NATYONAL BUREAU OF STANDARDS REPORT

1293

INTRODUCTION TO THE THEORY OF STOCHASTIC PROCESSES DEPENDING ON A CONTINUOUS PARAMETER

By
Henry B. Mann
Ohio State University

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Acting Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

1. ELECTRICITY. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Electrochemistry.
2. OPTICS AND METROLOGY. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.
3. HEAT AND POWER. Temperature Measurements. Thermodynamics. Cryogenics. Engines and Lubrication. Engine Fuels.
4. ATOMIC AND RADIATION PHYSICS. Spectroscopy. Radiometry. Mass Spectrometry. Fhysical Electronics. Electron Physics. Atomic Physics. Neutron Measurements. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Instruments Branch.
5. CHEMISTRY. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
6. MECHANICS. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hydraulics. Mass. -Capacity, Density, and Fluid Meters.
7. ORGANIC AND FIBROUS MATERIALS. Rubber. Textiles. Paper. Leather. Testing and Specifications. Organic Plastics. Dental Research.
8. METÁLLURGY. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.
9. MINERAL PRODUCTS. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Building Stone. Concreting Materials. Constitution and Microstructure. Chemistry' of Mineral Products.
10. BUILDING TECHNOLOGY. Structural Engineering. Fire Protection. Heating and Air Conditioning. Exterior and Interior Coverings. Codes and Specifications.
1!. APPLIED MATHEMATICS. Numerical Analysis. Computation. Statistical Engineering. Machine Development.
11. ELECTRONiCS. Fagineering Electronics. Electron Tubes. Electronic Computers. Electruair inastramartation.
12. ORDNANCE DEVELOPMEMI. Mechanical Research and Development. Electromechanical Fuzes. Technical Services. Missile Fuzing Research. Missile Fuzing Developant. Projectile Fuzes. Ordnance Coxizonents. Ordnance Tests. Ordnance Research.
13. RADIO PROPAGATION. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequeacy Utilization Research. Tropospheric Propagation Research. High Frequemey Standards. "icicyove Sean -rts.
14. MISSILE DEVELOPMENT. Missile Enginecring. Missile Dynamics. Missile Intelligence. Missile Instr antation. Technical Services. Combustion.

INTRODUCTION TO THE THEORY OF STOCHASTIC PROCESSES
 DEPENDING ON A CONTINUOUS PARAMETER

By

Henry B. Mann
Ohio State University

This monograph to be published in the NBS Applied Mathematics Series is the outgrowth of 2 series of lectures given at the National Bureau of Standards in June, 1949, under the sponsorship of the Statistical Engineering Laboratory.

This report is issued for in any form, either in whol from the Office of the Dire

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015

Contemplator ening cum solis lumina curaque Inserti fundunt radil per opaca domorums Mul ti minuta modis multis per inane vidobis Corpora miscerjo radiorum lumino in ipso． Et velut eterno certamina proelia pugnas Edere turmatim certantia noc dare pausam． Concilifs ot discidils exercita crebris． Conicere ut possis ox hoceprimordia rorum quale sit in magno iactari somper inani． Dumtarat rerum magnarum parva potest res Eremplare dare et vestigia notitiai。 Hoc offam magis haec animum to advertere par est Corporaquae in solis radis turbare videntur quod tajes turbae notus quoque materiai Significent ciendestinos caecosque subesso． Multa videbis enim plagis ibi percita caecis Commutare viam retroque pulsa reverti
Nunc huc nunc flluc in cunctas undique partes． Titus Lucretius Carus De Rerum Natura：ToloIIoVers 1130130。

Let us observe as brightly the rays of the sun Penetrate in streams the darkness of our houses Thousands of tiny bodies dancing in space
Approaching each other and parting in the bright light of the sun。 As if fighting a battie without pause through the ages， Like an army of soldters restlessly warringo They edvance and retreat in motion never to cease． May you conjecture from this the very nature of metter． How it is coaseljessly tossed through the vastnoss of space。 Thus a phenomenon：small as it seoms and of little importance Often does indicate things highly importent and greato
Hence it is well worthwhile to observe these bodies
Whirling and dancing without rest in the sunlighto
Since such irregular motion of visible bodies
Is a sure indication of the invisible motion of matter． For you cen see these bodies constently changing dixection． often reversing their motion all of a sudden
fnd propelled by invisible impacts moving this way and that wayo

TABLE OF CONTENTS

Foremord I
Introduction III
Chapter 1. Mindamental Concopts 1
i. Ransom varisblos 1
2. Convergence 2
3. Stochastic processes 10
Ho Convergence in the mean 11
5 Differentiation 14
ל. Stochastic processes of second order 15
io Intogration17
Cunptar 2. Spocial Processes 32
2. The fundamental random process 32
2. Further propertios of the FnRip. 37
3. Frictional eifocts. The Ornsteinouhlenbeck process 47
Cianpior 3. Estimation of Paramoters 55

1. Estimation of the parametor of the FoR.R. 55
C. Forop. with mean value function 57
2. Estimation of parametors for the O.U.P. 64 64
Chspter 4o Tino Goneral Difforential Procass 72
Chaptor 5: Differential Processos Modified by Mochanical Dovicos 86
3. Filter effect 86
4. Counter data 91
Chapter 6. The Fourier Analysis of Stochastig Procossos $\therefore 00$
5. Genoral theory 100
6. Trigonometric expansion of the $F_{0} R_{0} P_{0}$ 103
7. Stationary processes 108
8. The mean ergodic theorem 112
Inder 120

FOREWORD

The theory of stochastic processea is steadilg gaining In importance and the applications are over wideningo Nevere theless, it is at presonc not easy to study this subject, since the IIterature, al though oxtensfive, is widely scattered.

This situation motivated the National Bureau of Standards to invite Professor Henry Bo Mann to give a series of lectures on stochastic processes and to write a monograph on the subject. The loctures were given in the period from March 1949 to June 194.9. during which Dro Mann was a member of the staff of the Buperuis Statistical Engineoring Laboratoryo

It is well known that the thoory of stochastic processes dopending on a continuous parameter can be developed in a satisfactory way by studying rendom functions or by considere ing probability measures in function space. The euthor of the prosent monograph has however adoptod a difierent approach which is similar to the definjtion of a stochastic process given by F . Slutsky, A random variable is considered to be a symbol with which a distribution function is associatod. and a stochastic process is then defined as a set of pendom variables. This approach leads to a theory which for many practical purposes is equivalent to the direct messuree theoretical approach. It has the advantage that the techo nicalitios of measure theory seem loss obstrusive at the outsot. although for logicas completness they must enter sooner or later in the theory is to be devoloped in a wello rounded way.

It is hoped that this modest little volume, written by a distinguished contemporary mathematician, will be usefrl and interesting in various ways. The argument is addrossed uncompromisingly to educated mathematicians, and they will not fail to be impressed by the skillful way in which the author develops the theory from his chosen starting point. The user of timemeontinuous processes in the applied fiolds Who is not interested in the methods of proof may still appreciate having a number of important definitions and results conveniently gathered here between two covers.

Finally, it is hoped thut the publication of the monom graph will stimuinte further expository offorts in the importo ant field of time-continuous stochastic processer, und thet in particular the duy will come a little sooner than it othero wise might have, when 2 comprehensive but readable textiook or this subject. using the measure-theoretical approach, repears in the English language。
JoH。Curtiss

National Applied Rathematics Laboratorles Nationai Bureau of Standards Vashington 25. D. CO Octcons 1951
11
$4 x_{0}=-8$ 正 4
$=-\sqrt{-1}$
14. in
\qquad

,
1
 $5-2+2$ $5-2+2$

$=$ $-2+2+5+5$
4 41

$-=$

-
-

-W
$=-2$ 1 1\square
$=$

-
$-$$\square$
$+5$$=-$$-$
$=$
7)x^{2}
$4-1$
$=-$

INTRODUCTI ON

The study of stochastic procosses is becoming ineroas giy important in wny branchos of science and accorafngiy the thematical theo or stochastic processes has progressed repi during the lasj two docades. This rapid progress has resul sdin a large diveraflcution of natation and terminology which soe it difficult grea for a mathematician to inform almself on be subject. It soemed, therefore, advisable to bring togethe: ander a unified tern nology and notation somo of the basic defins lons and resuits 0 this theory. The viewpoint taicer was that : the mathematical thatisticiangand the stochastic process was ac oroo ingly dofined as a family of distribution functions satis. Ing certain consistoncy relations. It was one of the goale of be present monogs eh to develop the theory of stochastic procil sos from this vievroint with as littlo appeal to abstract meas e theory as possible. In most practical probloms infometion about ardom variables can obtaned only in terms of thoir joint dis ibution function and it is the opinion of the author that a treat an stochastic prucosses will be most useful to the statistici in the deflnitionc, thooroms and proofs aro given in those ten it It is in many cases almost impossible to trace a result to on pare ticular autho, and it was thorefore decided to omit refor: coe altogether. Nis doos not mean that the author claima cre for any particular result. To the author's knowledes only the: 7 of chapter 1 and most of chapter 3 are new. (Aftor comple: on of chapter 3 the author was informed by H. Rubin that some of ho
results of this chapter had proviously boon obtainod by him and L. Savage bu lizoir results were never publighedo) In his oreo Sontation of 10 thonyy of stochastic processes, as woll as it chapter $\frac{A}{s}$, th autho has followed the pregentatlons of M JU0 givon in kau: jovj's book on stochastic processes and in N jevola papor "Or sot of probability laws and thoir inmit oloment (Unlvérosity o California Pross, 1950), rospectivaly. Irs treatmont of sunter data in chapter 5 the author has umed Foller's spp leh anc his masterful prosentation in the Co Anniverseay vume. The treatmont of the Ornstain thleabe procese in cl ter 2 Collows a presontation given by is ju ob

Fiy tuenl are dow to Dr. Eugene Lukacs for his valueb heip in propi ng the final form of the manuscript and to P. Moranda wh road the proors and prepared the indexa I is wish to than mofes:or li. Loove for many helpful discusal on the suroject.
H. B. 2MAN

Ohlo stats Uy vorsits
Mey 2951

Chespt 2

FITDAREMTAI CORCEPTS

 bymolu (x,ysoo) Buoh that to s7ozy fynite set 01 symbols

Betiony tas tolkowing oqunt tors:
11.20

$$
R\left[\left(x_{1}, 000 x_{n}\right) c A\right]=\int_{\Delta} d x_{1} x^{20002} x_{n}\left(a_{\left.20000 x_{n}\right)}\right.
$$

18 now jnightor sequencas $\left\{x_{j}\right\}$ of random rariables. The notion of compegence of guch a sequence can be deinsed in various WRys. In out rapresentetion of the theory of stochastic processes Wo ghals henares ues mainly the following definition。
2. Gonverreneg, 1. Bequence $\left\{x_{j}\right\}$ will be callod oonvergent if

$$
(150,4) \quad \because\left(\left|x_{n \rightarrow 1} b^{\infty} \varepsilon_{n}\right| \geq \varepsilon\right) \leq 7
$$

 $\operatorname{pim}_{n \rightarrow \infty} \lim _{x}=x$ any that $\left\{x_{a}\right.$ oonvergea to x or that x is the
 obcye 1.8 vemaly tormod convergence in probability. This derinition can be aztcided ixa an obrious manner to random vectors. Wo procecd to formulate an important property of convergent soguences.

Themen x ine $\left\{x_{z}\right\}$ bo a eequance of rendom variables. Thore

Pacorn tul zizes a condition for convergence in probability

 step ke fscmes thet the ssouenco $\left\{Z_{n}\right\}$ is convergent and show tho

$$
\varepsilon_{n}(0)=E_{x_{1}} w_{1} \ldots F_{m}\left(c_{3} b_{1} \ldots b_{n}\right)
$$

Ho stant pic on the followine lome.

 Hhthovt is foncting the wacratanding of the rest of the

Mneme 1 I If δ and n axe any positive numbers, then for sufficiently the a inc $101 \mathrm{~h} \geq 0$

$$
E_{2}(\cos)+\eta_{1} \geq \bar{\delta}_{21+2}(0) \geq E_{2!}(0-5)-\eta
$$

इ 2110 。
For stor oriation 40 withe Jor may spat E

$$
3_{i 2}\left(\varepsilon_{0}\right)=P\left(\varepsilon_{0} z_{2} \leq b_{1}, \ldots y_{i} \leq b_{z}\right\}
$$

Alec in yeathad.as

$$
P_{b}\left(x_{n} \leq 0\right)=a_{n}(0)
$$

10. 1

includes the pointer for whit on $\left|x_{n+h}-x_{n}\right|>\delta$ and $x_{2 n+1} \leq 0_{0}$ wo have

$$
\left\{x_{n \times 2} \leq 0_{8}\left|x_{n+h}-x_{n}\right| \leq s\right) \geq p_{b}\left(x_{n+h} \leq 0\right)-p\left(\left|x_{n+h}-z_{n}\right|>\bar{B}\right\}
$$

Tue for cufliolently lase an and all $t \geq 0$

$$
g_{n}(0+\delta) \geq B_{12+1}(0) \cdots n
$$

al 365

$$
\tilde{\delta}_{n+h}\left(0 ; \geq \varepsilon_{n}(0 \cdots 5) \cdots\right.
$$

A (1.5) Follows.

For a sequence of functions $\left\{f_{n}(t)\right\}$ we shall write $\operatorname{Lim}_{n \rightarrow \infty} f_{n}(t)$ (t) if $\lim _{n \rightarrow \infty} P_{n}(t)=f(t)$ for every continuity point of i(t)。

$$
\lim _{x \rightarrow \infty} b_{3 x}(a)=8(3)
$$

(f fonationt $g_{n}(e)$ ara mar decreasing eas boundsd koday by Helly'u aprea[$[0]$ thers exists a subequenco $g_{a_{1}}(0)$ suoin thaF

63

$$
{ }_{18} \mathrm{EA}_{\mathrm{E}} \mathrm{E}_{1}(0)=g(0)
$$

Wre sio) be non-dooreastrg.
Lot t bo a continuity point of $g(0)$. $F 1 x \eta>0$ and ohoose δ Hasitive end arbitracily amall and so that tof and t-8 are cono thuity points of $g(0)$ ane

$$
g(t \geqslant \delta)=g(t) \leq 70 \quad 5(t)-s(t=\delta) \leq 7 。
$$

Fatfinderity large a_{1} and a we then hare by (1,5)

$$
\left.E_{x_{1}}(b-\delta)+\pi \geq g_{a}(t) \geq \varepsilon_{2 a_{2}}(t=\delta)-\pi\right)
$$

the refore

$$
g(t-\delta)+\eta \geq g_{x}(t) \geq g(t=8)=7 \text {. }
$$

Y sholec of δ wo have
1.7) $\quad 6(t)+2 \pi \geq E_{n}(t) \geq 8\left(\frac{c}{5}\right)=2 \pi$

Te if ean be mede arbitraily suall ior sufficientily largeno
 2?) stetes. If the real nondecreasing functions $a_{i}(x)$ and the Live oonstont A are such that $\left|a_{a}(x)\right|=A\left(n=a_{3} I_{3} z_{n} \ldots o n a \leq x \leq b\right.$: Li a thers exists a subsequence $\left\{\sigma_{n_{1}}(x)\right\}$ of $\left\{\alpha_{n}(x)\right\}$ and a nonssselng bounded function $a(x)$ such that

$$
\lim _{i \rightarrow \infty} a_{n_{1}}(x)=a(x) \quad(a \leq x \leq b)
$$

It thon followe the t

$$
\operatorname{Ilm}_{n \rightarrow \infty} g_{n i}(\hat{t})=g(t)
$$

and leameric 2 is warod.
V1 nor asfixe \& symbol x by the equations

$$
\begin{aligned}
& =g(t \rightarrow 0)
\end{aligned}
$$

 is a Bistribution function and that

and

 property. Ho Eherefore havemerely to show that $(1,8)$ and $(1,2)$ beld
 to - 0 。
dif (35ti
a that

$$
0 \leq F_{x_{1}, 0.8}\left(t_{0} b_{20000} b_{\text {al }} \sum_{y} y_{y}\left(u_{y}\right)\right.
$$

Wusthermore from (1.5) for axditresily mall गु and all to

$$
\lim _{t \rightarrow \infty} F_{x y_{\lambda} \ldots y_{k}}\left(t_{i} b_{2} \cdots \cdots d_{i n}\right)=0 .
$$

Furchermore

$$
\begin{aligned}
& \leq 1-F_{y}\left(0_{0}\right):
\end{aligned}
$$

So pore (1.9) we ohoose a oontixusty point a Mt

Fhara if a 21 and $0<\theta^{\prime}<1$.

 (ax) wi stain (2.09).

 361 ม. To do this we remember that there can be at most a denumerable

 11

$I_{1} \quad I_{2}$ then only I_{1} is chosen for our interval covering． Let I_{1}, I_{2}, \ldots be these intervals and denote by $P_{X_{n} y}\left(I_{k}\right)$ the probability that the point $\left(x_{n} y\right)$ will fall into tho interior either
of the interval I_{k} or on $n^{1 t s}$ right upper boundary．Then for sufficiently large n and arbitrary ๆ
（1．11）$P\left(\left|x_{n+h}{ }^{\circ} x_{n}\right|>\varepsilon\right)=\sum_{k}^{p} x_{n} x_{n+h}\left(I_{k}\right) \leq \eta$
for all h 。
Furthermore

$$
P\left(\left|x_{n}-x\right|>\varepsilon\right) \equiv \sum_{E} P_{x_{n} x}\left(I_{k}\right)
$$

Both sums converge．From now on consider n es fixed．Choose IN so that for some of >0

$$
\sum_{k_{\overline{5}+1}^{\infty}+1}^{\infty} P_{x_{n} x}\left(I_{k}\right)<\eta
$$

Next choose h so that for the first N intervale

$$
\left|P_{x_{n} x_{n+h}}\left(I_{k}\right)-P_{x_{n} x}\left(I_{k}\right)\right| \leq \frac{1}{1}
$$

Then

$$
P\left(\left|x_{n}-x\right|>\varepsilon\right): \sum_{i}^{\infty} P_{x_{n} x}\left(I_{k}\right) \leq \sum_{I}^{\infty} P_{x_{n} x_{n \& n}}\left(I_{k}\right): 2 \eta \leq 3 \eta 。
$$

Since of was arbitrary $\lim _{n \rightarrow \infty} P\left(\left|x_{n}-x\right|>\varepsilon\right)=0$ or $\operatorname{plim}_{n \rightarrow \infty} x_{n} 3 x$ 。
［The relation $\lim _{n \rightarrow \infty} x_{n}=x$ also follows from the fact that the characteristic function of $x_{n}-x_{n+h}$ converges to the character－ fistic function of $x_{n}-x$ ］。

Dis the other hand it $\operatorname{plim}_{\mathrm{r}=-\infty, 0} x_{n}=x$ than for suffielentily 2.escon sid arbitwayy n

Henoe tho seguenos $\left\{x_{n}\right\}$ oonverges and theorara $1 . \frac{1}{2}$ proved.

is chosen out of sono set of real muiinaz? is oallad a stochastic prooesa. If the eet opindices it is an interval. then the gtochastio procese is gaid to dopand or a conthnuous parametar. Such aroceas is cellod continuous in $[a, b]$ if for every sequenoo $\left\{h_{i}\right\}$ with $\lim _{i \rightarrow \infty} h_{i}=0 \quad \lim _{1 \rightarrow \infty} x_{t \rightarrow h}=x_{t}$ for \& $\leq b_{0}$

The expzession

$$
\int_{-\infty}^{\infty} t d F_{y}^{\prime}(t)=E(y)
$$

ss called the mathematioal expoctation of y. The expreesion

$$
E\{[x-E(x)][y=\mathbb{E}(y)]\} z \sigma_{z y}
$$

Is oellod the covariance betweon x and y 。The oovariance between $x_{t_{2}}$ and x_{t} will be denoted by $\sigma_{t_{2}} t_{2}$ and callec tho oovarianco function of the procoss.

