x
a > Ma Mat > M) < |PlMab > M) <-P«0 < X

b
-X

Q < t)

ZPlx^-x^ > e) 0

From C2 0?} w® see easily that ZPCx^-x^^ > eonvsrges to zero
«

for ©very positive s and every sequence {8,
rJ whose module converges

to z®ro 0 Since e was arbitrary we have

C 2 o80 |
P(x

c > Ms tlab > U} <. |p(Mab > MJ o
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Since c maybe chosen arbitrarily close to it follows from (2 o 20

that

(2,21) 2P(x
b > MJ < P{M

ab > M) .

The inequalities {2„21) and (2,16) together imply theorem 2„4 0

Corollary to theorem 2„4. „ Lot S, p 3 £0 0 „ 0 b® a sequence of subdivi-

sions of the interval (t g t+x) with modulw converging to zero and

consider for each S
fi
; {t®t, s

the probability

Pn* P^xt“ x
t - °»*’«»xt“

x
t -

then X&m P sO 0
n-froo a

Yroc^% a 9 nave

n
lim P„ - P(Mt>t+T-xt = 0)sH!Kt(ttfx t > 0)= > 0,- 0

'Theorem 2.5, If /> > 1/2 » plim (x. -ij// doss net exist.
-- ' * ~~ —> o ** % *

It is aaro if p < 1/2 t

Th® proof of this theorem is left to the reader©

Pet [ Is

j

be any interval and arbitrary positive

numbers and p < 1/2 C)
Than there exists a 6 such that for ©very

subdivision S * {a^stQ# t„ 9 0 0 0 , t^b} of modulus not exceeding 5

nv
t iJlVVi/ < > 1“J}
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Far tbs proof we need the following

Lemma _2_^6. For > 0, 6^ > Q* k > Qa k* > 0* * > 0* and 5j+5g

sufficiently email

C3 o aaj [1-k expl-lsf /c%)][l-k expt-k'/dg) 3 > 1-k exp[-k//{ 8j*52 )

v
]

Proof of lemma 2a 6s The left side of (2 0 22j Is not smaller than

l-k{exp(-k'/8*) «xp(-k
#

/*»p) .

Hero® lZ e ZZ) is proved if we prove for sufficiently small and

FfSp 5g
}s «xp[-kV(5i^5g)

v
] -expf-k'/fij]- axpl-k'/op > 0

tfo have

lim F( 5* 9 $2 )
s 0 and

Oyfr Q X

a

exp[-k'/op

*b |
i

J>V+18
1

r8xp[-kV^ 5
i

,«'5
2 )

v
. expf-k^/Sg]

*V )

1

- „ * v*l
• C

j>j
+ So ) °2

}

}
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The function x * ^
exp {®k'/xv

)
is monotopically increasing for

sufficiently small x 0 We haye therefore aF/a^ > 0 0

aF/a5g > 0 for sufficiently small 5* + dg , Hence

is positive for sufficiently small 5, * 6r> t

Ws proceed to prove theorem 2 0 6 0 we have by (2 0 7) with

l®£p s v o S

- €
] - 1= «*p ^a

/as.Ji

> 1 - k 9xp(- ]£ /6

}

where k and k
;
are independent of the subdivision..

Thus

How let S have modulus J then by lemma 2 C 6 we may combine the

intervals to the right of (2 0 23) in such a way that all intervals

are at least of length J| and at most of length 6 c Hence

U c 24) B > jY- k azp («k
/

/5
T
)J

2^"“^8)

and the right hand side of (2 024j is arbitrarily close to one if

5 is sufficiently small 0 ‘This completes the proof of theorexn 2 0 6 0

[
1 - k expC

h

U.23 1 P - P j

,p

< e 8 i-i t o e o £>

i i~l

i i*n
» >TT

J
i*i
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A process is called Gaussian if the Joint distribution of

Xj, f
x. fooo0 X. is normal for ©very choice of t^ t£0ooo0 t

ft
c

6
1 *£ bn

vV 0 now consider the integral of a F 0R*? 0 and pr&ve

Theorem 2 0 ? r,
Let x^ be a F 0R 0P C. with variance ot 0 The process

cic /6or i Con C
j[^=f |x di? Is a Gaussian process with mean zero and oo»«9totlon

o

fuuotioa - £> max( t 0
1* j[min(t c t* }]* - Slminttyt" )]®*.

The integral X^ exists l o i 0m <)
by theorem 1 0 5 0 By lemma 1 0 4

we have S(X^)s 0 and by theorem 1 0 5 for t^> t

t t t t t
y

o J Jraint t 0 t'

|

d^dT^=o Jld's-jV j\ j\sV
Q 0 ® Q 0 %*

t't2

Each of the approximating Hiemann sums is normally distributed and

that itself is Gaussian follows from the following lemma®

Lemma 2 e 7 c Let xn ^ (x^0x|0oodr xj) be a sequence of normally distrX

touted vectors with mean 0 and assume that alfn oxi
x J ™ @13 ex^sts 0

If plim x. s x than x is normally distributed with mean zero and
n

covariance matrix g
11 o
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Proofs inequality (1 0 5J may be derived also for vectors if we

interpret x <* a to mean that the vector a-x has non«negative com-

ponents 0 Lemma E c ^ then follows easily from the fact that for

arbitrarily small® and sufficiently large a

• Fn Sa+5| 8 £ > Fn(a-8} - 8 „

where f (a) P Flaj. are the distribution functions of x
ft

and x respeo

3.
Friction a! Tk e Orns'te,'* -U/fUnbcc l ,^>gef£ ,

We have so far in the Brownian motion neglected the effect of

the motion of the particle itself on 0 If the particle has the

momentum x^ then the random impulses will have a mean value proper?*

tional to x^ it Self 0 This leads to the equation

!

X
t+T= Vt +*t,T

(2*25) 1

ft
o*

a
t * \ <lfw t > 0 f,

E(x
o Js: 0

wh»ro again s. • la normally distribute with mean Tain© zero and
>0 *

variance* or^ and is independent of and of if the intervals

{t%t'+x*) do not overlapo we shall further assume that

xA Is normally distributed and that a is a measurable function of
* x

T C
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It follows from (2 0 25l that

(2*26) J

" XUx^ a
TsSX

t * %‘W
E(x^ ^ |x.

) s a x^sa^ & x*Ut1+t2 t t1^t2 * Ti T
S

15

Honoo ^ s a^ from which it follows that a^s $
ax

and since a < 1 p a = e~^T , B >
% T p > 0 c wo further have from (-3 0 25}

and ('2
C 26)

a_ e* _ + s.
T2*** T1

"" ****!/

*

2
® fe

t.rT^T
g

Thus

a! a? a? s a? n 2 _2 ^ 2a o $ q
t
2
t1 t

2 Vt
8

t1 T
S

or

«°V°v
(1-a^j^l-al js (l-e’

<’^Tl
)^il-*“

to^Ta
) , e

Therefore

(7, 37) a®*®^X-®" 2PT
) r p > 0 ,

Moreover from {

2

0 25J &n& our assumption about
^
wo have

jJ2 0 28} cr^ s a^a| * cr
s
( l-o“ s PT }

^ If x approaches infinity than of approaches 0 That is
xUx

to say* if the particle has been subjected to these random impacts

for a long time then the distribution of its momentum approaches a

8toady state 0



*
;

.

*

.

.

.

'

*
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We shall therefore assume that the process is stationary*) that

Is to say0 that the joint distribution of x, 0ooo0 x
t is the same

as that of xt jv. hf) 0 00& 3 Under this assumption of s
1 V x

%

and it follows from lz 0 27) that

(2 C 29 J o' y » a o2s a2 exp(-pv) for t > 0 f;

t t*ir
T

/

The x^ process c satisfying the assumptions listed above* was first

considered by L 0 S c Ornstoin and G 0 E c Uhlenbeok* As will call it

the Ornstein-Uhlenbeok process (abbreviated 0 o y t{
P 0 ) p

We next consider the process given by £2 e53)c

£S o 30» I

1
€S»

V* 8
^og t)/S|3

! *«. - 0 for t < 0
? CSSS*

sue have for > t

E(v
t
vy }^oh

Jv
g
3= 0

(2c 33.)
'

Moreover the ft ,, 0(, e v
t

1 n

the process is a F0R 0P0

for t > 0

for 0 <a<t<&' c

are jointly normally distributed., Thus

From the properties of the y*. process

we obtain



\

.

*

'

'

-

1

.
•

.

'

r
,

'

i

'



50

Theorem s ft8 a Let be an 0 o U oP o Then

(X) la continuous^

C XX j
x.

?

. is not different tables

(XXX> M
ftb

and exist for the x^ process and it is strongly

continuous^

(XYJ the following equation —> derived from theorem $

^

.holds m > o

c*o

(

B

0 32) P(e?\
T < M} ss 1- 2 JU//2j)exp(-xB/H) dx

«oo<^<(l/2p)log t „JjL
' <r/i"

In equation (2 0 32) we have written

P (y. < for P(M . < M)
&<t<b *»

w 1 ** - s

where 1® the maximum of the process in a < t < b c .

This

notation will also bo used In what follows,,
i

Equation does not seem of great use as it stand

s

0 but

we can obtain from It a bound for P (x < Mj as follow®

P (aFx « M) <. P («PV. < M) < P Cx_ < ***P*lj •

t, -- a a '"S
l==5' " ®se

„ esmt * «&> <=> ^- @i> <?<?
*lSTS*s





and thm

5l

(2 c 33j!

