NATIONAL BUREAU OF STANDARDS REPORT

 1643I. B. M. EXPERTMENTS WITH ACCELERATED

GRADIENT METHODS FOR LINEAR EQUATIONS

by
A. I. Forsythe
and
G. E. Forsythe
National Bureau of Standards, Los Angeles

U. S. DEPARTMENT OF COMMERCE
 Charles Sawyer. Secretary

NATIORAL BUREAU OF STANDARDS

A. V. Astin, Acting Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engeged in technical work. In general, each aection is ensaged in specialized research, development, and engineering in the field indicated by its ticle. A brief description of the activitiea, and of the resultant reporta and publicationa, appears on the inside of the back cover of thia report.

1. ELECTRICITY. Resistance Measurements. Inductance and Capacitance. Electrical Instru-

2. OPTICS AMD METROLOGY. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.
3. HERT AMD POMER. Tenperatare Measurementa. Thermodynamics. Cryogenics. Engines and Labricarion. Engime Fuela.
4. ATOMC ARD RADIATION PHYSICS. Spectroscopy. Radionetry. Mass Spectrometry. Physical Electronics. Electron Physics. Atomic Physics. Neutron Measurements. Nuclear Physica. Redioacrivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipmanc. Aromic Energy Connaisaion Instruments Branch.
5. CHEMASTRY, Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Irorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemiatry. Thermochemistry. Spectrochemistry. Pure Subatances.
6. MECHAMICS. Sound. Mechanical Instruments. Aerodynemics. Engineering Mechanics. Hydraulics. Fmass. "Capacity, Density, ond Fluid meters.
7. ORGAMIC AMD FIBROUS MATERIALS. Pubber. Textiles. Paper. Leather. Testing and Specifications. Orgamic Plestics. Dental Research.

8. MBMERA PRODUCTS. Porcelain and Pottcry. Glass. Refractories. Enameled Metals. Building Srone. Concreting Materials. Constitution and Microstructure. Chemistry of Mineral Prodacts.
9. BUHLDIAG TECHMOLOGY. Structural Engineering. Fire Protection. Heating and Air Conditioning. Exterior and Interior Coverings. Codes and Specifications.
10. APPLIED MATHEMATICS. Numerical Analysis. Computztion. Statistical Engineering. Machine Developseat.
11. ELECTRONICS. Fingineering Elecirorics. Electron Tubes. Electronic Computers. Electrouic Instranaitation.
12. ORD期ACE DEVELOPMEMT. Hechanical Research and Development. Electromechanical Fuzes. Technical Services. Missile Fuzing Research. Missile Fuzing Development. Projectilla Fases. Ondnance Components. Ordmance Tests. Ordmance Research.
13. RAD 10 PROPAGATION. Upper A mosphere Reacarch. Icmospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequary Standards. Microwave Standardz.
14. MASS LLE DEVELOPMEMT. Missile Engimeering. Missile Dynamics. Missile Intelligence. Raissile Imstrumentarion. Technical Services. Combustion.

I。B。M。EXPERINENTS WITH ACCELERATED

GRADIENT METHODS FOR LINEAR EQUATIONS＊
by
A。 I．Forsythe
and
G．E．Forsythe
National Bureau of Standards，Los Angeles

PREPRINT

> The preparation of this paper was sponsored (in part) by the Office of Naval Research. USN

Approved for public release by the Director of the National Institute of Standards and Technology（NIST） on October 9， 2015 nisaion in writing is obtained shington 25，D．C．

I. B. M. Experiments with Accelerated

Gradient Methods for Linear Equations \%
by
A. I. Forsythe
and
G.E. Forsythe

National Bureau of standards, Los angeles

I. SUNMMARY

Various gradient (steepest descent) methods for solving systems of Inear equations have been discussed by Cauchy [2], Temple [12], Kantorovich [9], and others. The method usually discussed, the optimum gradient method (explained in section II), ordinarily converges too slowly for practical use. Under the general leaderm ship of Professor Magms Hestenes gt the Institute for Numerical Analysis several methods have been studied for speeding up the gradient method.

A class of modified gradient methodss in which one overshoots or undershoots the optimum point, is presented in [7]. In [II] Stein presents numerical experiments with the matrix. B_{0} used below, showing that consistently undershooting (realmost optimum gradient method) provides a self-accelerating procedure. Motrkin and one

[^0]of us propose [5] an acceleration step to be inserted occasinam13y into the optimum gradient method. (In section II we give Hestenes ${ }^{\circ}$ interpretation of this device as a minimization in two dimensionso) The purpose of the $I_{0} B$. M. experiments now reported was to test the latter acceleration procedure. Incidental to this, we obtained. gdditional data on the optimum almost optimum, and other gradient methods.

A survey of the formulas used is given in section $I I_{9}$ and the mumerical experiments are summarized in section III. In section IV we study these data in some detail. Section V contains the references referred to in the text by numbers in square brackets.

In brief, it is our conclusion that for two test matrices of order six, the acceleration speeds the optimum greadient method up by a factor of from 7 to 18, and makes the optimum method possibly useful. The almost optimum gradient method is something like half. as fast as our accelerated procedure (on the basis of two test matrices) but - and this is rery important for machine work o the almost optimum gradient method is simpler to code. The more recently developed methods of Hestenes and Stiefel [8] now appear to offer much faster convergence at a modest increase in complexity.

II. SUMMARY OF THE THEORY

For simplicity we deal with the field of real numbers. Let A be an n-by-a matroix, not singular, and let x, b denote n-rowed column vectors. We are interested in finding the solution $A^{-1} b$ of the system

$$
A x=b
$$

Let T denote transposition of a matrix. The positive definite matrix $B=\mathbb{A}^{T} A$ and the vector $c \approx A^{T} b$ will frequently be used. The length |y| of a column vector y will be defioned by $|y|^{2}=y^{T} y$. We use 9 to denote the zero rector.