4．Convergence in the mean．A sequence of rand on varieties $\left\{x_{n}\right\}$ 18 bad to converge in tho mon to a random variable x in symbols $\lim _{n \rightarrow \infty}^{\lim _{0} m_{0}} x_{n}=x \quad$ il
［1，121 $\quad \lim _{n \rightarrow \infty} E\left(x_{n}-x\right)^{2}=0$ ．
We shall now prove several very useful lemmas on confer gene In the mean and convergence in probability 。

This R01．

Since $E\left(x_{n}-x\right)^{2} \leq \varepsilon$ for cuizioiently large n we also have

$$
E \geq E\left(x_{n}-x\right)^{2}=\sigma_{x_{n}}^{2} \cdot x^{*}\left[E\left(x_{n}-x\right)\right]^{2} \geq\left[E\left(x_{n}\right)-E(x)\right]^{2}
$$

Lemma 1．5．If $\left\{y_{h}\right\}$ ie a sequence of nononogative［5］random variables and if $\lim _{h \rightarrow \infty} y_{h} \approx y$ and $E\left(y_{h}\right) \leq M$ then $E(y) \leq M$ 。

Under the conditions of the lemma and in view of theorem 1． 1 wo have $\operatorname{Lim}_{h \rightarrow \infty} F_{h}(t): F(t)$ where F_{h} and F are the cumulative distribution functionsor y_{h} and y respectively．Suppose $E(y)>M$ then there exists a continuity point A of $F(t)$ such that $\int_{0}^{A} d F(t)>M$ ． However $\int_{0}^{A} t d F_{h}(t) \leq M$ and $\lim _{h \rightarrow 0} \int_{0}^{A} d F_{h}(t)=\int_{0}^{A} t d F(t)$ \＆a contra $=$ diction
［5］$I_{0} \theta_{08}$ if $P\left(y_{h}<0\right): 0$ 。
 able x if and only if to prexy $\varepsilon>0$ thane exists an if such that $(1.13) \quad E\left(x_{m}-2_{n}\right)^{2} \leq E \quad$ POT $2.21 m_{0} 12 \geq \mathbb{N}$ 。

Suppose rivet that there axtote Fandom variable a such that
 $E\left(x_{n}-x\right)^{2} \leq \varepsilon \quad \& \quad E\left(x_{10}-x\right)^{2} \leq \varepsilon 。$

But
$E\left(x_{n}-x_{n}\right)^{2}=E\left(x_{m}-x\right)^{2}+E\left(x_{n}-x\right) 2-2 E\left[\left(x_{m}-x\right)\left(x_{n}-x\right)\right]$
aud by Sohmartin a inequality
$\left|E\left(x_{m 1}-5 x\right)\left(x_{n}-x\right)\right| \leq \sqrt{E\left(x_{m}-x\right)^{2} E\left(x_{n}-x\right)^{2}} \leq \varepsilon ;$
hence？
$E\left(x_{m}=x_{n}\right)^{2} \leq 460$ On the other hand from $E\left(x_{m}=x_{n}\right)^{2} \leq \varepsilon$ it follows by Tchoblohoff＇s inequality that
$g\left(\left|x_{m}-x_{n}\right| \geq t \sqrt{\varepsilon} \left\lvert\, \leq \frac{1}{\hat{W}_{2}}\right.\right.$ 。
Thus $\frac{p l i m}{n} x_{n}{ }^{3} \mathrm{x}$ exists by theorem 1。1。 It follows also that
$\lim _{n \rightarrow \infty}\left(x_{m}-x_{n}\right)^{2}=\left(x_{m}-x\right)^{2}$ and thus by lama 1,5
$E\left(x_{m}-x\right)^{2} \leq \varepsilon$ and $\frac{1}{5}+\operatorname{m}_{\infty} x_{m} 8 x$ 。

$E\left(x_{n}^{2}\right)$ 。 $E\left(y_{n}^{2} y\right.$ exist then $\lim _{x \rightarrow \infty} E\left(x_{n} y_{x}\right) \& E(\in y)$ ．

 $B^{2}=2\left[(a-b)^{2}+b^{2}\right]$ wa see that for $8.2 \lambda \mathrm{~m}$

$$
\left.\mathbb{E}\left(x_{\Delta}^{a}\right) \leq 2\left[E\left(x_{m}-x_{n}\right)\right)^{2}, \mathbb{E}\left(x_{m}^{2}\right)\right] \leq 2\left[M+\mathbb{E}\left(x_{m}^{2}\right)\right]
$$

 in tic: harmonic
4.21) $\left|\vec{B}\left(x_{n} y_{n}=x y\right)\right|=\mid z\left[r_{n}\left(y_{n}=y\right)+y\left(x_{n 2}-x y\right] \mid\right.$

$$
\leq \sqrt{D\left(x_{2}^{2}\right) E\left(y_{D}=y_{i}^{2}\right.}+\sqrt{E\left(y^{2}\right) E\left(x_{12}-x x^{2}\right.}
$$

 $\mid x-x)^{2}$ converge to Duran the thght-hond asti of (x Is) converge
 lan Each

[4] This is seen if we determine \mathbb{N}... acocreins to lome $1.6 \ldots$, so that $\mathbb{E}\left(x_{m}-x_{n}\right)^{2} \leq \varepsilon$ for $m_{0} n \geq \mathbb{N}$ and then take, for fixed $m \geq H_{0}$ $M=\max \left\{E\left(x_{m}-x_{1}\right)^{2}, E\left(x_{m^{-}}-x_{2}\right)^{2}, \ldots, s E\left(x_{m}-x_{N}\right)^{2} ; \varepsilon\right\}$

5

-

$$
\left(\frac{5}{4}\right)+y_{5}=
$$

$$
7+1
$$

From lama 1,7 it follows mediately that the condition is necessary. Wo show that the condition is also sufficient wo assume that $\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} \Psi\left(x_{n} x_{m}\right)$ oxista and is independent of tho manners in
 posibib to find for every $\varepsilon>0$ an H IN (E) gucks that $E\left(x_{n} x_{n}\right)^{2} \leq \varepsilon$ for $n_{9} m \geq \mathbb{I}$. Ne ace therefore Prom Irma 2.6 that $\frac{1}{n}-\sum_{-100}^{m} x_{n}$ exists This corollary is due to ilo Love
5. Diflegentiation. In order to bo able to define derivatives of stochastic processes we have to extend the concepts of limits in probability and limits in the moss. Suppose that for orrery in in ask
 $\left\{h_{1}\right\}$ With $\lim _{1 \rightarrow \infty} h_{1}=a, \lim _{-\infty} x_{h_{1}}=x$ exists then wownte
 The process x_{t} is called differentiable to the point to 18 $\operatorname{plim}_{h \rightarrow 0} \frac{x_{t+h} x_{t}}{h} \quad=x_{t}^{0}$ exists. The givoohestio process $x_{t}^{9} 18$ called the derivative of $x_{t}=$

In the following we assume $E\left(x_{f}\right)=0$ 。 The modifications of our statements for the case $E\left(x t_{t}\right)$ form be obvious.
6. Stochastic processes of second order. A stochastic process x_{t} 15 called of second order if for any values $t_{1} t_{2}$ the covariance
 $\lim _{h \rightarrow 0} \operatorname{lom}_{0} \frac{x_{t+h^{-x_{t}}}}{h}=x_{t}^{\prime}$ exists
Theorem 1.2. Heocssary and suifiolent that the process $\%_{\hat{4}}$ is difeosentiablo $1.1, m_{0}$ is that the limit
exist The overience function $\sigma_{t_{1}} t_{2}$ is then twice differentiaable and $\frac{\partial^{2} \sigma_{t_{1}} t_{2}}{\partial t_{1} \partial t_{2}}=\frac{a^{2} \sigma_{t_{1}} t_{2}}{\partial t_{2} \partial t_{1}}$ moreover x_{t}^{p} \{s a stochastic process or second order and ictus covariance function is

$$
\frac{a^{2} \sigma_{t_{1} t}}{\frac{\partial{ }^{t}}{} \partial^{2 t}}
$$

The covariance between $x_{t *}$ and x_{t}^{i} is given by $\frac{\partial \sigma_{t} *_{t}}{\partial t}$. Proof: Consider a sequence of difference quotients

$$
\frac{x_{t+h}-x_{t}}{h}
$$

We have

$$
\mathbb{E}\left[\frac{x_{t+h}-x_{t}}{h} \cdot \frac{x_{t+k}-x_{t}}{K}\right]=\frac{\sigma_{t+h_{e} \hat{t} t}-\sigma_{\hat{\varphi}+h_{0} t}-\sigma_{t_{0} t p k}+\sigma_{t_{0} t}}{h K}
$$

and by the corollary to lemma 1.7 the relation $(1,16)$ is necessary and sufficient for $\lim _{h \rightarrow 0} \operatorname{i}_{0} \frac{x_{t+h}-x_{t}}{h}=x_{t}^{\prime}$ to exist. The expression $\sum_{\text {t, }}$ in $(1,16)$ is called the generalized second derivative
20in $-\frac{10}{-2 n}$

$\begin{array}{ll}-3 & \leq 1 \\ 8 & 2\end{array}$

We recover have by lemma $1.4 \mathrm{E}\left(x_{t}^{\prime}\right)=0$ since $E\left(x_{t}\right)=E\left(x_{t+h}\right)$ $=0$. Furthermore by 1 emma $1.7 \quad \sigma_{x_{t} * x_{t}^{\prime}}$ exists and
(1.17) $\sigma_{x_{t} * x_{t}^{\prime}}=\lim _{h \rightarrow 0} E\left[x_{t} * \frac{x_{t+h}-x_{t}}{h}\right]=\lim _{h \rightarrow 0} \frac{\sigma_{t+h_{h} t^{*} * \sigma_{t t} *}^{h}}{h}=\frac{2 \sigma_{t t^{*}}}{\partial t}$

Thus $\frac{2 \sigma_{t t^{*}}}{\partial t}$ exists. It also 101.10ws from lemme $1_{0} 7$ that $\sigma_{x_{i}^{0} x_{i}^{p} *}$ exists and
$\sigma_{x_{t x_{t}^{0}}^{0}}=\lim _{k \rightarrow 0}^{h \rightarrow 0} E\left[\frac{x_{t+h}-x_{t}}{h} \cdot \frac{x_{t}{ }^{*}+k-x_{t} *}{k}\right]$

It easily follows that $\sigma_{t t *}$ is twice differentiable and that

It is well known that the generalized second derivative of any function $f(x, y)$ exists if $\frac{\partial^{2} f}{\partial x \frac{y}{\partial y}}$ exists and is continuous.

Thus we have
Corollary to theorem 1,2 . If x_{t} is a stochastic process of second order with covariance function $\sigma_{t t^{*}}$ and if $\frac{\partial^{2} \sigma_{t t^{*}}}{\partial t} \partial t^{*}$ exists and is continuous, $t=t^{*}$ then x_{t}^{\prime} exists $y_{0} j_{0} m$ and its covariance function is $\frac{\partial^{2} \sigma_{t t^{*}}}{\partial t^{*} \partial}=\Sigma_{t, t^{*}}$ c

$$
2 \cdots+3+27
$$

 Gunt zebch

 zr Drape of the polnte $k-b, b \ldots \ldots t_{1}=b$ int pol

 sulue 1 "ond fors the sea
[i.20]

$$
r=s \pi_{t 1}\left(b_{1}-t_{1}-2\right)
$$

(in. 15)

$$
\int_{4}^{8}+d t=x
$$

$$
1 \quad 1
$$

8

R

"ind

Strong continuity. ${ }^{[7]}$ In the following wo denote by $\mathcal{G}\left(\varepsilon_{0} \varepsilon_{0}, S\right)$

 to a finite act S of points contained in $[\varepsilon, b]$. $P\left[E\left(s_{\varepsilon} \varepsilon_{0} s\right)\right.$] is then the probeollity that the inequalities $\left|x_{i_{1}}-x_{y_{j}}\right| \leq \varepsilon$
 S of points for which $\left|t_{i}{ }^{-\omega} t_{2}\right| \leq \delta$ 。

(1.20)
$P\left[E\left(\delta_{2} s_{0} s\right] \geq 1-2 c\right.$
For any stochastic process x_{t} consider a sot $S=\left({ }^{1} 18000 \varepsilon_{5}\right)^{\delta}$
 values $x_{t_{1}}, 0_{j} x_{t_{n}}$. Lot $\left\{S_{1}\right\}$ be a sequence of subdivisions of the interval $[8, g$ b] whose moduli converge to zero. If
 whose moduli converge to zero then me shall? coil his the maximum

 continuity of a process:

Thoorea is. A pronese wits etrongly continuous in [a, b] is and only is
 every subinterva] [就t] of [ago ? 3
(il) for evary $\varepsilon>0, \eta>0$ thore axietes as such that
 modulus less than o, it is true that
(2.023) $P\left(\nabla_{t_{1-2}} t_{i} \leq \varepsilon_{2}^{0} i=18 \ldots 00 n\right) \geq 2070$

Wo smphasize that (1,2l) mears thet the provalsility of she simultaneous fulfillment of all the inequalities $T_{t-1} S_{s} \leq(1=1,0000 n)$ [E]
must excoed $1-\eta$ 。
 meane the probablifty thst all n events ocour simultaneaulyc
 simultaneous oocurrance of all n ovente exoceds kg thes should be carofully diatinguishod from the statement $P\left(F_{I_{2}}\right)>k_{9}$ $(1=13,0, n)$, whion means that the probebility of the oocustence of asch single event R_{g} oxoeeds in whioh Boos not imply any thine about their joint ocourenoe. Wa further emphesize that in condicionei probebllities tha concluton is separatec mot by a aembeolon but by a vextroal bex

We shail uge the pollowing:
$\underline{\text { Lama } 1,8} \overline{8} \quad P\left(x_{n} \geq J\right)=1$ and $\operatorname{plim}_{n \rightarrow \infty} x_{n}=x$ thon $p(x \geq y)=1$, The prool of lemme 1.8 is leit to the reader。

PYOO OP theoren 2,3. Suppoze fixst thet conditions (i) ax (11\% are fulpillgd. lot S be a innite set of pointe iv oan considex B9 mencos of subdiviaions $\left\{S_{n}\right\}$ such that cech $S_{\text {is }}$ contains S 。 It followis thon Prom lomme 1.8 thet
(1.22)

$$
P\left(V_{a b} \geq V_{a b s}\right)=1
$$

 ority laxy a and axbitrayy ε_{0} ग wo havo by (if)
(1.231)

$$
P\left(V_{t_{1-1}^{t}} \leq \varepsilon_{3} 1=1800020\right) \geq 101=
$$

$$
P\left(V_{t_{i-1}^{i}} i_{i+1} \leqslant 2 \varepsilon_{\xi} i=1,2800082-1\right) \geq 1-10
$$

$\because!$
 and (1.22) imply of tho intorvals (ti-1ti+1)。Henos the sbove inequelity n (1.24)

$$
p\left[G\left(\frac{1}{n}, \varepsilon, S\right)\right] \geq 1-1 \quad
$$

Thus (i) and (ii) imply strong continuityo
We noxt ghow that the condition is nocperaxye He \& smune
 two subdiviaions S_{n} and S_{m} op [$\left.\overline{2}, \bar{B}\right]$ both oi moaulize 1032 thass δ Let S consist of the points S_{n} and S_{m}.

 sulifoleatly small o and axbitrasy ε_{8}
(1.25)

On accourih of thoorem 1.1 the relstron 68.25% imploses thet

 $t_{190000} t_{n}$ and arbityery ε_{87}
11.26

$$
\mathrm{p}\left[\xi\left(\mathrm{o}_{0}, \frac{\varepsilon}{2}, S \ell\right] \geq x-\eta .\right.
$$

How lot $S=\left\{a=t_{0}, t_{1}, \ldots 0, t_{n}=b\right\}$ bo any subdivision of modulus less than $\delta,\left\{S_{n}\right\}$ a sequence of subdivisions with moduli converging to zero and containing the points of S. The relation (1,26) implies

$$
\begin{equation*}
P\left(\nabla_{t_{1-1}} t_{i} S_{n} \leq \frac{\varepsilon}{2} ; 1=1, \ldots 0, n\right) \geq 1-10 \tag{1.27}
\end{equation*}
$$

How choose e^{*} so that $\frac{\varepsilon}{2} \leq \epsilon^{*} \leq \varepsilon$ and so that ε^{*} is a continuity point of the distributions of $\nabla_{t_{1,1}} t_{i}: 1=1,2, \ldots 0, n_{0}$. It then follows from $(1,27)$

$$
P\left(V_{t_{1-2} t_{1}} \leq \varepsilon_{0}^{*} \quad 1=1_{b} 2_{00000} 1\right)^{2} \geq 1-n_{0}
$$

This completes the proof of theorem I.3.
Theorem $1_{a} 4_{0}$ Let x_{t} be a strongly continuous process then

1) $X_{t}=\int_{x^{s}}^{t} x_{\tau} d \tau$ exists for every t
2) $x_{t}=\frac{d x_{t}}{d t}$

Proof: By theorem lo $m_{\tau \tau^{\prime} \%}{ }^{4} \tau \tau^{\prime}$ exist for all pairs τ, τ^{\prime} and we have for every choice of points $\varepsilon=t_{0} t_{1}, t_{2}, \cdots t_{n}=t$ and $t_{1-1} \leq t_{i} \leq t_{i}\left(18 I_{3} \ldots, n\right)$

To understand tide inequaisty correctly wo must remember that

that the rf joint distribution is such the the inequality (1.28) holds with probability one 。