/*; * /o
P (x T < M) > 1- 2 f 4= e”

x /d

Tl <•.%<*%oAf00 c=> #5

dr

•ft-*

t
Theorem a 0 9 0 Let x^ be an 0 o lT oP o The integral I^s jx

(
it of this

©

process exists then X 0 ! 0m 0 end fear t
g > t ?v its ©©variance function

ia given by

(8,343 R* ... - SC
2 r ~02 -,k' -o -i

B ,. = mrnm I 9 *« <>2pt,”l-*‘ “

*1”S o2 1 A 9

(

8

0 35 3

is a F 0R 0P tt

Proa £: For t„ > t.
' 2 ™r* j

t© „ „ ,a a r
* ® r ®

®t** P*W * XfX
0

have by theorem 1 0 5

s 0

t

2f*f
%«, <!»

© ©

dT
l
fi,r

2

<$» l$*

15 -fa
** <n> 0 f \ ,n ca> ‘#“5

jj

r @ 2 1
•5*0

,

0- T
dT

2
4,f

l
1

2 r 'X
<rs

e

2
J
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anfl. for

EUt
-X0 )

2
=

|sp«'P*+pt--l) ,

A straightforward, calculation gives for t
g > tj > > 8. g

C 2C 36 }
1[{X -X ~ x

> 3

"2 *1 °2 *1

ps pa -ptj -pt
o -e ue ”-e

A
\

-% 2[(x
t
-z

t
jUB

~x )]

P
x "2 l 3

8
i

Uein? FU/.J1 “ s(x i -.U«o
X
8*fe ~S )f'a * h-?»o "•““-g

we obtain from lemma 1 0 7 and (2„34 j

20

(2„a?i s«xtxg j

From (g 0 3fj we

f?. 0 s8)

P
[a if t >

E[(X
t
-X

t
)Cx -*

2 “'l 2 1

if * <

0 * ~ ~ (

0

~ - S£ll
g
^-X

g ^|
(Xj-X^
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It Is easily sear, from th®^Jgc.3SJ and (2 028) that

(a 0 35 )
B
t P<W ~ X

Q

has th« property that fos? tg > tj_ > s, > the difference

Ba. ®° B^ is independent of B
g
- B

Q
- aM sine© is normally die

tributed it is a F 0R 0P 0

From iz 0 35 }
w@ have

Ihu@ for ©very function fit) for which the operations indicated

b@l®e have mis&aing^w© hav©

t t tS_, ..

'fCtj te
t --fsjfU)^ at Jfltj fiB

t
a a

W© may writ© ^B 0 S^| as a stochastic differential equation

Cg 04Q| s - px^ &t e .

In the form Cs o'40j a stochastic differential equation too moaning

OT©a if th© procesa©s are not different iable 0 This interpretation
i

1

.
j

of a stochastic differential equation is du© to J 0L 0Boob 0 Th© ©qua-

tion Cs o 40| may to interpreted as th@ Ion of the motion of a

partial© (x^ boing its velocity at time t$ subject to fandom impacts

when the frictional for©® ie proportional to its velo@ity0 On® ©ould

also interpret x^ as an electric potential subject to random changes

when the d©or@as© in potential is proportional to the potentini Itself
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{Thus we may consider a oqjidenser which is charged by a randomly

fluctuating current and at the same time grounded through a resist

anoo

1

0 In short 0 ©action (a o40J describes any situation in which a

quantity is subject to random changes and to a systematic decrease

proportional to x^ iteelf c

i
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CHAPTER S

ESTIMATION OF PARAMETERS

In th© preceding chapter we discussed Markoff processes ^ we

shall now apply our results to obtain estimates of the parameters

determining these processes from observations. In our estimating

procedures we shall assume that we have at least one curve at our

disposal registering the values x^ for all values 0 < t < T

Actually it would be sufficient to know for any dense get in

this interval^ This procedure may not seem realistic sine© we never

observe the process for every time point
o

Every method of regis-

tering the curve described by x^ will itself affect and In part-

icular smooth the path curve of Thus what we observe is really

a modified process a

However the methods of observation may be so refined as to give

us the value of x^ in a large number of points and at any rate the

variances of our estimates if obtained from discrete points may alf><

be computed

The F oR 0P o is completely known if the

tejR.

the constant
Eix

is known
0

We first discuss the estimation of the parameter o of
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Theorem 3,1 If x*. la a F.R dP 0 and if it Is known in a dense set

in an arbitrary small interval
9
then it is possible to estimate

the parameter o with arbitrarily high preoieion.

ftoofi Assume that H observations are taken in the interval 0
€

let t g T/21 and x in 6 Q,X 8 E 9 , , *

^

the sample value at the

time nx. Since x ia a F eR eP 0 the variates
V

x
(n.l)<e ^n-ly^T

a /r /x
8 2s 8 ( ® «Hj

are normally and independently distributed with mean %m*o and varl

o 0 The maximum likelihood estimate of the variance of Jn Is there

fore given by

H • N
i3 0 l) ° 8 f * J^l

' Xbv~ x (n~l)V j^$/
xnv~ x (n*lJv^

v/e have Ease, Moreover 5$ /o has the ohi»aqu&re distribution wi 1

K degrees of freedom,, Its variance is therefore gK e Henoe ^ has

the variance Bo *
fB and this ©an bemad© arbitrarily email by UMi.

I large enough 0

Thug if it were possible to observe the procesa completely in

any interval^ however small, we oould determine o accurately.

Actually however every registering instrument will introduce a ti

lag and will thus smooth the process,. We may Infer however from

our result that the points for which we read the value of x shoul
t

be spaced as closely together as possible*, That is to say* as ole

as ie consistent with the assumption that the values of x ~x
t*“f t

obtained still represent the actual values supplied by the £ ,
R

0
!*





5^

More generally we prove

Theorem 3 e 2 If y ,
is a stochastic process such that y

t *5
Z. * f

{

t

where x. is a F,R 0 P 0 and f{t) a function of bounded variation
t

satisfying in (Q S
T) a Lipsohitz condition < M for

some M^then it is possible to estimate Vne parameter o of the

x^ with arbitrarily high precisionF.R 0 P

Fro*£: Let again t s T/H and consider the sample points x^{m
•

H ,
. . \Z

2 8 ..„ eH). Denote by o « ^ J_
yRT °yUr4) .T. ...

® n«l x

9
I

$

Then

%> “ pj

tx,jT
= f(nt) = f(n!It )]

8 .2

CT

Her© and in the immediately following formulae the summation is to

be extended from n-1 to n* B 0 We write also n^l for (n®l) to

simplify such expressions as x, „ x
s

, y, ‘ s or
(n-l)T n4t (n-lR n~X<¥

f[(n«iW] s f(nTix} 0 Then

-ft
Z[«lax) - KEltJ

-i- 2[f(n^)= f{n=l *?} l
2

}
2

CT

We expand the right member of this expression; a considerable

simplification follows from the assumption that x is a F.R.P,, we
w

use in particular the fact that 5P£~2ELs is normally distribut
/or
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X
with zero mean and unit variance and is independent of ,

mT
i

;
...,

JmL£
0 %

for n 0 Thus we obtain

El |,
2 „i + 2 + 2r [f (n-t) - )]

3 4 r [f(cT ) - f(n^Ic ) 3
2

o'
" i • 1 * 1 t- c X

i»

“ O X

jg { t [f(nT)
0
” f

-
5-1

y

and

Etl) - i»i.T
[f(nT)

o c<?

Hence

E(c - o)
2 - -S2

2
4. is y [f(nx) - fin^T) I

2
* _L (y [f(nx) - fU-1 -elf

)1
H H2 T

jjS- It,
.

J

Thus o converges in the mean to c and o»c is stochastically of

the order 1fj§ 0 In fact E(c-c) 2 < JtSU + iS MV + i(M¥) 2
y ~ E Jr N*

g

Here f{t»T) - fit) < M and ¥ is the variation of f(t) so that

also ¥ < MT where T is the length of the interval.

Thus in estimating the function f{t) w© may assume o to be

known*, if we know y^ in any interval completely^

tf© shall discuss two examples of the function f(t} 9 In the

first we assume that

fit) ^ at





(Since we can always consider the process this assumption

is identical with the assumption f(t) g at * b e ) We then kno7

that the y\ are normally distributed, and independent in non-

over lapping intervals with mean at and variance o% 0 Hence the

maximum likelihood estimate of given the values at time

0 9 % 9 coo* becomes

a 1
1 z( ya**

- y
n®1! v

)

v-s - yQ

Its variance i®

?or the second example we assume that fjt) is given by

m
fit) sJZ Cameos Jt p 4

sin ^t)

J«1
J *

and that the values of y are toomx in ths Interval (0, Elf) ani

that y„ * Q„ If we 4ust choose the values yQ » y^» y^. , yJt

where nv e g 7J"» the maximum likelihood estimates of the and £?.

will be given by those values, which minimize the expression

& m
ZL {yiT - G.[003 i^v - eosti-l) Jv]
i-1 4 1 AT j»l *

-r C fain ijv - sin{. i-1)

i-l i
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Henoa the maximum likelihood equations are

n I v/,.a .

(3«2 0 l) 21 (ylT
- )[00S ik? « ©os(i-l)k?]

n m A
s 2 I ou[©03 i^T“ coe(i-l) Jt][oos ik.T~ oosti-Dkr]

1*1 5*1 «

a m A
^ F ]T s«[sin I^t

-

sinti*-!) Jt][oos ik^ - oos( l-Uk^]
l»l 3-1 *

k «• 1p o c © 9 ^

and
n

(3„2o2) E ty
{r

- yp-j.j ) tain ik-r - 8in! i-‘l)k<S

n m
= L L
ui

JT d [ooa y-s ~ oos(i-l) JxHsin ik-r - aia{
3

a m A
t r. z p-csm y*

i«l 4*1 J

- aln(i-l) Jt][ela ik-r - 8inU-l)kr]

k s£ 1, 3# e a o # m

If w© dirid© the first of these equatione by t and let % go to

setro* we obtain because of the orthogonality of .the sine and cceinfe

functions

zr
k

|
sla kt dy. ss cl* l sin *kt dt ^ cl irk

vrt & k fcV •£
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The rules of calculation for the integral in the left member

of this equation are completely analogous to those for the ordinary

Riemann-Stieltjes integral. Integration by parte on the left

gives therefore

j y oo s kt dt » a^Tf

and thus

(3.3,1)
A .STT

s
ir J H cos kt dt s . 1

71 !

zr
sin kt dy^

0

Similarly* we obtain from (3.B.2)

Err
2 -

k j’ oo s kt dy 2 f k* pJ
0 *

Integration by parts gives again

(3.3.2)
a

+
V 8ia ^ ^ * A C'

C06 kt d7
t

The integrals in (3,3.1) and &3 0 3,2) are to be understood as

stochastic limits of Riemann sums* and it is easy to see from the

corollary to lemma 1.7 that these Riemann sums converge in the mean.