Let $f(x)=|A x-b|^{2}$ measure the deriation of any vector x from the solution $\mathbb{A}^{-1} b_{0}$. One can verify that

$$
\begin{equation*}
f(x)=x^{T} B x-2 x^{T} c+|b|^{2} \tag{2}
\end{equation*}
$$

Suppose x is a given approximation to $\mathbb{A}^{-1} b$, and let d be a given direction. As an improvement of x we may select the vector $y\left(\alpha_{k}\right)=x \cdots \alpha$ for which $i[y(\alpha)]$ assumes $i t s$ minimum as a function of the real variable a The corresponding value of α will be called . To obtain a formia fory, we first find from (2) that

$$
\begin{equation*}
f[y(\alpha)]=f(x)+\alpha^{2} d^{T} B d-2 \alpha \alpha^{T}(B x-c) \tag{3}
\end{equation*}
$$

Introducing the abberiation

$$
\begin{equation*}
\text { 隠 }=B x-c \tag{4}
\end{equation*}
$$

we find from (3) that

$$
\begin{equation*}
\mathscr{\gamma} \approx d^{T} \xi / d^{T} B d . \tag{5}
\end{equation*}
$$

In the optimum gradient method for solving (1), suggested by

Cauchy [2] and analyzed by Temple [12], Kantorovich [9] Hestenes and Karush [6] (for the eigenvalue problem), and others, one selects any x_{0} and then obtains each x_{k+1} from x_{k} as followss For each k_{g} one picks d_{k} to be $\frac{1}{2}$ grad $f\left(x_{k}\right)=B x_{k}=0$ \# $\xi_{k^{2}}$ and takes

$$
\begin{equation*}
x_{k+1}=x_{k}-\gamma_{k} \xi_{k}, \quad \xi_{k}=B x_{k}-0, \tag{6}
\end{equation*}
$$

where, by (5),

$$
\begin{equation*}
\gamma_{k} \equiv \xi_{k}^{T} \xi_{k} \xi_{k}^{T} \xi_{k} \tag{7}
\end{equation*}
$$

Kantorowich showed on pp . $144_{4} 154$ of [9] that in the optimum gradient method

$$
\begin{equation*}
\max _{x_{k-1}} \frac{f\left(x_{k}\right)}{f\left(x_{k-1}\right)}=\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}=p^{2} 81 . \tag{8}
\end{equation*}
$$

where λ_{n} and λ_{2} are, respectively, the largest and least of the (necessexily positive) eigenvalues of B. It follows that

$$
\begin{equation*}
\left|A x_{k}-b\right| \&\left|A x_{0}-b\right| \|^{k} \rightarrow 0, \quad \text { as } k \rightarrow \infty \tag{9}
\end{equation*}
$$

so that the method converges. Our experience suggests that the inequality in (9) is usually nearly an equality see section IV. Since $\mu^{i s}$ commonly neario I_{9}, the optinum gradient method is

If all the elements of A have the sane normal distribution, it results from p. 59 of [1] that the "probable" value of μ is ${ }^{8}$ gbout ${ }^{88}$ I $=4 m^{-2}$. (The precise meaning of this is not stated in [1].)
usually too slowly convergent for practical use。 In section III we give examples of the optimum gradient method.

Many proposals have been made to speed up the process. In [7] Hestenes and Stein describe a family of modified gradient methods in which one changes formula (6) to read

$$
\begin{equation*}
x_{k+1}=x_{k}-\beta \gamma_{k} \xi_{k}, \quad \tilde{S}_{k}=B x_{k}-\infty_{9} \tag{10}
\end{equation*}
$$

where β is a fixed factor in the range $0 \leqslant \beta<2$ and prove the convergence. Fors β near 0.9 (called the 8 galmost optimum gradient method) the eridence in Stein [11] suggests that the convergence is much faster than for the optimm gradient method ($\bar{P}=1$). In section III we summarize these datag and give more of our own.

Other proposed accelerations of the gradient method involve getting x_{k+1} by minimizing $f(x)$ in the podimensional linear subspace
 real and arbitrary) (whis is equivalent to minimizing $f(x)$ in the Iinear p-space containing $x_{k \sim p^{2}} x_{k-p+1}{ }^{2} 000$ and x_{k} of Kantorovich [9] suggests use of $p=2$. Kamsh [10] considers the anglogouss process with a general pin solving the eigenvalue problem. In [8] Hestenes and Stiefel give an iterative method which effectively can give p any value up to no (When p a n the method is an exact solution of (1).) Motakin and one of us propose [5] an acceleration step which Professor Hestenes has shown to be equivalent to taking $p \approx 2$. We now describe this.

It is a conjecture (stated in [5]; proved for $n=3$ in [4]: seemingly confirmed in the present experiments) that
(II) $\left\{\begin{array}{l}\text { in the optimum gradient method the error vectom } \\ x_{k}-A^{-1} \text { is asymototicaliy a linear combination } \\ \text { of the eigenvectors } u_{1} \text {, } u_{n} \text { of } B \text { belonging to the } \\ \text { largest }\left(\lambda_{n}\right) \text { and least }\left(\lambda_{1}\right) \text { eigenvalues of } B \text {. }\end{array}\right.$ (If there are eigenvectors of B orthogonal to $x_{0}-A^{-1} b_{\text {, }}$ one disregards the corresponding eigervalues in determining λ_{1} and λ_{n} 。) When this asymptotic relationship holds for a given x_{0}, the sequence $\left\{x_{k}-A^{-1} b\right\}$ behaves asymototically as though it were in the $2 \cdots p l a n e$ π containing u_{1} and u_{n}. But
(12) $\left\{\begin{array}{l}\text { if one carries out the optimum gradient process in } \\ \text { any 2-plane } \pi^{2} \text {, the vectors } X_{k}-A^{-I_{0}} \text { alternate } \\ \text { between two directions in } \pi^{3}, \text { and, for each } k_{g} \text { the } \\ \text { line joining } x_{k-2} \text { and } x_{k} \text { passes through } A^{-1} b_{0}\end{array}\right.$