4120

$$
\begin{align*}
& 1 \\
& \text { - } \\
& \text { a } \\
& \text { - } \\
& \text { - } \\
& -4
\end{align*}
$$

w
 \square

3

$$
\begin{aligned}
& =-12+2-2+2
\end{aligned}
$$

$$
\begin{aligned}
& 1=
\end{aligned}
$$

Sine the process is strongly continuous wo have for gay subdivision with euficiciently small modulus δ

 to the subdivision S. we consider now a sequence of gutatyibions $\left\{S_{j}\right\}$ with moduli s $\left\{\dot{\delta}_{j}\right\}$ such that

$$
\lim _{3 \rightarrow \infty} \delta_{\mathrm{j}}=0 \text { and } S_{\mathrm{m}} \subset \mathrm{~S}_{\mathrm{n}} \text { in }<\mathrm{n} \text {. }
$$

 suras then

$$
x_{j} \circ y_{g} \geq y_{j 0} \times x_{j} \geq 0
$$

and nonce for sufficiently largo n

$$
p\left[0 \leq y_{n+z^{m y}} \leq \varepsilon(b-a)\right] \geq 10\{0
$$

 and $\operatorname{plim}_{n \rightarrow \infty} y_{n}{ }^{\circ} \operatorname{mlm}_{\infty} X_{n}$. From hare on the proof of the oxistesrac
 the ordinary Riemann integral of a continuous inunction,

Congedas not tha nuethent

16 bato

$$
{ }_{L_{2} t_{2}} \leq \frac{x_{4}=x_{2}}{4_{2}-b_{2}} \leq H_{t_{2}} t_{2},
$$

and

ama thus

Mria comntoten the proos of thoorom do
 Ne she? suy that

$$
x_{t}=\int_{i}^{4} x_{t} x^{2} \text { exister } 3.1 .0 .
$$

(12.29)

$$
\Sigma_{1} t_{2}^{t_{2}}=\int_{a^{t_{1}} \int_{2}^{t_{2}} v_{2} \sigma_{2} d \sigma_{2}}^{\sigma_{2}}
$$

 We hate

It 2 ace xs go to inilmity in nyy menuer we have

(
 を！をす
$(1.29 a)$

Fon（Ao 238）it T0llove that

$$
\begin{aligned}
& \text { If of is continuous then by the mams ralue themman of in }
\end{aligned}
$$

strchastre processes

 Bums
(12030) ）．

$$
X(S)=\sum_{1=1}^{n} x_{1-1} d y_{t} Z_{1-1}
$$

$$
\text { If non for avory sequanor }\left\{S_{n}\right\} \text { of Enbivien mis itn moculu }
$$

 paritionar aequenos $\left\{S_{n}\right\}$ and or the chofor or pointa to
$\left(t_{i-1} \leqslant t_{i}^{*} \leqslant t_{1}\right)$ thon

$$
x=\lim _{n \rightarrow \infty} x\left(S_{n}\right)=e^{b} x_{i} d y_{v}
$$

 などあ

$$
a^{b} x_{0} 8 y_{t} \quad \text { exists } \quad 1,1,0
$$

（2，32）

$$
\int_{e^{t}}^{S_{0}^{t}} \int^{t} t_{2} t_{2}^{t} t^{3} t_{1}^{t} 2
$$

exiats．Th covarianco function of

$$
x_{t}=S_{a}^{t} x_{t} d y_{t}
$$

\＄8 moreover given by

$$
\Sigma_{t_{1} t_{2}}=\int_{a}^{b_{a}} d^{t_{2}} \sigma_{\tau_{1} \tau_{2}} \cdot \tau_{1} \tau_{2}
$$

 1。今 and is loft to the regeter.

 S(En7) Ladepsadent of. t suoh that

$$
P_{f}\left|x_{t+5}-x_{1}\right| \leq \varepsilon_{1} \geq 1-\eta \quad \text { Pox } 670 r y \quad|1| \leq a(6,4)
$$

 [$a_{0} b$] thon it is undroraly ountinuova in in, ill

$$
P\left(\left|x_{\hat{6}+\tau_{1}}-x_{b}\right|>\varepsilon_{\|}\right\rangle \tau_{i}
$$

 $t_{1} t_{2}$ o. aunin that for some $\varepsilon>0, \eta>0$

$$
P\left(\left|x_{t_{1}+\tau^{-x}} t_{1}\right|>2 \varepsilon\right)>27
$$

19] Tox tha concept of conditional proverility the neater is
 Ihohkoitsmacmunto Chapter fo pais, 1 enf 3

$$
x_{1} \mid x_{t_{i}}-z_{t} j>\varepsilon_{1}<\pi
$$

Than

$$
\begin{aligned}
& \left.P\left|\left|x_{t_{1}}+\tau_{0} \cdot x_{1}\right|>1\right) \geq P\right\}\left|x_{t_{i}}+\tau^{\circ} x_{t_{2}}\right|>2 \varepsilon \cdot\left|x_{1}-z_{i}\right| \leq \varepsilon_{8}
\end{aligned}
$$

Hence for arbitrary $\delta>0$ and come $\varepsilon>O_{0} \eta>0$ there exist values \% < 5 such that

$$
P\left(\left|x_{t+\tau}-x_{t}\right|>\varepsilon\right)>\eta
$$

In ecntradiotion with our eacumption of vortinulity of the process x to

 by 1 and tate the ? elionlios
 in $[4, b)$ and lati x_{f} be a, etoonastio peqoess whit
(1) is oontiouone in $\left[a_{8} b\right]$ s
(11) is such that for sutficitantiy small \%-whioh is indene pendent of $\mathrm{j}-$.
where K is a constant independent of the choice of S. Then $M_{a b}$ and a) 3 , $8 x+8$ t.

 ก อna guficofontiy amall \&
 If $P\left(A_{1}\right)=0$ the inoqueinty $(1,33)$ 13 12330 vais 10 .

Cho ovonts By ocours. By dolinition As implics

$$
x_{1}=\cos _{1} \text { 30 that } \mathrm{B} \text { impiies the sxistonce or sones } y_{i k}
$$

$\mathrm{MaS}_{\mathrm{m}} \geq \mathrm{HabS}_{1}-\mathrm{E}$ 。 Mhersfore we goe that

$$
P\left(H_{a b S_{;}} \geq H_{a b S_{1}}-\varepsilon\right) \geq P(B) \geq \sum \sum\left(\mathbb{E}_{k}\right) 。
$$

From (2, 2 3) we obtain easily

$$
\left.P\left(B_{x}\right)=P \mid A_{k}\right\} P\left(x_{2}-y_{2} \leq e \mid A_{k}\right\} \geq\left(A-X_{+}\right) P\left(A_{x}\right\}
$$

The ovonta A_{k} excluke oach other and axheust all tho passi= bilitieg so that by aoding these inequalities we obtaxin

$$
\sum_{k} E\left(B_{k}\right) \geq 1-K \text { If }
$$

Tharefore, (11.n34)

$$
P\left(M_{a b S} \geq M_{a b S_{1}}-\varepsilon\right) \geq 1-R_{n} .
$$

Similarly wo obtain
(1.034a)

$$
P\left(M_{a b S_{i}} \geq u_{a b S_{j}}-\varepsilon\right) \geq 1-1 \eta_{0}
$$

Hence
(1, 35)

$$
g\left|\left|M_{a b S_{1}}-M_{a b S}\right| \leq \varepsilon\right\rangle \geq 2-2 \pi \eta_{j}
$$

The extstonce of Ma follows easily from (2, 35) wains thenarer it is and the axistanco of $m_{a b}$ is proved aimideriy,

SPECIAL PROCESSES

1．The fundamental random process
A small particle suspended in a gas is subjected to a contain－ uar bombardment by the molecules of this gas．The individual impacts imparted by these molecules are small compared to the mass of the particle
and the number of impacts per second is very large．The fm pacts are received from all directions and are randomly distri－ outed．moreover，if neglect the velocity of the particle itself，which 18 small compared to the velocity of the molecules， the distribution of these impacts at time t will be independent of the momentum of the particle at time $t^{\prime} \leq t$ 。 If we denote by $x_{\hat{t}}$ the momentum of the particle，it will therefore be reasonable to assume that $x_{t+\tau^{-x}}$ is independent of x_{t}＊for $t^{*} \leq t$ 。 The motion of the particle is called the Brownian motion．

Th momentum of the particle is a special example of a more general type of stochastic processes，called Markoff processes． which satisfy for $t_{1}<t_{2} \ll_{c}<t_{n}<t$ and $\tau>0$ the equation
$P\left(x_{t+\tau} \leq A \mid x_{t_{2}} \ldots \ldots x_{t_{n}} \cdot x_{t}\right)=P\left(x_{t_{+} \tau} \leq A \mid x_{t}\right)$ 。

In words，the conditional distribution of $x_{\text {tat }}$（where $t>0$ \％ given the values of $x_{t_{1}}, \ldots, x_{t_{n}}{ }^{\prime} x_{t}$（where $t_{1}<t_{2}<\ldots<t_{n}<t$ ） is the same as the conditional distribution of $x_{t+\tau}$ given x_{t} 。

More convarcationally speaking, if the prosent value of $x_{\text {t }}$ is knowa the diatribution of any feture Felues is indepondert of the way in whioh the reesent value wes reachod.

In our special asse of the motion of a partiole puspoded in a 8 gis mo chail rave tho following aseumptions about the moo wantum x_{6} :
A8sumpton 2 .
(2, 1)

Where $\varepsilon_{\text {th }}$ is o rancom variable with nean zar ond is imabper=

sseumptron 2。
The distribution of $E_{t, \tau}$ deperids only on T_{0}
Aseumption 3 .
The warience of E_{t} foxists and is a meacurable function of To
We have ior $\tau \leq \tau_{2}+\tau_{2} \quad \tau_{1} \geq 0 \cdot \tau_{2} \geq 0$

$$
\varepsilon_{t, \tau}=\varepsilon_{t, \tau}+\varepsilon_{\left.t+\tau_{2}\right\rangle \tau_{2}}
$$

and hemoe
(202)

$$
\sigma_{\tau_{2}}^{2}+\sigma_{\tau_{2}}^{2}=\sigma_{\tau_{1}+\tau_{2}}^{2}
$$

where $\sigma_{\tau}^{2}=\sigma_{\varepsilon_{\beta, ~}}^{2}$ 。

Fiom \｛3．2）and agetumtion 3 it follows by a well knovin theoress［10］thet

$$
\left\{2.3 \% \quad 0_{\pi}^{2}=0 t\right.
$$

 In the mean with deoreasing or and the procese is oontinuous Soboro Sh Sippoes further fhat $x_{0}=0$ ．It follows thon frora （2．3）and ageumption I that
（2，4）$\left\{\begin{array}{l}\sigma_{x_{t}}^{2}=\sigma t \\ \sigma_{x_{\uparrow} x_{t}}^{2}=\sigma\left\{x_{t}\left(x_{t 千 \tau}-x_{t}+x_{\hbar}\right)\right\}=\sigma_{x_{t}}^{2}=\sigma t .\end{array}\right.$
 ceases，sometimes callad difforention prooesses．［il．If In orcer to dafine completoly our methamaticel model lov tha Browniea nothon we must also take eocount of the fact thet we regard the impacts irom the molecules as coning in a continuous stream eothat large changes of the momentum in a short time interval beome muoh less likely than amall ones．
［10］IT a measurgble function $f(x)$ aatieries the funotional squation $f(x+y)=f(z)+f(y)$ then $\tilde{f}(\tilde{I})=a x$ 。Proof of this

［11］We distinguion dipforential process from＂geneus differ－ onthal processes＂（Chepter 全）

We thenexose impose the followinge eaditionel condition oalleo the Lindebszg oonditions on tho distributhon fumctions Prol of Etoro

For muitioloztiy mall 5 and arbitwexy $\theta>0$ o $\rightarrow>0$

Condstion $\{2.5 \%$ may perhap boct be uncorstood is me disauss sn Blaportinnt ©eso where it ia [ulflilled
 $=F(a)$ Is indepondent of t then $E_{t_{0}}$ fulidlls tho Lindeberg condition \{205\}。
Proof: mon the conditions of the theorem we hate

$$
F_{\tau}\left(\varepsilon \sigma_{\sigma}\right)=F(\varepsilon) \& F_{\sigma}(\alpha)=F\left(2 / \sigma_{\sigma}\right)
$$

$$
\begin{aligned}
& =\sigma_{\sigma}^{2} \int^{0} y^{2} u F(y) \leq \operatorname{ş\sigma }_{\sigma}^{2} \\
& \text { lybyer }
\end{aligned}
$$

$\checkmark \mathbb{O r}$ suficiontiy smsil since $\sigma_{T}^{2}=0 \%$ the inequality Laleting

- $-2-=$

We riext prove

 Is normelig distributed wath vertance ot.

 \#n shall use the followhic
Loma 2a: Iat $x_{10} \Sigma_{20000} \Sigma_{k}$ bo indopone ont random variablos vith

$$
\left|P\left(x_{1}+00+x x_{h}<2\right\}-\int_{-\infty}^{2}(I \log \sqrt{2}) e^{-x^{2} / 2} \quad d x\right|<\varepsilon
$$

whenvics for all k

$$
\underset{x: 1 x^{2}}{\int x^{2}} d x(x)<\pi v_{x}^{2}
$$

A proos of this lemma can be found for instance in Khintchine
 (Excebniase der Hethematiko J。Springar. Berlin 19338。
 1. Qdyide the intorval $0 \leq t \leq t$ into n oqual panto and put
x
$\tan +$
\qquad

1

E

 8里\qquad $*$

4
$=0.4=$

$$
S
$$

$$
1
$$

$$
-10-6 y_{1} \quad-10,+12=-1
$$

Ia the lolloving 4 sh shall repeatoaly uze tha ruct that the Wobloution of the lintit of a sequgroe of rantom vertabren pguels 2. Futher properties of the F.R.P. Themen 2.e. Evary I.R.P. is stroncly contimuous.

Whthout lose of gencrality wo chazd assumo os is that is,
 Droce de thoorm 2.3.

Lelmas. Foz a >0 wave
(2, 3$)$

$$
\int_{3^{\infty} 0^{-x^{2} / 2} d x \leq e^{-x^{2} / 2} / x}^{0}
$$

T29:

$$
\text { c. } \int_{a}^{\infty} \int^{-x^{2} / 2} d x<\int_{4}^{2 x} x 8^{-x^{2} / 2} d x=e^{-2^{2 / 2} / 2}
$$

 06 ratata in this interval
$1 ? .71$

 aesure $\mathrm{m}_{0}=0$ ginoe wo could othervise aonsider tha prooess $x^{0}=$

$$
D P\left\{A_{1}\right) P\left(x_{1}-x_{1} \geq O \mid x_{1} \& M \quad 0=00, x_{1}<M_{0}<x_{1}>M_{1}\right.
$$

oux

Wh anconnt of Assumptions we know that $x_{n} x_{1}$ is independentiy als -
 2ad raviance t $n{ }^{-0} t_{1}$ so that

$$
\frac{1}{2}, 3\left(A_{1}\right)
$$

$$
(2,9) \quad 2 \mu\left(x_{0} \geq M\right) \geq E\left(M_{t} \leq \geq 18\right)
$$

$(2,19)$

$$
12 \sqrt{5} / N \sqrt{2 \pi} 10^{-H^{2}} / 20
$$

Fustboxmoxe

Whach asteblishee $(2,7)$:

 To prove (2,11) we akd the points of S_{n} to So mhas will at mo3t deoreaso the probab111ty in \{2.11). S1ase tho distribution of $V_{t_{1-1} t_{1} S} 18$ indepancent of the distribution of thet of

$$
\begin{aligned}
& \geq\left(8-x e^{-2 k^{n}} g^{n}\right.
\end{aligned}
$$

\pm

positive

Where k and k^{8} are $\wedge^{\text {constants independent of } n \text {. Since it is }}$ easily seen that $\lim _{n \rightarrow \infty}\left(1-k e^{-n k^{\prime}}\right)^{n}=1$, lama 2.4 follows. Lemme 2.5. ${ }^{M}$ ti and $m_{t t}$ exist for every interval [t, tr].

Consider a sequence of subdivisions $\left\{S_{1}\right\}$ of the interval [5, to $]$ of moduli $\frac{f_{z}}{\{ }\left\{\delta_{1}\right\}$ with $\frac{1 i \pi}{1 \rightarrow \infty} \delta_{1}=0$. Is S_{1} and S_{j} hare both suislciontly small module then in every interval of length δ_{n} of 1 ma 2.4 there will bo at least one point of S_{1} and one of S_{j}. Fence applying lemma 204 to tine union of S_{i} and S_{j} we obtain
 moduli converge to zero and is the same for every such sequonco。

To prove theorem 2.3 let S ba any subdivision of modulus $\leq 0 / 2$ and consider

$$
\left(\varepsilon_{0} 13\right) \quad g\left(\nabla_{t_{j-1} t_{1}} \leq \varepsilon_{8}\left\{1_{0} z_{0} 0001\right)\right. \text { : }
$$

Re form a new subdivision with $0 / 2 \leq t_{1} \circ t_{i \sim l} \leq \delta$ by deleting point e of S_{0} The probability $(2,13)$ for this nom subdivision is smaller than that for S 。
\qquad
$4 \frac{1}{4}$

2

en
(2)

$$
\text { i }-1,1+1
$$

$$
{ }^{2} u \cdot 1, A=
$$

 $2.2 n$

Theorem 2_{2}. For the $F_{C} R_{0} P_{0}$
$(2,15) \quad P\left(M 2 b^{-2 x_{a}} \geq M\right)=2 P\left(x_{0}-2 x_{2} \geq M\right)$
Proof: we conedder the proos of Lenms 2,3 and warte $t^{\prime}=0 \quad$ b=a
 be majy ast of points in the interval $[2,0]$ o Lot S_{f} bo an vament of sequenco of mubdivisions $\left\{S_{i}\right\}$ whoge moduli 50 to maxa. AOsordiag to 2erma $2.5 \quad \frac{p l i m}{1 \rightarrow \infty} M_{a b s}=M_{a b}$ exiatos heno

12,168

$$
2 P\left(x_{b} \geq M\right) \geq P\left(M_{a b} \geq M\right)
$$

 and with $x_{9} \% 0$

$$
\begin{aligned}
& =\frac{Z_{2}}{2} P\left\{A_{i}\right\}+P\left(A_{1} \varepsilon \leq x_{0} \leq x_{g}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& 4 P\left(A_{1} s^{\left.x_{1}-x_{1-1}\right)} \geqslant E_{8} x_{1-1} \leq x_{0}<x_{1}\right) \\
& \leq 2\left(A_{i,} O<x_{1} \operatorname{cox}^{0} C \quad \&_{\infty} E\right) \rightarrow P\left(x_{1}-X_{1-1}>E_{i}\right)
\end{aligned}
$$

 alsmyinutod with mean zero, Adalng the inoquaditios (2, 27 and using $(2, x 8)$ w rbtain

$$
4 \sum_{1} P\left(x_{1}-x_{1-1}>\right)^{2}
$$

 for avary positivo and ovexy requanoo $\left\{S_{n}\right\}$ mhon modulum oonverges to zeru. Stnge \& was arbitraxy we hevo