From lemma 1.4 we see therefore

E(\) * C* , E(g
k

) s ^

and similarly from lemma 1 0 7
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o*« sfct n® 1

4

8in kt
i

6111 kt
j

0 {(y* - y* Hy+ - yt )}a
fc

T ^ 5^0 1J 1 3 \ t
i.i “4 S.i

5f*0

nJaNr o. - ra&xj t^ * t„
|

and 5, s maxj t . - 1
4 | .

l i sj 2 j'-l

Since the increments of y in non- overlapping intervals are
w

independent of each other we havs

so that

( 3*85 %
and similarly

(^»9) °1 s
ip

Further

(3.10)
ft

s a
p 1

Tc
at Te .£,

Ca * s 0
“k*3

*

) singlet.
c

£ir 9
f sin^kt dt
J
0

= 0 for k Z

Frc& lemma £ 0 6 we see moreover that are normally distributed*





Suppose now that we take observations in the Interval {0*

so that we have

*z
o. ii) f( t) 7 [a^ cos 21m^ sin r

2im-|]

r>

wo put .an yj - yt .

<*"T> « ^ «
xhofi

I & :

- *
o

2

0k

»pv»® maximum likelihood estimate a and B?. then oeooaie
iw

A

IS

1 ^

fE
t A

o,_ 88 -
•sag,

J
sin(27f&

0

rp

A
Pk

~ 4-

|
eo-a (2rk

o

2
0-^

&

ID

v
*?S _ *2 n <0

Pfc s-12 **

v ;
-

i
ors«sTe*iWrifi>^-5f^»"r«» a «s£ 0* ,CTa a s& €f>& £ » t -'5-

V
a, a.
k t ?y P*

u- a confidence region for the avp 83p M #





where the sum runs over those terms (a^~ a^) 9 ( p ) which are

not zero by assumption, and $,
2 has the % 2-distr ibution with the

number of degrees of freedom ec^ual to the number of terms in the

sums on the right. The estimates a^f p^
are consistent in the

following sense. Suppose f(t) is given by (3.11) and we observe

y^ in the interval YT where V is an integer. We then have

^ 008 2jr"Tr^ * Bln
3

so that

2
Cf^

®k

2
a*

Pfc

Y To s To

2 rMk* 3 JT^Vk^

and thus piin cL = gl . Similar ly p plim h* 3 0

Y-f>co
s * Wes ' * k

Q.4.P .

We now turn to the discussion of the 0„Uo £„ given by (2

and prove

Theorem 3.3 If x^ is an 0 o U 9 P o determined by $ha two parameters
'ft

and

2
or and if the values of x. are known in a dense set in any interval

%
2

0 < t < T e then it is possible ,to determine c p with arbitrarily

high precision.

Proo^ : We form with s T

(3.12) J)
i r vXnT "

^rt”! *r
'

we have E(D) * JBg5(l-aJ - 2o
2

.

For t-I^O this converges to 2a p,
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We now compute the variance of D e For this purpose we shall

need the value of } with t < t 1 < t ,f < t HS
e

We have for t < V < t 18 < t 908 on replacing x^*, hy

o f zf * e
t^tm -tn &&& analogous transformations

E(x
t
x
t
,x|,,) = x

t ,
e
t »

jt
n.t <) J

2 ,
\ / -» 2 » 4

s a
t r,«t 8 ^ * aV ~t

^ ~ a
t w“t 9 J °

and

E(z
t
x?.i * B

C
x
t
lat*-*

x
t

* e
t,t»=t

,s
3

= »t*-t
E(zt ) + »*•-* E(x

? ) <r

‘i(1 ° a
iS»~t :

s c^£3a^i_^ 3a^i«,$ •= s Sa^» = ^«

Thus

and

E
^xtxt sXt n ) ~ a !>t"~t 9 a

t 9 “t
4 at®®t^" a

t w®t 3 U

4 2c ^ a t 3 -t
41 ^a

t w~t 0 a
t f, -t^

4 gs ° ^a
tm-t" a

t 3 =t
41 ^a

tm-t ,f at n-t 9 a
t 8 ~t'

As a a t*»t * Sa
tm -t r' a

t n
=>t'

or

13) E(x
t
x
t?
x
t ^tm )

s a exp r=p( t re «t n*t 8~ 1 )1 + Z exp£®p{t w
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For n < m we find easily

^3xax" xn=I t
' 1iet° zm=I t ]

E <
(
* x

ztt“
x
n=l t } ^ £

(a
<t”

1 )x5=l t
+ E

S^'r i t
3 *)

2 °
1} CE(xnx

J4=Ix 1 “ j4=1t ) * ^*£=It*S=I x ]

2 a4 (! a^)]*

From (3 0 l3) w© 838 then

$H«- xn^X x ] 8(xbt “ xi^I t ]
*
J

2 4 -3B(a~n-l)T =8t «BT[2 (m-n) -1]
T “l) 0^|U 2 e

1 - 2e ’ -4©

«2B(m®n)T
1 2e + 2 t 2 a ! •

Since a & e PT we finally have for m > n

(3 0 14) #* - Z<=> JL—-=» ; • X—-b*
n«l t mT m~X n

(l^a.
2 "•28 (m<:»2i'*l 5 x .

) 9 ' 1



i

* • %

V



Farther

E(X;are» X£SI T
4

h; lift, «=.

IT

+ €J “*==3

n^i-r - n rai *?:

4

2 2 _ 2 ^ 2 §
l)

4 6(a
T
- X) Bixjq

T
)(1» a“)(T 3a U~&

T
),

3a
4
[l

4 ,
Z 2 2,2

1) + 2(a « X) U ° <•

3a
4 2

that Is

L. )

^ 2 ( X - a® ) S X + &
r ) ]

*

J

4
* 12 c

4(l~ a
T ),

SVom (3,125, (3,14), and (3„l5) wa have

4
j
a _|_g (1- a^) 12 H 4H(H"1 ) 4 ( 1 - a,,)

Ml rri<=>n«a

bo that

£
_

O’ «

D

4cr
4
d”> ajtl_ fgH + (

1 » aT )

2 2p(m®n®X)T 1

J
f

now compute

I 7 <*'>“

$38 MzffcH
Y_

(»v”
n





as

By using the formula for the sun of a geometric series

it is easily seen that

•I ^4

L m~n
b

3 1 - b
H

*° “ ® C

1

88 b )

hence

A e
3 1 • &>

23

i-a2
(1 = a2 )

2

We substitute this in the expression for cr and obtain

B
4 cf (l~aT )^ f E(l«a,r)

3*t L

1-a*

1*sl (l*aJ 2
j

or

f3 0 l6)
£

4c
4
(l-ax )

2
r H-l
u
I

2 2H
<? “i

(Lap

2
Equation (5 0 lS) shows that a" can he made arbitrarily small by

making H large enough, In fact

lim qu s 8 B^ and lim E{J>) « 2 8 /

=&rn WTtr T)
r ' V3-^qo i3 D 2T-£ao

£(D-2 Pa
2

)

2 = a
2 4a 4 (I~£!2 \6

>)

also





and

Kjysu-apoSg S 2//ei [iisl!! = p ]

and therefore since tsT/K

lim Ef/^D ~ 2p03Q” 0
Tf“*C®

£
proceed to prove that the limit distribution of </$( D - 2($cT^

is normal. This may be seen as follows:;

nZi
x V5 fe

H~'
[(eT-^)x

» g 1
' nT^TJm~ ' ht ?, t<

SBSS^SKtA

or

, t „ n _ i ^ 2 2 (*T-1) y _ 1 y gnv. - ;.
(3.17) */® % L,

7
'a%

*
r L 'ni'n'r.T ' ,/W I—

ti-l J°

“nt~aT,t ' 0

The last sum is a sum of independently distributed variables

all with the same distribution and converges to the normal dis-

tribution by lemma 2 0 X 0 Thus the normality of the limit dis®

tribution will be proved if we can prove that the first two sms

in (

3

0 17) converge to zero &
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tfe therefore put

(3 0 18) ~ 2 x^ and % Q & -JL f x £
v_1 ^ * V nT Z % o nT nT * ^

»Ys ha~e by (3 c l3)

4

2(zf)
5 t*

* U^1 '~
[5

2
* 25 * 4??r*Pln-n)T

] #
3 JW

The double sum in the bracket oan be easily determined and we have

E(z
i>

^(a^-l) 4 r 2(l*«w)
5 <*¥ t 1 -a'

i

H U= a2)2i.

Clearly lim E{£, ) ® 0
5<“f>oo

Fur ther

,
a,

E(z
g

)

*« a //=* /

i jsu2 *i^L „*u-4)
f- nx ^ *e
o

and therefore lim E(2 0 ) = 0 ,

5~#oo 2

Therefore l 0 i*m. 2^ ~ l 0 i 0 aio Z ^ 0 so that
w 4 5 oo ^CD

h'-t

5 oo

d - •% £/H Si x





n

and since the second term on the left is normally distributed

2with mean 2 it follows that 2j3a^) Is in the limit

4.2
normally distributed with mean zero and variance 8cr p

2
To estimate a separately one might use the estimate

*2 \ 2 .