It is therefore the proposal of [5] that the optimum gradient method occasionaliy be interrupted by determining the $x_{k+1} \delta^{\alpha} x_{k}+(1-\alpha) x_{k-2}$ which minimizes $f[x(\alpha)]$. If the acceleration procedure occurs after m steps, the computing procedure is to set $x=x_{m}$ and $d=x_{m-2}-x_{m}$ in (4) and (5), and the acceleration formulas are:
(13)

$$
\left\{\begin{array}{l}
d_{m}=x_{m-2}-x_{m} \\
\gamma_{m}=B x_{m}-0 \\
\gamma_{m}=d_{m}^{T} \xi_{m} d_{m}^{T} B d_{m} \\
x_{m+1}=x_{m}-\gamma_{m} d_{m}
\end{array}\right.
$$

(14) $\left\{\begin{array}{l}\text { the } x_{k+1} \text { of ary acceleration step is the vector in } \\ \text { the two-dimensional subspace } x\left(\alpha_{1}, \alpha_{2}\right)=x_{k-2} \\ -\alpha_{1} \xi_{k-2}-\alpha_{2} B \xi_{k-2} \text { which minimizes } f\left[x\left(\alpha_{1} \alpha_{2}\right)\right] \\ \text { with respect to } \alpha_{1} \text { and } \alpha_{2} \text {. }\end{array}\right.$

Since, in using the optimum gradient method numerically, one is already set up to carxy out the types of operations involved, the procedure (13) may be preferable to a more direct method for carrying out the above twowdimensional minimization. (The extension of this idea to the use of n successive one-dimensional steps to minimize $f(x)$ in n dimensions is gt the basis of the algorithm in [8].) In section III will be found reports of numerical experiments with the accelertion step. Various numbers of optimum gradient steps have been tried between accelerations.

We also report insertion of the acceleration step (13) into the modified gradient method (10) for $\beta=1.1$. In this case Professor Hestenes ${ }^{\text {b }}$ interpretation does not hold. Of the various statements made above, the only ones which require proof are (12) and (14).

To prove (12) we may assume without loss of generality that $b=\theta_{0}$. It then suffices to show that x_{2} is parallel to x_{0}. The loci $f(x)$ econstant are similar ellipses in π. Let t_{0} be the tangent at x_{0} to the ellipse through x_{0}. Ther the gradient ξ_{0} at x_{0} is orthogonal to t_{0} since ξ_{0} is also the tangent t_{1} at x_{1} to the ellipse through $\left.x_{1} y_{0}\right\}_{0}$ is also orthogonal to f_{1} the gradient at x_{1}. Being both orthogonal to ξ_{0}, the lines ξ_{I} and t_{0} are parallel.

Since \mathcal{F}_{1} is a tangent at x_{2} to the ellipse through $x_{29} x_{2}$ is paralled to $X_{O^{2}}$ as was to be proved.

To prove 1_{4} we note that (12) implies that the acceleration step will locate the common center of the ellipses formed by the intersection of the surfaces $f(x)$ constant with the plane through $x_{k-2} x_{k-19}$ and x_{k}. It therefore suffices to prove that this plane is actually the plane $x_{k-2}-\alpha_{1} \xi{ }_{k-2}-\alpha_{2} B \xi{ }_{k-2}\left(\alpha_{1}\right.$ arbitrary) 。But $\sum_{k-1}=B x_{k-1} \infty c$ $=B\left(x_{k-2}-\gamma_{k-2} \xi_{k-2}\right)-0=\xi_{k-2}-\gamma_{k-2} B \xi_{k-2}$ Then $x_{k}=x_{k-1}-\gamma_{k-1} \xi_{k-1}$ $\left.=x_{k-2}-\left(\gamma_{k-2}+\gamma_{k-1}\right)\right\}_{k-2}-\gamma_{k-2} \gamma_{k-1} B S_{k \rightarrow 2^{\circ}}$ Hence the non-collinear points $X_{k g} X_{k-1,2}$ and x_{k-2} are ail in the plane of $x_{k-2}-\alpha_{1} \xi_{k-2}-\alpha_{2} B \xi_{k-20}$ and (14) is proved.

When the conjectured asymptotic behaviox (11) occurs for a given x_{0} We san above that $K_{k} \rightarrow A^{\infty} b$ asymptotically approaches θ while alternating between two directions H_{g} Io in the plane π_{0}. Here $I_{s} I^{0}$ are related by the fact that their conjugate ${ }^{* \%}$ directions with respect to the ellipser $f(x)$ a constant in π are oxthogonal. When n \& 3 the proof in [4] of (11) shows thatig when x_{0} has a projection on each eigervector of B_{2} not all pairs $L_{,} L^{3}$ are eligible to be asymptotic directions of $x,-A^{-1} b$. Roughly speaking, the eligible directions $L_{,} L^{\prime}$ are those for which $f\left(x_{K}\right) / f\left(x_{K-1}\right)$ (which has one value for both L and L^{0}) is sufficiently near its maximum value $\mu^{2} ;$ see (8).