Since o may be choson axbiturarily eloze to bs it follows from (2, 20) thes.
(2,21)

$$
2 P\left(x_{b} \geq M\right) \leq P(M a b \geq M g
$$

The ing qualities $(2,2 l)$ eut $(2,3,6)$ fogetinc imply theorsm 2040

$$
P_{n}=P^{4}\left(x_{t_{2}}-x_{t} \leq 000 \ldots 0 x_{t}-x_{t} \leq 0\right) ;
$$

then $\lim _{x \rightarrow \infty} p_{n}=0$.
Procf: ila nave
$\left.\lim _{n \rightarrow \infty} P_{n}=2 i_{t_{0}} t+\tau^{-x_{t}}=0\right)=1-P\left(\mu_{t_{0} t+\tau^{-x_{t}}}>0\right)=1-2 P\left(x_{t+t_{t}}-x_{t}>0\right)=00$ Thoogem 25 , If $\beta \geq 1 / 2, \lim _{x \rightarrow 0}\left\langle x_{t+\tau^{-x}} \| / \tau\right.$ does not exist。 It 18 zoro if $p<1 / 2$

The proof of this theorsin is 105 to the reador.
 numbers and $p<1 / 2$ 。Then hhere exista a o suoh that for every

$$
P\left[V_{t_{1-1} t_{1}} /\left(t_{1}-t_{i-1}\right)^{A} \leq \varepsilon\{-18000 n] \geq 1-1,\right.
$$

For the proof we nead the following
Lemms \& b. For $j_{1}>O_{8} \dot{o}_{2}>O_{3} x \geq O_{8} x^{\prime}>O_{2} y ; O_{5}$ and $\delta_{2}+\delta_{2}$ ansploleatiy smail

Poot op lemiar 2ab: The lept side of (2, $2 厶$) is not amaller thas

$$
x-k\left\{0 x p\left\{-k^{\theta} / 8_{1}^{8}\right)+\operatorname{axp}\left(-k^{\theta} / \delta_{2}^{8}\right)\right\} .
$$

Henco (2, 2L) is provad if wo prove for supttclentiy small o_{2} and δ_{2}
$F\left(\delta_{1^{n}} \delta_{2}\right)=\exp \left[-k^{\theta} /\left(\dot{o}_{1}+\dot{o}_{2}\right)^{r \prime}\right]-\operatorname{axp}\left[-k^{\theta} / \hat{o}_{1}^{\psi}\right]-\operatorname{axp}\left[-k^{\theta} / 0_{2}^{y}\right] \geq 0$
we heve

$$
\lim _{\substack{\delta_{2} \rightarrow 0 \\ \delta_{2} \rightarrow 0}} F\left(\delta_{2}, \delta_{2}\right)=0
$$

The function $x^{=v-1} \exp \left(0 k^{\prime} / x^{v}\right)$ is monoterisully inoroasine for iffilaiently small x_{0}. We have therefore $a F / a \delta_{2}>0$. aFRo $\delta_{2}>0$ for sufficiently small $\dot{o}_{1}+\delta_{2}$, Hence $F\left\{\delta_{1} c \delta_{2}\right\}$ 13 positive for suppiaiently small $\delta_{2} * 5_{2}$ c

Wo proceed to prove theorem 2.6 . we have by (2.7) with $2-2,9=8, g_{1}=t_{1}-t_{i-1} \leq 1$

$$
\geq 1-k \exp \left(-z^{1} / \varepsilon_{1}^{\top} ;\right.
$$

Niter x and k^{\prime} are independent of the subdivision.
Thus

ITOM Lat S have modulus $\frac{\delta}{2}$ then by lemma 2.6 wo may combine the intervals to the right of $(2,23)$ in such a fey that all intervals are at least of length $\frac{\delta}{2}$ and at most of length jo Hence
(2,24) $P \geq\left[1-2 \operatorname{spp}\left(-k^{\prime} / \delta^{\pi}\right)\right]^{2(b-a y / 8)}$
Enc the right hand side of (2, 24) is arbitrarily close to ane if 8 is sufflolently small。This completes the proof of theorem 2.6.

A pracem 18 callea Geubsian if the joint distiobution of

 W(3) have $n(x, t)=0$ and by thoorem 1,5 for $t^{0} \geqslant t$
 Facis of tho approximgting kiemann sums is normally distributod and

Proof: The inequality (2.5) may be dor jived aim no for vectors if we interpret $x \leq a$ to mean that the vector $a-x$ has non-negative come Foments. Lemme 2 , them follows cosily from the foot that for axtitrardy malls and muricionely largo n

$$
F_{n 2}(\varepsilon \kappa \delta)+\delta \geq F(\varepsilon) \geq F_{n}(\varepsilon-\delta)-\delta .
$$

Where $I_{2}(a)$. $F(8)$ are the distribution functions of x_{n} and x reapoce 18voly frictional effects. The Ornstein-Uhlenbeck process.

We have so lay in the Brownian motion neglected the elect of the motion of the particle itself on $\varepsilon_{t r}$. If the partials has the monentrank If then tho random impulse a will have a incan value propertonal to x_{t} fitsolf。 This leads to the equation

It follows from (2.25\% that

Hence $a_{\tau_{1} \uparrow \tau_{2}}=a_{\tau_{2}} a_{\tau_{2}}$ from which it follow that $\varepsilon_{T}=e^{\text {art }}$
and since $\varepsilon_{5}<1: \alpha_{\tau}=0^{-\beta \tau}, \beta>0$ = Wo further have from $62_{0} 258$
(ni 12.261

$$
{ }_{\varepsilon_{2}} \varepsilon_{t_{y} \tau_{2}}+\varepsilon_{t_{1} \tau_{2}, \tau_{2}}=\varepsilon_{\left.t_{r} \tau_{2}\right\rangle \tau_{2}}
$$

Thus

$$
a_{\tau_{2}}^{2} \sigma_{\tau_{1}}^{2}+\sigma_{\tau_{2}}^{2}=\sigma_{\tau_{1}+\tau_{2}}^{2}=a_{\tau_{1}}^{2} \sigma_{\tau_{2}}^{2}+\sigma_{\tau_{1}}^{2}
$$

019
$\left.1 \sigma_{T_{1}}^{2} / 0_{\tau_{2}}^{2}\right)=\left(1-a_{r_{1}}^{2}\right) j 1-a_{2}^{2} \delta=\left(1-e^{-2 \beta \tau_{2}}\right) /\left(1-e^{-2 \beta \varepsilon_{2}} y\right.$.
Therefore

$$
(2.27) \quad \sigma_{\tau}^{2}=\sigma^{2} 11-\theta^{-2 \beta \sigma}, \quad \beta>0=
$$

Moreover from (2.25) and our assumption \&bout $\varepsilon_{\text {t. }}$ we have
$\left(2_{0} 28\right\} \quad \sigma_{x_{t \uparrow \tau}}^{2}=a_{\tau}^{2} \sigma_{x_{t}}^{2}+\sigma^{2}\left\{1-0^{-2 \beta \tau}\right.$
\longleftarrow If τ approsohos infinity then $\sigma_{x_{t+\tau}}^{2}$ approaches σ^{2} 。 That is
to say. if the particle has been subjected to these random impacts for a long time then the distribution of its momentum approaches a steady state 。

We shall therefore assume the the process is stationary that is to says that the joint distribution of $x_{\hat{t}_{1}}$
 and it follows from（2027）that

She x_{t} process．satisfying the assumptions listed Rove，was frt conatcored by L 。 S ornatoin and G 。 E_{0} Uhlonbock．we will ell it the Ornstein－Unlenbeck process（abbreviated 0 。 $U_{8} P_{o} f_{0}$

We next consider the process given by（2．30）．
$\left(z_{0} 30\right) \quad\left\{\begin{array}{l}\gamma_{t}=t^{\frac{1}{2}}(\log t) / 2 \beta \text { for } t>0 \\ \gamma_{t}=0 \text { far } t \leq 0\end{array}\right.$
we have for to \geq t
$(2,32)\left\{\begin{array}{l}x\left(v_{t} v_{i}\right)=\sigma^{2} t \\ E\left[\left(v_{i}+p_{t}\right) \psi\right]=0 \quad \text { far } 0 \leq 0<t<\theta_{0}\end{array}\right.$
 the pit process 18 a $F_{0} R_{0} D_{0}$ From the properties of the ψ_{4} process พ＊obtain

Theorem $2_{0} 8_{0}$ Let x_{6} be an $O_{0} \Pi_{0} P_{0}$ Then
(I) \bar{x}_{t} is cortinuous 8
(1) x_{1} sa not differemthable8
(III. $M_{a b}$ and $m_{8 b}$ oxiat for the x_{f} process and it is etronghy continuousi
(IV) tho Iollowing equation - decirod from theoren 2.4nolda for $M \geq 0$

In equatlon (2,32) we have writton

$$
\sum_{a \leq i \leq b}\left(y_{6} \leq M\right) \text { for } P\left(M_{b} \leq M\right)
$$

 notatton Will aleo be used in whet followe。

Equation (2, Sas doos not seom of great use as it ghancso but

and thua

$$
3-8(2-5 x) / 0
$$

Thaogen 29. Lot x_{t} be en $O_{0} U_{0} P_{0}$ The integral $X_{t}=\int_{0}^{f_{6}^{4}}$ dt of this proceas axtets thon 1.1_{0} and 10 a $t_{2} \geq t_{2}$ itg sovariance function 2a given Dy
(2.34.) $R_{t_{1} t_{2}}=\frac{\alpha^{2}}{\beta^{2}}\left[0^{-\beta t} x_{40}-\beta t^{-\beta} 2_{4} 2 \beta t_{1}-1-\theta^{-\beta\left(t_{2} t_{1} b\right.}\right]$

Moreayer
(2. 35)

$$
B_{t}=\beta\left(X_{t}-X_{0} y+x_{t}-x_{0}\right.
$$

1s E E R $R_{0} P_{0}$
Proof: For $\sum_{2} \geq t_{1}$ wo heve by theorem $2_{0} 5$

$$
\begin{aligned}
& 0_{0}^{2} \int_{0}^{\omega \sigma_{0} \sigma_{0} \beta\left(\tau_{2}-\tau_{1} y\right.} d \tau_{2} d \tau_{1} \\
& =\frac{a^{2}}{\beta^{c}}\left[0^{-\beta t_{2}}+e^{-\beta t_{2}}+2 \beta_{2}-1-e^{-\beta\left(t_{2}-t_{1}\right)}\right] ;
\end{aligned}
$$

and $\operatorname{sor} t_{2}=t_{2}$

$$
E\left(X_{t}-X_{0}\right)^{2}=\frac{2 q^{2}}{\beta^{2}}\left(\theta^{-\beta t}-\beta t-1\right)
$$

A otrascherozwaxd oalculation givor for $t_{2}{ }^{2} t_{1} \sum_{2} \geq \varepsilon_{1} 8$
(2.36)

$$
\begin{aligned}
& \pi\left[\left\{x_{t_{2}}-x_{t_{1}}\right)\left(x_{B_{2}}-x_{g_{1}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.=-\frac{j^{3}}{\beta^{3}} \operatorname{IJ}\left(x_{t_{2}}-x_{t_{1}}\right)\left(x_{B_{2}}-x_{B_{1}}\right)\right]
\end{aligned}
$$

We obtain $17 \times \pi$ lomma 1.7 and 12,36 ?

From $(2,37)$ พ 8 o casly
(2.38)

$$
\begin{aligned}
& =-\operatorname{I}\left[\left\{x_{B_{2}}-x_{B_{1}} f\left(x_{t_{2}}-x_{t_{2}}\right)\right]\right.
\end{aligned}
$$

relations

(2.35)

$$
B_{t}=\beta\left(x_{t}-X_{0}\right)\left\langle x_{t}-z_{0}\right.
$$

From $\{2035\}$ w have

$$
B_{6}-E_{\hat{6}}=\beta\left(X_{x}-\Sigma_{\hat{6}}^{0}\right) \& \Sigma_{1}-I_{\hat{6}} 0
$$

Thus sox ovary funotion flty lor whian the operatons huicetod Belom have maxiag, me havo

(20.408)

$$
\dot{s} x_{t}=-\beta x_{t} d t \Leftrightarrow \Delta B_{t} \quad c
$$

 ©

 also ditcrpict

 Iluctuablug curront and at tho same time grounded through a resist ancolo In shozto equation (2.40) dosoribea any situmblon in whioh a quantity x_{t} is aubgoct to random changes ans to a gystometio dearoasu propostlonel to $x_{\text {合 }} 1$ tient

CHAPTER 3

ESTIMATION OF PARAMETERS

In the preceding chapter we discussed Markoff processes: we shall now apply our results to obtain estimates oi the parameters determining these processes from observations. In our estimating procedures we shall assume that we have at least one onrve at our disposal registorines the values x_{t} for all values $0 \leq t \leq T$ 。 Actually it would be sufficient to know x_{t} for any deane get in thin interval. This pr oo sure may not seem realistic aline we never: observe the process for every time point. Every method of restsbering the curve described by x_{5} will itself afoot x_{t} and 去 part. secular smooth the path curve of x_{1}. Thus what we observe is really a modified process.

However the methods of observation may be so refined as to give us the value of x_{t} in 2 large number of points and at any rate the variances of our ostimetos if obtained from discrete points may aims be computed.

1. Estimation of the parameter of the F.R.P.

 a $F_{0} R_{0} P_{0}$.
 in an arbstrary small interval, than it is poasiole to getimazs the pasametar o with acbitrarily high precision。

Proof: ABsume that N observations are taken in the intertal $0 \leq 1$
 timo пt. Since $x_{\text {t }}$ is $F \mathcal{R}_{0} P$ 。 the Tariates

$$
\nabla_{n}=\frac{x_{n \tau}=x^{2}(n, 1) r}{\sqrt{x}}=\frac{(n-1) \tau, \tau}{\sqrt{\tau}} \quad\left(n=\sum_{0}, 2, \ldots, n\right)
$$

sis normadiy and indopondently disixibutod wh th moan 2020 asd van 1 - The maximum ilkelihood estimate of the varianos es Ja is there fore gityen by

$$
(3,1) \quad \hat{o_{s}} \frac{1}{W} \frac{1}{T} \sum_{n=1}^{N}\left(x_{n T}-x_{(n-1) T}\right)^{2}+\frac{d}{T} \sum_{n=1}^{\mathbb{X}}\left(x_{n T}-x_{(a=d) T}\right)^{\varepsilon}
$$

 H degrees of froedom. Its varisnce is therefore 2 Ti Henco fors
 H 2are ocoueh

 Lag and wili thus su00th the process. We may infar hovevor 163π our result that the points for which we read the value of I phoulh Do spaced as olosely together as possible That to to gay as clot as is congistent with the asgumption thet the veluoe ap x tos obtained still ropresent the actual values suopifad wy ths $E R$?
2. F.R.P. witt mean value function.

More generally we prove
Theorem 3.2 If y_{t} is a stochastic process such that $y_{t}=x_{t} \& f(t)$ where x_{t} is a FoR.P. and $f(t)$ a function of bounded variation satisfying in $\left(O_{8} T\right)$ a Lipsohitz condition $|P(t+\tau)=1(t)| \leq M \leq 10 \%$ and if y_{t} is Renown in a dene set of an arlitravil small internal, some $H_{,}$, then it is possible to estimate the parameter B of the F. RoM x_{t} with arbitrarily high precision.

Proof: Let again $\} \equiv T$ and consider the sample points $x_{n \tau}{ }^{2}\left(x=0, b_{0}\right.$ $2, \ldots, \mathbb{N})$. Denote by $\hat{c}=\frac{\sum_{N}}{\mathbb{N}} \sum_{n=1}^{\left(y_{n \tau}-y(n-1)_{r}\right)^{2}} \frac{\tau}{\tau}$. Then

$$
E\left(\frac{\hat{e}}{c}\right)^{2}=\frac{1}{\bar{N}^{2}} E\left\{\sum_{0} \frac{\left[x_{n \tau}=x \overline{n_{\sim} I_{\tau}}+f(n \tau)=f\left(\overline{n=I_{\tau}}\right)\right]^{2}}{c \tau}\right\}^{2}
$$

Here and in the immediately following formulae the summation is to be extended from $n \approx 1$ to $n=\mathbb{N}$. We write also $\overline{n=1}$ for ($n=1$) to
 $f[(n-1) \tau]=f(\overline{n-1} \tau)$. Then

$$
\left.+\frac{1}{0 \tau} \sum[f(n \tau)=p(\overline{n-1} r)]^{2}\right)^{2}
$$

Wo expand the right member of this expression; a considerable simplification follows from the assumption that x_{t} is \& $F_{0} R_{0} P_{0}$ w 78 use in particular the fact that $\frac{x_{n \pi}-\frac{2 \bar{n}-1}{}}{\sqrt{0 \tau}}$ is normally distribut

Wi. th zero mean and unit variance and is independent of $\frac{x_{m \tau}-x_{m-1} \tau}{\sqrt{3 \tau}}$ for $m \not \approx n$. Thus we obtain

$$
\frac{\lambda}{H^{2}}\left\{\sum_{0} \frac{[i(n \tau)-f(\overline{n-1} \tau)]^{2}}{0 \tau}\right\}^{2},
$$

and

$$
E\left(\frac{\tilde{C}}{0}\right)=\operatorname{lo} \dot{n}\left[\frac{[f(n \tau)-f(\overline{n-1} \tau)]^{2}}{0 \%}\right.
$$

Hence
$E(0-0)^{2}=\frac{20^{2}}{\pi}+\frac{40}{N 2} \sum \frac{[f(n \tau)-f(\overline{n-1} \tau)]^{2}}{\tau}+\frac{1}{N^{2}}\left\{\sum \frac{\left[f(n \tau)-f(\overline{n-1} \cdot]^{2}\right\}^{2} .}{\tau}\right.$

Thus \hat{o} converges in the mean to 0 and $\hat{O}-0$ is atochastricaliy of the order $1 / \sqrt{\pi}$. In fact $E(\hat{c}-c)^{2} \leq \frac{2 c^{2}}{N}+\frac{40}{N^{2}} M V+\frac{1}{N^{2}}(M V)^{2}$.

Here $\left|\frac{f(t+r)-f(t)}{T}\right| \leq M$ and V is the variation of $f(t)$ so that ale $\nabla \leqslant K T$ where T is the length of the interval.

Thus in estimating the function $f(t)$ we may assume 0 to bo known, if wo know y_{t} in any interval completely.