Q = -m J
ax‘

A
o

b

Its variance is given by

hT T

-h I X E (xtV )dt d4 ’ * °
T2 o o

4

%) f f e
*' **

««•<* . /;*
.-***'-»>«

* O' t

2<r
4
+ g

4
(e"

S3~- 1)

pT

A
If p.T is large enough compared with a" this comparatively simple

estimate may be quite satisfactory.





CHAPTER 4

THE GENERAL DIFFERENTIAL PROCESS

W@ stoll, consider processes x

^

with the following properties

g

Cl} x,^ ie a continuous process (not necessarily

strongly continuous )|

2 >
L8t

„ X. C
, X 0 6**06

x° i *2* *a

Th® random Y&riablea

are completely

independent of each other if the intervals

(t1Dt^i1 } c (t 2l.li

2
+-v

£
) F , 0 , (

,(tnr t
n4-Tn J

do not

OTorX&pg

{3} Th® distribution of ^ is independent of t c

Prooeagas satisfying thss® thro© oonditions will b© called

differential processes 0 In this chapter we shall find a general

expression giving the distributions of x* _-ac* for all possible
rr % «

^<4/1
^ differential processes,, Processes satisfying equation (2 0X| and

assumptions 1 0 z 0 3 0 of chapter 2 are differential processes of

second order and we discussed in chapter z the special, case where

ac* 4.‘f~
z

fc

normally distributed*,

We stoll first discuss another special c&ee in mioh the

increments *»x^ have a discontinuous distribution* A prac-

tical example for such » process ia? for instance© the total of

insurfence claims raised against an insurance company as a result-

of randomly distributed accidents* ah important special oase 0

fundamental also for the understanding of the more general problem^-
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is that In which increases a randomly distributed number of

times within @v#ry time interval but each time by the game amount n

ft’© shall call such an increase a 8hot c

make the following assumet longs

(1} The probability jP^th&t k shots will occur

during the Interval (t p t^x| is independent

of t end of the number of shots that have

occurred up to and including the time t a

iz\ The probability q^
2

^ that more than one shot

will occur in a time Interval of length x

is of smaller or&sr than x0 la symbols

a

qf,
2

^ s o(t) or limlq^/T) = 0 o% x

o

f

pi^' la a measurable function of x a
m ^

vVe clearly have 0 if Xj*x9 — *

1

4

c l) 4°»
1 2

From {

4

0 1 j
and the measurability of It follows that ax

and since p^
v

* <. 1 we have a < 0 0 Moreover c if are any shots

to be expected we must haw a < 0 9 ss»]i where pi > 0 o Thus

{0) «. e-l« o 11 > 0U*2)
o
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We bow divide the interval {t*t*'r) into N parts. Then

for sufficiently large N the probability that two shots will

occur in any of the intervals oan be made arbitrarily small so

that If denotes the probability that k shots will ooour

during the time interval % -

(4,3) p
v
SJ

=(k)
[l ~ «cpl-££ {H-kj3 o(l)i

For 14 ->-09 we then have

(4 0*) p
(3t*- dlfei?™
*t k*

The distribution (4 C4) is the Poisson distribution* its mean and

variance are both equal to p.v 0

We next consider a situation in which the assumptions (1)

(k)
*2 if3)

regarding hold but where the increment of x+ at each

shot varies and has itself a probability distribution fyix) =s

and we shall also assume that the increases in different

shots are independent of eaoh other 0 If $-(x) is th© distribution

of the ©um of k independent random variables * eaoh with distribu

tion &(x) 0 then th© distribution of the total increase provided that

k shots have occurred ia $k(x) c Thus th© distribution of xt

is given by
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(4,5} P(xUT _X
t ^ -

00

Z
k*Q

with
for A < 0

for A > 0

Is the following we shall need the characteristic function

[abbreviated o cf 0 J

U.&) f^U) = E{8Spfii8(xt^ T
-2

t )3}

cr. th © distribution (4 0 5jf :
An er.»y calculation gives, if gCs|

denotes the c 0 f 0 of ${Xi

*-(•!« £ -
^

lVR }

*
Cgtsj]* 8* exp{jiT[gl»J ““!]}•

v ko X t

The distribution (4 0 5J is called the generalized Poisson distribu-

tion.

,tfe return now to the general differential process. ^e hare

at,T® s
t ci* *t*jf i *#ian n an

Hence r lfdL(s) denotes the o,f Q of 6. we have
A 16 - tot

f 4,8) # f
Cs? = t*f xCs> 3

1
"

.

n

Froa the continuity of x* it follows that lim 0_ A<r (s) as *3 is) c
* &£*£»<& 1

T h' iB (4^8) ispli 6

8

U.9? 0^5sj = 10^(8

_



'
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On the other hand every family of distribution functions H^(x)

whose characteristic functions satisfy aquation (4„9) is the dis-

tribution function of the increment of some differential process,

Hence the general form of a differential process will he found if

we find the general form of characteristic functions 0(sj that

satisfy the condition that for every % > is a o 0 f o A

distribution law whose 0 o f o satisfies this condition is called an

infinitely divisible law (abbreviated* ! 0d 0l 0 j 0

Oar main result will be the following^

Theorem Uet ^f(sj » log 0(e) „ The function 0{s$ is 0 o f c

of an infinitely divisible law if and only if

<$» oo

(4,10) ty{«) a iea ? (e
,i0X - 1- 4&(x;

~Q© 1*XS X^

where a la real and G{xj non-decreasing and bounded and the inte-

2
grand is defined by continuity to be-,® for x«G 0

fundamental for the proof ©f this theorem is the powerful

continuity theorem of P 0 Levy 0

Continuity Theorem 8 Let {F^lxj } be a sequence of dlatrlbution

functions* the oorresDonding sequence of o 0f 0
5
8 0 The se-

quence {Fnix}) converges to a distribution function F(x) if and

only if f Ce) converges to a function fls) continuous for bs 0o

U8J Theorem 4 C1 is due to P D Lovy fsee* for instance* his "Theorie
do l' addition des variables aleatoires vv

9 Cauthiers Villars
P&ris^XSS 1^ p 0 180) 0 The following elegant proof is due to
M 0 Loeve* University of California rubl 0 in 3tat o0 vol 0 1*
W0^ 0

53-88Cl950j o
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Far & proof the reader is referred to H0 Crambo Mathematical

Method© of Statiatloso 10 jQ 9

Via shall need this theorem in the following slightly mor®

gonsrale fora 0

Corollary to tfog Continuity Theorem s Let {F^lx|} be a sequene©

of bounded monotone functions*, Fn(~oo )
=s 0 and let {fa { s ) } be the

sequence of their Fourier transforms

U«U» t U)* / e
lM «F U) •

-00

The sequence {F (x)} converges to a bounded monotonia function

Fix* and lim [F 5
-

F

(-o© j] « Floo 5 - F(-o» ) if and only if
« »

the sequence } oonvergee to a function f(s} continuous at

a ss 0 0

The corollary follows easily from the continuity theorem in

observing that

V°J* X «.U, - vn .

Hence the variations V„ of F (x) ©onverge to f(0j o If fCQj^Q
a a

then «£-«—» converges by the continuity theorem to a distribution
T

*a

function H(x) aM Fa(x) 0 onverges to Fix) HixjfCO) 0 If f^OjssO

then lira F_{x) - 0 and the theorem also holds 0

n-M» a
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shall also need the

Let {F (xj) be a sequence of distribution
AA

functions and iim F (x} » F(xj( r Let further g{x) be everywhere
n~t*oo “

continuous and assume that to every e > 0 there exists an A such

that f |fi(i) j
AFjjfi) v e 0 Ih«n

m &a
AGO ‘ ^*5

lisa f gU] 4F (xj « f six} O.Flx) .

r*

\

%
*

For a proof of this theorem the reader is referred to Cramer

*

®l>o ©iSoo p 0
fM 0

It is easy to verify that the conditions of the HeXly-Bray

theorem are satisfied if

lim [F_(oo
j
~ F (“COJ 3 s? Fioo j

— F(-o? )

and if gixj is bounded 0

$© ©hall first show that ©v&?y function T$r(ej given by (4 o10j

is the logarithm of the 0 of o of an i 0d 0 l 0 For this it will be

sufficient to show that ®vsry fyis) given by (4 o10) is the logarithm

of a 0 o f o sine© it is obvious that with ^( 0 ) also idJLi satisfies





2 q see this# consider first

Uoi2)

with 0 •; £ <, 1 0

I I®} may ho written as the limit of Riem&nn-StieXtjes sums
w

(4 CIS) Sk"^[>.k{# '"^-l) isjxjj.]
v

with

xk

Pk 5* >
~ 0 'xk^ 3 •

It is easy to v®r5.fy that ®13u is the Ooto of the dis-

tribution of & random variable which equals u with probability

oMo Hence on account of (4o7) we see that

l9Xy
Xt-le -U * is£>

X.

is logarithm of a ©
ft£ 0 ana so consequently is 0 Thus X^Js) is

a limit of logarithms of o c f 0
s i c Also I^ls) is obviously continu

oua at s*&G 0 By u£t$ % $ continuity theorem I
g ( aj is thus the

logarithm of the a 0 f c of a distribution funotion a By the $am®

theorem also



%



80

IAb} ~ Xim Io ( 8)Q J >e
iax_ , laxAJSLj 1*^1 dG(x)

la the logarithm of a 0 o f,

But dr(*)
1 <»

ssiaa+jf (e
isx ~l~ -iSS^) d&Cx) *t I

Q
(s) + isa -jp[G(0+) - G(O-) ]