* Two directions are conjugate with respect to an ellipse if they are the directions of a radius (from the center) and a tangent at the same point。

For each direction L of $x-A^{-1} b$ there is a ratic $\rho \otimes \rho(L)$ of $f(x)$ to $\left|x-A^{-1} b\right|^{2}$ o here $f(I)$ is commonity unequal to $\rho(I)_{0}$ We see that

$$
\begin{equation*}
f(L)=\frac{|A x-b|^{2}}{\left|x-A^{-1} b\right|^{2}}=\frac{\left(x-A^{-1} b\right)^{T} B\left(x-A^{-1} b\right)}{\left|x-A^{-1} b\right|^{2}} \tag{15}
\end{equation*}
$$

Thus $\rho(L)$ is the Rayleigh quotient of the exror vector $x-A^{-1}$. We therefore have

$$
\begin{equation*}
\lambda_{I} \& \rho(L) \Leftrightarrow \lambda_{n} \tag{16}
\end{equation*}
$$

see p. 26 of [3], for example From the foregoing it follows that, whenever the conjectured asymptotic behavior (11) of x_{k} holds, $\mid x_{k}-A^{-1}$ b| goes to zezo in such a maner that the ratio $\left|x_{k}-A^{-1} b\right| /\left|x_{k-1}-A^{-1} b\right|$ will altexnately approach the two limits $p^{\mu} \rho(L) / \rho\left(I^{0}\right)_{, ~ p u} \rho\left(L^{3}\right) / \rho(L)_{0}$ Only for the special case when $\rho(L)=\rho\left(I^{8}\right)$ (meaning that $I_{2} I^{\prime}$ have symmetric positions with respect to the major axis of the ellipses) will these limits be equal.

It is instructive to study the modified gradient process (10) anslytically in two dimensions. Some of the chaxacteristic: behafior of the runs reported in section III occurs o the instability of $f\left(x_{k}\right) / f\left(x_{k-1}\right)$ for β slightly Less than I_{2} and the approach of $f\left(x_{k}\right) / f\left(x_{k-1}\right)$ to μ^{2} for most x_{0} when $1<\beta \& \beta \beta_{0} \leqslant 2_{0}$ This study has been started by one of us with Motzkin [unpublished], and will not be reproduced heres
-

III. EXPERTMENTS AND TABLES

The several methods described in section II were tried out with two essentially different systems of order six on the IBM Card-Programed Calculator of the Institute for Numerical Analysis. The order six is the largest for wich an ordinary gradient step could be handled with the internal storage of the machine used. for these exploratory experiments it was thought better to spend as little time as possible using external storage. (Even so, our acceleration steps required external storage.) The coefficients of the first system, $A x=b$, were obtained from a table of random digits simulating a population of equally distributed integers $\cdots 99,-98, \cdots, O_{3} \ldots 9$. We obtained
$A=\left[\begin{array}{rrrrrr}-14 & 55 & 61 & 40 & 3 & 47 \\ 27 & -34 & 17 & -89 & -78 & 39 \\ 23 & 92 & -63 & 26 & 25 & -86 \\ -23 & 86 & 30 & 95 & -80 & -76 \\ 12 & 52 & 17 & 61 & -34 & 42 \\ -70 & -64 & 42 & 47 & 23 & 28\end{array}\right]$,

$$
\mathrm{b}=\quad\left[\begin{array}{llllll}
-93, & -96, & -71, & 26, & -69 & 71
\end{array}\right]^{T} \circ
$$

In the methods reported here A and b do not explicitiy enter the calculations, but only $B=A^{T} A$ and $C=A^{T} b$. For the above matrix the latter are given a subscript 0_{0} for scaling purposes B_{0} was then multiplied by 20^{-5}, and c_{0} by 10^{-6}.

12
$B_{0}=\left[\begin{array}{cccccc}.06667 & .02634 & -.04640 & -.07368 & -.02131 & -.00431 \\ .02634 & .26841 & -.02243 & .15952 & -.05923 & -.12797 \\ .04640 & 0.02243 & .10932 & .05150 & -.04100 & .08558 \\ -07368 & .05952 & .05150 & .25152 & -.01141 & -0.07169 \\ -.02131 & -.05923 & -.04100 & 0.01141 & .14403 & .01105 \\ -.00431 & -.12797 & .08558 & -.07169 & .01105 & .19450\end{array}\right]$,
$c_{0}=\left[-.008609_{s}-.014279_{2}-.000243_{g}+.00457 \sigma_{g}+.008043_{2}-.004895\right]^{T}$.

Our first experiments were carried out with $\mathrm{B}_{0^{9}}{ }^{C} 0_{0}$ in order to study the machine procedure on a matrix without zeros. These B_{0} and c_{0} were also used by stein [II], who calls them A and b o The gradient methods are invariant under translations and rotations of the space, as long as the operations are carried out exactly. The machine operations are much faster with a diagonal matrixg and the behavior of x_{k} is more easily studied in the coordinate system of the eigenvectors of B_{0}. Accordingiy the positive definite matrix B_{0} was reduced ${ }^{\text {* }}$ to its diagonal form B_{1} \& $S B_{0} S_{2}{ }^{T}$ where S is an orthogonal matrix. At the same time 0_{0} was replaced by $c_{1}=\theta_{2}$ the zeroovectorg so that the solution became θ_{0}
(Probably in practice the roundmoff errors with $B_{1}{ } c_{1}$ are less than with B_{0}. C_{0}, but these errors are not studied here.) We have
"Mr. R. Mo Hayes determined By and S on the Card-Progranmed Calculator.
$B_{1}=\left[\begin{array}{c}00268704\left(\Omega \lambda_{1}\right) \\ 001581310\left(\Omega \lambda_{2}\right) \\ 00234830\left(=\lambda_{3}\right) \\ 0.17590130\left(=\lambda_{4}\right) \\ 025946632\left(\infty \lambda_{5}\right) \\ 049823436\left(\equiv \lambda_{6}\right)\end{array}\right]$,

$$
c_{1}=\left[\begin{array}{llllll}
0_{2} & 0_{2} & 0_{2} & 0_{3} & 0_{3} & 0]^{T} 。
\end{array}\right.
$$

The ratio $P=\lambda_{6} / \lambda_{1} \cong 200$ of the eigenvalues of B_{0} and B_{1} was noted in section II to be intimately related to the speed of convergence of the optimum gradient method; indeed, from (8),

$$
\beta=(P-1)(P+1)^{-1} \because 1-2 P^{-2} .
$$

To get data from a system for which convergence was likely to be faster, we selected a diagonal matrix B_{2} with $P=36$." The other eigenvalues λ_{i} were selected at random from tables simulating a rectangulaz distribution of $\log \lambda_{i}$ on the interval $\log \lambda_{1}$ $\approx \log X_{1} \log \lambda_{6}$. We obtained

$$
B_{2}=\left[\begin{array}{llll}
.01 & & \\
& & .02 & \\
& & 0.15 & \\
& & & \\
& & &
\end{array}\right]
$$

$c_{2}=\left[\begin{array}{llllll}0 & 0_{3} & 0_{3} & 0_{3} & 0_{2} & 0_{2}\end{array}\right]^{T}$.