We shall discuss two examples of the function $f(t)$. In the first we assume that

$$
f(t)=a t
$$

 that the $J_{t+\tau}=y_{t}$ are normally distributed and independent in notion overlapping intervals with mean an and variance or. Hearse tho maximum likelihood estimate of ag given the values at time

$$
\hat{a} \varepsilon \frac{1}{\hbar} \Sigma\left(y_{n T}-y_{n-1}\right)=\frac{y_{T}=y_{0}}{T}
$$

Its $\mathrm{\nabla ariance}$ is

$$
\sigma_{\hat{e}}^{2}=\frac{o}{\text { in }}
$$

For the second example wo assume that if t) is given by

$$
f(t)=\sum_{j=1}^{m}\left(\alpha_{j} 00 B j t+\beta_{j} 3 i n j t\right)
$$

and that the values of Jot are know in the interval (0 , 2π) and

 will be given by those values which minimize the exprosefon

$$
\begin{aligned}
\sum_{i=1}^{n}\left\{y_{j \tau}-y_{j-1} \tau\right. & \sum_{j=1}^{M} \sigma_{j j}[\cos 1 j \tau-\cos (1-1) j \tau] \\
& =\sum_{j=1}^{M} p_{j}[\sin 1 j \tau-s\{\pi(j-1) j \tau]\}^{2}
\end{aligned}
$$

Henog tha maxiomin inkelthood equathons gre

$$
\begin{aligned}
& \pi=\lambda_{0} 00015
\end{aligned}
$$

and

$$
4 \equiv]_{0} 28000
$$

If zoxio we obtaln beowuse of the orthogonallty of the siuo and cobine functions

Tho rulee of celculetion for the integrel in the left membsx OI this equation a工o oomplotely antiogous to those Ioz the ordinery Riemann-Stieltjes integral. Integzestom by parte on the ielt given thoxerore

$$
\int_{0}^{2 \pi} y_{t} 003 k t d t=\hat{\alpha}_{k} \pi
$$

and thus
$(3,3.1)$

Similaxiy, 习e obtajn from (3,2,2)

$$
x \int_{0}^{2 \pi} \cos \dot{t} d y_{t}=\pi k^{2} \hat{B}_{E}
$$

Integration by parts gives agein

$$
\begin{aligned}
& (3,3,2)
\end{aligned}
$$

 s50@hฉstio Limits of Riemenn sumz, and it is oहsy to sse Irom fha 30r0llary to lemma 1.7 that theae Riemsn sums coaveroge lin the acsy Froin lemal 2. 4 pre see therefore

$$
E\left(\hat{\alpha}_{k}\right)=c_{k}, \quad E\left(\hat{\beta}_{k}\right)=\beta_{z}
$$

where $o_{1}=\left.\operatorname{mox}\right|_{1}=t_{1-1} \mid$ ana $\delta_{y}=\max \left|t_{y}=t_{j-1}\right|$.

Since the increments of Ψ_{t} in non-overlapcing intervale are independent of each other we have

ร๐ that t
$(3,8)$

$$
\sigma_{0}^{2}=\frac{0}{\pi k^{2}}
$$

and similaryy
(8.9)

$$
\sigma^{2}=\frac{0}{\pi \beta_{2}^{2}}
$$

Sur thar
(3.20)

$$
\begin{aligned}
& \sigma_{\hat{a}_{k}} \hat{\alpha}_{\ell}=\sigma_{\hat{\beta}_{2}} \hat{\theta}_{l}=0 \quad \text { for } k \neq l \\
& \sigma_{\hat{a}_{k}} \hat{\beta}_{l}=0
\end{aligned}
$$

$$
\begin{aligned}
& \int_{15} \frac{1}{11} \int_{0}^{T \cos } \cos \left(2 \pi \frac{t}{4}\right) d t
\end{aligned}
$$

200

Where the sura runs over those terms $\left(\hat{\alpha}_{k}-\alpha_{k}\right)^{2},\left(\hat{\beta}_{k}-\beta_{k}\right)^{2}$ which are not zero by assumption, and χ^{2} has the \mathcal{Z}^{2}-distribution with the number of degrees of freedom equal to the number of terms in the sums on the right. The estimates $\hat{a}_{z}, \hat{\beta}_{k}$ are consistent in the following sense Suppose $f(t)$ is given by (3.11) and we observe y_{t} in the interval $V T$ where V is an integer. We then have

$$
f(t)=\sum_{n=1}^{m}\left[\alpha_{n} \cos 2 \pi \frac{(n V) t}{V I}+\beta_{n} \sin 2 \pi \frac{(n V) t}{V T}\right]
$$

80 that

$$
\sigma_{a_{k}}^{2}=\sigma_{\hat{\beta}_{k}}^{2}=\frac{V T Q}{2 \pi^{2} V^{2} k^{2}}=\frac{T 0}{2 \pi^{2} V k^{2}}
$$

3. Estimator of parameters for the O.U.P.

Wo now turn to the discussion of the 0 U.P. giver by (2.25)
and prove
Theorem 3.3 If x_{t} is an $0_{0} U_{0}$ Po determined by the two parameters β and σ^{2} and if the values of x_{t} are known in a dense set la any fintarvas $0 \leq t \leq P_{0}$ then it is possible, to determine $\sigma^{2} \beta$ with arbitrarily high precision
Proof: We corm with $N \tau=T$

$$
(3.12) \quad D=\frac{1}{N} \sum \frac{\left(x_{n T}-x_{n-1}\right)^{2}}{\tau}
$$

We have $E(D)=\frac{2 \sigma^{2}}{\tau}\left(1-a_{\tau}\right)=2 \sigma^{2} \frac{\left(1-\theta^{\infty} \beta \tau\right.}{\tau}$.

For $t \rightarrow 0$ this converges to $2 \sigma^{2} \beta$.

We now compute the variance of D. For this purpose 19 shall
 We have for $t \leq t^{\prime} \leq t^{11} \leq t^{909}$ on replacing $\bar{I}_{\text {tr in }^{10}}$ by

and

$$
\begin{aligned}
& E\left(x_{t} x_{t^{3}}^{3}\right)=E\left[x_{t}\left(a_{t^{3}=t} x_{t}+\varepsilon_{t_{0} t^{0}-t}\right)^{3}\right] \\
& =a_{t^{3}=t}^{3} E\left(x_{t}^{4}\right)+3 a_{t y}=t E\left(x_{t}^{2}\right) \sigma^{2}\left(1-a_{t_{0}=\frac{t}{t}}^{2}\right) \\
& =\sigma^{4}\left[3 a_{t^{3}-t}^{3}+3 a_{t^{8}-t}=3 a_{t^{3} 0 t}^{3}\right]=33 \hat{t}^{3} \rho t^{\sigma^{4}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& =\sigma^{4}\left(\varepsilon_{t^{3}=t}+2 \varepsilon_{t^{n-t^{n}}}^{2} \varepsilon_{t^{\prime \prime}-\frac{1}{b}}\right)
\end{aligned}
$$

and
or
13)

Fo is <m wo ind easily

$$
\begin{aligned}
& {\left[\left(x_{n \tau}=x_{\mathrm{BII}}\right)^{2}\left(x_{\mathrm{ms}}-x_{\mathrm{BII} \tau}\right)^{2}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& +2 \sigma^{4} 0+a \pi \sigma^{\circ}
\end{aligned}
$$

From (3.25) we gao then
$\left.I\left[x_{n \tau} \times x_{n-1 \tau}\right)^{2}\left(x_{\infty \tau} \times x_{m=1 \tau}\right)^{2}\right]$

$$
\begin{gathered}
=\left(a_{\tau}-1\right)^{2} \sigma^{2}\left\{1+2 \theta^{-2 \beta(m-n-1) \tau}=2 \theta^{-\beta \tau}=4 \theta^{-\beta \tau[2(m-n)-1]}\right. \\
+1+2 \theta^{-2 \beta(m \propto n) \tau}+2+2 a a_{\tau} .
\end{gathered}
$$

Since $\beta_{\tau} \approx$ - $\beta \tau$ we finally have for $m>x$
$(3.24) \quad\left[\left(x_{n \tau}-x \frac{1}{a=1 \tau}\right)^{2}\left(x_{m \tau}-x \frac{x_{m-1}}{}\right)^{2}\right]$

$$
=2 \sigma^{4}\left(2-a_{T}\right)^{2}\left[2+\left(10 a_{T}\right)^{2} \theta^{-2 \beta(m-11-1) \tau}\right]^{2}
$$

Fraxthor

$$
\begin{aligned}
& =30^{2}\left[\left(\varepsilon_{T}-1\right)^{4}+2\left(\varepsilon_{r}-1\right)^{2}\left(1-\varepsilon_{r}^{2}\right)+\left(1.0 \varepsilon_{r}^{2}\right)^{2}\right] \\
& =30^{4}\left(1-2 a^{2}\right)^{2}\left[\left(1-(2)^{2}+2\left(1-a_{T}^{2}\right)+(1+8)^{2}\right]^{2},\right.
\end{aligned}
$$

that 48
$(3.25) \quad E\left(x_{2 \tau}=x_{120}\right)^{2}=12 \sigma^{4}\left(10 a_{\tau}\right)^{2}$.

Frore $(3.22),(3.14)$, and (3.25) wo have
 so that

$$
\sigma_{D}^{2}=\frac{4 \sigma^{4}\left(\alpha_{0}-a_{r}\right)^{2}}{N^{2} \tau_{\tau}^{2}}\left[2 \pi+\left(1-a_{\pi}\right)^{2} \sum_{n=1}^{N=1} \sum_{\pi=000}^{N} \theta^{-2 \beta(m-n-1) \pi}\right.
$$

We now compute

$$
A=\sum_{n=1}^{N-1} \sum_{n=n \rightarrow \infty}^{N}\left(a_{T}^{2}\right)^{50-n-1}=\sum_{n=1}^{N-1} \sum_{n=n}^{N-1}\left(a_{\tau}^{2,}\right)^{n-n} .
$$

By using the formule for the sum of a geometric sories it is casily soen that

$$
\sum_{n=1}^{N 08} \sum_{m=n}^{N-1} b^{m-n}=\frac{N}{1-0}-\frac{1-b^{n}}{(1-b)^{2}}
$$

honee

$$
A=\frac{N}{1-a_{\tau}^{2}}=\frac{1-3_{5}^{2 \pi}}{\left.11-a_{\tau}^{2}\right)^{2}}
$$

We subotitute this in the oxprossion iom σ_{D}^{2} and obtain

$$
\sigma_{D}^{2}=\frac{\Delta \sigma^{4}\left(1-a_{\tau}\right)^{Z}}{\mathbb{I}^{2} \tau}\left[2 N+\frac{H\left(1-a_{\tau}\right)}{1+g_{\tau}}-\frac{1-z_{\tau}^{2 N}}{\left(1+Q_{\tau}\right)^{2}}\right]
$$

02
$(3.16) \quad \sigma_{D}^{2}=\frac{4 \sigma^{4}\left(1-a_{\tau}\right)^{2}}{\gamma^{2} \tau_{\tau}^{2}}\left[2 N+\frac{N-1-N a_{\tau}^{2} a_{\tau}^{2 \pi}}{\left(1+a_{\tau}\right)^{2}}\right]$.

Equation (3.16) shoms thet σ_{D}^{2} can be made aristrerily sman Dy making $\overline{\mathrm{I}}$ large enough. In Irot
8.180

$$
I\left(D-2 \beta \sigma^{2}\right)^{2}=\sigma_{5}^{2}+4 \sigma^{4}\left(\frac{1 \infty \theta^{-\beta \tau}}{\tau}-\beta\right)^{2}
$$

enc
sud therefore since $\tau=T / K$

$$
\lim _{x \rightarrow c} E\left[\sqrt{2}\left(D=2 \beta c^{2}\right)\right]=0
$$

We proceed to prove that the limit distribution of $\sqrt{N}\left(D-2.8 \sigma^{2}\right)$ is noting?. This may be seen es follows;

$$
\sqrt{N} D=\frac{1}{\sqrt{N}} \sum_{n=1}^{N} \frac{\left(x_{n \tau}=\frac{\left.x_{n-1}\right)^{2}}{t}=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \frac{\left[\left(a_{\tau}-1\right) x_{n \tau}\right.}{\tau} \cdot \varepsilon_{n t}\right]^{2}}{\varepsilon_{n}}
$$

02

Tue last sum is a sum of indepenconty distributed varisulas all with the same distribution and converges to the normal dig = tribution by lemma 2.1. Thus the normality of the limit also tribution mil be proved if we can prove that the fIrst two sure in (3.27) converge to zero.

Ne therefore put
(3.18) $\Sigma_{1}=\frac{\eta}{\sqrt{N}} \frac{\left(\varepsilon_{\tau}-1\right)^{2}}{\tau} \sum_{0}^{n-6} x_{n \tau}^{2}$ and $\Sigma_{2}=\frac{2}{\sqrt{N}} \frac{\varepsilon_{\tau}-1}{\tau} \sum_{0}^{n=6} z_{n \tau} \varepsilon_{n \tau_{0} \tau_{0}}$

We have by (5.13)

The double sum in the bracket an be easily determined and we hare

Fur thar

$$
E\left(\sum_{2}^{2}\right)=\frac{4}{H} \frac{\left(a_{\tau} \tau^{0} 1\right)^{2}}{\tau^{2}} \sum_{0}^{n o 1} E\left(x_{n \tau}^{2} \varepsilon_{n \tau, \tau}^{2}\right)=\frac{4\left(a_{\tau}-1\right)^{2}}{\tau^{2}} \sigma^{a}\left(1=a_{\tau}^{2}\right)
$$

and therefore $\quad \lim _{\square \rightarrow \infty} E\left(\Sigma_{2}^{2}\right)=0$.

$$
\left.{\underset{N}{1} \rightarrow \infty}_{\varliminf_{0} m_{0}(\sqrt{N} D}-\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \frac{\left.\varepsilon_{n \xi_{s} \tau}^{2}\right)}{\tau}\right)=0
$$

ane stage the second temp on the left is normally distrait bute With mean $2 \beta \sigma^{2} \sqrt{N}$ it Pollows that $\sqrt{\text { WV }}\left(\mathrm{D}-2 \beta \sigma^{2}\right) 13$ in the 11 rat noImeliy asstributud with mean zero ain variance $80^{A} \beta^{2}$ ．

To eatinato σ^{2} separately one might use the estimate

$$
\hat{\sigma}^{2}=\frac{1}{1} \int_{0}^{T} x_{t}^{2} d t
$$

Its ∇ rance ie given by

$$
\begin{aligned}
& \frac{3}{T^{2}} \int_{0}^{T} \int_{0}^{T} E\left(x_{t}^{2} x_{0}^{2}\right) d t d t^{0}=\sigma^{4} \\
& =\frac{2 \sigma^{4}}{T^{2}}\left\{\int_{0}^{T} \int_{0}^{t} e^{-2 \beta\left(t-t^{3}\right)} d t^{3} d t+\int_{0}^{T} \int_{0}^{T} \theta^{-2 \beta\left(t^{3}-t\right)} d t d t\right\} \\
& =\frac{2 \sigma^{4}}{\beta T}+\frac{\sigma^{4}\left(\theta^{-2 \beta T}-d\right)}{\beta^{2 \pi} T^{2}}
\end{aligned}
$$

If βT is large enough compared with σ^{4} 佁is comparatively simple estimate may be quite satisfactory．

THE CENTRAL DIRFERENTLAL PROCESS

 atroxgiy sontiauous ?

 indepondeat of each other if the intarvala
 OVOP1098

 dxicorential procemsos. In this chaptor wo shail ind a gencral
 inerab

 gocond ordor and we disoussed in chaptor 2 the speaial aase where $x_{i+4}-\pi^{-2}$ is normajIy distributod。

W Ehall ilsge ismousa anotha spocial caso ta wioh tho

 Q. Pendomy distributad acolcenta。 An important spocial caseo Sandameztel aiso for the underetancing of the mone genoral probleme
 Kimes whthat oreqy tims interral but each time by the gana amomnto |ls thall oril guoh an inarosse a ghot.

He mate the Pollowiag Eacumptiones

 of t of the number of shote thet haze oovurace inp to and inclucing the time to (2) The probebility $q_{6}^{(2)}$ that more then une sot Till ocour in a tima intorval of longth r Is of madian order than ro In aymbol.sa

$$
\left.\varepsilon_{\tau}^{(2 y}=0\right)(\tau) \text { or } \lim _{\tau \rightarrow 0}\left(q_{\tau}^{\{2)} / \tau\right)=0
$$

(5) $p_{T}^{(x)}$ is a mangurable function of To

(4. 2)

$$
p_{\tau}^{(0)}=p_{\tau_{1}}^{(0)} p_{\tau_{2}}^{(0)}
$$

 to be expecter wo must have $\sigma<0, ~ G=-18$ whace por Thus 5408

We now divide the intervel $(t, t+r)$ into N parto. Then for sufticiontly large fir probability that two ghots will oonur in axy of the intervals oan bo made axbltrarily amall so that tis pro cenotss the probability that is shots will osour dur fug tho 6xa ixtorval t
$(4,3) \quad D_{8}^{(3)}=\binom{1}{k}\left[1-\operatorname{axp}\left(-\frac{25}{2 \pi}\right)\right]^{2} \operatorname{axp}\left[-\frac{26}{8}(\pi-k)\right]+0(2)$

Fox if \rightarrow कo we thon have
$(564) \quad p_{\tau}^{(k)}=\frac{e^{-k \tau}(9 \lambda \tau)^{k}}{k!}$

The alstribution (4. 1) is the Poiemon distribution ita meen and FRStinco axe both oqual to gre .

We naxt sonoldar situstion in which the assumptions (1),
 Thot verisa and has itsole a probroility distribution $\phi(z)=$ $f_{1} f_{x} f$ and we shall also assume that the increasos in different stats ase indepondent of each other. If $f_{\mathrm{L}}(x)$ is the dintribution of the was of \& indepondort random variables, each with distribu tion fixfo then the distribution of the total increase provided that
 28 3tyon by
电

With $Q_{Q^{(A)}}\left\{\begin{array}{lll}0 & \text { 105 } & A<0 \\ 1 & \text { eor } & A \geq 0\end{array}\right.$

1419)
 tyon.