«=* qo x

Is obtained' by adding to 2 (a) * isa the logarithm of the c o f 0

of a normal &istrlbution 0 Thus SJtCg) is th© logarithm of a o 0 f 0

Thus the equation C4 oX0) is sufficient for fyls) to be the logarithm

of a © 0f 0 of an i pd oX 0

To prove also the neoeesity of (4 0XQ) w© need sot&t&I Xemmas 0

hamma 4„l n a|xj and a in (4 o10) are uniquely determined by fCa3 0

»«fe consider

1

U aM) &Ib) « X f>< 8 > -^2^b|i8^Ij dh *
o

-#>0$ 2 00
'

j e
i8XU- ^ ac-{x5 * j* ?

ie* &*<x)
-do* x *®oo

where
X £

(4 0l5 ) $(s) * /Cl™ &i§I) At®. aafy)

-a>
• y J
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4

It is easy to verify that (1- SiSt) is bounded above

and below by positive constants,, Thus |(x) is monotone and of

bounded variation,, Xh© Fourier inversion formula determines uniquely

${x) given e(s) and thus also

x
2 -1

U 01&) G(x) ^ f &f){y)ur y

Finally a is determined from (d oX0) o

Lemma 4 0 2 0 If â (e) determined by G
p
(x) and by a

n
converges uni-

formly in every finite interval to a function b(e) continuous at

the origin than Aim £ (x) =2. G(x) and lim a =s a exist and
n-^oo • n-*>o»

bdsjss ty(s) Is determined by a and G(x) by equation (4 C XG) C

i^roofg Frcm P 0 Levy 2
a continuity theorem It follows that

b f s )

e
lt

is a 0 of c hens© everywh<sre oontinuous 0 Thus also b(s) 0 it®

logarithm,, Therefore* eal©) JP
defined by â {s) by m'sane of (4 014)

converges to a continuous funotion 0 .
By the corollary to the Continu-

ity Theorem it then follows that Lim $n {x) = ${x) existe c More®
n^oo a

over |lx) is non-deoreasing and bounded,, It follows from the

Helly-Bray theorem that

Lim G (xj x. Lim fd,. ?A£X.)

*
&$niy)

-go

x
i ?

= fii-alsaf
A

a$<y) - s{x)

-a? * i+r





8B

since the intograni Is bounded*, It further follows 0 also from the

HeXly-Sray th sor-3m D that

*c©

11m I ( s ) — Urn f (e
isx lex

?)
u
s- »y*>

*#•00
A / isx

=s j (

e

dG(x) a* 1 (b) ^

'Finally It fallows from the oonvergenoe of ^(s) and In (e) that

also the sequence {a
Q } must converse and thus b(s) — ^(s) 0

The converse of lemma 4 0 2 follows Immediately from the Holly-

Bray theorem 0

Lemma £
p3 0 Th« 0 o f 0 0(@) of an i 0d 0I 0 is everywhere different

i

from zero 0

Contidor {0(3}*^/^ We. have lire ~ w(sl
n-frco*”'

where w(s) «s 1 for 0 (b)^=O and w(g) =5 0 for 0(s) ~ Q 0 By
f . •

Levy's theorem w{g) Is a 0 of o Since w(s) - 1 for s and w(s)

is continuous being a o 0 f 0 we must have w{s) =. l everywhere 0
\

Thus, 0 ( s J ^ 0 everywhera 9

Lemma 4 C4& log x » lim n[x^n ^ - 13, x > O' n Lemma 4-4 follows~~ n~^oa

immediately from the rule of 4® 1' Hospital,.

Lemma 4
? 5 0 If 0 (b) is the o 0f 0 of an i 0d 0l 0 then there exists

a aeguenoo of functions ^|x) given by (4 o10) gush that

log 0(g)- lim
a -*oo a
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Proof g W© have by lemma 4 C4

log 0(6} « 11m n{[0(8)] ll/n) -1} * lim ^ (s)
n^co n-^css s

uniformly In ©very finite interval of s since 0£s)=£o with

*00 x g
&
n * a J £~*jpr ^

Ga !xj « nj dFa {y) 0

Hare F (x) is the & c f G whose 0 of o ia [0(a) 3 a

•Proo£ of tha necessity of {4 IQ) a By lemma 4 03 0(s)^EsO
4? hence

log 0{s) is defiiied everywhere and continuous 0 Moreover

log 0{a}^ lim &.(s) uniformly in s with Ir ( 3 ) given by (4 o10) 0
&-f» CO M »

But by lemma 4 0 2 lim ^n (a)s 4r(s) where ^(s) 1 b itself deter-

mined by (4. o 10) o Thus theorem 4 01 Is completely proved 0

From our proof of the sufficiency ©f equation (4 o 10) follows

the following corollary to theorem 4 01 0

Corollary t© theorem 4 0 X§ If x is distributed according to an I 0d o£ 0

then x s* y * a wh@re y is normally distributed and 2 is distri-

buted &e Is the limit of a sequence of finite sums of independent

random variables each of which is distributed according to (4 c s) with

V

0 for x < 0

1 for x > a
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Theorem 4 a Z a Let x.u be a differential process of second order r

than ECxfc*T~xt^
251 1' m VarCx^^-x^) » t where m and g^ are

constants independent of t and t 0

Froofg het ty^Cs) be the logarithm of the o c f c of x^^, - x^ , From

(4 C9) we see then that ^(s) t^(s) where ^{e) is determined

by (4 ,.,10 } 0 Therefore ty'(O) = v^[(0) and ^(0) =* ^tx(O) 0 From

this and from 0 )
- iE(xu<r -xt ) and t^O) = -VarU^-x^ 5

we see that tho iamaa holds,

.
The estimation procedures in the case of a process given by

(4 04) are vary $impla 0 The parameter to be estimated is u f its

maximum likelihood estimate is X-ffar0 the number of shots observed

per unit of time* and the variance of this estimate is ^/T 0

If the process is given by 14 0 5) then the increments observed

are a sample from a population with the distribution ${r) 0 If
»

$lx) is given in parametric form then the proper estimation pro-

cedures are those appropriate for estimating the parameters of

|ix) from the observed sample of increments*,

t

r
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CHAPTER 5

DIFFERENTIAL PROCESSES MODIFIED BY MECHANICAL DEVICES

X 0 Filter effec t.

In registering a stochastic process the registering device

often spread® the affect over a certain period of time in such a

way that an increase occurring at time t s* 0 will produce an effect

at time t and the observed value 0 or the output process,, is obtained

from the superposition of all the effects produced from increases

that occurred in preceding time periods 0

If we let y^ be the output process and x^ the input process

and assume that the effect is proportional to the increase we then

have

C 5 yt s J f(t -t) d*
f

c

-CIO

C». -»GQ>

where J"' |f(t)|dt and J
1

[f{t)J
2

dt and the integral (o Q l) are
- C£> - CO

assumed to exists
taking the upper limit of the integral ©qnal to infinity instead

of zm?o leaves the possibility open that future changes will in-

fluence the pre8.ezit 0 If the present is not affected by the

future
j> then f(t) will be 0 for negative values of t 0

In previous work we have often talrsn the point of view that

the process start® at some fixed timi T 0 However wo can also

speak of the conditional distribution "£ x given x^ for v < t

B
and thus f f(t-T) &x may be formed for every A and B and we

A*
T

proceed to prove



I

.
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Theorem 5 01 0 Xf x^ is a differential process of second order with
-v-CO

a weight function f{t) then the integral
j

fit- %) exists
- oo

loio^o

In the following v/e use a simplified notation by writing

H and \ So* H-H-x o

Proof of theorem 5 eXS tfe have

a p
E[ j fit-t) 5x

x 3 s lim
- ^ i

f

- lim Eft^U-'cfjU.-x, ,)
2

i 414 4

•
+ 5 1

f(t " T
i>

f(t ' T
i>

{xi' xi-l> (x4- 3C4-l)>

whare t,„x < t| <• l

Since x^ is a differential prooess of second order we have,

writing 0
| j

for the covariance of (x^- x
i~l^

(x^-x^)

0 if

°S(Ti- H~x' if is j

E(xl- xl-l? * aixi- Vl ! •

Thie follows from theorem 4 0 2 0 •





8?

Thus
B B B

(5*2) E[ J tU - T)dx,.3
2
= o

2
ft

8
(t ~ T)fix m

2
[

A A A

t-A ' t-B

« cr
2

j £
2
{t)<1x * o2 [ j*. f (\)dx]6 c

t-B t-A

Both integrals on the right of ( 5 o 2 5 converge to zero if A and B

converge both to *<&> or to - m 0 In fact* if m^Q*, only the con-

GO

vergenoe of J [f(t)]*dfc need be assuznedgthus by lemma l 0 a

B

l 0 i 0m 0 If (t - Tjdx exists.
AH> -00 J

v

A

We denote the characteristic function of the increment

~ a process by $^{s) „ From (4 09J w@ see

that

(5,3) fjU) =r exptt log ^(sjj

We compute next the characteristic function of y^ *>
that

is %C®3 - E(e'
4sy

fc
) 0 We have

|5,4j- * E{exp[is JfCt -Tjto
x ])

-CO

» E{axp[is plim Zf(t-rf S(^ 1
— xui)l

Aj~#*0 j
4 4 * A
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Stia random TarlabIs- in the exponent at the rl$it of Cg i;/4). converges

In probability to

i . tino t ion oonverges

*3 j' f(t-T)dx rt
Hence its characteristic

to u* Ja'j c »<e thus have

(5.5) i)
tU) «U» B{exp £is Ztlt- xplxj- *j-i)