Unders the Inpothesis of our footnote, page \& absye, the "probable" value of P is ", bout n^{2} 。

For each matrix we used various modifications of the gradient method，and began with various initial vectors $x_{0}{ }^{\circ}$ a summary of the experiments run is contained in Table 2。 On the Card－Programed Calculator we used a ten digit board with fixed decimal point，designed by Dro Hverett C．Yowell of the Institute for Numerical Anslysis． Under the supervision of one of us the experiments were run by Messrs．Thomas Do Lakin，William O。Paine，Jrog and Albert Ho Rosenthal。

The data were checked in two ways：（i）the $\left\{f\left(x_{k}\right)\right\}$ were scanned for reasonableness；（ii）the experiments with matrices B_{0} and B_{1} were run twice．Since check（ii）seldom indicated an error Which had not been suspected from check（i），it was decided to get extra data for matrix B_{2} by omititing check（ii）。 These data therefore have a higher probability of error then those for matrices B_{0} and $B_{1} 9$ but we hope that they are essentially correcto

In Table 1 we show the detailed progress of one run．＂The matrix and initisil vector are the same（in a different coordinate system）as those reported by Stein［11］，and the table may be compared with his Table Io The run chosen consists of 8 optimum gradient steps $(\beta=100)$ ，alternated with one acceleration．since $\beta=1.0$ ，it results from（14）that this is equivalent to 6 minimiza tions of $f[x(\alpha)]$ on the Iine $x=x_{k}-\alpha \xi \xi_{k}$ ，followed by one minimization of $f\left[x\left(\alpha_{2} \alpha_{2}\right)\right]$ in the 2aplane $x=x_{k}-\alpha_{1} \xi_{k}-\alpha_{2} B \xi_{k}{ }^{g}$ and repeat。 If we used a machine with suificient internal storage， the amount of effort in each cycle would be reasonably equivalent to 9 of the optimum gradient steps．
＊The kun is identified by an arrow in Table 20

TABLE 1
One of Our Accelerated Runs

$$
-\quad-
$$

K	$10^{2} \mathrm{f}\left(x_{k}\right)$			$x(k-1, k)=f\left(x_{k}\right) / f\left(x_{k-1}\right)$
$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \\ & 50 \\ & 52 \\ & 52 \\ & 53 \end{aligned}$.00000	00011	$\begin{aligned} & 072 \\ & 35833 \\ & 30050 \\ & 28349 \\ & 26827 \\ & 25449 \\ & 24199 \\ & 23060 \\ & 22022 \end{aligned}$	$\begin{aligned} & .0298 \\ & .0324 \\ & .8386 \\ & .9434 \\ & .9463 \\ & .9486 \\ & .9509 \\ & .9529 \\ & .9549 \end{aligned}$
$\begin{aligned} & 54 \\ & 55 \\ & 56 \\ & 57 \\ & 58 \\ & 59 \\ & 60 \\ & 61 \\ & 62 \end{aligned}$			$\begin{array}{rl} 11206 & \\ 5767 & 7 \\ 5382 & 4 \\ 5104 & 0 \\ 4880 & 1 \\ 4690 & 0 \\ 4520 & 2 \\ 4365 & 5 \\ 4222 & 2 \end{array}$	$\begin{aligned} & .5089 \\ & .5147 \\ & .9332 \\ & .9483 \\ & .9561 \\ & .9610 \\ & .9638 \\ & .9658 \\ & .9672 \end{aligned}$
$\begin{aligned} & 63 \\ & 64 \\ & 65 \\ & 66 \\ & 67 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \end{aligned}$			2420 9 1956 0 1779 9 1684 4 1601 4 1527 8 1459 0 1394 6 1334 0	.5734 . 8080 .9100 .9463 .9507 .9540 .9550 .9559 .9565
$\begin{aligned} & 72 \\ & 73 \\ & 74 \\ & 75 \\ & 76 \\ & 77 \\ & 78 \\ & 79 \\ & 80 \end{aligned}$.00000	00000	343 23 88 906 82 480 80 370 78 402 76 509 74 670 72 880 00071 138	$\begin{aligned} & .2573 \\ & .2590 \\ & .9277 \\ & .9744 \\ & .9755 \\ & .9758 \\ & .9760 \\ & .9760 \\ & .9762 \end{aligned}$

This type of run showed the fastest convergence of $f\left(x_{k}\right)$ to $0 ;$ detailed comparisons with other runs will be found in Table 2 and section IV below.

In Table 1 each heavy horizontal rule indicates an acceleration step. The small discrepancies from the data in [11] result from round-off errors in rotating the coordinate system.