(48)

$$
\theta^{\left(s y=[8]^{i n}\right.} .
$$

 2015 (4 8) $4 \mathrm{myj26}$

```
NM, (1)
造
\(t\)




On the other hand evory family of diatribution fwnotione \(H_{8}(x)\) whase charactaristio functions aatisiy quation（ 4,9 ）bs the ais－
 Hence the general form of a difiorontial process will be found if we find the gancral form of charaoterlatic functions क（a）that sabisisy the condition that for every o \(\geq O_{2}[\phi(8)]^{5}\) is a \(0 . \sum_{0} \mathrm{~A}\) LIstribution ham whoso \(0_{0} f_{0}\) satisfles this condition ba osyea an infinisoly difisible law（abbreviatodo sodolo

Dur main result will be the follawings


（4．10）\(\quad \forall(8)=182+\int_{-\infty}^{+\infty}\left(0^{18 x}-1-\frac{18 x}{1+x^{2}} \frac{1+x^{2}}{x^{2}} d . G(x)\right.\)

Where in real and \(G(x)\) non－tooreasing and bounded and the inte－ gram ta dotined by contrnuty to be－\(\frac{\pi^{2}}{2}\) cor \(x=0\) 。

Fuademental for the proof of this theorom to the power ful oontinuity theorem of Po Lब์चy்。
Conkinulty Thegrems Let \(\left\{F_{n}\{x /\}\right.\) be sequenco of diatribution
 quance \(\left\{F_{n}(\pi)\right\}\) converges to a alstributtion function \(F(x)\) if and

 d． l＇addition des variables alaiatoires＂，Gauthiers Villars \(^{\prime}\) Paris，193\％，2．180\％The following elogant proof is due to M．Loeve Univer Bity of California publ。in Statoo vol．In 250．5．53－83（1954）。






 817.
 \(\qquad\)






 Muly


Fos aroos the reader is reforroa to Ho Cramex．Mathomatiaat


Wo mhall noed th造 thoorem in tho 10110wingo alightiy moro gomssule 10x酸。

Cosoliary to the Continulty Theorems Lot \(\left\{F_{2}\{x \mid\}\right.\) be sequonoc QI bounded monoton functions \(F_{n}(-\infty)=0\) sad let \(\left\{f_{n}(a)\right\}\) bo the 80quense of thotr Foursor tranaforme
\[
\begin{equation*}
s_{n}(x)=\int_{-\infty}^{\infty} e^{x \varepsilon} d F_{n}(x) \tag{4082}
\end{equation*}
\]

The sequance fFiny contanges to a boura ed monotonto fumetwon

 \(=0\) 。
 Obssรving that
\[
\Sigma_{n}(0)=\int_{-\infty}^{\infty} d F_{n}(\pi)=V_{n}
\]


 fincn \(\lim _{x \rightarrow 0} F_{2}(2 x)=0\) and the theorom alao holaso

NG Smay also mesd tho

 contsmuque axi amgum that to every \& \(>0\) the exiges an 4 sucu

\[
\operatorname{lix}_{x \rightarrow-\infty}^{\infty} f^{\infty}(x) Q n^{f x)}=\int_{-\infty}^{+\infty} g(x) a E(x)
\]


 thanvorn aro setigile
\[
\operatorname{mix}_{x \rightarrow \infty}\left[F_{2}(\infty)-x_{n}(-\infty)\right)=E(\infty)-x(\infty)
\]
and is g(x) if b outaded.



 1402010


\(1\)


To Be this onnader ftret

With \(0<\varepsilon \ll\) 。


wita
\[
\begin{aligned}
& x_{2}=\frac{2+x^{2}}{x_{k}^{4}}\left[O\left\{x_{3 \in+2}\right\}-G\left\{x_{x}\right]\right\}
\end{aligned}
\]

I它 43 日agy bo vernfy that aisu is the colo on tho diso L＂ Das：Kenve on account of \((4.7)\) We sea that
\[
\lambda_{25} \theta^{\sin x}-11+1 \sin _{2}
\]





\[
I_{0}(s)=\lim _{\varepsilon \rightarrow 0} I_{\varepsilon}(B)=\int_{8 x 1>0}\left(\theta^{23 x}-1-\frac{1 a x}{1+x^{2}}\right) \frac{1+x^{2}}{x^{2}} a G(x)
\]
is the logatotina of a \(0, f_{\text {。 }}\)
But y (s)
\(\approx 18 a+\int_{-\infty}^{\infty}\left(e^{1 E x}-1-\frac{18 x}{1+x^{2}}\right) \frac{1+x^{2}}{x^{2}} d G(x)=I_{0}(s)+1 s a-\frac{\pi^{2}}{2}[G(0+)-G(0-)]\)
 of a zormal ajstribution。 Thus p(s) is the logarithou of \(20 . f_{0}\) Thes tho equation \((4,10)\) in auficiont for \(\mathcal{F}(\) ed to bo the logersthes


To prow enso the neressity of \((4,10)\) Wo nood severail loman.
 \(\sqrt{3}\) considar
\((2 . d e) \quad e(s)=\int_{0}^{1}\left[y(8)-\frac{\psi(a+h)-v(s-h)}{2}\right] d n=\)
\[
\int_{-\infty}^{+\infty} \operatorname{lex}\left(1-\frac{\operatorname{ain} x}{x}\right) \frac{1 x^{2}}{x^{2}} d \in(x)=\int_{-\infty}^{\infty} e^{\operatorname{sex}} a(x)
\]
wine
\((4.05)\)
\[
(x)=\int_{-\infty}^{x}\left(1-\frac{\sin y}{y}\right) \frac{\tan y^{2}}{y^{2}} d(y)
\]

\[
\approx
\]

It 25 อasy to verify that \(\left(1-\frac{81 n y}{y}\right) \frac{1+y^{2}}{y^{2}}\) is borndod above anc below by pasitive oparients. Thus \(f(x)\) is monotone and of
 ( \((x)\) given ofs) and thus also
(1.018) \(\quad G(x)=\int_{-\infty}^{x} \frac{x^{2}}{1+\frac{y^{2}}{2}}\left(1-\frac{B 1 y y}{y}\right)^{-1} d \phi(y)\)

Finally a is datermined frum 62.10).
 fomiy in every Pinite interval to a functfun ifsi continnome at the oricia thon \(\lim _{x \rightarrow \infty} G_{n}(x)=G(x)\) and \(\lim _{x \rightarrow \infty} \varepsilon_{x}=Q\) exist and



 converges to e onttnuous function. By the cosollary to the continuo
 Orer fif \((x)\) it xon-decreasing and boundod. It followa from the Halyobsey theorew that
\[
\begin{aligned}
\lim _{x \rightarrow \infty} G_{n}(x) & =\lim _{y \rightarrow \infty} \int_{-\infty}^{x}\left(1-\frac{\sin y)^{-2}}{y} \frac{y^{2}}{1+y^{2}} d \oint_{n}(y)\right. \\
& =\int_{-\infty}^{x}\left(1-\frac{\sin y)^{-2}}{y} \frac{y^{2}}{1+y^{2}} d y(y)=G(x)\right.
\end{aligned}
\]
sine the integrand is bounded．紤 further follows also from the Holly－Bray th 80 rom，that
\[
\begin{aligned}
\lim _{n \rightarrow \infty} I_{n}(s) & =\lim _{x \rightarrow \infty} \int_{-\infty}^{+\infty}\left(e^{18 x}-1-\frac{18 x}{1+x^{2}}\right) \frac{1+x^{2}}{x^{2}} d G_{x}(x) \\
& =\int_{-\infty}^{+\infty}\left(e^{18 x}-1-\frac{18 x}{1+x^{2}}\right) \frac{1+x^{2}}{x^{2}} d G(x)=I(B)
\end{aligned}
\]
 also the sequence \(\left\{a_{n}\right\}\) must confer go and thus \(b(8)=p(a)\) ．

The converse of lemma \＆follows immediately from the heliy－ Bray theorem
 from zero．




Thus \(Q(s) \neq 0\) जrerywiors．
 faxelistely from the rule of co \(I^{2}\) Hospital．
 a sequence of Lunations \(\mathrm{V}_{\text {gi }}(x)\) given by \(\{4,10\}\) such that \(\log p(\varepsilon)=\lim _{n \rightarrow \infty} \psi_{2}(a) \ldots\)
-

Proof: the have by lemma 4ot
\[
10 g \phi(\varepsilon)=\lim _{n \rightarrow \infty} n\left\{[\phi(s)]^{(1 / n)}-1\right\}=\lim _{n \rightarrow \infty} \psi_{2 j}(s)
\]
unfformiy in overy findte intorval of s since \(\phi(a) \neq 0\) with
\[
a_{n}=a \cdot \frac{z^{-\infty}}{1+y^{2}} a F_{n}(y),
\]
\[
G_{n}(x)=n \int_{-\infty}^{x} \frac{y^{2}}{2+y^{2}} d F_{n}(y)
\]

Hsce \(F(x)\) is the \(d_{c} f_{0}\) whose 0 of。 is \([\phi(8)]^{(1 / n)}=\)

Proo of tha necessity of \((4,10) 8\) By lemma 4.3 जf(a) \(\neq 0\). hense log p(a) is definod verywhere and oontinuous. Mioroover


But by lenme \(402 \lim _{n \rightarrow \infty} \psi_{n}(s)=\psi(s)\) where \(\psi(s)\) is itself detorminad by \((8,10)\). Thus thearem 401 is completely proved.

From our proof of the suriciancy of equation (4, 10) follows the following coroliary to theorem sol.

Coroliasy to thoorem in If \(x\) is distributed acooraing to en ionano then \(x=y+2\) There \(y\) ts normally diatributed anci \(z\) is dietsio buted as ss tho limit of a sequence of innfte eums of independont Fandom variabios each of which is distributed aocoring to \(\left(a_{c} 5\right)\) with
\[
f_{1}(x)= \begin{cases}0 & \text { for } x<0 \\ 1 & \text { for } x \geq a\end{cases}
\]

Taourom 4.2 Lot \(x_{i}\) bo a differential process oi second order, than \(E\left(x_{\varphi}+\tau_{\sigma}-x_{y}\right)=\tau \pi\) and \(\operatorname{Var}\left(x_{t}+\tau^{-x_{6}}\right)=\tau \sigma^{2}\) where m and \(\sigma^{2}\) are constants independent of \(t\) and \(\tau\) 。

Proof: in et \(\psi_{\tau}(8)\) be the logarithm of the \(0, \mathcal{I}_{0}\) of \(x_{t \rightarrow \tau}=x_{0}\) c From \((4,9)\) wa see then that \(\psi_{\tau}(\varepsilon)=\tau \psi_{1}(a)\) where \(\psi_{2}(s)\) ss determine by \((4,20)\). Therefore \(\psi_{\gamma}^{\prime}(0)=\tau \psi_{2}^{\prime}(0)\) and \(\psi_{T}^{\prime \prime}(0)=\tau \psi_{2}^{\prime \prime}(0)\). From
 wo soc that tho therm holds.

Tho estimation procedures in the oas e of a process given by
 maximum likelihood estimate \(15 x_{T} / T_{8}\) the number oi t shot observed par unit of time amd the variance of this estimate \(18 \mu / T=\)

If the process is given by \((4,5)\) then the increments obsarpe3.
are a sample from a population with the distribution \(9(x)\) 。 IT O(x) de given in parametric form then the proper estimation prom - cures ere those appropriate for estimating the parameter of \(\phi(x)\) from the observer sample of increments.

\section*{GHAPTER 5}

DIFFERENTTAL PROCESSES MODIFIED BY IMCHANICAL DEVXCES

\section*{1. Filtor affeot.}

In registeme a stoohatio process the registoring devioe aften spreade the affect over a certain pariod of time in euch a Way that an increase ocourring at time \(t=0\) will praduce an effect n角 time and the obseryed valuog or the sutput procees, so obtained trou tha superpasthen of all tha effoctg produced fran inareseos thet oucurxed in prosedine thme periods.

If wo let \(y_{\text {t }}\) bs the ontput process and \(x_{t}\) the laput process and assume that the fioct ie proportional to the inoroe,so we then have
\[
(3,2)
\]
\[
y_{t}=\int_{-\infty}^{\infty} 2(t-5) d x_{j}
\]
 Resumed to oxist,
 05. zaco leaves the possibility open thet iuture changes will influence the pressat。 If the present is hot affeated by the futue, thea \(f(t)\) will be 0 for aegativi Faiues of to

In previour work we have often taisa the point of viow thet


 Exaoged to prover

Theorem 501．If \(X_{t}\) is a differential process of second order with B weight function \(f(t)\) then the integral \(\int_{-\infty}^{\infty} f(t-\tau) d x_{\tau}\) exists dodo

In 斿e following we use a simplified notation by writing \(\pi_{1}\) for \(x_{\tau_{1}}\) and \(\Lambda_{1}\) for \(\tau_{1}-\tau_{1-1}\) o

Proof of theorem 501：We have
\[
\begin{aligned}
& E\left[\int_{i}^{B} f(t-\pi) d x_{i}\right\}^{2}=\lim _{1 \rightarrow 0} E\left\{\left[\sum_{i} f\left(t-\tau_{1}^{2}\right)\left(x_{1} \infty x_{1-1}\right)\right\}^{2}\right\} \\
& =\lim _{\Delta j \rightarrow 0} E\left[\sum_{1} f^{2}\left(t-\tau_{1}^{*}\right)\left(x_{j}-x_{i-1}\right)^{2}\right. \\
& \left.+\sum_{i \neq j} f\left(t-\tau_{i}^{*}\right) f\left(t-\tau_{j}^{*}\right)\left(x_{i}-x_{\underline{1}-1}\right)\left(x_{j}-x_{j-1}\right)\right)
\end{aligned}
\]

since \(x_{\gamma}\) is a differential process of second order we have： writing \(y_{j}\) for the covariance of \(\left(x_{j}-x_{i-1}\right)\) and \(\left(x_{j}-x_{j-1}\right)\)
\[
\begin{aligned}
& c_{11}=\left\{\begin{array}{l}
0 \quad 1 \pm \quad 1 \neq j \\
\sigma^{2}\left(\tau_{1}-\tau_{1-1}\right) \text { if } 1=j
\end{array}\right. \\
& E\left(x_{1}-x_{1-1}\right)=m\left(\tau_{1}-\tau_{1-1}\right) .
\end{aligned}
\]

This follow from theorem 4 A \(_{0}\) ．

Thus
\[
\begin{aligned}
(5,2) E\left[\int_{A}^{B} f(t-\tau) d x_{\tau}\right]^{2} & =\sigma_{A}^{2} \int_{A}^{B} f^{2}(t-\tau) d \tau+m^{2}\left[\int_{A}^{B} f(t-\tau) d \tau\right]^{2} \\
& =\sigma_{t-B}^{2} \int_{t \sim A}^{t} f^{2}(\tau) d \tau+m^{2}\left[\int_{t-A}^{t-B} f(r) d \tau\right]^{2}
\end{aligned}
\]

Both integrals on the right of (5.2) converge to zero if A and B converge both to (a) or to - in in fact, if \(m=0_{0}\) andy the onvergence of \(\int_{-\infty}^{\infty}[f(t)]^{2} d t \quad\) need bo assumed; thus by lemma 1.6

We denote the characteristic function of the increment
 that
(5.3)
\[
S_{\tau}(s)=\exp \left[\tau 20 g H_{2}(8)\right]
\]

Wo compute next tho characteristic function fo ls) of \(y\) o that

(5) 4
\[
\begin{aligned}
& \eta_{t}(\delta)=E\left\{\operatorname{axp}\left[18 \int_{-\infty}^{* \infty} \mathscr{L}^{\infty}(t-\tau)\left\langle x_{\tau}\right]\right\}\right. \\
& =E\left\{\operatorname{axp}\left[18 \operatorname{Dim}_{j \rightarrow 0} \sum_{j} f\left(t-q_{j}^{p_{j}}\right)\left\{x_{j}-x_{j-1}\right)\right\}\right.
\end{aligned}
\]

 traction soavergee to ns (8), wo thus have


Since the summand in the exponent are independent random variable

 that onamactaxistifo sumption of \(f\left(t-\tau_{j}^{*} f\left(x_{j} j^{-x} x_{j-1}\right)\right.\) the \(\phi_{A}\left[\operatorname{set}\left[-\sigma_{j}^{*}\right]=\exp \left\{\Delta_{j} \log D_{a}\left[8 x t-x_{j}^{*}\right) J\right\}\right.\) so that
\((5,6)\)
\[
\begin{aligned}
& =\int_{-\infty}^{+\infty} \log _{2}[\operatorname{ff}(t-x)] d \%=\int_{-\infty}^{+\infty} \log \$_{2}[8 \mathscr{L}(6)] 2 t
\end{aligned}
\]

The characterdetio function of the joint distribution of
 format in an ambogous manner. we have

The argument employed in the ouse \(a=2\) sincwithat
(5\%)

It is seen from \((5.7)\) that \(F_{1} t_{10000} t_{n}\left(800009 n_{n}\right)\) and thus also the joint distribution of \(y_{t_{2}}\) poos \(y_{t_{\text {In }}}\) is invariant under trance Lutsons in time. Hence the process is stationary, [14]

If the distribution of \(x_{t}\) is Gaussian (a differential process Which is Gaussian is a \(F_{0} R_{6} P_{0}\) t then also the distribution of \(y_{6}\) is Gaussian The variance of yes is given by \(\sigma_{a_{0}^{2}}^{+\infty}[f(t)]^{2} d t\) and the covariance function is given by
\((5.8) \quad R\left(t-t^{\prime}\right)=E\left\{\left[\int_{-\infty}^{+\infty} f(t-\tau) d x_{\tau}^{\infty}\right]\left\{\int_{-\infty}^{\infty} f\left(t^{\prime}-t\right) d x_{t}\right)\right\}\)
\[
=\sigma^{2} \int_{-\infty}^{\infty} f(t-\tau) f\left(t^{\prime}-\tau\right) d \tau=\sigma^{2} \int_{-\infty}^{\infty} \tilde{\infty}(\tau) I\left(t^{\prime}-t+\tau\right) d \tau
\]
[14] A process is called stationary if the variables \(x_{t_{1}} \ldots \ldots x_{t_{n}}\) have the same distribution as the variables
\[
x_{t_{1}}+n \cdots x_{t_{n}}+n .
\]



\footnotetext{


}

This follows immediately by writing the integrals as limits of Kisman-Stioltjes gums and by then applying theorem 5.1 and lemme 1. 4 . Thus the resulting process is a stationary tile Gaussian process with covariance function \((5 . \delta)\). If we puts for instances
\[
f(t) \|^{2} \begin{cases}e^{-\beta t} & \text { for } t \geq 0 \\ 0 & \text { for } t<0\end{cases}
\]
then wo obtain the \(D_{0} U_{0} \mathcal{P}_{0}\) of Chapter 2 wt ut \(\mathbb{E}\left(y_{t}^{2}=\frac{\sigma^{2}}{2 \%}\right.\)
It may be soon from \((5,7)\) and \((5,8)\) that a large vardoty of output processes may bo obtained from differential processes. If the differential process can bo specifleả in parameirio form and the function if is also known at least in parametric form then \((5 . \%)\) or in the most important special case \((5.8)\) wild give the output process in parametric form so that the procedures of testing hypotheses about a initio number of parameters and of estimation in the parametric ese become applicable although tho difficulties of calculation may still be formidable.