Since the summands in the exponent are independent random variables

we have

i* (s$ - lira TTE{exp[is-f(t
%P® j

Th® characteristic function of x
t * therefore

the characteristic function of £lt->

^Llsf(t ~?||J » exp {A
j
log ^[sftt «tJ

(5*6)
,

log s|t
(sj- lim^Aj log fjtsftt- t*

4

so that

* '00 * 00

* J*
lag (^[afU - tJJAt * J*

leg ^[afUjJdt 0

«. w> « oo

The oharaet'eristio function of the joint distribution of

y,, 9 which completely determines the output process i@
*1

‘
'

*n

formed In an analogous manner 0 Me have
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fit t
ai»o»os3n J

= E{exp ! Js,

y

t + a y )}
''i f o « o? A n A *1 n j

n

oo
r%— E{exp 1 j tSjfftj.- t)+„..+8 -tj 3}dx J

-G2 z

The argument employed in the oase nsl shews that

<5o?J *lt- o 0 t o o ©S>
9 o o o 9 A

OP

S j* logi^LejfUj- 8nf{tn" t^)d 'c

It Is saen from (5 0?) that ri+ f (biPoooSI 8 )
and thus also

»1 # OOOJ A 11

the Joint distribution of y^ 9000? ¥% is invariant under trans«
1 n

lations in timo c lienee th£ process is stationary

If the distribution of x^ is Gaussian (a differential process

which is Gaussian is a F 0R 0P 0 )
then also the distribution of y*

oo

is Gaussian,, The variance of yv is given by ^ j*£f(t }j
2
dt

oS

and tae covariance function is given by

oc OB

(5„8> R(t - t
#

)
s E{[ f f(t-vj«Sx

T ][ J*
f (V - t

)

dx^ ]

}

a a

-00

£ r J Z
j* f(t~TT)fIt^T^dT £S. 0* j. f(T)f{t

#

- t+T^dT
00

114 ] A process is called stationary if the variables x. , o , 0 *x.t
l *n

have the same distribution as the variables x^ ^, 0(8 ,x f ^
1 n*

0
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This follows immediately by writing the integrals as limits of

Kiemann-Stielt^es sums and by then applying theorem 5 C 1 and lemma

X 0 4 0 Thus the resulting process is a stationary®® Gaussian pro-

cess with covariance function (5 0G) 0 If we put# for instance#

for t > 0 /

0 tor % <. Q
fit J*-

th©n we obtain the Q 0U0P 0 of Chapter Z with Styles \|£
*P

It may be seen from C5 0 7) and (5 08J that a larg© variety of

output processes may be obtained from .differential processes,. If

the differential process can be specified in parametric form and

the function f{tj la also known at least in parametric form then

(5*7) or in the most important special case C

S

0 B )
will give the

output process in parametric form# so that the procedures of test-

ing hypotheses about a finite number of parameters and of estimation

in the parametric ®ase become applicable although the difficulties

of calculation may still be formidable,,

la case nothing is known about either fit

j

or #f
(s) the only

way known at present by which some inferences can be obtained is

by the spectral analysis deoribed in Chapter 5 0

If |he variables xcalled/stationiA process 1

y© the /lam® dl^tributionlas the/variable®
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The modifying devloe may also operate in such a way that

the modification of the input process is itself dependent on pro-

vlous values of the input or output process 0 A frequently occur®

ring example of this type of modification is provided by certain

counter devices* which count random events 0 Due to the inertia of •

the counts device not all events will be counted. In particular

we shall consider two types of such devices 0

Type 1 0 After an event has been registered the counter remains

locked during a certain time t

.

Type After an event has happened the counter remains

locked during a certain time t c

A general and comprehensive treatment of probability problems

in counter devices has been given by *» 0 Feller $Couraat Anniversary

volume* 1948$ pp c 105-115) and we shall here follow essentially

Feller 5 a representation We shall assume that the input process

is a Poisson process described by (4 C 4) 0
*

*

Aet T^ $ i > 1 be the time interval between the i-th and

the (UX)st registration^ the time from the beginning* when

the counter is looked* to the first registration,, Tbs * i > 1

are independently distributed all with the same distribution,,

*Ve denote the time up to the (k+l}st registration by

Let I? be the number of registrations during time t 0 #e clear

~

ly have
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p.^t) = Plfl-k) == JflS^ < %)- <. t)

Let Tk s i>l have the distribution function F , so that P(Tv < t)

sF(tj 0 vie write moreover F C t )
for the distribution function

of Ha 0 Let Fk(t
J-= P(Sk < t) then

(5 C 10 5 pk
(t) « Fk_x (t)- Fk (t) #

Since r and since and
5
are Independent

we have
t

**

n+1
(t} = JFn(t-z| dFjsj ,

©

The characteristic function of the random variable N

is thus given by

qo * .
»

(Sell) P0
(t5,^^ e

lBic[F
k_1

(t)-F
k
(t)]

= P0Ct)
* e

4sF
0
(t)

Thus since p @Ctj P0tt) « 1 p we obtain

*(*) a 1 (e
4e -l& 2sis\lt!

#($ 612j •
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Henoe

(5 013J
{ S ^ X 0® £ — T_

tt (s) =
*

. =
(®

la - 1; k*o

= Fe (tl + f 9
is\^lt ~x)dF(x

“ P
0 t*)

* 9
iS jVs CBJdPU}.

0

In type 1 as well as in type Z counters the value of N is hounded

oo Vv
so that JL converges*, where V, » V- (tj is-the*k-th mom@nt 0

k&o * *

Thus w© may write

* 9? Yv v
^C©) °s X ^4i@j

kso *•*

and for © < X also

V 8 >=[| § is ...]
-L

isV«
~ C Y-^ *o* *$*

*3 + . %^00*1#

Henoe the constant t©m in the ^cpansion of ijr^(s) beoomes and

the aoeffiolent of (is)' 'becomes tYg-Y^)/2 0 From this ami (5 0 2*3j

we obtain equations for Y^ and Vg
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& .14K

%

VjCtj « P
0
(t) + JVj(t -x)dF(x) »

0

t

Vg(t) = 2V
x
(t) -F0 (t) jV

2
(t- x}4F(x) =; EjH

8
)

o

»Va begin with the discussion of counters of type i 0 From

at
(4 c.2j we see that F (t) ^ 1 - e where a > 0 ie the mean number

of events per unit of time 0

Further

Fit) « X- for t > ^ 5

F(t) ^ 0 for t < ?

sine© the counter remains looked during the time ^ after every

registration The first of the equations Cs-X^i then becomes

1~ •at for t x

{ 5 ^X5
} ^ -

1 ^

,

* ajV^(t - xje~a ^s '

1 * .

tfe compare (s 0l5) with the more general equation

for t > %

for t <. %

Alt
t

t\ 4- xio
-ajx-?) fQr t > t a

*

at
If HCt)<l- 6

“6t then A(t) < V,(t) 0 If Hf.t) > 1 -
100

|

' “=B
<Lr

than A(t) > Y^lt) 0 This Is certainly true tor 0 < t < v and can,

easily be ^iosm to hold for t <, (a Xh if it holds for t < n* 0y-w '/ r^j
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at
rte put Alt) 7S * o „0 Than

i
* o for fc < x

j !+&*£ ~

Bit \\ £i*S

i8®

1- Lae”
a ^ ^ for t > it

An elementary calculation shows that

H( %
J
< 1 - e~

a* if OssO

Bit) > 1 - •'•*at if e« sfj
2

irzTSsf

Hence
E 2

A V« £L

C5.,isi xdrf < V tJ i its? * sn+afT

It la also possible to obtain from (5 014) an exact expression

for Y|(tj0 H owever* this does not seem to be of great interest

since C 5ci$J shows that approximates V^C

1

1
very closely with

a bounded error whieli is small compared to Y^lt) anless a? is very

large c The exact expression for V-^(t) ie moreover very Involved

and hard to evaluate 0

H
For tha Marianos Bit) of H glvoa by B(t J » Yg(t) -£V^{t jj ^

Feller found the asymptotic expression

(5,17) B(t
) =

at

(l+a**)'

o(t)
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We now put
00

( 5 018 ) •<

tla) s jVst dF(t) g fk(e)
o

« jVst dF
k
(t

0

m
fi(3)ta jV

1
(t)e"8t at

we have by Is,

v^t) = Zfcpjtj * nkCPv.1it)-pk(t)j„ s Fjt)
A ksl ~ k=l “ A K k«o a J

and fey induction^ using the well-known multiplicative property of

the Laplace transform*)

ijjtaj a f
tt

(8)[f ( 8)3
k

00 -

wher © f I s ) s JV*
0 * dF { t ) 0

o

Thus
Q© , e© co

(5.1») *(#)* II jVSt
F
fc
{t)dt s £ | fe“

St
4F

kJt) «
® 0 <0

“
q>

a

We now proceed to dismiss counters of type 2 0

teution function' F(t) of Tj^must first b© obtained,,

1
f
0 <8 >

¥ I~rl s

j

*

The distri-

To this purpose

we shall first obtain the distribution of the time T during which

the crnmtcr is lock@d c The probability that once the counter is

locked exactly v events will' prolong the locked time T is given

by 4?P» where p «s
p"®*

8 qssl- e~
aT

$ since p fey i4 0 E) is the prefer-

ability that no event will occur during time t and q
ir the probability
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th-M the time intervals between v successive events will all be small-

C 1 ^

er than t 0 T*st now T be the time elapsed between the (1-lJ^sb

and the i-th ev©nt D The total looked time T 0 provided exactly v

events prolong the looked time 0 is thiin given by

(5,20) 1 « f'
1

* I C2J I** 1 T 0

The conditional probability 'tf(t) that an event will occur

during time t provided that t 5 t is then given by

(5 0*V

Thus

*5.22 Ufsjs jV
o

&<*)« «|
(l-e"at )

st AO(tl - i. JL,[ 1 - e
"?a+8

)
T

3
q a<fs

Ltt now v event e prolong the locked time and write (t

000
( v *

T < tjjvj for the probability that the locked time

will be at most t % « provided v events prolong the looked time.