To save space and bring out the important features of the data, the other runs are presented here only in summary form (Table 2)。 The columns of that table are now described.
Column 1: Here we give the matrix $B \Rightarrow A^{T} A$, and vector $c=A^{T} b_{0}$ He column 2: Here we gite the initial columm vector, \%o We use the following abbreviations:

$$
\begin{aligned}
& \theta=\left(\begin{array}{cccccc}
0, & 0, & 0 & 0, & 0, & 0
\end{array}\right)^{T} \\
& x_{0}{ }^{(1)}=\left(\begin{array}{llllll}
0 I_{9} & 019 & -I_{9} & -I_{9} & I_{9} & -0 I_{9}
\end{array}\right)^{T}
\end{aligned}
$$

$$
\begin{aligned}
& x_{0}(3)=(.4595, \quad .0790, \quad .1200, \quad .0880, \quad .0150, \quad .0113)^{T} \\
& x_{0}{ }^{(4)}=\left(.005_{3} \quad .005, \quad .005, ~ .005, ~ .005, ~ .01\right)^{T} \\
& x_{0}(5)=(.01, \quad .01, \quad .01, \quad 01, \quad .019 \quad .01)^{T}
\end{aligned}
$$

Most of these vectors were chosen without any special significance， to see how the methods varied with different starts．The vector θ is a reasonable start，with the non homogeneous problen with $\mathrm{B}_{0}{ }^{9} \mathrm{C}_{0}$ ．The vector $\mathrm{x}_{0}^{(3)}$ in the coordinate system of B_{2} 证 identical with θ in the coordinate system of $\mathrm{B}_{0}{ }^{\circ}{ }^{\circ} 0^{\circ}$

Column 3：β is defined in（10）o
Column 4 ：For all β ，a straight run is an iteration of the step in formula（10）。

For $\beta_{\text {\＆}}$ 2，the term＂m steps and accelerate means that m steps of type（10），resulting in $x_{0^{9}} 000, x_{m-2^{9}} x_{m-1} x_{m}$ are alternated with a minimization of $\mathbb{f}(x)$ for x along the line joining x_{m-2} and x_{m} according to（13）。

For $\beta_{=2} 2$ a special gcceleration was perfomed：After getting
 was taken from the point $x=\frac{1}{2}\left(x_{y}+x_{8}\right)_{0}$ Then 8 more steps followm ed with $\beta=2$ ；etc．

Column 5：In getting the total number，called s_{3} of steps of a run，each acceleration is counted as one step．

Column 6：The number $x\left(k_{1}, k_{2}\right)$ measures the mean proportion ate reduction in $f\left(x_{k}\right)$ per step，for k between k_{1} and $k_{2^{9}}$ where k_{1} \＆k_{2} ．It is defined by the relation

$$
\begin{equation*}
r\left(k_{2}, k_{2}\right)=\left(\frac{f\left(k_{k_{2}}\right)}{f\left(x_{k_{1}}\right)}\right)^{\frac{1}{k_{2}-k_{1}}} \tag{1.7}
\end{equation*}
$$

We may interpret $r\left(k_{1}, k_{2}\right)$ as the geometric mean of the $k_{2}-k_{1}$ ratios $\left\{f\left(x_{i}\right) / f\left(x_{j-1}\right)\right\} \quad\left(i=k_{1}+1, k_{1}+2, \ldots 0, k_{2} J_{0}\right.$

It seems to us that for appropriate choice of $k_{1} k_{2_{2}} r\left(k_{19} k_{2}\right)$ is a useful index of the arerage speed of the iterative process for solving the system $A x=b$. For the modified gradient processes with $0<\beta<2$, one always has $0 \leqslant r\left(k_{1}, k_{2}\right)<I_{0}$ one must remember, however, that the time of convergence of an iteration varies lineariy with $\log (I / r)$, not with r_{3} see (14) and Table 40

The quantity $r(0, s)$ would measure the average reduction in $f(x)$ from the beginning x_{0} to the end x_{s} of a run. Since in some runs a substantial portion of the reduction from $f\left(x_{0}\right)$ to $f\left(x_{s}\right)$ occurs in the first few steps, where X_{k} has not yet settled down (see Table l), the quantity $r\left(\mathrm{O}_{3}\right.$ s) gives a deceptively high impression of the speed of an iteration. To aroid this initial effect, we selected $k_{\mathcal{L}}=5$, and accordingly have tabulated $x(5,5)$ in column 6 as a measure of the mean speed of the process over the majox portion of the runo

Column 7: In certain of the processes the quantity $x(k-1, k)=f\left(x_{k-1}\right) / f\left(x_{k}\right)$ setties down and appears to approach a limit. (The conjecture (11) would imply that, for all x_{0} $f\left(x_{k-1}\right) / f\left(x_{k}\right)$ approaches a Iimit in the optimum gradient processo) Since this limit would be a measure of the ultimate speed of the process, we give the last value, $f\left(s-l_{3}, s\right)=f\left(x_{s-1}\right) / f\left(x_{s}\right)$ in column 7. In other processes, where the ratio $f\left(x_{k-1}\right) / f\left(x_{k}\right)$ does not settile down, we make no entry.

For comparison with Table 2 , we present in Table 3 a summary of Stein's runs [11] in the same form.

TABLE 2
Summary of Oux Runs

Note: B_{1} is similar to $B_{0}{ }^{\circ} B_{1}$, with $x_{0}^{(3)}$ is same problem as $B_{0}{ }^{(3)} C_{0}$ with θ_{0}

TABLE 3
Summary of Stein's Runs

(1)	(2)	(3)	(4)	(5)	(6)	(7)
MATRIX	START	B	METHOD	NO. STEPS	$x(5, s)$	$r(s-1, s)$
$B_{0}{ }^{2} C_{0}$	Θ	. 1	Straight Runs	30	.9334	
${ }^{\text {n }}$	88	. 3	${ }^{381}$	30	. 9509	
88	m	. 6	88	30	. 9339	
\% 9	88	. 8	88:	30	. 8685	
18	88%	. 85	88	30	. 9156	
9	8	. 9	${ }^{78}$	30	. 8065	
8	8	. 95	8	30	. 9454	
8	9	1.0	88	30	. 9702	. 9742
${ }^{18}$	38	1.1	8	30	. 9737	. 9779
${ }^{81}$	88	1.3	$88:$	30	. 9739	. 9779
${ }^{88}$	88	2.6	8	30	. 9728	. 9779
88	\%	1.9	88	30	. 9385	.97山