In case nothing is known about either if t) or pis) the only Way known at present by which some inferences oran be obtained is by the spectral analysis decribed in Chapter So

The modifying device may also operate in such a way that the modification of the input process is itself dependent on pro－ Pious values of the input or output process．A frequently occur－ ring example of this typo of modification is provided by certain counter devices，which count random events．Dree to the inertia of tho counter device not all events will be counted．In particular we shall consider two types of such devices．

Type A．After an event has been registered the counter remains looked during a certain time

Typo 2．After an event has happened the counter remains looked during a certain time

A general and comprehensive treatment of probability problems in counter devices has been given by w．Feller Courante Anniversary volume 1948，pp。105－115）and we shall here follow essentially Feller＇s representation。We shall assume that the input process is a Poisson precess described by（ 4.4 ）：

Let \(I_{1}\) o \(1 \geq 1\) ．We the time interval between the 1－th and the（1－1）Bt regatration，The time from the begionirgo when the counter is looked，to the inst registration 。 The Ti s \(1 \geq 1\) are independently distributed all with the same distribution 。 to denote the time up to the \((k+1) e t\) registration by
\[
\begin{equation*}
S_{k}=T_{0}+T_{1}+000+T_{k} \tag{5,9}
\end{equation*}
\]

Lot IN be the number of registrations during time to Ne clear． dy hare
\[
p_{k}(t)=P(\mathbb{N}=\underline{k})=P\left(S_{k-1} \leq t\right)-P\left(S_{k} \leq t\right)
\]

Lot \(T_{k}\) a \(\mathbb{Z} \geq\) have the distribution function \(F\) so that \(P\left(T_{k} \leq t\right)\)
\(=F(t)\). We write moreover \(F_{0}(t)\) for the distribution function

\((5.10)\)
\[
p_{k}(t)=F_{k-1}(t)-F_{k}(t) .
\]

Since \(S_{\underline{1}+1}=S_{\underline{L}}+T_{k+1}\) and since \(S_{k}\) and \(T_{k+1}\) are independent we have
\[
F_{n+1}(t)=\int_{0}^{t} F_{n}(t-I) a F(x)=
\]

The characteristic function \(\phi_{t}(\mathrm{~s})\) of the random variable N is thus given by
(5.21) \(p_{0}(t)+\sum_{k=1}^{\infty} e^{1 B^{2}}\left[F_{k-2}(t)-F_{y}(t)\right]\)
\[
=p_{0}(t)+\theta^{18} F_{0}(t)+\sum_{k=1}^{\infty} e^{18(1 s+1)} F_{k}(t)-\sum_{E=1}^{\infty} \theta^{1 B 2} F_{k}(t) .
\]

Thus since \(p_{0}(t)+F_{0}(t)=1\) 。 we obtain


-


Hence
\((5.13) \quad \psi_{t}(s)=\frac{\phi_{t}(s)-1}{\left(e^{18}-11\right.}=\sum_{k=0}^{\infty} \theta^{1 s k_{F_{k}}(t)}\)
\[
\begin{aligned}
& =F_{0}(t)+\sum_{k=1}^{\infty} \int_{0}^{t} e^{1 E E_{F-1}}(t-x) d F(x) \\
& =F_{0}(t)+\theta^{18} \int_{0}^{t} V_{t-x}(B) d F(x)
\end{aligned}
\]

Ia type i as well as in type 2 counters the value of N is bounded 80 that \(\sum_{k=0}^{\infty} \frac{V_{k s}}{k!}\) converges, where \(V_{k}=V_{k}(t) 48\) the \(0^{\circ}\) math moment. Thus wo may write
\[
\varphi_{\hat{c}}(s)=\sum_{k=0}^{\infty} \frac{V_{k}}{E!}(\varepsilon \in)^{k}
\]
and 10\% < 12.200
\[
\begin{aligned}
\psi_{s}(\varepsilon) & =\left[\sum_{1}^{\infty} \frac{V_{1}}{\sqrt{8!}}(18)^{k}\right]\left[5 \theta+\frac{(18)^{2}}{2!}+000\right]^{-1} \\
& =\left(V_{1}+\frac{18 V_{2}}{2!}+000\right)\left(1-\frac{13}{2}+0.0\right) .
\end{aligned}
\]

Hence the constant tern in the expansion of \(V_{t}\left(s\right.\) ? becomes \(V_{1}\) and the oopficient of (the becomes \(\left(V_{2}-V_{2} / / 2\right.\). From this and (5.23) wo obtain equations for \(V_{1}\) and \(V_{2}\)
\[
\text { (15..14) }\left\{\begin{array}{l}
V_{1}(t)=F_{0}(t)+\int_{0}^{t} V_{1}(t-x) d F(x)=E(N) \\
V_{2}(t)=2 V_{1}(t)-F_{0}(t)+\int_{0}^{D} V_{2}(t-x) d F(x)=E\left(N^{2}\right)
\end{array}\right.
\]

We begin moth the discussion of counter of tyne io From ( 4,2 ) we see that \(F_{0}(t)=i-e^{-a t}\) where \(\&>0\) is tho mean number of events per unit of time 。

Further
\[
\begin{aligned}
& F(t)=2-\sigma^{-a(t-t)} \quad \operatorname{SOR} \geq t 0 \\
& F(t)=0 \quad \text { for } t<t
\end{aligned}
\]
since the counter roman looked during the time rafter every registration. The fix gt of the equations (5.2\&) then becomes

W⿵ compare (5. 1.5) With the more genecul equation

II \(H(t) \leq 2-\theta^{-5 \hat{t}}\) then \(A(t) \leq V_{2}(t) \circ I f H(t)>\sum-0^{-2 . t}\)
 easily be wow to hold for


An elomentimy calculathon shows that
\[
\begin{aligned}
& H\left(t y \leq 1-0^{-a t} \quad \pm 0=0\right. \\
& H!女)>1-0^{m *} \quad \pm 10=\frac{a^{2} 2}{4^{2}+1+a r y}
\end{aligned}
\]

Hgase



 \& bovindai exnor whych is small combares to \(\mathrm{V}_{\mathrm{A}}\) (ty unisss at de very L2fego The exact oxprasston for \(V_{1}(t)\) is mozeover very involved and raxe to ovaluato。
 Felbur found the asymptotic oxpreaston
(5.379)
\[
B(t)=\frac{\varepsilon t}{\left(1+a_{y}\right)^{3}}+o(t)
\]

\section*{We now put}
\((5.18)\left\{\begin{array}{l}\mathcal{P}(\varepsilon)=\int_{0}^{\infty} \theta^{-s t} d F(t) \& I_{k}(\varepsilon)=\int_{0}^{\infty} \theta^{-s t} d F_{j}(t) \\ j(s)=\int_{0}^{\infty} y_{1}(t) \theta^{-s t} d t\end{array}\right.\)
wo have by (5.10)
\[
V_{1}(t)=\sum_{k=1}^{\frac{9}{4}} \operatorname{lp}_{2}(t)=\sum_{k=1}^{\infty} k\left[F_{r^{2}-1}(t)-F_{k}(t)\right]=\sum_{k=0}^{\infty} F_{k}(t) g
\]
and by induction, using the woll-known multiplication property of the Laplace transform
where
\[
\begin{aligned}
& i_{j}(s)=f_{0}(s)[f(s)]^{t} \\
& I_{0}(s)=\int_{0}^{\infty} \theta^{-s t} d F_{0}(t) \quad
\end{aligned}
\]

Thus

We now proceed to discuss counters of type 2 . The district button function Fifty of Th must first bo obtained. To this purpose wo shall ilxgt obtain the distribution of the time I during what the counter is looked. The probability that once the counter is 100 ked exactly \(v\) events will prolong tho locked time s is given
 ability that no event will occur during time a and \(q^{v}\) the probability

Gnri the time intervals betwean s sucaeget7e ovents whil all be smello

 Qvouts prolong tho looked thra, is than given by
\[
\begin{equation*}
T=\mathrm{T}^{(1)}+T^{(2)}+000^{+} T^{(v)}+T^{(v)} \tag{5,20}
\end{equation*}
\]

The oonditfonal ysobability Jft that an evest will oocur

(50.24)
\[
\mathrm{J}(\mathrm{t})=\frac{3^{3}}{\mathrm{C}}\left(2-3^{-\mathrm{E} t}\right.
\]

Thus



 From \((5022)\) and \((5,28 y\) we see that
\[
\int_{0}^{8 \tau} 0^{-s t}\left(w^{8 t}\right)=[u(s)]^{v}
\]

 6.30 ha7e
\(\int_{0}^{\infty} e^{-s t} d W(t)=p \xi[q u(\bar{s})]^{\gamma}=\frac{p}{1-q u(B)}=p\left\{1-\frac{a}{a+\varepsilon}\left[1-\theta^{-(a+\beta) s}\right]\right\}^{-1}\)
\[
=\frac{(a+8) e^{-a \tau}}{8+a \theta^{-(a+B) \tau}}
\]

Let now \(G(t)=P(T \leq t)\) then \(G(t)=W(t-\tau)\) POT \(t \geq T\) and \(G(t)=0\) for \(t<\sigma_{0}\) i Hence
(5.23) \(\int_{0}^{\infty-8 t} d G(t)=\int_{0}^{0} 0^{-8 t} d W(t-5)=e^{-B 8} \int^{0-8 t}\) aW (t)

The time between two suecesefto registrations is composed of the resolving time \(T\) and the time from the moment when the counter is free to the next event 。 The distribution of the latter

\[
I(s)=\int_{0}^{\infty} 0^{-s t} a F(t)=\frac{2 \exp [-(s+\varepsilon) r]}{s t a[\operatorname{axp} \mid-(2 \phi \beta) \delta]}
\]
whit o \(\mathcal{L}_{0}(8)=\frac{a}{8} \circ\) Substituting this into (5.29) yields
\[
\begin{equation*}
\mu(\varepsilon)=\frac{a[8+a-(a+B) \tau]}{s^{2}(a+B)} \tag{5,24}
\end{equation*}
\]

This in the Laplace transform (5.18) of the function


Since \(V_{1}(t)\) is completely determined by the Laplace transform formula ( 5.25 ) gives the expected number of registrations during time \(t\) in a counter c of type \(z_{0}\)

A calculation similar to the one leading \(\boldsymbol{N}_{(5025)}\) shows that the variance \(B(t)\) of the number of counted events in listen by
\((5.26) \quad B(t)=V_{2}(t)-\left[V_{2}(t)\right]^{2}\)
\[
=a e^{-a t} f t-T\left[2-2 a r 0^{-a r}\right]-0^{-a t}+(2+a r)^{2} e^{-2 a \tau} .
\]

\section*{CHAPTER 6}

\section*{1. general theory.}

A suastion \(f\left(t_{8} t^{\prime}\right)\) in two variables is called ronotonoid if \(f\left(t, t^{\prime}\right)=g\left(t, t^{\prime}\right)-h\left(t, t^{\prime}\right)\) where \(g\) and \(h\) are two functions mono tonto in t and \(t^{\prime}\) in the same sense we now proves

Theorem fado Let \(x_{t}\) be a stochastic process with a monotonold and continuous covariance function git and \(\mathrm{E}\left(\mathrm{x}_{\mathrm{t}}\right)=0\) then
(1) FOR \(0 \lll \pi\) we have the expansion
\[
(8,3) \quad x_{t}=\sum_{0 \rightarrow 0} x_{n \rightarrow 0} \sum_{n=-m}^{n_{i s}+m} c_{n} \operatorname{sxp}[2 \pi n t / 2]
\]

There
\[
c_{a}=\frac{\pi}{T} \int_{0}^{T} \operatorname{sxp}[-2 \sin t / T] d t
\]
(11) This limit is uniform in \(0<\varepsilon \leq t<T-E\)
(iss) \(g_{c_{n} c_{m}}=\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{n} \sigma_{t t^{6}} \operatorname{exy}\left[-2 \pi \sum^{n t+1 n t^{0}}\right] d t a t^{0}\)
(iv) If the process is Gaussian then any lust sob QL \(G_{n} \theta_{n}\) ana \(\theta_{n}-B_{n}\) are jointly normally distributed。

GODs from to \(2 \pi\) as t goes from 0 to I and wo have to prove the Formula


We thus have to prove
\[
\lim _{m \rightarrow \infty} E_{T} \Psi_{T}\left(m y \Psi_{\tau}\right]^{2}=0
\]
uniformly in Gory interval \(\varepsilon \leq \tau \leq \varepsilon \pi-\varepsilon\) where
\[
F_{t}^{(m)}=\sum_{n=1}^{+m} a_{n} e^{i n \pi}
\]

We have
\((6,5) \quad y \tau^{\{m\}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} 7 \tau^{2}\left[\sum_{\substack{m \\-m}}^{\ln \left(\tau-t^{2}\right)}\right] d \tau^{n}\)
How
\(\sum_{\pi=\pi}^{\text {mim }} e^{i n t i}=e^{-i m a} \frac{1-e^{i(2 m+1 y a}}{1-\theta^{1 a}}=\frac{e^{-1 m a}-e^{1(m+1) a}}{1-e^{1 a}}\)
\[
=\frac{e^{-1 m a}-e^{1(m+2) a}-\theta^{-1(\pi)+1) a}+\theta^{1 m a}}{2(1-00 \varepsilon \alpha)}
\]
\[
=\frac{008 \operatorname{sa}-\operatorname{cog}(m+1) a}{1-008 a}=\frac{3 \sin \frac{2 m+1}{2} d}{\sin \frac{a}{2}}
\]

Putting is' = os y ' h wo thus have

ana

\[
-2 \frac{1}{2 \pi} \int_{-\pi}^{2 \pi-\tau} \sigma_{\tau_{0} \tau+h} \frac{\sin \frac{2 m+1}{2}}{\sin \frac{h}{2}} d h+\sigma_{T \tau} \quad .
\]

By well－known theorems on the Dirichlet integral［15］we have uniformly in \(\varepsilon \leq \tau \leq 2 \pi-\varepsilon \quad(\varepsilon>0)\) 。

\[
=\lim _{\varepsilon u \rightarrow \infty} \frac{1}{2 \pi} \int_{-\varepsilon}^{2 \pi \pi \sigma^{2}} \sigma_{\varepsilon} \tau \hbar \frac{\sin \frac{2 \pi+1}{2} h}{\sin \frac{1}{2}} d h=\sigma_{\tau \tau}
\]

From \((6.5)\) and \((6.8)\) it \(10110 \%\) 化的

uniformly in \(\varepsilon \leq 飞 \leq 2 \pi-\varepsilon\) for every \(\varepsilon>0\) 。
［15］For the double Dirichlet integral see Hobson： of motions of a real variable and the theory of Fourier series＂。 VOl。II， pp 。705－9。
- 2 y


 15 Ifm!ts of ficmana sums。

\section*{2. Trigonmitirfa axnangton Gi the Fi R.}


 12n荡


In tisk



\section*{ITus}




Ind s gees



For \(n \neq-m_{8} a \neq 0\), \(a \neq 0\) we obtain from ( 6.9 .2 )
\((6.805) \quad E\left(c_{n}^{c} \pi\right)=\frac{-\operatorname{dn}}{4 \pi^{2} m n}\).

\(x_{1}=a_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \cos 2 \pi \frac{n t}{T}+b_{n} \sin 2 \pi \frac{n t}{7}\right) \quad 1.10 m_{0}\)
we have
\[
a_{n}=a_{n}+n_{n} b_{n}=1\left(0_{n}-0_{-k} \text { dor } a>0, a_{0}=c_{0}\right.
\]
and from this and the formulas \((6,9.1 y-(6.9 .5)\) we find
\[
\begin{aligned}
& \mathrm{E}\left(\mathrm{a}_{0}^{2}\right)=6 \mathrm{~T} / \mathrm{B} \\
& E\left(\varepsilon_{0} a_{n}\right)=-c T / 2 \pi^{2} n^{2} \\
& E\left(a_{m} m_{n}\right)=0 \text { for } m \neq n, m \neq 0, \text { is } \neq 0 \\
& E\left(a_{n}^{2}\right)=e T / 2 \pi^{2} n^{2} \\
& E\left(a_{n} b_{m}\right)=0 \quad \text { for } n \neq 0 \\
& E\left(a_{0} b_{z a}\right)=-c \frac{m}{2} / 2 \pi m \\
& E\left(n_{n}^{2}\right)=30 T / 2 \pi^{2} n^{2} \\
& E\left(a_{n} b_{m}\right)=a T / \pi^{2} \operatorname{man} \text { for } m+n \text {. }
\end{aligned}
\]



He have using \(\{6010 y\)
\(E\left[x_{t} \circ x_{t}^{(m)}\right]^{2}=\sum_{n s m+1}^{\infty} E\left(a_{n}^{2}\right) \cos s^{2} 2 \pi \frac{n t}{T}+\sum_{n=m \infty}^{\infty} E\left(n_{n}^{2}\right) \sin n^{2} 2 \pi \frac{x^{n}}{T}\)
日电电
\[
=\frac{a^{2}}{\pi^{2}}\left\{\frac{1}{2} \sum_{n=m=1}^{\infty} \frac{d}{n^{2}}+\left[\sum_{n=m+1}^{\infty} \frac{\sin \frac{2 \pi \sigma^{2} n}{2}}{n}\right]^{2}\right\}
\]

Expanding the inaction \(\pi-a\) into a Founder series we get
\[
\pi-a=2 \sum_{n=1}^{\infty} \frac{\sin n \alpha}{n} y
\]
hence
\[
\sum_{n=m+1}^{\infty} \frac{\sin n x}{n}=\frac{1}{2}(\pi-\alpha)-\sum_{n=1}^{m} \frac{\sin n \alpha}{n}=f(\alpha)
\]

Differentiating this equation we here
\[
f^{\prime}(a)=-\frac{1}{2}=\sum_{i=1}^{m} \cos x y_{s}-\frac{1}{2} \frac{\sin \left(m+\frac{a}{2}\right) a}{\sin \frac{a}{2}},
\]
and therefore

Hence

Thus for values of to not the close to 0 or Ty \(x_{t}^{(m)}\) is a good approximation to \(x_{t}\) 。

Another and perhaps \(m\) se useful formula may be obtained by deriving the following expression


In this expansion the \(\mathrm{E}_{\mathrm{n}}\) and \(\mathrm{b}_{\mathrm{n}}\) are indopeadently and noxamily distributed Variables with mean zero and variances \(\frac{c T}{2 m^{2} \AA^{2}}\) ot he \(a_{n}\) and \(b_{n}\) are also independent of \(x_{x}\). The right side convorgeg moreover, uniformly in the mean to the loft side. The proof on be obtained by first applying theorem Sol to the stochastic pro\(008 s x_{t}-\frac{t}{T} x_{r}\) and determining the Fourier coofficiontg and their Variances. It \&s then cen that the Fourier expansion thus obtained converge also \(1_{0} 1_{0} m\) 。 for \(t=I\) and thus \(a_{0}=-\sum_{n \in 1}^{\infty} a_{n}\) o The proof Is rather laborious but elementary and is therefore omftes. Thus writing \(x_{T}=8\) wo here

where
\[
\begin{aligned}
& \sigma_{a_{0}}^{2}=o T \cdot \sigma_{a_{n}}^{2}=\sigma_{i_{n}}^{2}=\frac{o T}{2 \pi^{2} n^{2}}, \\
& \sigma_{a_{1} \varepsilon_{j}}=\sigma_{b_{1} b j}=0 \text { for } 1 \neq j \cdot \sigma_{a_{j} b_{j}}=0
\end{aligned}
\]

Except for the constant term, \(\sum_{n=2}^{\infty} a_{n}\), this is easontiany the expansion discovered by paley and Honor: [16]
[16] Fourier transforms in the complex domain g p. 14.7.
3. Stationary processes.

Ho now refurn to the general theory and consider stationary processes.

We shall further assume that the covariance \(E x_{t} x_{t} \|^{\prime}=\sigma_{t t^{\prime}}\) axists. We then have \(\sigma_{t t^{\prime}}=R\left(t-t^{\prime}\right)\) where \(R(t)\) is an oven funobion of \(\tau\) 。