From f§ 0 22) and C5 0X8| w© see that

vt
? 9”Ss 4W ft) * [ttisjf 0

©

{1} ( v)

Consider now v itself as a random variable 0 Then wCtjasP.lT oao T. •*

^ O
is the probability that the looked time T is at most t v c We

thus have
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>"St
drtlt) = pltaule)]**

z-jsxcfi = Pi1 " af¥[1
‘ «~ (a+3|T3}”1

„ ja»s ^e"
a<g

#~
8+aa-ta+8^

Let now Gr(t) s P(T < t) then G(t) — W(t-*c) for % > %

and 0 for t < x n Hence

5o2s5 jV8t

0

«at
cw

•8*5 £^-8tje~ow dW(t-T) s Je“
eb dw(t

^ o

Ca an-* 8* 8 )*
—

ITT—H u,

Ha4>a|^
a &e

The time between two successive registrations is composed

of the resolving time T and the time from the moment when the

counter is free to the next event 0 The distribution of the latter
eaft

j

is by (4 02) l~e " and has the Laplace transform a/ (a+s) thus

f(ai - iV 8t
AfCt i

-
* - ^ J s a ekpi«^s

whil® fQ (e s 0 Substituting this into (s 019j yields

C 5 0^

)

fiU) s a Cs
|
a„6^^i

8 (a«e)
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This is the Laplace transform i$ 0±8) of the function

1 ~ ©
-at

for 0 < % < n

lo 0 25}

X- ®’ a£’

for % > %

Since is completely determined by its Laplace transform*

formula i$ 0 Z§)) gi^es the expected number of registrations during

time t in a counter of type £ 0

^
A calculation similar to the on© leading^! 5 D25) shows that

the Y&riEne© B(tj of the number of counted ©Vents ik by

C5o«6) B(») » V
g
(t)- [V

1
(t)3

ae-aT(t-T)tl- e“
B 's U»a*sfe”2**





GEA.PT EH 6

The Fourier Analysis of Stochastic Processes ,,

A tJu^i 4

A function in two variables is called raonotonoid if

f(t#V} ss gO^t' I - )
where g and h are two functions mono-

tonia in t and t
7
in the same sense 0 rte now proveg

Theorem 6 q 1 0 let he a stochastics process with & monotonoid and

continuous covariance function g^* and E{x$) —* 0 then

For 0 < t ^ T we have the expansion

ns^m
(S 01) xt = l 0 l 0m 0 2* onexp[2irint/T]

* Qs-rn

wher e
T

°a ~ I jx
t
«xpt-2rtn*/T] dt

f ii J
This limit Is uniform in 0 < e < t <. T- s

T T

Uli) %o,= 4 j f
au. exp[.2m^SSl]dt dt'

f 0 0

Ctv) If the process is Gaussian# then any finite set

of 0
jx*®n

a^d
°n

ra
^n affe Jointly normally dis-

tributed*.

To simplify the proof we put t s ^21 # y.r s n ,
Th@n f

goes from G to 27T as t goes from G to T and have to prove the

formula

{b -M ^ ^ °
in%

» °n s iff J^e
'in%Ax

*





We thus have to prove

uniformly

We have

$6„3J

How

7is~m

Putt ins

(6 0 4)

lim Sty^J ~y ]
£ =0

\

in every interval £ < T < E7T- e where

r
.M _ in«-

v x T Za n °
" ni

gff
_(s) i P „

;srj0
V *y5

LzA
-m

’

>j
Ax'

s e
•ima i_ e

i(2m+l}a
e
~ima m e

i(m+l)a

1 «= @
la

1 08 e

- e
ima _ e

iCm*l)a_ ^ Aima9 *e
iwi OT innr iwnw v iWp

£U ~ 008 0 )

oos ma - Qoe
gm+1

s
' s t + h we thus have

y(»)
E?r

*.T-T

I yT*h

sin
&

sin §
£h

and





1 02

.sq-t ztr.T

(6 0 55 e[4k)
~ yT 3

2

L i
r -r

3in^ih 8iaS¥ik
Vh,^k —pk1 — T-V" dh dk

* sin sin #

35T I 0
'25T J "''tpt+h „

a. h \n g'

, Sm^l:— %

—

ah . ch vx

By well-known theorems on the Dirichlet integral l ^ aj we have

uniformly in £ < *c < 27T-& is > 0) p .

(.6.6) lim
m~$>© 4Tf" 1 L a^h»

ain 8ln Sgik

C33» V
-IT

v*k . TT”’ . k
sin «g sin «g

dh dk

ss 1im I o’—, _ . v.

sa~»oo^ i.

ain
- T dh

sin 4
- a

From C

6

C 5| and id 0 6) it follows that

(6.7) lim £ [y*m 5 - y )
2 , 0 or l 0 i.m. y^ a y

uniformly in s < ? < 27T- £ for every e > 0 0

[l5] For the double Dirichlet integral see Hobsons "The theory
of Emotions of a real variable and the theory of Fourier
series"* voX G II* pp 0 7Qo-9 c
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•

v
• is completes the proof of the first two statements of theorem

, ii - is easily obtained by an elementary computation while

7
}
follows from the representation of the Fourier coefficients

«s limits of Riamann sums*

% ft
ffrigonome t ri o exTmng i on of the ?„ R» ? „

as an example we shall represent the F 0 R CP0 & trigono-

,;. IjIc series with fandom coefficient s 0 The oova?ianoe fuiivt i on •

of the F 0R 0P 0 Is o minSt^t^J [see formula C3 04)3 & this is a mono-

mi© and non-dsereasing function of t and t* so that theorem 6 0 i

i applicable 0

.In this case (that 1 b the real and imaginary part of on )a

; normally distributed with mean aero and we have

id0B) ElF^,S - ^ o min{ts»t'“ } =* ') s o'mlnfo*?

I hue
2Bp?

Mon^m 'i ss j" ) expt- InT-loT^ 3 d-t d^
!

******
<f ©

4 l 1» ar gif
^ p* «

-2w| f f fV exp(~ixiT-imT* idT* fftnp* - f I !t axpC^iOT-iaT* 14*?

4:^^ L
*f

" J 0* "T
' J

j

ar nssmstO we < Fi

For m^O we have

jfflh
1

‘

3





fhl3 gives

37T
Z

27f oT oH
{,

5

0 9 „3 } SCo0Om ) » £
J~" 5 1 3 OT" for sa

( 6 09 0 4 )
E ^ sm°.jnS *

o2

2/'m2
for m 0 *

For 0 wo obtain from C6*9 a g)

U 0 9 0 5) EC o„q |
xgq m*

f{1_~m3T

4 ir^ran

If we write

we have

- o„ * c „$> *> ss i(o - o j for n > 0 * a
& n « n* n xx -a? o

and from this and th© formulae (6 f,1 0 l3 - (6.09 0 5) we find





E(&o) a OT/3

E(a
0
an j

a -cT/2TT*n

Eia^a^j s 0 for is^n, n^O, n^O

E(a
2

)
— eT/2n^n

2

iSa 10j <

]
W “ 0 for n£ 0

E(a b^) s ~cT/27Tm

= 3oT/2r3n8

= oT/rr ran for ra^fc n*
n in/ * <

'

rfe shall now estimate eTx ~ £j
mH ** for a fixed a wher®

, ax a
xi
m

*
-s a ,S a 003 arfit 21 b sin Efi^i

% ® n«l n (F Ra1 11 T

oo

n*«H4i

tfe havOg using (8 C X0)

oo ^
E[x

t
- x^

a?
]
2 s ZL E(a

2
)ooa

2
2lfS£ « 21 Ei'e^ela** 2ff£S

" " ' * #a*W A

00 00

2 i„. S{Vb
k)Bln

2jr~i sin 2u

05 05 . antni2

f

= sh £ V jf
-
ia

fl*
2 ^ n4 ! L-*

L n«mW ~

si





Expanding the function 7T- a Into a Courier series we get

nr-o » zE SiS_SS,
n*l a y

heno e
055

Z sin^ na
n

si

, IlTT- s'j - S SiSLM m f ( a),
a n*i n

Differentiating this equation we have

m
*

i ain(mv|ja
« ri S=> <—BBaegs -^xg^*xrr’“.fc>f ^ (a) - - i - Haas n * ~ „ _ 4

2 ^ 2 8lnf
^

and therefor®

os

T sin na
L.~

—

Hence’

* A ,2.

2 . 1 f
8tn(cH-2) t dt _ tt _ j

8ln(2a-»l)Y dv
2 2 1 sin |

“2 -

E£zt - 4“>]
2 s S!fi f -i- ,

ar^r-sin^IjY 1
" ’ 1* 1* fan*

‘- s J •

S“ "
' j

Thus far values of t not t.vo close to 0 or T
ff
xi J is a good

approximation to x^ 0

Another and perhaps are useful formula may he obtained by

deriving the following expansion

t T T
[oosSi^i-l] * <3

a 8ln2^. J
o
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In this expansion the and b^ are independently and normally

distributed variables with mean zero and variances * the
aAs

an and bn ar© also independent of e Th© right side converge^

moreover^uniformly in the mean to the left side 0 The proof can

be obtained by first applying theorem s 0l to the stochastic pro-

cess ac^-^Xij and determining the Fourier coefficients end their

variances 0 It is then seen that the Fourier expansion thus obtained

oo

converges also l 0 i 0 ra 0 for tsl and thus - Z && o proof
w

' n«X

Is rather laborious but elementary and is therefore omitted,

Thus writing x^j 33 &
a
w@ have

m
<6oU) *t “ a

o t * & {»atoos^-13 b
n

where

02 *a
o

0S • of * «§
cT

n 2lPn‘

. Vj'Vj " 0 1#J ’ Vi 3 0

Except for the constant term* - £a . this Is essentially the
j n»i n->

expansion discovered by PaXey and Wiener,;
[16]

[163 Fourier transforms in the complex domain^ p 0 14? 0
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S 0 Stationary processes .

f© now return to the general theory and consider stationary

processes 0

exist a o We then have cr^.* =5 where R(xJ is an ©¥@n func-

tion Of T o

We she.ll also consider a slightly more general class of

processes* called guasistationary processes 0 A process x^ is

aid to he quasiatationary if E[x^] is independent of t and if its

covariance function exists and is given hy cr^t* zz R{t~ £'} where

R|x) is an even function of t 4

we assume now that R(t) is continuous at the point x^O

ad show that R(tJ is then continuous everywhere 0 If R|tJ is con-

tinuous at tsO then we have lim E(xt+T -xt )

2 s 0 „
From the

definition of Rlxj w© see that

h~>©
lim iR{%+h) -R(x)J = HmE[’(x_ . -x }x 0
.-®*o h^o c,u y

since

0
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wle next introduce the following definition 3 A function f(t)

is said to be positive definite if

(a) f(t) is continuous end bounded on the real axis*

(b) f(t) is Bicrmitianj, that is £(~t) s f( t fg

(c) for any positive integer m and any real numbers

\9 z
z»ooob

zm and any complex numbers ugS?