> -

It may be useful occasionally to transform $r=r\left(k_{1} k_{2}\right)$
to a unit which is proportional to the time spent in an iteration. Let $K=K(x)$ be the number of steps needed to reduce $\left|A x_{k}-b\right|$ by one decimal place; ioe.g to onemtenth of its valueg when $f\left(x_{k-1}\right) / f\left(\dot{x}_{k}\right)$ has the mean value r. Since $f\left(x_{k}\right)=\left|A x_{k}-b\right|^{2}$, we find $K(r)$ from the relation

$$
x^{K(r)}=10^{-2}
$$

whence

$$
\begin{equation*}
K(x)=\frac{2}{\log _{10}(1 / x)} \tag{14}
\end{equation*}
$$

In Table 4 we give $K(x)$ for some values of x. Note that a small variation in r near I makes a large difference in $K(x)$; the quantity K is an approximate measure of the time required to solve a system.

IV. SIUDY OF THE DATA

The first question we faced was: at what intervals should the acceleration step (13) best be applied to the optimum gradient method (6)? There seem to be two possibilities. (i) Some property of the sequence $\left\{x_{k}\right\}$, might indicate when it was ready to be accelerated for exarple, the property of having $x_{k-3}, x_{k-2} x_{k-1} x_{k}$ almost in a: $2-p l a n e$. To simplify the $I_{0} B$.M. procedure this was not tried. (ii) The acceleration step could be inserted after each m steps. The latter procedure was adopted, and we needed to select a preferred value of m。

TABLE 4
Iterative Steps Per I-Decimal Reduction of $|A x-b|$

For the matrix B_{0} we made several tests designed to choose m. In one, starting always with a vector near the x_{36} of Table I_{2} we repeatedly ran 12 optimum gradient steps and an acceleration step. These thirteen steps were performed in 10 different ways, vizog with the acceleration step following the 2 nd, $3 x d, \cdots{ }_{9}$ or 1lth optimum gradient step. The results of the test (not shown in this paper) were that one got to the least $f(x)$ in these thirteen steps when the acceleration was taken as late as possible. This fact by itself suggests taking a large value of mo On the other hand, use of a large m means that relatively fewer accelerations can be taken in a run of a given number of steps. Since the main reduction in $f(x)$ comes in the accelerations, one wants as many such steps as possible.

The balance between these opposing factors determines the best vailue for m. For the matrix B_{0} we tried out m s $4,7,8,9$ and 12. Study of the values of $r(5, s)$ for the runs with B_{0} at the start of Table 2 indicates that (for $\left.x_{0} \equiv 0\right) \mathrm{m}=8$ is best, while m m 7 is next best。

It is probable that the optimal v alue of m depends on the value of the initial vector x_{0}. We suspect, however, that the variation of m with x_{0} is commonly slight, because each acceleration is a compLicated transfomation which effectively produces a new initial vector. Thus each single run is the avexage of a number of different startso With matrices B_{0} and B_{2} the procedure with $m=8$ was xun for more than one start x_{0}. The variation in $x(5, s)$ is not great; see Table 2 . That m depends materially on the matrix B and its order m is not questioned. it would be an interesting experiment to study the dependence on these factorss

Haring accepted $m=8$ as the best value for the matrix B_{0} (and for the similar matrix B_{1}), we retained m sor the matrix $B_{2^{g}}$ but we do not claim it to be optimal.

Table I shows a run of 118 steps with matrix B_{1}, using $\mathrm{m}=8$ and starting with the vectox $x_{0}^{(3)}$, which corresponds to the start θ for B_{0} used above and in [11]. The table of values of $f\left(x_{k}\right)$ and their ratios shows what a complicated process we are dealing witho By a cycle we refer to a block of eight optimum gradient steps followm ed by one acceleration. The cycles vary greatly in their success. in reducing $f\left(X_{k}\right)$ 。 When the optimum gradient steps within a cycle bring $x_{k}-A^{-1} b$ nearly into the plane π defined in section 2 , then the following arceleration brings $f\left(x_{k+1}\right)$ to a value much less than $f\left(x_{k}\right)$ o The efticiency of the next following cycles varies within wide bounds, apparently according to rather subtle properties of the vector $x_{k+1}-A^{-1} b$. Thus the progress of the error vector to zero is irregular, and the values of in Table 1 are certainly not predictable. Part of the reason for this is that, as can be shom, the asymptotic behavior of the direction vectors $\left(x_{k}-A^{-1} b\right) /\left|x_{k}-A^{-1} b\right|$ is exceedingly sensitive to a change in the initial vector x_{0}.

Nevertheless - and this is the important practical consideration in the accelerated procedure x_{k} was able to progress rapidly toward the solution $\mathbb{A}^{-1} \mathrm{~b}$. For the matrix B_{2}, the average reduction $r(5,119)$ in $f(x)$ was .6245 (Table 2), representing a speed of convergence 18 times as fast as that of the optimum gradient method, for which $r(86,87)=.9748$. (i.e. $(.9748)^{18} \approx .6245$) For the matroix E_{2} a the
corresponding figures for starts $x_{0}^{(6)} x_{0}^{(7)} x_{0}^{(7)} x_{0}^{(8)}$ were .4566 and .8939, 04738 and . 8917, .4373 and .8938 g here the speed was 7 or 8 times that of the optimum gradient method.

It seems impossible to say how the improvement would behare with laxger n.

The irregular decrease of $f\left(x_{k}\right)$ was observed also by Stein [II] for the gimost optimum methods (β 0.9) . The gradient methods for $\beta \geq 1$ are slow to comverge because the sequence $\left\{x_{k}-A^{-1} b\right\}$ approaches periodicity. On the other hand, the strongly non-periodic character of our accelerated process and of the almost optimum process. is, we believe, at the root of their success: the vectors $x_{k}-A^{-1} b$ are not permitted to settle down into a periodicity.