We shall also considor a sllghtly more general olass of rocesses, callod quasistationary processes. a process it ie naid to be quasistationary if \(E\left[x_{t}\right]\) is independent of \(t\) and if its
 R(T) as an even function of \(\tau\) a
we assume now that \(K(\tau)\) is oontinuous at the point \(\tau=0\) sad show that \(R(\tau)\) is then continuous everywhere。 If \(R(\tau)\) is continuous at \(\tau=0\) then we have \(\lim _{\tau \rightarrow 0} E\left(x_{t+\tau}-x_{t}\right)^{2}=0\). From the coifintion of \(R(t)\) wo see that
\[
\lim _{h \rightarrow 0}[R(\gamma+h)-R(\tau)]=\lim _{h \rightarrow 0} E\left[\left(x_{p+h}-x_{\tau} \mid x_{0}\right]=0\right.
\]
sinoe
\[
\mid E\left[\left(x_{\tau+h}-x_{T}\right) x_{0} d \mid \leq \sqrt{E\left(x_{\tau+h}-x_{\tau}\right\}^{2} E\left(x_{0}^{2}\right)}\right.
\]
al


-al


1 81

0 H
 \(\qquad\) \(=1\)


 1120
FR

We next introduce the following definition \(A\) function \(f(t)\) is said to be positive definite if
(a) int) is continuous end bounced on the real axis

(o) for any positive integer \(m\) and any real numbers \(z_{\delta_{2}} z_{2^{0000}} z_{m}\) and any complex numbers \(u_{18} u_{2^{g}}\) oo \(u_{m}\) we have
\[
\sum_{i=2}^{m} \sum_{k=1}^{m} f\left(z_{h}-z_{k}\right) u_{h} m_{k} \geq 0
\]

From the preceding it is clear that \(R(t)\) satwsiles conditions (a) and (b) since \(R(t)\) is real and even. rio have only to prove that
\[
S=\sum_{1}^{m} \sum_{1}^{m} R\left(t_{h}-t_{h}\right) u_{h} \bar{u}_{k} \geq 0
\]

We have
\(S=\sum_{i}^{m} \sum_{L}^{m} u_{h} \bar{u}_{x} E\left\{z_{\tau+t_{h}} x_{\tau+t_{k}}\right\}=\mathbb{E}\left\{\left(\sum_{1}^{m} u_{h} x_{\tau+t_{h}}\right)\left(\sum_{l}^{m} \bar{u}_{w} x_{\tau+t_{k}}\right)\right\}\)
 function.

Aocording to a theorem of S.Boohner [37] every positive delinite fuxction \(f(t)\) sey be ropresented in the form
\[
I(t)=\int_{-\infty}^{+\infty} \theta^{i t a} \alpha V(a)
\]
where \(V(a)\) is a bounded non-decreasing function.
Ilaus we have
\((6.15) \quad R(t)=\int_{-\infty}^{+\infty} \theta^{i t \omega}\) ag (os)
where ghy 18 a bounded and non-decreasing iunction。wo may take
 dopined ss a asstribution function。 It will however simplify ous formulae if we dotormine g(a) so that
\[
E(\alpha)=\frac{s(\alpha)+s(\alpha-)}{2} .
\]

Since \(R(t)=R(-t)\). Wo heve
\[
\begin{aligned}
R(t) & =\int_{-\infty}^{+\infty} e^{f t \omega} d g(\omega)=\int_{-\infty}^{+\infty} e^{-i t \omega} d g(\omega)=-\int_{-\infty}^{+\infty} e^{1 t \omega} d g(-\infty) \\
& \left.=\int_{-\infty}^{+\infty} e^{i t \omega} d[g(\infty)-g(-\infty)]\right)
\end{aligned}
\]
[17] So Bochner, Vorl esungen über Fouriersche Integrales po 76, Satz 23.
and aims the function \(f(0)\) is undue if \(g(-\infty)=0\) and

End \(\operatorname{Las} 0=0, g(\infty)=2 E(0)\) and \(g(\infty)=g(0)=g(0) \circ g(=0)\).

It 1 f further moll :no mn that
\[
g(x)-s(0)=\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \kappa(t) \frac{e^{i t \omega}-1}{t} d t
\]

He may also write
\[
\begin{aligned}
& R(t)=\frac{R(t)+R(-t)}{2}=\int_{-\infty}^{\infty} \frac{e^{i t \omega_{4}} s^{-1} t \omega}{2} d g(\infty) \\
& =\int_{-\infty}^{\infty} \operatorname{los}_{\infty} t_{\infty} d g(\infty)=\int_{0}^{\infty} j 00 s t_{\infty} d[E(\omega)-E(-\infty)] \\
& =\int_{0}^{\infty} 008 t a d F(\infty),
\end{aligned}
\]
where
\((5.16)\left\{\begin{array}{l}F(0)=g(0)-E(-0)=\frac{F(0))+F(0)}{2} \\ F(0))=g(\infty)=R(0) \\ F(0)=0 .\end{array}\right.\)

Further
\[
P(\infty)=g(\infty)-\xi(-\omega)=\lim _{T \rightarrow \infty} \frac{1}{2 \pi \sum_{-T}^{+T}} \int_{T}^{+T}(t) \frac{\theta^{i t \omega}-\theta^{-\frac{1}{t} \varphi}}{t} d t
\]
so that
\[
F(\infty)=\frac{2}{T} \int_{0}^{\infty} R(t) \frac{81 n}{t} d t=
\]

It may also be remarked that to every positive definite function \(R(T)\) we may construct a Gaussian process with \(R(T)\) as covariance function 。 this can be done by defining the distribution Of \(x_{t_{\lambda}}\) の000 \(x_{n}\) to be \＆multivariate Gaussian distribution with covariance matrix \(\left\|R\left(t_{i}-t_{j}\right)\right\|=\operatorname{Sin} \| R(t) 18\) positive do－ Pinite such a distribution always exists．It is then easy to Verify that the family of distribution functions so defined satis－ figs the consistency conditions of chapter \(i_{c}\) Combining this with the result of Boshner we obtain

Theorem 6，2．The Iunotior \(\mathrm{F}(\mathrm{t})\) is the covariance function of a quasigtationary process if and only if it is the Fourise transform af a bounce a nen－ceoressing sumotiono

A．The mean ergodic theorem．
We shall conclude this chapter with a proof of tho mas 3rgodio theorem
Theorem 6，3，（Mean ergodic theorem）［18］Let \(x_{t}\) bs a quasistatsonary process with continuous covariance function \(R(t)\) enc mean values zero
［18］This theorem is due to J。V．Neumanng Proc．Nat．Aced．Sole vol．18（1932），pp．70－82．

\title{
 1)
}
\(\sin\)




-r-ven


\[
3=
\]

\[
i x=
\]



\section*{1}
\[
\begin{aligned}
& 1 x=\tan +x^{2}+1
\end{aligned}
\]
ikon
whore \(\varepsilon_{\lambda}\) jas e random variable with variance \(s(\lambda+)-g(\lambda-)\) and mean
 deigned by \((6,25)_{0}\)
wee £1rat prove the fol.3owiag lemma
Lemma \(0_{2}\) : For any \(0 \leq t \leq T, T \geq 1\) and for ovary \(\varepsilon\)
\[
\begin{aligned}
& \left\lvert\, \int_{T=0}^{\lambda} \int_{0}^{T \lambda t(t-T)} e^{\left.1 \lambda(t-T) d \tau-\left[g\left(\lambda t \frac{E}{T}\right)-g\left(\lambda-\frac{E}{T}\right)\right] \right\rvert\,}\right. \\
& \leq[g(\lambda+\varepsilon)-g(\lambda+)+g(-\lambda+\varepsilon)-g(-\lambda+)] \\
& +{\underset{C}{2}}_{E}^{E}[g(\lambda+E)-g(\lambda-\varepsilon)]+\frac{4}{E T}[g(\cos )-g(-\infty)]
\end{aligned}
\]

Proof. We put
\[
\begin{aligned}
& \frac{\lambda}{T} \int_{0}^{T} e^{i \lambda(t-\tau)} x(t-\tau) d \tau=\frac{\lambda}{T} \int_{0}^{T} \int_{-\infty}^{\infty} \theta \pi p[t \lambda(t-\tau)+2 \theta|t-\tau|] C g(\omega) d \tau \\
& =I_{1}+I_{2}+I_{3}+J_{1}+J_{2}+J_{3}
\end{aligned}
\]
whore

These integrals converge absolutely o Hence we may interchange the order of integration whenever necessary. In this manner we obtain

80 that
\((6,18)\)
\[
\left|I_{1}\right| \leq \frac{2}{6 T}[g(\infty)-5(-\infty)]
\]

Similarly
\((6,30 a)\)
\[
\left.\left|J_{1}\right| \leq \frac{2}{8 T}[8(02))-8(000)\right]
\]
wo have, for \(x\) real, (\%)
\[
\left|s^{1 x}-1\right| \leq|x|
\]

Using thite inequelity we obtein irom
\[
\begin{aligned}
& (6,19) \quad\left|I_{2}\right| \leq \frac{t}{T}[g(\lambda+\varepsilon-g(\lambda++g(-\lambda+\varepsilon-g(-\lambda+] \\
& \text { and similerly } \\
& \text { (6.19a) }\left|J_{2}\right| \leq \frac{T-t}{T}[8(\lambda+\varepsilon)-g(\lambda+1+g(-\lambda+\varepsilon)-g(-\lambda+)] . \\
& \text { Sinoo } \\
& \frac{t}{T}\left[g\left(\lambda+\frac{\varepsilon}{T}\right)-g\left(\lambda-\frac{\varepsilon}{T}\right)\right]=\sum_{T}^{\frac{1}{T}} \int_{\left.-\lambda_{0} \frac{\delta_{\gamma}}{-\lambda} \int_{0}^{\frac{\delta}{\gamma}} \int_{0}^{t} d g(r)\right) d r}
\end{aligned}
\]
we haveg uยdzg (\%)
\[
\begin{aligned}
& \leq \frac{1}{T} \int_{-\lambda-\frac{\sigma}{\sigma}}^{-\lambda+\frac{\varepsilon}{T}} \int_{0}^{\varepsilon}|\lambda+\omega|(t-r) d s(\omega) d r \\
& \leq \frac{\varepsilon t^{2}}{2 T^{2}} \int_{-\lambda-\frac{E}{8}}^{-\lambda \frac{C}{\delta}} d g(\sin ) \leq \frac{\varepsilon \hat{4}}{2 T}\left[g\left(\lambda+\frac{\varepsilon}{T}\right)-\varepsilon\left(\lambda=\frac{8}{T}\right)\right]
\end{aligned}
\]



Sindiexty we obtain

 \((6.20) \cdot(6.20 a)\) 。

Corojiser 2 to Lamma 82.


Carollary 2 bo 2xma Be





In the proof 0: the mean ergodic theorem we shall operate with complex random variables. If \(z=x+i y\) is a complex random variable with mean zero we shall depth
(6.23)
\[
\left.\varphi_{z}^{2}=\Psi_{\}}^{( } \bar{z}\right)=\sigma_{x}^{2}+\sigma_{y}^{2}
\]
where \(\bar{z}=3-1 y\) is the complex conjugate to \(z\) 。 A sequence \(\left\{z_{n}\right\}=\left\{x_{n}+y_{n}\right\}\) of complex random variables converges if both \(\left\{x_{n}\right\}\) and \(\{n\}\) converge。From lemme 2.6 it. follows that \(\left\{z_{n}\right\}\)
 small for sufficiently large \(n_{6}\).

To show that \(X_{m}=\frac{1}{T} \int_{0}^{m_{j}^{2}} \theta^{1 \lambda t}\) at converges in the mean we consed or
\[
\begin{aligned}
& =\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} s^{i \lambda\left(t-t^{0}\right)} R\left(t-t^{0}\right) d t d t^{\theta}+\frac{1}{T^{0}} \int_{0}^{T^{0}} \int_{0}^{T^{0}} e^{i \lambda\left(t-t^{\prime}\right)} R\left(t-t^{0}\right) d t d t^{\prime \prime}
\end{aligned}
\]

All throw integrals converge to the came limit by（ 0.22 ）。 Thus

\[
\sigma_{A_{A}}^{2}=\lim _{T \rightarrow \infty} \sigma_{X_{T}}^{2}=8(\lambda-1-g(\lambda-)
\]

\[
\begin{aligned}
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \theta^{1(\lambda t \mu) t} \frac{1}{T} \int_{0}^{T} e^{-1 \mu\left(t-t^{0}\right)} R\left(t-t^{6}\right) a t a t^{0}
\end{aligned}
\]

The second integral converges by corollary 1 of lemma 6 of to \(e(\mu+)-f(\mu \infty)\) uniformly in \(t\) 。 Thus
\(E\left(a_{\lambda}^{2}\right)=\lim _{\mu_{2} \rightarrow \infty}\left\{\frac{1}{T} \int_{0}^{T i(\lambda+z) t}[g(\mu+)-g(\mu-)] 0 t+g(T)\right\}\)

Whore \(\lim _{T \rightarrow \infty} g(T)=0\) 。 It easily follows that \(E\left(\theta_{\lambda} a_{\mu}\right)=0\) 。
Theorem 6 Lo Lot \(x_{t}\) be any qussistationary process with covgrainionce Function \(R(r)\) and let \(g(0)\) bo defined by \((6,15)\) ．Further lot \(\lambda_{10}\) \(\lambda_{2} 000\) be the discontinuities of \(g(\infty)\) and
\[
B_{\lambda}=\prod_{T \rightarrow \infty}^{1} 0_{0}^{m} \frac{1}{T} \int_{0}^{T} x_{t}^{T} \theta^{i \lambda t} d t
\]




112 cs




BOCHNER，\(S_{\text {o }} 110^{\circ}\)
Browian motion 32， \(34,47\).
Characteristic function；definition，75；of increment of differ． ontial process，87；of number of registrations，92； logarithm of，76。

Conditional probability，28。
Conildance region for FOURIER coefficients， 63.
Convergence in probability， 2 。
Conyargonce in the mean， 11.
Convergence of distribution functions；at points of continuity 4 ；
－HELLY－BRAY theorem，78；HELLY＇S thoorem，5；LEVY＇S continuity theorem 760

Courters， 91 ffoo
Coveriance，10。
Covariance fuxction，10。
CRAMER \(\mathrm{H}_{\circ 8}\) 11．77，78。
Derivative of stochestic process 140
Difforentiablo \(20 i_{0} m_{0,} 150\)
DIfferential processes， 34 ；of socond order， 84 ；modified 85 ．
Distiolbution functions， 1 ifop of number of rogistrations 92； of regiatration times 92,96 。

DOOB，Jo \(L_{0,}\)（IV），530
Estimation of parameters， 55 ffoo
Expoctationg 10。
FELLER，Wo\％（IV），91，95。
Filter offects， 85 ffo

FOURTER snalysis of stochastic processes， 100 fioo
FOURTER traneformo 77。
Frictional effects 47 o
Fundamental Random Process（ \(F_{0} R_{0} P_{0}\) ）， 32 fro：covarianco function 89： definition，37：estimation of paramoters 55 ffo；intogral．46： propertiog， 37 fro：trigonometric expansiong 103 féo with mean value function， 57 。

Geursian wocess，4，6，89，100，112。
Goncualizod difforential process 72 fifo
Gonorgilzed porssoiv distribution 75 ．
Generalized second derivativo， 25 。
HAHIN，Ho， 340
HFLLTEBRAY thoorom 78．
HELLY＇S thooran 5.
Hompitian function，109。
HOBSON，E＊Wo 102．
Indopondent stochastic processes， 27.
Inflnitely alvisiblo lav（iodolo） 76 fion
Input procossio 85。
Integrabis \(1.10 \mathrm{mog}_{0} 24\).
Integration of stochastic processes 17：of one procoss with respect to another 27.
KHIMCHINE：AOg 35.
KOLITOGOROFF A A． 28.
LAPHAGE tranaform 96.

LÉVY，\(P_{0, ~}\)（IV）， \(18,76,810\)
Ifévis \({ }^{5}\) contimuity theorem 76 。
Limit in the mean（ \(\mathrm{lof}_{0} \mathrm{~m}_{0}\) ） 11 ．
LINDEBERG condition 35－37。
Locked time 97.
LOE＇VE，Mog（IV）， 14,76 。
LUKACS， \(\mathrm{E}_{\mathrm{og}}\)（IV）。
MafikOff procosses，32， \(34,55\).
Mathematical oxpoctetion 10 ．
Maximum of process on interval． 18.
Mean ergodic theorom 112 ffoo
\(\mathrm{Moskl}_{\varepsilon} \mathrm{B}_{0}\)
Minfmum of process on intervel， 18 ．
Mocisica difformential proceeses， 85 ffoo
Moriuius：of mesh 8 ；of subdivision 17 。
Monotionld，100。
MORANDA．\(P_{0},(I V)\)
Natcing 8 。
ORNSTETN Lo \(_{8}\) S \(_{8}\) 49。
 51：atimation of paramoters，64，intogral of 51．
Output process． 85 ．
PaLEY，\(R_{0} E_{U} A_{0} C_{0 g} 1070\)
plima。
POISSON distribution，74，75。

POISSON process，91。
Pooltive definite function，109。
Probobility linit of a sequence of random variables 2 。
Quraistationary processes， 108 ff．
Random variables， 1 ff．e：complex valued，117；convergence of sequence， 2 ；nonenegative，11；probability limit of sequence， \(2 ;\) sequences of 2 。

Registration of stochastic processes， 85 ff．．
RUBIN， \(\mathrm{H}_{0}\)（III）
SAViGE，Lo，（IV）
Shot 73.
SLUTSHY：\(E_{0} 3_{0}\)
Spoctral analysis， 100 fio。
Staticnary processes，49，89，90，108。
Stochastic differential equation， 53.
Stochastic processes；continuous，10；differentiable，14； dorivetive of 14；generalized second derivative，15： integration of，17；maximum of 18；minimum of 18；of a continuous parameter， 10 ；of second order 15 ；registration of． 85 ；stationary，49；strongly continuous，22；uniformly continuous， 28.

Strong continuity，18。
UHLENBECK，G。E。49。
VOR NEUMANN，Jo，112。
WZENER，N O 107.
WIDDER，\(D_{0} V_{00} 50\)

\section*{THE NATIONAL BUREAU OF STANDARDS}

\section*{Functions and Activities}

The National Bureau of Standards is the principal agency of the Federal Government for fundamental and applied research in physics, mathematics, chemistry, and engineering. Its activities range from the determination of physical constants and properties of materials, the development and maintenance of the national standards of measurement in the physical sciences, and the development of methods and instruments of measurement, to the development of special devices for the military and civilian agencies of the Government. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various scientific and technical advisory services. A major portion of the NBS work is performed for other government agencies, particularly the Department of Defense and the Atomic Energy Commission. The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. The scope of activities is suggested in the listing of divisions and sections on the inside of the front cover.

\section*{Reports and Publications}

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: the Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: the Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ( \(\$ 1.00\) ). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards ( 25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

NBS```