0009 ^ we have

From the preceding it is clear that H(t) satisfies conditions

{a} and (b) since H(t) is real and ev©n 0 ue have only to prove

that

m m

h-X k*l,?t A f ^ 2h" z
k^
u
h
uk ~ 0 0

m m
3 - Z Z B(t

h- vv\ - 0 0

We have

s =
1 f Vk E5vys^

fe

m m
S ^ s{{| v**th)(f

function^





uo

According to a theorem of S 0 Boolmor^7 ^ every positive

definite function fit} may he represented in the form

* oo
^

fit) a J e
ita dV(a)

~0D

where Via) ie a hounded non^decreasing funotion a

Thus w© have

I

6

0 l5) R(t)
*co

= S e
1 *®

~oo

dgl <o)

where gl©} is a bounded and non-decreasing function 0 we may take

g(-oo) - 0 D Then gloo) s& R##and glct}/R(d) could therefor© be

defined as a distribution funotlon 0 It will however simplify our

formulae If we determine gla) so that

«(a)= &Latl ± .sUdl. .

2

Binoe Hit} ss R{-tj.we have

Rlt J
'00.

.it©
&«(©) S

J
6

too
3 -it©

4-00
„

s - / a
itS) dg(-o)

-0©

•*•00

=s j
4

d£g(CO )-g(~©) ] ;

— 00

tl?3 S c Bochner9 Yorlesungen ubar Fouriersch® Int©grale s p 0 7Q &

Sats 23 0





Ill

end ainoe the function gUo) is unions if g( = ®! s 0

g(o5 s £L&l~±JSk$zl
9 w© must have g{»5 s g{oo } « g(~$)

H

end. fa? osO, g(co) = 2g{0) and g{®) * g(O) = g{0) » g(=a).

It Is further well known that

, -
2

e
it ffl- ,

g( K )- g(0 ) = i
nm

ii5
.JR(t)_=i dt 0

-

//e may also writ©

R( t i ss

®
e
it®A „-n®

«*•

fig!®}

OO 00

3 joos tjD dgiCDjs J 00 3 to d[g(o)-g{-fl)}]
—00 0

^00

- Joos t© dF(©5
0

7

where

[
( 6 oi6 )

<

fC®j - gl©)-gU©)ss

Fjce ) S g(co
}
S R(0)

FiOj s 0
,





Further

?{») g(oo) - sI-cd) = 11m
T

so that

Fla) 5 | JrU) at c

G

It may also be remarked that to every positive definite

function R(t) we may construct a Gaussian process with R(^) as

covariance function* i'his can he done by defining the distribution

of xt ? 9 0 08 n to be a multivariate Gaussian distribution with
1 n

covariance matrix JjRtt^-tj)
|{

0 Since R{t) is positive de-

finite auoh a distribution always exist

s

0 It is then easy to

verify that the family of distribution functions so defined satis-

fies the consistency conditions of chapter X c Combining this with

the result of Boohner we obtain

Theorem 6 Q S 0 The function R(t) is the covariance function of a

quasistationary process If and only if it is the Fourier transform

of a bounded non-decreasing function*

4 0 The mean ergodio theorem ,

V/e shall conclude this chapter with a proof of the mean

orgodic theorem 0

Theorem 5 0 5 0 (Mean ergodio theorem \ g Bet be a quasi stationary

process with continuous covariance function R(t) and mean value zero

[16] This theorem is due to J 0 v c Neumann g Proo 0 Hat, Aoad 0 Soi e9

vol. 1811932), pp. 70-8S.
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Then

{ 6 e l7

)

1 o 1 O^ ft

T ~*$*G0

fit

o

dt ~ ax

where is a random variable with variance g(X+)-g(X-J and mean

z@ro and where E(a^a )
«• 0 for X4* -p. ft

The function g(Xj 1 b

defined hy ld 0 l5} 0

w© first prove the following lemma

Lemma 6 0 l g For any 0 < * < % # T > 1 aad for ©V9ry £

dx-
[ga^j-g(\-|)]

I 0

«. [g(X*£} - g(X* )*g(-X*cj-g(-X4 1

3

g'L g(^«+ £ J

4
£)3* «Rr[g(ao')- £(~gd }]

Proofs *ve put

T
-» f &{t-T
1 ! e
ai’

^ 3! ^GO

d-v ?» i P fexp[iX(t-T}*lo)| t«Tj J&gCaj) d*s

* j J
Q-CO

:s J
1

* J
2

* J
3

+ h * S
z

* *T
3

where

i
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x r iMt-^3
|” if* eft1Is $ ,

18

o

*. i f

dgu-'dir
|

Jjss
|>

j

“t)

j
a""

4,05 ' '"^dg!®)^

X f*iXSt”'E} f _i©(t“?)
fj 8

j
" dg(»)&Tj J

s a f |

®~*®it*T^dglo)d ,f

<&>

£

r

: ~ i ! o
ie)U’';)

T ^
Q

| Jr> ^ i
I 3 2

T

9

i
mxsS

T
ioC t^v)

$

These Integrals converge absolutely,, Henoe we may Interchange the

order of integration whenever necessary,, In this manner w# obtain

\h !
* ?X

*T

c t

a^| ^ ji
, . T

i(<D*X)t

so that

( 6 * 18 )

Similarly

U 0l8&)

< JL [gCoo ) -g(-cx) 3 ]- £T

©T
gt«=» AT? o

tf© have

S® - 1 i
1*1

I

<s>o





using this inequality we obtain from

%

f-

jexp[iOv*s)Mt-T)]dT igiio)
o J

|6 C 19) |I
2 ]

< l[g(x+e - g(X+ +g(-X+e - g(-X+ ]

\

and similarly

(6 cX9a) jJ
g J

< ^~[glX+e) - gDw4-} -s-gi-X^s) - g(~X*) ]

Since

|[g(X«£)-g(x-£)] = A
J JVgU) fiT

tj/4 o

we have 0 using

|I
3 »|[«JX<-|)-g(X-£53| a

|y
j*

J
[e

i('A’ 0 ^ ~ ijdg(ffl) 4t

T

* f
~ 8T

8 ^

J J
|X*o)j (t-T) dg(eo) d*s

< ||>CgfX*|>)~

r





Sine®

lift

X > I and sine© g(x) is non-decreasing it is seen easily that

(

6

20}
j

Xg - - s(X-£)J |
- gfX-©} ]

Similarly we obtain

(6 o 80a)
e<T«»
”2®'

t) X*c )

Lemma 6 0X then follows easily from C6 0ls), (6 0X8a}* i6 0 I9)£ (6 oX9a) 0

(6 o 20j» (6 o20&) o

Corollary 1 to lemma 6 0 1 0

T
(6 02l) Ilia U f e^lW ’H(t-T}d-E * gCX*)-g(X”) *

X ~*»00 1 %

Corollary 2 to lemma 6«l ft* x*t* »mmrm I r > w **»* Jrea^>a»«g^«»r* Tifci^ia^KJW UJiTTMBwMiT^er^r lfcMiaW

( 6C22 )
T» rr

gfo* ) - g(X- ) 0

'Proofs may always write the double integral so that T
f
> X

so that lemma 6 01 is applicable and corollary 2 followB easily

sine a e is arbitrary 0
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In tha proof of the mean ©rgodic theorem w® shall operate
/

with complex random va3:*i&bXes 0 If zs^ij is a complex random

variable with mean zero we shall define

(

6

0 SS) s Et zz) S o| 0*

where zgx- ij is the complex eonjy^gate to z c A sequence

{sa } s {xn4-i'yn } of complex random variables converges if both

{x^} and {yn } converge,. From lemma l c 8 it follows that {za }

converges l 0 i cm 0 if and only if B[tzn -

z

m ) zm ) ] is arbitrarily

email for sufficiently large n* a 0

T
To show that X^a A at converges in the mean we

o

consider

L
n> * EfUj- X^, ) (Xj- Ij,)]

T T
A

J j

'

T2 <3 %

o 9

V T
R(t-V )4t dt' «•

-jiff *R(t-t')dt &t
#

£
ff'





ns

All thro© integrals converge to the same limit by (6 0 22) 0 Thus

l 0 i 0m 0 X « a* exists 0 Moreover * by lemma X 0 7 and (6 0 22)
]£

<*=£• GO

lim
T~3»gq

of ~ g(X-) «

i

For we further have

T T

E(«\a ) a lii i f fexpUxUigit* )R(t-t' )dt 4t"A £ T-#>oe m2 ^ ^
A 0 ©

^ lim i jy.cx-ni.3ii x
fe
-ip.Ct-v ) S ( t.t*
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