We have in Table 2 a fen data which gfford a comparison of the accelerated gradient process $m=8$ with the aimost optimum method $\beta=0.9$. The comparison should be regarded as only tentative, since we have no idea how the speed of either process varies with the order of the matrices or other factors For the matrix. B_{1}, and stant x_{0} (3), we find $x(5,87)=.8204$ for 87 steps of the almost optimum process $(\beta=0.9)^{\%}$, while for the accelerated process ($m=8$) we have $r(5,119)=.6245$. For $B_{2} \theta_{9}$ and starts $x_{0}^{(6)} \mathcal{X}_{0}^{(7)} X_{0}^{(8)}$ the comparable figures ares .6530 and $04566 \% .7117$ and $04738 \% .6333$ and .4373. If these figures are representative, the accelerated scheme ($m=8$) is about twice as fast as the almostooptimum method ($\beta=0.9$). On the other hand, the latter process surely requires *For the similar matroix B_{O}. Stein's runs yield x $(5,30$) $\approx .8065$ (see Table 3); the irregularity of the process accounts for the discrepancy.
a simpler and shortex code－an exceedingly important adwantage with machines．

In the straight runs with B_{1} and B_{2} of the optimum gradient $\operatorname{method}(\beta=1)$ in Table 2 we have several samples of the ratio $r(s-1, s)$ ，which appears to be near its Iimit．Accoraing to（8）， this ratio cannot exceed p^{2} ．Now for B_{0} and $B_{19} p^{2}{ }^{2} 097865832$ 。 $\operatorname{fox}^{3} \mathrm{~B}_{2^{2}} \quad 8^{2}=.89481373 \quad 0$

We find that，of the six values of $\left.x\left(s_{0}\right]_{9} s\right)_{8}$ all are greater than 99 per cent of their maximum value f^{2} ，while five exceed 99.6 per cento This confirms the statement made in section II that Kantotrorich： inequality（9）is close to an equality in practice．

In oux one long rux made with $\beta>y_{2}$ we observe that $x(s-1, s)$ © 07865 ，which agrees with μ^{2} to five decimalso We also observe that，in steing fous wuns with $\beta>I_{9}$ three of them have $x(s-1, s)=0979$ ．W⿵ thus obserre for $n=6$ an apparent behavior of the modified gradient method $(1<\beta<2)$ which is like that remark ed in section II to be universally true for $n \otimes 2$ ：for most x_{0} and for β in a range $I<\beta \& \beta_{0}<2$ one has $f\left(x_{k}\right) / f\left(x_{k-1}\right) \Rightarrow \mu_{g}^{2}$ as $k \rightarrow \infty$ 。

V. REFERENCES

[1] Vo Bargmann, Do Mont,gomerys and Jo Fon Neumann, "Solution of Iinear systems of high order, "Report on Contract NORD-9596, prepared for the Bureau of Ordnanoe, U. S. Navy, 25 October 1946, Princeton, New Jersey.
[2] A. L. Cauchy gMéthode générale pour Ia résolution des systèmes d'équations simultanées" Academie des Sciences, Paris, Comptesm Rendus, 25 (184?), 536-538.
[3] R.Couxant and D. Hilbert, Whethoden der mathematischen Physikg ${ }^{\text {P }}$ Berling 1931.
[4] G. E. Forsythe and ToS. Motzkin, "Asymptotic properties of the optimun gradient method, "American Mathematical Society, Bulleting 5 (1951), 183 (Abstract).
[5] GoE. Forsythe and ToS. Motzking Acceleration of the optimum gradient method. Preliminary report, ${ }^{98}$ American Mathematical Society, Bulletin, 57 (1951), 304-305 (Abstract).
[6] M. Ro Hestenes and Wo Kaxush, Method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix ${ }^{88}$ National Bureau of Standards, Journal of Research, 47 (1951), 45-61.
[7] Magnus RoHestenes and Marvin I. Stein, "The solution of Iineax equations by minimization, ${ }^{81}$ NAML Report 52-45. 12 December 1951, multilithed typescriptg $35^{\prime} \mathrm{pp}$.
[8] Magnus R. Hestenes and Eduard Stiefel, "Method of conjugate gradients for solving linear systems?: NBS Report 1659 20 March 195 ? multilithed, 101 pp .
［9］Lo VoKantorovich＂Functional analysis and applied mathematics，＂ Uspekhi matematicheskikh nauk，3，no．6（1948），89－185（Russian）。
［10］W。Karush，＂An iterative method for finding characteristic vectors of a symmetric matrixg Pacific Journal of Mathematics，I（1951）， $233-248$ 。
［I1］Marvin L．Stein，＂Gradient methods in the solution of systems of Linear equations，${ }^{8}$ NAML Report 520% ， 20 July 1951，multilithed typescript， 18 ppo
［12］Go Temple，＂The general theory of relaxation methods applied to Iinear systems，${ }^{38}$ Royal Society of London，Proceedings， Series A，169（2939），476－500．

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The National Bureau of Standards is the principal agency of the Federal Government for fundamental and appliedresearch in physics, mathematics, chemistry, and engineering. Its activities range from the decermination of physical constants and properties of materials, the development and maintenance of the national standards of measurement in the physical sciences, and the development of methods and instruments of measurement, to the development of special devices for the military and civilian agencies of the Government. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various scientific and technical advisory services. A major portion of the NBS work is performed for other government agencies, particularly the Department of Defense and the Atomic Energy Commission. The functions of the National Bureau of Standards are set forth in the Act of Congress, Masch 3, 1901, as amended by Congress in Public Law 619, 1950. The scope of activities is suggested in the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the jourrals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: the Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents sumary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nomperiodical publications: the Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau' \& publications can be found in NBS Circular 460, Publicacions of the National Bureau of Standards $(\$ 1.00)$. Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

NBS

[^0]: *The preparation of this paper was sponsored (in part.) by the Office of Naval Reseatch.

